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Abstract

The acoustic properties of indoor spaces significantly impact our com-
fort, well-being and productivity. Room acoustic simulations have been a
practical tool for acoustic consultants in the design phase of buildings to
ensure pleasant and functional acoustic environments. More recently, ad-
vancements of modern computing hardware make room acoustic model-
ing applicable to more computationally intensive real-time systems such
as virtual reality applications.

Over the past 50 years, numerous room acoustic modeling techniques
have been developed, which are typically classified as geometrical acous-
tics methods or wave-based methods. Compared to geometrical acoustics
methods, which treat sound waves as rays and thus suffer from the loss
of accuracy in the low-frequency range, wave-based methods simulate
wave propagation by directly solving its governing equations based on
advanced numerical modeling techniques, and are able to more accu-
rately predict complex wave phenomena, such as scattering, diffraction
and interference effects, at the cost of more computational efforts.

This PhD project aims at contributing to the room acoustic modeling
community via the development and validation of an efficient, robust and
accurate wave-based method. Reflecting on the state of the art numeri-
cal modeling techniques, the time-domain discontinuous Galerkin (DG)
method is chosen as the focus of this thesis, due to its inherent favorable
properties of high-order accuracy, geometric flexibility, and potential for
massive parallel computing. The DG method derives discrete represen-
tations of the spatial derivatives of the governing equations based on
elementwise approximations of unknown solutions using a local polyno-
mial basis, and uses the so-called numerical flux to communicate across
element interfaces and to impose boundary conditions. The resulting
semi-discrete formulation is integrated in time by an explicit scheme.

Although the DG method has been widely used for numerical simu-
lations of varieties of physical processes, its application to room acous-
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tic modeling has not been explored. Therefore, the positioning of the
method is addressed first, which involves a presentation of its mathe-
matical formulation for solving the linear wave equations, a formulation
of real-valued impedance boundary conditions, a semi-discrete stability
analysis and numerical verifications. Numerical tests quantify the propa-
gation error and demonstrate the convergence of the scheme. To simulate
the locally reacting behavior of sound wave reflection and transmission in
the vicinity of boundaries, a time-domain frequency-dependent bound-
ary condition formulation, which is based on multi-pole model repre-
sentations of the plane wave reflection and transmission coefficients, is
proposed, and is incorporated into the framework of the DG method
by reformulating the upwind numerical fluxes near acoustic boundaries.
It is shown that the boundary formulation can maintain the high-order
accuracy of the scheme. Numerical examples of practical boundary sce-
narios are presented as evidence of its applicability. To enhance the
computational efficiency in the presence of constraints that limit time
step sizes, a local time-stepping strategy based on the arbitrary high-
order derivatives methodology is proposed and numerically verified. A
preliminary application to the acoustic field analysis of an open plan of-
fice examines the reliability and limitations of the developed scheme for
real-world problems.
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1 General introduction

1.1 Background on room acoustic modeling
People of modern days spend the main part of their lives in offices, homes,
factories, cars, lecture rooms and many other kinds of closed spaces.
Meanwhile, sound is all around us, which can be in the form of speech,
music and noise. With such daily exposure to indoor sounds 1, satis-
factory acoustical environment is of vital importance to our comfort [1],
health and well-being [2, 3, 4], work productivity [5, 6, 7, 8] and study
performance [9, 10]. The need for a pleasant, functional and healthy
acoustic environment calls for appropriate guidelines and designs from
acoustical scientists and engineers.

1.1.1 Room acoustics fundamentals
Room acoustics deals with the study of the behavior of sound waves
in indoor spaces. From a scientific point of view, it aims to understand
influencing factors on the sound experienced in rooms and thereby to im-
prove the acoustical environment of indoor spaces. Generally speaking,
a room acoustician needs to take two aspects into account: the physical
process of sound generation and propagation in closed spaces, and the
psychological factors related with humans’ perception of sounds [11]. As
standardized by the international standard ISO 3382 [12, 13, 14], these
two aspects are connected through a set of objective and perceptually
relevant room acoustic parameters, such as the source-independent re-
verberation time and the speech transmission index. These acoustical
parameters can serve as guidelines for design purposes to fulfill certain
functions of the space, and as a reference frame for the comparison and
evaluation of room acoustic qualities. They will be discussed in section
1.1.3.

1The sources of sound can potentially originate from external locations, e.g., neighbor noise and
outdoor traffic noise.
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1 General introduction
The fundamental quantities associated with room acoustics include

the acoustic pressure p, the particle velocity vector v = [u, v, w]T , the
static density of air ρ0 is and the adiabatic sound speed c0; these acous-
tical quantities are connected through the mass, momentum and energy
conservation laws [15], from which we can derive a linearized set of gov-
erning partial differential equations (PDEs), to describe sound propa-
gation in free space. For typical room acoustic problems, it is further
assumed that the propagation medium has zero mean velocity. Under
these assumptions, the following homogeneous (without source term)
coupled system of linear equations can be derived

∂v

∂t
+

1

ρ0
∇p = 0,

∂p

∂t
+ ρ0c

2
0∇ · v = 0, (1.1)

which is equivalent to second-order wave equation,

c20∇2p =
∂2p

∂t2
. (1.2)

These equations describe the variations in time and space of the acoustic
variables p and v. The speed of sound can be calculated from the formula
c0 = (331 + 0.6Tr) [m/s], where Tr is the room temperature in Celsius
[12]. In this work, Tr is set to 20◦C and c0 is 343 m/s. Assuming that
the convention eiωt is used for the harmonic time variation and inserting
the following single frequency ansatz of the form

p(t) = P (ω)eiωt (1.3)

into the wave equation, we obtain the Helmholtz equation

∇2P + k2P = 0, (1.4)

where k is the wavenumber as k = ω/c0.
Besides the governing equations describing sound wave propagation,

a complete quantification of a sound field inside a closed space mathe-
matically requires a geometrical model of the interested space, boundary
conditions that characterize acoustic properties of surface materials by
relating the acoustic pressure p to the normal component of the parti-
cle velocity on the boundaries (treated in Chapter 3 and 4) and sound
sources. In this work, sound sources are introduced via the initial condi-
tions (see, e.g., Eq. (29) in the appended Paper I); it is thus sufficient to
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1 General introduction
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consider homogeneous propagation equations. Even though the physics
of sound generation and free field propagation is well understood fun-
damentally, solutions in analytical forms only exists for certain cases
with simple boundary conditions and geometries. For real problems of
interest, accurate predictions call for advanced numerical techniques.

1.1.2 Room impulse response
Room acoustic modeling aims to describe sound fields in complex enclo-
sures by numerically calculating impulse responses of the space of inter-
est. A room impulse response (RIR) is a (pressure) signal as a function
of time at a discrete point in space in response to an acoustic excita-
tion. When a room is acoustically considered as a linear time-invariant
(LTI) system, the RIR is mathematically defined as the point-to-point
time-domain transfer function h(t) between a point source q(t) and a spe-
cific receiver. The impulse response fully characterizes the propagation
between the source and the receiver, in terms of both phase and magni-
tude, as the acoustic pressure recorded at the receiver for an arbitrary
monopole source signal can be obtained from the convolution theorem

p(t) =

∫ t

−∞
h(t− τ)q(τ)dτ, (1.5)

under the assumption of linearity, time-invariance, and limited spatial
support of the source. This is also the principle behind auralization,
which will be elaborated upon in Sec. 1.1.4. Practical measurements of
the RIR follow the guidelines and procedures documented in ISO 3382
[12, 13, 14], which also specify detailed requirements on the equipment
and the source signal. However, the measured RIR is fundamentally
inexact since it is hard to obtain point sources and receivers in practice.

Generally, an RIR consists of three separate parts as shown in Fig.
1.1: direct sound, early reflections, and late reverberation. If there is
a line of sight between the source and receiver, the direct sound is the
sound that arrives at the receiver along the shortest path from the source
without any reflections and is usually perceived as the loudest. The
early reflections are the sounds that arrive at the receiver undergoing
at least one reflection from the walls, ceiling, floor and other potential
indoor objects. The direct sound and the early reflections together are
mainly responsible for sound localization by the human brain [16]. The
late reverberation is the sound that reaches the receiver after the early
reflections; as a result of the large amount of repetitive reflections, the

Page 3



1 General introduction

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 1.1: An example of RIR from a measurement.

sound field is typically quite diffuse, which means that the direction of
propagating sounds is random and the sound energy distribution is more
or less isotropic. The reverberation is closely related to the size and
boundary properties of the room.

1.1.3 Room acoustic parameters
Upon collection of RIRs, various room acoustic parameters that objec-
tively characterize the acoustic conditions of the space of interest can
be evaluated as documented in ISO 3382 [12, 13, 14], depending on the
function and usage of the room, e.g., theater, lecture room or open plan
office. In the following, a list of parameters that are typically considered
in practice for performance spaces and for open plan offices are briefly
introduced.

Reverberation time
The reverberation time (RT, in [s]), which is a predominant room acous-
tic indicator, measures the time taken for the sound energy to drop by 60
dB of its initial strength. ISO 3382-2 [13] describes a rigorous approach
termed as the integrated impulse response method [17] to calculate the
RT. It is based on creating an energy decay curve (EDC), which is cal-
culated as follows

EDC(t) =

∫ ∞

t

h2(τ)dτ, (1.6)
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where ∞ denotes the time when the sound field reaches the equilibrium
state. If the background noise level is known, ∞ is calculated as the in-
tersection between a horizontal line through the background noise and a
sloping line through a representative part of the squared impulse response
displayed using a logarithmic scale [13]. Actually, EDC(t) measures the
amount of sound energy that has yet to arrive at the receiver.

The reverberation time is calculated by fitting a linear regression line
to the EDC(t), which is first normalized by the maximum energy level
and plotted in the logarithmic scale, starting from -5 dB. Based on the
slope of the fitting line, which specifies the decay rate dr [dB·/s], the
reverberation time is the time it takes to reach a 60 dB drop of the sound
energy and amounts to 60/dr. To overcome the issue associated with the
background noise and the power of the source, the regression range that
is used to calculate the slope can be shortened, for example between -5
dB and -25 (or -35) dB. The reverberation time is then labelled as T20

(or T30) accordingly.

It should be noted that reverberation time and every other parameter
described in the following are normally evaluated in either octave or
one-third octave bands, which require the band-pass filtering of RIRs.
A single number also can be retrieved by averaging the RT values in
the 500 Hz and 1000 Hz octave bands. In figure 1.2, the energy decay
curve evaluated for the 500 Hz octave band of the RIR in Fig. 1.1 is
shown, along with the linear regression obtained using the evaluation
range [-5,-35] dB.

Early decay time

The early decay time (in [s]), denoted as EDT , measures the initial part
of the sound energy decay. Its calculation is similar to the reverberation
time, which involves a linear regression based on the fixed range of 0
dB to -10 dB and an extrapolation to a decay time of 60 dB. Since
both the direct sound and the early reflection components are covered
in the [-10,0] dB range of EDC(t), EDT is more important subjectively
and more related to perceived reverberance than T20 or T30 [18]. For
an ideally diffuse sound field with an exponential decay in energy, EDT
equals the reverberation time.

Early-to-late index

The early-to-late index (Cte , in [dB]), represents the logarithmic ratio
between the early arriving and late arriving sound energy. Cte is formally
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1 General introduction
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Figure 1.2: Energy decay curve example and fitting to calculate T30.

calculated as:

Cte = 10 log10

(∫ te
0
h2(t)dt∫∞

te
h2(t)dt

)
, (1.7)

where te is the early time limit of either 50 ms (suitable for speech con-
ditions) or 80 ms (suitable for music conditions). A high value of Cte

indicates that the perceived sound is clear and distinguishable whereas a
low value of Cte implies that the audio information is perceptually fuzzy
and unclear at the listening position. For this reason, Cte is also referred
to as ‘clarity’. Typical values of Cte fall into the range of [-5,5] dB. For
an intelligible speech, C50 should be higher than -2 dB [12].

Center time

The center time (TS, in [ms]), is the time of the center of gravity of the
squared impulse response:

TS = 10 log10

(∫∞
0

th2(t)dt∫∞
0

h2(t)dt

)
. (1.8)

The subscript S of TS stands for “Schwerpunktzeit”in German. TS spec-
ifies the balance between clarity and reverberance [12]. To be specific,
low values of TS allude to a clear sound whereas high values indicate a
reverberant sound environment. Similar to the clarity, TS is valuable in
acoustic evaluations of the speech and music conditions.
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A-weighted sound pressure level of speech and its spatial decay rate

The A-weighted sound pressure level (SPL) of speech (Lp,A,S) and its spa-
tial decay rate (D2,S), as specified in ISO 3382-3 [14], are single number
acoustic parameters indicating the acoustic performances of open plan
offices with furnishing, the principal aims of which being to ensure good
speech privacy and to weaken distractions between workstations. These
quantities are measured or simulated by placing a single omnidirectional
loudspeaker at one selected working position and by recording the sound
pressure signal in other working positions, mimicking the situation where
a single person is talking and others are silent.

The following steps need to be conducted to obtain these parameters.
First of all, the SPL at measurement point n (with a distance rn from the
source) in i-th octave band (from 125 Hz to 8000 Hz), which is denoted
as Lp,Ls,n,i (index Ls refers to loudspeaker), is calculated by processing
measured or simulated impulse responses. Then, the corresponding at-
tenuation Dn,i in decibels compared to the SPL at a distance of 1 m in
the free field condition (Lp,Ls,1m,i) is determined by

Dn,i = Lp,Ls,1m,i − Lp,Ls,n,i. (1.9)

Given the sound power level of the loudspeaker in octave bands LW,Ls,i,
Lp,Ls,1m,i is approximately equal to LW,Ls,i − 11 dB. Upon collections of
Dn,i, the SPL of normal speech Lp,S,n,i are calculated as

Lp,S,n,i = Lp,S,1m,i −Dn,i, (1.10)

where Lp,S,1m,i is the SPL of normal speech standardized for normal voice
effort [14]. Finally, the A-weighted SPL of speech Lp,A,S,n is obtained by
adding the A-weighting values Ai in each octave band and the logarithmic
summation:

Lp,A,S,n = 10lg
( 7∑

i=1

10
Lp,S,n,i+Ai

10

)
. (1.11)

The spatial decay rate D2,S is calculated by performing a linear regression
of Lp,A,S,n with respect to the receiver distances rn within the range 2 m
to 16 m in a logarithmic scale to base 2. Therefore, it indicates the SPL
reduction when the distance is doubled. Furthermore, the A-weighted
SPL of speech at 4 m (Lp,A,S,4m), which is evaluated in practice as a single
number target quantity, is determined based on the linear regression. For
better clarification, an example taken from ISO 3382-3 [14] is shown in
Fig. 1.3.
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ISO 3382-3:2012(E)

a)   The determination of D2,S and Lp,A,S,4 m b)   The determination of distraction distance rD

Key Key
Lp,A A-weighted sound pressure level y speech transmission index
r distance to the speaker r distance to the speaker
D2,S spatial decay rate of speech rD

rP

distraction distance

privacy distanceLp,A,B A-weighted sound pressure level of 
background noise

Lp,A,S A-weighted sound pressure level of speech
Lp,A,S,4 m A-weighted sound pressure level of speech at 

4 m from the sound source

Figure 3 — Examples of the determination of single number quantities from spatial distribution curves

Table 2 — Reporting single number quantities

 Line 1 Line 2
STI in the nearest workstation   

Distraction distance, rD, in m   

Privacy distance, rP, in m (if measured)   

Spatial decay rate of A-weighted SPL of speech, D2,S, in dB   

A-weighted SPL of speech at 4 metres, Lp,A,S,4 m, in dB   

Average A-weighted background noise, Lp,A,B, in dB   

10 © ISO 2012 – All rights reserved
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Figure 1.3: Example of the determination of D2,S and Lp,A,S,4m from Ref. [14]. The white
dots denote the A-weighted SPL of the background noise while the black dots stand for the
A-weighted SPL of speech.

1.1.4 Applications
With its ability to accurately reproduce indoor sound behavior, room
acoustic modeling plays an important role in the following applications:

• One application is associated with the realization and improvement
of certain acoustic conditions, which are prevalent in many fields,
such as architecture design [19, 11, 20]; the acoustic properties of
various design or renovation options can be evaluated and further
optimized. In such applications, the physical accuracy of the simu-
lated sound field is of primary concern. Such modeling procedures
become a key step in the early design phase and act as an economi-
cal substitute to the traditional acoustic research method using the
scaled physical models of spaces.

• The second application category is more inclined to synthesizing a
certain spatial immersion or to conveying an aesthetically pleasing

Page 8



1 General introduction

C
ha

pt
er

1

auditory feeling, while preserving a desired level of realism. Typ-
ical examples are observed in the areas of computer games [21],
where artificial reverberation effects [22] are added to mimic re-
alistic environments. Here, real-time interaction, which involves
dynamic model attributes such as time-dependent geometry and
moving source/receiver locations, is a priority whereas the accuracy
of the detailed physical model is of less concern.

• The last category of application is concerned with the concept of
auralization, which by definition is the process of rendering audible,
by physical or mathematical modeling, the sound field of a source in
a space, in such a way as to simulate the binaural listening experi-
ence at a given position in the modeled space. [23]. In other words,
it focuses on creating a virtual auditory environment where the au-
ral experience can be as close to reality as possible [24, 25, 26]. In
a technical sense, auralization requires an (binaural) RIR as accu-
rate as possible with limited computational resources, and therefore
is more challenging compared to the previous two types of applica-
tions. Driven by the vast potential of application needs, recent years
have witnessed great advancements of auralization in various sce-
narios, for example building design [27, 28] and cognitive training
[29].

1.2 State-of-the-art room acoustic modeling
techniques

The concept of room acoustic simulation was conceived by Schroeder
[30] in the early 1960s. Since then, numerous modeling techniques have
been developed along with the advancement of ever-increasing comput-
ing power. Depending on their fundamental assumptions, room acous-
tic modeling approaches fall in general into two categories: geometrical
acoustics (GA) methods and wave-based methods.

It should be mentioned that in literature there exists another type of
energy-based method called the diffusion equation method, which is effi-
cient in modeling the reverberation tail of impulse responses. Compared
to traditional statistical models of a perfectly diffuse sound field with
limited applicability and accuracy [11], it allows for local variations of
energy densities [31] and is considered more accurate for practical room
scenarios. One influencing factor on the accuracy in practice is related to
the difficulty to obtain the controlling parameters of the diffusion process
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for complex geometries. Further details of the diffusion equation method
can be found in Refs. [32, 33, 34].

Besides, data driven techniques and machine learning have spurred
rejuvenated interest in the field of acoustics [35]. Recent related de-
velopments include machine learning methods for the simulating wave
propagation [36], artificial/convolutional neural network techniques for
fast auralization [37, 38] and estimation of sound scattering [39], unsuper-
vised machine learning algorithm for reduced-order modeling of traveling
waves [40]. More kinds of techniques for room acoustic modeling, which
are not established enough yet, could be expected in the future.

1.2.1 Geometrical acoustics
Geometrical room acoustic modeling techniques treat sound waves as
rays without fully considering the wave nature of sound. Generally, this
fundamental assumption is valid at high frequencies, where the largest
wavelength of interest is supposed to be at least one order of magnitude
smaller than the relevant geometry details [41]. The main approaches
are the image source method and the ray tracing method.
Image source methods
The concept of image source was applied to room acoustics by Eyring in
1930 [42] to predict the reverberation time. In 1972, Gibbs and Jones
applied the image source method for calculating the variation in sound
pressure level in a rectangular room with various absorption configura-
tions [43]. The first open source code of the algorithm was published by
Allen and Berkeley in 1979 [44]. Extension of the image source method
to arbitrary polyhedra was described by Borish [45], where the first ex-
tensive attempt to check the validity and visibility of reflection paths
was made.

In the image source method, a sound propagation path originates
from the source and then reflects on the boundary surface specularly.
Each reflection is represented using a secondary source, the intensity of
which depends on the traveling distance and absorption properties of the
surface. One deterministically considers all specular reflection paths from
a source to a receiver by mirroring the image sources at each reflection
surface recursively. During this process, the sound field is collected. The
recursion process continues until a given reflection order is achieved or
the reflected component has lost a certain percentage of its initial energy
level.

The computational cost of the image source method increases dra-
matically with the order of reflections. Furthermore, it is generally able
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to obtain an accurate approximation of the early reflections in an RIR.
However, only specular reflections are taken into account naturally and
sound diffusion is neglected. Also, handling non-trivial geometries re-
quires significant implementation efforts.
Ray tracing methods
One of the earliest application of ray tracing method in room acoustic
modeling was proposed by Krokstad et al. [46] in 1968. In ray tracing, a
given number of rays carrying a finite amount of energy is emitted from
the source location in directions that follow the desired source directivity.
For each ray, the energy remains constant during the free propagation
[47] and its reflection on the boundary surfaces follows the geometric
law of specular reflection. After each reflection, a certain amount of en-
ergy is deducted from the previous energy level. A ray terminates its
path upon hitting the volume surrounding the receiver or experiencing
a sufficient energy decay. The elapsed time since the source excitation
is recorded. Main drawbacks of ray tracing include the accuracy degra-
dation in modeling diffraction, negligence of important early reflection
paths and inclusion of duplicated or invalid recorded ray paths [48].

When sound rays hit surfaces in a room, a portion of the sound energy
is absorbed as characterized by the absorption coefficient α, while the
remaining parts are reflected either specularly or non-specularly (scat-
tered). The ratio of the non-specularly reflected sound energy to the
total reflected energy defines the scattering coefficient s [49] as illus-
trated in Fig. 1.4. It is found that the inclusion of scattering effects
generated by edges and surface roughness is effective in improving the
accuracy of room acoustic parameters that hinge on early reflections,
such as early decay time and clarity [50, 51, 52]. The scattering coef-
ficient alone is inadequate at describing the complex acoustic behavior
of scattering surfaces. In order to describe the spatial distribution of
the scattered sound, the diffusion coefficient is defined to quantify the
degree of uniformity of the polar response of a surface. If the energy
is scattered uniformly in all directions, then the diffusion coefficient 2

is equal to one. If all the energy is scattered in one direction, then the
diffusion coefficient is equal to zero [11]. It was demonstrated that the
incorporation of the diffuse surface reflections into the ray tracing model
leads to better prediction accuracy[53].

Frequency dependency can be added by splitting the energy spectrum
into frequency bands and making the absorption coefficients dependent

2Here, diffusion refers to the diffuse reflection, not volume diffusion.
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Figure 1.4: Illustration of the separation of reflected energy into scattered and specular
components (after Vorländer and Mommertz [54]).

on the frequency. The energy associated with each ray pertains to some
frequency band of a given width (e.g., an octave). As a result, multi-
ple simulations required, one for each frequency band of interest. The
individual responses obtained can then be recombined using a bank of
digital filters.
Summary of geometrical acoustic methods
Over the past decades, various improvements and extensions of applica-
bilities of GA methods have been proposed, such as incorporating the
phase information [55, 56] and edge diffraction [57, 58, 59]. Geometrical
room acoustic modeling techniques mainly require geometric computa-
tions, which are relatively cheap for modern computer power. Therefore,
they have been adopted in commercial room acoustic simulation software
such as Odeon [60], CATT-Acoustic [61] and EASE [62] and are favored
among room acoustic consultants. A comprehensive literature overview
of state-of-the-art GA methods can be found in Ref. [41].

However, apart from the constraint of the applicable frequency range,
geometrical acoustic methods generally require multiple simulations, each
of which pertains to a certain frequency band of a given width, to incor-
porate the frequency-dependent acoustic properties of boundaries and to
obtain a broadband response. Other drawbacks of geometrical acoustic
methods involve inaccurate locally reacting reflection modeling, negli-
gence of detailed geometric treatments, and simplified use of random
incidence absorption and scattering coefficients, which render the dif-
ference between the simulated and measured impulse responses audible
[50, 51].

1.2.2 Wave-based methods
In contrast to geometrical acoustics methods, wave-based methods sim-
ulate sound propagation from a fundamental point of view by directly
solving the governing linear acoustic equations Eq. (1.1) or Eq. (1.2),
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based on numerical approximation techniques. Therefore, wave-based
methods are able to capture wave phenomena such as scattering, diffrac-
tion and interference effects with no/fewer inherent constraints on the
frequency range.

Wave-based methods can be classified into two types: time-domain
methods and frequency-domain methods. Particularly, time-domain ap-
proaches, which are in line with the physical nature of sound propaga-
tion, have the benefits of calculating the solution over a broad frequency
range. Furthermore, they are capable of handling room acoustic scenar-
ios involving moving sources. However, frequency-domain approaches
are preferred by certain methods due to their nature of numerical for-
mulations. Time-domain methods generally follow the methodology of
the method of lines, where spatial derivatives are treated first and then
time integration is performed at each time step. In the following, an ab-
stract and not-exhaustive overview of a variety of wave-based methods
is presented as they are the main focus of this thesis, including the finite
difference time-domain method, the spectral method, the finite volume
method, the finite element method and the boundary element method.
Finite Difference Time-Domain methods
Among the wave-based methods, the finite difference time-domain (FDTD)
methods, which originated from the computational electromagnetics com-
munity [63, 64] in the middle of 1960s, are so far the most established
and popular numerical techniques for room acoustic simulation purposes.
Due to their simplicity and relative ease of implementation, finite differ-
ence methods have been widely used in many engineering applications,
including computational acoustics [65, 66, 67, 68, 69]. Their applicability
to time-domain room acoustic modeling were firstly and independently
investigated by Chiba et al. [70], Savioja et al. [71] and Botteldooren
[72, 73] in the 1990’s.

As a class of numerical techniques for solving PDEs, the finite differ-
ence methods discretize both the spatial domain and time interval into
discrete points. The PDEs are converted into algebraic equations by ap-
proximating derivatives with finite differences from nearby points based
on polynomial interpolants. The solution values at these discrete points
are calculated approximately by solving the resulting algebraic equations.
To date, considerable research efforts have been devoted to improve
FDTD methods for room acoustic simulations in various aspects, includ-
ing high-order accuracy schemes [74, 75, 76, 77, 78, 79, 80, 81], sound
source modeling [82, 83, 84, 85, 86], high-performance-computing imple-
mentations with the graphics processing unit (GPU) and parallelization
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[87, 88, 89, 90], real-time applications [91] and impedance boundary mod-
eling [92, 93, 94, 95, 96, 97].

However, despite their remarkable features, FDTD methods are plagued
with its inherent lack of geometric flexibility due to their use of struc-
tured meshes. Consequently, their application is mostly restricted to
problems with simple geometries. If the Cartesian grid discretization is
employed, curved geometries have to be represented with a staircase ap-
proximation, which is only accurate for cases where the shape variations
are relatively large compared to the smallest wavelength of interest [98];
otherwise, significant errors arise in estimating sound scattering and re-
flection [98, 99]. Another strategy to deal with practical geometries is to
use a multi-block approach or curvilinear meshes [100, 101], where the
physical domain is mapped onto several Cartesian grid blocks through
(non-)linear geometric transformations.

It is worth mentioning that there is another class of closely-related
techniques referred to as the digital waveguide mesh methods [102, 103,
104, 105, 84] that share similar formulations with FDTD methods. A
systematic elaboration of the functional equivalence of these two ap-
proaches and the conditions for building mixed models are presented in
Ref. [106]. Since FDTD methods are not the main focus of this the-
sis, interested readers can refer to the PhD thesis of Hamilton [98] and
van Mourik [107] for an in-depth discussion of uses and developments of
FDTD methods in room acoustic simulations; their applications within
the context of auralization can be found in the PhD thesis of Saarelma
[108].

Spectral methods
Another broad class of methods that rely on structured grids for the
approximation of spatial derivatives are the (pseudo) spectral methods
[109, 110, 111, 112]. In contrast to finite difference methods, which
approximate the solutions at any given point with a local polynomial in-
terpolant based on information at neighboring points, spectral methods
expand the unknown solutions with a global orthogonal polynomial basis.
Depending on the type of global basis employed, spectral methods can
be further classified, e.g., Fourier spectral methods (for periodic prob-
lems) and Chebyshev spectral methods (for non-periodic cases). Further
distinguishment arises from the different ways to calculate the expan-
sion coefficients of the global basis, e.g., the Tau approach, the Galerkin
approach and the collocation approach [113, 114].

In the general context of solving time-dependent PDEs, spectral meth-
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ods exhibit several appealing properties. First of all, as a result of the
spectral expansion, evaluations of the spatial derivative are transformed
from the physical space to the space of the polynomial basis (wavenumber
space in the case of Fourier basis), and hence can be performed pseudo-
analytically. It implies that for periodic problems, there is no dispersion
error from the spatial discretization and exponential convergence rate is
achieved [114]. The efficient implementations of pseudospectral methods
benefit greatly from the fast Fourier transform (FFT) algorithm devel-
oped by Cooley and Tukey [115]. Theoretically, Fourier spectral methods
need only two points per wavelength (PPW) while Chebyshev methods
need π PPW on condition that the approximated solutions are suffi-
ciently smooth and periodic. However, periodic boundary conditions are
hardly met in practice and a larger number of PPW is needed to capture
the geometrical details of the physical space. Furthermore, compared to
FDTD, the advantage of higher convergence rate comes at a cost of the
more stringent Courant-Friedrichs-Lewy (CFL) condition [116].

In the specific field of room acoustics modeling, adaptive rectangu-
lar decomposition (ARD) methods [117, 118] and pseudospectral time-
domain methods (PSTD) [119, 120, 121] have been applied based on the
Fourier basis. Combined with domain decomposition techniques, they
demonstrate attractive computational efficiency for problems with rela-
tively simple geometries and boundary conditions. However, like FDTD
methods, several factors result in difficulties or inefficiencies for room
acoustics when using spectral methods. For example, an extra error
arises from communication across the interface between sub-domains.
Another challenging issue that remains to be addressed is the accurate
and efficient modeling of frequency-dependent impedance boundary con-
ditions.
Finite Volume methods
Finite volume methods (FVM) overcome the geometric flexibility issues
of methods based on structured grids by utilizing an unstructured tes-
sellation of the computational domain in the form of polygonal or poly-
hedral elements (cells in the nomenclature of FVM). In contrast to finite
difference and spectral methods, FVM operates on the integral form of
the governing PDEs, where the divergence term is converted to a sur-
face integral using the divergence theorem. Specifically, the integral of
unknown solutions over each grid cell at one time instant, also known as
the cell average, is approximated and tracked. In each time step, these
cell averages are updated using approximations to the fluxes through the
cell edges. A high-order accuracy is achieved by using local polynomial
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reconstructions with nearby cell averages in the construction of numeri-
cal flux functions. A popular choice is the upwind flux [122] and it relies
on the solutions to the Riemann problem, which is simply the govern-
ing equation with piecewise constant initial data that has a single jump
discontinuity [123].

FVM has undergone decades of developments in various fields of en-
gineering, especially for computational fluid dynamics. Its application in
room acoustic simulation started from the work of Botteldooren [72]. Re-
cent developments include locally reacting frequency dependent bound-
aries [124, 125] and air absorption [126]. However, the main limitation of
FVM lies in its difficulty to achieve high-order accuracy (beyond second-
order) on general multi-dimensional unstructured meshes in an efficient
way.

Finite Element methods
The continuous finite element methods (FEM), which first appeared
in wave-based analysis of room acoustic modes in 1965 [127], consti-
tute another class of methods that operate on unstructured meshes, and
therefore are suitable for problems with complex geometries. The dis-
cretization strategy is characterized by the variational (weak) formula-
tion. Usually, the Bubnov-Galerkin approach is followed, which means
that the function space for both test functions and solution functions are
the same.

In contrast to FVM, FEM uses piecewise polynomial interpolations
inside each element, ensuring high-order approximations locally without
the need of large stencils across neighboring elements. Since the nodes
along the faces of neighboring elements are shared, the basis functions
are continuous across elements and essentially globally defined. As a
result, the discretized system is implicitly coupled between the elements,
implying that a large sparse linear system is needed to be solved using a
direct or an iterative approach. This poses computational challenges for
large scale 3D problems. Generally speaking, FEM is a natural choice for
elliptic boundary value problems, such as the Helmholtz equation (1.4)
and therefore it is mainly used for modeling room acoustic problems in
the frequency domain [128, 129, 130, 131, 132, 133].

Applications of FEM to time-domain room acoustic modeling have
been investigated by Okuzono et al., using the implicit Newmark time
integration scheme with preconditioned iterative solver [134, 135, 136]
or the explicit time integration scheme with the mass lumping tech-
nique [137]. Recently, a high-order variant of FEM, the so-called spec-
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tral element method (SEM) [138, 139] was applied to time-domain room
acoustic modeling by Pind et al. [140], where the mass lumping tech-
nique [141] is adopted to increase the efficiency and a formulation of
frequency-dependent impedance boundary condition is presented.
Boundary Element methods
Boundary element methods (BEM) are established numerical techniques
to solve boundary-value problems based on a discretization of the bound-
aries of the space of interest, different from the aforementioned methods
that employ a spatial (volumetric) discretization. In the field of acous-
tics, pioneering work began in 1960s [142], which predicted sound ra-
diation from an arbitrary vibrating body immersed in an infinite fluid
medium. The governing equation to be numerically solved in the time
domain is the integral form of the wave equation known as the Kirchhoff
integral equation, whereas in the frequency domain, it is the integral
form of the Helmholtz equation, i.e., the Kirchhoff-Helmholtz integral
equation, both of which are derived based on the divergence theorem.
These integral equations fundamentally state that the acoustic pressure
at an arbitrary location is determined by the distribution of the acoustic
pressure and its normal derivative (normal velocity) on the boundary
surface [143].

Depending on the way to solve the unknown pressure along the bound-
aries and to fulfill the integral equation, BEM can be classified into the
collocation approach [144, 145] and the variational approach [146]. To ad-
dress the inherent non-uniqueness problem of the frequency domain for-
mulation at certain frequencies, the Burton-Miller formulation [147] and
the combined Helmholtz integral equation formulation (CHIEF) [148]
were proposed. To predict the extended reaction in a cavity containing
sound absorbing materials, a multi-domain method, which enforces the
continuity condition of the normal velocity and acoustic pressure at the
interface, can be employed [149]. To overcome the difficulty of model-
ing thin objects for conventional BEM, indirect BEM using degenerate
boundary formulation is introduced [150, 151].

Since only the boundaries need to be discretized in the form of un-
structured elements, the number of degrees of freedom (DOFs) is signifi-
cantly reduced compared to volumetric discretization methods discussed
so far. In general, BEM is considered efficient for exterior problems
involving sound radiation and scattering phenomena in homogeneous
media [152]. However, the benefit of dimension reduction comes at a
cost of solving dense discretization matrices, making it difficult to ap-
ply the BEM to large-scale problems. Remedies using the fast-multipole
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methods [153, 154] are used to speed up the analysis of sound fields
[155, 156, 157]. Applications of time-domain BEM to room acoustic
analysis are presented in Refs. [158, 159].

1.2.3 Hybrid methods
Each of the above mentioned room acoustic modeling methods has its
own merits and limitations. It can therefore be beneficial to adopt a
hybrid methodology, thus exploiting the advantage of each contributing
method and achieving a decent balance in terms of the accuracy, com-
putational cost and applicable frequency range. There are various kinds
of hybridizations. For example, hybrid GA models tend to utilize the
image source method to simulate the early specular reflection paths and
ray tracing or radiosity-based techniques for the late reverberation part
of the impulse response [160].

Hybridizing of GA and wave-based methods can be a feasible solution
to addressing the issue of the wide audible frequency range. Wave-based
methods are used for the low frequencies, where the wavelengths are
close to the characteristic dimensions of rooms (and objects) and wave
phenomena dominate the acoustics, while GA methods are employed
for high frequencies [161, 162, 163, 164, 165, 166, 167]. The crossover
frequency is generally case-dependent based on acoustic characteristics
of rooms. The Schroeder frequency [11], which approximately indicates
the boundary between overlapping and distinguishable resonant room
modes, is usually used as a rough estimate of the upper limit of the
low-frequency range.

Hybrid methods that spatially couple different wave-based methods
also exist, the fundamental principle behind which is the spatial domain
decomposition. A popular strategy is to utilize more efficient methods
to treat the interior domain with relatively simple geometries and large
volumes, and to use more accurate but time-consuming methods near
the boundaries. Examples include the hybrid of the ARD method with
FDTD [117, 118], the hybrid of the PSTD method with FEM [168], and
the hybrid of the FVM with FDTD [124, 126].

1.2.4 Summary and discussion
To the best of the author’s knowledge, the properties and capabilities
of each wave-based method discussed so far is summarized in terms of
entries listed in Table 1.1. The entry of “explicit semi-discrete form” is
relevant for time-domain approaches, and the explicit formulation saves
the trouble of using an iterative solver to solve large linear systems of
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equations. It should be noted that some of the issues and restrictions
could be addressed and overcome with on-going active research efforts.
Nevertheless, this comparison does highlight the most obvious shortcom-
ings of each method that need to be resolved for room acoustic modeling.

Table 1.1: A summary of generic properties of the state-of-the-art wave-based methods for
room acoustic modeling. The numbers represent to what extent the properties are addressed
in the respective method. 1 means it can be well handled; 2 indicates efforts are needed to
resolve the issue; 3 implies even more efforts are needed.

FDTD Spectral M. FVM FEM BEM
Geometric flexibility 3 3 1 1 2
High-order accuracy 1 1 3 1 1

Impedance boundary conditions 1 3 1 1 1
Explicit semi-discrete form 1 1 1 2 3

Parallel computing 1 1 1 2 2

Generally speaking, wave-based methods, which are built upon nu-
merically solving the fundamental physical laws governing sound prop-
agation, have relatively higher accuracy compared to geometrical room
acoustic modeling techniques and energy-based methods for both the
free propagation and the interaction with boundaries, especially in the
low-frequency range. Furthermore, compared to other approaches, it is
more natural and straightforward to integrate wave-based sound propa-
gation modeling with other fields of modeling that are relevant to room
acoustics. For example, direct modeling of (multiple) directional source
by coupling sound emitting physical objects with the propagation media
[169, 170, 171] can be realized more easily with wave-based methods. On
this account, the framework of sound synthesis can be connected with
room acoustic modeling. More than that, binaural sound localisation
can be realized naturally by incorporating head and torso models into
the simulated space [172, 173].

However, a general criticism of wave-based methods is that the com-
putational cost can become prohibitive. As a general rule of thumb,
state-of-the-art wave-based methods typically require spatial discretiza-
tion resolution of 6 up to 10 PPW for the sake of the dispersion and dis-
sipation error [174] arising from the numerical approximation. In 3D, the
degrees of freedoms for volumetric discretization techniques scale with
the maximum frequency of interest fmax as O(f 3

max). Therefore, it is
generally acknowledged that acoustic simulations of large rooms at high
frequencies remain a challenging issue for the foreseen future. However,
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low- and mid-frequency calculations are becoming more and more feasi-
ble, and the upper limit of the applicable frequency range is expanded
thanks to the ever-growing computing power with parallel architectures
[87, 88, 89, 90].

