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SUMMARY

Batteries have enabled the advent of electrified vehicles, which have the potential to re-
duce the output of harmful gases into the environment. A major challenge is to reduce
the charging time of these batteries, while ensuring that the batteries do not age too
quickly. Conventional charging algorithms use current and voltage constraints, while
aging is determined by internal conditions that cannot be expressed in terms of current
and voltage constrains. Thus, there is a need to develop more advanced charging algo-
rithms that allow for a better trade-off between charging time and aging than the current
methods can achieve.

A way to achieve this better trade-off between charging time and aging is to use an
optimal-control-based approach. In doing so, the battery can be operated less conser-
vatively, without making a sacrifice in battery aging, by computing an optimal charging
current based on estimated internal states of the battery. These internal states can be ob-
tained from electrochemistry-based battery models, such as the Doyle-Fuller-Newman
(DFN) model. However, using electrochemistry-based battery models in battery man-
agement systems remains challenging due to their computational complexity and due
to the difficulty of uniquely determining all model parameters. This thesis focuses on re-
ducing the computational complexity of the DFN model, methods to parameterize the
DFN model, and using the DFN model for the purpose of aging-aware charging.

In the first part of the thesis, we focus on battery modeling and parameterization.
Here, we study for the first time the impact of several types of model simplifications on
the trade-off between model accuracy and computation time for the DFN model. As a
basis for comparison, we consider the so-called complete DFN (CDFN) model, which
is a DFN model without any simplifications, and which includes the concentration de-
pendency of parameters that have been studied in previous literature. Furthermore, we
propose a highly efficient implementation of the CDFN model that leads to a consider-
able decrease in computation time, and that has been developed into a freely download-
able toolbox. We compare several simplified DFN models to the so-called single-particle
model and the CDFN model. Here, we show that with the proposed implementation,
and by selectively making the proposed simplifications, as well as selectively choosing
the grid parameters, a model can be obtained that has a minor impact on model accu-
racy, achieving a simulation time of over 5000 times faster than real-time.

Furthermore, we propose a model parameterization approach of the DFN model, by
first reparameterizing the DFN model through normalization and grouping, followed by
a sensitivity analysis and a parameter estimation procedure. In the parameter estimation
procedure, we show the influence of the number of estimated parameters, as well as the
influence of the data length of the identification data, on the obtained model accuracy.
Additionally, the model with parameters obtained using the proposed parameterization
approach is compared to a model whose parameters have been obtained using cell tear-
down. Finally, the consistency and accuracy of the parameter estimation procedure is
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analyzed by applying the estimation routine to a synthetic cell, represented by a DFN
model with randomly chosen parameters. The results of this analysis show that while
applying cell teardown to determine parameters can lead to more physically meaning-
ful parameters, the parameter estimation approach that uses current/voltage data can
lead to a significantly better output accuracy, which suggests a parameter estimation
approach that combines both these methods.

In the second part of the thesis, we focus on aging-aware charging methods. In this
part, we firstly utilize a DFN model including capacity-loss side reactions to present a
model-based design method for multi-stage charging protocols. This design method al-
lows for making a trade-off between charging time and battery aging in a more system-
atic way. We show that by obtaining the Pareto front that describes the optimal trade-off
between charging time and battery aging for a single cycle, the results can be extended
to the lifetime of the battery. Finally we show that the negative-electrode over-potential
is not always a good indicator for aging, and that aging will occur even when the battery
operates in over-potential regions that are considered not to lead to aging.

Furthermore, in the second part, we also present two optimal-control-based meth-
ods for aging-aware charging. The first approach uses a surrogate model. Here, a surro-
gate modeling approach is used to approximate aging-related DFN model states, where
the surrogate model is a combination of a black-box finite-dimensional linear-time-
invariant model and a static nonlinear model that is a function of the state-of-charge.
We formulate the optimal-control problem as minimizing the side reactions for a given
charging time and subject to several aging-related constraints that are commonly used
in literature. We show that the aging-related DFN model states can be well approximated
by the proposed surrogate model, with a significantly decreased computation time, al-
lowing it to be used in an online closed-loop control setting. We also compare the Pareto
front achieved with the proposed optimal-control-based method with the Pareto fronts
achieved with various multi-stage charging protocols. Here, we show that the proposed
optimal-control-based method achieves a significantly improved Pareto front over the
multi-stage charging protocols.

In the second approach to optimal aging-ware charging, we use the (simplified) DFN
model. We formulate the optimal-control problem as minimizing the side reactions for a
given charging time, and solve this optimal-control problem using sequential quadratic
programming (SQP). We compare the performance of the optimal-control-based method
using various simplified DFN models, and compare it against the optimal-control-based
method using the surrogate model and various multi-stage protocols. Here, we show
that a significant reduction in computation time of the solution to the optimal-control
problem can be achieved by using the proposed SQP algorithm, rather than using an
off-the-shelf solver.

In the final part of the thesis, experimental results on optimal aging-aware charging
are presented. Here, the aging resulting from the optimal-control-based method using
the DFN model and a multi-stage charging protocol are experimentally compared.
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1
INTRODUCTION

1.1. MOTIVATION
In today’s world, transportation is a key element of our society. However, as many modes
of transportation rely on combustion engines, over the past decades, transportation has
also had an enormous negative effect on society. The massive output of greenhouse
gases that are the product of combustion engines have had a significant role in the global
warming of the earth. In 2018, out of all transportation modes, road transportation ac-
counted for 72% of greenhouse gas emissions [1]. In an attempt to reduce these harmful
effects, road vehicles have been increasingly electrified. Hybrid electric vehicles (HEVs)
can be seen as a first step in electrification. While HEVs still emit greenhouse gases,
they offer the potential to reduce the fuel consumption of a vehicle by adding an electric
motor with a high-voltage battery to a conventional powertrain. To fully eliminate the
emission of greenhouse gases, battery electric vehicles (BEVs), have been considered a
promising option, under the assumption that the electricity used to propel BEVs is pro-
duced from renewable energy sources. As BEVs have a completely electric powertrain
consisting of a battery and an electric motor, they do not emit any greenhouse gases di-
rectly, which also means that BEVs do not contribute to local environmental issues, such
as poor air quality. For these reasons, BEVs have seen a considerable growth over the
past decade, and it is predicted that the global BEV stock will reach almost 150 million
by 2030 [2], as shown in Fig. 1.1.

However, there are still key issues that need to be addressed before BEVs become
widely accepted. One of the major issues identified is range anxiety [3, 4], which is the
fear that the battery in the vehicle depletes before the next charging station is reached.
Range anxiety is caused by several factors. One of the major factors is the limited range
that BEVs provide compared to conventional vehicles. Furthermore, while conventional
vehicles can be refueled in a matter of minutes, charging a BEV takes much longer, which
has created a need for fast charging. Finally, since a battery replacement in a BEV can be
expensive, consumers are concerned about battery life expectancy [4]. To tackle these
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Figure 1.1: The growth of BEVs over the past decade, and the predicted growth. Adapted from [2].

issues, there are several approaches that can be taken

1. Improving battery technology to achieve more energy-dense batteries.

2. Extending the charging infrastructure.

3. Highly efficient powertrains.

4. Improving range prediction.

5. Developing aging-aware charging algorithms to allow for faster charging and lim-
iting battery aging.

Improving battery technology seems to be the most logical choice to tackle range
anxiety, by extending the range with more energy-dense batteries. Over the past decade,
Li-ion batteries have grown rapidly in use, due to their high energy density and relatively
long cycle life, compared to Nickel-based and lead-based batteries [5]. Meanwhile, Li-
ion battery technology is continuously being improved as well [6, 7], leading to increas-
ingly larger energy densities. Another way to extend the range is through highly efficient
powertrains, where, e.g., energy management strategies [8] can be used in order to use
the battery more efficiently. Coupled with that, the prediction of the range that the ve-
hicle can drive can be improved so that the user can put more trust on the indicated
range, which would alleviate the fear of not being able to reach the next charging station
[9]. On the other hand, extending the charging infrastructure can ensure the user that
there is always a reachable charging station nearby to reduce the anxiety of running out
of energy.

Finally, in the approach of developing improved charging algorithms, the aim is to
reduce charging times as well as limiting battery aging. However, reducing charging
time and battery aging are generally two conflicting objectives. Still, a shorter charging
time does not necessarily result in increased battery aging, if improved charging algo-
rithms are used. The problem of finding such a charging algorithm can be described
as an optimal-control problem that maximizes the trade-off between charging time and
battery degradation. The main advantage of this approach is that an improved charging
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Figure 1.2: The impact of fast charging on battery degradation in BEVs in seasonal or hot climates. Adapted
from [10].

algorithm is relatively easily implementable and does not require large hardware modifi-
cations, provided that the battery charger satisfies the required hardware specifications.

As mentioned before, besides range anxiety, another issue in BEVs is the concern
by potential users that the battery does not last as long as expected, since the battery
is an extensive component of a BEV [3, 4]. Meanwhile, current usage data of BEVs has
shown that if the current degradation rates are maintained, the vast majority of batteries
will outlast the usable life of the vehicle [10]. However, current BEV usage data has also
shown that frequent fast charging of batteries has a significant effect on battery health,
particularly in hot climates [10], as is shown in Fig. 1.2. This is particularly relevant for
commercial BEVs, such as electric taxis or buses, where frequent fast charging, or aging-
aware charging, is desired to operate the vehicles for as much time as possible. There-
fore, aging-aware charging, mainly focused on Li-ion batteries, will be the topic that is
treated in the remainder of this thesis, and the main objective of this thesis is given by:

Global Objective

Contribute to a more sustainable society by accelerating the adoption of electric
vehicles through the advancement of aging-aware charging methods

1.2. AGING-AWARE CHARGING STRATEGIES
Generally, Li-ion batteries are charged using a so-called Constant-Current Constant-
Voltage (CC-CV) protocol, see e.g., [11]. A CC-CV profile can be seen in Fig. 1.3a, where
the battery is initially charged with a constant current Imax, until a certain threshold
voltage Vmax is reached. Following this, the CV stage takes place, in which the voltage
threshold is maintained until the current has decreased to a certain set value Imin. The
three parameters Vmax, Imax and Imin can be chosen freely, although usually Imin is pre-
selected, since it defines when the battery is considered to be fully charged. Therefore,
while increasing Imin leads to a shorter charging time, it will also result in a battery that
has a relatively lower charge. Hence, the two tuning parameters are Vmax and Imax, and
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Figure 1.3: In (a), a schematic visualization of the CC-CV protocol is shown, and in (b), a sketch of the Pareto
front for the CC-CV protocol and the fundamental limit that can be achieved is shown. The shaded blue region
represents the objectively worse combinations of charging time and battery aging for CC-CV.

ideally, they should to be chosen to aim for a short charging time without battery degra-
dation. However, while increasing Vmax and Imax will lead to a shorter charging time, it
will also quickly lead to a high battery degradation [12], which indicates that there is a
trade-off between charging time and battery degradation. Hence, each combination of
Vmax and Imax will lead to a certain charging time and battery degradation, which are
not uniquely determined, i.e., there may be multiple combinations of Vmax and Imax to
achieve a certain charging time and battery degradation.

However, there may also be combinations of Vmax and Imax that have an objectively
better performance (in the sense of charging time and battery degradation) than other
combinations of Vmax and Imax, e.g. when one combination of Vmax and Imax gives a
certain charging time and battery degradation, while another combination gives a lower
charging time with the same battery degradation. Note that the performance of these
combinations also depends on ambient conditions. For example, for a different operat-
ing temperature, a different combination of Vmax and Imax might be better. These combi-
nations of Vmax and Imax that give an objectively better charging performance, form the
upper bound in charging performance that the CC-CV protocol can achieve, which is re-
ferred to as the "Pareto front". An illustration of this Pareto front for the CC-CV protocol
can be seen in Fig. 1.3b. Note that there is not a single combination of charging time
and battery degradation on the Pareto front that can be defined as the “best" charging
performance. Objectives set on the charging performance determine which point of the
curve in Fig. 1.3b is picked, e.g., an objective may be that a battery needs to be charged in
a certain amount of time with minimal battery degradation. Then, the best charging per-
formance that can be achieved is the battery degradation value at the required charging
time on the trade-off curve.

Although the CC-CV protocol has low complexity and is easily implemented, intu-
itively, if more freedom is allowed in the charging profile, there may be better combi-
nations of charging time and battery degradation than what CC-CV can achieve. This
is the ultimate goal in aging-aware charging: to find charging strategies that allow for a
better Pareto front, or the Pareto optimal front, which would be the fundamental limit of
what can be achieved with any charging strategy and considered battery chemistry. This
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is again indicated in Fig. 1.3b. The ideal charging strategy would operate at the funda-
mental limit, although a strategy that lies in between the CC-CV protocol and the funda-
mental limit is also an improvement. Note that finding the Pareto front of any charging
strategy is not trivial. It would require many experiments to identify this curve. Instead,
charging strategies directly aim for a point on the Pareto front belonging to that strategy
through objectives, by e.g., charging the battery with a certain charging time with the
least possible ageing.

A high-level topology of a battery charging system can be seen in Fig. 1.4. The charger
has a certain charging strategy that determines the battery charging input (charging volt-
age or current), based on a user-defined objective and measurements. Possible configu-
rations for charging strategies can be seen in Fig. 1.5. From top to bottom, the configu-
rations, on an implementation level, range from least complex to most complex. We will
review these strategies below.

