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a b s t r a c t

Load balancing plays a critical role in efficiently dispatching jobs in parallel-server
systems such as cloud networks and data centers. A fundamental challenge in the
design of load balancing algorithms is to achieve an optimal trade-off between delay
performance and implementation overhead (e.g. communication or memory usage). This
trade-off has primarily been studied so far from the angle of the amount of overhead
required to achieve asymptotically optimal performance, particularly vanishing delay in
large-scale systems. In contrast, in the present paper, we focus on an arbitrarily sparse
communication budget, possibly well below the minimum requirement for vanishing
delay, referred to as the hyper-scalable operating region. Furthermore, jobs may only be
admitted when a specific limit on the queue position of the job can be guaranteed.

The centerpiece of our analysis is a universal upper bound for the achievable
throughput of any dispatcher-driven algorithm for a given communication budget and
queue limit. We also propose a specific hyper-scalable scheme which can operate at any
given message rate and enforce any given queue limit, while allowing the server states
to be captured via a closed product-form network, in which servers act as customers
traversing various nodes. The product-form distribution is leveraged to prove that the
bound is tight and that the proposed hyper-scalable scheme is throughput-optimal in
a many-server regime given the communication and queue limit constraints. Extensive
simulation experiments are conducted to illustrate the results.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Load balancing provides a crucial mechanism for efficiently distributing jobs among servers in parallel-processing
ystems. Traditionally, the primary objective in load balancing has been to optimize performance in terms of queue
engths or delays. Due to the immense size of cloud networks and data centers [1–3], however, implementation overhead
e.g. communication or memory usage involved in obtaining or storing state information) has emerged as a further key
oncern in the design of load balancing algorithms. Indeed, the fundamental challenge in load balancing is to achieve
calability: providing favorable delay performance, while only requiring low implementation overhead in large-scale
eployments.
The seminal paper [4] approached the above challenge by imposing the natural performance criterion that the

robability of non-zero delay vanishes as the number of servers grows large. It was shown that this can only be achieved
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with constant communication overhead per job when sufficient memory is available at the dispatcher. There are in fact
schemes which achieve a vanishing delay probability with only one message per job [5–7] or even fewer [8], but these
rely on server-initiated updates as opposed to dispatcher-driven probes. We defer a more extensive discussion of these
papers and the broader literature to a later stage in this introduction.

In the present paper we pursue the same intrinsic trade-off between performance and communication overhead, but
ocus on the optimal performance for a potentially scarce communication budget, and our perspective is fundamentally
ifferent in two respects. First of all, we set the admissible message rate δ to be arbitrary, and in particular to be far lower
han one message per job, which we refer as the ‘hyper-scalable’ operating regime. This range is especially relevant in
cenarios with relatively tiny jobs and a correspondingly massive arrival rate which may significantly exceed the message
ate that can be sustained between the dispatcher and the servers, prohibiting even just one message per job. Second,
obs may only be admitted when a strict limit K on the queue position of the job can be guaranteed. This queue limit K
an have any value and is offered in systems of any size, as opposed to a zero queue length that is only ensured with
igh probability in a many-server regime. The combination of a low communication budget per job and a strict admission
ondition is particularly pertinent for high-volume packet processing applications, where zero delay may not be feasible
iven the admissible message rate, but where an explicit queue limit is crucial.
As the cornerstone of our analysis, we establish a universal upper bound for the achievable throughput of any

ispatcher-driven algorithm as function of δ and K , thus capturing the trade-off between performance and communication
verhead. We also introduce and analyze a specific hyper-scalable scheme which approaches the latter bound in a
any-server regime, demonstrating that the bound is sharp.

odel set-up and hyper-scalable scheme. We adopt the set-up of the celebrated supermarket model which has emerged as
he canonical framework in the related literature (as further reviewed below), but add several salient features relevant for
ur purposes. Specifically, we consider a system with N identical servers of unit exponential rate and a single dispatcher
here jobs arrive as a Poisson process of rate Nλ. The dispatcher is unaware of the service requirements of jobs and
annot buffer them, but must immediately forward them to one of the servers or block them. The throughput of the
ystem is defined as the rate of admitted jobs per server.
The blocking option is relevant since the dispatcher must enforce an explicit queue limit K , and is only allowed to

dmit a job and assign it to a server if it can guarantee that the queue position encountered by that job is at most K .
ote that it is not enough for a job to end up in such a position thanks to a lucky guess, but that the dispatcher must
ave absolute certainty in advance that this is the case, and that a job must be discarded otherwise. Discarding may be
he preferred option in packet processing applications when handling a packet beyond a certain tolerance window serves
o useful purpose. In that case, processing an obsolete packet results in an unnecessary resource wastage and needlessly
ontributes to further congestion, and is thus worse than simply dropping the packet upfront.
As mentioned above, the dispatcher is oblivious of the service requirements, which are exponentially distributed and

hus have unbounded support. Hence, the dispatcher critically relies on information provided by the servers in order to
nforce the queue limit K , and is allowed to send probes for this purpose, requesting queue length reports at a rate Nδ.
n addition, the dispatcher is endowed with unlimited memory capacity, which it may use to determine which server to
robe and when or to which server it will dispatch an arriving job. Servers return instantaneous queue length reports in
esponse to probes from the dispatcher, but are not able to initiate messages or send unsolicited updates when reaching
certain status.
With the above framework in place, we will construct a specific hyper-scalable scheme which is guaranteed to enforce

he queue limit K and operate within the communication budget δ. The scheme toggles each individual server between
wo modes of operation, labeled open and closed. An open period starts when the dispatcher requests a queue length
pdate from the server and the reported queue length is below K ; during that period the server is not working, and waits
or incoming jobs from the dispatcher, seeing its queue only grow. Once the queue length reaches the limit K , a closed
eriod starts, ending when the dispatcher requests the next update after τ time units; during that period the server is
ontinuously working as long as jobs are available, without receiving any further jobs, thus draining its queue. When
he queue length reported at an update is exactly K , the open period has length zero, and the next closed period starts
immediately. By construction, the above-described mechanism maintains a queue limit of K at all times and induces a
essage rate of at most 1/τ per server, which makes τ = 1/δ the obvious choice.

Main contributions. The main contributions of the paper may be summarized as follows. First of all, we establish
a universal upper bound λ∗(δ, K ) for the achievable throughput of any dispatcher-driven algorithm subject to the
communication budget per server in terms of δ and the queue limit K . The upper bound relies on a simple yet powerful
argument which counts the number of jobs that can be admitted per message given the queue limit K and the message
ate δ. While the macroscopic view of the argument covers a broad range of strategies with possibly dynamic and highly
omplex update rules, the nature of the upper bound strongly points to the superior properties of constant update
ntervals.

Armed with that insight, we propose a hyper-scalable scheme which can operate at any given message rate δ and
enforce any given queue limit K . At the same time, the scheme is specifically designed to produce system dynamics that
can be represented in terms of a closed product-form queueing network, in which the servers act as customers traversing

various nodes. This furnishes tractable expressions for the relevant stationary distributions and in particular the blocking
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probability. The expression for the blocking probability is used to prove that the achieved throughput approaches the
minimum of the above-mentioned upper bound and the normalized job arrival rate λ in a many-server regime. This in
urn demonstrates that the upper bound is tight and that the proposed hyper-scalable scheme provides optimality in the
hree-way trade-off among queue limit, communication and throughput.

ackground on load balancing algorithms. Load balancing algorithms can be broadly categorized as static (open-loop),
ynamic (closed-loop), or some intermediate blend, depending on the amount of state information (e.g. queue lengths
r load measurements) that is used in dispatching jobs among servers. Within the category of dynamic policies, one can
urther distinguish between dispatcher-driven (push-based) and server-oriented (pull-based) approaches. In the former
ase, the dispatcher ‘pushes’ jobs to the servers and takes the initiative to collect state information for that purpose, while
he servers play a passive role and only provide state information when explicitly requested. In contrast, in server-oriented
pproaches, the servers may pro-actively share state information with the dispatcher, and indirectly ‘pull’ in jobs by
dvertising their availability or load status. The use of state information naturally allows dynamic policies to achieve better
erformance, but also involves higher implementation complexity (e.g. communication overhead and memory usage) as
entioned earlier. The latter issue has emerged as a pivotal concern due to the deployment of large-scale cloud networks
nd data centers with immense numbers of servers handling massive amounts of service requests.
The celebrated Join-the-Shortest-Queue (JSQ) policy provides the gold standard in the category of dispatcher-driven

lgorithms and offers strong stochastic optimality properties. Specifically, in case of identical servers, exponentially
istributed service requirements and a service discipline at each server that is oblivious to the actual service requirements,
he JSQ policy achieves minimum mean delay among all non-anticipating policies [9,10]. In order to implement the JSQ
olicy, however, a dispatcher relies on instantaneous knowledge of the queue lengths at all the servers, which may involve
prohibitive communication burden, and may not be scalable. Related is the join-below-threshold scheme [11], which is
hroughput-optimal, but the dispatcher-driven variant is not scalable either.