1.3 Thesis objective and main contributions
This PhD project is motivated towards an efficient, robust and accurate
wave-based room acoustic modeling technique. Following the discussions
presented in the previous section and reflecting on the state-of-the-art
numerical modeling techniques, the time-domain discontinuous Galerkin
(DG) method is chosen as the focus of this thesis, since it possesses each
of the attractive properties listed in Table 1.1. As will be discussed in
Chapter 2, the DG method is a well-established numerical approximation
technique for solving partial differential equations that govern various
physical processes. However, its applications to room acoustic modeling
was far less developed at the outset of this PhD project. Therefore, it
is the goal of this work to develop the necessary formulations of the DG
method for room acoustic modeling purposes, and to perform validations
against analytical, numerical and measurement results.

The main contributions of this thesis are as follows:

• For room acoustic modeling purposes, the performance of the time-
domain nodal DG method is evaluated. A comprehensive derivation
of the nodal DG scheme for solving the linear acoustic equations is
presented. A formulation of real-valued impedance boundary con-
dition is proposed as a preliminary attempt to simulate the sound
absorption phenomena along the boundaries. The semi-discrete sta-
bility of the scheme is analyzed using the energy method. Verifi-
cations are performed against analytical solutions, demonstrating
the convergence of the scheme. As a collaborative work, simulation
results for a real empty room are compared with measured results
and a good match is observed in 1/3 octave bands.

• A high-order accurate and generic time-domain impedance bound-
ary condition formulation for locally reacting materials is devel-
oped and validated, aiming at a further step towards a fully-fledged
time-domain DG solver for realistic room acoustic simulations. The
benefits of using a high-order basis in terms of cost-efficiency and
memory-efficiency is demonstrated with numerical experiments. The
applicability of the proposed formulation for modeling real-world
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materials is demonstrated through an example of a rigidly-backed
glass-wool baffle.

• Following the impedance boundary formulation, a formulation of
broadband time-domain transmission boundary conditions for lo-
cally reacting surfaces is proposed and validated. A few examples
of sound transmissive boundaries are presented to illustrate the ap-
plicability of the scheme to handle practical scenarios.

• A numerical scheme of arbitrary order of accuracy in both space
and time, based on the arbitrary high-order derivatives (ADER)
methodology, for linear acoustic wave propagation is developed and
validated. The scheme combines the nodal DG method for the spa-
tial discretization and Taylor series integrator for the time integra-
tion. A novel local time-stepping approach is proposed to increase
the simulation efficiency for realistic problems containing geometric
or parametric constraints without losing high-order accuracy.

• A preliminary application to the room acoustic simulations of a
real open plan office in the low-frequency range is explored, with the
purpose of assessing the accuracy and applicability of the developed
time-domain nodal DG method for a realistic sound field analysis by
comparing simulation results with the results from measurements.

1.4 Thesis structure and related publications
The thesis is mainly based on work presented in the appended Journal
Papers. Each of the following chapter summarizes the main findings
and contributions of each paper respectively. Additional comments are
presented where necessary. The rest of the thesis is structured as follows.

• Chapter 2 is mainly based on the appended Paper I.
This chapter lays the foundation of this thesis, where the position-
ing of time-domain DG method as a wave-based method for room
acoustic modeling purposes has been addressed. It introduces the
main ingredients of the DG method and reviews its development in
the general context of the computational physics community. Then,
a brief overview of the content of Paper I follows.

• Chapter 3 is mainly based on the appended Paper II.
This chapter is devoted to the accurate modeling of sound reflec-
tion and absorption along locally reacting impedance boundaries
within the time-domain DG framework. An introduction of acoustic

Page 21



1 General introduction
boundary conditions under the extendedly and locally reacting as-
sumption is presented first, followed by the discussion on the porous
sound absorber. A brief review of time-domain impedance bound-
ary condition formulation is presented. Lastly, the main content of
Paper II are summarized.

• Chapter 4 is mainly based on the appended Paper III.
This chapter presents a formulation of broadband time-domain trans-
mission boundary conditions for locally reacting surfaces in the
framework of the time-domain DG method. It begins with a short
literature review on sound transmission modeling in the context of
room acoustics. Then, a summary of the main contributions of
Paper III is given. Additionally, the formulation of simulating
an acoustic boundary modeled by a limp permeable membrane is
presented.

• Chapter 5 is mainly based on the appended Paper IV.
This chapter aiming at accelerating realistic room acoustic simula-
tions with the time-domain DG method. To achieve this goal, we
first explore the challenges associated with time integration schemes
and identify the need for a more efficient scheme, in the presence
of geometric or parametric constraints that limit time step sizes. A
short review of publications produced in this context is summarized.
Then, the main contributions of Paper IV are presented.

• Chapter 6 is mainly based on the appended Paper V.
This chapter is related to validating the developed time-domain DG
wave-based solver by means of a realistic case study. The simulation
results are compared against measurements for a real open-plan
office. As complements to the content of Paper V, a discussion on
retrieving accurate acoustical boundary conditions from measured
absorption coefficients data is introduced first, followed by more
details on the mesh generation.

• Chapter 7 contains concluding remarks and insights for future
work.
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2 Room acoustic modeling with the time-domain
nodal discontinuous Galerkin method

The purpose of this chapter is to introduce the time-domain discon-
tinuous Galerkin (DG) method for room acoustics modeling purposes.
It begins with a brief discussion and with the development of the DG
method in the general context of the computational physics community.
Then, a brief overview of the content of Paper I and a summary of its
main contributions are presented.

2.1 A conceptual introduction of the DG method
The discontinuous Galerkin (DG) method, as a subtype of the finite el-
ement method (FEM), is based on locally piecewise polynomial approx-
imations to represent the unknown solutions. It supports both struc-
tured and unstructured mesh elements of various shapes as the generic
FEM. Different from the (classical) FEM that utilizes continuous ba-
sis functions, DG method uses basis functions that can be completely
discontinuous across the interface of neighboring mesh elements to ap-
proximate the unknown variables, where duplicated solutions exist at all
nodes, as shown in Fig. 2.1. As a result of this discontinuity, the weak
formulation can be obtained by performing the Galerkin projection lo-
cally, i.e., by setting the local residual of the approximated governing
equation orthogonal to all test functions. Following the same idea as
FVM, the divergence term inside the weak formulation is converted into
a surface flux using Gauss’ theorem. The surface flux, which is referred
to as the numerical flux, is a single valued function that depends on the
solution values at the element surfaces from both sides of the interface.
The numerical flux serves not only to couple the elements, but also to
enforce boundary conditions, which is also illustrated in Fig. 2.1.

The construction of local polynomial approximations and subsequent
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2 Room acoustic modeling with the time-domain nodal discontinuous Galerkin method

Figure 2.1: Illustration of the difference between the continuous Galerkin (CG) and the
discontinuous Galerkin (DG) FEM in a 2D domain. Dk denotes the space elements and qk

is the corresponding local approximation. The height of the vertical dotted line denotes the
solution values. For the DG-FEM, there are steps, denoted as dq, between the approxima-
tions of neighboring elements, which introduce the need for the numerical fluxes f∗, e.g.,
f∗
21 and f∗

23 for the element Dk2 . The boundary conditions are imposed weakly through the
numerical flux f∗

2b as well.

evaluations of volume and surface integrals can be conducted in various
ways, which further classify different approaches, e.g., the modal and
nodal approaches. The calculation of the numerical flux, which is the
only non-local operation involving different elements, involves only the
solution nodes on the element surfaces, whereas the volume integration
depends on all interior nodes inside the element.

Following the method of lines, the semi-discrete formulation obtained
from the spatial discretization of the DG method can be marched in
time with general ordinary differential equation (ODE) solvers, e.g., the
Runge-Kutta method [81]. It should be noted that the semi-discrete
formulation can be easily rewritten in ODE form due to the fact that
the spatial matrices can be easily inverted.

Similar to FVM, the DG method exhibits strong stability and ro-
bustness when dealing with sharp gradients or even jumps in material
properties that are aligned with the mesh, making it suitable for nu-
merically solving time-dependent hyperbolic PDEs, such as the linear
acoustic equations under consideration here. However, the high-order
representation of the solutions in each cell of FVM, which involves the
polynomial reconstruction procedure using a large stencil of cells on gen-
eral multi-dimensional unstructured grids, is not necessary for the DG
method, since the solutions within each element are approximated lo-
cally using high-order polynomials. Therefore, the DG method may be
considered as a favorable combination of FVM and FEM. Furthermore,
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the DG method offers great flexibility in local mesh and order adaptivity.
Because most operations are performed elementwise, it allows for easy
parallelization with a significant acceleration potential [175, 176].

Historically, the DG method was firstly introduced in 1973 by Reed
and Hill [177] in the framework of neutron transport problems and was
later analyzed by Lesaint and Raviart [178]. The stability and error
estimates for the DG method applied to a linear hyperbolic equation
were first proved by Johnson and Pitkäranta [179] in 1986. Eigensolution
analysis to the linear wave equations can be found in Refs. [180, 181,
182, 183]. Developments of the DG method for non-linear hyperbolic
conservation laws were carried out by Cockburn et al. in a series of papers
[184, 185, 186, 187]. In related work, Atkins and Shu [188] proposed a
quadrature-free implementation that achieves a significant reduction in
computational cost and storage requirements. Interested readers can
refer to more extensive literature [189, 190, 191], which contains more
detailed discussions and references concerning the development of DG
in all aspects including algorithm design, implementations, analysis and
applications.

The DG method has enjoyed substantial development in recent years
in diverse fields such as electromagnetics [192, 193], seismology [194],
poroelastic wave modeling [195], elastic-acoustic wave propagation [196,
197, 171], aeroacoustics [198, 199, 200, 201, 202], shallow water modeling
[203], coastal ocean modeling [204], computational fluid dynamics [139].
However, it has never been used for room acoustic modeling by the time
Paper I was published.

2.2 Overview of Paper I
Paper I aims to address the positioning of time-domain DG as a wave-
based method for room acoustics. This paper begins with a brief review
of the state-of-the-art room acoustic modeling techniques, highlighting
the necessity of using wave-based methods for low-frequency problems.
Then, general features of the DG method are introduced, demonstrating
its strong potential for room acoustic problems. Meanwhile, develop-
ments needed to achieve a fully-fledged DG method for room acoustic
modeling, such as a proper formulation of impedance boundary condi-
tions, are identified.

The equations governing wave propagation in the context of room
acoustics are the linear acoustic equations introduced in Eq. (1.1), which
are derived from the general conservation laws [15]. To numerically solve
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2 Room acoustic modeling with the time-domain nodal discontinuous Galerkin method
the governing equations, the nodal DG method is used for the evaluation
of the spatial derivatives, and for the time-integration an explicit multi-
stage Runge-Kutta method [200] is adopted. The main ingredients for
the spatial discretization are adopted directly from the nodal formulation
presented by Hesthaven and Warburton [190], including the construction
of local approximations using a multi-dimensional Lagrange polynomial
basis with an α-optimized node distribution [205], and efficient calcula-
tions of mass, stiffness, and surface integral matrices. The derivation of
the upwind numerical flux associated with the linear acoustic equations
is presented, which completes the semi-discrete formulation for free-field
propagation. To provide insight into the numerical dissipation and dis-
persion properties of the DG scheme, relevant literature is referred to
and major findings are summarized.

To deal with sound absorption on the boundaries, a frequency-
independent real-valued impedance boundary formulation is proposed,
and is incorporated into the scheme via the upwind flux along the
boundaries. The principle behind the formulation is that the charac-
teristic waves [206, 207] of the linear acoustic equations, which appear
in the definition of the upwind numerical flux and are thus evaluated
nodally, act as plane waves locally along the normal direction to the
boundary surfaces. Therefore, incoming (reflected) characteristic waves
can be calculated as a product of the plane wave reflection coefficient
and the outgoing (incident) characteristic waves. The semi-discrete
stability of the spatial DG operator together with the proposed
impedance boundary conditions is analyzed using the energy method.
It is proven that the semi-discrete system resulting from the DG
discretization is unconditionally stable for passive boundary conditions
with a real-valued impedance. It is worth mentioning that the reflection
coefficient also enables the use of all real-valued impedance boundary
conditions regardless of the imposed impedance values, sparing the
need for exceptional treatments even for singular cases such as an
infinitely hard wall and soft wall. A discussion on the discrete stability
of the scheme is presented and a criterion for choosing the time step is
presented.

To evaluate the performance of the time-domain DG method for room
acoustics problems, various 3D numerical tests are presented.

• The first test is a free field propagation of a single frequency plane
wave with periodic boundary conditions. In this case, the dissipa-
tion errors and the dispersion errors are quantified with respect to
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the number of PPW and the propagation distance.

• The second configuration is a sound source over an impedance
plane. The convergence of the spherical wave reflection coefficient
under two different angles of incidence is verified for frequency-
independent impedance boundary conditions. It is also found that
the accuracy is rather independent from the incidence angle.

• As a third scenario, a cuboid room with rigid boundaries is used, for
which a long-time (10 seconds) simulation is run. By comparing the
numerical results against the analytical solution, it can be concluded
again that with increasing spatial resolution, the dispersion and
dissipation errors become monotonously small, i.e., convergence is
achieved.

• Finally, the comparison in terms of the narrow and 1/3 octave bands
sound pressure level between numerical and experimental solutions
shows that DG is a suitable tool for acoustic predictions in rooms.
Taking into account that only one uniform real-valued impedance
has been used for the whole frequency range of interest, the compar-
ison against the measurement is quite satisfactory. In this case, the
incorporation of frequency dependent boundary conditions would
definitely help to produce a better match with the real measure-
ments. This topic will be addressed in the following chapter.
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3 Time-domain locally reacting impedance
boundary conditions

While the fundamental recipe of the nodal DG method to solve the lin-
ear acoustic equations has been described, the efficacy of the introduced
real-valued impedance boundary condition is quite limited in terms of
bandwidth, since most of realistic materials absorb sound waves in a
frequency-dependent way. The purpose of this chapter is to introduce the
time-domain frequency-dependent impedance boundary condition for-
mulation, which is an indispensable part of a fully-fledged room acoustic
modeling solver. This chapter begins with a discussion and literature
review of the extendedly and locally reacting assumption for impedance
boundary modeling. Then, a brief overview that outlines the content of
Paper P2 and a summary of its main contributions are presented.

3.1 Extendedly and locally reacting sound
absorption modeling

Sound absorption along surfaces of various objects inside a room has
a major influence on the acoustics of the room. Therefore, accurate
modeling of the behaviour of sound waves in the immediate vicinity of
boundaries is of primary concern. In various room acoustic modeling
techniques, the boundary conditions that represent the sound absorption
properties of materials can be characterized in terms of either the acous-
tic surface impedance, the sound absorption coefficient or the plane-wave
reflection coefficient. These quantities in general vary with the frequency
and the angle of incidence. The absorption coefficient is usually used
in geometrical acoustics models, while the acoustic surface impedance
comes into play in wave-based methods (e.g., FEM, BEM, FDTD, DG,
etc.) through the imposition of boundary conditions.

Suppose the outward normal vector to the boundary surface is denoted
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3 Time-domain locally reacting impedance boundary conditions
as n. At a given angular frequency ω, the normalized surface impedance
Zs, is defined as the ratio of the complex sound pressure P (ω) and the
particle velocity component normal to the surface Vn(ω) = V (ω) · n,
divided by the characteristic impedance of air, i.e.,

Zs(ω) =
1

ρ0c0

P (ω)

Vn(ω)
. (3.1)

In the time domain, relation (3.1) can be expressed as:

p(t) = ρ0c0

∫ ∞

−∞
zs(t− τ)vn(τ)dτ, (3.2)

where zs(t) is the inverse Fourier transform of Zs(ω), and the same holds
for p(t) and vn(t).

The impedance model has to satisfy three necessary conditions in the
frequency domain in order to be physically admissible, as proposed by
Rienstra [208]:

• Causality condition: the present states must be time-updated based
on the past and present states. In other words, the response of the
system is supposed to be zero before it is simulated. Mathemati-
cally, it indicates that Zs(ω) is analytic and non-zero in Im(ω) < 0;

• Reality condition: p(t), vn(t) and z(t) must be real-valued quan-
tities. In other words, Z∗

s (ω) = Zs(−ω), where the superscript ∗
denotes the complex conjugate;

• Passivity condition: the reflecting surfaces absorb energy rather
than generate it. Consequently, Re

(
Zs(ω)

)
≥ 0 must hold for all

frequencies.

The physical admissibility of some popular semi-empirical impedance
models are discussed in [209, 210].

The physics behind the reflection of sound waves is well described
by Snell’s law. However, the fact that surface impedance values vary
with the incidence angle of the impinging sound wave, which is referred
to as extendedly reacting behavior, poses great challenges to numerical
modeling. To deal with this issue, a general approach based on a wave-
splitting technique [211] was proposed to extract the incidence angle,
which makes it feasible to adapt the impedance value to the incident
acoustic field on the run [212]. However, this method can only detect
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the incidence angle accurately on the condition that a sparse sound field
is present, which is not typical for room acoustics. Another approach to
cope with the extendedly reacting behavior is to couple the sound propa-
gation between the boundary materials and the air, by explicitly solving
the governing equations inside the materials. However, this coupling ap-
proach, which requires problem-dependent treatments, suffers from the
extra computational cost of modeling the boundary materials.

3.1.1 Porous sound absorber
The porous material, which might exhibit a strong extended reaction,
is the most widely used type of acoustic treatments in architectural de-
sign. Acoustic wave propagation inside porous materials with elastic solid
frames is most systematically described by the Biot poroelastic theory
[213, 214, 215, 216], which accounts for structure-born waves as well.
However, the high complexity of the Biot model necessitates a number
of material parameters that are difficult to measure, such as the frame
shear modulus, thus limiting its practical applicability.

For cases where the frame is motionless or the structural waves are
highly damped, simplified (semi-) empirical equivalent fluid models
(EFM) prove to be realistically adequate for porous absorbers. In
its most general formulation, EFM can involve up to six material
parameters, i.e., flow resistivity σ0 [Pa·s·m−2], material porosity ϕ0 ,
material tortuosity α∞, viscous characteristic length Λ [m], thermal
characteristic length Λ′ [m], static thermal permeability k′

0 [m2]. Based
on these parameters, the frequency-dependent complex quantities
describing wave propagation inside the materials, i.e. the propagation
constant and the characteristic impedance, or the effective density and
the effective bulk modulus, can be obtained. Examples of well-known
empirical EFMs are the Zwikker and Kosten model [217], Delany and
Bazley model [218], and Miki model [219].

Sound propagation based on EFM has been studied quite extensively,
including theoretical analysis [220, 221, 222, 223, 224], time-domain for-
mulations [225, 226, 227, 228] and numerical modeling in the frequency
domain using FEM [229, 133] and BEM [230]. The time-domain nu-
merical modeling of acoustic wave propagation based on EFM have been
performed in various wave-based frameworks, including the PSTD frame-
work [231], the FDTD framework [232, 233] and the DG framework [234],
to name a few recent developments.

It should be noted that other common materials used for room acous-
tic treatments also exhibit extendedly reacting behavior, such as thin
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3 Time-domain locally reacting impedance boundary conditions
solid panels [235, 236], permeable membranes [237], suspended ceilings
[238, 239], especially when they are backed by a large air cavity [240, 241].

3.1.2 Local reaction modeling
In the literature, most of the wave-based room acoustic modeling tech-
niques employ the locally reacting assumption due to its simplicity. It
indicates that responses (velocity, displacement, acceleration, etc.) at
a certain point on the surface are related to the sound pressure and
acoustic velocity of that specific point alone. In other words, the sur-
face impedance is constant with respect to the incidence angle, and is
set to be the same as for normal incidence [242]. The locally reacting
assumption is appropriate for: (1) single layer isotropic porous absorp-
tive materials with a high flow resistivity or large losses, especially when
the speed of longitudinal waves in such materials is much lower than
the speed of sound [240]; (2) anisotropic solids, such as plates with low
stiffness, perforated structures or honeycomb core structures, where the
lateral wave is rapidly attenuated or blocked.

Various formulations of locally reacting time-domain impedance
boundary conditions (TDIBC) that have been developed in computa-
tional acoustics communities differ mainly in terms of the following
three aspects:

• The acoustic quantities that characterize the acoustic properties
of reflecting surfaces or materials. Besides the acoustic surface
impedance, TDIBCs based on the acoustic admittance [243, 124,
125, 244] and the plane-wave reflection coefficient [245, 246, 247,
248, 249, 250] have been developed. Compared to others, the for-
mulation using the plane-wave reflection coefficient has more ease
dealing with (asymptotically) singular boundaries of both the hard-
wall and pressure-release boundaries.

• The broadband approximations (including the parameter fitting ap-
proach) in the numerical impedance (admittance/reflection coeffi-
cient) models to the measurement data or specific (semi-) empirical
impedance models in the frequency-domain. One early attempt to
incorporate the frequency-dependency was to model the impedance
boundary as a mass-damper-spring (MDS) system, which is analo-
gous to the resistance-inductance-capacitance (RLC) system in an
electrical circuit. Tam and Auriault [251] first used it for aeroacous-
tic applications and at the same time, Botteldooren [73] applied it
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for FDTD room acoustic modeling. Other examples that use se-
ries of MDS can be found in Refs. [245, 246, 93, 124, 125, 97].
Later on, as a generalization of the MDS model, the multi-pole
model, which approximates the frequency response of the impedance
(admittance/reflection coefficient) using a sum of first order (real
poles) and second order (complex conjugate poles) rational func-
tions, gained popularity [252, 253, 254, 250, 255, 136], due to its
extended range of representation of generic impedance models and
more flexibility in the parameter fitting. Therefore, the multi-pole
model is considered in this thesis.

• The time-domain implementations. The follow-up time-domain im-
plementations, which are usually tailored to the specific spatial
discretization method, are quite diverse. Here, it is not intended
to present an exhaustive overview of all the developed TDIBCs,
which are discussed more systematically in Ref. [256]. Among the
approaches to the computation of the convolution integral of Eq.
(3.2), the auxiliary differential equation (ADE) method [257, 258,
231, 136] is widely used because of its high-order accuracy and low-
storage benefit.

3.2 Overview of Paper II
Paper II aims to develop a robust and efficient time-domain imple-
mentation of a generic broadband impedance boundary condition for
locally reacting boundary materials, as a further step towards a time-
domain DG solver for realistic room acoustic simulations. The formu-
lation of the numerical flux along the impedance boundary is derived
straightforwardly based on the plane wave reflection coefficient and the
characteristic acoustic waves, and its detailed implementation in the
DG method is presented. The extension of the previous frequency-
independent impedance boundary formulation presented in Paper I to
account for a frequency dependence is achieved through the multi-pole
representation of the reflection coefficient in the frequency domain. Com-
bined with the ADE method [258, 231], the whole computation can be
performed in a low-storage and high-order accuracy manner.

The multi-pole model is essentially a linear summation of rational
functions plus a constant term. Properties of rational functions are
discussed, and requirements for the parameters to satisfy the above-
mentioned physical admissibility conditions are presented. The fitting
of the multi-pole model to a given empirical impedance model or mea-
surement data is of concern from the following three aspects. Firstly,
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computational costs associated with the boundary modeling alone are
linearly proportional to the number of poles/rational functions resulting
from the fitting procedure. Secondly, the maximum value of the pa-
rameters determines the stiffness of the auxiliary differential equations,
which might affect the maximum allowable time step size of the explicit
time-integration scheme. Last, the accuracy of the complex-valued fit-
ting procedure has a direct impact on the accuracy of the boundary
absorption modeling.

In this study, the optimization technique firstly presented by Cotté
et al. [252] is chosen to fit the parameters in the multi-pole model for
the following reasons. Firstly, the optimization technique is capable of
ensuring causality and reality conditions by enforcing the positivity of
the fitting parameters values. Secondly, the number of poles can be pre-
defined and the maximum values of parameters can be confined such that
the stiffness of auxiliary differential equations falls below the threshold
as determined by the discrete stability condition. It should be noted
that the fitting solution is not unique, and there exist other methods to
fit the parameters such as the well-known vector fitting (VF) method
with pole relocations [259, 260]. Both the optimization technique and
the VF method are based on an iterative procedure and the resulting
approximation depends heavily on the choice of the starting poles. In
practice, some degree of expertise is needed to obtain an accurate fitting,
especially when multiple local extrema of the reflection coefficients that
correspond to resonances are present within the frequency range of in-
terest. The optimization-based method is chosen because of its control
over the range of the fitting parameters and the number of poles.

In Paper II, a typical room acoustic treatment using a glass-wool
baffle mounted on a rigid backing is considered, the acoustic property
of which can be represented by the Johnson-Champoux-Allard-Lafarge
(JCAL) model [223, 224]. To validate this formulation, numerical simu-
lations of a single reflection scenario are performed. Both the amplitude
and the phase error from the reflection, which are important for room
acoustics modeling featuring successive multiple reflections, are investi-
gated and quantified for both the plane wave reflection in a 1D setting
and the spherical wave reflection in 3D. The convergence rates of differ-
ent spatial orders are verified. Cost-efficiency and memory-efficiency of
high-order basis functions are demonstrated. To sum up, the proposed
TDIBC formulation further strengthens the potential of the time-domain
discontinuous Galerkin method as a wave-based method for room acous-
tics modeling.
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4 Time-domain locally reacting transmission
boundary conditions

This chapter is based on Paper III, which presents a framework to
model the sound transmission behavior across boundaries for room acous-
tic modeling purposes. Sound transmission is an acoustic phenomenon
relating how a sound wave travels from one medium into another. As
before, this chapter begins with a short literature review. Then, a sum-
mary of the main contributions of Paper III is presented. Last, the
possibility of simulating a limp permeable membrane is discussed.

4.1 Sound transmission modeling
As reviewed in Sec. 3.1, many efforts in the field of room acoustic mod-
eling have been devoted to model the reflection and absorption behavior
of sound impinging on boundary materials, which are generally backed
by acoustically rigid walls, by imposing an acoustic boundary condition.
However, in certain practical scenarios with sound transmissive bound-
aries, e.g., a suspended ceiling or a sound barrier made of permeable
materials, the acoustics of the space hinges on not only the boundary
material, but also the space or cavity behind, which boils down to an
acoustic problem involving three propagation media.

There are mainly two types of approaches to simulate sound trans-
mission phenomena. One type is to simulate the sound propagation
inside the boundary material explicitly, such as in porous materials as
previously discussed in Sec. 3.1.1, by coupling it with the neighboring
propagation media. The other type of approaches is to formulate ad
hoc internally locally reacting boundary conditions at both sides of the
boundary materials that fit their acoustic properties.

For modeling permeable panels/plates, formulations of boundary con-
ditions within the framework of FDTD can be found in Refs. [235, 236],
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whereas the formulations using FEM are presented in Refs. [261, 262,
237]. Aiming for a more general formulation, Toyoda and Ishikawa [97]
have proposed a locally reacting boundary condition within the FDTD
framework using the mass-damper-spring (MDS) system inserted be-
tween propagation media to simulate the frequency-dependent absorp-
tion and transmission characteristics. The MDS boundary has in total
seven parameters to fit the frequency characteristics of materials in terms
of the impedance, including three masses, two damping and two spring
constants. To the best of authors’ knowledge, no formulation regard-
ing the sound transmission boundary condition has been presented so
far for the time-domain DG method in the context of room acoustics.
Therefore, it would be desirable to develop a general acoustic bound-
ary condition that could take both the sound reflection and transmission
phenomena into account.

4.2 Overview of Paper III
The purpose of Paper III is to present a general formulation of the
transmission boundary condition within the time-domain DG framewrok
for locally reacting materials. Similar to the TDIBC presented in Pa-
per II, the formulation is derived based on the plane wave theory. The
plane wave reflection and transmission coefficients at normal incidence
conforming to the frequency-dependent reflection and transmission char-
acteristics of the considered materials are represented with the multi-pole
model and then incorporated into the upwind numerical flux of DG. Fol-
lowing the same steps as for the impedance boundary condition, the
fitting of parameters in this representation for a target transmission
characteristic is achieved by the optimization technique and the time-
domain implementations based on the auxiliary differential equations
(ADE) method [258, 231] are presented. It should be noted that the
formulation also applies to cases where the simulated boundary material
has anisotropic physical attributes and consequent asymmetrical reflec-
tion and transmission properties, under the local reaction assumption.

As a demonstration of its applicability, three scenarios, i.e., the limp
wall, the MDS partition (e.g., fiberglass) and the single layer of porous
material based on the equivalent fluid model (EFM), are discussed and
numerically tested. Numerical verifications of the proposed boundary
formulation in 1D against analytical solutions are presented, and 2D
verifications are performed against the frequency-domain FEM solver of
COMSOL Multiphysics ® [263]. A good match in terms of the magnitude
and the phase of the reflected/transmitted sound pressure is observed.
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4.3 Application to modeling limp permeable
membranes

Paper III considers the sound transmission across three different bound-
ary materials. The purpose of this section is to demonstrate that the
transmission boundary formulation is also applicable to materials that
can be categorized as a limp permeable membrane (LPM), e.g., curtains
made of woven fabric and suspended ceilings.

The acoustic properties of acoustic treatments made of LPM have
been investigated by analytical approaches for a single-leaf structure [264,
265] and a double-leaf structure [266, 267, 268]. It is found that the
acoustic characteristics of a LPM absorber are mainly governed by two
properties, namely the inertia due to its mass and the flow resistance
from its air permeability.

Suppose the surface mass density of the LPM is given by m (kg·m−2).
Then, from Newton’s second law, the equation of motion for the LPM is

m
∂vm
∂t

= pa − pb, (4.1)

where vm denotes the vibration velocity of the membrane, pa and pb
denote the acoustic pressure on both sides of LPM, as illustrated in Fig.
4.1. When the membrane is not permeable, the local average of acoustic
particle velocity on the membrane, denoted as vf , is equal to vm following
the velocity continuity condition. The transfer impedance, also referred
to as wall impedance or partition impedance, is defined as the ratio of the
pressure difference on the two sides of the limp material and the acoustic
particle velocity, and is identified as iωm according to Eq. (4.1).

For the case of a permeable membrane, vf is not equal to vm anymore
since there is a net flow of air through the LPM. However, it is still rea-
sonable to assume the local average velocities on both sides of the LPM
are equal on the condition that the pore volume per unit surface area
of LPM is substantially less than a quarter of a wavelength [242]. The
effect of air permeability of materials is described by the flow resistance
rf [Pa·s·m−1] as

rf =
pa − pb
vf − vm

, (4.2)

which is usually assumed independent of frequency. rf is linearly propor-
tional to the thickness of the membrane and its value per unit thickness
is the flow resistivity σ0. By considering Eq. (4.1) and Eq. (4.2), the
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Figure 4.1: Schematic diagram of a LPM absorber under a normal incidence of a plane wave.

transfer impedance of a LPM is obtained as

ZLPM (ω) =
( 1

rf
+

1

iωm
)−1 (4.3)

which is analogous to the electric impedance of two circuit elements in
parallel, namely the inertia iωm and the flow resistance rf . When the
LPM is surrounded by air, its surface acoustic impedance is Zsur(ω) =
ZLPM (ω) + Zc, where Zc = ρ0c0 is the characteristic impedance of air.
Again, in terms of an electric-circuit analogy, the surface impedance
consists of ZLPM and Zc in series.

With the surface impedance Zsur(ω), both the reflection coefficient
R(ω) and the transmission coefficient T (ω) can be derived in the follow-
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ing multi-pole model form

R(ω) =
Zsur(ω)− Zc

Zsur(ω) + Zc

=
ZLPM (ω)

ZLPM (ω) + 2Zc

= ALPM − ALPMζ

iω + ζ
(4.4)

T (ω) = 1−R

= 1− ALPM +
ALPMζ

iω + ζ
, (4.5)

with a constant ALPM = rf/(rf + 2Zc) and a single real pole ζ =
2rfZc/(rfm+ 2Zcm). Fig. 4.2 shows an example of the magnitude and
phase information of R(ω) and T (ω) for a LPM with rf = 196 Pa·s·m−1

and m = 0.065 kg·m−2, which is representative of air-permeable thin
(woven) fabrics [237].
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Figure 4.2: Example of the plane wave reflection coefficient R(ω) and transmission coefficient
T (ω) of a LPM.

Since the numerical formulation of the transmission boundary con-
dition has been verified, repetitive numerical verifications are not per-
formed here. In the future, it would be interesting to apply this formu-
lation to model the extended reaction inside the air cavity behind the
LPM.
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5 ADER-DG with local time-stepping

The chapter is based on Paper IV, which presents an efficient numerical
scheme of arbitrary order of accuracy in both space and time based on the
arbitrary high-order derivatives (ADER) methodology, and a novel local
time-stepping (LTS) strategy for transient acoustic simulations, includ-
ing room acoustic modeling. In this chapter, we explore the challenges
associated with time integration schemes that are combined with the DG
method, with the aim of boosting simulation efficiency. This chapter be-
gins with a short review of publications produced in this context. Then,
a summary of the main contributions of Paper IV is presented.

5.1 Context
As mentioned in Sec. 2.1, following the method of lines, the semi-discrete
formulation obtained from the spatial discretization of the DG method
can be integrated in time with computationally efficient ODE solvers.
Explicit low-storage Runge-Kutta methods [269, 270, 271, 200], which
involve only a linear combination of the evaluations of the semi-discrete
formulation, were used in Paper I, Paper II and Paper III, because
they are easy to implement, and each unknown solution only needs one
extra memory unit to store its intermediate stage values. Furthermore,
their accuracy and stability properties [189, 272, 81, 273] have been well
understood from the scientific computing community. However, the in-
efficiency issue due to a restrictive maximum allowable time step ac-
companying explicit time integration schemes, which is imposed by the
well-known Courant-Friedrichs-Lewy (CFL) conditional stability condi-
tion, makes industrial applications of the wave-based solver infeasible
for long-time simulations. In the context of room acoustic modeling, the
uniformly defined time step might be mainly constrained by two factors.
One is the geometric constraint resulting from some elements in the mesh
that are considerably smaller than the rest. The other is the so-called
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parametric constraint. For example, the wave speed inside the coupling
medium (e.g. vibrating plate) might be larger than the speed of sound.
Besides, as mentioned in Sec. 3.2, the pole values of the multi-pole model
are another potential parametric constraint.

The existing methods devoted to addressing the issue of restrictive
time step sizes can be generally classified into three kinds: implicit-
explicit schemes [274, 275, 276], exponential-based time integrators [277,
278] and explicit LTS methods. LTS methods, also called multiple or
multi-rate time-stepping, are preferred in practice due to their high com-
patibility with modern parallel computing techniques. The essential idea
is to advance elements locally in time with their maximum allowable time
steps. Various LTS methods have been developed in the scientific com-
puting community targeting either general ODEs containing coupling
components of various time scales [279, 280, 281] or specific spatially dis-
cretized governing equations of physical systems, e.g., the shallow-water
equations [203, 204], the linearized Euler equations [202], the second-
order wave equation [282, 283, 284, 285, 286], the Maxwell equations
[287, 288, 289, 290, 193], the linear elastic wave equations [291, 194, 292]
and the non-linear conservation laws [293].

Among the above mentioned methods, the modal form of the ADER-
DG method [291, 194] has exhibited strong potential for accelerating
the solutions of linear first-order wave equations containing geometric or
parametric constraints. However, it has the drawback that the high-order
spatial derivatives of the polynomial basis are rather tedious to derive
and to implement. The purpose of this study is to develop the nodal
formulation of the ADER-DG method with LTS capability, in order to
enhance the simulation efficiency of the wave-based solver for realistic
problems containing geometric or parametric constraints without losing
high-order accuracy.

5.2 Overview of Paper IV
Paper IV first present a nodal form of the ADER-DG approach with
an arbitrary order of accuracy in time and space. Following the same
methodology used in paper P1, the governing acoustic equations are first
spatially discretized with the nodal DG method by projection onto the
space-dependent polynomial basis functions, and the semi-discrete for-
mulation in terms of time-dependent expansion coefficients are obtained.
Then, these coefficients are integrated in time by the Taylor series inte-
grator. The needed time derivatives are replaced with the numerically
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approximated spatial derivatives by recursively using the semi-discrete
formulation. The whole procedure can be seen as a discrete version of
the conventional Cauchy-Kovalewski procedure [294] or the Lax–Wen-
droff scheme [295].

Secondly, this paper presents a novel LTS algorithm accompanying
the ADER-DG scheme to overcome the inefficiency issue occurring in
stiff systems. Without involving any overlapping subdomains or extrap-
olation of neighboring spatial points across the interface, the proposed
coupling procedure between domains with different time steps maintains
the same high-order accuracy as that of the usual global time-stepping
scheme, and is valid for arbitrary ratios of time steps. The CFL stability
condition is investigated numerically, with the aim of providing guidance
on the choice of time step sizes in practical simulations. Numerical tests
demonstrate that the LTS scheme maintains the same order of accuracy
as that of the global time-stepping scheme, and the stability is ensured
locally without a huge compromise on the time steps. An application to
the sound propagation across a transmissive noise barrier exhibits the
computational benefits of the proposed LTS strategy.
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6 Application study: wave-based simulations of an
open plan office

This chapter is concerned with a preliminary application study of a real
open plan office, as presented in the appended conference proceeding
Paper V. The purpose of this work is to assess the accuracy and appli-
cability of the developed wave-based time-domain DG method for realis-
tic sound field analysis in the low-frequency range (up to 500 Hz octave
band). The reference data to be compared against are measurement re-
sults, which were previously published in a study on how room acoustic
parameters are affected by varying configurations of furniture and sound
absorbing barriers [296]. In this chapter, the measurement setups are
recapitulated first. Then, additional results on top of the content of
Paper V are presented to give more details about the following topics:
boundary characterization and mesh generation. Lastly, the comparison
findings are summarized.

6.1 Reference measurements
As shown in Fig. 6.1, the open plan office under study has a long and
narrow floor plan with windows along the walls. Small closed rooms
indicated by the blue areas are present to subdivide the long space.
The office has a volume of 962 m3. The 2.9 m tall sound absorbing
suspended ceiling is made of 20 mm thick Rockfon panels with an air
cavity of at least 200 mm. The floor is covered with a carpet. During
the measurements, the room was completely empty except for the 5
workstation islands. Within each group of 4 workstations, two variations
of the setup are considered:

• V1: only tables in the room,

• V2: tables with dividing panels and side panels.
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Figure 6.1: Picture of the measured open plan office and its floor plan in top view.

Dividing and side panels, which are made of 25 mm chipboard, stand
on the floor and have a height of 1.5 m. To increase sound absorption,
30 mm thick melamine foam is applied to both sides of the upper 1.3 m
part of the table dividing panels that are along the y-direction.

The source location and the 9 receiver locations are denoted by the
red and yellow circles respectively, with the exact position of the source
and of one receiver (R9) provided. The table depth for each sitting posi-
tion is 0.8 m and the source and microphones are positioned 0.3 m away
from the tables. More geometrical details can be found in Ref. [296].
The measurements have been performed following ISO 3382-3 [14]. An
omnidirectional sound source (B&K 4292) and omnidirectional micro-
phones were connected to a laptop with measurement software Dirac 6
(B&K 7841) via a triton USB device (AE) and an amplifier (B&K 2734).