RULE-BASED CHARGING STRATEGIES

Rule-based chargers are a natural extension to the CC-CV charging protocol (which is
a rule-based protocol as well) and determine the battery input based on a set of rules,
which are set through an objective. A category of rule-based protocols are multi-stage
CC-CV (MCCCV) protocols, which consider multiple CC or CV stages (rather than the
standard CC-CV protocol) [13, 14]. Pulse-based protocols are another class of rule-based
protocols, in which the battery is charged using charge pulses. The justification for this
protocol is that short discharge pulses interspersed during the charging process can sig-
nificantly decrease the concentration polarization, and increase the charging efficiency,
thereby decreasing battery aging, which allows for a faster charging rate [15]. The justifi-
cation for pulse-charging is debated in literature [15–17], since the exact reason for why
pulse charging would result in any improvement is not known. In [18, 19], the battery
degradation for a lithium-ion battery resulting from conventional CC-CV, multi-stage
CC-CV charging protocols, and pulse-based charging protocols is compared. A final
category of rule-based protocols are fuzzy-logic-based protocols e.g., [20, 21], in which
fuzzy rules are defined based on intuitive understanding of the battery.

Just as in the CC-CV protocol, the aim in tuning the various tuning parameters or
rules in rule-based protocols, such as the threshold voltages or pulse frequencies, is for
the charging performance to fall on the Pareto curve. The aforementioned papers se-
lect the parameters based on intuition or by performing experiments for several sets of
parameters, which provides no guarantee or even indication that the chosen set of pa-
rameters leads to a charging performance that lies on the Pareto curve. In principle, to
find a point on the Pareto curve for the rule-based protocols, all possible sets of param-
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eters would have to be tested, which would require a large amount of experiments. In
[22–24], the required number of experiments to find a point on the Pareto curve is sub-
stantially reduced using a so-called “Taguchi" method. However, such methods rely on
aging indicators, such as charging efficiency or charged capacity, which are not directly
related to ageing, and therefore the parameters that are found through these methods
may not be optimal. Various other approaches use optimization techniques to select
the parameter sets using experimental data for MCCCV, e.g. integer linear programming
in [25], ant-colony-system algorithm in [26], particle-swarm optimization in [27], and
machine learning in [28]. In [29–31] various search-based systems are designed to find
optimal pulse frequencies. Note that in these papers rules are optimized using mea-
surable indicators that affect battery degradation, such as battery efficiency [22, 25] or
the impedance of the battery [30]. However, these battery degradation indicators do not
consider the actual battery aging effects and may provide a conservative estimate of bat-
tery degradation.

Some of the aforementioned papers i.e., [22, 25, 28] use state-of-charge (SoC) infor-
mation in the definition of the rules. Since SoC is an internal battery state that cannot be
measured, a state estimator is needed to estimate the SoC, for which a model is required.
However, even though an additional estimator is required for these charging strategies,
the complexity is not much higher than rule-based strategies which do not require state
estimators, since the strategy still revolves around a set of rules, and a large amount of
literature and commercial systems already exist for SoC estimation.
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While rule-based chargers are relatively simple in implementation, they have several
disadvantages:

1. As mentioned before, generally a large number of experiments is required to find
optimal rules. These experiments will have to be done for every different battery
chemistry, unless more general (but conservative) rules are used that can apply to
several battery chemistries.

2. Even when an optimal set of rules is found, rule-based protocols are not robust to
changes in the battery behavior, that is, when the battery behavior ages differently
than expected, because it is used under different ambient conditions, the set of
rules found may not be optimal anymore.

REFERENCE TRACKER & OPTIMAL CONTROL

The reference tracker strategy and optimal-control strategy stem from a more control-
theoretic approach. Reference trackers use a model to estimate internal battery states,
such as lithium-ion concentration and battery over-potential, to constrain the battery
from reaching states that result in battery degradation, while following a certain spec-
ified reference. Generally, the approach is to use a relatively simple controller such as
a proportional-integral-derivative (PID) controller [32, 33] or a pulse-generating con-
troller [34] to track a specified threshold on the measured or estimated states, such that
this threshold is not exceedingly violated. Another way to achieve constraint satisfac-
tion is through the use of more complex controllers, that allow for improved constraint
satisfaction compared to the relatively simple controllers mentioned above, such as a
reference governor [35, 36], generic model control [37], or linear quadratic tracking [38].
While reference trackers focus mostly on constraint satisfaction, optimal-control-based
approaches use an optimization problem that is solved with the aim to find the optimal
solution for the given objective and constraints. The problem can be solved off-line, i.e.,
the optimization problem is solved once and the obtained optimal current profile is im-
plemented. The outcome of the off-line optimal-control problem can be used to charge
the battery. However due to modeling errors, constraint admission is not guaranteed,
which makes the off-line optimal-control approach mainly useful for analysis, and not
for implementation. In order to make sure that constraints are not violated, the optimal-
control problem can solved in closed-loop, i.e., the optimization problem can be up-
dated routinely to compensate for modeling errors. Implementation-wise, closed-loop
optimal control is similar to model-predictive control (MPC), with the difference being
that the objective function in optimal control is chosen to be the actual objective of the
problem, while in classical MPC, a quadratic objective function is chosen with weights
to penalize the input and states. However, while solving an optimal-control problem
gives the optimal solution, the solution is actually only as optimal as the model used
in the optimization is accurate. Furthermore, for non-convex optimization problems,
which may be the case for the considered optimization problem, a global solution is not
guaranteed. Finally, an additional disadvantage of the optimal-control approach is that
the requirement of solving an optimization problem can be computationally expensive.
Nevertheless, optimal control is the only tool that can guarantee at least some level of op-
timality, and allows for making a systematic trade-off between aging and charging time.
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In the following section, we will elaborate on the state of the art in optimal control for
aging-aware charging.

1.3. STATE OF THE ART
The contributions in model-based optimal control for aging-aware charging in literature
can be classified using three main aspects: models, optimization problem formulation
and solution methods. In this section, we will elaborate on each of these aspects. Specif-
ically, in Section 1.3.1, we will specify the types of models used to model the main reac-
tions of the battery as well as the models used to describe battery aging. Here, we will
also show the state of art in the parameter estimation of electrochemistry-based mod-
els, since having an accurate model is essential for the optimal-control approach. The
modeling aspects will be described specifically for a Li-ion battery. In Section 1.3.2, we
will describe how the optimal-control problem for aging-aware charging is formulated.
Finally, in Section 1.3.3, we will show how the optimal-control problems are solved.

1.3.1. BATTERY MODELING
Li-ion batteries are complex and highly nonlinear systems, which can in turn lead to
highly complex models, depending on the model purpose. Generally, most of the litera-
ture is focused on modeling the effects that result from the main (desirable) reduction-
oxidation reactions in the battery. However, alongside the main reactions, additional
(undesirable) side reactions and other degradation phenomena occur in the battery that
lead to battery aging. Since the side reactions occur at a lower rate, their effects are less
noticeable on a short time scale, which means that the effects only really start showing
up after a large number of charge-discharge cycles. In this chapter, we will refer to the
models that describe the effects that occur from the main reactions and side reactions
as “main-reaction models" and “aging models", respectively. In main-reaction models,
it is assumed that side reactions do not occur, which is a fair assumption on a short time
scale. In literature, most of the control-oriented main-reaction and aging models fall
into two categories. In the first category, models are derived from first principles, which
allows the models to provide more insight into the internal (non-measurable) states of
the battery. In the second category, an empirical modeling approach is taken in which
a (possibly generic) model is fit to a set of data, which is mainly used to model the mea-
sured behavior of the battery. As there is literature available that already provides an
overview on battery modeling e.g., [39, 40] for main-reaction models and [41] for aging
models, we will aim to only provide a short review of battery modeling aspects.

MAIN-REACTION MODELS

For main-reaction models, empirical models exist in the form of equivalent-circuit mod-
els (ECM) [11], in which the battery behavior is modeled with circuit elements, such as
shown in Fig. 1.6. In this figure, the ECM consists of a voltage source in combination
with a resistor and 2 resistor-capacitor pairs. However, in general, there could be any
number of resistor-capacitor pairs, as well as other (nonlinear) circuit elements. Ther-
mal effects can be captured with empirical models such as introduced in [42]. ECMs
can be computationally fast and accurate (in terms of capturing the output dynamics),
which makes them attractive for control purposes. Unfortunately, they have the inher-
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Figure 1.6: Example of an equivalent-circuit model.

ent disadvantage that internal physical states are not modeled, since ECMs are not based
on the underlying physics of the battery. These internal states can be essential to limit
battery aging, and they are also necessary states for physics-based battery aging models.

While more difficult to formulate, the internal physical states of a battery can be pre-
dicted using a physics-based model. The so-called Doyle-Fuller-Newman (DFN) model
is a widely used physics-based model introduced in [43]. A detailed description of the
model can be found in [44]. The DFN model is also often referred to as a pseudo-two-
dimensional (P2D) model, since the model has in principle 1 dimension and an addi-
tional radial dimension. Fig. 1.7 illustrates the modeling approach for a Li-ion cell. In
the x dimension, the cell is divided into three regions, namely the positive electrode,
the negative electrode, and the separator. In the electrodes, at each (continuous) point
on the x-axis, Li-ions exist essentially in two phases. In the solid phase, Li-ions are in-
tercalated into the solid-phase material, which is represented by spheres with radius Rs ,
which can be different for the particles in the negative and positive electrode. In the elec-
trolyte phase, Li-ions exist in a dissolved state in the electrolyte. In the separator, Li-ions
exist only in the electrolyte phase. During charging, intercalated Li-ions exit the solid
particles in the positive electrode and enter the solid particles in the negative electrode.
During discharging, the opposite process happens.

The ability to describe this electrochemical behavior results in a high complexity of
the DFN model. For this reason, there is a large amount of literature dedicated to sim-
plifying the DFN model to decrease the computational burden. An often used simplified
model is the so-called single-particle model (SPM) [45]. The SPM is defined by the main
assumption that the diffusion dynamics inside the solid particles is the slowest process,
and therefore dominates over the other dynamics [46], allowing for each of the electrodes
to be represented by a single sphere. Furthermore, electrolyte dynamics are ignored, i.e.,
the Li-ion concentration and potential in the electrolyte is assumed to be constant. This
reduces the original DFN model down to a single PDE for each of the electrodes. How-
ever, although these assumptions greatly simplify the DFN model, they are only valid
under low-current conditions [47], while in the application of aging-aware fast charging,
high currents may be desirable. To improve the accuracy of the SPM at high currents,
the SPM has been extended with electrolyte dynamics [48–51]. Besides the SPM, many
other simplified models have been formulated in literature, e.g. [52–58]. Finally, it has
been recognized that many parameters depend on concentrations [59–63], while actu-
ally ignoring these dependencies could lead to a simplification of the governing model
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Figure 1.7: DFN modeling approach for a Li-ion cell (situation shown for charging).

equations.
The above-mentioned models simplify the DFN model through direct manipulation

of the equations that may have a physical interpretation. A more recent trend to reduce
model complexity is to apply model-order-reduction (MOR) techniques [64–67] or to
make a polynomial approximation of the solid-phase concentration diffusion [52, 68]. In
MOR, models are systematically simplified, in the sense that the least significant effects
are filtered using some MOR technique. The main goal in MOR is to decrease computa-
tion times, rather than to preserve physical insight in the models, so that it can be used in
control applications. However, the reduction is mostly in the number of equations, while
the reduction in computation time is only marginal, when applied to the DFN model, as
was shown in [66].

Besides addressing the complexity of the DFN model, another way to reduce compu-
tation time is to develop algorithms that compute the solution to the DFN model more
efficiently, see e.g. [66, 69], and [70], where the latter proposes a computationally effi-
cient model implementation in presence of the above-discussed simplified solid-phase
dynamics. In these papers, the PDEs that describe the DFN model are spatially and tem-
porally discretized, which results in a set of nonlinear algebraic equations (AEs). Numer-
ical methods are then developed in an attempt to solve this set of AEs as efficiently as
possible.

These advancements in reducing the computational complexity of the DFN model
through either simplifications or implementation have contributed to obtain more com-
putationally efficient electrochemistry-based models. However, a key issue in the above-
mentioned work is that there is no consistent definition for the DFN model, where the
exact set of equations that define the DFN model varies from paper to paper. This mainly
stems from implicit simplifications that are made, for which generally no validation is
given. For example, in most papers, the mean molar activity coefficient is (implicitly) ig-
nored, e.g., in [54, 66, 70], while there are studies which claim that such transport prop-
erties may become important at high currents [59, 71]. On the other hand, due to ex-
perimental observations, several parameters are often modeled as being concentration-
dependent, e.g., in [43, 66, 70]. However, as mentioned above, ignoring these dependen-
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cies could lead to a simplification of the governing model equations, which has not yet
been investigated. Finally, an issue in the above-mentioned work is that proposed sim-
plified models are usually only validated for a single parameter set. While a simplified
model could show good accordance with the DFN model for one parameter set, it may
not be the case for another parameter set.

MODEL DISCRETIZATION

The choice of discretization is not a focus in aging-aware charging literature, which leads
to most studies using the same discretization method, depending on the model choice.
The choice of discretization may also depend on the choice of the model. If the model
constitutes a set of ordinary differential equations, which is generally the case in em-
pirical models, usually forward Euler discretization is used, e.g. [72, 73]. Physics-based
models such as the DFN model consist of a set of PDEs, which are discretized using a
spatial discretization method, after which a set of differential algabraic equations (DAEs)
remains. In the case of the DFN model, in the x direction, the model is discretized using
a finite-volume method [36], while in the radial direction in [36] Padé approximations or
a finite-difference method in [74] are applied. The DAEs are temporally discretized using
e.g. forward Euler discretization [36] or backward Euler discretization [74] to obtain a set
of algebraic equations. In the process of discretization, there is a choice in the roughness
of discretization, which can have a large impact on the computation time of the model.
In [66] an investigation into the impact of the roughness of temporal discretization on
the computional time and model accuracy has been done for the DFN model. However,
a similar investigation for the impact of the roughness of spatial discretization for the
DFN model is still missing in literature, to the author’s knowledge. Studying this impact
could lead to a considerable decrease in computation time of the DFN model.