The latter issue has spurred a strong interest in so-called JSQ(d) strategies, where the dispatcher assigns incoming jobs
to a server with the shortest queue among d servers selected uniformly at random. This involves d message exchanges
per job (assuming d ≥ 2), and thus drastically reduces the communication overhead compared to the full JSQ policy
when the number of servers N is large. At the same time, even a value as small as d = 2 yields significant performance
improvements in the many-server regime N → ∞ compared to purely random assignment (d = 1) [12,13]. This is
commonly referred to as the ‘‘power-of-two’’ effect. Similar power-of-d effects have been demonstrated for heterogeneous
servers, non-exponential service requirements and loss systems in [14–19].

Unfortunately, JSQ(d) strategies lack the ability of the conventional JSQ policy to achieve zero queueing delay as
N → ∞ for any finite value of d. In contrast, if d grew with N , making it possible to drive queueing delay to zero [20,21],
the communication overhead would grow unboundedly. A noteworthy exception arises for batches of jobs when the value
of d and the batch size grow suitably large, as can be deduced from results in [22]. Leaving batch arrivals aside though,
it is in fact necessary for d to grow with N in order to achieve zero queueing delay, since results in the seminal paper [4]
show that this is fundamentally impossible with a finite communication overhead per job, unless memory is available at
the dispatcher to store state information.

The latter feature is exactly at the core of the so-called Join-the-Idle-Queue (JIQ) scheme [5,6], where servers advertise
their availability by transferring a ‘token’ to the dispatcher whenever they become idle, thus generating at most one
message per job. The dispatcher assigns incoming jobs to an idle server as long as tokens are outstanding, or to a uniformly
at random selected server otherwise. Remarkably, the JIQ scheme has the ability of the full JSQ policy to drive the queueing
delay to zero as N → ∞, even for generally distributed service requirements [7,23].

Note that for no single value of d, a JSQ(d) strategy can rival the JIQ scheme which simultaneously provides low
communication overhead and asymptotically optimal performance. As alluded to above, this superiority reflects the power
of server-oriented approaches in conjunction with memory at the dispatcher. The value of memory in load balancing
was already studied in [24,25] in a ‘balls-and-bins’ context. Related work in [26] examines how much load balancing
performance degrades when delayed information is used. A framework for mean-field analysis for JSQ(d) strategies with
emory is developed in [27]. The authors of [28] use mean-field limits to determine the minimum required value of d

or JSQ(d) strategies with memory to achieve zero queueing delay. The possibilities with limited memories are explored
n [29].

As described above, the main interest in the line of work sparked by [4] has focused on the amount of communication
verhead and/or memory usage required to drive the queueing delay to zero in a many-server regime. While there are
nown schemes to achieve that with just one message per job, even that may still be prohibitive, especially when jobs do
ot involve big computational tasks, but tiny data packets which each require little processing. In such situations the sheer
essage exchange in providing queue length information may be disproportionate to the actual amount of processing

equired. While the overhead can be reduced, that only appears feasible for sufficiently low load [8], and it remains
argely unknown what the best achievable performance is for a given communication budget below one message per job.
otivated by these issues, we focus on dispatcher-driven schemes that can operate at an arbitrarily low communication
udget, and that can additionally enforce a specific queue limit for every admitted job. To the best of our knowledge,
his hyper-scalable perspective has not been pursued before, with the exception of [30] which however does not consider
xplicit queue limits or optimality properties.
3
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Finally, [31,32] consider a similar problem but in the case of multiple dispatchers, in which every dispatcher keeps
local estimate of all queue lengths and these estimates are updated infrequently. This is in fact closely related to the
yper-scalable algorithm in this paper, although the analyses and results differ, primarily because of the queue limit we
mpose.

The literature on load balancing algorithms has ballooned in recent years, and the above discussion provides a non-
xhaustive cross-section with some of the classical paradigms and results most pertinent to the present paper. We refer
o [33] for a more comprehensive survey discussing related job assignment mechanisms, further model extensions and
lternative asymptotic regimes (e.g. heavy-traffic and non-degenerate slow down scalings).

rganization of the paper. The main results are presented in Section 2: the upper bound for the throughput and the
nalysis of the hyper-scalable scheme, using a closed queueing network. In Section 3 we provide simulation results to
urther illustrate the behavior of the hyper-scalable scheme. An extension of the hyper-scalable scheme that also aims
o minimize queue lengths is introduced in Section 4. In Section 5 we establish product-form distributions for a general
losed queueing network scenario which covers both the hyper-scalable scheme and the latter extension as special cases.
e conclude with some remarks and suggestions for further research in Section 6.

. Main results

In this section we discuss the main results, which can be summarized as follows. There is a function λ∗ of δ and K ,
uch that subject to a message rate δ and queue limit K ,

• the throughput of any dispatcher-driven algorithm is bounded from above by min{λ∗(δ, K ), λ},
• the throughput of our hyper-scalable scheme approaches min{λ∗(δ, K ), λ} as N → ∞.

t is worth observing that λ∗(δ, K ) equals the product of δ and the expected number of jobs that would leave from a server
ith K jobs in queue over 1/δ time. The hyper-scalable algorithm will heavily lean on this observation. These two results
re covered in Sections 2.1 and 2.2, respectively.

.1. Universal upper bound

We establish the upper bound for a slightly more general scenario with heterogeneous server speeds. Denote the speed
f the nth server by µn for n = 1, . . . ,N . The next theorem shows that the achievable throughput of any dispatcher-driven
lgorithm subject to the message rate δ and queue limit K is bounded from above by

λ∗(δ, K ) = δMK (µ̄/δ),

ith

MK (τ ) =

K−1∑
k=0

(1 − αk(τ )), (1)

k(τ ) = e−τ
∑k

i=0
τ i

i! and µ̄ =
1
N

∑N
n=1 µn denoting the system-wide average server speed. Note that MK (τ ) may be

quivalently written as

MK (τ ) = K −

K−1∑
k=0

(K − k)e−τ τ k

k!
,

and may be interpreted as the expected value of the minimum of K and a Poisson distributed random variable with mean
.

heorem 1. The expected number of jobs that any dispatcher-driven algorithm can admit subject to the queue limit K during
period of length T0 with at most δNT0 message exchanges cannot exceed 2KN + λ∗(δ, K )× NT0, for any δ > 0. In particular,

the achievable throughput with a message rate of at most δ > 0 is bounded from above by λ∗(δ, K ).

Recall that we defined throughput as the rate of admitted jobs per server, and note that the throughput is naturally
bounded from above by the normalized arrival rate λ.

Proof. As noted earlier, since the execution times are exponentially distributed and thus have unbounded support, the
dispatcher relies on information provided by the servers in order to enforce the queue limit K . Specifically, the dispatcher
earns ‘passes’ for admitting k jobs when a server reports k = 0, . . . , K service completions since the previous update,
and cannot admit any job without relinquishing a pass. Thus, the number of jobs that the dispatcher can admit during a
particular time period cannot exceed the sum of (i) the maximum possible number of KN passes initially available; (ii) the
maximum possible number of KN passes earned at the first update from each server during that period, if any; and (iii)
the number of additional passes obtained at further updates over intervals that fell entirely during that period, if any. Now
4
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suppose that the dispatcher requests Ln queue length reports from the nth server during a period of length T0, one after
ach of the update intervals of lengths Tn,1, . . . , Tn,Ln , with

∑Ln
l=1 Tn,l ≤ T0 for all n = 1, . . . ,N and L =

∑N
n=1 Ln ≤ δNT0.