6.2 Boundary characterization

Acoustic properties of the room surface materials in the considered of-
fice, which are represented with Sabine absorption coefficients, were mea-
sured in a reverberation chamber according to ISO 354, which specifies a
method of measuring the sound absorption coefficient of acoustical mate-
rials used as wall or ceiling treatments, or the equivalent sound absorption
area of objects, such as furniture, persons or space absorbers, in a rever-
beration room [297]. The Sabine absorption coefficient measured by the
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reverberation chamber method is defined as follows:

αSab =
55.3V

Sc0

( 1

T2

− 1

T1

)
, (6.1)

where V is the volume of the reverberation chamber, S is the area of the
material sample, T1 is the reverberation time for an empty condition,
and T2 is the reverberation time with the test sample.

However, it is debatable to directly use the Sabine absorption coeffi-
cients measured in a specific chamber as boundary conditions in room
acoustic simulations for the following reasons. First of all, any rever-
beration chamber is non-diffuse in different ways, resulting in a poor
reproducibility of the Sabine absorption coefficients from laboratory to
laboratory [298, 299]. Moreover, test samples have finite sizes, which
incurs a size effect due to the diffraction from edges of the test sam-
ples. As a consequence, overestimated measured absorption coefficients,
which in some cases exceed unity, are observed. Other reasons include
the finite volume of a reverberation chamber, the locations of the sam-
ple/source/microphones and the mounting methods [300].

In practice, the measured Sabine absorption coefficients should not
be confused with the theoretical random incidence absorption coefficient,
which is calculated using Paris’ law [301]:

αrand =

∫ π/2

0

αinf (θ) sin(2θ)dθ, (6.2)

where αinf (θ) is the oblique incidence absorption coefficient for plane
waves at an incidence angle θ on an infinitely large surface. It is defined
as

αinf (θ) =
4Re(Zs(θ)) cos(θ)

(Zs(θ) cos θ)2 + 2Re(Zs(θ)) cos θ + 1
, (6.3)

with Zs being the normalized surface impedance. The theoretical random
incidence absorption coefficient is defined based on the assumption of a
perfectly diffuse field, where the intensity of the incident sound is uni-
formly distributed over all possible directions and the phases of incident
waves are randomly distributed. It has been found that using the the-
oretical random incidence absorption coefficient as boundary conditions
for a phased beam tracing model achieves reasonably accurate results
[302].

Large discrepancies between the measured Sabine absorption coeffi-
cients αSab and the theoretical random incidence absorption coefficients
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αrand have already been reported in the literature. Corrections to the
measured Sabine absorption coefficients are needed in order to provide
reliable input data for room acoustic simulations. Thomasson [303] orig-
inally suggested corrections of measured absorption coefficients under
the locally reacting assumption, with respect to the two main factors,
i.e., the non-uniform sound intensity distributions in terms of incidence
angles and the size effect associated with the radiation impedance of a
finite-sized absorber. To obtain correction (angular weighting) functions
concerning the first factor, Jeong [304, 305] investigated sound intensity
distributions on an absorber under measurement conditions using phased
beam tracing simulations. It was found that the frequency-dependent
sound intensity distributions on absorbers depend on the geometry and
dimensions of reverberation chambers, the absorption capability of the
test sample, and the placement of the test sample. Furthermore, at high
frequencies above 1 kHz for all studied cases, intensity distributions ex-
hibit similar patterns of downturn with respect to increasing incidence
angles, and better agreements between measured and corrected absorp-
tion coefficients are observed when the angular weighting is incorporated.
By contrast, at low frequencies, intensity distributions are rather uniform
across the range of incidence angle.

Subsequent study [300] on converting αSab to αrand based on Miki’s
model has emphasized the fact that the size correction should be taken
into account for frequencies below 1 kHz [303], while the non-uniform
intensity distributions are of primary importance at frequencies higher
than 1 kHz. Therefore, given the low frequency range of interest in the
current work, only the size correction is considered and the size corrected
absorption coefficient is calculated as

αsize(θ) = 8

∫ π/2

0

Re(Zs(θ)) sin θ

|Zs(θ) + Z̄r(θ)|2
dθ. (6.4)

Z̄r is the averaged radiation impedance over azimuthal angles ϕ expressed
as Z̄r =

∫ 2π

0
Zrdϕ/2π. For the case of an infinitely large plate, the

radiation impedance is known to be a constant equal to 1/ cos(θ), and
the size corrected absorption coefficient Eq. (6.4) becomes equivalent to
the oblique incidence absorption coefficient as in Eq. (6.3). The averaged
radiation impedance of a finite absorber can be calculated with numerical
integrations in an accurate way, based on tabulated values provided in
Ref. [306, 300].

The assumptions and details of the parameter fitting needed for the
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Figure 6.2: Measured and estimated absorption coefficients.

TDIBC are presented in Sec. 3.3 of Paper V. It should be noted that the
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6 Application study: wave-based simulations of an open plan office
strategies on converting absorption coefficients into surface impedances
as proposed in Refs. [307] are considered but not followed exactly. In
this work, the pressure reflection coefficient at normal incidence in the
multi-pole form, which uniquely defines the surface impedance as in Eq.
(6.4), is used directly in the optimization procedure of the parameter
fitting, whereas Ref. [307] considers the surface impedance expressed in
terms of fractional integrals and derivative. In addition to the measured
Sabine absorption coefficients, Fig. 6.2 displays both the theoretical ran-
dom incidence absorption coefficients and the size-corrected absorption
coefficients that are based on the multi-pole approximation of the reflec-
tion coefficients; the size-corrected ones are used as input for the DG
simulations.

Sound absorption measurement is an on-going research topic. Besides
the reverberation chamber method, there are other options such as the
impedance tube method [308, 309] and the in situ acoustic impedance
measurement technique [310, 311, 312]. However, large discrepancies of
measured absorption properties are observed with different measurement
techniques [162]. Such uncertainties pertaining to the input parameters
can have an influential impact on the correctness of room acoustic sim-
ulations [313, 160].

6.3 Mesh generation
One key step in a simulation with the time-domain DG method is the
generation of an unstructured mesh. In this work, the tetrahedral meshes
generated by the widely used open access meshing software Gmsh [314]
is considered. Although Gmsh proposes several automatic meshing algo-
rithms for 3D applications, the 3D Delaunay algorithm is the only one
that supports generating conformal meshes with 2D infinitely thin sur-
faces embedded in a 3D volume. Therefore, it is used in this study in
order to mesh these “floating” surfaces such as the tables and panels.

It is well known that the element size and the mesh quality have a
pivotal influence on the maximum allowable time step size and the sim-
ulation accuracy. In Gmsh, mesh element sizes are usually prescribed by
adjusting the so-called characteristic lengths (denoted as Lc), which are
more or less equal to the length of the element edges. There are varieties
of measures proposed to characterize the size of an unstructured mesh
to fulfill the CFL stability condition. Here, for tetrahedral elements, a
typical size measure, which is the radius of the largest inscribed sphere
rin within each element, is used. As for the mesh quality (denoted as
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rq), various measures that characterize distortion of mesh elements have
been tested in Ref. [315]. Based on the comparison, the triple of the
ratio between rin and the radius of the smallest circumscribed sphere
rcir, i.e. rq = 3rin/rcir, is chosen as the mesh quality measure. As a
reference, a regular tetrahedron has rq = 1 (optimal mesh quality), and
a degenerate tetrahedron (zero volume) has rq = 0.

Figure 6.3: Interior view of the mesh around the height of the desks. Coarse and fine
elements have cyan and purple face color respectively.

To gain insights into the effects of the characteristic length Lc on
the mesh quality and the element sizes, meshes with five different
Lc = [0.3, 0.35, 0.4, 0.45, 0.5] m values are generated for the two furni-
ture setups. The distributions of the mesh quality measure rq and the
element size measure rin are shown in Figure 6.4 and 6.5 for the V1 and
V2 setups, respectively. K# denotes the total number of tetrahedral el-
ements. It can be seen that decreasing the characteristic lengths of the
mesh elements (increasing the number of elements) does not necessar-
ily yield larger values of rq (better mesh quality). For both setups, the
meshes with Lc = 0.45 m, which have an optimal balance between K#
and rin, are adopted in the simulations.

To accelerate the simulations, all elements are divided into two groups.
All elements with rin ≤ 3min(rin) are marked as fine elements, and the
rest are considered as coarse elements, as shown in Fig. 6.3. The local
time-stepping scheme presented in Paper IV is used to integrate the fine
and coarse elements in time with their corresponding time step sizes.

6.4 Summary of findings
This study first compares four room acoustic parameters in three octave
bands defined in ISO 3382-1 [12], including reverberation time (T30),
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early decay time (EDT ), clarity (C50) and center of gravity (TS). Then,
the spatial decay rate of speech D2,S (level reduction when doubling the
distance) and A-weighted sound pressure level of speech at a distance of
4m from the sound source (Lp,A,S,4m) as described in ISO 3382-3 [14] are
investigated. It is found there are discrepancies between the simulation
and measurement results for all considered parameters. The mismatch
could result from three aspects, namely, the inherent uncertainties in the
real measurements, imprecise input of acoustic boundary properties and
the incapability of modeling extended reaction of boundaries.
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(a) Lc=0.3, K#=161889 (b) Lc=0.35, K#=109438

(c) Lc=0.4, K#=71730 (d) Lc=0.45, K#=50379

(e) Lc=0.5, K#=37175

Figure 6.4: Distribution of the mesh quality measure rq and the mesh size measure rin for
the V1 setup. The color indicates the number of elements in each bin.
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(a) Lc=0.3, K#=171215 (b) Lc=0.35, K#=123575

(c) Lc=0.4, K#=86050 (d) Lc=0.45, K#=57489

(e) Lc=0.5, K#=43480

Figure 6.5: Distribution of the mesh quality measure rq and the mesh size measure rin for
the V2 setup. The color indicates the number of elements in each bin.
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7 Conclusions and prospects

7.1 Concluding remarks
The past decades have witnessed fruitful advancements in room acoustic
modeling techniques and ever expanding applications. This PhD project
aims to further contribute to the room acoustic simulation community by
developing an efficient, robust and accurate wave-based modeling tech-
nique. In Chapter 1, state-of-the-art room acoustic modeling techniques
are reviewed, pros and cons of each numerical methodology are discussed.
As a well-established numerical approximation technique, the discontin-
uous Galerkin method combines favorable properties of high-order accu-
racy, geometric flexibility, and potential for massive parallel computing.
It is the goal of this work to develop and validate the necessary for-
mulations of the time-domain discontinuous Galerkin method for room
acoustic modeling purposes.

Chapter 2 (Paper I) addresses the positioning of time-domain DG
method as a wave-based for room acoustic modeling purposes. Nu-
merical verifications demonstrate its appealing properties such as high-
order accuracy, long-time simulation stability and capability of handling
complex-shaped rooms.

Chapter 3 (Paper II) and Chapter 4 (Paper III) present the time-
domain boundary formulations that simulate the local reaction of sound
reflection and sound transmission, respectively. Albeit fundamentally
imprecise, locally reacting assumptions have prevailed in the room acous-
tic modeling community due to their simplicity and ease of implemen-
tation. For boundary materials that do not exhibit significant discrep-
ancies between extended and local reactions, the proposed time-domain
boundary condition formulations are efficient and general.

Chapter 5 (Paper IV) focuses on improving simulation efficiency for
realistic problems that contain geometric and parametric constraints,
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which can compromise stability in the case of explicit time integration.
It has been demonstrated that the proposed local time-stepping approach
maintains the original high-order precision of the scheme.

Finally, Chapter 6 (Paper V) applies the developed time-domain DG
method to the room acoustic modeling of a real open office. Measure-
ment results serve as the reference solution. In order to further reduce
the computational cost, only the low-to-middle frequency range (125 Hz
to 500 Hz octave bands) is considered. The available information on
the acoustic properties of the materials in the room are in the form of
Sabine absorption coefficients measured in full octave bands. Therefore,
the required impedance values for the boundary modeling are retrieved
by solving a constrained optimization problem. During this process, the
acoustic properties of the materials are respected. However, partly due
to the lack of high-resolution and to the inacurracy of the sound ab-
sorption characterization, large discrepancies in terms of the considered
room acoustic parameters between the simulation and measurement re-
sults are observed. The lack of extended reaction in the simulations also
contributes to the deviation with the measurements

7.2 Future work
The work presented in this thesis highlights the strong potential of the
time-domain DG method for room acoustic modeling applications. How-
ever, there are still some challenging issues to be tackled and interesting
topics worth investigating in the future, which include:

• Further developments of time-domain boundary conditions for sim-
ulating extendedly-reacting behavior are needed to further extend
the applicability of the time-domain DG method to more practical
problems. A general formulation may be difficult to achieve, but
ad hoc formulations for certain realistic examples, such as porous
sound absorbers backed by an air cavity and permeable vibrating
thin panels, could yield more accurate results.

• A quantitative accuracy analysis of the time-domain DG method
for the determination of room acoustics parameters, such the rever-
beration time and clarity, is still missing. As is common with time-
domain methods, both dissipation and dispersion errors increase
gradually with the simulation duration. Therefore, a rigorous error
analysis is needed, in order to provide a more detailed guideline on
the efficient combination of meshing resolution, polynomial order
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and time step sizes, that guarantees room acoustics parameters in
accordance with the just noticeable differences.

• The sound sources in this work are omni-directional. To be able
to simulate more realistic sound sources, sound source directivity
[316, 86, 317] can be incorporated into the current time-domain DG
framework.

• Only specular reflection is considered in the current model, which
works well for the low frequency range. However, as the simulation
moves towards higher frequency ranges, surface roughness and air
absorption comes into play. It is necessary to develop a computa-
tionally efficient model that takes those effects into account.

• Advancements in terms of computational performance are needed at
the implementation level. It would be beneficial to incorporate the
present developments into an existing open source toolkit [176, 318,
319] that involves outstanding parallelization executed on Graphics
Processing Units.

• Further comparisons with regards to measurements with increasing
levels of complexity should be performed in order to appraise the ef-
fects of input data, particularly boundary properties, on the overall
accuracy.
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To solve the linear acoustic equations for room acoustic purposes, the performance of the time-

domain nodal discontinuous Galerkin (DG) method is evaluated. A nodal DG method is used for

the evaluation of the spatial derivatives, and for the time-integration an explicit multi-stage Runge-

Kutta method is adopted. The scheme supports a high order approximation on unstructured meshes.

To model frequency-independent real-valued impedance boundary conditions, a formulation based

on the plane wave reflection coefficient is proposed. Semi-discrete stability of the scheme is ana-

lyzed using the energy method. The performance of the DG method is evaluated for four three-

dimensional configurations. The first two cases concern sound propagations in free field and over a

flat impedance ground surface. Results show that the solution converges with increasing DG poly-

nomial order and the accuracy of the impedance boundary condition is independent on the inci-

dence angle. The third configuration is a cuboid room with rigid boundaries, for which an

analytical solution serves as the reference solution. Finally, DG results for a real room scenario are

compared with experimental results. For both room scenarios, results show good agreements.
VC 2019 Acoustical Society of America. https://doi.org/10.1121/1.5096154

[LS] Pages: 2650–2663

I. INTRODUCTION

Computer simulation of the sound field in indoor envi-

ronments has been investigated back in time since the publi-

cation of Manfred Robert Schroeder.1 After all these years,

prediction methods for room acoustic applications are still

under development trying to improve efficiency of the calcu-

lations and accuracy and realism of the results, hand in hand

with the advances in computer power. In acoustics, the com-

putational techniques are mainly separated between wave-

based, geometrical and diffuse field methods. Each of these

methodologies has been amply presented in literature.

Concepts, implementations and applications of room simula-

tion methods are reviewed by Vorl€ander,2 Savioja et al.,3

and Hamilton4 for geometrical and wave-based methods,

while diffuse field methods are described for instance by

Valeau5 or Navarro et al.6

In contrast with the high-frequency simplifications

assumed in the geometrical and diffuse field methods, wave-

based methodologies solve the governing physical equations,

implicitly including all wave effects such as diffraction and

interference. Among these methods, time-domain approaches

to model wave problems have attracted significant attention in

the last few decades, since they are favoured for auralization

purposes over frequency-domain methods. The main wave-

based time-domain numerical techniques employed in room

acoustics problems are the finite-differences time-domain

method (FDTD),7–10 finite-element (FEM)11 and finite-

volume (FVM) methods,12 and Fourier spectral methods such

as the adaptive rectangular decomposition method (ARD)13

and the pseudospectral time-domain method (PSTD).14–16

In the last few years, the discontinuous Galerkin time-

domain method (DG)17 is another approach gaining impor-

tance, mainly in the aero-acoustic community.18,19 DG

discretizes the spatial domain into non-overlapping mesh

elements, in which the governing equations are solved ele-

mentwise, and uses the so-called numerical flux at adjacent

elements interfaces to communicate the information between

them. DG combines the favourable properties of existing

wave-based time domain methods for room acoustics as it

preserves high order accuracy, allows for local refinement

by a variable polynomial order and element size, and there-

fore can deal with complex geometries. Also, because equa-

tions are solved elementwise, it allows for easy

parallelization and massive calculation acceleration opportu-

nities,20 like other methods such as FDTD and FVM. DG

can be seen as an extension to FV by using a polynomial

basis for evaluating the spatial derivatives, leading to a

higher order method. Also, DG can be seen as an extended

FEM version by decoupling the elements without imposing

continuity of the variables, thereby creating local matrices.

Therefore, DG is a very suitable numerical method for

acoustic propagation problems including, definitely, room

acoustics. However, some developments towards room

acoustic applications are still missing: although results for

impedance boundary conditions with the DG method have

been presented,21 a proper formulation of these boundary

conditions in the framework of DG have not been published.

In contrast, frequency-dependent impedance conditions have

been extensively developed in other methodologies (FDTD,

FVTD).12 In the present work, a frequency-independenta)Electronic mail: h.wang6@tue.nl
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real-valued impedance boundary formulation, based on the

plane wave reflection coefficient is proposed, following the

idea first presented by Fung and Ju.22

To the authors’ best knowledge, no reference is found in

the scientific literature about the application of DG to the

room acoustics problems. The aim of this work is to address

the positioning of DG as a wave-based method for room

acoustics. The accuracy of the method for these type of

applications is quantified and the developments needed to

arrive at a fully fledged DG method for room acoustics are

summarized as future work.

The paper is organized as follows. In Sec. II, the govern-

ing acoustic equations are introduced as well as the solution

by the time-domain DG method. The formulations of imped-

ance boundary conditions and its semi-discrete stability anal-

ysis are presented in Sec. III, and are in this work restricted

to locally reacting frequency independent conditions.

Section IV quantifies and discusses the accuracy of the

implemented DG method for sound propagation in several

scenarios: (1) free field propagation in a periodic domain;

(2) a single reflective plane; (3) a cuboid room with acousti-

cally rigid boundaries; (4) a real room. Finally, conclusions

and outlook can be found in Sec. V.

II. LINEAR ACOUSTIC EQUATIONS AND NODAL DG
TIME-DOMAIN METHOD

A. Linear acoustic equations

Acoustic wave propagation is governed by the linear-

ized Euler equations (LEE), which are derived from the gen-

eral conservation laws.23 For room acoustics applications,

we further assume that sound propagates in air that is

completely at rest and constant in temperature. Under these

assumptions, the LEE in primitive variables are simplified to

the following homogeneous coupled system of linear acous-

tic equations:

@v

@t
þ 1

q0

rp ¼ 0;

@p

@t
þ q0c2

0r � v ¼ 0; (1)

where v ¼ ½u; v;w�T is the particle velocity vector, p is the

sound pressure, q0 is the constant density of air, and c0 is the

constant adiabatic sound speed. The linear acoustic equa-

tions can be combined into one equation, the wave equation.

Equation (1), completed with initial values or a force fomu-

lation on the right side, as well as a formulation of boundary

conditions at all room boundaries, complete the problem def-

inition. In this study, the linear acoustic equations are solved

instead of the wave equation because it is beneficial for

implementing impedance boundary conditions.

B. Spatial discretization with the nodal DG method

To numerically solve Eq. (1), the nodal discontinuous

Galerkin method is used to discretize the spatial derivative

operators. First of all, Eq. (1) is rewritten into the following

linear hyperbolic system:

@q

@t
þr � FðqÞ ¼ @q

@t
þ Aj

@q

@xj
¼ 0; (2)

where qðx; tÞ ¼ ½u; v;w; p�T is the acoustic variable vector

and x ¼ ½x; y; z� is the spatial coordinate vector with index j
2 [x, y, z]. The flux is given as

F ¼ f x; f y; f z

� � ¼ Axq;Ayq;Azq½ �; (3)

where the constant flux Jacobian matrix Aj

Aj ¼

0 0 0
dxj

q0

0 0 0
dyj

q0

0 0 0
dzj

q0

q0c2
0dxj q0c2

0dyj q0c2
0dzj 0

2
66666666664

3
77777777775
; (4)

and dij denotes the Kronecker delta function.

Similar to the finite element method, the physical

domain X is approximated by a computational domain Xh,

which is further divided into a set of K non-overlapping ele-

ments Dk, i.e., Xh ¼ [K
k¼1Dk. In this work, the quadrature-

free approach24 is adopted and the nodal discontinuous

Galerkin algorithm as presented in Ref. 25 is followed. The

global solution is approximated by a direct sum of local

piecewise polynomial solutions as

qðx; tÞ � qhðx; tÞ ¼ �
K

k¼1
qk

hðx; tÞ: (5)

The local solution qk
hðx; tÞ in element Dk is expressed by

qk
hðx; tÞ ¼

XNp

i¼1

qk
hðxk

i ; tÞlk
i ðxÞ; (6)

where qk
hðxk

i ; tÞ are the unknown nodal values in element Dk

and lki ðxk
i Þ is the multi-dimensional Lagrange polynomial

basis of order N based on the nodes x 2 Dk, which satisfies

lk
i ðxk

j Þ ¼ dij. The number of local basis functions (or nodes)

Np is determined by both the dimensionality of the problem d
and the order of the polynomial basis N, which can be com-

puted as Np ¼ ðN þ dÞ!=N!d!. In this work, the a-optimized

nodes distribution26 for tetrahedron elements are used over a

wide range of polynomial order N. The locally defined basis

functions constitute a function space as Vk
h ¼ spanflk

i ðxÞg
Np

i¼1.

Then, the Galerkin projection is followed by choosing test

functions equal to the basis functions. The solution is found

by imposing an orthogonality condition: the local residual is

orthogonal to all the test functions in Vk
h ,

ð
Dk

@qk
h

@t
þr � Fk

h qk
h

� �� �
lk
i dx ¼ 0: (7)

Integration by parts and applying the divergence theorem

results in the local weak formulation,
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ð
Dk

@qk
h

@t
lk
i �Fk

h qk
h

� �
� rlk

i

� �
dx ¼ �

ð
@Dk

n � F�lk
i dx; (8)

where n ¼ ½nx; ny; nz� is the outward normal vector of the ele-

ment surface @Dk and F�ðq�h ; qþh Þ is the so-called numerical

flux from element Dk to its neighboring elements through their

intersection @Dk. In contrast to the classical continuous

Galerkin method, the discontinuous Galerkin method uses

local basis functions and test functions that are smooth within

each element and discontinuous across the element intersec-

tions. As a result, the solutions are multiply defined on the

intersections @Dk, where the numerical flux F�ðq�h ; qþh Þ
should be defined properly as a function of both the interior

and exterior (or neighboring) solution. In the remainder, the

solution value from the interior side of the intersection is

denoted by a superscript “�” and the exterior value by “þ.”

Applying integration by parts once again to the spatial deriva-

tive term in Eq. (8) yields the strong formulation

ð
Dk

@qk
h

@t
þr � Fk

h qk
h

� �� �
lk
i dx

¼
ð
@Dk

n � Fk
h qk

h

� �
� F�

� �
lk
i dx: (9)

In this study, the flux-splitting approach27 is followed and the

upwind numerical flux is derived as follows. Let us first con-

sider the case where the element Dk lies in the interior of the

computational domain. As is shown in Eq. (9), the formula-

tion of a flux along the surface normal direction n, i.e.,

n � F ¼ ðnxf x þ nyf y þ nzf zÞ is of interest. To derive the

upwind flux, we utilize the hyperbolic property of the system

and decompose the normal flux on the interface @Dk into out-

going and incoming waves. Mathematically, an eigendecom-

position applied to the normally projected flux Jacobian yields

An ¼ nxAx þ nyAy þ nzAzð Þ

¼

0 0 0
nx

q0

0 0 0
ny

q0

0 0 0
nz

q0

q0c2
0nx q0c2

0ny q0c2
0nz 0

2
6666666664

3
7777777775

¼ LKL�1; (10)

where

L ¼

�nz ny nx=2 �nx=2

nz �nx ny=2 �ny=2

�ny nx nz=2 �nz=2

0 0 q0c0=2 q0c0=2

2
66664

3
77775;

K ¼

0 0 0 0

0 0 0 0

0 0 c0 0

0 0 0 �c0

2
66664

3
77775: (11)

The upwind numerical flux is defined by considering the

direction of the characteristic speed, i.e.,

ðn � FÞ� ¼ LðKþL�1q�h þ K�L�1qþh Þ; (12)

where Kþ and K� contain the positive and negative entries

of K, respectively. Physically, Kþ (K�) corresponds to the

characteristic waves propagating along (opposite to) the nor-

mal direction n, which are referred to as outgoing waves out

of Dk (incoming waves into Dk). Therefore, the outgoing

waves are associated with the interior solution q�h whereas

the incoming waves are dependent on the exterior (neighbor-

ing) solution qþh . The expression of the numerical flux on the

impedance boundary will be discussed in Sec. III. Finally,

the semi-discrete formulation is obtained by substituting the

nodal basis expansion Eq. (6) and the upwind flux Eq. (12)

into the strong formulation Eq. (9), which can be further

recast into the following matrix form:

Mk @uk
h

@t
þ 1

q
Sk

xpk
h ¼

Xf

r¼1

MkrF̂
kr

u ; (13a)

Mk @v
k
h

@t
þ 1

q
Sk

ypk
h ¼

Xf

r¼1

MkrF̂
kr

v ; (13b)

Mk @wk
h

@t
þ 1

q
Sk

z pk
h ¼

Xf

r¼1

MkrF̂
kr

w ; (13c)

Mk @pk
h

@t
þ qc2Sk

xuk
h þ qc2Sk

yv
k
h þ qc2Sk

z wk
h ¼

Xf

r¼1

MkrF̂
kr

p ;

(13d)

where the second superscript r denotes the rth faces @Dkr of

the element Dk and f is the total number of faces of the ele-

ment Dk, which is equal to 4 for tetrahedra elements. For

brevity, the subscript 0 in q0 and c0 are omitted from here.

uk
h; v

k
h; wk

h; and pk
h are vectors representing all the unknown

nodal values uk
hðxk

i ; tÞ; vk
hðxk

i ; tÞ; and pk
hðxk

i ; tÞ respectively,

e.g., uk
h ¼ ½uk

hðxk
1; tÞ; uk

hðxk
2; tÞ;…; uk

hðxk
Np
; tÞ�T . F̂

kr

u ; F̂
kr

v ; F̂
kr

w ;

and F̂
kr

p are flux terms associated with the integrand

n � ðFk
hðqk

hÞ � F�Þ over the element surface @Dkr in the strong

formulation Eq. (9). The element mass matrix Mk, the ele-

ment stiffness matrices Sk
j and the element face matrices Mkr

are defined as

Mk
mn ¼

ð
Dk

lk
mðxÞlknðxÞdx 2 RNp�Np ; (14a)

Sk
j

� 	
mn
¼
ð

Dk

lk
m xð Þ @lkn xð Þ

@xj
dx 2 RNp�Np ; (14b)

Mkr
mn ¼

ð
@Dkr

lkr
m ðxÞlkr

n ðxÞdx 2 RNp�Nf p ; (14c)

where j is the jth Cartesian coordinates and Nfp is the number

of nodes along one element face. When the upwind flux is

used, the flux terms for each acoustic variable read as
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F̂
kr

u ¼ �
cnkr2

x

2
½ukr

h � �
cnkr

x nkr
y

2
½vkr

h � �
cnkr

x nkr
z

2
½wkr

h �

þ nkr
x

2q
½pkr

h �; (15a)

F̂
kr

v ¼ �
cnkr2

y

2
½vkr

h � �
cnkr

x nkr
y

2
½ukr

h � �
cnkr

y nkr
z

2
½wkr

h �

þ
nkr

y

2q
½pkr

h �; (15b)

F̂
kr

w ¼ �
cnkr2

z

2
½wkr

h � �
cnkr

x nkr
z

2
½ukr

h � �
cnkr

y nkr
z

2
½vkr

h �

þ nkr
z

2q
½pkr

h �; (15c)

F̂
kr

p ¼
c2qnkr

x

2
½ukr

h � þ
c2qnkr

y

2
½vkr

h � þ
c2qnkr

z

2
½wkr

h � �
c

2
½pkr

h �;

(15d)

where ½ukr
h � :¼ ukr

h �uls; ½vkr
h � :¼ vkr

h �vls
h ; ½wkr

h � :¼wkr
h �wls

h ;

and ½pkr
h � :¼ pkr

h � pls
h are the jump differences across the

shared intersection face @Dkr or, equivalently, @Dls, between

neighboring elements Dk and Dl, ukr
h ; etc:, are the nodal

value vectors, over the element surface @Dkr.

In this work, flat-faced tetrahedra elements are used so

that each tetrahedron can be mapped into a reference tetrahe-

dron by a linear transformation with a constant Jacobian

matrix. As a consequence, the integrals in the above element

matrices, i.e., Mk; Sk
j ; and Mkr, need to be evaluated only

once. The reader is referred to Ref. 25 for more details on

how to compute the matrices locally and efficiently.

1. Numerical dissipation and dispersion properties

For a discontinuous Galerkin scheme that uses polyno-

mial basis up to order N, it is well known that generally the

rate of convergence in terms of the global L2 error is hNþ 1/2

(h being the element size).28 The dominant error comes from

the representations of the initial conditions, while the addi-

tional dispersive and dissipative errors from the wave propa-

gations are relatively small and only visible after a very long

time integration.25 The one-dimensional eigenvalue problem

for the spatially propagating waves is studied in Ref. 29

and it is reported that the dispersion relation is accurate to

(jh)2Nþ2 locally, where j is the wavenumber. Actually,

when the upwind flux is used, the dissipation error has been

proved to be of order (jh)2Nþ2 while the dispersion error is

of order (jh)2Nþ3.30 When the centered numerical flux is

used, the dissipation rate is exactly zero, but the discrete dis-

persion relation can only approximate the exact one for a

smaller range of the wavenumber.31 Extensions to the two-

dimensional hyperbolic system on triangle and quadrilateral

mesh are studied in Ref. 32 and the same numerical disper-

sion relation as the one-dimensional case are reported. In

Ref. 30, a rigorous mathematical proof of the above numeri-

cal dispersion relation and error behavior is provided for a

general multi-dimensional setting (including 3D).

C. Time integration with the optimal Runge-Kutta
method

After the spatial discretization by the nodal DG method,

the semi-discrete system can be expressed in a general form

of ordinary differential equations (ODE) as

dqh

dt
¼ LðqhðtÞ; tÞ; (16)

where qh is the vector of all discrete nodal solutions and L
the spatial discretization operator of DG. Here, a low-storage

explicit Runge-Kutta method is used to integrate Eq. (16),

which reads

q
ð0Þ
h ¼qn

h;

kðiÞ ¼aik
ði�1ÞþDtLðtnþciDt;q

ði�1Þ
h Þ;

q
ðiÞ
h ¼q

ði�1Þ
h þbik

ðiÞ;
for i¼1;…;s;

8<
:
qnþ1

h ¼q
ðsÞ
h ; (17)

where Dt¼ tnþ 1 � tn is the time step, qnþ1
h and qn

h are the

solution vectors at time tnþ1 and tn, respectively, s is

the number of stages of a particular scheme. In this work,

the coefficients ai, bi, and ci are chosen from the optimal

Runge-Kutta scheme reported in Ref. 33.

III. IMPEDANCE BOUNDARY CONDITIONS AND
NUMERICAL STABILITY

A. Numerical flux for frequency-independent
impedance boundary conditions

The numerical flux F� plays a key role in the DG

scheme. Apart from linking neighboring interior elements, it

serves to impose the boundary conditions and to guarantee

stability of the formulation. Boundary conditions can be

enforced weakly through the numerical flux either by refor-

mulating the flux subject to specific boundary conditions or

by providing the exterior solution qþh .34 In both cases, the

solutions from the interior side of the element face (equiva-

lent to boundary surface) q�h are readily used, whereas, for

the second case, the exterior solutions qþh need to be suitably

defined as a function of interior solution q�h based on the

imposed conditions. In the following, the impedance bound-

ary condition is prescribed by reformulating the numerical

flux. It should be noted that throughout this study, only

plane-shaped reflecting boundary surfaces are considered.

Furthermore, only locally reacting surfaces are considered,

whose surface impedance is independent of the incident

angle. This assumption is in accordance with the nodal DG

scheme, since the unknown acoustic particle velocities on

the boundary surface nodes depend on the pressure at exactly

the same positions.

To reformulate the numerical flux at an impedance

boundary, we take advantage of the characteristics of the

underlying hyperbolic system and utilize the reflection coef-

ficient R for plane waves at normal incidence. First, the same

eigendecomposition procedure is performed for the projected

flux Jacobian on the boundary as is shown in Eq. (10).
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Second, by pre-multiplying the acoustic variables q with the

left eigenmatrix L�1, the characteristics corresponding to the

acoustic waves35,36 read

xo

xi


 �
¼ p=qcþ unx þ vny þ wnz

p=qc� unx � vny � wnz


 �
; (18)

where xo corresponds to the outgoing characteristic variable

that leaves the computational domain and xi is the incoming

characteristic variable.

The general principle for imposing boundary conditions

of hyperbolic systems is that the outgoing characteristic vari-

able should be computed with the upwind scheme using the

interior values, while the incoming characteristic variable

are specified conforming with the prescribed behaviour

across the boundary. The proposed real-valued impedance

boundary formulation is accomplished by setting the incom-

ing characteristic variable as the product of the reflection

coefficient and the outgoing characteristic variable, i.e.,

xi¼Rxo. Finally, the numerical flux on the impedance

boundary surface can be expressed in terms of the interior

values q�h as follows:

ðn � F�Þ ¼ LK

0

0

p�h =qcþ u�h nx þ v�h ny þ w�h nz

R � ðp�h =qcþ u�h nx þ v�h ny þ w�h nzÞ

2
66664

3
77775:

(19)

For given constant values of the normalized surface imped-

ance Zs, the reflection coefficient can be calculated from

R ¼ ðZs � 1Þ=ðZs þ 1Þ, which is consistent with the fact that

the numerical flux from the nodal DG scheme is always nor-

mal to the boundary surface. When the reflection coefficient

is set to zero it can be easily verified that the proposed for-

mulation reduces to the characteristic non-reflective bound-

ary condition, which is equivalent to the first-order

Engquist-Majda absorbing boundary condition.37

B. Numerical stability of the DG scheme

In this section, the stability properties of the DG scheme

are discussed. First, the semi-boundedness of the spatial DG

operator together with the proposed impedance boundary

conditions is analyzed using the energy method. Second, the

fully discrete stability is discussed and the criterion for

choosing the discrete time step is presented.

1. Stability of the semi-discrete formulation

Under a certain initial condition and impedance bound-

ary condition, the governing linear acoustic equations (1)

constitute a general initial-boundary value problem. For

real-valued impedance boundary conditions, the classical

von Neumann (or Fourier) stability analysis can no longer be

applied, because the necessary periodic boundary conditions

for the Fourier components do not exist. To analyze the sta-

bility or boundedness of the semi-discrete system, the energy

method38 is adopted here. The principle is to construct a

norm and to demonstrate it does not grow with increasing

time. This technique has also been applied in other acoustic

simulation methods,4,39 even in the fully discrete case.

For the numerical solution of the acoustic variables,

e.g., uhðx; tÞ, the local inner product and its associated L2

norm in function space Vk
h are defined as

ðuk
h; u

k
hÞDk ¼

ð
Dk

uk
hðx; tÞuk

hðx; tÞdx ¼ kuk
hk

2
Dk : (20)

Similarly, over the element surface @Dkr, define

ðukr
h ; u

kr
h Þ@Dkr ¼

ð
@Dkr

ukr
h ðx; tÞukr

h ðx; tÞdx ¼ kukr
h k

2
@Dkr ;

(21)

where ukr
h is the numerical solution on the element surface

@Dkr. Now, the discrete acoustic energy norm inside single

element Dk can be defined

Ek
h ¼

1

2
qkuk

hk
2
Dk þ

1

2
qkvk

hk
2
Dk þ

1

2
qkwk

hk
2
Dk

þ 1

2qc2
kpk

hk
2
Dk : (22)

This definition is in complete analogy with the continuous

acoustic energy, denoted as E, throughout the whole domain

X, i.e., E ¼
Ð
Xð1=2qc2Þp2 þ ðq=2Þjv2jdx.

By summing all the local discrete acoustic energies over

the volume and the boundaries, it can be proved in the

Appendix that the total discrete acoustic energy, which is

denoted as Eh ¼ RK
k¼1Ek

h, is governed by

d

dt
Eh ¼ �

X
@Dmt2FB

�
1� Rmt

2qc
kpmt

h k
2
@Dmt

þ qc

2
1þ Rmtð Þkvmt

hnk
2
@Dmt

�
� � �

�
X

@Dkr2F I

�
1

2qc
k½pkr

h � k
2
@Dkr þ

qc

2
knkr

x k½ukr
h �

þ nkr
y ½vkr

h � þ nkr
z ½wkr

h �k
2
@Dkr

�
; (23)

where F I and FB denote the union set of interior elements

and elements with at least one surface collocated with a

physical boundary. [�] denotes the jump differences across

the element surfaces. vmt
hn ¼ nmt

x umt
h þ nmt

y vmt
h þ nmt

z wmt
h denotes

the outward velocity component normal to the impedance

boundary. Rmt is the normal incidence plane-wave reflection

coefficient along the tth boundary surface of element @Dm.

@Dkr and @Dls refers to the same element intersection surface

between neighboring elements Dk and Dl. Since each norm

is non-negative and R 2 [�1, 1] holds for a passive imped-

ance boundary,40 it is proved that the semi-discrete acoustic

system resulting from the DG discretization is uncondition-

ally stable for passive boundary conditions with a real-

valued impedance.

It is worth mentioning that the second sum term of Eq.

(23) is related to the energy dissipation inside the
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computational domain due to the use of the upwind scheme.

This dissipation will converge to zero when the jump differ-

ences across the shared element interfaces converge to zero

at a rate corresponding to the approximation polynomial

order. The first sum of Eq. (23) is associated with the energy

flow through the impedance boundary. One advantage of

using the reflection coefficient to impose the impedance

boundary condition is that the following singular cases can

be considered without the need for exceptional treatments.