BATTERY AGING MODELS

Although battery aging has been an extensive topic of study in literature, see e.g. [75],
there has been less focus on developing control-oriented battery aging models. A widely
used battery aging model is introduced in [76]. In this study, the authors have formu-
lated an empirical model, which has been found by performing many charge-discharge
cycles under different operating conditions and identifying a model that fits through the
data. However, such an empirical modeling approach can be highly sensitive to oper-
ating conditions outside those that the model has been fit for. A more physics-based
(semi-empirical) approach has been attempted in [77]. In this approach, the DFN model
is extended by modeling the effects of side reactions. However, in this approach, only the
buildup of the solid electrolyte interface (SEI) has been modeled. The SEI is formed upon
the first charge of the battery, through a side reaction that consumes Li-ions [41]. Over
the course of charge/discharge cycles, the SEI layer builds up further, slowly consuming
Li-ions, which decreases the capacity of the cell. Another major degradation mechanism
is the loss of active electrode material, through stress or fractures [41]. A model which
describes this mechanism has been formulated in [78], while in [41], the authors have
formulated a model which describes both Li-ion loss and active-material loss. However,
these formulated models still do not describe all degradation phenomena, as there are
other side reactions that can cause capacity loss, such as side reactions that consume
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salts and solvents in the electrolyte [79]. Modeling the individual effects of all the pos-
sible degradation phenomena takes significant modeling effort, and leads to complex
models. However, in the application of aging-aware charging, the effects of each indi-
vidual degradation phenomena is not of interest. Instead, a model that describes the
compound effect of all degradation phenomena, such that battery aging can be accu-
rately predicted, meets the requirements for use in aging-aware charging.

PARAMETER ESTIMATION OF ELECTROCHEMISTRY-BASED MODELS

Due to the complexity of the DFN model, many parameters need to be determined,
which is a challenge, especially as determination of some parameter values requires
complex experimental techniques and a highly time-consuming effort for the measure-
ment procedure. Therefore, simplified electrochemistry-based models, such as the single-
particle model (SPM) [80], have been proposed, which have fewer parameters. Generally,
the simplified electrochemistry-based models, such as the SPM, have fewer parameters
and consequently, much of the focus in model parameterization has been on such sim-
plified models in the time domain [81–87] and on linearized models in the frequency
domain [88]. However, as mentioned above, the simplifications made in these models
are usually at the cost of model accuracy, and therefore, parameterization of the DFN
model, as has been done in, e.g., [89–98], is of interest.

Generally, the DFN model parameters can be determined in several ways. One way is
to determine several parameters based on information provided by the cell manufactur-
ers, who know the material properties that have been chosen during cell design. How-
ever, the manufacturer often does not have all the parameter values or might not want
to disclose them. Another way is to measure the parameters by cell teardown and exper-
imental testing [94, 95, 97]. Such methods generally involve costly equipment, and it is
sometimes not allowed to tear down a cell by the cell manufacturer. Finally, parameters
can be determined through parameter estimation using input-output data [89–93, 98].
In these methods, some, or all, of the parameters are estimated based on optimization
of the model predictions to input/output measurements (i.e., external current/voltage
measurements). Generally, two approaches are taken in the estimation of the parame-
ters based on current/voltage measurements. One approach is to estimate some (or all)
of the parameters simultaneously based on measured input/output data [89, 90, 92, 98].
Since the identifiability of the DFN model is poor [90], a sensitivity analysis can be done
to determine the parameters to which the model output is most sensitive, in order to
select a smaller set of parameters for estimation [89]. The other approach is to design
experiments specifically in an attempt to isolate the effects of parameters in the out-
put [84, 91, 93]. Here, the parameters are grouped based on their effect to the output,
after which the groups of parameters are estimated separately using their respectively
designed input current. However, often, there is no justification given for this approach
[84, 91], or the approach is justified with the intuition that identifying too many param-
eters simultaneously may lead to unexpected uncertainty and errors [93]. However, this
intuition has not yet been verified.

Due to the issues in the identifiability of the DFN model, when estimating the pa-
rameters based on only current/voltage measurements, the physical meaningfulness of
the estimated parameters is not guaranteed. On the other hand, when estimating the pa-
rameters through cell teardown, the estimated parameters are based on measurements
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of the internal characteristics of a battery. This gives more confidence in the physical
meaningfulness of the estimated parameters, assuming that these parameters are ho-
mogeneous over the cell, which is not the case in practice. However, in doing so, the
obtained model output voltage is not fit to voltage measurements, which results in a gen-
erally worse obtained model accuracy when estimating the parameters using cell tear-
down. Furthermore, the cell that is torn down is not the same as the cell that is actually
used in the intended application, although this typically also applies to the other param-
eter estimation methods. While there have been contributions made in improving the
identifiability of the DFN model through optimal experimental design, e.g., in [99], the
identifiability of the DFN model still remains an issue. Therefore, estimating parame-
ters that are both physically meaningful and lead to an accurate model remains an open
problem in literature.

1.3.2. OPTIMAL-CONTROL PROBLEM FORMULATION
In the context of aging-aware charging, the optimal-control problem that is to be solved
is to find an optimal charging profile such that a certain objective is satisfied. This
optimal-control problem is expressed as an optimization problem, in which we want to
minimize a certain objective function J (x,u), which is a function of the input u(t ) (e.g.
current), which can change with time t as well as the states x(t ) (e.g. potentials, Li-ion
concentration), i.e.

minimize
x(t ),u(t )

J (x(t ),u(t )) , (1.1a)

subject to particular model equations expressed as

f (x(t ),u(t )) = 0, (1.1b)

and inequality constraints,

g (x(t ),u(t )) ≤ 0, (1.1c)

which can serve to, e.g., limit Li-ion concentration at certain locations or set a minimal
stored charge constraint. The input is generally chosen to be the applied current, while
the states depend on the model choice. For example, if an ECM is chosen, the states may
be capacitance voltages and SoC, and if a physics-based model is chosen, the states may
be potentials and concentrations.

Since the goal in aging-aware charging is to make a Pareto-optimal trade-off between
aging and charging time, the optimal-control problem can be formulated as either of the
three following objectives, with the corresponding objective function and constraints.

1. Minimize a weighting between charging time and battery degradation.

2. Minimize charging time, subject to a certain battery degradation.

3. Minimize battery degradation, subject to a certain charging time.

As the most natural objective is to minimize charging time, so that the device can be used
as quickly as possible, the optimal-control problem is most often formulated as mini-
mizing charging time subject to aging-related constraints, see, e.g., [51, 100–105]. Note
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that in most of these papers, the minimum charging time problem is approximated by an
SoC-reference-tracking problem [100–103, 105]. However, also literature exists in which
the optimal-control problem is formulated as minimizing a weighting between charging
time and aging, see, e.g., [106–112], and minimizing aging subject to a specified charging
time, e.g. [113]. Note that in many papers where an (classic) MPC approach is applied, a
reference tracking problem is formulated, instead of solving one of the above-given ob-
jectives, see, e.g., [114–119]. However, by the definition of optimal aging-aware charging
used in this thesis, such an approach does not achieve a Pareto-optimal trade-off be-
tween aging and charging time, since it does not achieve either of the three objectives
formulated above. Further note that the problem of the maximization of charge trans-
ferred in a given time subject to aging-related constraints has also been formulated, e.g.
in [74, 120–123]. However, this problem formulation, in principle, also does not achieve
a Pareto-optimal trade-off between aging and charging time, since the amount of charge
transferred cannot be used to make a direct trade-off between aging and charging time,
as the amount of charge transferred also determines how much charge can be extracted
from the battery afterwards. Therefore, a fair comparison between various charging pro-
tocols, that lead to a particular trade-off between aging an charging time, can only be
made if the amount of charge transferred is equal.

One of the major challenges in aging-aware charging is in obtaining an accurate
aging model. Therefore, many studies take the approach of using known indicators
that cause battery aging. Some of these indicators can be modeled using empirical
models such as an ECM or empirical thermal models, e.g., temperature applied in [100,
124]. Other indicators require physics-based models e.g., temperature (using a physics-
based thermal model) [125], Li-ion concentration [51, 120], and negative-electrode over-
potential [36, 101, 104, 105, 114, 119]. However, since incorporating electrochemistry-
based models, and particularly the DFN model, into the optimization problem can lead
to a computationally complex problem to solve, there have been approaches where aging-
related DFN model states are approximated using a significantly less complex surrogate
model [114–118] or a linearized electrochemistry-based model [101], which is then used
for optimization. Nevertheless, the general approach taken in these papers is that by us-
ing such indicators as mentioned above, constraints can be set with the goal of avoiding
excessive aging. Of course, aging can never be prevented and the transition between ex-
cessive and non-excessive aging is not necessarily a sharp transition. Therefore, another
approach is to incorporate aging models into the optimization problem. One approach
is to use an ECM in combination with an empirical aging model, e.g. [107, 109, 126].
Another approach is to use a physics-based model to constrain or minimize battery ag-
ing, where side-reaction models have been applied in [67, 108, 110, 111, 113, 115], and
stress models have been applied in [74, 121]. Nevertheless, as such physics-based aging
models are complex, aging indicators are still often used, even though, for the reasons
mentioned above, such an approach might not allow for making an effective trade-off
between charging time and aging.

In many studies, e.g. [51, 74, 105, 107–109, 113, 123, 127], the optimal-control prob-
lem (1.1) is solved in an off-line setting, in the sense that the optimization problem is
solved once, after which the solution can be analyzed. Although such an analysis is valu-
able to provide insight into aging-aware charging, the solution itself is generally not use-
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ful for implementation. Since modeling errors always occur, the solution found may
steer the system into unwanted states. A way to compensate for the modeling errors
is to solve the optimization problem periodically, and update the solution at each time
instance. We will refer to such a scheme as a closed-loop optimal controller, although
it can be categorized under MPC. However, while in (classic) MPC the objective func-
tion is chosen as a quadratic objective function with weighting terms on the input and
states, in closed-loop optimal control the objective function is chosen as the actual ob-
jective that is to be satisfied. In literature, both approaches are utilized. The classic MPC
approach is mostly used for reference tracking in e.g., [114–118], while the closed-loop
optimal controller approach has not yet been done, to the author’s knowledge. An ap-
proximation of the closed-loop optimal controller can be found in [106, 110–112], where
the objective function is chosen as the actual desired objective. However due to the com-
putational complexity of the DFN model considered in these papers, the actual model
used in the closed-loop optimal controller is either linearized [106] or the choice for the
control horizon of the MPC approach is limited [110–112], which leads to a sacrifice in
the optimality of the obtained solution.

1.3.3. OPTIMAL CONTROL SOLUTION METHODS

Generally three different methods exist to solve an optimal-control problem. One of
these methods is dynamic programming (DP) applied in [72, 123]. However, DP has
the inherent disadvantage that the computational burden increases with the number of
states. Although using an ECM, the number of states can be relatively low, physics-based
models can have hundreds of states. Optimization methods based on the Pontryagin’s
Maximum Principle (PMP), see, e.g., [125, 128, 129] can handle the computational com-
plexity of physics-based models. In PMP, the problem is reduced to solving a two-point
boundary-value problem, which can be difficult to solve in the presence of state con-
straints. Static optimization methods are most often used in aging-aware charging (e.g.,
[36, 51, 74, 100, 105, 107–111, 113, 121, 122, 127]), since they can handle the complexity
of physics-based models, as well as state constraints. However, in static optimization, a
global solution is only guaranteed for a convex optimization problem. In many studies,
commercial solvers such as IPOPT [74, 111, 113], GPOPS-II [51, 74, 107, 109, 121, 122],
FMINCON [108, 110], or Genetic Algorithm Toolbox [100, 127] are used to directly obtain
a solution to a given optimization problem. However, such off-the-shelf-solvers may
limit the possibilities in taking advantage of the properties in the structure of the consid-
ered optimization problem.

1.4. RESEARCH QUESTIONS

In this section, we will state the main research question and main objective in this work.
Starting from this main objective, we will reflect on the state-of-the-art in Section 1.3 to
formulate research sub-questions that need to be addressed in order to fulfill the objec-
tive.
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1.4.1. PROBLEM STATEMENT
The state of the art previously discussed shows that there are many different approaches
to tackle the problem of aging-aware charging. These approaches range from relatively
simple rule-based methods to optimal-control-based approaches which use complex
physics-based models. However, in most of the literature, the proposed aging-aware
charging methods are only validated against the conventional CC-CV protocol, even
though other methods may have a similar performance to the proposed aging-aware
charging method at a lower computational complexity. Furthermore, the state-of-the-art
has shown that the use of complex electrochemistry-based (aging) models in an optimal-
control-based approach with a low computational complexity is still difficult. Finally,
due to the complexity of electrochemical aging models, many aging-aware charging ap-
proaches use aging indicators instead, with which making a trade-off between aging and
charging time might be impossible. Consequently, we pose the following main research
question:

Main Research Question

Do optimal-control-based charging algorithms that use electrochemical aging
models lead to a better trade-off between aging and charging time compared to
rule-based protocols, while having a manageable computational complexity?

From this research question, we can state the main objective of this thesis as follows.
Design a battery charging algorithm such that it has the properties of being

1. Optimal: the charging performance must be as close as possible to the fundamen-
tal limit of the performance that can be achieved.

2. Aging-aware: the charging algorithm needs to be able to predict and restrict bat-
tery aging, instead of basing the decisions only on aging indicators.

3. Adaptive: the charging algorithm must work in a closed-loop setting, and be able
to adapt to modeling errors and disturbances.

4. Implementable: the charging algorithm must have limited computational com-
plexity, so that it can be implemented on a battery charger.