Then the number of passes earned at the lth update equals the number of service completions during the time interval Tn,l,
which depends on the queue length at the start of that interval. However, this random variable is stochastically bounded
from above by when the queue was full with K jobs at the start of the interval. In the latter case the number of passes
earned is given by the minimum of K and a Poisson distributed random variable with parameter µnTn,l. We deduce that
the expected total number of passes obtained at all these updates is bounded from above by

N∑
n=1

Ln∑
l=1

MK (µnTn,l), (2)

and to prove the first statement of the theorem it thus remains to be shown that this quantity is no larger than
λ∗(δ, K ) × NT0. It is easily verified that

∂2MK (t)
∂t2

= −e−t tK−1

(K − 1)!
< 0,

implying that MK (t) is concave as function of t . As an aside, the above expression may be intuitively explained from the
fact that the first derivative ∂MK (t)

∂t equals the probability that exactly K −1 unit-rate Poisson events occur during a period
f length t , while the (negative) derivative of the latter probability equals that very same probability by virtue of the
olmogorov equations for a pure birth process. Because of concavity, we obtain that (2) is no larger than L×MK (τ ), with

τ =
1
L

N∑
n=1

µn

Ln∑
l=1

Tn,l ≤
1
L

N∑
n=1

µnT0 = µ̄
NT0
L

. (3)

Invoking the fact that ∂MK (t)
∂t > 0, i.e., MK (t) is increasing in t , we may write

L × MK (τ ) ≤ L × MK

(
µ̄
NT0
L

)
= λ∗(γ , K ) × NT0, (4)

with γ =
L

NT0
≤ δ. It is easily verified that

∂λ∗(x, K )
∂x

= K − Ke−1/x
K∑

k=0

(1/x)k

k!
> 0, (5)

i.e., λ∗(x, K ) is increasing in x, and hence λ∗(γ , K ) ≤ λ∗(δ, K ), which completes the proof of the first statement of the
theorem.

Finally, to prove the second statement, we consider the long-term scenario T0 → ∞. The number of jobs that are
dmitted per time-unit per server then equals (2KN + λ∗(δ, K ) × NT0)/(NT0) → λ∗(δ, K ) and the message rate per server
quals at most δNT0/(NT0) = δ. □

roperties of λ∗. We now state some properties of λ∗(δ, K ) and discuss their consequences, where we assume without
oss of generality that µ̄ = 1. In the next subsection we will introduce a hyper-scalable scheme which is able to achieve
his throughput in the many-server regime. For now, we will reflect the properties in light of the maximum throughput
hat is possible for any dispatcher-driven load balancing algorithm given a message rate δ.

roposition 1. λ∗(δ, K ) has the following properties:

(i) λ∗(δ, K ) is strictly increasing in both δ and K ,
(ii) λ∗(δ, K ) ↑ 1 as δ → ∞,
(iii) λ∗(δ, K ) ↓ 0 and λ∗(δ, K )/δ → K as δ ↓ 0,
(iv) for a ≤ 1, λ∗(a/K , K ) → a as K → ∞.

Proof. λ∗(δ, K ) is strictly increasing in δ because of (5) and is strictly increasing in K since 1 − αk(τ ) > 0 in (1). For
Properties (ii) to (iv), note that

δ[K − Ke−1/δ
− e−1/δ((K − 1)/δ + (K − 2)(1/δ)y(δ))]

≤ δ(K − e−1/δ
K−1∑
i=0

(K − i)
(1/δ)i

i!
) = λ∗(δ, K ) ≤ min(δK , 1),

with y(δ) = 2 when δ ≥ 1 and y(δ) = K − 1 when δ < 1. All limiting statements are true for the LHS and RHS of the
revious equation, therefore proving these properties for λ∗(δ, K ) too. □
5
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Fig. 1. Visualization of the throughput bound λ∗(δ, K ) for various values of K as function of δ. For the fourth and fifth graph, only values of δ are
valuated for which the second argument is integer-valued.

The properties in Proposition 1 are visualized in Fig. 1. They can be interpreted intuitively and practically too. For
roperty (i), when the communication budget is expanded, i.e. δ is increased, more jobs can be dispatched to queues
hat are guaranteed to be short. Similarly, more jobs can be admitted into the system if the queue limit is raised, i.e., K
s increased. Property (i), in conjunction with Theorem 1, implies that a throughput λ∗(δ, K ) cannot be achieved with a
essage rate strictly below δ, or a queue limit strictly below K .
Property (ii) shows that as the message rate grows large, full server utilization can be achieved. With an unlimited

essage rate, the dispatcher is able to find idle servers immediately, a necessary requirement for achieving full server
tilization irrespective of the queue limit K .
Property (iii) shows that, first, when no communication is allowed, no jobs can be sent to queues that are guaranteed

o be short. The further specification of the limit indicates that K jobs are admitted into the system per message. This in
urn reveals that when the communication is extremely infrequent, all messages result into finding an idle server, and
hus provide the dispatcher with K passes to admit jobs.

Finally, Property (iv) is somewhat similar to Property (iii). When the queue limit K increases, one needs fewer messages
n order to achieve a server utilization level a. With a = 1, Property (iv) shows that one message per K jobs is needed in
rder to achieve full server utilization, which is a somewhat similar conclusion as the one from Property (iii).

.2. The hyper-scalable scheme

We now introduce the hyper-scalable scheme in full detail for the case of homogeneous servers.
At all times, the dispatcher remembers the most recent queue length that was reported by every server. Furthermore,

he dispatcher records the number of jobs that have been sent to every server since the last update from that server. When
he sum of these two numbers is strictly less than the queue limit K , a server is labeled open, and otherwise closed.

Whenever a job arrives to the dispatcher, it is assigned to an open server, if possible. There are two options for how to
elect an open server. Either an open server is selected uniformly at random (random case), or the open server that was
nteracted with (i.e. updated or received job) the longest ago is selected (FCFS case). The job is dropped when no open
ervers exist.
Exactly τ time units after a server was labeled closed, the dispatcher will request a queue length update of the server.

he server becomes open when this queue length is strictly less than K , and the server remains closed for another τ time
nits if the queue length equals K , in which case the dispatcher will request the next queue length update after another τ
ime units. The hyper-scalable scheme is a dispatcher-driven algorithm, since only the dispatcher initiates messages and
very server can track itself when it is labeled open by the dispatcher: exactly when the sum of the queue length during
he latest update and the number of jobs received since then is strictly below K .

Note that by construction the hyper-scalable scheme respects the queue limit K at all times and involves a message
ate of at most 1/τ . In addition, the scheme has been specifically designed to allow explicit analysis and derivation of
rovable capacity benchmarks. As it turns out, a crucial feature in that regard is for the servers to refrain from executing
obs while being marked open. This feature ensures that the queue length is exactly K at the moment a server becomes
losed. The average number of job completions in an interval of length τ then equals MK (τ ), so one message leads to
K (τ ) admitted jobs on average, immediately yielding the following result.

orollary 1. The average number of messages per admitted job is equal to 1/MK (τ ), regardless of λ and N.

While the forced idling of servers during open periods may seem inefficient, the next theorem shows that the proposed
yper-scalable scheme is in fact throughput-optimal in large-scale systems, given the message rate δ and queue limit K ,
ith the choice τ = 1/δ.
6
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Fig. 2. Schematic representation of the circulation of an individual customer in the closed queueing network.

heorem 2. For any δ > 0, the throughput achieved by the hyper-scalable scheme with τ = 1/δ approaches min{λ∗(δ, K ), λ}

s N → ∞.

Since the hyper-scalable scheme obeys the queue limit K and involves a message rate of at most δ, Theorems 1 and 2
ombined imply that it is throughput-optimal as N → ∞.
According to Theorem 1 and Property (i) of Proposition 1, one would require a message rate of at least δ to achieve
throughput of λ∗(δ, K ). Theorem 2 shows that the throughput of the hyper-scalable scheme approaches λ∗(δ, K ) as
→ ∞ when λ ≥ λ∗(δ, K ). A combination of these two observations (and the fact that λ∗(δ, K ) is continuous in δ)

ndicates that the message rate of the hyper-scalable scheme must approach δ as N → ∞ when λ ≥ λ∗(δ, K ). This in
urn implies that the expected duration of an open period must become negligible, compare to the length τ of a closed
eriod, i.e. the fraction of time that a server is marked open vanishes. This will also be shown numerically in Section 3.
We now proceed with an outline of the proof of Theorem 2.

nalysis. For brevity, a server is said to be in state k when the sum of the queue length at its latest update epoch and
he number of jobs the server has received since, equals k. This means that all servers in state k < K are labeled open
nd servers in state K are labeled closed. In view of the homogeneity of the servers, it is useful to further introduce
(t) = (N0(t),N1(t), . . . ,NK−1(t),NK (t)), with