• Hard wall case. As Zs ! 1 or R ! 1, vhn ! 0, then the

boundary energy term converges to 0, meaning that the

energy is conserved.
• Pressure-release condition. As Zs ! 0 or R ! �1, ph !

0, then the boundary energy term once again converges to

0, and the energy is conserved as well.

2. Stability of the fully discrete formulation and time
step choices

The above analysis is devoted to the stability analysis of the

semi-discrete formulation Eq. (16), which in matrix form reads

dqh

dt
¼ Lhqh; (24)

where Lh is the matrix representation of the spatial operator

L. Ideally, the fully discrete approximation should be stable,

at least under a reasonable upper bound on the time step

size. Unfortunately, the theoretical ground for stability of a

discretized PDE system is not very complete,38 particularly

for high order time integration methods. A commonly used

approach based on the von Neumann analysis is to choose

the time step size Dt small enough so that the product of Dt
with the full eigenvalue spectrum of Lh falls inside the sta-

bility region of the time integration scheme. It should be

noted that this is only a necessary condition for a general

initial-boundary value problem, with the sufficient condition

being more restrictive and complex.41,42 However, for real

world problems, this necessary condition serves as a useful

guideline.

It is computationally infeasible to compute the eigen-

value of Lh before the simulation is started for various

unstructured mesh, polynomial order and boundary condi-

tions. For the DG method, it is found that for the first order

system Eq. (16), the gradients of the normalized Nth order

polynomial basis are of order OðN2=hÞ near the boundary

part of the element,25 consequently the magnitude of the

maximum eigenvalue kN scales with the polynomial order N
as: max(kN) / N2, indicating that Dt / N�2. This severe

time step size restriction limits the computational efficiency

of high polynomial order approximations. In all the numeri-

cal experiments presented in this work, the temporal time

steps are determined in the following way:33

Dt ¼ CCFLmin rDð Þ
1

c
; (25)

where rD is the radius of the inscribed sphere of the tetrahe-

dral elements. As a reference, the tabulated maximum allow-

able Courant number CCFL of the current used RKF84

scheme for each polynomial order N can be found in Ref.

33. In each of the following numerical tests, the exact value

of CCFL are explicitly stated for completeness.

IV. APPLICATIONS

To investigate the applicability of the nodal DG time-

domain method as described in Sec. II and Sec. III for room

acoustics problems, various 3-D numerical tests are designed

and compared in this section. The first test is a free field propa-

gation of a single frequency plane wave under periodic bound-

ary conditions. In this case, the dissipation error in terms of the

wave amplitude and the dispersion error are investigated. The

second configuration is a sound source over an impedance

plane. The accuracy of the proposed DG formulation to simu-

late frequency-independent impedance boundary conditions is

verified. The third configuration is a sound source in a cuboid

room with rigid boundary conditions, embodying an approxi-

mation to a real room including multiple reflections. The modal

behaviour of the space is investigated for different polynomial

order N of the basis functions when compared with the analyti-

cal solution, together with an analysis of the sound energy con-

servation inside the room to quantify the numerical dissipation.

Finally, the fourth configuration is adopted to demonstrate the

applicability of the method to a real room. The configuration is

a room with complex geometry and a real-valued impedance

boundary condition. In this configuration, the pressure response

functions in the frequency domain are compared with the mea-

sured results at several receiver locations. For the acoustic

speed and the air density, c¼ 343 m/s and q¼ 1.2 kg/m3 are

used in all calculations. Due to the fact that there are duplicated

nodes along the element interfaces, in this work, the number of

degrees of freedom per wavelength k (DPW) is used to give a

practical indication of the computational cost. It is computed as

DPW ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Np � K

V

3

r
; (26)

where Np�K is the number of degrees of freedom for a sin-

gle physical variable in the computational domain, V is the

volume of the whole domain.

A. Free field propagation in periodic domain

To verify the accuracy of the free field propagation, we

consider a cubic computational domain of size [0, 1]3 in meters,

which is discretized with six congruent tetrahedral elements.

10� 10� 10 receivers are evenly spaced in all directions

throughout the domain. The domain is initialized with a single

frequency plane wave propagating in the x-direction only,

pðx; t ¼ 0Þ ¼ sinð�2pxÞ; (27a)

u x; t ¼ 0ð Þ ¼ 1

qc
sin �2pxð Þ; (27b)

vðx; t ¼ 0Þ ¼ 0; wðx; t ¼ 0Þ ¼ 0: (27c)

The wavelength k is chosen to be equal to 1 m such that peri-

odic boundary conditions can be applied in all directions. As

mentioned in Sec. II B, when an initial value problem is
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simulated, the approximation error associated with the repre-

sentations of the initial conditions is a dominant component.

In order to rule out this approximation error and to assess the

dissipation and dispersion error accumulated from the wave

propagation alone, the solution values at receiver locations

recorded during the first wave period T of propagation are

taken as the reference values. The solutions sampled during

later time period inverval t¼ [(n � 1)T, nT] are compared

with these reference values, where n¼ 10, 20, 30,…, 100.

The amplitude and phase values of the single frequency

wave at each of the receiver locations are obtained from a

Fourier transform of the recorded time signals without win-

dowing. The dissipation error �amp in dB and the phase error

�/ in % are calculated as follows:

�amp ¼ max 20 log10

jPref xð Þj
jPnT xð Þj

 !
; (28a)

�/ ¼ max
j/ PnT xð Þð Þ � / Pref xð Þ

� �
j

p
� 100%

� �
; (28b)

where Pref ðxÞ and PnTðxÞ are the Fourier transform of the

recorded pressure values at different locations, during the

first time period and the nth period, respectively. /(�)
extracts the phase angle of a complex number.

Simulations for N¼ 5, 6, 7 corresponding to

DPW¼ 6.9, 7.9, 8.9 have been carried out and a single time

step size Dt¼ T/100¼ 1/(100� 343) is used for all simula-

tions to make sure the time integration error is much smaller

than the spatial error.

The dissipation and the phase error from the explicit

Runge-Kutta time integration is calculated based on the

descriptions presented in Ref. 43 and shown as dashed lines

in Fig. 1. As can be seen, both the dissipation error and the

phase error grow linearly with respect to the propagation dis-

tance. For the 5th order polynomial basis (DPW¼ 6.9), the

averaged dissipation error is approximately 0.035 dB when

the wave travels one wavelength distance while the phase

error is 0.095%. Both error drop to 0.002 dB and 0.005%,

respectively, when the DPW increases to 8. When the DPW

is equal to 8.9, the dissipation error is 1.1� 10�4 dB per

wavelength of propagation and the phase error is less than

3� 10�4%.

B. Single reflective plane

To verify the performance of the proposed frequency-

independent impedance boundary condition, a single reflec-

tion scenario is considered and the reflection coefficient

obtained from the numerical tests is compared with the analyt-

ical one based on a locally reacting impedance. The experi-

ment consists of two simulations. In the first simulation, we

consider a cubic domain of size [�8, 8]3 in meters, where the

source is located at the center [0, 0, 0] m, and two receivers

are placed at xr1 ¼ ½0; 0;�1�m and xr2 ¼ ½0; 4;�1�m. In this

case, the free field propagation of a sound source is simulated,

and sound pressure signals are recorded at both receiver loca-

tions. In the second simulation, a plane reflecting surface is

placed 2 m away from the source at z¼�2 m. The measured

sound pressure signals not only contain the direct sound but

also the sound reflected from the impedance surface. In both

cases, initial pressure conditions are used to initiate the

simulations:

pðx; t ¼ 0Þ ¼ e�lnð2Þ=b2ððx�xsÞ2þðy�ysÞ2þðz�zsÞ2Þ; (29a)

vðx; t ¼ 0Þ ¼ 0; (29b)

which is a Gaussian pulse centered at the source coordinates

[xs, ys, zs]¼ [0, 0, 0] The half-bandwidth of this Gaussian

pulse is chosen as b¼ 0.25 m. Simulations are stopped at

around 0.0321 s in order to avoid the waves reflected from

the exterior boundaries of the whole domain. In order to

eliminate the effects of the unstructured mesh quality on the

accuracy, structured tetrahedra meshes are used for this

study, which are generated with the meshing software

GMSH.44 The whole cuboid domain is made up of structured

cubes of the same size, then each cube is split into six tetra-

hedra elements. The length of each cube is 0.5 m.

Let pd denote the direct sound signal measured from the

first simulation, then the reflected sound signal pr(t) is

FIG. 1. (Color online) Amplitude error �amp (a) and phase error �/ (b) for the periodic propagation of a single frequency plane wave Eq. (27).
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obtained by eliminating pd(t) from the solution of the second

simulation. Let R1 denote the distance between the source

and the receiver and R2 is the distance between the receiver

and the image source (located at [0, 0, �4] m) mirrored by

the reflecting impedance surface. The spectra of the direct

sound and the reflected sound, denoted as Pd(f) and Pr(f)
respectively, are obtained by Fourier transforming pd and pr

without windowing. The numerical reflection coefficient

Qnum is calculated as follows:

Qnumðf Þ ¼
Pr fð Þ � G jR1ð Þ
Pd fð Þ � G jR2ð Þ ; (30)

where

GðjRÞ ¼ eijR=R (31)

is the Green function in 3D free space. j is the wavenumber.

The analytical spherical wave reflection coefficient Q
reads45

Q ¼ 1� 2
jR2

ZseijR2

ð1
0

e�qj=Zs
e

ij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

pþ zþzsþiqð Þ2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

p þ zþ zs þ iqð Þ2
q dq;

(32)

where Zs is the normalized surface impedance, z¼ 1 is the

distance between the receiver and the reflecting surface,

zs¼ 2 is the distance between the source and the surface, rp

is the distance between the source and the receiver projected

on the reflecting surface.

Simulations with polynomial order N¼ 5 up to N¼ 8

are carried out with the corresponding CCFL and time step Dt
presented in Table I.

The results of the numerical tests for Zs¼ 3 are illus-

trated in Fig. 2. The DPW is calculated based on the fre-

quency of 500 Hz. The comparison of the magnitudes of the

spherical wave reflection coefficient for both the normal

incidence angle h¼ 0� and the oblique incidence (h¼ 53�)
are shown in Figs. 2(a) and 2(b), respectively. The phase

angle comparison is presented in Figs. 2(c) and 2(d). It can

be seen that with increasing polynomial order N (or DPW),

the numerical reflection coefficient converges to the analyti-

cal one in terms of the magnitude and the phase angle. Also,

the accuracy is rather independent on the two angles of inci-

dence h. In order to achieve a satisfactory accuracy, at least

12 DPW are needed. Many tests are performed with different

impedances (Zs 2 [1,1]) and receiver locations (h 2 [0�, 90�]),
the same conclusion can be reached.

C. Cuboid room with rigid boundaries

In this section, the nodal DG method is applied to sound

propagation in a 3-D room with rigid boundaries (R¼ 1). In

contrast to the previous applications, sound propagation

inside the room is characterized by multiple reflections and

sound energy is conserved. The domain of the room is

[0, Lx]� [0, Ly]� [0, Lz] m, with Lx¼ 1.8, Ly¼ 1.5, Lz¼ 2.

Initial conditions are given as in Eqs. (29), with b¼ 0.2 m.

The source is positioned at [0.9, 0.75, 1] m, and a receiver

is positioned at [1.7, 1.45, 1.9] m. Similar as in the previ-

ous test case, the room is discretized using structured tet-

rahedral elements of size 0.4 m. The analytical pressure

response in a cuboid domain can be obtained by the modal

summation method, and can in the 3-D Cartesian coordi-

nate system be written as46

pðx; tÞ ¼
X1
l¼0

X1
m¼0

X1
n¼0

p̂lmnðtÞwlmnðxÞ cos ðxlmntÞ; (33a)

wlmn xð Þ ¼ cos
lpx

Lx

� �
cos

mpy

Ly

� �
cos

npz

Lz

� �
; (33b)

xlmn ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lp
Lx

� �2

þ mp
Ly

� �2

þ np
Lz

� �2
s

; (33c)

with wlmn the modal shape function; p̂lmn the modal partici-

pation factor; xlmn the natural angular frequency; and l,
m, n the mode indices. Since reflections from the room

boundaries occur without energy loss, the modal participa-

tion factors are constant over time. To obtain p̂lmnð0Þ, the

initial pressure distribution is projected onto each modal

shape as

p̂lmn 0ð Þ ¼ 1

Klmn

ð
X

p x; t ¼ 0ð Þwlmn xð Þdx; (34a)

Klmn ¼
ð

X
w2

lmnðxÞdx: (34b)

The integration in Eq. (34a) can be calculated separately for

each coordinate. For example, in the x coordinate, the indefinite

integration can be expressed in terms of the error function asð
e �a0 x�xsð Þ2ð Þcos b0xð Þdx

¼
ffiffiffi
p
p

4
ffiffiffiffiffi
a0
p e �b2

0
=4a0ð Þ�ib0xsð Þ erf Bð Þþe i2b0xsð Þerf B�ð Þ

� �
þC;

(35)

with B¼ ffiffiffiffiffi
a0
p ðx�x0Þþ ib0=2

ffiffiffiffiffi
a0
p

; a0¼ lnð2Þ=b2; b0¼ lp=Lx,

and C is a constant. Equation (33a) is used as the reference

solution with modal frequencies up to 8 kHz. Furthermore,

to show the applicability of the nodal DG method for a long

time simulation, 10 s is taken as the simulation duration.

To solve for this configuration, the CCFL numbers and

time steps for the approximating polynomial orders of N¼ 3

up to N¼ 7 are presented in Table II.

The sound pressure level is computed as

TABLE I. CCFL number and time step Dt for single reflection case

(h¼ 0.5 m).

N CCFL Dt [s]

5 0.185 9.721� 10�5

6 0.144 7.550� 10�5

7 0.114 5.993� 10�5

8 0.094 4.908� 10�5
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Lp ¼ 20 log10

 P fð Þffiffiffi
2
p

P0

; (36)

with P0¼ 2� 10�5 Pa, and P(f) the spectrum of recorded

pressure time signal p(t) at the receiver location. The end of

the time signal is tapered using a Gaussian window with a

length of 3.5 s to avoid the Gibbs effect.

Figure 3 shows the sound pressure level at the receiver

location. The numerical solutions show an excellent agree-

ment with the reference solution, with the accuracy of the

numerical solution increasing as the approximating polyno-

mial order increases.

Figure 4 displays the results for f¼ 950–1000 Hz. From

this figure, we can see that the resonance frequencies are not

well represented for N	 5, for which DPW varies between

4.5 and 6.6 in this frequency range. On the other hand, the

resonance frequencies are correctly represented for N
 6,

where the minimum number of DPW is 7.2. The correct rep-

resentation of the room resonance frequencies indicates that

the numerical dispersion is low in the DG solution. The

numerical dispersion aspect is essential with regards to aur-

alization as shown by Saarelma et al.,47 where the audibility

of the numerical dispersion error from the finite difference

time domain simulation is investigated. Furthermore, Fig. 4

clearly shows that the DG results have reduced peak ampli-

tudes when the approximating polynomial orders are low.

D. Real room with real-valued impedance boundary
conditions

The final scenario is a comparison between experimen-

tal and numerical results of a real room. The room is located

in the Acoustics Laboratory building (ECHO building) at the

campus of the Eindhoven University of Technology.

Geometrical data of the room, including the dimensions and

FIG. 2. (Color online) Numerical reflection coefficient calculated by Eq. (30) with different polynomial orders, compared with the theoretical result according

to Eq. (32) (black dashed line): (a) magnitude for receiver 1, h¼ 0�, (b) magnitude for receiver 2, h¼ 53�, (c) phase angle for receiver 1, h¼ 0�, (d) phase

angle for receiver 2, h¼ 53�.

TABLE II. CCFL number and time step Dt for a rigid cuboid room

(h¼ 0.4 m).

N CCFL Dt [s]

3 0.355 1.400� 10�4

4 0.248 9.810� 10�5

5 0.185 7.322� 10�5

6 0.144 5.687� 10�5

7 0.114 4.514� 10�5
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the location of the source and microphone positions are pre-

sented in Fig. 5. The room has a volume of V¼ 89.54 m3

and a boundary surface area of S¼ 125.08 m2.

The source is located at [1.7, 2.92, 1.77] m and micro-

phones (M) are located at [3.8, 1.82, 1.66] m for M1 and

[4.75, 3.87, 1.63] m for M2. The height (z-coordinate) of the

sound source location is measured at the opening (highest

point) of the used sound source (B&K type 4295,

OmniSource Sound Source). The measurements were per-

formed using one free-field microphone B&K type 4189

connected to a Triton USB Audio Interface. The impulse

responses were acquired with a sampling frequency of 48

KHz with a laptop using the room acoustics software

DIRAC (B&K type 7841). The input channel is calibrated

before starting the measurements using a calibrator (B&K

type 4230). The sound signal used for the excitation of the

room is the DIRAC built-in e-Sweep signal with a duration

of 87.4 s connected to an Amphion measurement amplifier.

At each microphone position, three measurement repetitions

were performed. The results presented in this section for M1

and M2 represent the average of the three repetitions.

The room is discretized in 9524 tetrahedral elements by

using GMSH and the largest element size is 0.5 m. A detail of

the mesh is shown in Fig. 5(b). The same initial pressure

distribution as for the 3-D cuboid room of Sec. IV C is used.

The polynomial order used in the calculations is N¼ 4 with

a CFL number of CCFL¼ 0.25. The computed impulse

responses have a duration of 15 s. The model uses a DPW of

13 for the frequency of 400 Hz. All the boundaries of the

model are computed using a uniform real-valued reflection

coefficient of R¼ 0.991. The coefficient is calculated from

the experimental results at M1 by computing the Q-value of

the resonance at f0¼ 97.9 Hz, using R ¼ 1� dr8V=cS with,

dr ¼ 2pf0=2Q the decay constant of the room’s resonance.

Both impulse responses from the measurements and

simulations were transformed to the frequency domain by

using a forward Fourier transform. The end of the time sig-

nals is tapered by a single-sided Gaussian window with a

length of 500 samples (approximately, 5.6 ms) to avoid the

Gibbs effect. Furthermore, the time function of the numeri-

cal source is obtained from the following analytical expres-

sion: ps;anaðtÞ¼ ½ðrsr�ctÞ=2rsr�eð�lnð2Þ=b2Þðrsr�ctÞ2 þ½ðrsrþ ctÞ=
2rsr�eð�lnð2Þ=b2ÞðrsrþctÞ2 (with rsr the source-receiver distance).

This function is transformed to the frequency domain to nor-

malize the calculated impulse responses in DG by the source

power spectrum. Likewise, the experimental results have

been normalized by the B&K 4295 sound power spectra.

The source spectra of an equivalent source B&K 4295 has

FIG. 3. (Color online) Sound pressure

level at receiver position in the config-

uration of the 3-D rigid cuboid room.

FIG. 4. (Color online) Receiver sound

pressure response level between 950

and 1000 Hz.
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been obtained by measurements in the anechoic room of the

Department of Medical Physics and Acoustics at Carl von

Ossietzky Universit€at Oldenburg. The corrected results

should be taken with care at frequencies below 50Hz, due to

limitations of the anechoic field in the determination of the

power spectra of the source. The numerical and experimental

results have been normalized at 100Hz, using the results of

position M1.

The comparison between numerical and experimental

solutions is shown in Fig. 6 for narrow and 1/3 octave fre-

quency bands. The results are quite satisfactory considering

that only one uniform real-valued impedance has been used

for the whole frequency range of interest. The biggest devia-

tion, 3.6 dB, is found at position M2 in the 63 Hz 1/3 octave

band, while for position M1 the maximum deviation is

2.8 dB in the 250 Hz 1/3 octave band. The average deviation

for the 1/3 octave band spectra is 1.2 dB for M1 and 2.3 dB

for M2. Overall, the deviations shown in Fig. 6 are within a

reasonable range. Factors like the geometrical mismatches

between the real room and the model or the uncertainty in

the location of the source and microphone positions are

influencing the deviations.

V. CONCLUSIONS

In this paper, the time-domain nodal Discontinuous

Galerkin (DG) method has been evaluated as a method to

solve the linear acoustic equations for room acoustic pur-

poses. A nodal DG method is used for the evaluation of

the spatial derivatives, and for time-integration a low-

storage optimized eight-stage explicit Runge-Kutta

method is adopted. A new formulation of the impedance

boundary condition, which is based on the plane wave

reflection coefficient, is proposed to simulate the locally

reacting surfaces with frequency-independent real-valued

impedances and its stability is analyzed using the energy

method.

The time-domain nodal Discontinuous Galerkin (DG)

method is implemented for four configurations. The first

test case is a free field propagation, where the dissipation

error and the dispersion error are investigated using differ-

ent polynomial orders. Numerical dissipation exists due to

the upwind numerical flux. The benefits of using high-

order basis are demonstrated by the significant improve-

ment in accuracy. When DPW is around 9, the dissipation

error is 1.1� 10�4 dB and the phase error is less than

3� 10�4% under propagation of one wavelength. In the

second configuration, the validity and convergence of the

proposed impedance boundary formulation is demonstrated

by investigating the single reflection of a point source over

a planar impedance surface. It is found that the accuracy is

rather independent on the incidence angle. As a third sce-

nario, a cuboid room with rigid boundaries is used, for

which a long-time (10 s) simulation is run. By comparing

against the analytical solution, it can be concluded again

that with a sufficiently high polynomial order, the disper-

sion and dissipation error become very small. Finally, the

comparison between numerical and experimental solutions

shows that DG is a suitable tool for acoustic predictions in

rooms. Taking into account that only one uniform real-

valued impedance has been used for the whole frequency

range of interest, the results are quite satisfactory. In this

case, the implementation of frequency dependent boundary

conditions will clearly improve the precision of the numer-

ical results.

In this study, the performance of the time-domain nodal

DG method is investigated by comparing with analytical sol-

utions and experimental results, without comparing with

FIG. 5. (Color online) Graphical data of the room under investigation: (a) isometric view; (b) isometric view with surface elements; (c) plan view; (d) section

view; (e) picture during the measurements.
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other commonly used room acoustics modelling techniques

such as FDTD and FEM. The aim of this work is to demon-

strate the viability of the DG method to room acoustics

modelling, where high-order accuracy and geometrical flexi-

bility are of key importance. With the opportunity to mas-

sively parallelize the DG method, it has great potential as a

wave-based method for room acoustic purposes. Whereas

the results show that high accuracy can be achieved with

DG, some issues remain to be addressed. The improvements

in accuracy using high-order schemes come at a cost of

smaller time step size for the sake of stability. There is a

trade-off between a high-order scheme with a small time

step and fewer spatial points and low-order methods, where

a larger time step is allowed but a higher number of spatial

points are needed to achieve the same accuracy. Further

investigations are needed to find out the most cost-efficient

combination of the polynomial order and the mesh size

under a given accuracy requirement. Also, when the mesh

configuration is fixed by the geometry, the local adaptivity

of polynomial orders and time step sizes could be a feasible

approach to improve the computational efficiency of DG

for room acoustics applications. Furthermore, general

frequency-dependent impedance boundary conditions as

well as extended reacting boundary conditions are still to

be rigorously developed in DG.

ACKNOWLEDGMENTS

This project has received funding from the European

Union’s Horizon 2020 research and innovation programme

under Grant Agreement No. 721536. The second author is

supported by the ministry of finance of the Republic of

Indonesia under framework of endowment fund for

education (LPDP). Additionally, we would like to thank the

Department of Medical Physics and Acoustics at Carl von

Ossietzky Universit€at Oldenburg for their help in the

estimation of the sound power spectra of the sound source.

APPENDIX: DERIVATIONS OF THE TOTAL DISCRETE
ACOUSTIC ENERGY OF THE SEMI-DISCRETE
SYSTEM

It can be seen that the local energy can be recovered

from the product of the element mass matrix Mk and the

nodal vectors uk
h as follows:

FIG. 6. (Color online) Sound pressure

level Lp in the real room configuration

for the experimental and the DG

results in narrow frequency bands

(black broken line and red solid line,

respectively) and 1/3 octave bands

(black dot and red dot, respectively)

for the microphone positions (a) M1

and (b) M2.
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Now, the total discrete acoustic energy Eh of the semi-

discrete formulation Eq. (13) can be calculated. By pre-

multiplying Eq. (13a) with qðuk
hÞ

T
, pre-multiplying Eq. (13b)

with qðvk
hÞ

T
, pre-multiplying Eq. (13c) with qðwk

hÞ
T
, pre-

multiplying Eq. (13d) with ð1=qc2Þðpk
hÞ

T
and sum them

together, using the relations mentioned in Eqs. (A1), (A2),

yields
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where the divergence theorem is used to obtain the surface

integral term, that is
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Substitute the numerical flux Eqs. (15) into Eq. (A4) and use

Eq. (A3), after some simple algebraic manipulations, the

semi-discrete acoustic energy balance on element yields

d

dt
Ek

h ¼
Xf

r¼1

Rkr
h ; (A6)

where

Rkr
h ¼ pkr
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kr
hn

� �
@Dkr �

1

2
xkr

o ; p
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2
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� �
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is the discrete energy flux through the shared surface @Dkr or

equivalently @Dls between the neighboring elements Dk and

Dl in the interior of the computation domain. x0 and xi are

the characteristic waves defined in Eq. (18). By using the

condition that the outward normal vector of neighboring ele-

ments are opposite, the final form of energy contribution

from the coupling across one shared interface reads

Rkr
h þRls

h ¼ �
�

1

2qc
k½pkr

h �k
2
@Dkr þ

qc

2
knkr

x ½ukr
h �

þ nkr
y ½vkr

h � þ nkr
z ½wkr

h �k
2
@Dkr

�
; (A8)

which is non-positive. This ends the discussion for the inte-

rior elements. Now, for elements that have at least one sur-

face lying on the real-valued impedance boundary, e.g.,

element Dm with surface @Dmt 2 @Xh, the numerical flux is

calculated using Eq. (19). After some algebraic operations,

the energy flux through the reflective boundary surface

becomes

Rmt
h ¼ �

1� Rmt

2qc
kpmt

h k
2
@Dmt þ

qc

2
1þ Rmtð Þkvmt

hnk
2
@Dmt

� �
:

(A9)

Finally, by summing the energy flux through all of the faces

of the mesh, we get the total acoustic energy of the whole

semi-discrete system as in Eq. (23).
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Errata of Paper I

• Eq. (11)

L =


−nz ny nx/2 −nx/2
nz −nx ny/2 −ny/2
−ny nx nz/2 −nz/2
0 0 ρ0c0/2 ρ0c0/2

 , Λ =


0 0 0 0
0 0 0 0
0 0 c0 0
0 0 0 −c0

 .

should be replaced by

L =


−ny −nz nx/2 −nx/2
nx 0 ny/2 −ny/2
0 nx nz/2 −nz/2
0 0 ρ0c0/2 ρ0c0/2

 , Λ =


0 0 0 0
0 0 0 0
0 0 c0 0
0 0 0 −c0

 .
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Time-domain impedance boundary condition modeling with the
discontinuous Galerkin method for room acoustics simulations
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ABSTRACT:
The time-domain nodal discontinuous Galerkin (TD-DG) method is emerging as a potential wave-based method for

three-dimensional (3D) room acoustics modeling, where high-order accuracy in the low frequency range, geometri-

cal flexibility, and accurate modeling of boundary conditions are of critical importance. This paper presents a formu-

lation of broadband time-domain impedance boundary conditions (TDIBCs) of locally-reacting surfaces in the

framework of the TD-DG method. The formulation is based on the approximation of the plane-wave reflection coef-

ficient at normal incidence in the frequency domain using a sum of template rational functions, which can be directly

transformed to the time-domain. The coupling of the TDIBCs with the discontinuous Galerkin discretization is

achieved through the characteristic waves of the upwind flux along the boundary, where a series of first-order auxil-

iary differential equations is time-integrated in a high-order way. To verify the performance of the formulation,

various numerical tests of single reflection scenarios are shown to demonstrate the cost efficiency and memory-

efficiency of high-order basis functions, among which a 3D application to an impedance boundary of rigidly backed

glass-wool baffle for room acoustic purposes is presented. VC 2020 Acoustical Society of America.
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I. INTRODUCTION

Sound propagation in a room is a complicated process

due to the geometry of the room and the objects inside it.

Furthermore, a variety of surface natures and surface impe-

dances, which are typically frequency-dependent, make it

extremely hard to achieve analytical representations of the

acoustic field. Therefore, computer simulation of the sound

field in indoor environments has become a common tool for

the analysis of sound in rooms.1

In general, room acoustic modeling techniques can be

divided into two categories, namely, geometrical acoustics

methods and wave-based methods. Thanks to the steady

increase in computing power, wave-based methods have

become more mature during the past decades.2 Compared to

frequency-domain wave-based methods, time-domain

modeling allows single run broadband calculations with

moving sources and time-varying domains and generates

directly the impulse response of the room. After applications

to fields as aeroacoustics,3 the time-domain discontinuous

Galerkin (TD-DG) method has for the first time been evalu-

ated as a potential wave-based method for room acoustics

modeling purposes.4 Its high accuracy and ability to handle

complex boundary geometries were demonstrated through

verifications by analytical solutions and by comparison

against measurement results of a real room. Since the

acoustic wave equation is solved element-wise, highly effi-

cient parallel-computing solvers that exploit modern hard-

ware have been developed.5,6 The applicability of the

discontinuous Galerkin (DG) solver to a large scale room

acoustics simulation is demonstrated in Ref. 7, in analogy

to the example of a cathedral-like geometry presented in

Ref. 8. However, in order to provide physical simulation

results that match real materials, a time-domain impedance

boundary condition (TDIBC) formulation that handles

frequency-dependent acoustic properties is needed.

The acoustic behavior of a locally reactive reflecting sur-

face can be characterized by the surface impedance,9 the

admittance,10–12 or the plane-wave reflection coefficient.13–16

Although these quantities are mathematically equivalent, the

implementations of their respective TDIBC models differ at a

discrete level. Furthermore, for time-domain computations,

the impedance models defined in the frequency domain

should satisfy the causality, reality, and passivity conditions

in order to be physically admissible.9,17,18 One approach to

incorporate the frequency-dependency is to model the imped-

ance boundary based on the mass-spring-damper sys-

tem.10,11,19–22 Besides, approaches based on well-chosen

basis functions or digital filters in the frequency domain have

been developed. Zhong et al.12 proposed to transform the fre-

quency domain transfer function of the impedance model in

the form of rational polynomials to an equivalent time-

domain representation using the state-space canonical form.

Approaches based on digital filter design have been proposed

in Refs. 23 and 24. Another popular family of impedance

a)Electronic mail: h.wang6@tue.nl, ORCID: 0000-0003-3465-3555.
b)ORCID: 0000-0002-8343-6613.
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models is the so-called multi-pole model,10,13,14,16,25–28

which offers great flexibility for fitting impedance values

while ensuring physical admissibility conditions.

The aforementioned various TDIBC formulations and the

corresponding stability analysis are usually tailored to the spe-

cific discretization methods that are used to simulate acoustic

wave propagation. For example, a formulation based on the

admittance in the framework of the finite volume method and

its fully-discrete stability analysis using the trapezoid rule

approximation to the time derivative is presented in Ref. 29.

For the TD-DG method, an early attempt to implement the

impedance boundary condition was made by Reymen et al.,10

where the three-parameter impedance model20 was reformu-

lated in the form of a complex conjugate pole. The normal

velocity on the impedance boundary was updated based on the

convolution of the pressure from previous time steps with the

impulse response of the admittance and the convolution is cal-

culated in a piecewise-linear recursive way. Recently, two for-

mulations based on the reflection coefficient instead of the

impedance or admittance were proposed in Ref. 30 and Ref. 4

at the same time. Compared to the TDIBC formulations based

on either the impedance or the admittance, the formulation

using the reflection coefficient is computationally desirable as

it is capable of handling singular cases of both the hard-wall

and pressure-release boundaries without the need for excep-

tional treatments, where the impedance and the admittance

value approaches infinity, respectively. Reference 4 adopts the

upwind flux based on the characteristics of the hyperbolic law

throughout the whole computational domain while Ref. 30 uses

the centered flux along the impedance boundary and the upwind

flux on the interior of the domain. From the analysis of disper-

sive properties,31,32 the central flux has zero dissipation error.

However, it could exhibit unphysical waves. Compared to the

upwind flux, it is less accurate in terms of the dispersion error,

which is of vital importance for the room acoustic auralization

applications as shown by Saarelma et al.34

The main objective of this work is to develop a robust,

efficient and generic TDIBC for locally-reacting materials,

aiming at a further step towards a fully-fledged TD-DG

solver for realistic room acoustic simulations. The formula-

tion of the numerical flux along the impedance boundary is

derived straightforwardly based on the plane-wave reflection

coefficient and the characteristic acoustic waves, and its

detailed implementations in the DG method are presented.

The extension of previous frequency-independent imped-

ance boundary formulation4 to the frequency-dependent one

is achieved through the multi-pole representation of the

reflection coefficient in the frequency domain. The fitting of

parameters of this representation for an empirical impedance

model or measurement data is achieved by solving an opti-

mization problem. Combined with the auxiliary differential

equations (ADE) method, the whole computation can be

performed in a low-storage and high-order accuracy manner.

To validate this formulation, numerical simulations of a sin-

gle reflection scenario are performed. The convergence rates

are verified and the benefits of using the high-order polyno-

mial basis are highlighted. Both the amplitude and the phase

error from the reflection, which are important for room

acoustics modeling featuring multiple reflections, are inves-

tigated and quantified for both the plane-wave reflection in a

one-dimensional (1D) setting and the spherical-wave reflec-

tion in a three-dimensional (3D) case. Application to a typi-

cal impedance model of a rigid-frame porous material for

room acoustic uses is used to demonstrate the feasibility of

the proposed approach.

The paper is organized as follows. The formulations of

impedance boundary conditions within the TD-DG method

are presented in Sec. II. Section III discusses and quantifies

the accuracy of the implemented formulation by comparison

with analytical solutions. Finally, the conclusions and out-

look can be found in Sec. IV.

II. TDIBC IN DG METHOD

A. Governing equations and spatial discretization

In this work, the governing equations are the linear

acoustic equations for a motionless propagation medium

@v

@t
þ 1

q
rp ¼ 0;

@p

@t
þ qc2r � v ¼ 0; (1)

where v ¼ ½u; v;w�T is the particle velocity vector, p is the

sound pressure, q is the constant density of air, and c is the

constant speed of sound. Equivalently, Eq. (1) reads

@q

@t
þr � FðqÞ ¼ @q

@t
þ Aj

@q

@xj
¼ 0; (2)

where qðx; tÞ ¼ ½u; v;w; p�T is the acoustic variable vector

and Aj is the constant flux Jacobian matrix with coordinate

index j 2 ½x; y; z�. Let Dk be a set of simplex and geometri-

cally conformal elements that discretize the computational

domain Xh, i.e., Xh ¼ [K
k¼1Dk. The local solution qk

hðx; tÞ in

element Dk, where subscript h denotes the numerical

approximation, is given by

qk
hðx; tÞ ¼

XNp

i¼1

qk
hðxk

i ; tÞlk
i ðxÞ; (3)

where qk
hðxk

i ; tÞ are the unknown nodal values, lki ðxk
i Þ is the

multi-dimensional Lagrange polynomial basis of order N,

which satisfies lk
i ðxk

j Þ ¼ dij, and indices i, j denote the order-

ing of nodes. Np is the number of local basis functions (or

nodes) inside a single element and equal to ðN þ dÞ!=ðN!d!Þ
for simplex elements, where d is the dimensionality. The

basis (shape) function lk
i ðxÞ is determined by the nodal dis-

tribution xk
i , and in this study, the Legendre-Gauss-Lobatto

(LGL) quadrature points are used for 1D problems and the

a-optimized nodes distribution35 is used for 3D tetrahedron

elements due to its low Lebesque constants. After the

Galerkin projection and integration by parts twice, the semi-

discrete nodal DG formulation of Eq. (2) reads,
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ð
Dk

@qk
h

@t
þr � Fk

hðqk
hÞ

� �
lk
i dx ¼

ð
@Dk

n � ðFk
hðqk

hÞ � F�Þlki dx;

(4)

where n ¼ ½nx; ny; nz� is the outward normal vector of the

element surface @Dk. F�, the so-called numerical flux across

element intersection @Dk, is a function of both the solution

value from the interior side of the intersection, i.e., q�h and

the exterior value qþh . In this study, the upwind numerical

flux is used throughout the whole domain because of its low

dispersive and dissipation error.33,36 It is defined by consid-

ering the direction of the characteristic speed, i.e.,

n � F�ðq�h ; qþh Þ ¼ LðKþL�1q�h þ K�L�1qþh Þ; (5)

where K is a diagonal matrix with diagonal entries

½0; 0; c;�c�. Kþ and K� contain the positive and negative

entries of K, respectively. L is the eigenmatrix of the nor-

mally projected flux Jacobian, i.e.,

An ¼ ðnxAx þ nyAy þ nzAzÞ
¼ LKL�1: (6)

Physically, Kþ (K�, respectively) corresponds to the charac-

teristic waves propagating along (opposite to respectively)

the outward normal direction n, which is referred to as outgo-

ing waves out of Dk (incoming waves into Dk, respectively).

Therefore, the outgoing waves are associated with the interior

solution q�h , whereas the incoming waves are dependent on

the exterior (neighboring) solution qþh . Finally, the semi-

discrete formulation is obtained by substituting the nodal

basis expansion Eq. (3) and the upwind flux Eq. (5) into the

strong formulation Eq. (4). The resulting vector-matrix form

of the formulation and more descriptions of implementations

can be found in Ref. 4.

It is well known that generally, the rate of convergence

of the DG scheme in terms of the global L2 error is hNþ1=2 (h
being the element size).37 When solving initial value prob-

lems such as calculating the room impulse response consid-

ered here, the dominant error comes from the spatial

representations of the initial conditions, while the additional

dispersive and dissipative errors from the wave propagation

are relatively small and only visible after a very long time

integration.31 When the upwind flux is used, the dissipation

error is of order ðjhÞ2Nþ2
while the dispersion error is of

order ðjhÞ2Nþ3
,33,36 where j is the wavenumber. It should

be noted that the audibility of the numerical error on the per-

ceptual level is important for practical room acoustic simu-

lations. Future studies are needed to investigate the

modeling requirements and error constraints of the TD-DG

scheme for the auralization purposes.