The suggested approach in this thesis is to use optimal control. In this approach, we
must find or develop accurate models with limited computation times such that they
can be applied in an on-line optimal controller. Furthermore, we must formulate an
optimal-control problem and find or develop an optimization algorithm that solves it
in a short enough time, such that it can be used in a closed-loop implementation. In
the rest of this section, we will formulate the research sub-questions that arise from our
main objective and the state-of-the-art.

1.4.2. BATTERY MODELING AND PARAMETERIZATION
As evidenced from the state-of-the-art, there is a general trade-off that can be made in
battery modeling between computational complexity and accuracy through the choice
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of model simplifications. However, in the current literature, the impact of the assump-
tions or simplifications made, sometimes unknowingly, e.g., in the case of concentration-
dependent parameters, on the computational complexity and accuracy of the resulting
model are not investigated. Therefore, the first research sub-question is given as follows:

Research Sub-Question 1

What is the impact of model simplifications on the trade-off between computa-
tional complexity and model accuracy of electrochemistry-based battery mod-
els?

This sub-question will be addressed in Chapter 2, where the impact of several types
of model simplifications on the trade-off between model accuracy and computation
time will be investigated for the DFN model. In this study, we will also consider the
roughness of the spatial discretization scheme to make an additional trade-off between
accuracy and computation time. As a basis for comparison, we will consider, to what we
will refer as, the complete DFN (CDFN) model, which is a DFN model without any sim-
plifications, and includes the concentration-dependency of parameters that have been
studied in previous literature. This will show which model simplifications should be
made in order to obtain an electrochemistry-based model in order to reach a desired
trade-off in model accuracy and complexity.

While there are various approaches taken in literature to determine the parameters
of electrochemistry-based models, a direct comparison between these methods is miss-
ing. In particular, in the approaches that use only current/voltage data to determine the
model parameters, a good model accuracy, i.e., the terminal voltage fit, can be obtained,
although an investigation into the physical meaningfulness of the parameters is missing.
On the other hand, by obtaining the model parameters through cell teardown, a stronger
guarantee can be given to the physical meaningfulness of the parameters, although the
obtained model accuracy is generally worse than for the approaches based on only cur-
rent/voltage data. Therefore, the second sub-question is given by:

Research Sub-Question 2

How can the parameters of electrochemistry-based battery models be deter-
mined to obtain an accurate model with physically meaningful parameters?

This sub-question will be addressed in Chapter 3, where a parameter determina-
tion approach using cell teardown and an approach using only current/voltage data are
compared. In doing so, we will propose a model parameterization approach of the DFN
model through normalization and grouping, followed by a sensitivity analysis and a pa-
rameter estimation procedure. The normalization and grouping procedure will reduce
the number of parameters of the DFN model, while the sensitivity analysis is performed
to select the most output-sensitive parameters for parameter estimation. For the ap-
proach based on cell teardown, we use experimentally determined parameters and cur-
rent/voltage data, which are obtained from literature. By comparing both considered
parameter determination approaches on this data, we will asses whether a better model
accuracy can be obtained using the approach that uses only current/voltage data. Fur-
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thermore, we will consider a synthetic cell, represented by a DFN model with randomly
chosen (within specific and realistic intervals) parameters. By applying the proposed pa-
rameterization approach on the data generated using this synthetic cell, we can assess
the physical meaningfulness of the parameters resulting from this approach.

1.4.3. AGING-AWARE CHARGING
A common approach in aging-aware charging is to use aging indicators, such as the
negative-electrode over-potential, in order to restrict the battery from reaching states
that result in excessive aging, such as lithium plating [47]. However, as we have rea-
soned above, aging can never be prevented and the transition between excessive and
non-excessive aging is not necessarily a sharp transition. Still, as we have also seen
above, this approach is commonly taken, even in recent literature (see, e.g., [35, 119]),
and therefore, the third research question is given by:

Research Sub-Question 3

Can aging indicators, such as the negative-electrode over-potential, be used to
effectively make a trade-off between charging time and battery aging?

This sub-question will be addressed in Chapter 4, where a DFN model including
capacity-loss side reactions is utilized to compare several rule-based charging protocols
by obtaining the Pareto front that describes the optimal trade-off between charging time
and aging for the considered protocols. In this comparison, we will investigate the use-
fulness of the negative-electrode over-potential as an indicator for aging in making a
trade-off between charging time and battery aging.

A large obstacle in optimal aging-aware charging is the use of the complex
electrochemistry-based models, such as the DFN model in an optimal-control approach.
A promising approach is then to use a surrogate model, which approximates aging-
related DFN model states, such as those considered in [114–118]. However, in these
papers, a black-box modeling approach is chosen, which may lead to a difficulty in es-
timating the inherent (nonlinear) dependency of some of the DFN model states on the
state-of-charge of the battery. Consequently, the following sub-question is formulated:

Research sub-question 4

What modeling approach, with a lower computational complexity than the DFN
model, is suitable to approximate aging-related DFN model states accurately,
such that it can be used in optimal aging-aware charging?

We will investigate this sub-question mostly in Chapter 5, where we will present an
optimal-control-based method for aging-aware charging using a surrogate model. In the
proposed surrogate modeling approach, the aging-related DFN model states are approx-
imated by a combination of a black-box finite-dimensional linear-time-invariant model
and a static nonlinear model that is a function of state-of-charge. We will show how
well the aging-related DFN model states can be approximated by the proposed surro-
gate model, while also comparing the computational time of the surrogate model to the
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DFN model. In Chapter 6, we will compare the Pareto front obtained using this pro-
posed approach to the best-possible Pareto front for a synthetic cell, to further validate
this approach for aging-aware charging.

Although the surrogate modeling approach can achieve a good trade-off between
charging time and aging, ideally, the goal is to use the DFN model directly in the optimal-
control approach. However, in the current state-of-the-art, the DFN model has not been
used in a closed-loop optimal-control strategy, due to the computational complexity of
the DFN model. Hence, this leads to the following sub-question:

Research Sub-Question 5

Can the computational complexity of the optimal aging-aware charging problem
using the DFN model be reduced such that it is suitable for a closed-loop imple-
mentation?

In Chapter 6, we will answer this sub-question, where we will present an optimal
aging-aware charging approach using the DFN model. Here, we will use the resulting
model implementation from Chapter 2 to reformulate the optimal-control problem with
a reduced computational complexity compared to the originally formulated optimal-
control problem. Furthermore, to solve the optimal-control problem, we will employ
a proprietary algorithm, and compare this to an off-the-shelf non-linear optimization
solver. To further reduce the computational complexity of the optimal-control prob-
lem, we will investigate the effect of spatial and temporal discretization of the resulting
discrete-time optimal-control problem on the computational complexity and achieved
trade-off between charging time and aging.

While several optimization-based charging methods have been experimentally vali-
dated, see, e.g., [110, 113], the validation is done through a comparison with the conven-
tional CC-CV strategy only. However, it has been shown that multi-stage CC-CV charging
protocols, which are substantially less complex than optimization-based methods, also
achieve a significantly improved trade-off between charging time and aging compared
to the commonly used CC-CV protocol, see, e.g., [24]. Therefore, in the experimental val-
idation of optimal aging-aware charging methods, multi-stage CC-CV protocols should
also be considered for comparison, which leads to the final research question:

Research Sub-Question 6

Do optimal-control-based charging algorithms that use electrochemistry-based
models lead to a better trade-off between aging and charging time than rule-
based algorithms in practice?

We will address this sub-question in Chapter 7, where we will experimentally validate
an open-loop optimal aging-aware charging approach, and compare this approach to a
multi-stage CC-CV protocol, as well as the conventional CC-CV protocol.
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1.5. THESIS OUTLINE
The outline of this thesis is shown schematically in Fig. 1.8, where the thesis is divided
into three main parts. All three parts are preceded by the problem statement that has
been set in Section 1.4 of this chapter. Furthermore, we can see from Fig. 1.8 that the
thesis can be read chronologically, due to the causal relationship between the three parts
of this thesis. Specifically, in order to consider the aging-aware charging strategies in Part
II, it is necessary to first investigate battery modeling and implementation in Part I. Then,
an experimental validation of the aging-aware charging methods in Part III requires the
study done in Part II. Finally, in Part III, conclusions and recommendations are made
based on all the chapters that have preceded that point. However, at the same time, the
chapters have been written such that they can also be read independently, which may
lead to some repetitiveness in the introduction sections of the separate chapters, as well
as the abstracts and conclusions. We will give an outline of the three main parts below.

PART I: BATTERY MODELING AND PARAMETERIZATION

In Chapter 2, we aim to find an electrochemistry-based modeling framework that is ac-
curate and suitable for optimal aging-aware charging. This is done by studying the im-
pact of several types of model simplifications on the trade-off between model accuracy
and computation time for the DFN model. Furthermore, in Chapter 2, a model imple-
mentation is presented that significantly speeds up the DFN model simulation, regard-
less of the simplifications made. In Chapter 3, the problem of parameterizing the DFN
model is addressed. Here, we aim for a model parameterization approach that leads to
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physically intuitive parameters as well as an accurate model.

PART II: AGING-AWARE CHARGING
In Chapter 4, we formulate an electrochemistry-based aging model, that is based on
the DFN model and a capacity-loss side-reaction model. Using this model, the Pareto
front that describes the trade-off between charging time and aging for several rule-based
protocols is obtained. Through this analysis, we will investigate the usefulness of the
negative-electrode over-potential as an indicator for aging in making a trade-off be-
tween charging time and battery aging. Then, in Chapter 5, we will investigate the use
of surrogate modeling for optimal aging-aware charging. The proposed surrogate model
approximates the aging-related DFN model states from Chapter 4, while having a sig-
nificantly lower computational complexity than the considered model that is approx-
imated. This optimal-control-based approach using the surrogate model will then be
compared to the rule-based protocols considered in Chapter 4. Finally, in Chapter 6,
we will present an optimal aging-aware charging approach using the DFN model. Here,
the resulting implementation from Chapter 2 is used to obtain an optimal-control prob-
lem that has a considerably reduced complexity compared to the originally formulated
optimal-control problem. This proposed optimal-control-based approach using the DFN
model is then compared to aging-aware charging approaches considered in Chapter 4
and Chapter 5.

PART III: EXPERIMENTAL VALIDATION AND CONCLUSIONS
An experimental validation of several aging-aware charging methods is done in Chap-
ter 7. Specifically, several points on the Pareto front of the aging-aware charging method
proposed in Chapter 6 are experimentally obtained. This Pareto front is compared to the
experimental Pareto fronts of a multi-stage CC-CV charging protocol and the conven-
tional CC-CV charging protocol. Finally, in Chapter 8, conclusions and recommenda-
tions are discussed.
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2
BATTERY MODELING AND

IMPLEMENTATION

Using electrochemistry-based battery models in aging-aware charging remains challeng-
ing due to their computational complexity. In this chapter, we study the impact of several
types of model simplifications on the trade-off between model accuracy and computation
time for the Doyle-Fuller-Newman (DFN) model. As a basis for comparison, we consider,
to what we refer as, the complete DFN (CDFN) model, which is a DFN model without
any simplifications, and which includes the concentration dependency of parameters that
have been studied in previous literature. Furthermore, we propose a highly efficient imple-
mentation of the CDFN model that leads to a considerable decrease in computation time,
and that has been developed into a freely downloadable toolbox. This toolbox allows the
user to easily toggle between the studied simplifications to make the desired trade-off be-
tween model accuracy and computation time. We compare several simplified DFN models
to the single-particle model and the CDFN model. Here, we show that with the proposed
implementation, and by selectively making the proposed simplifications, as well as selec-
tively choosing the grid parameters, a model can be obtained that has a minor impact on
model accuracy, achieving a simulation time of over 5000 times faster than real-time.

This chapter is based on Publication P.2.
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2.1. INTRODUCTION
As stated in Chapter 1, electrochemistry-based models are instrumental for aging-aware
charging, as they allow for a description of the internal behavior of the battery. The
Doyle-Fuller-Newman (DFN) model is a widely used electrochemistry-based model,
which is described by a set of partial differential equations (PDEs) [1]. While the DFN
model can describe internal states of the battery, its model complexity generally leads to
large computation times. This model complexity, as well as the difficulty to uniquely de-
termine all model parameters or to uniquely determine the internal states based on the
measured voltages and currents, prohibits using the DFN model in battery-management-
system functionalities.

There are several ways to reduce the computational burden of the DFN model. One
way to reduce complexity is to apply model reduction to the DFN model. A common
technique is to make a polynomial approximation of the solid-phase concentration dif-
fusion [2, 3]. Model reduction is also applied on the DFN model through the use of tech-
niques such as Galerkin projections [4] and proper orthogonal decomposition [5, 6]. An
overview of this type of model reduction can be found in [7]. However, the reduction
is mostly in the number of equations, while the reduction in computation time is only
marginal, when applied to the DFN model, as was shown in [6]. Another way to reduce
complexity is by simplifying the model equations, see, e.g., [3, 8–11]. A popular example
is the so-called single-particle model (SPM) [12, 13], in which the equations for solid-
phase concentration and potentials are simplified. Another approach is to linearize the
governing equations of the DFN model, see, e.g., [14]. Finally, it has been recognized
that many parameters depend on concentrations [15–19], while actually ignoring these
dependencies leads to a simplification of the governing model equations [20].

Besides addressing the complexity of the DFN model, another way to reduce com-
putation time is to develop algorithms that compute the solution to the DFN model
equations more efficiently, see e.g. [6, 20, 21], and [22], where the latter proposes a com-
putationally efficient model implementation in presence of above-discussed simplified
solid-phase dynamics. In these papers, the PDEs that describe the DFN model are spa-
tially and temporally discretized, which results in a set of nonlinear algebraic equations
(AEs). Numerical methods are then developed in an attempt to solve this set of AEs as
efficiently as possible.