∑
k Nk(t) = N , where Nk(t) stands for the number of servers in state k at

ime t . While the vector N(t) provides a convenient representation, it is worth emphasizing that it does not provide a
arkovian state description.
We now explain how individual servers transition between various states. When a job is accepted into the system, the

tate of an open server will change from k < K to k + 1. An update of a server may cause the server to change state too.
he new state of the server equals the number of jobs that are left in queue after the update interval of τ time units. The
umber of jobs that were served follows a truncated Poisson distribution, so the probability pk that exactly k jobs remain,
quals pk := e−τ τK−k

(K−k)! for k > 0 and p0 := 1 − e−τ
∑K−1

i=0
τ i

i! . When k < K jobs are left, the state of the server becomes k.
hen there are K jobs left, the state of the server does not change and remains K .
It is important to observe that service completions of jobs do not cause direct transitions in server states. The reason

s twofold. When a server is open, it stops working on jobs, so there are no such completions at open servers. For closed
ervers, all servers are aggregated; the number of jobs in queue is not taken into account. Only after the period of length
, the number of jobs left in queue is determined indirectly by using the transition probabilities as specified above.
Although the vector N(t) does not provide a Markovian state description as noted above, its evolution can be described

n terms of a closed queueing network, in which the servers act as customers in the network, traversing various nodes
orresponding to their states. Specifically, the closed queueing network consists of one multi-class ‘‘single-server’’ node
ith service rate λN in which the customers can be of classes 0, 1, . . . , K − 1, and one ‘‘infinite-server’’ node with

deterministic service time τ that holds all class-K customers. A service completion at the single-server node makes one
customer transition. The class of the customer changes from k to k + 1 if k < K − 1, or the customer transitions to the
infinite-server node if its class was K − 1. When multiple customers are present at the single-server node, the customer
that transitions is either selected uniformly at random (random case), or the customer that has been in the single-server
node for the longest time is selected (FCFS case). Finally, upon a service completion at the infinite-server node a customer
moves to the single-server node as class k < K with probability pk, or directly re-enters the infinite-server node with
probability pK .

A schematic representation is shown in Fig. 2. We define γk as the relative throughput value of class-k customers. With
γK = 1, it follows that γk = p0 + . . . + pk = 1 − αK−1−k(τ ) for k < K .

By virtue of the above-described equivalence, the process N(t) representing the server states under the hyper-scalable
scheme inherits the product-form equilibrium distribution of the closed network as stated in the next proposition.

Proposition 2. The equilibrium distribution of the system with N servers is

π (n0, n1, . . . , nK−1, nK ) = G−1
N

(n0 + . . . + nK−1)!
n ! . . . n !

(
K−1∏( γi

λN

)ni) τ nK

n !
(6)
0 K−1 i=0 K

7
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if n0 + . . . + nK = N, with normalization constant

GN =

∑
v0+...+vK−1+w=N

(v0 + . . . + vK−1)!
v0! . . . vK−1!

(
K−1∏
i=0

( γi

λN

)vi

)
τw

w!
.

A proof of Proposition 2 can be found in Section 5, and the product-form equilibrium distribution may be informally
nderstood as follows. The infinite-server node allows a product-form distribution even for deterministic service times.
hile traditionally exponentially distributed service times are considered, the equilibrium distribution is insensitive to the

ervice time distribution at the infinite-server node and only depends on its mean, see Section 5 for details. As mentioned
bove, the service discipline at the single-server node with exponentially distributed service times may either be FCFS or
andom order of service. In the case of the FCFS discipline, albeit not being reversible [34], the single-server node with
ultiple classes can be represented as an order-independent queue [35,36]. According to Theorem 2.2 in [36], the queue

s quasi-reversible, which is sufficient for a product-form distribution. For random order of service, which is a symmetric
ervice discipline, the single-server node is reversible, yielding a product-form as well.
The equilibrium distribution (6) can be simplified when only the number of open and closed servers matters. This

mmediately yields an expression for the blocking probability CN as provided in the next corollary.

orollary 2. The equilibrium probability of there being n open servers and N − n closed servers under the hyper-scalable
cheme equals

π (n,N − n) =

∑
n0+...+nK−1=n

π (n0, . . . , nK−1,N − n) =

(
MK (τ )

λN

)n
τN−n

(N−n)!∑N
w=0

(
MK (τ )

λN

)w
τN−w

(N−w)!

. (7)

In particular, because of the PASTA property, the blocking probability is given by

CN = π (0,N) =

(xN)N

N!∑N
w=0

(xN)w

w!

, (8)

with x = λτ/MK (τ ) = λ/λ∗(1/τ , K ). Finally,

CN
N→∞
→ max{0, 1 − λ∗(1/τ , K )/λ}.

Specifically, CN ↓ 0 as N → ∞ when λ ≤ λ∗(1/τ , K ).

Suppose that the allowed message rate is δ as stated in Theorem 2, then put τ = 1/δ. When λ ≤ λ∗(1/τ , K ), the
blocking probability vanishes in the many-server regime according to Corollary 2, and thus the throughput approaches
λ. When λ > λ∗(1/τ , K ), the acceptance probability tends to λ∗(1/τ , K )/λ and the throughput approaches λ ×

∗(1/τ , K )/λ = λ∗(1/τ , K ). These two statements combined yield Theorem 2.
Theorem 2 allows us to equivalently view λ∗(δ, K ) as the throughput that is achieved by the hyper-scalable scheme

as N → ∞ when λ ≥ λ∗(δ, K ). We now revisit properties (ii) and (iii) as stated in Proposition 1 from that perspective.
n the limiting scenario δ → ∞, τ ↓ 0, servers are updated after an infinitesimally small time, which in turn alerts the
dispatcher immediately when even a single job has been served. This ensures that all servers can work at full capacity.

In the scenario δ ↓ 0, τ → ∞, update periods become extremely long. Every update that does happen, will most likely
find an idle server and allow for K admitted jobs, explaining why λ∗(δ, K ) ≈ Kδ for small δ.

emark 1. Note that with the queue limit K in force we may assume each server to have a finite buffer of size K . In
ase of a finite buffer, the queue limit K would automatically be enforced, even if the dispatcher were allowed to forward
obs without any advance guarantee. With the option of ‘‘(semi)-blind guesses’’, where the dispatcher may even choose
ervers that are full (and a job will be discarded when it arrives at the full server), the throughput bound would trivially
ecome 1 (the average server speed), and Property (iii) indicates that the achievable throughput λ∗(δ, K ) without lucky
uesses could be (substantially) lower when δ is (significantly) smaller than 1/K . However the throughput of 1 can only

be approached for a high arrival rate (much larger than the system capacity), in which severe blocking is unavoidable. In
contrast, the hyper-scalable scheme does not need an arrival rate larger than the system capacity, and in fact only needs
an arrival rate of λ∗(δ, K ) to deliver the throughput λ∗(δ, K ), thus having negligible blocking asymptotically.

3. Simulation experiments and optimality benchmarks

In this section we conduct various simulation experiments to further benchmark the properties of the hyper-scalable
scheme and make several comparisons. Most results are for K = 2, yielding the throughput bound λ∗(δ, 2) = 2δ −

2δe−1/δ
− e−1/δ as function of the message rate δ. Furthermore, all simulation results emulate the random case, i.e. a job

is sent to an open server selected uniformly at random.
8
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Fig. 3. Simulation results for the hyper-scalable scheme for λ = 1.2 and N = 100. Numerical values of the throughput bound λ∗(1/τ , K ), the
associated blocking probability bound 1 − λ∗(1/τ , K )/λ, the average number of messages per admitted job 1/MK (τ ) and 1/τ are also shown with
thin black lines. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3.1. Baseline version of the hyper-scalable scheme

First, we evaluate the hyper-scalable scheme itself in Figs. 3(a) and 3(b) for K = 2 and K = 3 respectively. We note
that the message rate stays below the line y = 1/τ , confirming that it never exceeds 1/τ . The throughput and blocking
robability achieved by the hyper-scalable scheme are nearly indistinguishable from the respective asymptotic values
upper and lower bounds, respectively), especially at lower and medium values of the communication budget 1/τ . For
igher values of the communication budget, the throughput and blocking probability slightly diverge from the asymptotic
alues but remain remarkably close nevertheless. This demonstrates that the asymptotic optimality properties of the
yper-scalable scheme as stated in Theorems 1 and 2 already manifest themselves in moderately large systems.
In order to provide further insight in the asymptotic optimality, we compare the baseline version of the hyper-scalable

cheme with several variants and alternative scenarios that are not analytically tractable.
Specifically, in the next two subsections, we examine the following variants through simulations:

• ‘‘non-idling’’; open servers continue working, but convey their queue length as if they had not been working while
being open,

• ‘‘work-conserving’’; open servers continue working and convey their actual queue lengths at update epochs.