B. Numerical flux formulation of TDIBC

Previously, a frequency-independent impedance bound-

ary formulation was proposed to simulate a locally-reacting

surface within the DG method and its semi-discrete stability

was proved using the energy method.4 The essential idea is

to reformulate the numerical flux along the normal direction

to the impedance boundary surface by utilizing the charac-

teristic waves of the linear acoustic equations and the reflec-

tion coefficient R. The incoming and outgoing characteristic

acoustic waves, which are denoted as -in
n and -out

n , and ori-

ented in the opposite and the same direction of the outward

normal n along the boundary surface, respectively, are

defined as

-in
n ðxÞ ¼

pðxÞ
qc
� vnðxÞ; (7)

-out
n ðxÞ ¼

pðxÞ
qc
þ vnðxÞ; (8)

where vnðxÞ ¼ vðxÞ � n denotes the particle velocity com-

ponent normal to the surface at a given angular frequency

x. Let Zs denote the normalized surface impedance, i.e.,

ZsðxÞ ¼
1

qc

pðxÞ
vnðxÞ

; (9)

and the plane-wave reflection coefficient RðxÞ at normal

incidence angle satisfies1

RðxÞ ¼ ZsðxÞ � 1

ZsðxÞ þ 1
: (10)

Inserting Eq. (9) into Eq. (10) directly yields the following

condition concerning the reflection coefficient and charac-

teristic waves

RðxÞ ¼ -in
n ðxÞ

-out
n ðxÞ

: (11)

The time-domain implementation of the impedance bound-

ary condition is realized by coupling the above condition

Eq. (11) with the DG discretization through the reformula-

tion of the upwind flux near the boundaries. The use of the

plane-wave reflection coefficient at normal incidence is con-

sistent with the fact that the numerical flux from the nodal

DG scheme is always normal to the boundary surface.

Furthermore, the impedance surface is assumed to be locally

reacting, which holds true when the sound speed in the

reflecting material is much lower than that of the incident

wave, especially for porous materials with a high flow resis-

tivity.38 However, it should be noted that many common

materials used in room acoustics such as solid panels and

membranes are extendedly-reacting.

In this work, the real-valued frequency-independent reflec-

tion coefficient R1 is extended to the frequency-dependent

one RðxÞ through the use of the multi-pole model. The whole

TDIBC formulation consists of three steps. The first step is to

transform the impedance values ZsðxÞ, which can be obtained

from either a continuous semi-empirical impedance model

or measured discrete impedance values, within the interested

frequency range, to the corresponding normal reflection
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coefficient RðxÞ using Eq. (10). Second, the target reflection

coefficient RðxÞ is approximated with a sum of rational

functions39

RðxÞ � R1 þ
XS

k¼1

Ak

fk þ ix

þ
XT

l¼1

1

2

Bl � iCl

al � ibl þ ix
þ Bl þ iCl

al þ ibl þ ix

� �

¼ R1 þ
XS

k¼1

Ak

fk þ ix
þ
XT

l¼1

Blixþ Clbl þ alBl

ðal þ ixÞ2 þ b2
l

;

(12)

where ½R1;Ak;Bl;Cl; fk; al; bl� 2 R are all real numerical

parameters. R1 is the limit value of RðxÞ as the frequency

approaches infinity. fk and al6ibl are the real poles and

complex conjugate pole pairs respectively. To satisfy the

causality and reality conditions fk; al; bl need to be positive,

and the passivity condition is fulfilled when jRnðxÞj � 1.16

By applying the inverse Fourier transform to Eq. (12),

the so-called reflection impulse response function in the

time-domain is obtained as

RðtÞ � R1dðtÞ þ
XS

k¼1

Ake�fktHðtÞ

þ
XT

l¼1

e�al tðBl cosðbltÞ þ Cl sinðbltÞÞHðtÞ; (13)

where dðtÞ and H(t) are the Dirac delta and Heaviside func-

tion, respectively. As shown in Ref. 39, each term in R(t)
can be interpreted as follows. The first term of Eq. (13)

stands for the instantaneous response since R1 is the fre-

quency independent value or high-frequency limit of RðxÞ.
The second term is an exponentially decaying relaxation

function, which mimics the absorption behavior of porous

materials. The last group of terms is the so-called damped

multi-oscillators that can be linked to resonator-type absorb-

ers, where the imaginary part of the pole bl determines the

oscillation period and the real part al governs the decaying

rate.

The third and last step of the proposed TDIBC formula-

tion is to enforce the multi-pole impedance model into the

numerical flux along the impedance boundary surface. The

time-domain counterpart of the characteristic acoustic

waves as defined in Eqs. (7) and (8) can be obtained by pre-

multiplying the acoustic variables q with the left eigenma-

trix L�1, i.e.,

L�1q ¼

0

0

-out
n ðtÞ

-in
n ðtÞ

2
66664

3
77775 ¼

0

0
pðtÞ
qc
þ vnðtÞ

pðtÞ
qc
� vnðtÞ

2
666666664

3
777777775
: (14)

It should be noted that the first two characteristic terms in

Eq. (14) are numerically irrelevant in the whole boundary

formulation since their characteristic speeds (the first two

diagonal values in K) are zero. Finally, the numerical flux

formulation of the TDIBC reads

n � F�ðq�h Þ ¼ LK 0; 0;-out
n ðtÞ;-in

n ðtÞ
� �T

; (15)

where -out
n ðtÞ can be first calculated with the interior solu-

tion values at each of discrete nodes along the boundary as

-out
n ðtÞ ¼

p�ðtÞ
qc
þ v�n ðtÞ; (16)

and then based on the condition of Eq. (11), the time-

domain incoming wave -in
n ðtÞ is obtained from the convolu-

tion of -out
n ðtÞ with R(t) of Eq. (13),

-in
n ðtÞ ¼

ðt

�1
-out

n ðsÞRðt� sÞds: (17)

To compute the convolution Eq. (17), the ADE method39,40

is used. Substitution of the reflection impulse response R(t)
Eq. (13) into Eq. (17) yields

-in
n ðtÞ ¼ R1-out

n ðtÞ þ
XS

k¼1

Ak/kðtÞ

þ
XT

l¼1

Blw
ð1Þ
l ðtÞ þ Clw

ð2Þ
l ðtÞ

h i
; (18)

where the so-called accumulators or auxiliary variables

/kðtÞ;w
ð1Þ
l ðtÞ;w

ð2Þ
l ðtÞ, are given by

/kðtÞ ¼
ðt

0

-out
n ðsÞe�fkðt�sÞds; (19a)

wð1Þl ðtÞ ¼
ðt

0

-out
n ðsÞe�alðt�sÞ cos ðblðt� sÞÞds; (19b)

wð2Þl ðtÞ ¼
ðt

0

-out
n ðsÞe�alðt�sÞ sin ðblðt� sÞÞds: (19c)

The first term in Eq. (18) corresponds to the real-valued

impedance boundary formulation. The bounds of the integrals

in Eq. (19) are reduced to ½0; t� due to the causality constraint

indicated in the Heaviside function H(t). The accumulators are

calculated by solving the following first-order ordinary differ-

ential equations (ODEs) with zero initial values, which result

from the differentiation of Eqs. (19) with respect to time

@/k

@t
þ fk/kðtÞ ¼ -out

n ðtÞ; (20a)

@wð1Þl

@t
þ alw

ð1Þ
l ðtÞ þ blw

ð2Þ
l ðtÞ ¼ -out

n ðtÞ; (20b)

@wð2Þl

@t
þ alw

ð2Þ
l ðtÞ � blw

ð1Þ
l ðtÞ ¼ 0: (20c)
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As shown by Dragna et al.,39 the ADE method keeps the

same order accuracy of a general multi-stage time integra-

tion scheme. Furthermore, since these accumulators only

exist on the boundary nodes and only one time stage history

of their values need to be stored, this approach has the bene-

fit of low memory requirements.

C. Discussions on time stepping and stability

In this work, the basic idea of method of lines (MOL) is

followed. After the spatial discretization with the DG

method, a five-stage, fourth-order explicit Runge-Kutta

(RK) scheme41 is used to integrate all the time-derivatives

of the discretized system. An explicit time-stepping method

comes with the conditional stability, which necessitates an

upper bound on the time step size Dt. From the classical sta-

bility analysis of the MOL,42,43 it is required that the time

step size Dt is small enough so that the product of Dt with

the full eigenvalue spectrum of the spatially-discretized sys-

tem falls inside the stability region of the time integration

scheme.42,43 However, for the proposed scheme, the spatial

discretization with the DG method is no longer completely

decoupled from the time integration. To be more specific,

the spatially-dependent upwind flux along the impedance

boundary involves the time-integrated auxiliary variables,

which are in turn stated explicitly in terms of the spatial

dependent variables as shown in Eqs. (18) and (20). As a

result, the stability analysis for the coupled system as con-

sidered here is not as straightforward as the well-established

von Neumann analysis, which is typically applied to an

initial-valued system of ODEs as in Ref. 29. Instead of pro-

viding a solid proof of discrete stability, the preliminary sta-

bility analysis for coupled systems from Refs. 39 and 44 are

adopted for reference. It was claimed that the maximum

allowable time step is determined by two factors: (1) the

usual Courant-Friedrichs-Lewy (CFL) condition for the spa-

tial discretization with DG method, which requires that

Dt � C1=maxjkNj, where kN represents the eigenvalues of

the spatial discretization by DG method and C1 is a constant

depending on the stability region of the time-stepping

method; (2) the stiffness of the ADEs as shown in Eq. (20),

which is influenced by the maximum possible value of the

parameters f; a, b in the multi-pole approximation. In this

work, as will be presented in the following section, the stiff-

ness is restricted so that the stability of the ADEs is auto-

matically satisfied given a time-step size resulting from the

first factor. For the first factor, it is known that for the linear

system with first order of spatial differentiation, the gra-

dients of the normalized Nth order polynomial basis are of

order OðN2=hÞ near the boundary part of the element,31 con-

sequently, the magnitude of the maximum eigenvalue kN

scales with the polynomial order N as: max ðkNÞ / N2, indi-

cating that Dt / N�2. This severe time step size restriction

greatly limits the computational efficiency of high polyno-

mial order approximations.44 The temporal time steps are

determined in the following way:31

Dt ¼ CCFL �minðDxlÞ �
1

c
� 1

N2
; (21)

where Dxl is the smallest edge length of mesh elements and

CCFL is a constant of order Oð1Þ.

D. Properties of rational functions and parameters
identification

When fitting a generic broadband impedance model

with Eq. (12), the fitted solutions are not unique. The three

admissibility conditions need to be verified for each set of

parameters as, otherwise, unphysical instabilities arise.

Also, the additional computational work is proportional to

the number of poles used. Furthermore, each term in the

reflection impulse response R(t) may vary drastically even

though the corresponding frequency domain model RðxÞ as

a whole approximates the same impedance models or data

equally well. Consequently, for the sake of numerical stabil-

ity and computational efficiency, restrictions on the parame-

ter values and number of poles are needed.

Each rational function with single real pole has two

degrees of freedom (DoF). It is a monotonically decreasing

function over frequency in terms of magnitude, which resem-

bles a low-pass filter. At zero frequency, the maximum value

is A=f obtained from Eq. (12) and the rate at which the mag-

nitude decreases becomes smaller with increasing value of f.

The rational function with complex conjugate pole pair

has four parameters (DoFs). Recall that the mass-spring-

damper three-parameter impedance model is expressed as

ZsðxÞ ¼ R0 þ X1ixþ X�1

ix
; (22)

with the resistance R0, the stiffness X�1, and the mass X1

being positive. Inserting above Eq. (22) into Eq. (10) yields

RðxÞ ¼ 1� 2ix=X1

�x2 þ R0 þ 1

X1

ixþ X�1

X1

: (23)

By comparing Eq. (23) with the complex-pole rational func-

tion, it can be seen that they differ in the constant term 1, the

sign of the complex part in the numerator, and the number of

parameters. In an attempt to mimic the physical behavior of a

mass-spring-damper system, we define Cbþ Ba ¼ 0, i.e.,

C ¼ �aB=b. Consequently, the DoFs are reduced to three

and the magnitude of each rational function Bix=ð�x2

þ2aixþ a2 þ b2Þ now increases from 0 at zero frequency to

the maximum value of B=2a at the resonance frequency

x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
, and then approaches 0 asymptotically.

To give an example of how to obtain the parameters of

the multi-pole approximation for a specific impedance

model, we consider a glass-wool baffle mounted on a rigid

backing that is typical for room acoustic purposes. The sur-

face impedance is modeled by the Johnson-Champoux-

Allard-Lafarge (JCAL) model,45 which is a phenomenologi-

cal model considering wave propagation in porous materials
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on a microscopic scale. The characteristic impedance Zc

reads Zc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qeff Beff

p
, where the effective density qeff and

the effective bulk modulus Beff are described by

qeff ¼
qa1
u

1þ ru
ixa1q

1þ 4ia2
1gq

r2K2u2

 !1=2
2
4

3
5; (24)

Beff ¼
cP0

u
c� c�1

1þ ug
ixk00qPr

1þ4ixk020 qPr

gK02u2

 !1=2
2
4

3
5

0
BBB@

1
CCCA
�1

:

(25)

The descriptions of physical parameters and their values for a

typical glass wool material measured from experiments46 are

given in Table IV in the Appendix. The surface impedance of

rigidly backed porous layer with thickness of d reads

Zs ¼ �iZccotðjeff dÞ; (26)

where the wavenumber of the porous material is given as

jeff ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qeff =Beff

q
. In this study, the parameters in the

multi-pole fit are obtained by the optimization technique

first presented by Cott�e et al.25 It is shown25 that the opti-

mization technique is capable of ensuring the positivity of

the fitting parameters in order to meet the causality and

reality conditions. Furthermore, the number of poles can

be pre-defined and the maximum values of parameters can

be confined such that the stiffness of ADEs falls below the

threshold as determined by the discrete stability condition.

However, different from the general impedance boundary

formulations using admittance as described in Refs. 11

and 29, where the condition for passivity is framed in

terms of the positivity of real-valued fitting coefficients of

the impedance model, the passivity condition of the cur-

rent impedance boundary formulation is fulfilled when

jRnðxÞj � 1.16 Consequently, a posterior check jRnðxÞj
� 1 is needed.

For the JCAL model under consideration, it is sufficient

to use real poles alone since the absorption coefficient

increases monotonously with frequency. Since RðxÞ is a

complex value, both the real parts and the imaginary parts

should be fitted simultaneously instead of the amplitude and

the phase in order to avoid wrap around ambiguity.11 The

real-pole approximation can be rearranged to

RðxÞ �
XS

k¼1

Ak

fk þ ix
¼
XS

k¼1

Akfk

f2
k þ x2

� i
XS

k¼1

Akx

f2
k þ x2

:

(27)

Following the approach as in Ref. 25, the optimization is

performed considering 100 frequencies logarithmically sam-

pled between 20 and 1000 Hz, and the Euclidean norm of

the deviation of real parts are minimized while keeping the

difference of imaginary parts at each of the sampled fre-

quency under a tolerance value �, i.e.,

min
Ak ;fk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX100

i¼1

Re RðxðiÞÞ½ � �
XS

k¼1

Akfk

f2
k þ xðiÞ2

�����
�����

vuut
0
B@

1
CA

such that

0 � fk � fmax

8i; Im RðxðiÞÞ½ � þ
XS

k¼1

AkxðiÞ
f2

k þ xðiÞ2

�����
����� � �;

8>><
>>:

(28)

where fmax is the threshold value for f due to the discrete

stability condition and is chosen as 5� 104 in this work con-

sidering the CFL condition and the interested frequency

range up to 1000 Hz. To solve this minimization problem,

the interior-point algorithm47 of the non-linear minimization

function fmincon from the MATLAB optimization toolbox48 is

used. A series of optimizations is run to get a good fit. In the

first run, the initial values of Ak and fk are chosen randomly

between 0 and fmax and a relatively large value of � is used,

e.g., � ¼ 1� 10�1. Then, the obtained set of coefficients is

TABLE I. Coefficients Ak and fk of the real pole approximation for the

rigidly backed layer of JCAL model.

Coefficients Ak fk

k¼ 1 3:4454� 102 1:2967� 103

k¼ 2 1:1999� 104 4:3215� 104

k¼ 3 4:9999� 104 2:8108� 103

k¼ 4 2:9954� 103 1:4546� 104

k¼ 5 �4:9298� 104 2:8111� 103

FIG. 1. (Color online) Real and imaginary part of the normal reflection

coefficient of rigidly backed layer of JCAL model (red solid line), real pole

fitting with the set of coefficients in Table IV (dashed blue line) in fre-

quency band 20–1000 Hz.
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used as the initial value for the next optimization with a smaller

value of �. The process continues until a good approximation is

obtained. Numerical experiments show that there is a compro-

mise between the number of poles and the fitting accuracy. One

set of coefficients is given in Table I, and the fitted reflection

coefficient is plotted in Fig. 1. The maximum absolute value

error at the sampled frequencies are 6:1513� 10�4 and

3:6357� 10�5 for the real and imaginary parts, respectively.

III. NUMERICAL VERIFICATIONS

In this work, all the simulations are initiated with the

same Gaussian-shaped pressure conditions

pðx; t ¼ 0Þ ¼ eð�ln 2=b2Þðx�xsÞ2 ; (29a)

vðx; t ¼ 0Þ ¼ 0; (29b)

where xs represents the source coordinates and b the half-

bandwidth of this Gaussian pulse. A smaller value of b indi-

cates a source spectrum up to a higher frequency.

A. Numerical properties and error in 1D

To verify the convergence property of the proposed for-

mulation of the TDIBC and to quantify both the dissipation

and dispersion error, a 1D single reflection scenario is con-

sidered. Each of the following experiment consists of two

simulations. In the first simulation, the direct sound signal,

denoted as pdðtÞ, is recorded. In the second simulation, a

reflecting surface is present and the measured sound pres-

sure signals contain both the direct sound and the sound

reflected from the impedance surface. The reflected sound

signal prðtÞ can obtained by subtracting pdðtÞ. The spectra

of the direct sound and the reflected sound, denoted as

Pdðf Þ and Prðf Þ, respectively, are obtained by Fourier

transforming pd and pr without windowing. Let R1 denote

the distance between the source and the receiver and R2 is

the distance between the receiver and the image source

mirrored by the reflecting impedance surface. The numeri-

cal plane-wave reflection coefficient Rnum is calculated as

follows:

Rnumðf Þ ¼
Prðf Þ � GðjR1Þ
Pdðf Þ � GðjR2Þ

; (30)

where GðjRÞ is the 1D Green’s function for the free field

propagation and j is the wavenumber. For room acoustic

modeling, where multiple reflections happen inside an

enclosure, it is important to quantify the error arising from

each reflection. The dissipation error �amp in dB and the

phase error �# in % from a single reflection are calculated as

follows:

�ampðf Þ ¼ 20 log10

���� Ranaðf Þ
Rnumðf Þ

����; (31a)

�#ðf Þ ¼
1

p
j#ðRanaðf ÞÞ � #ðRnumðf ÞÞj � 100%; (31b)

where Ranaðf Þ is the analytical plane-wave reflection coeffi-

cient and #ð�Þ extracts the phase angle of a complex number.

For a given broadband incident acoustic wave of arbitrary

amplitude, the loss of sound pressure level (SPL) and the

distortion of the phase across the frequency range of interest

can be quantified.

Consider an 1D test case with an impedance boundary

condition on the left (x¼ 0 m) and a non-reflecting boundary

condition on the right (x¼ 10 m). The Gaussian pressure

pulse is located xs¼ 6 m while the receiver location is at

xr¼ 3 m. b is chosen as 0.15 such that the pulse has a signifi-

cant frequency content up to 1000 Hz. The simulation is run

for a non-dimensional time of �t ¼ t=ðlref =cÞ ¼ 15, where t is

physical time and lref¼ 1 m is used as the reference length,

to make sure that the rightward-traveling wave has left the

domain while the reflected leftward-traveling wave has

passed the receiver location to a sufficient extent. The real-

valued, single real pole, and single complex conjugate pole

cases are considered separately. Without loss of generality,

the real-valued specific impedance is chosen as Zs¼ 19, the

real pole coefficients are chosen as ½A; f� ¼ ½6:4� 103;
8� 103�. The complex conjugate pole pair has coefficient

½B;C; a; b� ¼ ½1:3195 � 103;�7:6179 � 102; 9:4247 � 102;
1:6324 � 103�, which corresponds to a maximum value of

reflection coefficient 0.7 at the resonance frequency 300 Hz.

FIG. 2. (Color online) Convergence rate test of �L2 with CCFL¼ 1 and N ¼ 3; 4; 5; 6: (a) real-valued impedance, (b) single real pole, (c) single complex con-

jugate pole.
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1. Convergence rate verification

The numerical errors originate from the spatial and tem-

poral discretization of the interior domain, as well as from

the impedance boundary formulation, where an extra recur-

sive convolution error may be involved. Before quantifying

the error magnitudes, first, the convergence rate, denoted by

kc with respect to the mesh sizes, is verified. The physical

domain is discretized with ½20; 40; 60; 80; 100� uniform ele-

ments (Dx ¼ ½0:5; 0:25; 0:167; 0:125; 0:1� m). Two error

measures are used. The first one is the standard L2 error

defined as �L2 ¼ jjpanað�t ¼ 15Þ � pnumð�t ¼ 15ÞjjL2 , where

panað�t ¼ 15Þ and pnumð�t ¼ 15Þ denote the analytical solu-

tion49 and the numerical solution at the final time across the

whole domain. jj � jjL2 denotes the L2 integration, which is

carried out numerically and accurately up to the order of

polynomial approximation. The second error measure is

defined as the absolute-valued deviation of magnitude of the

reflection coefficient at discrete sampling frequencies, i.e.,

�Rðf Þ ¼ jRanaðf Þ � Rnumðf Þj.
In practice, it is desirable to set CCFL very close to the

stability limit to save computational time. In order to get

insights into the effects of the temporal errors on the conver-

gence rate from both the time derivative approximation and

the convolution, all test are performed using relatively large

time steps that correspond to CCFL¼ 1 in Eq. (21) for each

set of the polynomial basis order and the mesh size. The

global �L2 error is shown in Fig. 2, where a first-order fit is

used to calculate the convergence rate. The expected con-

vergence rate hNþ1=2 with different polynomial orders is

observed for all kinds of boundaries considered. Figure 3

shows the convergence rate kc of the reflection coefficient

magnitude at some frequencies with a polynomial basis of

order N¼ 4. It can be seen that for all types of boundaries,

the convergence rate lies between 4 and 5 as expected across

the frequency range of interest. Furthermore, by comparing

the real-valued impedance boundaries with the other two

frequency-dependent boundaries in both Figs. 2 and 3, it can

be seen that the magnitudes of error of all types of bound-

aries are almost the same, indicating that the extra time inte-

gration error from the coupled ADEs are negligible.

Numerical tests with a smaller time step of CCFL¼ 0.1 have

been carried out and it is found that the numerical error

remains the same. In other words, the spatial error from the

DG discretization dominates over the time integration error

arising from the time partial derivative approximation of the

wave equation and the coupled ADEs.

2. Cost efficiency and memory efficiency of high order
basis functions

One benefit of the DG scheme is its low dissipation and

dispersion error for a given mesh resolution with the usage

FIG. 3. (Color online) Convergence rate test of �Rðf Þ with CCFL¼ 1. (a) Real-valued impedance, (b) single real pole, (c) single complex conjugate pole.

FIG. 4. (Color online) The dissipation error �amp in dB, the phase error �# in % and the amplitude of the plane-wave reflection coefficient from a single

reflection for a single real pole model.
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of high-order polynomial basis function results. However,

a small time step size is needed to satisfy the conditional

stability of the explicit time-integration scheme. Another

concern is related to the computational memory space to

store all the acoustic variables and the geometry informa-

tion of the mesh. For room acoustic simulations, the

desired length of the impulse response determines the sim-

ulation time, while the highest frequency of interest

decides the required memory space under a given mesh

resolution.

To investigate whether the high-order basis function is

a good choice for modeling frequency-dependent impedance

boundary in terms of the cost efficiency the following mea-

sure as a function of basis function order N is used to give a

general estimate of the computational cost under a required

simulation time44

WcðNÞ ¼ Ntimesteps � NDOF; (32)

where Ntimesteps is the number of time steps and NDOF is the

total number of DOF. This simplified computational cost

measure assumes serial computations and excludes the

effects of advanced parallel computing and matrix

operations on the computational time. For 1D problems,

NDOF ¼ ðN þ 1Þ � K (K being the number of elements), and

under the explicit time-stepping stability condition as in Eq.

(21), the computational cost can be re-written as

WcðNÞ ¼ C � K � N2 � ðN þ 1Þ � K; (33)

where the constant factor C is determined by the CFL num-

ber and the number of acoustic variables. Now, suppose the

computational budget is set by restricting K �N2 � ðNþ1Þ �K
�2:4�105, then, for polynomial basis function of order

N¼½2;3;6;7�, the number of mesh elements K¼½141;81;
31;25�. Simulations with a practically large time step that

corresponds to CCFL¼1 in Eq. (21) are performed for each

combined set of the polynomial basis order and mesh.

Figure 4 shows the dissipation error �amp and the phase

error �# as defined in Eq. (31), as well as the amplitude of

the plane-wave reflection coefficient from a single reflection

corresponding to a single real pole model, while Fig. 5

presents the results for a single complex conjugate pole

model. It can be seen that the numerical errors using high-

order polynomial basis functions such as N¼ 6, 7, are much

smaller than those with low-order basis functions like N¼ 2,

3, indicating that high-order basis functions achieve a better

accuracy under a given computational complexity. In other

words, under a given threshold value for dissipation and dis-

persion error, high-order basis functions use less computa-

tional power. However, it should be noted that the cost

efficiency benefits of using high-order basis concluded

above are based on the simplified measure of the computa-

tional cost as in Eq. (32), while in practice, other factors

such as the parallel implementations could affect the compu-

tational time as well.

To check the memory efficiency of high-order basis

functions, similar numerical experiments as described above

are performed with the polynomial basis function of order

N ¼ ½3; 5; 7� and the time step size resulting from CCFL¼ 1

FIG. 5. (Color online) The dissipation error �amp in dB, the phase error �# in % and the amplitude of the plane-wave reflection coefficient from a single

reflection for a single complex conjugate pole model.

TABLE II. The dissipation error �amp in dB as a function of DPW for various polynomial order N ¼ ½3; 5; 7�.

Single real pole Single complex conjugate pole

DPW N¼ 3 N¼ 5 N¼ 7 N¼ 3 N¼ 5 N¼ 7

8 1:4786� 100 1:1201� 10�1 5:4273� 10�2 1.4789� 100 1:1199� 10�1 5:4275� 10�2

10 1:4626� 10�1 1:5818� 10�2 6:7342� 10�3 1:4639� 10�1 1:5808� 10�2 6:7357� 10�3

12 3:1635� 10�2 1:7270� 10�3 1:4177� 10�3 3:1596� 10�2 1:7212� 10�3 1:4185� 10�3
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in Eq. (21). The corresponding number of mesh elements

are chosen as K ¼ ½60; 40; 30� in order to have almost the

same number of DOF, i.e., NDOF¼ 240. The dissipation and

dispersion error is quantified with respect to the DOF per

wavelength (DPW), which is defined as4

DPW ¼ c

f
�
�

Np � K
V

�1=d

: (34)

Here, f is the frequency of interest, Np ¼ N þ 1 is the num-

ber of points inside single 1D element, d is the physical

dimension, and V is the volume of the whole domain. For

the considered 1D test, DPW � ½8; 10; 12� when f � ½1000;
800; 680� Hz. Table II shows the dissipation error �amp for

both the single real pole case and the single complex conju-

gate pole case, while the results of the phase error �# are dis-

played in Table III. Almost the same error magnitudes are

obtained for both types of poles. Furthermore, it can be

observed that given the same spatial resolution, high-order

basis functions achieve better accuracy compared to low-

order basis functions.

B. 3D single reflection from an impedance surface
modeled by JCAL

To verify the impedance boundary condition formulation

in 3D, a large 3D domain with a reflecting impedance bound-

ary on the bottom is now considered. The impedance of the

reflecting boundary is the surface impedance of the rigidly

backed glass-wool panel as in Eq. (26). This test case mimics

the reflection scenarios that happen multiple times in a real

room acoustic simulation. The Gaussian pressure pulse is cen-

tered at xs ¼ ½0; 0; 0� m, a plane reflecting surface is placed

2 m away from the source at z¼ – 2 m and two receivers are

placed at xr1 ¼ ½0; 0;�1� m and xr2 ¼ ½4; 4;�1� m, which

corresponds to the normal incidence and the oblique incidence

with an incidence angle of 63	, respectively. The value of b as

in Eq. (29) is chosen as 0.17 so that the pulse has a significant

frequency content up to 700 Hz. In this work, the hard wall

boundary conditions are imposed on exterior boundaries of the

whole computational domain, and the simulations are stopped

as soon as the pulse has passed the receivers’ location to a suf-

ficient extent, but before the reflected waves from the exterior

boundaries reach the receivers. For the normal incidence case,

Fig. 6 shows the configuration diagram to obtain the reflected

sound at the first receiver xr1 with a reflecting surface on the

bottom. For the oblique incidence case, a cubic domain of

dimension ½�5:5; 9:5� � ½�5:5; 9:5� � ½�2; 7:5� in meters is

used to obtain the reflected sound at xr2. The simulations are

run for a non-dimensional time of �t ¼ t=ðlref=cÞ ¼ 10.

Uniform structured tetrahedra meshes generated with the

meshing software GMSH50 are used for this study. In order to

have sufficient spatial resolution at the highest frequency of

interest 700 Hz, the mesh size is chosen as 0.5 m and simula-

tions with polynomial basis of order N ¼ ½7; 9� are performed,

resulting in DPW of ½8:8; 10:8�. The time step sizes used cor-

respond to CCFL¼ 1 as in Eq. (21).

The analytical solutions of the total pressure, which

includes both the direct sound and the reflected sound, for

the considered test case exist in the frequency domain.51 For

the Gaussian pulse as described in Eq. (29), the direct sound

reaching the receivers can be calculated analytically as

pd;anaðtÞ ¼ ½ðrsr � ctÞ=2rsr�eð�ln 2=b2Þðrsr�ctÞ2 þ ½ðrsr þ ctÞ=2rsr�
eð�ln 2=b2ÞðrsrþctÞ2 (with rsr being the source-receiver dis-

tance).4 Figure 7 shows the comparison of the simulated

pressure and the analytical solutions for both cases in terms

of the amplitude and the phase. A good match between

these results is observed, demonstrating the correct imple-

mentation and high precision of the proposed boundary

scheme.

However, the comparison of the pressure field alone

hardly reveals detailed information regarding the error

behaviour. To investigate that, the error measures of Eq.

(31) defined in the 1D tests are considered. The analytical

spherical-wave reflection coefficient Rana
52 corresponding to

the rigidly backed glass-wool as in Eq. (26) and the numeri-

cal reflection coefficient Rnum is calculated as shown in

TABLE III. The phase error �# % as a function of DPW for various polynomial order N ¼ ½3; 5; 7�.

Single real pole Single complex conjugate pole

DPW N¼ 3 N¼ 5 N¼ 7 N¼ 3 N¼ 5 N¼ 7

8 1.2155� 100 4:9461� 10�1 3:5896� 10�2 1.2113� 100 4:9467� 10�1 3:5932� 10�2

10 9:2882� 10�1 1:6612� 10�1 1:6333� 10�2 9:2877� 10�1 1:6613� 10�2 1:6323� 10�2

12 5:4287� 10�2 7:1990� 10�2 7:4670� 10�3 5:4289� 10�1 7:1992� 10�2 7:4616� 10�3

FIG. 6. (Color online) 3D computational domain to obtain reflected sound

at normal incidence.

J. Acoust. Soc. Am. 147 (4), April 2020 Huiqing Wang and Maarten Hornikx 2543

https://doi.org/10.1121/10.0001128



Ref. 4. It should be noted that the observed numerical errors

could arise from several potential mechanisms, including

the dissipation and dispersion during the wave propagation,

the reflection from the impedance boundary. In particular,

early truncation of the recorded time signal has a large effect

on the low frequency error. In order to focus on the error

arising from the boundary condition alone and to rule out

the effects of other mechanisms, the well-established hard

FIG. 7. (Color online) Complex pressure of a single reflection from a locally reacting, frequency dependent impedance boundary, compared with the ana-

lytic solution. (a) Amplitude. (b) Phase in degree.

FIG. 8. (Color online) The dissipation error �amp, the phase error �# in and the amplitude of the spherical-wave reflection coefficient for the rigidly backed

JCAL layer and the rigid wall. (a) Normal incidence. (b) Oblique incidence.
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wall boundary condition31,53 and its associated error is used

as a reference bound for the reflecting surface. Its imple-

mentation has been verified in previous work4 by compari-

son against the analytical solution for a 3D cuboid room

with rigid walls. Figure 8 shows the results of both the nor-

mal incidence and the oblique incidence cases. It is observed

that the error behaviour of the proposed impedance bound-

ary condition more or less follows the hard wall case. The

small deviation can be partly attributed to the approximation

error of the JCAL model using the multi-pole models.

Furthermore, reduction of error in the high frequency range

with a higher polynomial order illustrates the convergence.

IV. CONCLUSIONS

In this work, a numerical formulation for the TDIBC

implementations in the framework of the TD-DG method is

developed for the simulation of broadband sound propaga-

tion problems, specially targeting at the room acoustic appli-

cations. The essential idea is to model the acoustic reflection

behaviour of a locally-reacting surface using the reflection

coefficient RðxÞ in the form of a multi-pole model and then

reformulate the corresponding time-domain upwind flux.

This work is an extension of previous frequency-

independent impedance boundary formulation to a generic

broadband one. The properties of the multi-pole model are

discussed, followed by a straightforward and effective

parameter identification strategy to ensure the fully-discrete

stability of the whole formulation. An application example

of a typical impedance boundary of a rigidly-backed glass-

wool baffle for room acoustic purposes is presented.

To verify the performance of the formulation, the

reflection coefficients obtained from numerical tests are

compared with the analytical ones. The 1D tests verify the

high-order convergence property of the proposed formula-

tion for accurately representing the reflection behavior of

the plane wave. Meanwhile, the benefits of using high-order

polynomial basis functions are demonstrated through the

single reflection scenario, indicating a significant improve-

ment in both cost efficiency and memory efficiency. The 3D

tests further demonstrate the capacity of the proposed meth-

odology for representing practical locally-reacting imped-

ance boundary in the multi-dimensional case. To sum up,

the proposed method further strengthens the potential of the

TD-DG method as a wave-based method for room acoustics

modeling.
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Errata of Paper II

• Reference 51. K. W. Thompson, “Time dependent boundary conditions for
hyperbolic systems,”J. Comput. Phys. 68(1), 1–24 (1987).
should be replaced by
S.I. Thomasson, ”Reflection of waves from a point source by an impedance
boundary.” The Journal of the Acoustical Society of America 59(4), 780-
785(1976).
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a b s t r a c t

Accurate modeling of boundary conditions is of critical importance for acoustic simulations. Recently, the
time-domain nodal discontinuous Galerkin (TD-DG) method has emerged as a potential wave-based
method for acoustic modeling. Although the acoustic reflection behavior of various time-domain impe-
dance boundaries has been studied extensively, the modeling of the sound transmission across a
locally-reacting layer of impedance discontinuity is far less developed. This paper presents a formulation
of broadband time-domain transmission boundary conditions for locally-reacting surfaces in the frame-
work of the TD-DG method. The formulation simulates the acoustic wave behavior at each of the bound-
ary nodes using the plane-wave theory. Through the multi-pole model representation of the transmission
coefficient, various types of transmission layers can be simulated. One-dimensional numerical examples
demonstrate the capability of the proposed formulation to accurately simulate the reflection and trans-
mission characteristics of the limp wall and the porous layer, where quantitative error behavior against
analytical results is presented. Furthermore, to demonstrate the applicability, two scenarios of two-
dimensional acoustic environment are considered. One is the sound transmission between two rooms
partitioned by a limp panel and the other is the sound propagation through a transmissive noise barrier.
Comparison of the predicted results from the proposed method against the results from the frequency-
domain finite element simulations further verifies the formulation.
� 2020 The Authors. Published by Elsevier Ltd. This is an open access articleunder the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Numerical simulation of sound fields in complex enclosures is a
research subject of continuing interest and has been applied in
many fields, for example, architecture design [1–3], automotive
design [4], virtual reality [5], aircraft cabin noise control [6]. In gen-
eral, there are mainly two groups of acoustic modeling approaches,
namely geometrical acoustic methods [7] and wave-based meth-
ods. For the geometrical acoustic methods, simplifying assump-
tions regarding sound propagation and reflection are being made,
which directly deteriorate the simulation accuracy of complex
wave phenomena such as interferences, scattering and diffraction,
especially in the low-frequency range. Besides that, geometrical
acoustic methods often use simplified 3D models, where neglected
geometrical details of the configurations are replaced by equiva-
lent scattering coefficients [8]. By contrast, wave-based methods
address sound propagation in complex scenarios from a more
physical point of view and solve the governing partial differential
equations based on numerical methods. The acoustic field over

the whole enclosure is captured completely. Compared to
frequency-domain wave-based methods, time-domain modeling
allows single run broadband calculations with moving sources
and time-varying domains and generates the impulse response of
the room. Therefore, they are favored for the purpose of auralisa-
tion. There are various methodologies, including finite-difference
time-domain method (FDTD) [9], finite-element (FEM) [10],
finite-volume (FVM) methods [11] and pseudospectral time-
domain method (PSTD) [12]. These methods differ in terms of
the fundamental formulation, the implementation complexity,
the computational cost, the accuracy in representing realistic and
geometrically complicated boundary conditions, and the ability
to suppress the dissipation and dispersion error.

After decades of developments in various areas of computa-
tional engineering, the time-domain discontinuous Galerkin (DG)
method [13–16] has for the first time been evaluated as a potential
wave-based method for room acoustic modeling purposes [17].
The DG method is known to be weakly dissipative and dispersive
for wave propagation due to its high-order polynomial basis dis-
cretization [18] and thus well suitable for cost-efficient simula-
tions over a long time duration. Since it operates on unstructured
(curvilinear) mesh and allows for local refinement in terms of

https://doi.org/10.1016/j.apacoust.2020.107280
0003-682X/� 2020 The Authors. Published by Elsevier Ltd.
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the polynomial order and the mesh size, the DG method is capable
of simulating arbitrary complex geometries without geometrical
simplifications. Though computationally intensive, the DG method
solves governing equations elementwise and uses the so-called
numerical flux at adjacent element interfaces to communicate
the information between them, thus it is well suited to parallel
computation [19,20], particularly when explicit time-integration
methods are used. Recently, it has become possible to apply the
DG method to large scale wave propagation problems [21].

A major concern for realistic acoustic simulations is the accurate
modeling of boundary interfaces, where more physical mechanisms
apart from free propagation come into play, such as diffusion, diffrac-
tion, scattering, absorption, transmission, and coupling with another
medium [22]. For time-domain simulations, many efforts have been
devoted tomodel the reflection and absorption behavior ofmaterials
using the frequency-dependent impedanceboundaryconditionswith
various of the above-mentioned methodologies, which can be found
in Refs. [23,24]. In the specific framework of the time-domain DG
method, the formulations for the locally-reacting impedance bound-
ary condition have been presented in Refs. [25–27]. However, when
the propagating acoustic wave experiences a locally-reacting bound-
ary, part of it is reflected while the other part is transmitted, and the
distribution depends on the degree of the impedancemismatch [28].
Therefore, in theareaof thegeneral linear acoustics, itwouldbedesir-
able todevelopauniformacousticboundarycondition that could take
both the sound reflection and transmission into account. To address
this issue, Toyoda and Ishikawa [22] have proposed a locally-
reacting boundary condition within the FDTD framework using the
mass-damper-spring (MDS) system inserted between propagation
media to simulate the frequency-dependent absorption and trans-
mission characteristics. TheMDS boundary has in total seven param-
eters to fit the frequency characteristics of materials in terms of the
impedance, including threemasses, twodampingand twospringcon-
stants. To the best of authors’ knowledge, no formulation regarding
the sound transmission boundary condition has been presented so
far for the time-domain DGmethod.