In this chapter, we study the impact of several types of model simplifications on the
trade-off between model accuracy and computation time for the DFN model. As a basis
for comparison, we consider, to what we will refer as, the complete DFN (CDFN) model,
which is a DFN model without any simplifications, and includes the concentration de-
pendency of parameters that have been studied in previous literature [15–19]. The CDFN
and the considered simplifications are given in Section 2.2. Furthermore, we propose a
computationally efficient implementation of the CDFN model that leads to a significant
reduction in computation time, which is presented in Section 2.3. After spatial and tem-
poral discretization of the DFN model, we will show that through substitution of equa-
tions, the number of equations describing the DFN model can be considerably reduced
to a small set of algebraic equations. This model implementation has been developed
into a freely downloadable toolbox, which will also be presented in Section 2.3. This
toolbox allows the user to easily toggle between the studied simplifications to make the
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Figure 2.1: DFN modeling approach for a Li-ion cell (situation shown for charging).

desired trade-off between model accuracy and computation time.
We will study the impact of the proposed simplifications on model accuracy and

computation time for two different sets of parameters, to show the validity of these sim-
plifications and the trade-off between computation time and model accuracy that can be
made. Furthermore, we will study the impact of varying spatial accuracy on the trade-off
between model accuracy and computation time. We will validate the proposed model
implementation against the implementation presented in [23], and also show that the
proposed implementation is significantly faster than the model implementations pre-
sented in [23] and [6]. It is important to note here that the implementation in [23] re-
lies on a variable-time-step solver, while the proposed implementation is based on a
fixed-time-step discretization scheme. We will reflect on this choice in the results sec-
tion. Finally, we will compare several simplified DFN models to the SPM and the CDFN
model. The results of these studies are presented in Section 2.4, after which conclusions
are drawn in Section 2.5.

2.2. BATTERY MODELING
In this section, we briefly formulate the DFN model, and introduce several simplifica-
tions, which we will show in Section 2.4 to have no significant impact on the accuracy
of the model, both in the input-output behavior as well as the internal states. Further
simplifications on the resulting model will be applied to arrive at the so-called SPM.

2.2.1. DOYLE-FULLER-NEWMAN MODEL
The DFN model is a widely used electrochemistry-based model introduced in [1]. Fig. 2.1
illustrates the modeling approach for a Li-ion cell. In the x dimension, the cell is divided
into three regions, namely the negative electrode, the separator, and the positive elec-
trode. In the electrodes, Li-ions exist essentially in two phases. In the solid phase, Li-
ions are intercalated into the solid-phase material, which is represented by spheres with
radius Rs . In the electrolyte phase, Li-ions exist in a dissolved state in the electrolyte.
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In the separator, Li-ions exist only in the electrolyte phase. During charging, as shown
in Fig. 2.1, intercalated Li-ions exit the solid particles in the positive electrode and enter
the solid particles in the negative electrode. During discharging, the opposite process
happens. We will shortly summarize the governing equations of the DFN model, which
will be mostly based on the formulation given in [24]. The DFN model is governed by
four coupled partial differential equations (PDEs):

1. The Li-ion concentration in the solid phase cs for x ∈ [0,δn]∪ [L−δp ,L] is given by
Fick’s law as

∂cs

∂t
= Ds

r 2

∂

∂r

(
r 2 ∂cs

∂r

)
, (2.1a)

with boundary conditions

∂cs

∂r

∣∣∣
r=0

= 0, −Ds
∂cs

∂r

∣∣∣
r=Rs

= jn , (2.1b)

with Ds the diffusion coefficient of lithium in the solid phase, and jn is the net
molar flux of Li-ions exiting the particle. Furthermore, δn and δp are the thickness
of the negative electrode and positive electrode, respectively, and L is the thickness
of the cell, see Fig. 2.1.

2. The Li-ion concentration in the electrolyte phase ce for x ∈ [0,L] is given by

εe
∂ce

∂t
= ∂

∂x

(
Deff

e
∂ce

∂x

)
+as (1− t 0

+) jn , (2.2a)

with boundary conditions

Deff
e
∂ce

∂x

∣∣∣
x=0

= Deff
e
∂ce

∂x

∣∣∣
x=L

= 0, (2.2b)

where Deff
e = Deε

p
e is the effective Li-ion diffusion coefficient in the electrolyte

phase, in which εe is the electrolyte phase volume fraction, p is the Bruggeman
porosity exponent, and De is the diffusion constant of Li-ions in the electrolyte.
Furthermore, in (2.2), as = 3εs /Rs is the specific interfacial surface area, in which
εs is the active material volume fraction, and t 0+ is the transference number of Li-
ions.

3. The potential in the solid phase φs for x ∈ [0,δn]∪ [L−δp ,L] is given by Ohm’s law,
i.e.,

∂

∂x

(
σeff ∂φs

∂x

)
= as F jn , (2.3a)

with boundary conditions

σeff ∂φs

∂x

∣∣∣
x=0

= Ia

A
, σeff ∂φs

∂x

∣∣∣
x=δn

= 0, (2.3b)

σeff ∂φs

∂x

∣∣∣
x=L−δp

= 0, σeff ∂φs

∂x

∣∣∣
x=L

= Ia

A
, (2.3c)
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where F is Faraday’s constant, σeff = εsσ is the effective electronic conductivity of
a porous electrode, in which σ is the conductivity of the solid material, A is the
area of the electrode plate, and Ia is the applied current through the battery, with
Ia > 0 indicating charging.

4. The potential in the electrolyte phase φe for x ∈ [0,L] is given by

∂

∂x

(
κeff

∂φe

∂x
+κeffν

2RT

F

∂ lnce

∂x

)
=−as F jn , (2.4a)

with boundary conditions 1

κeff
∂φe

∂x

∣∣∣
x=0

= κeff
∂φe

∂x

∣∣∣
x=L

= κeffφe
∣∣

x=L = 0, (2.4b)

in which κeff = κεp
e is the effective ionic conductivity, where κ is the ionic conduc-

tivity, R is the universal gas constant, and T is the absolute temperature. Further-

more, ν = (t 0+−1)
(
1+ d ln f±

d lnce

)
, in which f± is the mean molar activity coefficient of

the electrolyte.

The above PDEs (2.1)-(2.4) are coupled by a Butler-Volmer rate equation, which de-
scribes the electrochemical reaction rate at the solid/electrolyte interface. This rate equa-
tion is given by

jn = i0

F

(
exp

(αaF

RT
η
)
−exp

(
− αc F

RT
η
))

, (2.5a)

which is only defined for x ∈ [0,δn]∪[L−δp ,L] and assumed zero for x ∈ (δn ,L−δp ), since
there are no particles in the separator. In (2.5a), αa is the anodic transfer coefficient, αc

is the cathodic transfer coefficient, and the overpotential at the electrodes η is defined as

η=φs −φe −U , (2.5b)

in which U denotes the equilibrium potential of the electrode, which can be given by a
pre-defined function typically of the solid-phase concentration at the solid-electrolyte
interface cs,e (x, t ) = cs (Rs , x, t ). Furthermore, the exchange current density i0 in (2.5a) is
given by

i0 = k0cαa
e (cmax

s − cs,e )αa cαc
s,e , (2.5c)

where k0 is the rate constant of the electrochemical reaction, and cmax
s is the maximum

concentration in the solid phase. Finally, the terminal battery voltage is computed with

V (t ) =φs (L, t )−φs (0, t )+ Rcc

A
Ia(t ), (2.6)

in which Rcc is an empirical contact resistance.

1Note that compared to P.2, a correction has been made in (2.4b).
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2.2.2. CONCENTRATION-DEPENDENT PARAMETERS
Aside from physical constants, such as the universal gas constant R and Faraday’s con-
stant F , the material properties that define the parameters of the DFN model (and SPM)
need to be determined. However, numerous literature, e.g. [15–19], has shown that at
least some of these material properties are not necessarily constant and can significantly
change depending on the Li-ion concentration level of the material. Measuring these pa-
rameters can involve destructive procedures, such as opening of the battery cell, which
makes determining the dependencies difficult.

Numerous results on the measurement and use of concentration-dependent param-
eters have been reported in the literature, e.g., [1, 5, 15–19, 23–32]. Since the electrolyte is
relatively easy to isolate, electrolyte-related parameters, and more specifically, the trans-
port properties, such as κ and De , are more often measured than the parameters of the
electrodes, such Ds . The concentration dependency of the electrolyte transport proper-
ties have been measured and shown for various different electrolytes in e.g., [15, 16, 19].
The concentration-dependent parameters provided in these papers have been used in
various literature, e.g. [1, 5, 23–27]. However, often f± is still assumed constant, and is
therefore ignored in the DFN equations, even though in [15, 16, 33], f± is shown to sig-
nificantly change over the concentration in the electrolyte. Out of all the parameters, the
concentration dependency of the conductivity in the electrolyte κ seems to be the least
difficult to determine, as it is most commonly taken as a concentration-dependent pa-
rameter in the DFN model, as done in e.g., [1, 24]. The other electrolyte transport prop-
erties, i.e., the mean molar activity coefficient f±, transference number t 0+, and diffusion
coefficient De are generally more difficult to determine. The literature on the measure-
ment of the concentration dependency of the electrode parameters is more scarce, with
the exception of the diffusion coefficient Ds , of which its concentration-dependency has
been shown in e.g. [17, 18, 28–30]. However, such results have not yet been widely ap-
plied in the context of the DFN model, with [34] being the only example, to the authors’
knowledge.

In Fig. 2.2, some examples of concentration-dependent parameters are shown. Note
that there seems to be a discrepancy between the examples obtained from [24] and [31],
even though the authors in [24] (indirectly) cite the paper of [31] as their source of the
concentration-dependent conductivity function. We further see that the parameters can
change significantly, and in the case of Ds in orders of magnitudes, over a varying con-
centration. This would suggest that at large currents, which would induce large concen-
tration gradients, the parameter values can significantly change, suggesting the need to
implement them as a function of concentration. In Section 2.4, we will show that this
may not necessarily be the case for any of the parameters shown in Fig. 2.2.

2.2.3. SIMPLIFICATIONS TO THE DOYLE-FULLER-NEWMAN MODEL
Adding parameter dependencies introduces additional complexity in the DFN model.
Instead of increasing the complexity, we can also make several simplifications to the
DFN model that aim at reducing complexity. In particular,

[S1]: The rate equation (2.5a) can be linearized with respect to the overpotential η
around the origin, due to the fact that F

RT À |η|, which also implies that as |η|
becomes larger, the errors made due to this assumption also become larger. Note
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Figure 2.2: Various examples of concentration-dependent parameters resulting from various cell chemistries
found in literature.

thatαa+αc = 1 [36], which allows the resulting linearized Butler-Volmer equation
of (2.5a)-(2.5b) to be written as

jn = i0

RT
(φs −φe −U ). (2.7)

From Fig. 2.3, we can see that this is a reasonable approximation up to an over-
potential of about |η| < 0.01.

[S2]: A zero-order Taylor approximation can be made for the concentration-dependent
parameters, i.e.,κ(ce ) = κ(c∗e ), De (ce ) = De (c∗e ), ν(ce ) = ν(c∗e ), Ds (s) = Ds (s∗), where
s is the stoichiometry cs,e /cmax

s , c∗e is the evaluation point chosen for ce , and s∗ is
the evaluation point chosen for s, which can be chosen in either of the following
ways.

[S2-I]: The evaluation points are chosen dynamically, such that they vary over
space and time. In this chapter, the evaluation point is chosen after
time discretization, as the values of the concentration-dependent pa-
rameters at the previous time sample tk−1, i.e., κ(c∗e ) = κ(ce (tk−1)),
De (c∗e ) = De (ce (tk−1)), ν(c∗e ) = ν(ce (tk−1)), Ds (s∗) = Ds (s(tk−1)).

[S2-II]: The evaluation points are chosen as a constant value, such that the
concentration-dependent parameters no longer vary over space and
time, i.e., κ(c∗e ) = κ(c̃e ), De (c∗e ) = De (c̃e ), ν(c∗e ) = ν(c̃e ), Ds (s∗) = Ds (s̃).
Here, c̃e is the expected average concentration in the electrolyte, which
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Figure 2.3: Comparison between the nonlinear Butler-Volmer equation given by (2.5a) and the linearized (with
respect to the over-potential η) Butler-Volmer equation given by (2.7). The equations have been evaluated for
T = 298 K.

can be chosen as c̃e = ce,a , where ce,a is the average concentration in
the electrolyte in equilibrium, and s̃ is the expected average stoichiom-
etry, which can be chosen as s̃ = (s100% + s0%)/2, in which s100% is the
stoichiometry at 100% state-of-charge and s0% is the stoichiometry at
0% state-of-charge.

[S3]: Finally, a common simplification is to make a two-parameter polynomial approx-
imation of the solid-phase diffusion [2, 35]. Here, the concentration profile within
a particle is assumed to be a parabola over the radial dimension r . Then, by sub-
stituting this approximated concentration into (2.1a), volume-averaging the re-
sulting expression, and evaluating the boundary conditions (2.1b), expressions
for the bulk concentration cs,bulk and surface concentration cs,e can be obtained,
i.e.,

∂cs,bulk

∂t
= −3

Rs
jn , cs,e = cs,bulk −

Rs

5Ds
jn . (2.8)

The main advantage of this simplification is that the diffusion equation in (2.1),
which is the only governing equation that depends on r , simplifies to merely two
equations, describing the bulk and surface concentration of the particles in the
solid phase as a function of x and t .

2.2.4. SINGLE-PARTICLE MODEL
The SPM is defined by the main assumption that the diffusion dynamics inside the solid
particles is the slowest process, and therefore dominates over the other dynamics [36].
Under this assumption, we can formulate the following corresponding simplifications
[12].