At first sight, one might suspect that these variants achieve a possibly larger throughput. As we will see however, the
ifferences are small and are only observable at low load (less than λ∗(δ, K )) or in systems with few servers. When the
rrival rate is large enough (larger than λ∗(δ, K )) and the number of servers too, the fraction of servers that are open
ecomes negligible, and hence the difference between the baseline version and the variants vanishes.
In Section 3.4 we make a comparison with the AUJSQdet (δ) scheme considered in [30], which is not analytically tractable

ither but seems to be asymptotically throughput-optimal as well.

.2. Non-idling variant

Open servers do not work on jobs in the baseline version of the hyper-scalable scheme. While Theorem 2 showed
hat the forced idling does not affect the achieved throughput in large-scale systems, it is still interesting to investigate
he consequences of this design. In the non-idling variant, open servers do work on jobs, but they convey their queue
ength to the dispatcher as if they had not been working on jobs while being labeled open. While this variant may seem
undamentally different, the information that the dispatcher has is exactly the same as in the baseline version: the sets
f open servers and their respective states coincide in both scenarios, as long as jobs are sent to the same open server.
In particular, the equilibrium distribution of the server states as provided in Proposition 2 applies to the non-idling

ariant as well. The throughput and the number of messages exchanged per admitted job are identical in both scenarios.
he only difference arises in the expected queue length encountered by admitted jobs: they are somewhat smaller in the
on-idling scenario. This is illustrated by the simulation results presented in Fig. 4(a), in which the expected queue length
ncountered by admitted jobs in the hyper-scalable algorithm (thin green line) is smaller than in its non-idling variant
thick green line).

At low load values, there are instants where there is time for servers to execute jobs when they are open. This causes
distinction between the two variants, since in the non-idling variant jobs join shorter queues. In Section 4, we will
onsider a tractable extension of the hyper-scalable scheme that aims to reduce the queue lengths. As the number of
ervers grows however, an overflow of arrivals will cause open servers to have less time to execute jobs, which causes
he queue lengths to be similar in both scenarios. This viewpoint provides further intuition why the hyper-scalable scheme

s still asymptotically optimal.

9
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Fig. 4. Simulation results: mean values of the throughput, messages per job and queue position (and waiting time) are compared for the two variants
thick lines) and the baseline scenario (thin lines), for K = 2, τ = 2 and N = 500, yielding a throughput bound λ∗(1/2, 2) ≈ 0.73. Note that for
the number of messages and throughput in Fig. 4(a) and the throughput and blocking probability in Fig. 4(b), the difference between the baseline
scenario and the variant is indistinguishable. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 5. Simulation results: comparison between the baseline scenario (thin lines) and the work-conserving variant (thick lines) for K = 2, τ = 5 and
= 500, so that λ∗(1/5, 2) ≈ 0.39.

.3. Work-conserving variant

We now turn to a work-conserving variant of the hyper-scalable scheme, in which open servers also work on jobs,
nd in fact convey their actual queue length at an update epoch. In this case the evolution of the server states is different,
nd the equilibrium distribution provided in Proposition 2 no longer applies.
The throughput and blocking probability are similar in both scenarios. This may be intuitively explained as follows.
hen λ ≥ λ∗(1/2, 2), Theorem 2 shows that there are hardly ever any open servers, and hence there should not be any

ubstantial difference between the two variants, which is corroborated by Fig. 4(b).
When λ < λ∗(1/2, 2), there can be a significant number of open servers. Theorem 2 however implies that the

yper-scalable scheme approaches zero blocking and throughput λ in this case. While it is plausible that the work-
onserving variant achieves that as well, as attested by Fig. 4(b), it is simply not feasible to achieve lower blocking or
igher throughput. There is room for improvement in the number of message exchanges per admitted job, and Fig. 4(b)
emonstrates that the work-conserving variant indeed provides some gain compared to the hyper-scalable scheme in that
egard. To put that observation in perspective, consider Corollary 1. As one can see, the communication overhead is strictly
ecreasing in τ . For such a low arrival rate, the hyper-scalable scheme permits to choose the update interval τ much
arger. Fig. 5 confirms that the choice τ = 5 largely eliminates the difference in communication overhead between the
ork-conserving variant and the baseline version. Finally, note that the work-conserving variant achieves a significantly

ower mean waiting time for these values of λ, since servers no longer idle unnecessarily when the arrival rate is low.
We finally show some auxiliary results in Figs. 6 and 7. Fig. 6 shows the average fraction of servers that are open.

here is a slight difference between the baseline scenario and the work-conserving variant, but it is most important to
bserve that the fraction of open servers is large when λ is small (this fraction is close to 1−λ). When λ (and N) become
arge, the fraction of servers that are open tends to zero. In Fig. 7 we show the mean sojourn time of the baseline scenario
nd the two variants. The mean sojourn time of the baseline scenario grows indefinitely as λ ↓ 0, because in this regime,
ervers are waiting for long times until the next job arrives, and in this time period they are not processing the jobs in
ueue. The two variants perform significantly better. There is no visible difference between the two variants, which may
e explained by noting that when the arrival rate is low, it does not matter that servers are unnecessarily idling, while if
he arrival rate is larger, servers are almost never idling because they receive jobs at a high rate.
10
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Fig. 6. Simulation results: the average fraction of servers that are open, for K = 2, τ = 2 and N = 500, so that λ∗(1/2, 2) ≈ 0.90.

Fig. 7. Simulation results: the mean sojourn time of jobs in the baseline, non-idling and work-conserving scenarios for K = 2, τ = 2 and N = 500,
o that λ∗(1/2, 2) ≈ 0.90.

Fig. 8. Simulation results: comparison between the baseline scenario (thin lines) and the AUJSQdet (δ) scheme (thick lines) for K = 2, τ = 1 and
N = 500, so that λ∗(1, 2) ≈ 0.90.

3.4. Comparison with the AUJSQdet (δ) scheme

We now compare the hyper-scalable scheme with the AUJSQdet (δ) scheme [30], in which the dispatcher forwards
ncoming jobs to a server with the lowest queue estimate, and this estimate for a server is updated exactly every τ = 1/δ
ime units based on a timer. Thus the AUJSQdet (δ) scheme might update servers even when they are known to have
trictly less than K = 2 jobs in queue. In contrast to [30], we consider a variant of the AUJSQdet (δ) scheme in which jobs
re blocked when the dispatcher is not aware of any servers that are guaranteed to have strictly less than K = 2 jobs in
ueue. The comparison is shown in Fig. 8.
It is important to note that in the hyper-scalable scheme the expected number of messages per admitted job is

ndependent of λ, while in the AUJSQdet (δ) scheme the expected number of messages per time unit is independent of λ.
e observe that the average number of messages per admitted job coincides when λ > λ∗(1/τ , K ). While it is natural to

xpect that the AUJSQdet (δ) scheme offers similar asymptotic optimality properties, it lacks the mathematical tractability
f the hyper-scalable scheme to facilitate a rigorous proof argument.
11
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Fig. 9. Simulation results for the hyper-scalable scheme for K = 2, λ = 1.2 and N = 100, and non-exponential service times. Numerical values of
he throughput bound λ∗(1/τ , K ), the associated blocking probability bound 1 − λ∗(1/τ , K )/λ, the average number of messages per admitted job
/MK (τ ) and 1/τ are also shown with thin black lines. (For interpretation of the references to color in this figure legend, the reader is referred to
he web version of this article.)

.5. Non-exponential service times

We conclude our simulation experiments with analyzing the hyper-scalable scheme for non-exponential service time
istributions. In Fig. 9(a), the service times are Gamma(2,2) distributed. The throughput of the hyper-scalable algorithm
lightly exceeds λ∗(1/τ , K ), the maximum throughput when job sizes are exponential. The number of messages per
dmitted job is also lower than 1/MK (τ ). This is all explained by the fact that the tail of the Gamma(2,2) distribution
s smaller than the tail of the exponential distribution. This means that more jobs are completed in a fixed time interval,
hich increases the effectiveness of the messages sent. The service time distribution in Fig. 9(b) is Gamma(1/2,1/2). The
pposite effect is observed: the throughput is lower compared to Fig. 3(a) and the message rate is larger, because of the
eavier tail.