In this work, a formulation of the transmission boundary condi-
tion for locally-reacting materials is derived based on the plane
wave theory. The frequency-dependent transmission characteris-
tics are incorporated into the formulation through the multi-pole
representation of the plane wave transmission coefficient in the
frequency domain. This multi-pole model defined from rational
functions has been widely used in time-domain impedance bound-
ary conditions [29,25,30–33]. The fitting of parameters in this rep-
resentation for a target transmission characteristic is achieved by
the optimization technique as firstly presented by Cotté et al.
[30]. The time-domain implementation based on the auxiliary dif-
ferential equations (ADE) method [34,35] is used.

The paper is organized as follows. The formulations of the
reflection and transmission boundary conditions within the time-
domain DG method are derived in Section 2. The formulation of
multi-pole models for three practical cases, i.e., limp wall partition,
mass-damper-spring partition, and locally-reacting porous layer, is
illustrated in Section 3. Section 4 presents several 1D and 2D
numerical examples to demonstrate the validity and accuracy of
the implemented formulation. Finally, the conclusions and outlook
can be found in Section 5.

2. Reflection and transmission boundary condition in the time-
domain DG scheme

2.1. Spatial discretization of a sound field

In this work, the governing equations are the linear acoustic
equations for a motionless propagation medium

@v
@t þ 1

qrp ¼ 0;
@p
@t þ qc2r � v ¼ 0;

ð1Þ

where v ¼ ½u;v ;w�T is the particle velocity vector, p is the sound
pressure, q is the constant density and c is the constant speed of
sound. Also, Eq. (1) can be written as

@q
@t

þr � FðqÞ ¼ @q
@t

þ Aj
@q
@xj

¼ 0; ð2Þ

where qðx; tÞ ¼ ½u;v;w;p�Tis the acoustic variable vector and Aj is
the constant flux Jacobian matrix with coordinate index j 2 ½x; y; z�.
Let Dk be a set of simplex and geometrically conformal elements

that discretize the computational domain Xh, i.e., Xh ¼ SK
k¼1D

k.

The local solution qk
hðx; tÞ in element Dk, where subscript h denotes

the numerical approximation, is given by:

qk
hðx; tÞ ¼

XNp

i¼1

qk
hðxki ; tÞlki ðxÞ; ð3Þ

where qk
hðxki ; tÞ are the unknown nodal values and lki ðxÞ is the multi-

dimensional Lagrange polynomial basis of order N, which satisfies

lki ðxkj Þ ¼ dij. Np is the number of local basis functions (or nodes)
inside a single element and equal to ðN þ dÞ!=ðN!d!Þ for simplex ele-
ments, where d is the dimensionality. In this study, the Legendre-
Gauss–Lobatto (LGL) quadrature points are used for the 1D cases
and the a-optimized node distribution [36] is used for the 2D cases
due to its low Lebesque constants. After the Galerkin projection and
integration by parts twice, the semi-discrete nodal DG formulation
of Eq. (2) reads:Z
Dk

@qk
h

@t
þr � Fk

hðqk
hÞ

� �
lki dx ¼

Z
@Dk

n � Fk
hðqk

hÞ � F�
� �

lki dx; ð4Þ

where n ¼ ½nx;ny;nz� is the outward normal vector of the element

surface @Dk. F�, the so-called numerical flux across element inter-

section @Dk, is a function of both the solution value from the interior
side of the intersection, i.e., q�

h and the exterior value qþ
h . In this

study, the upwind numerical flux is used throughout the whole
domain because of its low dispersive and dissipation error
[18,37]. To derive the upwind flux, we utilize the hyperbolic prop-
erty of the system and decompose the normal flux on the interface

@Dk into outgoing and incoming waves, the so-called characteristic
modes. Mathematically, an eigendecomposition conducted to the
normally projected flux Jacobian yields:

An ¼ ðnxAx þ nyAy þ nzAzÞ

¼

0 0 0 nx
q

0 0 0 ny
q

0 0 0 nz
q

qc2nx qc2ny qc2nz 0

2
66664

3
77775

¼ LKL�1;

ð5Þ

where

L ¼

�nz ny nx=2 �nx=2
nz �nx ny=2 �ny=2
�ny nx nz=2 �nz=2
0 0 qc=2 qc=2

2
6664

3
7775; K ¼

0 0 0 0
0 0 0 0
0 0 c 0
0 0 0 �c

2
6664

3
7775 ð6Þ

The numerical upwind flux is defined by considering the direction
of the characteristic speed, i.e.,
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n � F�ðq�
h ;q

þ
h Þ ¼ LðKþL�1q�

h þ K�L�1qþ
h Þ; ð7Þ

where Kþ and K� contain the positive and negative parts of K. Phys-
ically, Kþ (K�, respectively) corresponds to the characteristic waves
propagating along (opposite to, respectively) the outward normal

direction n, which are referred to as outgoing waves out of Dk (in-

coming waves into Dk, respectively). Therefore, the outgoing waves
are associated with the interior solution q�

h whereas the incoming
waves are dependent on the exterior (neighboring) solution qþ

h .
Finally, the semi-discrete formulation is obtained by substituting
the nodal basis expansion Eq. (3) and the upwind flux Eq. (7) into
the strong formulation Eq. (4). The resulting vector–matrix form
of the formulation and more details of the implementation can be
found in Ref. [17].

2.2. Formulation of the reflection and transmission boundary
conditions

The prescription of the numerical flux plays a key role in the DG
scheme. Apart from linking neighboring interior elements, it serves
to impose the boundary condition and to guarantee the
stability of the formulation. In the following, we will first present
the formulation of frequency-independent reflection and transmis-
sion boundary conditions of locally reacting type. Then, the exten-
sion of the formulation to the frequency-dependent case will be
shown.

For the DG method, boundary conditions are enforced weakly
through the numerical flux on the boundary surfaces either by
reformulating the flux subject to specific boundary conditions or
by providing the exterior values of the solution qþ

h [38] needed
for the numerical flux. In both cases, the interior values q�

h are
needed. In this work, the reflection and transmission boundary
conditions are enforced by providing the exterior values of the
solution qþ

h that conform with the acoustic characteristics of the
boundary. As illustrated in Fig. 1, the reflection and transmission
boundary that takes the form of a flat surface/layer of an impe-
dance discontinuity separates two propagation media 1 and 3. In
the DG modeling framework, this boundary is considered as an
internal interface connecting the neighboring interior elements in

media 1 and 3, which are denoted as Dk1 and Dk3, respectively.
To set the correct exterior values of the solution needed for the
upwind flux Eq. (7), the classical plane wave theory is used. With-
out loss of generality, suppose that a plane wave propagates per-
pendicular to the interface in the positive x-direction, which
intersects the x-axis at x ¼ 0. According to the plane wave theory
[2], the pressure and the particle velocity of the incident wave in
medium 1 satisfy

pi1ðx; tÞ ¼ p̂0 exp½iðxt � kxÞ� ð8aÞ

ui1ðx; tÞ ¼ p̂0

qc
exp½iðxt � kxÞ�; ð8bÞ

where p̂0 is the amplitude, x is the angular frequency and k is the
wavenumber. The corresponding reflected wave at the interface is

pr1ðx; tÞ ¼ R � p̂0 exp½iðxt þ kxÞ� ð9aÞ

ur1ðx; tÞ ¼ �R � p̂0

qc
exp½iðxt þ kxÞ�; ð9bÞ

while the transmitted wave from medium 1 to medium 3 reads

pt13ðx; tÞ ¼ T � p̂0 exp½iðxt � kxÞ� ð10aÞ

ut13ðx; tÞ ¼ T � p̂0

qc
exp½iðxt � kxÞ�; ð10bÞ

where R and T are the plane wave reflection coefficient and trans-
mission coefficient, respectively. By setting x ¼ 0 in the above Eqs.
(8)–(10), the following explicit relations between the incident, the
reflected and the transmitted waves on the flat discontinuity sur-
face are obtained

pr1ð0; tÞ ¼ R � pi1ð0; tÞ ð11aÞ
ur1ð0; tÞ ¼ �R � ui1ð0; tÞ ð11bÞ
pt13ð0; tÞ ¼ T � pi1ð0; tÞ ð11cÞ
ut13ð0; tÞ ¼ T � ui1ð0; tÞ: ð11dÞ

Similarly, for the plane wave traveling in the negative x-
direction perpendicular to the interface from medium 3 towards
medium 1, we yield the following relations

pr3ð0; tÞ ¼ R0 � pi3ð0; tÞ ð12aÞ
ur3ð0; tÞ ¼ �R0 � ui3ð0; tÞ ð12bÞ
pt31ð0; tÞ ¼ T 0 � pi3ð0; tÞ ð12cÞ
ut31ð0; tÞ ¼ T 0 � ui3ð0; tÞ: ð12dÞ
Here, R0 and T 0 are the plane wave reflection coefficient and trans-
mission coefficient for the wave propagating from medium 3
towards medium 1, which can be different values from R and T in
Eq. (11). For more general cases where the discontinuity surface is
in arbitrary direction, the same relations as shown in Eqs. (11)
and (12) hold for the incident, reflected and transmitted pressure,
as well as the corresponding acoustic particle velocity vector com-
ponent in each direction, i.e., v ¼ ½u;v ;w� due to Eq. (1).

To impose the upwind flux as stated in Eq. (7), we regard the
local reflected wave and transmitted wave as the exterior informa-
tion coming from neighboring element and let the local incident
wave govern the interior value. Therefore, for the boundary nodes
lying on the medium 1 side, which are denoted with superscript 1,
we set p1� ¼ pi1;u

1� ¼ ui1;v1� ¼ v i1;w1� ¼ wi1 and
p1þ ¼ pr1 þ pt31;u

1þ ¼ ur1 þ ut31;v1þ ¼ vr1 þ v t31;w1þ ¼ wr1 þwt31.
Due to the relations prescribed in Eqs. (11) and (12), the exterior
values as a function of interior values are determined in the follow-
ing way:

p1þ ¼ R � p1� þ T � p3� ð13aÞ
u1þ ¼ �R � u1� þ T � u3� ð13bÞ
v1þ ¼ �R � v1� þ T � v3� ð13cÞ
w1þ ¼ �R �w1� þ T �w3�: ð13dÞ
Substitute above exterior values into Eq. (7), the upwind flux for the

boundary element Dk1 in medium 1 is
Fig. 1. Upwind numerical flux for interior triangular elements and plane wave
behavior across the transmission boundary.
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n � F�ðq1�
h ;q1þ

h Þ ¼ LðKþL�1q1�
h þ K�L�1q1þ

h Þ

¼

nxc
2

1þR
qc p1� þ ð1þ RÞv1�

n1 þ T � p3�qc � T � v3�
n1

� �
nyc
2

1þR
qc p1� þ ð1þ RÞv1�

n1 þ T � p3�qc � T � v3�
n1

� �
nzc
2

1þR
qc p1� þ ð1þ RÞv1�

n1 þ T � p3�qc � T � v3�
n1

� �
c
2 p1� � R � p1� � T � p3� þ qcðv1�

n1 � R � v1�
n1 þ T � v3�

n1 Þ
� �

2
66666664

3
77777775
;
ð14Þ

where v1�
n1 ¼ v1� � n1;v3�

n1 ¼ v3� � n1 and n1 is the outward normal

vector of the surface element Dk1.
For the purpose of computational efficiency and compact imple-

mentation for the frequency-dependent case, the above upwind
flux expression can be simplified by grouping terms in the form
of the characteristic acoustic waves. The incoming and outgoing
characteristic acoustic waves across a surface with outward nor-
mal vector n are defined as

-in
n ¼ p

qc
� v � n ð15Þ

-out
n ¼ p

qc
þ v � n: ð16Þ

Through algebraic manipulations, upwind flux in Eq. (14) can be
reformulated as

n � F�ðq1�
h ;q1þ

h Þ ¼ LðKþL�1q1�
h þ K�L�1q1þ

h Þ

¼ LK

0
0

-out1�
n1

R �-out1�
n1 þ T �-out3�

n3

2
6664

3
7775; ð17Þ

with -out1�
n1 ¼ p1�=qc þ v1� � n1 and -out3�

n3 ¼ p3�=qc þ v3� � n3,

where n3 is the outward normal vector of the surface element Dk3

and the normal vector n1 and n3 are in opposite direction, i.e.,
n1 ¼ �n3. Therefore, in the current reflection and transmission
boundary flux formulation, the incoming characteristic waves
include both the reflected characteristic waves R �-out1�

n1 and the
transmitted characteristic waves T �-out3�

n3 across the partitioning
interface from the other medium.

It should be noted that the local plane wave behavior happening
exactly on the boundary surface is due to the locally-reacting
assumption of the medium on the boundary. In other words,
acoustic waves on each of the boundary nodes in 3D physical space
behave locally in a 1D manner along the normal direction of the
boundary surface. However, it should be kept in mind that the
locally high-order polynomial basis function of the DG scheme is
able to well represent a local physical wavefront of non-planar
shape approaching the boundary surface. What’s more, since the
numerical flux from the nodal DG scheme is always normal to
the boundary surface, the reflection coefficient R and the transmis-
sion coefficient T should be the ones at normal incidence. Practical
examples of the reflection and transmission coefficients across a
flat locally-reacting layer will be discussed in Section 3.

Although the formulation for the frequency-independent reflec-
tion and transmission boundary condition presented above is
derived at a given single frequencyx, it in principle also holds true
for a frequency-dependent complex-valued reflection and trans-
mission boundary, where a phase delay can be taken into account
as well. In the following, key steps to calculate the transmitted
characteristic waves are presented, and the reflected characteristic
waves can be obtained in the same manner as shown in Ref. [27].
Firstly, the frequency-dependent target plane wave transmission

coefficient TðxÞ is approximated in the frequency domain with a
sum of rational functions as

TðxÞ � T1 þ
XS
k¼1

Ak
fkþixþ

XT
l¼1

1
2

Bl�iCl
al�iblþixþ BlþiCl

alþiblþix

� �

¼ T1 þ
XS
k¼1

Ak
fkþixþ

XT
l¼1

Bl ixþClblþalBl
ðalþixÞ2þb2l

;

ð18Þ

where ½T1;Ak; Bl;Cl; fk;al; bl� 2 R are all real numerical parameters
that fit the plane wave reflection coefficient for normally incident
sound waves. To be more specific, T1 is the frequency independent
value of TðxÞ as the frequency approaches infinity. fk and al � iblare
the real poles and complex conjugate pole pairs, respectively. In the
time-domain, the so-called impulse response function of the trans-
mission is obtained from the inverse Fourier transform of TðxÞ

TðtÞ � T1dðtÞ þ
XS
k¼1

Ake�fk tHðtÞ þ
XT
l¼1

e�al t Bl cosðbltÞ þ Cl sinðbltÞð ÞHðtÞ; ð19Þ

where dðtÞ and HðtÞ are the Dirac delta and Heaviside function,
respectively. As shown in Ref. [35], each term in TðtÞ has a physical
interpretation. The first term of Eq. (19) stands for the instanta-
neous response. The second term is a exponentially decaying relax-
ation function. The last group of terms are the so-called damped
multi-oscillators, where the imaginary part of the pole bldetermines
the oscillation period and the real part al governs the decaying rate.

The final step of the proposed formulation is to obtain the
equivalent time-domain expression of the incoming transmitted
(reflected, respectively) characteristic waves similar to the
frequency-independent one T �-out3�

n3 (R �-out1�
n1 , respectively) as

in Eq. (17). To be specific, it involves the convolution of the time-
domain outgoing wave -out3�

n3 ðtÞ (-out1�
n1 ðtÞ, respectively) and the

transmission impulse response function TðtÞ (reflection impulse
response function RðtÞ, respectively). The outgoing wave -out1�

n1 ðtÞ
in element Dk1 can be firstly calculated with the interior solution
values at each of discrete nodes along the boundary as

-out1�
n1 ðtÞ ¼ p1�ðtÞ

qc
þ v1�

n1 ðtÞ: ð20Þ

Similarly, outgoing wave -out3�
n3 ðtÞ in element Dk3 is

-out3�
n3 ðtÞ ¼ p3�ðtÞ

qc
þ v3�

n3 ðtÞ: ð21Þ

The final form of the frequency-dependent upwind flux is expressed
as

n �F�ðq1�
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To compute the convolution in Eq. (22) in a time efficient and low-
storage manner, the auxiliary differential equations (ADE) method,
originally developed by Joseph et al. [34] for electromagnetic appli-
cations, is employed in this study. For example, the incoming trans-
mitted characteristic waves are calculated asZ t

�1
-out3�

n3 ðsÞTðt � sÞds ¼ T1-out3�
n3 ðtÞ þ

XS
k¼1

Ak/kðtÞ

þ
XT
l¼1

½Blw
1
l ðtÞ þ Clw

2
l ðtÞ�; ð23Þ
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where the new terms /kðtÞ;w1
l ðtÞ;w2

l ðtÞ, referred to as accumulators
or auxiliary variables, are given by:

/kðtÞ ¼
Z t

0
-out3�

n3 ðsÞe�fkðt�sÞds; ð24aÞ

w1
l ðtÞ ¼

Z t

0
-out3�

n3 ðsÞe�alðt�sÞ cos blðt � sÞð Þds; ð24bÞ

w2
l ðtÞ ¼

Z t

0
-out3�

n3 ðsÞe�alðt�sÞ sin blðt � sÞð Þds: ð24cÞ

The first term in Eq. (23) corresponds to the frequency-independent
reflected wave as presented in Eq. (17). The bounds of the integrals
in above Eq. (24) are reduced to ½0; t� due to the causality constraint
indicated in the Heaviside function HðtÞ. Instead of computing accu-
mulators based on the integral of Eq. (24), the accumulators are cal-
culated by solving the following first-order ordinary differential
equations, which result from the differentiation of Eq. (24) with
respect to time,

@/k

@t
þ fk/kðtÞ ¼ -out3�

n3 ðtÞ; ð25Þ
@w1

l
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þ alw

1
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2
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n3 ðtÞ; ð26Þ
@w2

l

@t
þ alw

2
l ðtÞ � blw

1
l ðtÞ ¼ 0: ð27Þ

The above system is numerically integrated from zero initial values
using the same time-integration scheme as for the semi-discrete DG
formulation in Eq. (4), which will be shown in the following. There-
fore, as shown by Dragna et al. [35], the ADE method keeps the
same order of accuracy of a general multi-stage time integration
scheme. It should be noted that these accumulators only exist on
the boundary nodes.

2.3. Time stepping and stability

After the spatial discretization by the nodal DG method, the
semi-discrete system can be expressed in a general form of ordi-
nary differential equations (ODE) as:

dqh

dt
¼ L qhðtÞ; tð Þ; ð28Þ

where qh is the vector of all discrete nodal solutions and L the spa-
tial discretization operator of the DG method. A five-stage, fourth-
order explicit Runge–Kutta (RK) scheme [39] is used to integrate
Eq. (28), i.e.,

qð0Þ
h ¼ qn

h;

kðiÞ ¼ aik
ði�1Þ þDtL tn þ ciDt;q

ði�1Þ
h

� �
;

qðiÞ
h ¼ qði�1Þ

h þ bik
ðiÞ
;

8<
: for i ¼ 1; . . . ;5

qnþ1
h ¼ qð5Þ

h ;

ð29Þ

where Dt ¼ tnþ1 � tn is the time step, qnþ1
h and qn

h are the solution
vectors at time tnþ1 and tn, respectively. The coefficients ai; bi, and
ci of the Runge–Kutta method can be found in Ref. [39].

The explicit time-stepping method comes with the conditional
stability, which requires that the time step size Dt is small enough
so that the product of Dt with the full eigenvalue spectrum of ODE
system falls inside the stability region of the time integration
scheme [40,41]. The whole ODE system under consideration
includes both the spatially-discretized linear acoustic equations
and the ADEs, which are coupled together along the impedance
boundary. Therefore, as shown in Refs. [35,42], the maximum
allowable time step is determined by two factors: (1) the usual

Courant-Friedrichs-Lewy (CFL) condition for the spatial discretiza-
tion with the DG scheme, which requires that Dt 6 C1=maxjkNj,
where kN represents the eigenvalues of the spatial discretization
by the DG scheme and C1 is a constant depending on the stability
region of the time-stepping method; (2) the stiffness of the ADEs.
As shown in Eqs. (25)–(27), the stiffness of the ADEs is influenced
by the maximum possible value of the parameters f;a and b in the
multi-pole approximation. In this work, the stiffness is restricted
so that the stability of the ADEs is automatically satisfied given a
time-step size resulting from the first factor. The measures for
restrictions will be presented in Section 3.4. For the first factor, it
is known that for the linear system with the first order of spatial
differentiation, the gradients of the normalized N-th order polyno-
mial basis are of order OðN2=hÞ near the boundary part of the ele-
ment [16], consequently, the magnitude of the maximum
eigenvalue kN scales with the polynomial order N as: maxðkNÞ / N2,
indicating that Dt / N�2. The temporal time steps are determined
in the following way [16]:

Dt ¼ CCFL �minðDxlÞ � 1c �
1
N2 ;

where Dxl is the smallest edge length of mesh elements and CCFL is a
constant of order Oð1Þ.

3. Multi-pole modeling of practical locally-reacting boundaries

The presented formulation of the reflection and transmission
boundary condition needs the plane wave reflection and transmis-
sion coefficients at normal incidence conforming to the reflection
and transmission characteristics of the boundary considered. As
shown in Eqs. (11) and (12), the formulation also applies to cases
where the simulated boundary has asymmetrical reflection and
transmission properties. The purpose of this section is to present
a few practical scenarios where sound reflection and transmission
happen over a flat surface of the impedance discontinuity, and to
illustrate how the multi-pole modeling approach can be applied
in practice to simulate the sound reflection and transmission on
the boundaries of locally-reacting media. The locally-reacting
assumption, which indicates that reactions (velocity, displacement,
acceleration, etc.) at a certain point on the surface are related to the
sound pressure of only that point, holds true for: (a) isotropic por-
ous absorptive materials with a high flow resistivity or large losses,
especially when the speed of longitudinal wave in such materials is
much lower than that of the adjacent propagation media [43]; (b)
anisotropic solids, such as plates with low stiffness, perforated
structure or honeycomb core structure, where the lateral wave is
rapidly attenuated or blocked.

3.1. Transmission through a limp wall (mass law)

A simple case of the impedance discontinuity that has practical
importance in architectural acoustics is a limp wall, where only the
mass effect is considered and the interior stiffness or damping is
ignored. It can be seen as a simplified model of a thin partition
between two enclosures, whose thickness is much smaller than
the wavelength in the frequency range of interest [44]. Due to
the continuum assumption, the wall vibrates with the same fre-
quency and magnitude of the fluid particle that it is in direct con-
tact with, and the normal component of velocity is continuous.
Different from the classical elastic plate theory [45], the flexural
rigidity of the wall is ignored, and therefore the wall acts in a
locally-reacting way and the corresponding reflection coefficient
RðxÞ and the transmission coefficient TðxÞ are derived based on
the Newton’s second law and the continuity assumption of the nor-
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mal velocity, as shown in Ref. [28]. They can be further re-written
in the following multi-pole model form

RðxÞ ¼ 1� 2Zc=m
ixþ 2Zc=m

; ð31Þ

TðxÞ ¼ 2Zc=m
ixþ 2Zc=m

; ð32Þ

where Zc is the characteristic impedance of the propagation media
and m (kg/m2) is the surface density of the wall.

3.2. Transmission through a mass-damper-spring (MDS) partition

A more general case of locally-reacting partition is to incorpo-
rate the damper and the spring effects into the surface partition
between two media, which results in a mass-damper-spring
(MDS) system as illustrated in Fig. 2. The flexible partition of mass
per unit area m is mounted upon a viscously damped, elastic sus-
pension, with the linear damping constant rd per unit area and
the spring constant s per unit area, respectively. This simplified
model could approximate the fundamental mode of a large vibrat-
ing panel [46]. Unlike the FDTD approach presented in Ref. [22],
where the governing motion equations of the MDS system are dis-
cretized explicitly by the central difference scheme, in this study,
the MDS partition is treated as a whole system of the impedance
discontinuity, and the transmission and reflection coefficients
required for the upwind flux formulation are derived. As shown
in Ref. [28], the wall impedance becomes ixmþ rd � is=x. Apply-
ing the same Newton’s second law and the continuity assumption
of the normal velocity as for the limp wall case, the corresponding
reflection coefficient RðxÞ and the transmission coefficient TðxÞ
are obtained as

RðxÞ ¼ 1� 2Zc

iðxm� s=xÞ þ 2Zc þ rd
; ð33Þ

TðxÞ ¼ 2Zc

iðxm� s=xÞ þ 2Zc þ rd
: ð34Þ

However, compared to the limp wall case, there is an extra
frequency-dependent term s=x in the denominators of above two
Eqs. (33) and (34) due to spring effect. Consequently, both the
reflection coefficient RðxÞ and the transmission coefficient TðxÞ
cannot be re-written in the multi-pole model form as shown in
Eq. (18). Consequently, a further approximation is needed to
express RðxÞ and TðxÞ using the rational functions as basis func-
tions. The approximation procedure will be discussed in Section 3.4.

3.3. Transmission through of a locally-reacting porous layer

Another practical scenario where the sound transmission mat-
ters would be the noise barriers that are made of porous materials.
As illustrated in Fig. 3, suppose that the locally-reacting porous
layer has a thickness of d, the transmission and reflection behavior
occurring in three different regions with respective characteristic
impedance values Z1; Z2, and Z3 are governed by the continuity
condition of both the pressure and the normal velocity on the dis-
continuity interfaces. The corresponding plane wave reflection
coefficient RðxÞ and the transmission coefficient TðxÞ are derived
as [47]

RðxÞ ¼ ðZ2 þ Z3ÞðZ2 � Z1Þei2k2d þ ðZ3 � Z2ÞðZ2 þ Z1Þ
ðZ2 þ Z3ÞðZ2 þ Z1Þei2k2d þ ðZ3 � Z2ÞðZ2 � Z1Þ ; ð35Þ

TðxÞ ¼ 4Z2Z3

ðZ3 � Z2ÞðZ2 � Z1Þe�ik2d þ ðZ2 þ Z3ÞðZ2 þ Z1Þeik2d ; ð36Þ

where k2 is the wavenumber and Z2 is the characteristic impedance
of the locally-reacting layer. In this study, Z1 and Z3 are chosen as
the characteristic impedance of air, i.e., Z1 ¼ Z3 ¼ qc. Like the case
of the MDS system, a parameter fitting procedure is needed to
approximate RðxÞ and TðxÞ with the multi-pole model.

3.4. Parameter fitting of the multi-pole model

In order to fit the multi-pole representation of the target reflec-
tion coefficient and the target transmission coefficient, denoted by
RtarðxÞ and TtarðxÞ, respectively, there are several parameter iden-
tification methods available, e.g., the vector fitting technique [48]
and the optimization technique [30]. A comparative study by Cotté
et al. [30] shows that the optimization technique is preferred over
the vector fitting technique since it is straightforward to confine
the values of parameters and the number of poles to satisfy admis-
sibility and stability conditions. Therefore, in this study, the opti-
mization technique as in Ref. [30] is used. Since RtarðxÞ and
TtarðxÞ can be complex values, both the real parts and the imagi-
nary parts should be fitted simultaneously, instead of the ampli-
tude and the phase, in order to avoid wraparound ambiguity
[49]. In the following, the fitting procedure for the target transmis-
sion coefficient TtarðxÞ is presented and the same procedure can be
applied to the target reflection coefficient RtarðxÞ. Let TfitðxÞ denote
the fitting multi-pole approximation as in Eq. (18) of TtarðxÞ, the
optimization is performed considering f s discrete frequencies sam-
pled within the interested frequency range in a certain manner,
e.g., logarithmically or linearly spaced. Then, the Euclidean norm
of the deviation of real parts are minimized while keeping the dif-
ference of imaginary parts at each of the sampled frequency under
a tolerance value �, i.e.,

Fig. 2. Simplified model of reflection and transmission through a single-leaf
partition under normal incidence sound waves. Fig. 3. Reflection and transmission through of a locally-reacting porous layer.
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where fmax;amax, and bmax are the threshold values for f;a, and b for
the sake of the time-stepping stability. To solve this minimization
problem, the interior-point algorithm [50] of the non-linear mini-
mization function fmincon from the MATLAB optimization toolbox
[51] is used. A series of optimizations are run to get a good fit. In
the first run, the initial values of (Ak; fk;al;bl; Bl;Cl) are chosen ran-
domly between 0 and fmax;amax;bmax, respectively, and a relatively
large value of � is used, e.g., � ¼ 1� 10�1. Then, the obtained set
of coefficients are used as the initial values for the next optimiza-
tion with a smaller value of �. The process continues until the
threshold value of � meets the accuracy requirement. An example
of parameter fitting will be shown in the following numerical test.

4. Numerical examples and discussions

This section presents both one-dimensional and two-
dimensional numerical examples to verify the proposed formula-
tion of the time-domain reflection and transmission boundary con-
dition. Depending on whether a multi-pole approximation is
needed, two types of locally-reacting boundaries are considered
in this study. One is the limp wall boundary, the reflection and
transmission coefficients of which can be represented exactly with
the real pole model as shown in Eqs. (31) and (32). The other one is
the locally-reacting porous layer, which needs a further level of
approximation of the reflection and transmission coefficients using
the multi-pole model in Eq. (18). It should be noted that the mass-
damper-spring (MDS) partition could be tackled with the same
methodology as the porous layer. All of the following numerical
experiments are initiated with the Gaussian-shaped pressure con-
ditions as

pðx; t ¼ 0Þ ¼ e
� ln 2
b2

ðx�xsÞ2 ; ð38aÞ
vðx; t ¼ 0Þ ¼ 0; ð38bÞ

with xs being the source coordinates and b being the half-
bandwidth of this Gaussian pulse.

4.1. One-dimensional cases

As illustrated in Fig. 4, the sound field has a single monopole
source at xs ¼ �3 m and two receivers at xr1 ¼ �0:5 m and
xr2 ¼ 1:5 m, respectively. The transmissive boundary is placed at
x ¼ 0 m. The computational domain are terminated at both ends
x ¼ �5 m with the perfectly absorbing boundary condition, which

is achieved by discarding the incoming wave component in the
numerical upwind flux [38]. b is chosen as 0.15 such that the initial
Gaussian pulse has a significant frequency content up to 1000 Hz.

For the one-dimensional test case, the analytical values of the
frequency-dependent plane wave reflection and transmission coef-
ficients are available. In order to obtain the numerical reflection
coefficient Rnum and the transmission coefficient Tnum, two simula-
tions are conducted. In the first simulation, the transmissive
boundary is removed and the direct sound signal, denoted as
pdðtÞ, at each of two receivers is recorded. In the second simulation,
the transmissive boundary is present, the measured sound pres-
sure signal at first receiver xr1 contains both the direct sound and
the sound reflected from the transmissive boundary while the sig-
nal at second receiver xr2 contains the transmitted signal alone
ptðtÞ. The reflected sound signal prðtÞ can be obtained by subtract-
ing pdðtÞ. The spectra of the direct sound, the reflected sound, and
the transmitted sound, denoted as Pdðf Þ; Prðf Þ, and Ptðf Þ, respec-
tively, are obtained by Fourier transformation of pd; pr , and pt with-
out windowing. Let R1 denote the distance between the source and
the receiver and R2 be the distance between the receiver and the
image source mirrored by the reflecting surface. The numerical
reflection coefficient Rnum is calculated as follows:

Rnumðf Þ ¼ Prðf Þ � GðkR1Þ
Pdðf Þ � GðkR2Þ ; ð39Þ

where GðkRÞ ¼ �e�ikR=ð2ikÞ is the 1D Green’s function for the sound
propagation in free field. Similarly, the numerical transmission
coefficient Tnum results from the ratio of the transmitted sound
and the direct sound. As shown in Ref. [17], it is desirable to have
around 10 points per wavelength (PPW) to achieve a satisfactory
accuracy. Therefore, we discretize the computational domain with
K ¼ 30 elements, corresponding to Dx ¼ 1=3 m, and inside each ele-
ment, a polynomial basis of order N ¼ 8 is used, resulting into a
PPW value of 9.2 at the frequency of 1000 Hz. According to Eq.
(30), the time step size used is Dt ¼ 4:871� 10�5 s, corresponding
to CCFL ¼ 1. The simulations are run for t ¼ 0:5 s so that the pulse
has passed the receiver locations to a sufficient extent.

To quantify the error arising from each reflection and transmis-
sion, the dissipation error �amp in dB and the phase error �# in %

from a single transmission are calculated as follows

�ampðf Þ ¼ 20log10
Tanaðf Þ
Tnumðf Þ
				

				; ð40aÞ

�#ðf Þ ¼ 1
p
j# Tanaðf Þð Þ � # Tnumðf Þð Þj � 100%; ð40bÞ

where # �ð Þ extracts the phase angle of a complex number. Similarly,
the error from a single reflection can be calculated by replacing T
with R in above two equations. Therefore, for a given broadband
incident acoustic wave of arbitrary amplitude, the loss of SPL and
the distortion of the phase across the frequency range of interest
can be quantified.

Fig. 4. 1D computational configuration with a transmissive boundary.
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The first type of the transmissive boundary to be investigated is
the limp wall case that is governed by the mass law. As discussed
in Section 3.1, the surface mass density m of the thin partition
material is the only parameter that affects the reflection and trans-
mission characteristics. Here, two values of m ¼ 10 kg/m2 and
m ¼ 20 kg/m2 are considered, corresponding to 3 cm thick materi-
als of typical wood panels and light concrete, respectively. The ana-
lytical reflection coefficient Rana and the transmission coefficient
Tana are calculated as shown in Eqs. (31) and (32). Fig. 5 presents
the comparison of the results obtained by the numerical simula-
tions and by the analytical solution. Both of the amplitudes of
the reflection and the transmission coefficients match quite well
with the analytical ones. As expected, all error increases gradually
with increasing frequency due to the decreased PPW. Concretely,
the dissipation error falls onto the order of magnitude Oð10�4Þ
and the phase error is below 0:02%.

As for the locally-reacting porous layer, we consider a glass
wool that is typically used as baffles for room acoustic purposes.
Supposed its characteristic impedance Zc is governed by the
Johnson-Champoux-Allard-Lafarge (JCAL) model [52], which is a
phenomenological model describing wave propagation in porous
materials on a macroscopic scale and is expressed as

Zc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qeff Beff

q
. The effective density qeff and the effective bulk mod-

ulus Beff are described by

qeff ¼
qa1
u

1þ ru
ixa1q

1þ 4ia2
1gq

r2K2u2

 !1=2
2
4

3
5; ð41Þ

Beff ¼ cP0

u
c� c� 1

1þ ug
ixk00qPr

ð1þ 4ixk020 qPr
gK02u2 Þ

1=2

 �

0
BB@

1
CCA

�1

: ð42Þ

The wavenumber of the porous material is given as

keff ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qeff =Beff

q
. The descriptions of physical parameters are given

in Table A.3 in Appendix A and their values for the considered glass
wool were measured by experiments [53]. In order to model the
reflection and transmission properties of the porous layer, firstly,
the characteristic impedance Zc is inserted into the plane wave
reflection coefficient RðxÞ as in Eq. (35) and the transmission coef-
ficient TðxÞ as in Eq. (36). Then, the resulting target RtarðxÞ and
TtarðxÞ are approximated with rational functions in the multi-pole
form using the optimization techniques presented in Section 3.4.
For the considered JCAL model, it is easy to verify that the magni-
tude of both RtarðxÞ and TtarðxÞ are monotonic decreasing function
of frequency, which allows us to use real-poles alone for the
approximation. The optimization is performed considering 100 fre-
quencies logarithmically sampled between 20 and 1000 Hz, and the
tolerance value � for the deviation of the imaginary part is chosen as
1� 10�4. Numerical tests show that there is a compromise between
the number of poles and the fitting accuracy. Sets of fitting param-
eters for RðxÞ and TðxÞ are given in Table 1 and Table 2, respec-
tively. The maximum absolute value error at the sampled
frequencies are 2:362� 10�3 and 6:118� 10�5 for the real and
imaginary part of the reflection coefficient, respectively, and the
error for the transmission coefficient are 2:636� 10�3 and
5:418� 10�5. The dissipation error �amp, the phase error �# as
defined in Eq. (40) of the fitted coefficients are shown in Fig. 6,
including the magnitude of both target and fitted coefficients as
well.

The numerically simulated frequency-dependent characteris-
tics of the porous layer are compared against the analytical ones
in Fig. 7. Similar to the limp wall test case, the amplitudes of both
the reflection and the transmission coefficients agree well with the
analytical ones. However, the amplitudes and the frequency-
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Fig. 5. The dissipation error �amp , the phase error �# and the magnitude of transmission and reflection coefficients for the 1D limp wall.
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dependency of the quantified errors, especially the dissipation
error, are quite different from the limp wall case. Through compar-
ison of Figs. 6 and 7, it can be observed that the approximation
error of R and T using the multi-pole model dominates over the
DG discretization error for the overall error. This implies that the
fitting quality of the multi-pole model plays a crucial role in the
overall accuracy.

4.2. Two-dimensional cases

This section is devoted to the verification of the transmission
boundary condition in a two-dimensional sound field. Different
from the one-dimensional test case, where the analytical values
of the reflection and transmission coefficients are available, here,
the numerical results obtained from the time-domain DG simula-
tions are firstly transformed into the frequency-domain and then
compared against the results obtained by the frequency-domain
finite element (FE) analysis with the commercial software COMSOL
Multiphysics� [54]. For each of the following numerical tests, the

free field responses at receivers are calculated firstly for both
time-domain DG and frequency-domain FE simulations, in order
to normalize the difference of the source power spectra between
the DG simulations and frequency-domain FE simulations.

The first test case involves a rectangular domain evenly sepa-
rated by a limp panel in the middle as shown in Fig. 8, which mim-
ics a typical building acoustic scenario of sound transmission
between two rooms partitioned by a thin structure. Here, the
reflection and transmission characteristics of the limp panel are
governed by the mass law as discussed in Section 3.1. Without loss
of generality, two values of surface mass densitym ¼ 30 kg/m2 and
m ¼ 65 kg/m2 are used for the limp panel, representing light and
moderately heavy room partitions, respectively. All the other
boundaries are assigned as a uniform real-valued absorption coef-
ficient of 0.36, which corresponds to the reflection coefficient of
R ¼ 0:8. The locations of the sound source and receivers are illus-
trated in Fig. 8. The half-bandwidth of Gaussian pulse is chosen
as b ¼ 0:25 such that the source has a sufficient power up to
600 Hz. The computational domain for the DG simulation is

Table 1
Fitting parameters Ak and fk of the real pole approximation for the reflection coefficient RðxÞ of the glass wool.