[S4]: The concentration in the solid phase cs is constant over x.

[S5]: The exchange current density i0 is approximated by ĩ0 = i0(cs,e , c̃e ), where c̃e is the
mean electrolyte concentration over each of the electrodes.
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[S6]: The over-potential η is approximated by η̃ = φs − φ̃e −U , where φ̃e is the mean
electrolyte potential over each of the electrodes.

Note that as a consequence of [S4] and [S5], ĩ0 only changes over time. As a result of [S4],
the flux of Li-ions at the solid-electrolyte interface jn can be assumed to be equal for all
particles in each of the electrodes, and hence jn can be directly computed from (2.3),
i.e.,

jn(x, t ) =
{− Ia (t )

Aasδn F for x ∈ [0,δn],
Ia (t )

Aasδp F for x ∈ [L−δp ,L].
(2.9)

The solid-phase potential φs can then be computed from (2.5), with φe = φ̃e . Note that,
as a result of (2.9), we have that (2.1), (2.2), and (2.4) are no longer coupled, which means
that these equations can be solved explicitly for a given Ia .

We will refer to this model, given by (2.1), (2.2),(2.4), (2.5), (2.6), (2.9), as the SPM.
Note that in literature the SPM that includes electrolyte dynamics, as presented above is
usually referred to as the SPMe (Single-Particle Model with electrolyte dynamics), while
SPM is usually referred to the model that is obtained under the additional assumption
that electrolyte dynamics, corresponding to (2.2) and (2.4), are ignored. We further note
that in our formulation of the SPM, the parameters can be concentration-dependent,
and therefore Simplifications [S1]-[S3] can also be applied to the SPM.

2.3. MODEL IMPLEMENTATION

The objective of this chapter is to compare the computational complexity and the ac-
curacy of several electrochemistry-based models, and to implement the DFN model
such that a trade-off can be made between computational complexity and accuracy.
The DFN model formulated in Section 2.2.1, under the assumption that the parame-
ters considered in Section 2.2.2 are concentration-dependent, can be seen as the (most)
complete DFN model (CDFN). From this CDFN, any of the simplifications formulated in
Section 2.2.3 can be applied to arrive at a simplified form of the CDFN. The implemen-
tation of the CDFN and its corresponding simplifications involves several steps. Firstly,
fairly standard spatial and temporal discretization is applied to arrive at a set of AEs.
Secondly, the set of AEs is reduced to a smaller set of AEs through substitution, after
which the resulting set of AEs can be solved using Newton’s method. The discretization
procedure described here is similar to the procedure presented in [6]. Therefore, in this
section, we will shortly summarize this procedure to formulate the set of AEs that arises
from the discretization. For further details on the discretization approach, the reader is
referred to [6]. Note that a key difference between the discretization described in [6] and
this chapter, is that in the finite-volume method (FVM) discretization, to determine the
edge parameter values of the control volumes, the harmonic mean of two neighboring
control volumes is used, as described in [23]. Finally, we will present a freely download-
able toolbox to simulate the DFN model based on the proposed implementation, which
can be used without any knowledge on the proposed model implementation.
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2.3.1. DISCRETIZATION

As a first step, spatial discretization is applied on the PDEs (2.1) - (2.4). The equation
describing the diffusion of the solid-phase concentration (2.1) is discretized along the
radial direction using a finite-difference method (FDM), to arrive at a set of differen-
tial algebraic equations (DAEs). The other equations (2.2)-(2.4) are discretized using an
FVM, after which the resulting set of nonlinear DAEs can be written as

d

d t
cs = Acs cs +Bcs jn , (2.10a)

d

d t
ce = Ace ce +Bce jn , (2.10b)

0 = Aφsφs +Bφs jn +Cφs Ia , (2.10c)

0 = Aφeφe +Bφe jn +Dφe ln(ce ), (2.10d)

where the bold faced characters refer to their respective vector variables, which are de-
fined as2

cs (t ) = [ cs,n (x1,t ) ... cs,n (xnn ,t ) cs,p (xnn+ns+1,t ) ... cs,p (xnn+ns+np ,t ) ]>,

cs,n(x, t ) = [ cs (x,rn,1,t ) ... cs (x,rn,nr,n ,t ) ]>, cs,p (x, t ) = [ cs (x,rp,1,t ) ... cs (x,rp,nr,p ,t ) ]>,

ce (t ) = [ ce (x1,t ) ... ce (xnn+ns+np ,t ) ]>,

φs (t ) = [φs (x1,t ) ... φs (xnn ,t ) φs (xnn+ns+1,t ) ... φs (xnn+ns+np ,t ) ]>, (2.11)

where xl for l ∈ {1, . . . ,nn + ns + np }, rn,mn for mn ∈ {1, . . . ,nr,n}, and rp,mp for
mp ∈ {1, . . . ,nr,p } are the grid points of the discretization, and φe , jn are defined simi-
larly to ce and φs , respectively. In (2.11), nn ,ns ,np are the number of elements of the
FVM discretization, in the negative electrode, separator, and positive electrode, respec-
tively. Furthermore, nr,n ,nr,p are the number of elements of the FDM discretization, in
the negative electrode, and the positive electrode, respectively. How to construct matri-
ces Ai ,Bi , i ∈ {cs ,ce ,φs ,φe }, Cφs , and Dφe is explained in detail in [6]. The four sets of
DAEs (2.10) are coupled by the Butler-Volmer rate equation, written as

jn = diag

(
i0(c̄e , c̄s )

F

)(
exp

(αaF

RT
(φs − φ̄e −U(c̄s ))

)
−exp

(
− αc F

RT
(φs − φ̄e −U(c̄s ))

))
, (2.12)

in which the diag(v) denotes a diagonal matrix with the elements of vector v on the
main diagonal. Furthermore, in (2.12), the barred boldfaced variables c̄s , c̄e , and φ̄e

refer to selected version of their non-barred boldfaced counterparts, where c̄s denotes
the vector of solid-phase surface concentrations, and c̄e and φ̄e denote the parts of ce

and φe given in the electrodes, respectively. Mathematically, c̄s , c̄e ,φ̄e and cs ,ce ,φe are
related, respectively, as follows

c̄s = Ācs cs , c̄e = Āce ce , φ̄e = Āφeφe , (2.13)

2Note that compared to P.2, a correction has been made in (2.11).
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where

Ācs = diag
(
Inn ⊗ [01×nr,n−1,1], Inp ⊗ [01×nr,p−1,1]

)
,

Āce = Āφe =
[

Inn 0 0
0 0 Inp

]
,

in which ⊗ is the Kronecker product. The DAEs (2.10a) and (2.10b) can further be dis-
cretized in time with sampling time δt using a backward Euler scheme, to arrive at the
following set of AEs

0 = Âcs cs (tk )+ B̂cs jn(tk )+cs (tk−1), (2.14a)

0 = Âce ce (tk )+ B̂ce jn(tk )+ce (tk−1), (2.14b)

0 = Aφsφs (tk )+Bφs jn(tk )+Cφs Ia(tk ), (2.14c)

0 = Aφeφe (tk )+Bφe jn(tk )+Dφe ln(ce (tk )), (2.14d)

where tk = kδt for k ∈ {1, ..., N }, in which N is the number of simulation steps. Further-
more, Âcs = δt Acs − Inn nr,n+np nr,p , B̂cs = δt Bcs , Âce = δt Ace − Inn+ns+np , and B̂ce = δt Bce .

2.3.2. SOLUTION METHOD
The set of nonlinear AEs (2.14) obtained after discretization can be solved using any root-
finding algorithm, such as Newton’s method. However, due to the relatively large num-
ber of state variables, the use of such algorithms can be computationally slow. Namely,
a large part of the computational effort is in the computation of the inverse of the Ja-
cobian of the AEs (2.14). Therefore, in [6] a method was proposed in which Newton’s
method was applied sequentially to each set of equations of (2.14), thereby reducing the
computation of the inverse of a single large Jacobian to the computation of the inverses
of four smaller Jacobians. However, in doing so, some information of the large Jacobian is
lost, which means that a quadratic convergence rate can no longer be achieved. Still, the
computation time of the large Jacobian can be sufficiently large, such that the method
proposed in [6] is still faster than solving (2.14) directly using Newton’s method.

Rather than sequentially solving (2.14), we propose a solution method, which retains
the full information of the Jacobian of (2.14), but reduces the number of AEs. This can be
done by substitution of equations, such that one state variable remains. In doing so, the
full information of the Jacobian of (2.14) is contained in a smaller Jacobian related to the
equations of the remaining variable. The goal is to express jn , cs , ce , andφe as a function
of φs , such that (2.12) is a non-linear equation that only depends on φs . Hence, the set
of AEs (2.14) will be reduced to one set of AEs in φs that can be solved using Newton’s
method, from which cs ,ce ,φe can be obtained.

The derivation of the reduced set of AEs is as follows. First, by solving (2.14c) for jn ,
jn can be expressed as a function of φs , i.e.,

jn(tk ) =−B−1
φs

(
Aφsφs (tk )+Cφs Ia(tk )

)
. (2.15)

This expression allows the state variables c̄s , c̄e to be expressed as a function ofφs by first
substituting jn in (2.15) into their respective associated equations given in (2.14), i.e.,

Âci ci (tk )−B̂ci B−1
φs

(
Aφsφs (tk )+Cφs Ia(tk )

)+ci (tk−1)=0,
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for i ∈ {s,e}, then solving this for their respective state variables and pre-multiplying by
Acs , Ace , resulting in

c̄i (tk ) = Γci Ia(tk )+Φciφs (tk )+Θci , (2.16a)

where

Γci = Āci Â−1
ci

B̂ci B−1
φs

Cφs ,

Φci = Āci Â−1
ci

B̂ci B−1
φs

Aφs ,

Θci =−Āci Â−1
ci

ci (tk−1),

for i ∈ {s,e}. Note the presence of the full state vectors cs and ce , which can be obtained
by (2.16a), except without the pre-multiplication by Ācs and Āce , respectively. Similarly,
φ̄e can be expressed as a function of φs and ce by substituting (2.15) into (2.14d), i.e.,

Aφeφe (tk )−Bφe B−1
φs

(
Aφsφs (tk )+Cφs Ia(tk )

)+Dφe ln(ce (tk )) = 0, (2.16b)

then solving (2.14d) for φe and pre-multiplying by Āφe , giving

φ̄e (tk )=Γφe Ia(tk )+Φφeφs (tk )+Θφe ln(ce (tk )), (2.16c)

in which

Γφe = Āφe A−1
φe

Bφe B−1
φs

Cφs ,

Φφe = Āφe A−1
φe

Bφe B−1
φs

Aφs ,

Θφe =−Āφe A−1
φe

Dφe .

The above steps allow the number of AEs given in (2.14) to be reduced, by sub-
stituting (2.15), (2.16a), and (2.16c) into (2.12), leading to an expression of the form
F (φs (tk )) = 0, which can be solved using Newton’s method, i.e.,

φm+1
s (tk ) =φm

s (tk )−J (φm
s (tk ))−1F (φm

s (tk )), (2.17)

where m ∈ {1, . . . , M }, in which M is the maximum number of iterations, represents the
current iteration in Newton’s method, and J is the Jacobian of F . Note that the Jacobian
of F has (nn +np ) rows and columns, which is considerably smaller than the Jacobian
of (2.14), which would have (3+nr,n)nn + (3+nr,p )np +2ns rows and columns.

Since Acs , Ace , Aφe ,Dφe are actually concentration-dependent, these matrices, and
the matrices derived from these matrices, need to be updated at every iteration m. As we
will show in the next section, the computation of these matrices will be the largest bot-
tleneck in the algorithm. Therefore, especially Simplifications [S2-I] and [S2-II] lead to a
large decrease in computation time. When applying [S2-II], the matrices Acs , Ace , Aφe ,Dφe

become constant, which means that these matrices only need to be computed once.
When applying [S2-I], the matrices need to be updated every time step, if the evaluation
points c∗e and θ∗ are chosen as ce (tk−1) and θ(tk−1), respectively. However, even after
applying Simplification [S2-I] or [S2-II],Θi , i ∈ {cs ,ce } still change at every time step, and
therefore these matrices have to be updated at every time step in all cases. This summa-
rizes the implementation of the DFN model.
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2.3.3. TOOLBOX FOR FAST BATTERY SIMULATION (TOOFAB)
The DFN model with the implementation described in the previous subsection has been
coded in MATLAB and developed into a toolbox. While there are already several bat-
tery simulation toolboxes (freely) available that solve the DFN model equations, e.g.
[23, 27, 37], our developed toolbox provides several advantages compared to the cur-
rently available toolboxes. Firstly, with the proposed solution method described in this
section, the computation times are generally significantly smaller than the currently
available toolboxes, as we will show in Section 2.4. Secondly, because the model equa-
tions given by (2.10) and (2.12) have been solved directly, without the use of any other
software or MATLAB toolboxes, the developed battery simulation toolbox does not re-
quire installing any other toolboxes. This is an advantage over the battery simulation
toolbox presented in [23], which, to the authors’ knowledge, is the only other published
toolbox that solves the DFN model equations implemented in MATLAB, where SUNDI-
ALS [38] and CasADi [39] are used to solve the model equations. Finally, for the same
reason as given in the previous point, i.e., that the model equations are solved directly
without any other toolboxes, the MATLAB code is fairly easily translatable into C-code,
which can either be made into an executable for even faster simulation, or can be used
to implement the model on an embedded system, which are generally programmed in C.
Note that while we have not considered a thermal model in this chapter, a lumped ther-
mal model, as described in [40], has been implemented in the battery simulation tool-
box. The TOOlbox for FAst Battery simulation (TOOFAB) is freely available for download
at: https://github.com/Zuan-Khalik/TOOFAB.