. Extension aimed at minimizing queue lengths

While the hyper-scalable scheme is asymptotically throughput-optimal given the message rate δ and queue limit K ,
t does not make any explicit effort beyond that to minimize queue lengths or delays experienced by jobs. Motivated by
hat observation, we now consider an extension of the hyper-scalable scheme aimed at minimizing waiting times. In this
xtension, a server that receives its ith job after an update at which its queue length was j, becomes closed for τj,j+i time
nits. After this time, it becomes open if j + i < K and it is updated if j + i = K . Thus, servers are not only closed when
hey become full, but are closed for a while after every job they receive.

Henceforth, we focus on the case K = 2 for the ease of exposition, and we set τ0,0 = 0, τ0,1 = τ1,1 = τ1, τ0,2 = τ1,2 = τ2
and τ2,2 = τ3. We can put τ0,0 to zero without loss of generality as it makes no sense to have a cool-down period
for an empty server. As a consequence there is no difference between servers that had zero jobs or one job at the
previous update epoch, so we can set τ0,1 = τ1,1, and τ0,2 = τ1,2 as well. Let p2j be the probability that j jobs remain
after an update, when there were zero or one jobs just after the latest update epoch. This means that the server had
τ0,1 time units to work on the first job and another τ0,2 time units after both jobs were dispatched to it. This gives
p20 = e−τ1 (1−τ2e−τ2 −e−τ2 )+ (1−e−τ1 )(1−e−τ2 ), p22 = e−τ1e−τ2 and p21 = 1−p20 −p22. Let q2j be the probability that j
jobs remain after an update, when there were two jobs just after the latest update epoch. This gives q20 = 1−e−τ3−τ3e−τ3 ,
q22 = e−τ3 and q21 = 1 − q20 − q22.

Servers can be in either of the five following states.

A1 The server is idle and open.
B1 The server had zero jobs during the previous update moment and received one job since, or the server had one job

during the previous update moment and received no jobs since. The server is now marked closed for τ1 time units.
A2 The server had zero jobs during the previous update moment and received one job since, or the server had one job

during the previous update moment and received no jobs since. The server was marked closed for τ1 but is now
open.

B2 The server had zero jobs during the previous update moment and received two jobs since, or the server had one
job during the previous update moment and received one job since. The server is now marked closed for τ2 time
units.

B3 The server had two jobs during the previous update moment and is now marked closed for τ3 time units.

The transitions are schematically represented in Fig. 10, with the transition probabilities as defined earlier.
The system dynamics under this extension of the hyper-scalable scheme can also be represented in terms of a closed

queueing network with one single-server node that holds two classes of customers and three infinite-server nodes. The
12
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Fig. 10. Schematic representation of the server states and transitions when K = 2.

tates A1 and A2 correspond to the two classes that customers can be of when they are present at the single-server node.
he states B1, B2 and B3 each correspond to one of the three infinite-server nodes in the network, with deterministic
ervice times τ1, τ2 and τ3, respectively.

roposition 3. The equilibrium distribution of the system with N servers is

π (n1, n2,m1,m2,m3)

= H−1
N

(n1 + n2)!
n1!n2!

( γ1

λN

)n1 ( γ2

λN

)n2 (κ1τ1)m1

m1!

(κ2τ2)m2

m2!

(κ3τ3)m3

m3!

(9)

if n1 + n2 + m1 + m2 + m3 = N, with (γ1, γ2, κ1, κ2, κ3) = (p20 +
p22q20
1−q22

, 1, 1, 1, p22
1−q22

) and normalization constant HN =∑
v1+v2+w1+w2+w3=N

(v1 + v2)!
v1!v2!

( γ1

λN

)v1
( γ2

λN

)v2 (κ1τ1)w1

w1!

(κ2τ2)w2

w2!

(κ3τ3)w3

w3!
,

where ni is the number of open servers in state Ai and mi the number of closed servers in state Bi.

The vector (γ1, γ2, κ1, κ2, κ3) represents the vector of relative throughputs of the various states. The proof of Proposi-
tion 3 is provided in Section 5.

The equilibrium distribution (9) can be simplified when only the number of open and closed servers are counted, as
shown in the next corollary.

Corollary 3.

• The equilibrium probability of there being n open servers and N − n closed servers under the extension equals

π (n,N − n) =

(
γ1+γ2

λN

)n (κ1τ1+κ2τ2+κ3τ3)N−n

(N−n)!∑N
w=0

(
γ1+γ2

λN

)w (κ1τ1+κ2τ2+κ3τ3)N−w

(N−w)!

.

In particular, because of the PASTA property, the blocking probability is given by

π (0,N) =

(xN)N

N!∑N
w=0

(xN)w

w!

,

with x = λ ×
κ1τ1+κ2τ2+κ3τ3

γ1+γ2
, and π (0,N) → max{0, 1 − λ∗(τ1, τ2, τ3)/λ} as N → ∞, which equals zero when

λ ≤ λ∗(τ1, τ2, τ3) :=
γ1+γ2

κ1τ1+κ2τ2+κ3τ3
.

• The average number of messages per admitted job equals

u(τ1, τ2, τ3) :=
κ2 + κ3

γ1 + γ2
.

• The average queue position of an admitted job equals

q(τ1, τ2, τ3) :=
e−τ1

γ1 + γ2
.

The last two statements follow directly from the relative throughput values. These exact expressions for the maximum
hroughput λ∗, the average number of updates per admitted job u and the average queue position q of admitted jobs, allow
us to evaluate the performance of this extension.

In Fig. 11(a), the value of τ1 is varied while the values of τ2 and τ3 are kept constant. Since τ1 represents the time that
server is closed when it has one job in queue, the result is that the second job that is sent to the server experiences a
13
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Fig. 11. Maximum throughput λ∗ , average number of updates per admitted job u and average queue position of admitted jobs q as a function of τ1 .

Table 1
Throughput a, average number of messages per job u and average queue position of
arrivals q for various schemes.
K = 2, λ = 0.4 a u q

Baseline scenario, τ = 5 0.390567 0.512076 0.508626
Extension, τ1 = 1, τ2 = 4 and τ3 = 5 0.389605 0.51334 0.187575
Extension, τ1 = 2, τ2 = 3 and τ3 = 5 0.384692 0.519896 0.0698862
Benchmark scheme A 0.358974 N/A 0.285714
Benchmark scheme B 0.336 N/A 0.285714

shorter queue in expectation. Indeed, for larger values of τ1, the mean experienced queue length q decreases. As a further
enefit, the mean number of updates decreases as well, since an idle server will take at least τ1 + τ2 time units to be
pdated. The penalty incurred for these advantages is that the maximum throughput, λ∗, drops below the value of λ∗(δ, K )
s asymptotically achieved by the baseline version of the hyper-scalable scheme, since servers may become idle during
he τ1 time in which they will not receive any more jobs.

Finally, in Fig. 11(b) we show that a trade-off between the parameters is possible. τ1 is increased while τ2 is decreased,
nd this leads to interesting behavior. Around the point τ1 = 0, the values of λ∗ and u do not change when the parameters

are altered, but the value of q does change. Such a trade-off might be worth it in scenarios where mean queue lengths
play an important role.

4.1. Numerical example

We will now compare the throughput, average number of messages per job and the average queue position of arriving
jobs of the baseline scenario of Section 2, the extension from Section 4 and two benchmark schemes that are derived
from random routing. In benchmark scheme A, a server is selected uniformly at random for an incoming job. When this
server has a queue length strictly less than K , the job is sent to this server, and is blocked otherwise. The throughput
of this scheme equals λ 1+λ

1+λ+λ2
and the average queue position equals λ

1+λ
. In benchmark scheme B, a server is selected

uniformly at random for an incoming job and is accepted regardless of the queue length at the server. However, for the
throughput, only jobs are counted that were added when the queue length was strictly below K . The throughput of this
scheme equals λ((1−λ)+λ(1−λ)) and the average queue position equals λ

1+λ
(only counting jobs below the queue limit

K ). Note that the mean sojourn time may be computed using the average queue position of arriving jobs, assuming the
non-idling variant is applied.

Corollary 3 is used to generate Table 1, in which one can see that the throughputs of the hyper-scalable scheme and its
extension are higher than the two benchmark schemes. However, it is more interesting to compare the baseline scenario
with the two extension schemes. While the throughput and number of messages are nearly equal, the average queue
position of arriving jobs becomes extremely low when the parameters of the extension are chosen properly. This in turn
implies that the sojourn time of jobs is also much lower. This behavior was already visible in Fig. 11(b): the queue position
can decrease rapidly without hurting the other two performance measure too much.