Coefficients k ¼ 1 k ¼ 2 k ¼ 3 k ¼ 4

Ak 3:124� 103 6:956� 101 8:175� 103 2:459� 103

fk 4:771� 104 1:747� 103 2:735� 104 6:641� 103

Table 2
Fitting parameters Ak and fk of the real pole approximation for the transmission coefficient TðxÞ of the glass wool.

Coefficients k ¼ 1 k ¼ 2 k ¼ 3 k ¼ 4 k ¼ 5

Ak �9:751� 103 1:087� 103 1:703� 103 6:401� 103 5:397� 101

fk 3:117� 104 6:121� 103 7:807� 103 5:773� 104 1:738� 103
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Fig. 6. The dissipation error �amp , the phase error �# and the magnitude of the fitted transmission and reflection coefficients for the 1D porous layer.
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Fig. 7. The dissipation error �amp , the phase error �# and the magnitude of the numerically simulated transmission and reflection coefficient for the 1D porous layer.
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discretized with right angled isosceles triangles of equal leg length
of 0.5 m, resulting into K ¼ 96 triangle elements. A local polyno-
mial basis of order N ¼ 8 is used in order to have PPW = 10.8 up-
to frequency of 600 Hz. The time step size is Dt ¼ 2:278� 10�5 s,
corresponding to CCFL ¼ 1 as described in Eq. (30). The simulations
are run for t ¼ 0:45 s and the time signal at each of the receiver
locations approaches zero eventually due to the wall absorptions.
For the frequency-domain FE analysis, the model was built in pres-
sure acoustic module of the COMSOL Multiphysics� [54]. The
monopole point source with a volume flow rate per unit length 1
m2=s is applied at the source position. On the boundary corre-
sponding to the limp panel, an interior impedance boundary con-
dition with a frequency dependent impedance value ixm is
imposed. On all the other boundaries, impedance boundary condi-
tions with the surface impedance of Zs ¼ ð1þ RÞ=ð1� RÞ are
imposed. The meshes are discretized so that there are at least 6 ele-
ments per the shortest wavelength in the frequency range of inter-
est, which is the wavelength of the time-harmonic acoustic waves
at 600 Hz in this case, in order to ensure accuracy of the analysis.

The relative sound pressure level, which is obtained by calculat-
ing the amplitude of ratio of the pressure spectra with respect to
the free field, is used for the comparison between the time-
domain DG method and the frequency-domain FEM. As shown in
Fig. 9, both numerical results agree well with each other at three
receiver locations for two different surface mass density values.
To demonstrate the comparison in terms of the phase shift, the
phase angles of the ratio of the pressure spectra with respect to
the free field spectra are compared in Fig. 10. For the sake of clarity,
the phase angles at different receivers are shifted by a constant in
the plot. A very good match between the time-domain simulations
and the frequency-domain simulations can be observed.

The second test case considered is the sound propagation across
a finite-height noise barrier made of the same porous glass-wool
material as used in the one-dimensional test case. The schematic
diagrams for both the DG and FE simulations are shown in
Fig. 11. The source is located at ðxs; ysÞ ¼ ð�2;0Þ m and four recei-
vers at ðxr1 ; yr1 Þ ¼ ð�1;0Þ; ðxr2 ; yr2 Þ ¼ ð�1;3Þ; ðxr3 ; yr3 Þ ¼ ð1;0Þ, and
ðxr4 ; yr4 Þ ¼ ð1;3Þ m are distributed symmetrically with respect to
the barrier, which is attached to the hard ground and has a height
of H ¼ 4 m and width of W ¼ 4 cm. To mimic a real noise barrier
mounted on a hard ground surface, the top edge of the barrier is
a rigid boundary, whereas both side edges are treated as a trans-
missive porous layer. The other boundaries are assumed to be rigid.

In order to capture the diffraction effects from the top edge of the
barrier, the full geometry details of the barrier are meshed and
modeled. For this test case, unstructured triangle meshes are gen-
erated with the meshing software GMSH [55]. As illustrated in
Fig. 12, the mesh is locally refined near the top edge of the sound
barrier and mesh elements far away from the sound barrier have
an edge length of approximately 0.5 m. A local polynomial basis
of order N ¼ 8 is adopted. The global uniform time step size is
Dt ¼ 1:391� 10�6 s, corresponding to CCFL ¼ 1 as described in Eq.
(30). The impulse response from the DG simulation is recorded
until the reflected waves from the exterior boundaries reach the
receivers while ensuring that the pulse has passed the receivers’
location to a sufficient extent.

In FE simulation, the barrier is modelled as an anisotropic med-
ium with different acoustic densities in x and y directions to imi-
tate the locally reacting wave behavior inside the porous layer,
as it is described in Section 3.3. Therefore, the acoustic density in
the x direction of the medium is represented as same as the effec-
tive density of the porous material in Eq. (41) but an infinite value
is imposed for the acoustic density in the y direction to prohibit the
wave propagation along the y direction. In addition, to truncate
computational regions of an inifnitely open space, perfectly
matched layers (PMLs) are added on the top as well as at the left
and right ends of the domain as shown in Fig. 11(b). Again, there
are at least 6 elements per wavelength corresponding to the
time-harmonic acoustic waves at 600 Hz, in order to ensure accu-
racy of the analysis.

Fig. 8. Computational configuration of a two-dimensional sound field with a limp
wall partition.
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Fig. 9. Comparison of the relative sound pressure level between the DG simulation
and the FE simulation for the limp wall case with two different surface mass density
m.
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Similar to the previous test case, the comparison of the relative
sound pressure level and the phase angles of the pressure spectra
ratio at different receiver locations are shown in Figs. 13 and 14,
respectively. Again, a good match between the time-domain DG
simulations and the frequency-domain FE simulations is found. It
should be noted that the pressure waves arriving at the receivers
across the barrier include not only the transmission components,
but also the components diffracted over the hard barrier top, since
the geometry details are fully resolved by both simulations. How-
ever, the discrepancies between two simulations in terms of the
high order diffraction components, which should have existed
due to the early truncated DG simulation, are mitigated due to
the absorption effect of the noise barrier.0 100 200 300 400 500 600
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Fig. 10. Comparison of the phase angle of ratio between the DG simulation and the
FE simulation for the limp wall case with two different surface mass density m.

Fig. 11. Schematic diagram of a two-dimensional configuration with a noise barrier.

Fig. 12. 2D mesh around the noise barrier for the DG simulation.
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Fig. 13. Comparison of the relative sound pressure level between the DG simulation
and the FE simulation for the noise barrier case.

H. Wang et al. / Applied Acoustics 164 (2020) 107280 11



5. Conclusion

In this study, a general time-domain transmission boundary
condition in the framework of the time-domain DG method is
developed for the broadband simulations of general linear acous-
tics, with potential applications to the areas of room acoustics,
building acoustics, urban acoustics to name a few. The proposed
numerical formulation is able to simulate frequency-dependent
reflection and transmission characteristics of a locally-reacting
boundary. The essential idea is to model the acoustic characteris-
tics of a locally-reacting surface using the plane wave reflection
coefficient and transmission coefficients in the form of a multi-
pole model and then reformulate the corresponding time-domain
upwind flux. Practical examples of the boundary modeling with
the multi-pole model approach are presented.

To verify the performance of the formulation, one-dimensional
numerical tests are performed and convergence of the numerical
results to the analytical ones are demonstrated. Furthermore, it
has been shown that the both dissipation and dispersion errors
depend largely on the accuracy of parameters fitting of the
multi-pole models. In this work, an optimization-based method
is employed to obtain the fitting parameters. Although it is suffi-
cient to verify the formulation for the locally-reacting boundaries
with one-dimensional examples, two-dimensional numerical tests
are conducted to further demonstrate the general practicability of
the boundary formulation within the time-domain DG framework.
Excellent agreement of numerical results obtained by the proposed
time-domain method and the frequency-domain FEM are
observed. However, for acoustic boundaries where non-negligible
interactions happen, the locally-reacting assumption may lead to
inaccurate representation of the acoustic behavior. Therefore, fur-
ther developments of modeling extendedly-reacting boundaries
will be undertaken in future works.
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Errata of Paper III
It should be noted that the statement following Eqs. (33) and (34) in section

3.2, which is “However, compared to the limp wall case, there is an extra frequency-
dependent term s/ω in the denominators of above two equations (33) and (34) due to
spring effect. Consequently both the reflection coefficient R(ω) and the transmission
coefficient T (ω) cannot be re-written in the multi-pole model form as shown in Eq.
(18). Consequently, a further approximation is needed to express R(ω) and T (ω)
using the rational functions as basis functions. The approximation procedure will be
discussed in Sec. 3.4. ”, is incorrect.

As shown in the following, both the plane wave reflection coefficient R(ω) and
transmission coefficient T (ω) can be re-cast in a multi-pole form with complex poles
and therefore, no further approximation is needed for R(ω) and T (ω). Recall that
the multi-pole model approximation is (taking T (ω) for example),

T (ω) ≈ T∞ +

S∑
k=1

Ak

ζk + iω +

K∑
l=1

1

2

( Bl − iCl

αl − iβl + iω +
Bl + iCl

αl + iβl + iω

)
= T∞ +

S∑
k=1

Ak

ζk + iω +

K∑
l=1

Bliω + Clβl + αlBl

α2
l + β2

l + 2αliω − ω2
.

As shown in Eq. (34) of Paper III, the transmission coefficient T (ω) for the mass-
damper-spring (MDS) partition is

T (ω) =
2Zc

i(ωm− s/ω) + 2Zc + rd

=
2Zciω/m

s/m+ iω(2Zc + rd)/m− ω2
.

By comparing above two equations, it is straightforward to obtain the relations be-
tween the multi-pole model parameters and the MDS parameters as B = 2Zc/m,α =
(2Zc + rd)/(2m), β =

√
s/m− α2, C = −αB/β.

Therefore, the texts following Eqs. (33) and (34) in section 3.2 should be corrected
to: “Through derivations, it is straightforward to express the transmission coefficient
T (ω) in terms of the multi-pole model parameters with B = 2Zc/m,α = (2Zc +
rd)/(2m), β =

√
s/m− α2, C = −αB/β, whereas the reflection coefficient R(ω) only

differs by the constant 1 and the sign of B.”
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ABSTRACT:
This paper presents a numerical scheme of arbitrary order of accuracy in both space and time, based on the arbitrary

high-order derivatives methodology, for transient acoustic simulations. The scheme combines the nodal discontinu-

ous Galerkin method for the spatial discretization and the Taylor series integrator (TSI) for the time integration. The

main idea of the TSI is a temporal Taylor series expansion of all unknown acoustic variables in which the time deriv-

atives are replaced by spatial derivatives via the Cauchy-Kovalewski procedure. The computational cost for the time

integration is linearly proportional to the order of accuracy. To increase the computational efficiency for simulations

involving strongly varying mesh sizes or material properties, a local time-stepping (LTS) algorithm accompanying

the arbitrary high-order derivatives discontinuous Galerkin (ADER-DG) scheme, which ensures correct communica-

tions between domains with different time step sizes, is proposed. A numerical stability analysis in terms of the max-

imum allowable time step sizes is performed. Based on numerical convergence analysis, we demonstrate that for

nonuniform meshes, a consistent high-order accuracy in space and time is achieved using ADER-DG with LTS. An

application to the sound propagation across a transmissive noise barrier validates the potential of the proposed

method for practical problems demanding high accuracy. VC 2021 Acoustical Society of America.
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I. INTRODUCTION

Recent years have witnessed rapid developments and

applications of the time-domain discontinuous Galerkin

(TD-DG) method for modeling wave propagation phenom-

ena,1–8 which possesses many favorable properties, such as

high-order accuracy, geometric flexibility, and its capability

of handling inhomogeneous media and physically absorbing

media.9–11 It first discretizes the volumetric space into non-

overlapping mesh elements that can be locally refined to

meet the geometrical constraints. Then, solutions of govern-

ing acoustic equations are approximated spatially with a

polynomial basis. Because the locally defined basis func-

tions can be discontinuous across element interfaces, the

resulting mass matrix is block diagonal, which favors a fully

explicit time-marching scheme with intrinsic parallel com-

putations.12,13 Last, following the numerical methodology

of the method of lines, the resulting semi-discrete formula-

tions in the form of coupled ordinary differential equations

(ODEs) are integrated in time by an ODE solver. Explicit

Runge-Kutta (RK) methods, which involve only a linear

combination of the right-hand-side evaluations of the semi-

discrete formulation, are usually used because they are easy

to implement, and each unknown solution only needs one

extra memory unit to store its intermediate stage values with

low-storage RK methods.14–20

However, despite the abovementioned advantages,

industrial applications of the TD-DG method for computa-

tional acoustics remain hindered by the high computational

cost for longtime simulations, and advancements to improve

the computational efficiency are needed. One major

criticism arises from the severely restrictive maximum

allowable time step imposed by the well-known Courant-

Friedrichs-Lewy (CFL) conditional stability condition

accompanying explicit time integration schemes. As far as

practical acoustic simulations are concerned, local mesh

refinement is usually needed to capture complex geometry

features, such as abruptly varying surfaces, resulting in stiff

terms in ODEs that necessitate a much smaller time step.

When global time-stepping (GTS) is used, as is often the

practice with the method of lines, the uniformly defined

time step is constrained by the smallest element in the mesh,

excessively slowing down the time-marching over the whole

domain. Apart from the mesh-induced stiffness, the model-

ing of physically absorbing media9,10 is a potential source of

stiffness as well. A natural solution to the restrictive time

steps required for stability of explicit GTS methods is to

switch to unconditionally stable implicit methods. However,

for three-dimensional problems with a large number of

unknowns, the computational efficiency of such an approach

is debatable because solving a large linear system at every

time step is time consuming.21 An alternative is to use

implicit-explicit (IMEX) schemes,22–24 which applies an

explicit integrator to the non-stiff/coarse part and an implicit
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integrator to the stiff/refined part such that the same time

step is used everywhere. Additionally, exponential-based

time integrators25,26 alleviate the stability restrictions by

removing the stiffness on the explicit time integration

through transforming the differential equations. However,

pitfalls, such as lower-order coupling errors, coupling stabil-

ity problems, ill-conditioning issues for highly disparate

meshes, and cumbersome implementations, may occur. An

alternative approach to mitigate the time step restriction is

to use explicit local time-stepping (LTS) methods, also

called multiple or multi-rate time-stepping (MTS) in the lit-

erature, which use smaller time steps where necessary while

remaining fully explicit in the entire mesh. This increases

the efficiency drastically as larger elements can be advanced

with large local time steps. Over the past decades, various

LTS methods have been developed in the scientific com-

puting community targeting either general ODEs27–29 or

specific spatial discretization methods.30 As far as the DG

method is concerned, LTS schemes based on the second-

order leap-frog (LF2) method,31–34 pth-order Runge-Kutta

(RKp, p � 4) methods,35–40 pth-order Adams-Bashforth

multistep schemes (ABp, p � 4),41 and the causal-path

concept, combining LF2 and RK4 (Ref. 42), have been

proposed for wave propagation problems. Recently, the

arbitrary high-order derivatives discontinuous Galerkin

(ADER-DG) method with the LTS scheme was used to

model transient electromagnetic,43 elastic,44,45 and acous-

tic46 wave propagation. The arbitrary high-order deriva-

tives (ADER) time integration approach follows the Taylor

series method and expands the unknown solutions directly

into a temporal Taylor series in which all of the time deriv-

atives are converted into spatial derivatives by repeatedly

using the governing partial differential equations (the so-

called Cauchy-Kovalewski procedure). The high-order spa-

tial derivatives are approximated with the DG method. The

ADER approach is a one-step explicit scheme that does not

require intermediate stages while maintaining the same

approximation order in space and time. Despite such

attractive properties, it has a drawback that the high-order

spatial derivatives of the polynomial basis are rather

tedious to derive and implement, especially when non-

affine (curved) elements with varying Jacobians are

involved.

This work aims to further develop the TD-DG method

to be more robust and efficient in simulating transient

acoustic wave propagation from the following two aspects.

First, inspired by a new class of high-order scheme recently

introduced for seismic47 and electromagnetic48,49 wave

modeling, we present a variant of the ADER-DG approach

to solve the time-dependent linear acoustic equations with

an arbitrary order of accuracy in time and space and incor-

porate necessary formulations of time-domain impedance

and transmission boundary conditions for indoor-outdoor

acoustic simulation purposes. The governing acoustic

equations are first spatially discretized with the DG method

by projection onto the space-dependent polynomial basis

functions to obtain the semi-discrete formulation in terms

of time-dependent expansion coefficients. Then, these

coefficients are time integrated by the Taylor series inte-

grator (TSI). The needed time derivatives are replaced with

the numerically approximated spatial derivatives by recur-

sively using the semi-discrete formulation. These consti-

tute a discrete version of the Cauchy-Kovalewski

procedure. Second, we propose a new LTS algorithm to

accompany the ADER-DG scheme to overcome the ineffi-

ciency and stability issues occurring in stiff systems.

Without any overlapping subdomains or extrapolation

involved, the proposed coupling procedure between

domains with different time steps maintains the same high-

order accuracy as that of the GTS scheme by using the

underlying TSI in a straightforward and efficient manner

and is valid for arbitrary ratios of time steps. Furthermore,

the computational cost grows linearly with respect to tem-

poral orders of accuracy. The CFL stability conditions are

investigated numerically with the aim of providing guid-

ance on time step sizes in practical simulations. An appli-

cation to the sound propagation across a transmissive noise

barrier exhibits the computational benefits of the proposed

LTS schemes.

The paper is organized as follows. In Sec. II, spatial dis-

cretization of linear acoustic equations with impedance and

transmission boundary conditions by the DG method is

briefly reviewed. A detailed description of the proposed

time-stepping scheme follows in Sec. III. Numerical stabil-

ity analysis and convergence rate tests are presented in Sec.

IV. Application to the sound propagation across a transmis-

sive noise barrier is shown in Sec. V. Finally, concluding

remarks can be found in Sec. VI.

II. SPATIAL DISCRETIZATION OF LINEAR ACOUSTIC
EQUATIONS WITH THE NODAL DG METHOD

To avoid redundant repetitions with previous works50

while introducing necessary notations for the convenience

of discussion, first, we briefly review the main ingredients

of the nodal DG method, which is used for the spatial dis-

cretization. Acoustic wave propagation can be described

by the following coupled system of linear acoustic

equations:

@v

@t
þ 1

q
rp ¼ 0;

@p

@t
þ qc2r � v ¼ 0; in X� 0; t½ �; (1)

where vðx; tÞ ¼ ½u; v;w�T is the particle velocity vector, pðx; tÞ
is the sound pressure, x is the position in the spatial domain of

interest X, q is the constant density of air, and c is the constant

speed of sound (c¼ 343 m/s and q ¼ 1:2 kg/m3 in this work).

Equivalently, Eq. (1) reads

@q

@t
þr � FðqÞ ¼ @q

@t
þ Aj

@q

@xj
¼ 0; (2)
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where qðx; tÞ ¼ ½u; v;w; p�T is the unknown acoustic variable

vector and Aj is the constant flux Jacobian matrix with spa-

tial coordinate index j 2 f1; 2; 3g and x1 ¼ x; x2 ¼ y;
x3 ¼ z. The computational domain X is divided into non-

overlapping simplex elements Dk, i.e., X ¼ [K
k¼1Dk. In this

work, the quadrature-free approach1 is adopted and the

nodal discontinuous Galerkin algorithm as presented in Ref.

4 is followed. The local solution qk
hðx; tÞ in element Dk,

where subscript h denotes the numerically approximated

variable, is given by

qk
hðx; tÞ ¼

XNp

i¼1

qk
hðxk

i ; tÞlk
i ðxÞ; (3)

where qk
hðxk

i ; tÞ are the unknown nodal values, lk
i ðxk

i Þ is the

multidimensional Lagrange polynomial basis of order N,

which satisfies lk
i ðxk

j Þ ¼ dij, and indices i, j denote the

ordering of the nodes. Np is the number of local basis

functions (or nodes) inside a single element and is equal to

ðN þ dÞ!=ðN!d!Þ for simplex elements, where d is the dimen-

sionality. The basis (shape) function lk
i ðxÞ is determined by

the nodal distribution xk
i , and in this study, the Legendre-

Gauss-Lobatto (LGL) quadrature points are used for one-

dimensional (1D) problems and the a-optimized nodal dis-

tribution51 is used for multidimensional elements due to its

low Lebesque constants. Also, the test function space is

spanned by the same basis polynomials lk
i ðxÞ. After the

Galerkin projection of Eq. (2) and twice integrations by

parts, the strong formulation reads

ð
Dk

@qk
h

@t
þr � Fk

hðqk
hÞ

� �
lki dx

¼
ð
@Dk

n � Fk
hðqk

hÞ � F�ðq�h ; qþh Þ
� �

lk
i dx; (4)

where n ¼ ½nx; ny; nz� is the outward normal vector of the

element surface @Dk. F�ðq�h ; qþh Þ, the so-called numerical

flux across element intersection @Dk, is a function of

both the solution value from the interior side of the

intersection, i.e., q�h and the neighboring exterior value

qþh . In this study, the upwind numerical flux is used

throughout the whole domain because of its low disper-

sion and dissipation errors.52,53 It is defined by consider-

ing the direction of propagating characteristic waves,

i.e.,

n � F�ðq�h ; qþh Þ ¼ LðKþL�1q�h þ K�L�1q1
h Þ; (5)

where K is a diagonal matrix with diagonal entries

½0; 0; c;�c�, corresponding to the speed of each characteris-

tic wave. Kþ and K� contain the positive and negative

entries of K respectively. L is the eigenmatrix of the nor-

mally projected flux Jacobian, i.e.,

An ¼ ðnxAx þ nyAy þ nzAzÞ ¼ LKL�1; (6)

where

L ¼

�ny �nz nx=2 �nx=2

nx 0 ny=2 �ny=2

0 nx nz=2 �nz=2

0 0 qc=2 qc=2

2
66666664

3
77777775
;

K ¼

0 0 0 0

0 0 0 0

0 0 c 0

0 0 0 �c

2
66666664

3
77777775
: (7)

Physically, Kþ (K�, respectively) corresponds to the

characteristic waves propagating along (opposite to) the

outward normal direction n, which are referred to as out-

going waves out of Dk (incoming waves into Dk).

Therefore, the outgoing waves are associated with the

interior solution q�h , whereas the incoming waves are

dependent on the exterior (neighboring) solution qþh .

Finally, the semi-discrete formulation is obtained by

substituting the nodal basis expansion [Eq. (3)] and the

upwind flux [Eq. (5)] into the strong formulation [Eq.

(4)]. The resulting vector-matrix form of the formulation

and additional descriptions of implementations can be

found in Ref. 50.

Besides the spatial discretization inside the computa-

tional domain, proper formulations of the boundary con-

ditions are of critical importance because boundaries of

various shapes introduce a considerable amount of com-

plexities into the wave patterns over a long time, such as

absorption, transmission, and coupling with structural

vibrations.9–11,54,55 For the DG method, boundary condi-

tions are enforced weakly through the numerical flux. In

this work, the formulations of broadband time-domain

impedance and transmission boundary conditions for

locally reacting surfaces are considered.10,11 The essential

idea is to reformulate the numerical flux based on the

characteristic waves of the linear acoustic equations,

together with the plane wave reflection coefficient R and

transmission coefficient T at normal incidence. The use

of coefficients at normal incidence is consistent with the

fact that only the normal component of the numerical

flux to the boundary surface contributes to the surface

integral in Eq. (4). As shown in Refs. 10 and 11, the

inputs required for the boundary formulation are the

complex-valued plane wave reflection coefficient RðxÞ
and transmission coefficient TðxÞ as a function of the

angular frequency x in the frequency domain, which may

be obtained from (semi-) analytical impedance models or

measured discrete impedance values. Then, both coeffi-

cients are approximated within the frequency range of

interest using multipole models.56–58 For example, RðxÞ
is approximated as
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RðxÞ � R1 þ
XS

k¼1

Ak

fk þ ix

þ
XT

l¼1

1

2

Bl � iCl

al � ibl þ ix
þ Bl þ iCl

al þ ibl þ ix

� �

¼ R1 þ
XS

k¼1

Ak

fk þ ix
þ
XT

l¼1

Blixþ Clbl þ alBl

ðal þ ixÞ2 þ b2
l

;

(8)

where ½R1;Ak;Bl;Cl; fk; al; bl� 2 R are all real numerical

fitting parameters. R1 is the frequency-independent value,

e.g., R1 ¼ 1 for the hard wall boundary. fk and al 6 ibl are

the real poles and complex conjugate pole pairs, S and T are

their numbers, respectively. The numerical properties of the

multipole model and parameter fitting procedures can be

found in Ref. 10 while a few examples of practical locally

reacting boundaries are discussed in Ref. 11. By applying

the inverse Fourier transform to Eq. (8), the so-called reflec-

tion impulse response function in the time-domain is

obtained as

RðtÞ � R1dðtÞ þ
XS

k¼1

Ake�fktHðtÞ

þ
XT

l¼1

e�al t Bl cosðbltÞ þ Cl sinðbltÞð ÞHðtÞ; (9)

where dðtÞ and H(t) are the Dirac delta and Heaviside func-

tions, respectively. The transmission impulse response func-

tion T(t) can be calculated similarly. As derived in Ref. 11,

the general form of upwind flux along the boundary is

expressed as

n�F�ðq�h ;qþh Þ

¼LK

0

0

-out
nðt

�1
-out

n ðsÞRðt�sÞdsþ
ðt

�1
-out�

n� ðsÞTðt�sÞds

2
6666664

3
7777775
:

(10)

Here, -out
n ðtÞ is the outgoing characteristic wave that is cal-

culated with the interior solution values q�h at each of the

discrete nodes along the boundary as

-out
n ðtÞ ¼

p�ðtÞ
qc
þ v�ðtÞ � n; (11)

where n is the outward normal vector of the boundary ele-

ment surface. Similarly, -out�
n� is the outgoing wave coming

from the neighboring element that lies on the other side of

the transmissive boundary surface and is calculated using

exterior solution values as -out�
n� ¼ pþðtÞ=qc� vþðtÞ � n. It

should be noted that when transmission is not considered,

T(t) becomes zero and Eq. (10) reduces to the flux for the

general impedance boundary.

To compute the convolution terms in Eq. (10), the aux-

iliary differential equations (ADEs) method59,60 is used. For

example, substitution of the reflection impulse response R(t)
[Eq. (9)] into

Ð t
�1 -out

n ðsÞRðt� sÞds yields

-in
n ðtÞ ¼ R1-out

n ðtÞ þ
XS

k¼1

Ak/kðtÞ

þ
XT

l¼1

Blw
ð1Þ
l ðtÞ þ Clw

ð2Þ
l ðtÞ

h i
; (12)

where /kðtÞ;w
ð1Þ
l ðtÞ;w

ð2Þ
l ðtÞ are the so-called accumulators

or auxiliary variables and are given, respectively, by the fol-

lowing ODEs:

d/k

dt
þ fk/kðtÞ ¼ -out

n ðtÞ; (13a)

dwð1Þl

dt
þ alw

ð1Þ
l ðtÞ þ blw

ð2Þ
l ðtÞ ¼ -out

n ðtÞ; (13b)

dwð2Þl

dt
þ alw

ð2Þ
l ðtÞ � blw

ð1Þ
l ðtÞ ¼ 0: (13c)

The above system is numerically integrated from zero initial

values using the same time integration scheme as for the

semi-discrete DG formulation in Eq. (4), which will be

shown in the following.

III. THE ADER-DG SCHEME AND LTS

A. The ADER Taylor Series time integrator

After the spatial discretization by the nodal DG method,

the total semi-discrete system can be expressed in a general

form of ODEs as

@~qh

@t
¼ Lð~qhðtÞ; tÞ; (14)

where ~qh denotes the union of all unknown solutions,

including acoustic variables qh as in Eq. (4) and auxiliary

variables from the boundary conditions. Here, L considers

both the spatial discretization operator of DG in Eq. (4) and

the ADEs of Eqs. (13a)–(13c). To introduce the Taylor

Series time integrator scheme, we expand ~qh into a truncated

Taylor series with respect to time and omit the time deriva-

tive terms of order higher than Nt, obtaining

~qhðtþ DtÞ ¼ ~qhðtÞ þ
XNt

i¼1

Dti

i!

@i~qhðtÞ
@ti

: (15)

Then, the discrete Cauchy-Kovalewski procedure is used

to replace the time derivatives in the above Taylor series

by spatial derivatives through the repeated use of Eq. (14),

i.e.,

@i~qh

@ti
¼ @

@t

@i�1~qh

@ti�1
¼ L @i�1~qh

@ti�1

� �
¼ Li~qh: (16)
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This yields the final time-discrete formulation

~qhðtþ DtÞ ¼ ~qhðtÞ þ
XNt

i¼1

ciDtiLi~qhðtÞ; (17)

where ci ¼ 1=i! are coefficients of the Taylor series. For this

conceptually simple scheme, the order of accuracy Nt

becomes merely a numerical parameter that can be flexibly

fixed. Thanks to the iterative nature of the high-order deriva-

tive construction, the computational cost is linearly propor-

tional to the order Nt, i.e., an Ntth-order approximation

needs only Nt times the right-hand-side evaluations of

Eq. (14). Furthermore, the algorithm can be implemented

efficiently in the 2N-storage format, which means that for

each variable, only one additional storage is needed to store

the derivative value besides its solution value at the same

time. Within each time step, the solutions are updated itera-

tively by adding one specific Taylor series term, which is

updated from a lower-order derivative to the next higher-

order derivative by evaluating the right-hand-side of

Eq. (14). It should be noted that the closed-form solution to

any explicit RK method14–20 can be written in a form similar

to that of Eq. (17). The TSI method can, therefore, be readily

generalized to an arbitrary set of optimized coefficients and is

not limited to the standard coefficients of the Taylor series.

The TSI scheme, as an explicit time-stepping method,

features the CFL conditional stability that sets an upper

bound on the time step size. The stability and accuracy of an

explicit scheme is characterized by applying it to the model

equation,

@u

@t
¼ ku; k 2 C; (18)

with a time step Dt ¼ tnþ1 � tn. This yields the relation

unþ1 ¼ RðzÞun, where z ¼ kDt. R is the complex amplifica-

tion polynomial61 given by

RðzÞ ¼
XNt

i¼0

ciz
i: (19)

Besides accuracy, the amplification polynomial R(z) also

determines the absolute stability region S of the scheme as

S ¼ fz : jRðzÞj � 1g: (20)

To evaluate the fully discrete stability of the ADER-DG

scheme with a given time step Dt, the eigenvalues kNðLÞ of

the semi-discrete operator L are substituted into Eq. (18).

Then, the stability condition becomes

kDt 	 S; 8k 2 kNðLÞ: (21)

Equation (21) is a necessary condition for the absolute sta-

bility in a general sense.62,63 It can also serve as an excellent

guideline for the time step choice.4 In this work, we follow

this guideline and determine the time step in the following

way:4

Dt ¼ CCFL

1

N2
minðDxlÞ

1

c
; (22)

where Dxl is a measure of the element size and CCFL is a

constant of order Oð1Þ. Recall that N is the spatial approxi-

mation order. Here, we split the conventionally defined CFL

number, which is, in practice, set to 1=ð2N þ 1Þ for a discre-

tization combination of the Nth-order DG method and an

ðN þ 1Þ th-order explicit RK method,2 as a product of CCFL

and 1=N2. The factor 1=N2 is attributed to the fact4,64 that

the eigenvalue spectrum of the spatial operator of DG grows

at a rate slightly slower than does OðN2Þ, whereas CCFL

accounts for the effect of the size of the absolute stability

region of time integration schemes of various orders.

Because both the eigenvalue spectrum of the DG operator

and the absolute stability region of the TSI schemes are

defined implicitly, the exact values of CCFL will be deter-

mined numerically in Sec. IV A.

B. LTS strategy

Practical simulations typically use meshes of different

sizes for regions of various dimensions to capture the neces-

sary geometrical details while maintaining the computa-

tional efficiency. In addition, spatial variations in the sound

speed c across elements influence the stiffness or the eigen-

value spectrum of the semi-discrete system (14).

Furthermore, the fitting parameters of the multipole model

for the impedance boundary condition as in Eq. (8) may

introduce extra stiffness. To satisfy the CFL stability condi-

tion (21), the global time step is dictated by the most

demanding factor, e.g., the smallest element. To overcome

this inefficiency, an explicit LTS strategy accompanying the

TSI scheme is introduced.

For a convenient demonstration but without loss of gen-

erality, consider a 1D computational domain with two sub-

domains that are composed of coarse and fine meshes and

denoted as Xc and Xf, respectively, with their local time

steps Dtc and Dtf , as illustrated in Fig. 1. Suppose the local

time steps follow the relation Dtc ¼ rDtf , where the ratio of

time step sizes r is determined based on mesh partitioning

and efficiency considerations. As we will see, the proposed

LTS strategy can be extended to a ratio of an arbitrary value.

However, for ease of explanation, the case with an integer r

FIG. 1. Illustration of the LTS algorithm in the 1D space.
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is presented in detail as follows. First, starting from a certain

synchronized time tn ¼ t0 þ nDtc (as it happens at the initial

time t¼ t0), the global solutions step forward simultaneously

using their local time steps. To be specific, the solutions

inside the coarse region ~qn
c is advanced to the next synchro-

nous time level tnþ1 ¼ tn þ Dtc by the TSI formula

~qnþ1
c ¼ ~qn

c þ
XNt

i¼1

ciDti
c

@i~qn
c

@ti
; (23)

whereas the solutions inside the fine region ~qn
f are advanced

to its next intermediate time level tnþ1=r ¼ tn þ Dtf by the

TSI formula

~q
nþ1=r
f ¼ ~qn

f þ
XNt

i¼1

ciDti
f

@i~qn
f

@ti
: (24)

The time derivatives needed for the local TSI advancements

in Eqs. (23) and (24) can be calculated using the known sol-

utions ~qn at the synchronous time level tn in the same itera-

tive way as for a GTS scheme as shown in Eq. (16). The

next step is to advance the newly obtained solutions ~q
nþ1=r
f

inside the fine region to its next intermediate time level

tnþ2=r ¼ tn þ 2Dtf in a manner similar to that of Eq. (24).

However, in this case, the time derivatives @i~q
nþ1=r
f =@ti;

i 2 f1;…;Ntg cannot be calculated directly using Eq. (16).

Recall that the spatial discretization operator L for the dis-

crete Cauchy-Kovalewski procedure involves the numerical

flux approximation, which depends on the solution values

along the interface belonging to neighboring elements.

Therefore, to calculate the spatial discretization operator of

fine elements that lie next to the interface between the

coarse and fine meshes, the solution values along the inter-

face on the coarse mesh are required. Specifically, along the

dividing interface, solution values ~qnþ1=r
c are needed to get

@~q
nþ1=r
f =@t; @~qnþ1=r

c =@t are needed to get @2~q
nþ1=r
f =@t2; …,

and so on. These desired solution/derivative values on the

coarse mesh at different intermediate time levels ðtnþj=r

¼ tn þ jDtf ; j 2 f1;…; rgÞ, are obtained by using their

own Taylor series expansions around the synchronous time

level, which is supposed to be valid throughout ½tn; tnþ1�,
i.e.,

~qnþj=r
c ¼ ~qn

c þ
XNt

i¼1

ciðjDtf Þi
@i~qn

c

@ti
; j 2 1;…; rf g;

(25a)

@k~qnþj=r
c

@tk
¼ @

k~qn
c

@tk
þ
XNt

i¼kþ1

ci�kðjDtf Þi�k @
i~qn

c

@ti
;

k 2 1;…;Nt � 1f g; (25b)

where the derivative terms @i~qn
c=@ti are pre-saved while

advancing the coarse elements using Eq. (23). The presented

coupling procedure provides an accurate evolution of solu-

tions by exploiting the nature of the Taylor series expansion

and ensures the correct communication between the coarse

and fine regions. Because only the solution/derivative values

at the nodes along the interface are needed for flux computa-

tions during the coupling procedure, the incurred memory

and computation costs are negligible for the entire system.

As will be seen later, the same order of accuracy as that of

the GTS scheme is maintained, and the stability is ensured

locally without a huge compromise on time steps.

To theoretically appreciate the potential speedup that

can be achieved by such a LTS scheme, we assume that the

fine domain Xf takes up v fraction of the whole domain,

whereas the proportion of the remaining coarse domain Xc

is 1� v. If GTS is used, all elements are advanced with the

small time step Dtf , and the computational cost (or, equiva-

lently, the total number of element-wise right-hand-side

evaluations) is proportional to

TABLE I. Stability limits CCFLmax
for ADER-DG with upwind fluxes and a

uniform mesh.

N¼ 3 N¼ 4 N¼ 5 N¼ 6 N¼ 7 N¼ 8

Nt¼ 3 1.171 1.434 1.653 1.835 1.994 2.134

Nt¼ 4 1.308 1.600 1.841 2.043 2.217 2.372

Nt¼ 5 1.511 1.848 2.126 2.359 2.562 2.739

Nt¼ 6 1.669 2.042 2.348 2.605 2.832 3.028

Nt¼ 7 1.858 2.272 2.612 2.901 3.150 3.368

Nt¼ 8 2.026 2.478 2.849 3.164 3.437 3.677

LS – RK5 1.980 2.437 2.815 3.135 3.412 3.656

FIG. 2. (Color online) Distribution of

eigenvalues of the amplification matrix

R for a uniform time step with

N ¼ Nt ¼ 6; CCFL ¼ CCFLmax
. (a)

r¼ 1 and (b) r¼ 5.
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NGTS ¼ 1

Dtf
:

In contrast, if LTS is used, the computational cost scales as

NLTS ¼ v
Dtf
þ 1� v

Dtc
:

Therefore, the theoretical speedup � is obtained as the ratio

� ¼ NGTS

NLTS
¼ r

1� vþ rv

 1: (26)

Two extreme cases are noteworthy to understand Eq. (26).

One case is that the two time steps are extremely disparate,

i.e., r� 1, then we obtain

lim
r!1

� ¼ 1

v
;

indicating that a dramatic speedup is achieved if a small

fraction of elements need a very small time step. The other

case is when there are a small number of fine elements, i.e.,

v! 0, and then the speedup is determined by the ratio of

time steps as

lim
v!0

� ¼ r:

The above two-level formulation with integer-valued ratios

can be extended to general real-valued time step ratios of

arbitrarily many levels of local time steps to accommodate

the needs arising from practical simulations, e.g., mesh par-

titioning. It should be mentioned that the cost of the cou-

pling procedure [Eqs. (25a) and (25b)], which can be

performed efficiently with matrix-vector multiplication,

together with accompanying storage needs, is negligible

compared to the overall computational work. A common

approach to save the memory cost is to group elements with

similar maximum allowable time steps together and, then, to

adopt one uniform time step for each group.