TOOFAB can be interfaced with the DFN function defined as

Table 2.1: Arguments of the DFN function.

Argument Type Comment
out struct Contains all the output variables, such as the output voltage, the con-

centrations and the potentials.
input_current scalar/ ar-

ray/ func-
tion han-
dle

Contains information about the current profile. This field can be pro-
vided either as a scalar representing the desired applied current from
time 0 to final_time, an array which contains the current levels at each
specified sample time, or as a function which takes the output voltage,
current, concentration and potentials, and the parameters as input and
mainly provides the current as output. The latter form is especially use-
ful when the battery is desired to be controlled in closed-loop. Example
functions for input_current are provided with the toolbox.

final_time scalar Specifies the final simulation time.
init_cond scalar/

struct
Specifies the initial condition, which can be either an initial state-of-
charge, as a value between 0 and 1, an initial voltage, or a MATLAB
struct where the initial condition for a non-steady-state cs , ce , and T
can be specified. Further details on how init_cond can be specified
can be found in the documentation of the toolbox.

param struct Can be used to change user-configurable parameters, such as all the
model parameters, and simulation parameters, e.g., the temporal and
spatial grid discretization variables. Note that this field is optional, and
a default set of parameters is already contained in the DFN function.
Parameter files containing the parameters of [23] and [24] are also in-
cluded with the toolbox.

https://github.com/Zuan-Khalik/TOOFAB
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out = DFN(input_current, final_time, init_cond, param),

where the definition of the input and output arguments can be found in Table 2.1. The
scripts required to reproduce the results shown in the simulation study section below
are included with the toolbox. Using the configurable parameters, the toolbox allows
the user to easily apply any of Simplifications [S1]-[S3], as well as varying the coarse-
ness of the spatial and temporal discretization. This allows in making a desired trade-off
between model accuracy and computation time. Several example scripts are provided
with the toolbox to show how the various functions and features can be used. A more
detailed user guide is also supplemented with the toolbox. In the next section, amongst
other results, we will show the impact of Simplifications [S1]-[S3] to demonstrate how
this trade-off can be made effectively.

2.4. SIMULATION STUDY
In this section, we will study the performance and accuracy of the CDFN model de-
scribed in Section 2.2.1, and its simplified versions. Specifically, we will first study the
impact of Simplifications [S1]-[S3] made in Section 2.2.3 on the accuracy and compu-
tational speed compared to the CDFN model. Then, the impact of discretization of
the DFN model on model accuracy and computation time is studied. This is followed
by a comparison of the numerical methods presented in [23] and [6] with the numer-
ical method described in Section 2.3. This comparison will also serve as a validation
of the model implementation with the implementation of [23], which in turn has been
validated against a DFN model implemented in COMSOL [37]. Finally, based on the
observations of the impact of simplifications and discretization on accuracy and com-
putation speed, we will define several simplified DFN (SDFN) models and SPMs, and
compare these with the CDFN model in terms of model accuracy and computational
performance.

The simulation results have been obtained using MATLAB R2020b on a desktop PC
with a 6-core 3.6-GHz processor and a memory size of 16 GB. Furthermore, unless oth-
erwise stated, the computation times shown will be only the time it takes to compute

Table 2.2: Functions for the concentration-dependent parameters used in the high-power (HP) and high-
energy (HE) parameter sets.

HP

κ(a) 15.8×10−4ce exp(−0.85(ce /1000)1.4)

D(b)
e 0.134×10−8.43−54/(T−229−5(ce /1000))−0.22(ce /1000)

ν(b) −(0.6−0.24( ce
1000 )0.5+0.98(1−0.0052(T −294))( ce

1000 )1.5)

D(d)
s,p 55782×10−20.26+534.9(s−0.5)8+2.263(s−0.5)2

HE

κ(c) 0.0413+0.5 ce
1000 −0.47( ce

1000)2+0.15( ce
1000)3−0.016( ce

1000)4

D(b)
e 0.000233×10−8.43−54/(T−229−5(ce /1000))−0.22(ce /1000)

ν(b) −(0.6−0.24( ce
1000 )0.5+0.98(1−0.0052(T −294))( ce

1000 )1.5)

D(d)
s,p 1315383×10−20.26+534.9(s−0.5)8+2.263(s−0.5)2

(a)Obtained from [31],(b)Adapted from [15], (c)Obtained from [23],
(d)Approximated and adapted from [18], see Fig. 2.2.
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the solutions of (2.17), which includes the computation of F and J in (2.17). The sim-
ulation studies will be done using two different sets of parameters, obtained from [24]
and [23]. Interestingly, the parameter set from [24] has been parametrized with a high-
power (HP) cell (unspecified battery chemistry), while the parameter set from [23] has
been parameterized with a high-energy (HE) cell (LiC6 negative electrode and LiCoO2

positive electrode chemistry). Since the original parameter sets from [24] and [23] do
not consider all concentration-dependent parameters, i.e. κ, De , ν, Ds,p , we have ex-
tended the respective parameter sets with the missing concentration-dependent param-
eters. The functions used for the concentration-dependent parameters are summarized
in Table 2.2. The time-step size has been chosen as δt = 1s in all the simulation studies,
and, the tolerance to terminate the Newton’s method has been chosen, unless otherwise
stated, as, 2× 10−3 and 10−2, for the HP cell and HE cell, respectively, as these values
were found to strike a good trade-off between accuracy and computation time. Further-
more, all the reported computation times in this section have been obtained from an
average of 10 repetitions. Some striking differences between the two parameter sets will
be observed below.

2.4.1. IMPACT OF MODEL SIMPLIFICATIONS
In order to investigate the impact of Simplifications [S1]-[S3] described in Section 2.2.3
on model accuracy and computational speed, the CDFN model has been compared to a
DFN model with varying simplifications for two parameter sets. The current profile used
to produce the simulation results can be seen in Fig. 2.4 and the grid parameters have
been chosen as nn = ns = np = nr,n = nr,p = 10. To express the difference in accuracy of
the various simplifications, we will use a normalized root-mean-square error (NRMSE),
defined as

NRMSE(p, q) =
√

1
N

∑N
k=1(pk −qk )2

maxk
{ 1

2 (pk +qk )
}−mink

{ 1
2 (pk +qk )

} , (2.18)

for some vectors p and q . For the comparison of the output voltage between different
models, p and q are of length N , while for the comparison of internal states, p and q are
stacked vectors of the vectors as defined in (2.11) over the sample times.

Table 2.3: The effect of Simplification [S1]-[S3] introduced in Section 2.2 on accuracy for the high-power (HP)
[24] and high-energy (HE) [23] parameter sets.

NRMSE [10−3] V φe ce c̄s jn
HP HE HP HE HP HE HP HE HP HE

Full model - - - - - - - - - -
[S1] 0.0019 4.0 0.019 2.9 0.0094 1.1 0.0022 0.73 0.17 3.11
[S2-I]-all 0.059 0.041 0.036 0.044 0.017 0.069 0.026 0.014 0.24 0.042
[S2-II]-κ 0.0056 3.8 0.30 6.1 0.020 3.1 0.017 3.3 0.075 1.2
[S2-II]-De 0.0068 1.0 0.33 1.5 0.58 12 0.020 0.94 0.064 0.36
[S2-II]-ν 0.0093 1.1 0.46 1.7 0.027 0.72 0.027 1.1 0.19 0.40
[S2-II]-Ds,p 16 7.6 0.27 4.6 0.14 2.3 6.9 1.9 0.74 3.8
[S2-II]-all 17 9.0 1.2 10 0.62 10 6.9 5.3 0.74 4.2
[S3] ∗ 1.7 ∗ 1.3 ∗ 0.36 ∗ 1.1 ∗ 0.94
∗Simulation not converged.
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Figure 2.4: Visualization of the errors made using Simplifications S1 and S2-II with the high-energy parameter
set [23].

In Table 2.3 the NRMSE of various quantities of the full and simplified models are
shown for the HP and HE parameter sets. We can first observe that the errors made due
to applying Simplification [S2-I] are negligibly small for both parameter sets. We can
further observe that, generally, the errors made due to simplifications are smaller with
the HP parameter set than the HE parameter set. This can be explained by the fact that
the current density levels in the HP cell are much smaller than in the HE cell, which
in turn leads to smaller over-potentials, and therefore smaller concentration gradients,
particularly in the electrolyte. Simplification [S1], therefore leads to very small errors
in the HP case, while in the HE case the errors are significantly larger. This can also be
seen in Fig. 2.4, where we can see that at some points the output voltage deviates some-
what from the CDFN model. It should be noted, however, that throughout most of the
simulation, the over-potentials do stay relatively small, which means that overall, Sim-
plification [S1] can still considered reasonable, even for the HE cell. Even when (small)
voltage differences do occur, e.g. at 3320s, the differences in the internal states are still
small.

The conductivity κ, diffusivity De and activity coefficient ν do not deviate signifi-
cantly from their nominal values in the HP cell, making the simplification that they are
constant (Simplification [S2-II]) quite reasonable. This small deviation can be explained
by the fact that the electrolyte concentration gradients are very small under the consid-
ered applied current profile. However, as the diffusion coefficient Ds in the electrodes is
two orders of magnitude smaller in the HP cell than in the HE cell, even with the smaller
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Table 2.4: The effect of Simplification [S1]-[S3] introduced in Section 2.2 on simulation time for the high-power
(HP) [24] and high-energy (HE) [23] parameter sets.

Sim. time [s]
HP HE

Full model 5.60 9.88
[S1] 5.52 6.41
[S2-I]-all 3.19 3.78
[S2-II]-κ 5.04 8.55
[S2-II]-De 4.84 8.35
[S2-II]-ν 5.62 9.71
[S2-II]-Ds,p 2.41 4.54
[S2-II]-all 0.59 1.29
[S3] ∗ 4.98
∗Simulation not converged.

over-potentials, there is still a large concentration gradient within the radius of the par-
ticles. This in turn makes the simplification for a constant Ds less reasonable in the HP
case. Finally, we see that Simplification [S3] is reasonable for the HE cell, while with the
HP cell, the errors made were so large, that the simulation would not converge. This can
again be explained by the fact that diffusion gradients in the radius of the electrodes in
the HP cell is much larger than the HE cell. This means that the diffusion dynamics in the
HP cell becomes more important, while in the HE cell, the two-parameter approxima-
tion is sufficient. These results show that making parameters concentration-dependent
does not always lead to a significant change in the model, since even the relatively (to
the other simplifications) large errors observed can still considered to be small as far as
usual modeling errors go.

When looking at the simulation times in Table 2.4, we can observe that in both the HE
cell and HP cell, simplifications on parameter Ds,p lead to the largest reduction in simu-
lation time. The reason for this is that Ds,p affects the matrix Acs , which is generally the
largest matrix, and takes substantially more computational effort to compute than the
other matrices. Note, however, that considering the simplifications individually does
not paint the full picture. When applying [S2-II] on all the considered concentration-
dependent parameters, an implementation can be obtained that is much more com-
putationally efficient than the full model. This is because with the proposed imple-
mentation presented in Section 2.3, computation of the matrices Acs , Aφe , Dφe , Ace

becomes the bottleneck in the computation of the solution. If these matrices can be
pre-computed, as is the case with Simplification [S2-II], then the computation of the so-
lution can be made much faster. However, we also observe that there is some sacrifice in
accuracy.

2.4.2. IMPACT OF DISCRETIZATION

In the discretization approach described in Section 2.3, there is freedom in selecting the
number of volume elements nn ,ns ,np of the FVM discretization and the number of el-
ements nr,n ,nr,p of the FDM discretization. Choosing these parameters large enough
leads to a better approximation of the diffusion dynamics in the battery. However, a
finer discretization also leads to an increased computation time. To analyze this trade-
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Figure 2.5: NRMSE of the output voltage and computation time for varying grid parameters for the high-power
(HP) [24] and the high-energy (HE) [23] parameter set.

off, a study has been done where the DFN model has been simulated with various sets
of grid parameters nn ,ns ,np ,nr,n ,nr,p . Specifically, we will take a DFN model with Sim-
plifications [S1] and [S2-II] applied. As a first case, a certain set of base grid parameters
nn ,ns ,np ,nr,n ,nr,p = 40 has been chosen as a baseline. Then, each grid parameter has
been varied (one at the time) between 1 and 40, for which the NRMSE of the output volt-
age (with respect to the simulation with the base grid parameters) and simulation time
have been computed.

In Fig. 2.5, the results of this first case study are shown. We see that, generally, in
both parameter sets, as the value of the grid parameter increases, the NRMSE decreases,
while computation time increases. However, some grid parameters seem to have a larger
impact on the RMS error and computation time than others. With the HP parameter set,
the grid parameters that relate to the solid-phase diffusion nr,n and nr,p have the largest
impact on the NRMSE, while the impact of nn ,ns ,np is at least an order of magnitude
smaller than that of nr,n and nr,p . This indicates that diffusion dynamics in the solid
phase largely dominates diffusion dynamics in the electrolyte phase, as, apparently, dif-
fusion along the length of the cell does not need a high discretization. Thus, for the HP
parameter set, to retain model accuracy and limit computation time, nr,n and nr,p need
to be relatively large, while nn ,ns ,np can be small. For the HE parameter set, the grid pa-
rameters related to the electrodes have the most impact on the NRMSE. Here, to retain
model accuracy and computation time, nn and np need to be chosen relatively large.
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Figure 2.6: Output voltage and various internal variables for varying degrees of model order corresponding to
Table. 2.5 for the high-power (HP) [24] and the high-energy (HE) [23] parameter set.

Furthermore, we can see that the effect of the grid parameters on the computation time
is similar for both parameter sets, which is to be expected.