4.2. General analysis

We will now discuss a method to calculate the throughput, average number of messages and average queue position
of an admitted job for any value of K . We will use K = 2 as example for conciseness, but this idea can easily be extended.
Fig. 2 will be helpful for the analysis. In the analysis, we will consider one cycle from state A1 to A1, and compute the
expected time of such a cycle, the average number of admitted jobs, average number of updates and the average queue
14
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position. We will exploit the following observation: since a server stops working when it is open and waiting for incoming
jobs, one can assume that the time stops for this server at this time. Consequently, one can assume that a server receives
a job immediately after becoming open. This method yields the results as in Corollary 3.

Let t(S) be the expected time (excluding time the server is waiting for jobs) for a server to reach state A1, given that
t is in state S now. The expected cycle length then equals t(A1) = 0. This gives rise to the following set of equations:

t(B1) = +t(A1),
t(A2) = τ1 +t(B1),
t(A2) = +t(B2),
t(B2) = τ2 +p21 × t(B1) + p22 × t(B3),
t(B3) = τ3 +q21 × t(B1) + q22 × t(B3).

(10)

Similarly, the average number of arrivals per cycle may be computed by replacing (0, τ1, 0, τ2, τ3) (those are the
symbols read vertically after the =-symbol in (10)) by (1, 1, 0, 0, 0), the average number of updates by replacing it with
(0, 0, 0, 1, 1) and the average queue position by replacing it with (0, e−τ1 , 0, 0, 0).

In the notation of Corollary 3, one would obtain λ∗ by dividing the average number of arrivals per cycle by the average
time of a cycle. The average number of messages per admitted job equals the fraction of the average number of updates
per cycle divided by the average number of arrivals per cycle. Finally, the average queue position equals the average queue
position per cycle divided by the average number of arrivals per cycle.

5. Closed queueing network and further proofs

In this section we establish product-form distributions for a general closed queueing network scenario which captures
the network representations of the hyper-scalable scheme and the extension considered in the previous section as special
cases. This provides the proofs of Propositions 2 and 3.

The closed queueing network consists of N customers circulating among one single-server node and B infinite-server
nodes. Customers can be of A classes while at the single-server node, denoted by A1, . . . ,AA. Denote the infinite-server
nodes by B1, . . . ,BB. The routing probabilities are denoted by px→y; this is the probability that a customer transitions
from x to y (x and y may correspond to either a class or an infinite-server node).

Service completions at the multi-class single-server node occur at an exponential rate λN . The customer that completes
service is either selected uniformly at random, or in a FCFS manner, where the next customer is the one that transitioned
last. If the selected customer is of class i, then it immediately returns to the single-server node as a class-j customer with
probability pAi→Aj or it moves to node Bj with probability pAi→Bj . The service times at the infinite-server node Bi are
deterministic and equal to τi. Upon completing service at node Bi, a customer moves to the single-server node as a class-j
customer with probability pBi→Aj , or to node Bj with probability pBi→Bj .

The relative throughput values may be calculated from the traffic equations,{
γi =

∑A
j=1 pAj→Ai × γj +

∑B
j=1 pBj→Ai × κj,

κi =
∑A

j=1 pAj→Bi × γj +
∑B

j=1 pBj→Bi × κj,

where γi stands for the relative throughput of class Ai at the single-server node and κi for the relative throughput at node
Bi. We assume a ‘‘single-chain network’’, where the routing probability matrix is irreducible, meaning that all customers
can reach all classes and nodes.

Proposition 4.

(a) The equilibrium distribution of the system with N customers is

π (n1, n2, . . . , nA,m1,m2, . . . ,mB)

= F−1
N

(n1 + . . . + nA)!
n1! · · · nA!

A∏
i=1

( γi

λN

)ni B∏
j=1

(κjτj)mj

mj!

(11)

if n1 + . . . + nA + m1 + . . . + mB = N, with normalization constant

FN =

∑
v1+...+vA+w1+...+wB=N

(v1 + . . . + vA)!
v1! · · · vA!

A∏
i=1

( γi

λN

)vi
B∏

j=1

(κjτj)wj

wj!
,

where ni is the number of customers of classAi at the single-server node and mj the number of customers at infinite-server
node B .
j
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(b) The equilibrium probability of there being n customers at the single-server node and N − n customers in total at all the
infinite-server nodes equals

π (n,N − n) =

∑
n1+...+nA=n

m1+...+mB=N−n

π (n1, . . . , nA,m1, . . . ,mB)

=

(∑A
i=1 γi
λN

)n (∑B
j=1 κjτj

)N−n

(N−n)!

∑N
w=0

(∑A
i=1 γi
λN

)w
(∑B

j=1 κjτj

)N−w

(N−w)!

.

(12)

In particular, with R =
γ1+...+γA

κ1τ1+...+κBτB
and x = λ/R, because of the PASTA property, the probability that no customer resides

at the single-server node is

π (0,N) =

(xN)N

N!∑N
w=0

(xN)w

w!

,

and π (0,N) → max{0, 1 − R/λ} as N → ∞ which equals zero when λ ≤ R.

In order to prove Proposition 4, we will verify that the equilibrium distribution (11) satisfies the balance equations of
the closed queueing network.

5.1. Proof of Proposition 4

In order to verify the balance equations, we may assume that the service times of the infinite-server nodes are
exponentially distributed even though in our closed queueing network, the service times are deterministic. This is because
the equilibrium distribution (11) is insensitive to the service time distribution of nodes and only depends on the means
of them (see Chapter 3 of [36] for a further discussion on this).

To see this, consider one infinite-server node D with exponential service rate µD and throughput value κD. This node
dds the term

(κD/µD)d

d!
(13)

o the product-form equilibrium distribution, representing the presence of d customers in the infinite-server node. We
ow replace this infinite-server node by a series of infinite-server nodes, denoted by D1, . . . ,DM , each with an exponential

service rate MµD. The transition probabilities are altered in such a way that every transition previously to node D, now
transitions to node D1 instead. Customers then transition from node Di to Di+1 for i = 1, . . . ,D − 1 with probability one.
Finally, any transition previously from node D, will now transition from node DM . This construction makes every customer
stay in this collection of nodes for M exponentially distributed phases, which is an Erlang(M,Mµ) distributed random
variable. All other throughput values in the network remain equal.

The throughput values of all these nodes will be equal to κD (since they are in series). Finally, similarly to the
simplification of (11) to (12), all nodes D1, . . . ,DM may be aggregated, which would lead to a term

(
∑M

i=1 κD/(MµD))d

d!
=

(κD/µD)d

d!
in the equilibrium probability, representing the presence of d customers in total in the infinite-server nodes D1, . . . ,DM .
Note that the term in the RHS exactly matches the term (13), that appears when the node D has an exponentially
distributed service time. This shows that the equilibrium distribution does not change when an exponential node is
replaced by an Erlang(M,Mµ) node, for any integer M , which can also be verified by substitution in the balance equations.
Of course, each infinite-server node Bi with µi = 1/τi can be replaced by such an Erlang distribution using this
construction.

Because an Erlang(M,Mµ) random variable converges to a deterministic quantity 1/µ as M tends to infinity, this
indicates that the equilibrium distribution also holds with infinite-server nodes that have deterministic service times. In
fact, the node D may be replaced by any phase-type distribution, and every distribution may be approximated arbitrarily
closely by phase-type distributions, implying that the equilibrium distribution in (11) in fact holds for generally distributed
service times with mean τi at the infinite-server node Bi as well, although that is not directly relevant for our purposes.

We will now verify that (11) indeed solves the balance equations for the random order of service case, and we will
use µi = 1/τi, representing the rates of the infinite-server nodes. The proof for the FCFS case is quite similar, but involves
a more detailed state representation, and is deferred to Appendix.
16
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Proof of part (a) — ROS. For conciseness, denote by (a, b) the vector (a1, . . . , aA, b1, . . . , bB) and by ei the ith unit vector.
Note that (11) is a proper distribution by definition. Since the equilibrium distribution is unique, it suffices to verify

that (11) satisfies the following set of balance equations:(
1{a1+...+aA>0}λN + b1µ1 + . . . + bBµB

)
π (a, b)

=

A∑
i=1

A∑
j=1

1{aj>0}pAi→Aj

ai + 1{i̸=j}

a1 + . . . + aA
λNπ (a + ei − ej, b)

+

A∑
i=1

B∑
j=1

1{bj>0}pAi→Bj

ai + 1
a1 + . . . + aA + 1

λNπ (a + ei, b − ej)

+

B∑
i=1

A∑
j=1

1{aj>0}pBi→Aj (bi + 1)µiπ (a − ej, b + ei)

+

B∑
i=1

B∑
j=1

1{bj>0}pBi→Bj (bi + 1{i̸=j})µiπ (a, b + ei − ej).