IV. NUMERICAL STUDIES OF THE ADER-DG SCHEME
WITH LTS

In this section, numerical experiments are performed to

investigate the numerical properties of the ADER-DG

scheme with both GTS and LTS.

A. Numerical stability analysis

The stability properties are studied by applying the

ADER-DG scheme to the 1D linear acoustic equation (1)

with periodic boundary conditions. Consider a computa-

tional domain of size x 2 ½0; 4�m, where ½0; 2�m is discre-

tized with an equidistant mesh of size Dxc, whereas ½2; 4�m
is discretized with an equidistant mesh of size Dxf ¼ Dxc=r.

First, the stability with a uniform time step is evaluated. To

that end, we assemble the DG spatial discretization operator

TABLE II. The ratio of stability limits CCFL�max
of a nonuniform mesh with

r¼ 5 and LTS to the CCFLmax
with a uniform mesh with GTS as in Table I.

N¼ 3 N¼ 4 N¼ 5 N¼ 6 N¼ 7 N¼ 8

Nt¼ 3 1.000 1.000 1.000 1.000 1.000 1.000

Nt¼ 4 0.999 0.999 0.997 0.998 0.999 0.999

Nt¼ 5 0.994 0.993 0.996 0.995 0.994 0.996

Nt¼ 6 0.990 0.990 0.990 0.992 0.991 0.991

Nt¼ 7 0.985 0.988 0.986 0.987 0.990 0.988

Nt¼ 8 0.982 0.981 0.983 0.984 0.983 0.983

FIG. 3. (Color online) Distribution of

eigenvalues of the amplification matrix

R for a nonuniform time step r¼ 5,

CCFL ¼ CCFL�max
. (a) N ¼ Nt ¼ 4 and

(b) N ¼ Nt ¼ 6.

FIG. 4. (Color online) Convergence rate test with periodic boundary condi-

tions, CCFL ¼ CCFLmax
and N ¼ Nt ¼ 4; 5; 6.
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L and insert it into an Ntth-order TSI time integration [Eq.

(17)]. Then, it is straightforward to obtain the amplification

matrix R that relates the solutions between two time levels

as qnþ1
h ¼ Rqn

h, where

R ¼ I þ
XNt

i¼1

ciDtiLi; (27)

and I is the identity matrix. The fully discrete formulation is

stable if all eigenvalues of matrix R, denoted as kNðRÞ, have

a modulus less or equal to unity, i.e.,

max jkNðRÞjð Þ � 1: (28)

For the uniform time step case, eigenvalues of matrix R are

related to the product of eigenvalues of the spatial operator

L and the time step as kNðRÞ ¼ RðkNðLÞDtÞ, and the condi-

tion of Eq. (28) is equivalent to the stability condition of Eq.

(21). The eigenvalues based on a uniform mesh with

Dxc ¼ Dxf ¼ 0:1 m are calculated, and a simple bisection

method is used to find the maximum allowable time step by

iteratively reducing the time step subject to the stability con-

dition of Eq. (28). Table I presents the maximum allowable

CCFL values as in Eq. (22) for different combinations of

time and space discretization orders, which match exactly

the corresponding CFL number limit for the standard RK

method as reported in Ref. 2. For each fixed spatial order N,

CCFLmax
increases with the time integration order Nt as the

absolute stability region grows. Furthermore, since the

eigenvalue spectrum of the DG discretization operator

grows at a rate slightly slower than OðN2Þ, a slight increase

in CCFLmax
with respect to N is observed as well. As a com-

parison, the low-storage five-stage fourth-order RK (LS-

RK5) scheme,15 which is devised and optimized to enhance

stability, has a much larger stability region than the fifth-

order TSI scheme at the cost of a compromising accuracy.

The stability limit also applies to the nonuniform mesh case,

where CCFL is determined by the finer mesh. Figure 2 dis-

plays the distribution of eigenvalues of the amplification

matrix R for a uniform mesh with Dxc ¼ Dxf ¼ 0:1 m as

well as a nonuniform mesh with Dxc ¼ 5Dxf ¼ 0:1 m.

Next, the stability of the proposed LTS scheme is evalu-

ated, and we now consider the domain with a nonuniform

mesh of ratio r¼ 5. To obtain the amplification matrix R,

the TSI for both the coarse and fine regions [Eqs. (23) and

(24), respectively], together with the coupling procedure

[Eqs. (25a) and (25b)], are applied to the semi-discrete for-

mulation [Eq. (14)]. Clearly, the eigenvalues of RðDtc;Dtf Þ,
arising from the LTS scheme, are different from those for a

GTS scheme. Ideally, the LTS scheme would introduce no

further constraint on the time step size and, therefore, the

same CFL condition as in the GTS case would be obtained.

However, it is found that the maximum allowable CFL-like

constants CCFL�max
for the LTS scheme are slightly smaller

than the maximum allowable CFL-like constants for the

GTS case, which is typical for a spatially nonoverlapping

coupling procedure.33,36 Their ratios are shown in Table II.

Figure 3 shows two examples of distributions of the eigen-

values. Similar numerical experiments with different values

of r have been performed to test the CFL stability condi-

tions for the LTS scheme. It is found that a ratio value of

0.95 would yield a stable scheme in all of the tests, indicat-

ing that the developed coupling procedure does not have a

significant negative impact on the stability limit of the TSI,

in general.

FIG. 5. (Color online) Convergence

rate test of ADER-DG with Nt¼ 5 and

periodic boundary conditions. (a)

CCFL ¼ CCFLmax
> 1 and (b) CCFL¼ 1.

FIG. 6. A 1D configuration with impedance and transmissive boundaries.
FIG. 7. (Color online) Convergence rate test with impedance and transmis-

sion boundaries, CCFL ¼ CCFLmax
and N ¼ Nt ¼ 4; 5; 6.
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B. Convergence rate of ADER-DG

1. Periodic boundary with GTS

To investigate the convergence rate of the proposed

ADER-DG method for free field propagation, the 1D linear

acoustic equation [Eq. (1)] on the interval x 2 ½0; 4�m with

uniform meshes are solved. Periodic boundary conditions

are prescribed on both ends, and the initial condition is a

sine wave of wavelength kw ¼ 4 m,

pðx; t ¼ 0Þ ¼ sinð�0:5pxÞ; (29a)

uðx; t ¼ 0Þ ¼ 1

qc
sinð�0:5pxÞ: (29b)

First, numerical tests are conducted for various orders of

accuracy in space and time with a uniform maximum allow-

able CFL number on a sequence of mesh sizes Dx. The L2

space-time error defined as �L2 ¼ jjpanaðTf Þ � pnumðTf ÞjjL2 is

used to evaluate the accuracy, where panaðTf Þ and pnumðTf Þ
denote the analytical solution and the numerical solution,

respectively, at the final time Tf ¼ ð16 m)/c across the whole

domain. jj � jjL2 denotes the L2 norm, which is carried out

numerically and accuratly up to the order of the polynomial

approximation. As shown in Fig. 4, the observed conver-

gence rates kc, which are calculated by linear fitting with the

least square method, are as expected.

Next, to investigate the effects of temporal error on the

spatial convergence rate, we repeat previous tests with a

fixed time integration order of Nt¼ 5 and different time step

sizes. Figure 5(a) displays the results obtained using the

maximum allowable time step for ADER-DG as prescribed

from Table I. It can be seen that above a certain spatial reso-

lution, the time integration error becomes dominant over the

spatial error, and the spatial convergence rate is deteriorated.

As shown in Fig. 5(b), a smaller time step reduces the tem-

poral error and the expected spatial convergence rate of

ADER-DG scheme is recovered.

2. Impedance and transmission boundary with GTS

Now, convergence rates of the ADER-DG scheme for

wave propagation involving time-domain impedance and

transmission boundary conditions are verified, where the

ADEs [Eqs. (13a)–(13c)] are integrated using the same time

integration scheme. As illustrated in Fig. 6, the transmission

and impedance boundary is located at x¼ 0 m, and the

source at xs ¼ �2:5 m initiates the simulation with the

Gaussian-shaped pressure conditions

pðx; t ¼ 0Þ ¼ eð�ln 2=b2Þðx�xsÞ2 ; (30a)

vðx; t ¼ 0Þ ¼ 0; (30b)

where b¼ 0.15 m is the half-bandwidth of the Gaussian

pulse. Convergence tests similar to those in the periodic

boundary case are performed. The numerical solutions at the

final time Tf ¼ 4=c s, when both the reflected and transmit-

ted waves are present in the domain, are compared against

the analytical solutions.65 Without loss of generality, one

single real pole ½A; f�R ¼ ½6:4� 103; 8� 103� is used for fit-

ting the reflection coefficient R as in Eq. (8) while the trans-

mission coefficient T is defined by ½A; f�T ¼ ½5� 103;
9� 103�. The L2 error with conforming spatial and temporal

approximation order is plotted in Fig. 7. The expected con-

vergence rates are yielded.

C. Convergence of ADER-DG with LTS and compari-
son against GTS

To verify the convergence rate of ADER-DG with the

proposed LTS scheme, we repeat the above numerical tests

using nonuniform meshes. For the periodic boundary case,

the original computational domain x 2 ½0; 4�m is split into

two parts with different mesh sizes. The coarse part

x 2 ½0; 2�m is discretized with an equidistant mesh of size

Dxc, whereas the fine part x 2 ½2; 4�m has a mesh of size

Dxf ¼ Dxc=r. For the impedance and transmission boundary

case, the interface between the coarse region x 2 ½�4; 0�m
and the fine region x 2 ½0; 2�m coincides with the reflective

and transmissive boundary. With a uniform CFL value, the

time step sizes are different between the two regions. The

�L2 error for different values of mesh size ratio r and a fixed

order of accuracy is presented in Fig. 8 for both boundary

cases. As a comparison, the results obtained from the GTS

scheme are shown as well. It can be seen that for all of the

tested time step ratios r, the expected convergence rates kc

are observed for LTS, and the scheme introduces no extra

error compared to the GTS scheme.

FIG. 8. (Color online) Convergence

rate of LTS and its comparison with

GTS with CCFL ¼ 0:95CCFLmax
; N ¼

Nt ¼ 5 and r ¼ 1; 2; 3; 4; 8. (a)

Periodic and (b) impedance and trans-

mission boundaries.

J. Acoust. Soc. Am. 149 (1), January 2021 Wang et al. 577

https://doi.org/10.1121/10.0003340



V. APPLICATION

To demonstrate the functionality and speedup potential

of the proposed ADER-DG scheme with LTS for practical

applications, wave propagation across a finite-height noise

barrier made of porous glass-wool material is simulated,

which is a configuration pertaining to outdoor sound propa-

gation. The schematic diagram is shown in Fig. 9(a) with

the outer boundaries far away from the barrier to prevent

spurious reflected waves from influencing the pressure

response. The source is located at ðxs; ysÞ ¼ ð�2; 0Þ and

four receivers are located at ð�1; 0Þ; ð�1; 3Þ, (1,0), and

(1,3) are distributed symmetrically with respect to the bar-

rier, which has a height of H¼ 4 m and a width of

W¼ 0.04 m. To mimic a real noise barrier mounted on a

hard ground surface, the rigid boundary condition is

imposed on the top edge of the barrier, whereas both side

edges are modeled with the reflective and transmissive

boundary conditions. The characteristic impedance of the

locally reacting glass-wool layer is assumed to follow the

phenomenological Johnson-Champoux-Allard-Lafarge

(JCAL) model66 with its physical parameters measured

experimentally.11 To model the reflection and transmission

properties of the layer, four and five real poles are used to fit

the reflection and transmission coefficients from the time-

domain boundary conditions, respectively, as shown in

Ref. 11. The other boundaries are assumed to be rigid.

The two-dimensional domain is discretized with 13 427

unstructured triangles.67 As illustrated in Fig. 9(b), the mesh

is locally refined near the top edge of the sound barrier in

order to capture the geometry features and diffraction

effects. A relatively simple mesh size measure, which is the

shortest edge length h, is chosen for determining the time

step size based on the CFL condition (22). In-depth discus-

sions on appropriate triangular mesh measures can be found

in Refs. 68 and 69. Mesh elements far away from the sound

barrier have an edge length of approximately 0.5 m. Here,

suppose the shortest edge length is denoted by hmin, we treat

all of the elements with the shortest length that satisfies h �
6hmin as the fine mesh elements, i.e., the green triangles in

Fig. 9(c). There are, in total, 2729 fine triangles scattered

around the barrier, which suggests a speedup ratio of � � 3

with the LTS scheme according to Eq. (26).

To evaluate the accuracy of the LTS scheme, we use

the numerical solutions obtained by the RK-DG method

with the GTS scheme and the same mesh, which have been

verified against the finite element solutions in the frequency

domain,11 as the reference solutions. Following the same

numerical setup of the reference solution, a uniform CFL-

like constant CCFL¼ 1 is used, as well as a spatial polyno-

mial basis of order N¼ 8, together with a fifth-order TSI,

which shares the same computational cost as the LS-RK5

scheme, are used. The time steps in two regions follow the

relation Dtc ¼ 6Dtf . The Gaussian distribution with

b¼ 0.25 m as in Eqs. (30a) and (30b) acts as the source and

initiates the simulation. The comparison of pressure signals

at two receiver locations obtained from both the GTS

scheme and LTS scheme are shown in Fig. 10, where a high

level of agreement is observed. For receiver 2, the main

components are the direct sound and the reflected sound

from the barrier, whereas receiver 4 experiences the pres-

sure signal diffracted over the hard barrier top as well as the

faint pressure signal transmitted through the barrier.

Besides the time-domain comparisons, the relative sound

pressure level, which is obtained by normalizing the total

spectrum against the spectrum of the free field solution, and

its phase angle at different receiver locations are shown in

Figs. 11(a) and 11(b), respectively. Again, a perfect match

of the frequency-domain results between the GTS scheme

and the LTS scheme is found.

VI. CONCLUSION

In this work, we present an ADER-DG approach with

the LTS scheme to solve the time-dependent linear acoustic

equations with an arbitrary order of accuracy in time and

FIG. 9. (Color online) Geometry and mesh of the noise barrier. (a) Schematic diagram, (b) overall mesh, and (c) zoomed-in view of the fine mesh near the

top edge.

FIG. 10. (Color online) Time history of the pressure signal at receivers r2

and r4.
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space. Built upon the well-known nodal DG method for the

spatial discretization, it performs the time integration using

TSI in an efficient and accurate manner. Necessary formula-

tions of time-domain acoustic boundary conditions are

included for indoor-outdoor acoustic simulation purposes.

Numerical experiments and applications are performed to

validate the stability and convergence properties. It is shown

that the proposed LTS scheme enables a significant reduc-

tion in computational cost while maintaining the desired

high-order accuracy. Applications to more practical sound

propagation problems involving complex geometries and

material properties will be addressed in future work.
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Abstract
In this study, room acoustic simulations of a real open plan office using the time-domain discontinuous Galerkin
(TD-DG) method are performed, as a preliminary attempt to assess the accuracy and applicability of this wave-
based method for realistic sound field analysis in the low-frequency range. This TD-DG simulation involves
the developed techniques of locally-reacting frequency-dependent impedance boundary conditions and the
local-time stepping scheme. The required input for the boundary modeling of relevant absorption materials is
obtained from the absorption coefficients measured in a reverberation room based on the international standard
ISO 354. Observed discrepancies, in terms of the room acoustic parameters, between the measurements and
simulation results indicate the limitation of the detailed wave-based modeling in the absence of a precise
boundary characterization.

Keywords: wave-based simulation, time-domain discontinuous Galerkin method, open-plan office.

1 Introduction

Wave-based room acoustic simulation methods simulate sound propagation by directly solving the wave
equation based on numerical approximation techniques. Compared to the well-established geometrical acoustic
(GA) simulation techniques [1], which are built upon the assumption that sound acts as rays, wave-based
methods are able to accurately capture inherent complex wave-phenomena such as scattering, diffraction
and phase effects. Despite their superior accuracy, wave-based methods suffer from a heavy computational
cost. Therefore, GA simulation methods have been the prevailing approach for acoustic practitioners and
researchers for simulating the acoustic fields of large rooms like concert halls and theaters; while it is
generally acknowledged that wave-based methods serve as preferred alternatives to GA models for rooms with
small volumes below the Schroeder frequency, where the modal overlap is low. Recently, the time-domain
discontinuous Galerkin (TD-DG) wave-based method has been investigated for room acoustic modeling
purposes [2, 3] and efforts have been made to enhance its performance in terms of acoustic boundary modeling
[2, 4, 5], efficiency [6] and high-performance computing [2].
A comprehensive evaluation of the accuracy of room acoustic simulations typically involves a comparison
with measurements. For state-of-the-art of room acoustic modeling software that are based on GA models,
round robin experiments have been performed using acoustic scenes of different levels of complexity [7]
and benchmark databases have been established [8]. Audible deviations are observed, and it proves to
be a challenging task to guarantee an exact match of model input parameters between simulations and
measurements. Sources of input data uncertainties include room geometries, absorption and scattering
properties of room surfaces and the source and receiver characteristics [9].
For wave-based methods, there have been on-going research activities trying to close the gap between
real-world measurements and simulations as well. Experimental validation of room acoustic simulations
inside a reverberation room with a time-domain finite element method (FEM) is reported by Okuzono et al.
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[10], and a decent agreement of band-limited room impulse responses is observed in three separate octave
bands. Comparisons of different boundary representations of porous absorbers in small rooms are performed
respectively within the framework of the frequency-domain FEM model [11] and the TD-DG model [12],
highlighting the effects of extended reaction of boundary materials for room acoustics. For the TD-DG method,
previous validation work [3] has been done inside an empty reverberation room, where the walls are modeled
with a uniform real-valued impedance. Later on, benchmark tests with various furniture inside were conducted
[13] and the good match with measurements indicate the strong potential for more challenging and larger room
scenarios. Another recent study compares measurements with simulation results from the TD-DG method
in a small rectangular room with porous absorbers, with a focus on establishing a comprehensive validation
and uncertainty quantification framework in wave-based room acoustic simulations [14]. It was found that
the input uncertainties associated with the absorption properties makes it intractable to predict common room
acoustic parameters within just noticeable difference (JND) thresholds.
In this study, the TD-DG method is applied to simulate the acoustics of a large real open plan office in the
low-to-middle frequency range (125 Hz to 500 Hz octave bands), with the aim of assessing the accuracy and
applicability of this wave-based method for realistic sound field analysis. The ground truth references to be
compared with are measurement results, which were previously published in a study on how room acoustic
parameters are affected with varying configurations of furniture and sound absorbing barriers [15]. The
acoustic properties of involved boundary surfaces are characterized based on standardized reverberation room
measurements [16]. The required specifications of complex-valued reflection coefficients for the wave-based
calculations are obtained by transforming the measured Sabine absorption coefficients. The comparison
between the simulation and measurement results are conducted in terms of six room acoustic parameters that
are derived from the room impulse response.
The paper is organized as follows. The description of the reference room measurements is presented in
Sec. 2. Sec. 3 describes the setup of the wave-based simulation model and the approach used for retrieving
complex-valued impedance boundary data. Section 4 presents the comparison of simulation results with
measurements, as well as discussions on the potential limitations of the current wave-based model.

2 Reference measurement

2.1. Measurement room and procedures
As shown in Fig. 1, the open plan office under study has a long and narrow floor plan with windows along

the walls. Small closed rooms indicated by the blue areas are present to subdivide the long space. The room
has a volume of 962 m3 and the ceiling is 2.9 m tall. During the measurements, the room was completely
empty except for the 5 workstation islands. Within each group of 4 workstations, two variations of the setup
are considered:

– V1: only tables in the room,

– V2: tables with dividing panels and side panels.

The source location and the 9 receiver locations are denoted by the red and yellow circles respectively, with the
exact position of the source and of one receiver (R9) provided. The table depth for each sitting position is 0.8
m and the source and microphones are positioned 0.3 m away from the tables. More geometrical details can be
found in Ref. [15]. The measurements have been performed following ISO 3382-3 [17]. An omnidirectional
sound source (B&K 4292) and omnidirectional microphones were connected to a laptop with measurement
software Dirac 6 (B&K 7841) via a triton USB device (AE) and an amplifier (B&K 2734).

2.2. Acoustic properties of room materials
The room has a sound absorbing suspended ceiling of 20 mm thick Rockfon panels with an air cavity of at

least 200 mm. The floor is covered with carpet. Dividing and side panels, which are made of 25 mm chipboard,
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Figure 1: Pictures of the measured open plan office and its floor plan in top view.

stand on the floor and have a height of 1.5 m. To increase sound absorption, 30 mm thick melamine foam is
applied to both sides of the upper 1.3 m part of the dividing panels that are along the y-direction.
The acoustic properties of the room surface materials, which are represented with the Sabine absorption
coefficients in this work, are measured in a reverberation chamber according to ISO354 [16] and are available
in octave bands as shown in Table 1. The Sabine absorption coefficients are measured by the reverberation
chamber method as follows:

αS ab =
55.3V
S c0

( 1
T2
−

1
T1

)
, (1)

where V is the volume of the reverberation chamber, S is the area of the material sample, T1 is the reverberation

Table 1: Measured Sabine absorption coefficients αS ab of materials in octave bands. The values in parentheses
are the estimated size-corrected ones used in simulations, as described in Sec. 3

Frequency [Hz]/Materials Ceiling Foam Carpet

125 0.45 (0.45) 0.10 (0.11) 0.02 (0.01)

250 0.70 (0.72) 0.35 (0.33) 0.03 (0.03)

500 0.90 (0.87) 0.60 (0.62) 0.07 (0.08)

time for an empty condition, and T2 is the reverberation time with the test sample. It should be mentioned
that due to the limited volume of the reverberation chamber, the measurements for the suspended ceiling are
performed with the mounting type E-200 of ISO 354 [16], i.e., placing the test sample with a 200 mm cavity
behind it.

3 Wave-based modeling

3.1. Brief description of the time-domain DG method
The simulations are performed using an in-house simulation tool based on the TD-DG method. This

section presents the main formulations whereas additional details can be found in Refs. [3, 4, 6]. Under
the assumption of lossless propagation medium, the sound propagation is governed by the following partial
differential equations

∂q

∂t
+ ∇ · F (q) =

∂q

∂t
+ A j

∂q

∂x j
= 0, (2)
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where q(x, t) = [u, v,w, p]T is the acoustic variable vector, containing the particle velocity component [u, v,w]
and the sound pressure p. ρ is the constant air density and c is the constant speed of sound. The constant flux
Jacobian matrix A j reads

A j =


0 0 0 δx j

ρ

0 0 0 δy j
ρ

0 0 0 δz j
ρ

ρc2δx j ρc2δy j ρc2δz j 0


, (3)

with coordinate index j ∈ [x, y, z]. Let Dk be a set of simplex and geometrically conformal elements that
discretize the computational domain Ωh, i.e., Ωh =

⋃K
k=1 Dk. The local solution qk

h(x, t) in element Dk, where
subscript h denotes the numerical approximation, is given by:

qk
h(x, t) =

Np∑
i=1

qk
h(xk

i , t)l
k
i (x), (4)

where qk
h(xk

i , t) are the unknown nodal values and lki (x) is the multi-dimensional Lagrange polynomial basis
of order N, which satisfies lki (xk

j) = δi j. Np is the number of local basis functions (or nodes) inside a single
element and is equal to (N + d)!/(N!d!) for simplex elements, where d is the dimensionality. After the Galerkin
projection and integrating by parts twice, the semi-discrete nodal DG formulation of Eq. (2) reads:∫

Dk

(∂qk
h

∂t
+ ∇ · F k

h (qk
h)
)
lki dx =

∫
∂Dk

n ·
(
F k

h (qk
h) − F ∗

)
lki dx, (5)

where n = [nx, ny, nz] is the outward normal vector of the element surface ∂Dk. F ∗ is the numerical flux across
element intersection ∂Dk and in this study, the upwind numerical flux is used throughout the whole domain
because of its low dispersive and dissipation error. The semi-discrete formulation is obtained by substituting
the nodal basis expansion Eq. (4) into the strong formulation Eq. (5). The resulting vector-matrix form of the
formulation and more details of the implementation can be found in Ref. [3].
Locally reacting time-domain impedance boundary conditions (TDIBC) are weakly enforced through the
numerical flux terms, where the reflected characteristic wave is expressed as the convolution between the
reflection coefficient at normal incidence and the incident characteristic wave. The method of auxiliary
differential equations is used to calculate the convolution. The reflection coefficient is represented by the
multi-pole model as described in Ref. [4].
The semi-discrete system with a 6th order spatial approximation is integrated in time using a 5th order explicit
Taylor series integrator based on the arbitrary high-order derivatives (ADER) methodology, with a local
time-stepping scheme incorporated as presented in[6].

3.2. Mesh generation
The model geometry is imported into the meshing software Gmsh [18] to generate the unstructured

tetrahedral mesh, as shown in Fig. 2 for the V2 setup. The geometrical model contains all details whose
dimensions are comparable to the shortest wavelength resolved, which is around 0.5 m. The absorbing foam,
dividing panels and desks are modeled as “floating” surfaces with their thicknesses neglected.

It is known that the mesh quality has a pivotal influence on the maximum allowable time step size and the
numerical error. In Gmsh, mesh element sizes are usually prescribed by adjusting the so-called characteristic
lengths (denoted as Lc), which are more or less equal to the length of the element edges. Here, the radius
of the largest inscribed sphere rin is used as the element size measure. The chosen quality measure rq is
triple of the ratio between rin and the radius of the smallest circumscribed sphere rcir, i.e. rq = 3rin/rcir.
As a reference, a regular tetrahedron has rq = 1 (optimal mesh quality), and a degenerate tetrahedron (zero
volume) has rq = 0. Considering the maximum frequency of interest of 500 Hz, meshes with five different

4



Figure 2: Geometry model in Gmsh.

Figure 3: Distribution of the mesh quality measure rq and the mesh size measure rin. V1 and V2 are displayed
in the left and right plot respectively. The color indicates the number of elements in each bin.

Lc = [0.3, 0.35, 0.4, 0.45, 0.5] m values are generated for both setups. It is found that decreasing the mesh
element size (increasing the number of elements) does not necessarily yield larger values of rq (better mesh
quality). By comparing the distributions of the mesh quality measure rq and the element size measure rin, the
meshes with Lc = 0.45 m are chosen for both setups, with their distributions of rq and rin are shown in Fig. 3.
The number of elements are 50379 and 57489 for V1 and V2, respectively. The points per wavelength is 11.2
(11.8) at the center frequency and 7.9 (8.3) at the upper limit of 500 Hz octave band for the V1 (V2) mesh.
In this work, considering the CFL stability condition of the explicit time integration scheme, the time step size
is determined by

∆t = CCFL ·min(rin) ·
1
c
·

1
(2N + 1)

. (6)

In this study, CCFL is set to 0.9, and min(rin) = 0.074 m for V1 and min(rin) = 0.042 m for V2. To accelerate the
simulation for the V2 setup, where small elements exist around the corner of table dividers due to the geometry
constraint, a local time-stepping scheme [6] is used and all elements are divided into two groups. All elements
that have rin ≤ 3 min(rin) are marked as fine elements, accounting for 8.4% of total elements, and are time
integrated with ∆t of Eq. (6). The rest are considered as coarse elements and have a time step size of 3∆t.

3.3. Acoustic boundary modeling
The measured Sabine absorption coefficients αS ab are energy parameters that do not carry phase information.

They approximately represent the theoretical random incidence absorption coefficient αrand for plane wave
incidence on an infinitely large surface. However, for wave-based room acoustic simulations, such as the TD-
DG method herein, the complex-valued surface impedances or equivalent reflection coefficients are needed
for the boundary modeling. In general, it is considered intractable to retrieve the correct complex-valued
surface impedance from a real-valued absorption coefficient when there is no more information on the material
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available, because there are an infinite number of surface impedance values that yield the same absorption
coefficient. To address this issue, a common strategy is to add some assumptions and constraints [19, 20].
First of all, local reaction is assumed, meaning that the surface impedance Zs(θ) is independent of the angle of
incidence θ (and thus the surface impedance for normal incidence is assumed representative of all incidence
angles). Secondly, as proposed in Refs. [21, 20], we assume that the measured Sabine absorption coefficient
corresponds to the size-corrected absorption coefficient for the low frequency range of interest, which is
proposed by Thomasson [22] as follows:

αsize(θ) = 8
∫ π/2

0

Re(Zs(θ)) sin θ
|Zs(θ) + Z̄r(θ)|2

dθ, (7)

where Z̄r is the averaged radiation impedance over azimuthal angles φ and expressed as Z̄r =
∫ 2π

0 Zrdφ/2π.
The average radiation impedance can be calculated with numerical integrations in an accurate way, based on
tabulated values provided in Table I of Ref. [21].
From the rudimentary assessment of the limited absorption coefficients data, the rigidly-backed foam and carpet
correspond to the cases “soft porous” and “hard porous” as discussed in Ref. [20]. It has been shown therein
that the surface impedance of rigidly-backing porous materials, which exhibits a monotonic behavior, can be
well captured by approximations with fractional derivatives, similar to the multi-pole model representation as
used in the TDIBC here. By contrast, the suspended ceiling with a large air cavity is quite difficult to simulate in
practice [20], because the cotangent term in the surface impedance produces oscillating behavior. Therefore, the
resulting narrow-band frequency variations are impossible to be reasonably captured from the coarse frequency-
averaged octave band data. In this work, restricted by the availability of input data, we preliminarily assume that
strong oscillations are not present in the current frequency range of interest. The multi-pole parameters needed
for the TDIBC are determined by solving an optimization problem. The idea is to optimize the parameters in
the multi-pole approximations of the reflection coefficient at normal incidence (denoted as Rnor), which can be
linearly transformed into the surface impedance in Eq. (7), that produces the best match between the measured
and the estimated size-corrected absorption coefficient. The magnitude and the phase angle of fitted reflection
coefficients Rnor are shown in Fig. 4. The corresponding size-corrected absorption coefficients are the values
inside the parenthesis of Table 1.

Besides the considered ceiling, foam and carpet, there are other materials in the room absorbing sound in
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Figure 4: Estimated reflection coefficient at normal incidence. ϑ
(
·
)

extracts the phase angle of a complex
number.

the considered frequency range, for example the window glass and gypsum board. However, the detailed
information on their sizes and acoustic properties are missing. Here, real-valued impedances in octave bands
are assigned to all other surfaces in the room guided by the typical values of absorption coefficients provided
in Ref. [23], i.e., 0.15, 0.15 and 0.1 for the octave bands 125 Hz, 250 Hz and 500 Hz respectively.
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Table 2: Spatial average of the considered room acoustic parameters and their standard deviation for both
setups. The values before the slash are the measured ones and after the slash are the simulated ones.

Para. Oct. Space aver. V1 Std. V1 Space aver. V2 Std. V2

T30 [s]
125 0.83/0.70 0.06/0.08 0.78/0.61 0.09/0.08

250 0.80/1.14 0.07/0.20 0.76/0.82 0.14/0.12

500 0.64/1.13 0.07/0.26 0.61/0.79 0.10/0.08

EDT [s]
125 0.70/0.79 0.26/0.31 0.94/0.92 0.33/0.33

250 0.57/0.78 0.18/0.21 0.77/0.68 0.22/0.25

500 0.55/0.83 0.20/0.29 0.61/0.69 0.21/0.28

C50 [dB]
125 4.70/3.0 3.10/4.94 -0.47/0.34 5.24/2.98

250 6.50/4.75 2.54/1.66 2.02/5.65 2.89/4.71

500 6.80/3.31 3.26/3.00 6.25/4.23 3.32/2.71

TS [ms]
125 77.5/79.0 25.9/33.7 100.9/99.1 35.4/33.7

250 66.2/77.8 23.6/28.2 88.7/75.5 28.5/29.0

500 59.2/80.6 25.3/32.8 70.9/76.0 24.7/28.3

4 Results

The results from the measurements and the simulations are first evaluated in terms of standard room
acoustic parameters as stated in ISO 3382–1 [24], including reverberation time (T30), early decay time (EDT ),
clarity (C50) and center of gravity (TS ). In the DG simulation, the dodecahedron source is modeled by a point
source that has a Gaussian shaped time signal with a non-flat spectrum. Therefore, the simulated responses
are deconvolved by the spectral division approach with the water level regularization technique [25] applied in
order to get the room impulse responses.
In order to evaluate room acoustic parameters that are representative of the whole room, the spatial averaging

values, which are obtained from the arithmetic average for all nine receiver locations, are presented in Table 2.
The standard deviations provide insights into the spatial variance of the parameters across various locations.
The first impression of the comparison results is that none of the simulation results match the measured ones
very well, except for the center time TS at 125 Hz, which is the center of gravity of the squared impulse
response and indicates the balance between clarity and reverberance. Larger deviations are observed for spatial
mean values of both T30 and EDT , which are directly calculated from the energy decay curve. For T30, lower
values are predicted compared to the measurements for both setups in the 125 Hz octave band, whereas higher
values are found in the simulations for the 250 Hz and 500 Hz octave bands. For the clarity C50, the simulated
values are lower than the measured ones, except for setup V2 at 125 Hz, implying that the simulated sound
field is more perceptually blurred.
The reverberation time of a room is usually regarded as the predominant indicator of its acoustical properties.
However, for the open plan office, good speech privacy between workstations is of primary concern. Therefore,
the spatial decay rate of speech D2,S (level reduction when doubling the distance) and A-weighted sound
pressure level (SPL) of speech at a distance of 4 m from the sound source (Lp,A,S ,4m) as described in ISO
3382-3 [17] are investigated. The sound power level of the loud speaker and simulation impulse source are
normalized based on the SPL at a distance of 1 m in the free-field condition. Due to the limited frequency
range of the wave-based simulations, the logarithm summation of the A-weighted SPL is calculated only up
to the 500 Hz octave band instead of 8000 Hz for both simulation and measurements. It should be noted that
due to the SPL spectrum of normal speech and the A-weighting, the A-weighted SPL of speech almost fully
depends on the 500 Hz octave band.
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The comparisons for the V1 setup (with empty tables alone) and the V2 setup (with table dividers and side
panels ) are shown in Fig. 5, where the linear regression is performed to determine D2,S according to ISO
3382-3 [17]. It can be seen that the simulations have a lower predicted SPL of normal speech for all receiver
locations except the eighth receiver. The discrepancies get smaller at further distance. Furthermore, the
simulated spatial decay rates of speech D2,S are smaller than the measured ones in both cases. For the V1
setup, the monotonic decrease of Lp,A,S is well predicted, while a fairly good agreement of the zigzag shape in
terms of Lp,A,S is observed for the V2 setup, implying the effects of the table dividers and side panels are taken
into account in the simulations.
The considered comparison has proven to be quite challenging. While it is intractable to pin down the exact
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Figure 5: Comparison of D2,S and Lp,A,S ,4m. V1 and V2 are displayed in the left and right plot respectively.

deficiency of the numerical model, the discrepancies between the simulation and measurement results can be
elucidated mainly from the following three aspects. First of all, there are inevitable uncertainties and inherent
randomness in both the measurements and the simulation inputs, including boundary material properties,
geometry and the source/receiver locations. In this study, the lack of knowledge about the exact size of the
windows and their acoustic properties could also affects the accuracy of simulated T30 and EDT .
Secondly, the measured absorption coefficients of three major absorbing materials according to ISO 354 [16]
may not truly represent the acoustic properties of the materials due to the limitation of the standard [26, 27].
Furthermore, octave band data does not provide a sufficient frequency resolution for simulation purposes.
The acoustic properties of the considered materials might not be monotonic in the interested frequency range,
as assumed. Also, the accurate phase information about the surface impedance is missing, which has been
shown quite influential in capturing the frequency shift [28] and the reverberation time [29]. This argument is
supported by the fact that the standard deviation of EDT is slightly larger than that of T30, since EDT is more
sensitive to the relatively sparse early reflections.
Last but not least, the current wave-based simulation models all surfaces as locally reacting. In many
applications, this assumption has prevailed due to its simplicity. However, previous studies showed that for
grazing incidence waves, considerable discrepancies between locally and extendedly reacting absorbers exist
[30]. For the studied office, the distance between the floor and the absorbing ceiling is rather low. As a
consequence, grazing incidence might be more pronounced in the early reflections for certain source-receiver
positions, resulting in a serious degradation of the accuracy in EDT . Furthermore, extended reaction most
likely arises in the suspended ceiling treatment, which has an air gap larger than 200 mm. It has been shown
that absorbers with an air gap exhibit strong extendedly reacting behavior and that a better agreement at larger
incidence angles at lower frequencies is observed for extended reaction models [31].
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5 Conclusion

Wave-based room simulation of a real open plan office in the low-frequency range has been performed with
the time-domain discontinuous Galerkin method. The acoustic properties of materials are represented with the
energy-based absorption coefficients in octave bands measured with the reverberation chamber method. From
this input data, the needed complex-valued surface impedance data is retrieved by fitting the size-corrected
Sabine absorption coefficients, assuming monotonic absorption behavior within the interested frequency range.
To assess the validity of the whole framework, the simulation results are compared with the measurements in
terms of room acoustic parameters.
Noticeable discrepancies between the simulation and measurement results are observed, especially for the
reverberation time and early decay time. While it is generally difficult to determine which influencing factors
contribute the most to the overall simulation deviations, the potential limitations of the current numerical model
are summarized. It should be noted that this work is a preliminary attempt to investigate the applicability for
challenging practical cases, where a high level of complexity and uncertainty in model inputs is involved. As
future work, experimental validations with increasing level of complexity of room scenarios will be performed.
Furthermore, the formulation of extendedly reacting boundary conditions should help to achieve satisfactory
improvements in the simulation accuracy.
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The acoustic properties of indoor spaces significantly impact 
our comfort, well-being and productivity. Room acoustic 
simulations have been a practical tool for acoustic consultants in 
the design phase of buildings to ensure pleasant and functional 
acoustic environments. More recently, advancements of modern 
computing hardware make  room acoustic modeling applicable 
to more computationally intensive real-time systems such as 
virtual reality applications. 

This PhD project aims at contributing to the room acoustic 
modeling community via the development and validation of an 
efficient, robust and accurate wave-based method. Reflecting on 
the state of the art numerical modeling techniques, the time-
domain discontinuous Galerkin method is chosen as the focus 
of this thesis, due to its inherent favorable properties of high-
order accuracy, geometric flexibility, and potential for massive 
parallel computing. The positioning of the method is addressed 
first, which involves a presentation of its mathematical 
formulation for solving the linear wave equations, a formulation 
of real-valued impedance boundary conditions, a semi-discrete 
stability analysis and numerical verifications. To simulate the 
locally reacting behavior of sound wave reflection and 
transmission in the vicinity of boundaries, a time-domain 
frequency-dependent boundary condition formulation is 
proposed. Furthermore, a local time-stepping strategy based on 
the arbitrary high-order derivatives methodology is proposed 
and numerically verified. A preliminary application to the 
acoustic field analysis of an open plan office examines the 
reliability and limitations of the developed scheme for real-
world problems.
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