The first line of the RHS refers to transitions where a customer at the single-server node transitions to the same node
and may change class. The second line refers to transitions from the single-server node to one of the infinite-server
nodes. Lines three and four correspond to transitions from a infinite-server node, to the single-server node or to another
infinite-server node, respectively.

We will show that (11) satisfies the balance equations. By using the definition of (11) in the RHS, we obtain
A∑

i=1

A∑
j=1

1{aj>0}pAi→Aj

ai + 1
a1 + . . . + aA

λNπ (a, b)
aj

ai + 1
γi

λN
λN
γj

+

A∑
i=1

B∑
j=1

1{bj>0}pAi→Bj

ai + 1
a1 + . . . + aA + 1

λNπ (a, b)
a1 + . . . + aA + 1

ai + 1
γi

λN
bj

κjτj

+

B∑
i=1

A∑
j=1

1{aj>0}pBi→Aj (bi + 1)µiπ (a, b)
aj

a1 + . . . + aA

λN
γj

κiτi

bi + 1

+

B∑
i=1

B∑
j=1

1{bj>0}pBi→Bj (bi + 1)µiπ (a, b)
κi/µi

bi + 1
bj

κj/µj
.

ext, we combine the inside sums, resulting in
A∑

j=1

1{aj>0}
aj

a1 + . . . + aA

λN
γj

[
A∑

i=1

pAi→Ajγi +

B∑
i=1

pBi→Ajκi

]
π (a, b)

+

B∑
j=1

1{bj>0}
bj

κj/µj

[
A∑

i=1

pAi→Bjγi +

B∑
i=1

pBi→Bjκi

]
π (a, b)

=

⎡⎣ A∑
j=1

1{aj>0}
aj

a1 + . . . + aA
λN +

B∑
j=1

bjµj

⎤⎦π (a, b)

=

⎛⎝1{a1+...+aA>0}λN +

B∑
j=1

bjµj

⎞⎠π (a, b). □

6. Conclusion

We established a universal upper bound for the achievable throughput of any dispatcher-driven algorithm for a given
communication budget and queue limit. We also introduced a specific hyper-scalable scheme which can operate at any
given message rate and enforce any given queue limit, while allowing the system dynamics to be captured via a closed
product-form network. We leveraged the product-form distribution to show that the bound is tight, and that the proposed
hyper-scalable scheme provides asymptotic optimality in the three-way trade-off among performance, communication
and throughput. Extensive simulation experiments were presented to illustrate the results and make comparisons with
various alternative design options.
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The work-conserving variant covered in Section 3.3 is especially worth discussing further. Intuitively, letting servers
ork all the time seems better than pausing the servers when they become open, but this remains to be rigorously proven.
The extension aimed at minimizing waiting times that was introduced in Section 4 warrants further attention as well.

or the baseline scenario, we were able to prove a strict relationship between the amount of communication and the
hroughput. Likewise, there might exist a result, similar in spirit to Theorem 1, which provides an upper bound for the
hroughput and the average queue position of admitted jobs, given a certain communication budget. The main point of
oncern in this regard is that the concavity argument no longer seems to hold.
Finally, it would be worth investigating whether the current framework could be broadened further. It may be possible

or example to extend the category of algorithms considered, specifically allowing for pull-based schemes. While the
esults in [8] imply that Theorem 1 does not hold for pull-based schemes, there might be a larger upper bound covering
uch algorithms as well. For further extensions, other performance metrics might be considered too, such as the mean
aiting time as opposed to the throughput subject to a queue limit.
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ppendix. Proof of Proposition 4 — FCFS case

roof of part (a) — FCFS. The proof for the FCFS case consists of multiple steps. First we define a more detailed state space.
state is represented by (c, b) = ((c1, . . . , cm), (b1, . . . , bB)), which represents the situation where m customers are at the
ingle-server node, and the order of the classes of customers is saved as well: the kth customer at the single-server node
as class ck. We will sometimes refer to the number of customers of a specific class with ai =

∑
j 1{cj=Ai}. Furthermore,

i customers are at the infinite-server node Bi.
Equilibrium distribution for the extended state space. We will show that the equilibrium distribution (modulo normal-

zation constant) of state (c, b) equals

π̃ (c, b) =

( γ1

λN

)a1
· · ·

( γA

λN

)aA (κ1/µ1)b1

b1!
· · ·

(κB/µB)bB

bB!
(A.1)

with ak the number of customers of class Ak.
We assume FCFS arrivals of customers at the single-server node: customers arrive at the end of the line at the

single-server node and only the customer first in line is able to transition.
Balance equations. First, we introduce the balance equations, in which the symbol m is used to denote the length of

vector c ,(
1{m>0}λN + b1µ1 + . . . + bBµB

)
π̃ (c, b)

=

A∑
i=1

1{m>0}pAi→cmλNπ̃ ((Ai, c1, . . . , cm−1), b)

+

A∑
i=1

B∑
j=1

1{bj>0}pAi→BjλNπ̃ ((Ai, c1, . . . , cm), b − ej)

+

B∑
i=1

1{m>0}pBi→cm (bi + 1)µiπ̃ ((c1, . . . , cm−1), b + ei)

+

B∑
i=1

B∑
j=1

1{bj>0}pBi→Bj (bi + 1{i̸=j})µiπ̃ (c, b + ei − ej).

(A.2)

The term before π (c, b) on the LHS represents the outgoing rate of state (c, b), which equals a rate of λN for the
single-server node (if at least one customer is present there) plus a rate of bjµj, for each infinite-server node Bj.

On the RHS, four possible transitions to state (c, b) are shown preceded by the rate of the transitions. First, a transition
from the non-empty single-server node makes the then first customer change its class from c to class c . If the previous
m−1 m
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N

a
p

class order at the single-server node is cm−1, c1, . . . , cm−1, then a transition to that node will make the class order exactly
c. Second, if the previous class order at the single-server node is K − 1, c1, . . . , cm, then a transition from that node to a
infinite-server node will make the class order exactly c . Additionally, if the number of customers at infinite-server node
Bj was bj −1, then it will become bj as the infinite-server node receives an extra customer. Third, any of the customers at
the infinite-server nodes might transition to the single-server node. Finally, customers might transition from and to one
of the infinite-server nodes.

We will show that π̃ satisfies the balance equations. By using the definition of π̃ in the RHS, we obtain
A∑

i=1

1{m>0}pAi→cmλNπ̃ (c, b)
γi

λN
λN
γcm

+

A∑
i=1

B∑
j=1

1{bj>0}pAi→BjλNπ̃ (c, b)
γi

λN
bj

κjτj

+

B∑
i=1

1{m>0}pBi→cm (bi + 1)µiπ̃ (c, b)
λN
γcm

κi/µi

bi + 1

+

B∑
i=1

B∑
j=1

1{bj>0}pBi→Bj (bi + 1)µiπ̃ (c, b)
κi/µi

bi + 1
bj

κj/µj
.

(A.3)

ext, we reorganize terms, yielding

1{m>0}
λN
γcm

π̃ (c, b)

[
A∑

i=1

pAi→cmγi +

B∑
i=1

pBi→cmκi

]

+

B∑
j=1

1{bj>0}
bj

κj/µj
π̃ (c, b)

[
A∑

i=1

pAi→Bjγi +

B∑
i=1

pBi→Bjκi

]

=

⎡⎣1{m>0}λN +

B∑
j=1

bjµj

⎤⎦ π̃ (c, b),

(A.4)

which shows that π̃ is the equilibrium distribution of the extended state space.
Finally, note that in the original state space, only the number of customers of certain classes is tracked. Thus, π (a, b) is

n enumeration of π̃ (c, b) over all possible orders with the correct number of customers of a certain class. The number of
ossible orders is

(a1+...+aA
a1...aA

)
, which leads to π (a, b) =

(a1+...+aA
a1...aA

)
π (c, b); the description of π as presented in the statement

of the proposition. □
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