In Fig. 2.6, the output voltage and normalized electrolyte concentration are shown,
where the considered DFN model has been simulated with varying degrees of model
order for the two parameter sets. The selected model orders are based on the analysis
above, to show the trade-off that can be made between model accuracy and compu-
tation time. The specific grid parameters of each model order, together with their re-
spective computation time and NRMSE, are shown in Table 2.5. The reported NRMSEs
have been computed in relation to the model with the base set of grid parameters. The
low-, medium-, and high-order models have been chosen such that the NRMSE is at
most 6×10−3, 3×10−3, and 10−3, respectively, and that there is a somewhat reasonable,

Table 2.5: Selected grid parameters of the varying degrees of model orders shown in Fig. 2.6.

Model
order

Grid param.∗ NRMSE
[10−3]

Comp.
time [s]

HP [24]
low [3,2,3,9,9] 5.3 0.12
medium [5,5,5,16,14] 2.1 0.14
high [10,5,10,20,20] 0.97 0.20

HE [23]
low [9,2,12,3,3] 5.7 0.19
medium [12,8,15,3,3] 3.0 0.23
high [22,10,23,3,7] 1.0 0.44

∗The order of the grid parameters is [nn ,ns ,np ,nr,n ,nr,p ].
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Figure 2.7: Comparison of output voltage and several internal variables between various model implementa-
tions.

good, and very good agreement of the internal states with the baseline model, respec-
tively. We observe that output voltage can be modeled well with a relatively coarse dis-
cretization over the cell length, especially in the HP case. However, in order to model the
internal states well, both in the HP and HE case, nn ,ns ,np are important, as they relate
to diffusion across the cell.

2.4.3. COMPARISON OF NUMERICAL METHODS

In order to validate the model implementation presented in Section 2.3, the proposed
numerical method of this chapter will be compared to the numerical methods proposed
in [23] and [6]. The numerical method of [23] in turn has been validated against a DFN
model validated in COMSOL [37]. To ensure that the model equations are the same in
all cases, the parameter set used in this chapter has been adapted exactly to that used in
[23] under isothermal conditions. This amounts to choosing ν= 0, and applying [S2-II]
on the parameters De and Ds,p . Thus, κ is the only remaining concentration-dependent
parameter. The results for the numerical method of [23] have been obtained using the LI-
ONSIMBA toolbox presented in the aforementioned paper, while the numerical method
of [6] has been implemented according to the description of the method, with the same
discretization as presented in this chapter, in order to obtain the respective results. Since
the chosen tolerances to terminate the algorithms can have a significant effect on com-
putation times, to ensure a fair comparison, the tolerances for the methods have been
chosen such that for each method, the NRMSEs of the considered state variables in Ta-
ble 2.3 between the model with a tolerance of 10−6 and the model with a largest possible
chosen tolerance do not exceed 10−4. From this requirement, the tolerances in LION-
SIMBA [23] have been set to 2×10−5, the tolerance in the method of [6] has been set to
0.009, and the tolerance of the proposed method has been set to 0.03.
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A simulation of the DFN model using the various numerical methods with the cur-
rent profile that can be seen in Fig. 2.4 is shown in Fig. 2.7. We observe that both in the
output voltage and internal variables, the results are visually identical. The computa-
tion times and NRMSEs for the results shown in Fig. 2.7 can be seen in Table 2.6. The
total computation time represents the total time taken to simulate the model, while the
computation time of the solutions only accounts for the actual computations required
to compute the solution itself, without overhead in computing additional variables or
pre-computation of matrices. From Table 2.6, we can first observe that in accordance to
our earlier observation of Fig. 2.7, the NRMSE values are sufficiently small to consider
the numerical methods to be equivalent. The computation times, however, vary signif-
icantly between the different numerical methods, in particular when the total compu-
tation time is considered, where the computation time of the method proposed in this
chapter is almost 400 times smaller than the computation time of the method of [23].
However, comparing this to the computation time of the solutions, we observe that, ap-
parently, there is a large amount of overhead in the LIONSIMBA toolbox. Even so, the
method proposed in this chapter is over 50 times faster than the method of [23] and over
45 times faster than the method of [6]. It should be noted that the method of [23] uses a
variable-time-step solver, which becomes especially slow when dynamic current profiles
are applied, while in the method of this chapter the time-step size is constant (set to 1s).
However, we report that with constant currents, i.e., the first 1600s of the applied current
profile shown in Fig. 2.4, it takes 1.4s and 0.63s to compute the solution with the method
of [23] and the method proposed in this chapter, respectively. Thus, even with constant
current profiles, the method proposed in this chapter is still faster than the method of
[23]. We should further note that as a consequence of having a fixed-time-step solver,
discretization errors can be larger than when using a variable-time-step solver, partic-
ularly when simulating over a very large time frame. However, as can also be observed
from the results in Table 2.6, in the considered simulations, the discretization errors were
not significantly large.

2.4.4. COMPARISON OF MODELS
With the numerical method proposed in this chapter validated, and with the observa-
tions made in Section 2.4.1 and Section 2.4.2, a selection of SDFN models and SPMs
can be made and compared to the CDFN model to show how a general trade-off can
be made between accuracy and computational speed with the numerical method pro-
posed in this chapter. Based on the analysis of the trade-off that can be made between
model accuracy and computation time using Simplifications [S1]-[S3] and the choice
of grid parameters, for each parameter set, high-fidelity (HIFI) and low-fidelity (LOFI)

Table 2.6: Computation times and NRMSEs of various numerical methods for the results shown in Fig. 2.7.

Computation time [s] NRMSE [10−3]
Total Solutions Vt Internal states∗

LIONSIMBA [23] 1106 137.0 - -
Method of Xia et al. [6] 129.3 129.2 1.6 0.46
Proposed method 2.78 2.71 1.6 0.46
∗Taken as the mean value of the NRMSE values of φe , ce , c̄s , and η.
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models have been defined. The choices for the simplifications and grid parameters for
these models are shown in Table. 2.7. Here we note that since Simplification [S2-I] had a
negligible effect on the model accuracy, the CDFN model is considered with this simplifi-
cation applied. We further note that [S3] is not additionally applied for the LOFI models
in the HE case, since it does not lead to any decrease in computation time if used in
combination with [S2]-Ds,p . Similar to the SDFN models, HIFI and LOFI versions are
considered for the SPM, with the same choice of simplifications and grid parameters.
The so-called common DFN model is additionally included, to show how the considered
models compare to the DFN models typically found in literature, where usually either κ
and/or De are considered as concentration-dependent parameter, e.g. [23, 24, 37]. The
selected grid parameters for the common DFN model are based on those used in the
LIONSIMBA toolbox [23]. A first comparison of some of the models is made in Fig. 2.8,
where the discharge curves for the CDFN model, SDFN-HIFI model and SPM-HIFI are
shown under several C-rates for both of the parameter sets. With the HP cell, until 10C,
the SPM models have a good agreement with the CDFN model, while at 20C the agree-
ment becomes worse. The SDFN-HIFI model, on the other hand, has a good agreement
at all C-rates, except for some observed difference in the normalized electrolyte concen-
tration. This difference is mainly due to Simplification [S2-II]-De , since, in the HP case,
at very high C-rates the electrolyte concentration gradient becomes sufficiently large for
the effect of the concentration dependency to show. For the HE cell, we can observe
that now the SPM fails to represent the output voltage at all C-rates, while the effect on
the normalized concentration is somewhat less pronounced. In terms of output voltage
and ionic flux jn , the SDFN-HIFI model has still a very good agreement with the CDFN
model, while for similar reasons as in the HP case, some discrepancy can be observed in
the electrolyte concentration.

In Fig. 2.9, the selected models have been simulated with the current profile shown
in Fig. 2.4 for both parameter sets. Here we see again that the SPM agrees well with the
CDFN model, especially so the SPM-HIFI model, since the solid-phase diffusion coef-
ficient is still varying with solid-phase concentration. The Simplification [S2-II]-Ds,p ,
therefore, seems to have the largest effect on the perceived differences between the LOFI
models and the CDFN model. However, it should be noted that the errors are still small
in this case. When observing the results of the HE cell, we see that the errors made with

Table 2.7: Choice of simplifications and grid parameters of the presented models.

Simplifications∗ Grid param.∗∗

CDFN
HP [S2-I]-all [10,5,10,20,20]
HE [S2-I]-all [22,10,23,3,7]

Common
DFN

HP [S2-II]-ν,Ds,p [10,10,10,10,10]
HE [S2-II]-ν,Ds,p [10,10,10,10,10]

HIFI
models

HP [S1],[S2-II]-κ,De ,ν [5,5,5,16,14]
HE [S3],[S2-II]-κ,De ,ν [12,8,15,3,3]

LOFI
models

HP [S1],[S2-II]-all [3,2,3,9,9]
HE [S1],[S2-II]-all [9,2,12,3,3]

∗Unless stated otherwise, the concentration-dependent
parameters have been simplified according to [S2-I].
∗∗The order of the grid parameters is [nn ,ns ,np ,nr,n ,nr,p ].
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Figure 2.8: Comparison of discharge curves of various models under several C-rates for the high-power (HP)
[24] and high-energy (HE) [23] parameter sets. The internal variables are shown at the point corresponding to
80% of the discharged capacity.

the SPM are, again, considerably large, and show entirely different dynamics than the
CDFN model. The SDFN models, on the other hand, both show a good agreement with
the CDFN model.

The computation times and NRMSE values for the results shown in Fig. 2.9 can be
seen in Table 2.8. As expected, the computation times of the SPM are the lowest, since
the SPM has the lowest complexity, although with the HE parameter set, the NRMSE is
unacceptable. The SDFN models, on the other hand, have low errors in all cases for both
parameter sets, while the computation times are not much higher than the SPM. We can
also see how a trade-off can be made between accuracy and computation time, where,
e.g., in the HE case, the computation time of the SDFN-HIFI model is approximately

Table 2.8: Computation times and NRMSEs of the selected models for the results shown in Fig. 2.9.

Computation time [s] NRMSE Vt [10−3]
HP [24] HE [23] HP [24] HE [23]

CDFN 6.0 8.6 - -
Common DFN 1.6 2.3 17 9.3
SDFN-HIFI 1.4 1.8 0.99 5.6
SDFN-LOFI 0.40 0.72 17 10
SPM-HIFI 0.30 0.30 0.65 89
SPM-LOFI 0.13 0.14 17 88
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Figure 2.9: Comparison of output voltage and internal states of various models for (a) the high-power [24] and
(b) high-energy [23] parameter sets.

twice that of the SDFN-LOFI model, whereas the NRMSE is approximately twice as low.
However, the NRMSE values of the SDFN-LOFI model can actually still be considered to
be highly accurate, since the common DFN model has similar error for both parameter
sets. This suggests that most of the errors made originate from Simplification [S2-II]-
Ds,p , which, to the authors’ knowledge, is a parameter that has been considered to be
concentration-dependent only in [34]. Therefore, the usual considered concentration-
dependent parameters, i.e., κ and De can be assumed constant with practically no loss in
model accuracy of the output. These results show that with the proposed implementa-
tion, and by selectively making the proposed simplifications, as well as selectively choos-
ing the grid parameters, a model can be obtained that has a small impact on model ac-
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curacy, while the computation time can be drastically decreased, to achieve a simulation
time of over 5000 times faster than real-time.

2.5. CONCLUSIONS
In this chapter, we have studied the impact of several types of model simplifications on
the trade-off between model accuracy and computation time for the DFN model. Fur-
thermore, we have proposed a computationally efficient implementation of the CDFN
model that has led to a significant reduction in computation time. The proposed model
implementation has been developed into a freely downloadable toolbox, which has also
been presented in this chapter. In the validation of the model simplifications, we have
shown that linearizing the Butler-Volmer equation (2.5) (Simplification [S1]) and simpli-
fying concentration-dependent parameters to constant parameters (Simplification [S2-
II]) has a small effect on the model dynamics in most cases, while leading to a large de-
crease in computation time. Furthermore, we have studied the impact of the coarseness
of the spatial discretization, where we have shown that the discretization grid param-
eters can be chosen differently depending on the modeled cell characteristics to make
a good trade-off between model accuracy and computation time. To validate the pro-
posed numerical method, a comparison has been made with the numerical methods
of [23] and [6], where we have also shown that the numerical method proposed in this
chapter is substantially faster than the aforementioned numerical methods. Finally, we
have compared several simplified DFN models to the SPM and the CDFN model. Here
we have shown that with the proposed implementation, and by selectively making the
proposed simplifications, as well as selectively choosing the grid parameters, a model
can be obtained that has a small impact on model accuracy in terms of battery voltage
and internal states, while the computation time can be drastically decreased, to achieve
a simulation time of over 5000 times faster than real-time.
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3
PARAMETER ESTIMATION OF THE

DOYLE-FULLER-NEWMAN MODEL

Besides the computational complexity of electrochemistry-based models, another chal-
lenge in using electrochemistry-based battery models for aging-aware charging is uniquely
determining all model parameters. This chapter proposes a model parameterization ap-
proach of the Doyle-Fuller-Newman (DFN) model, by first reparameterizing the DFN model
through normalization and grouping, followed by a sensitivity analysis and a parameter
estimation procedure. In the parameter estimation procedure, we show the influence of
the number of estimated parameters, as well as the influence of the data length of the
identification data, on the obtained model accuracy (in terms of the output). Addition-
ally, the model with parameters obtained using the proposed parameterization approach
is compared to a model whose parameters have been obtained using cell teardown. Fi-
nally, the consistency and accuracy of the parameter estimation procedure is analyzed by
applying the estimation routine to a synthetic cell, represented by a DFN model with ran-
domly chosen (within specific and realistic intervals) parameters. The results of this anal-
ysis show that the parameter estimation approach using current/voltage data can lead to
a significantly better output accuracy, while it might not lead to physically meaningful
parameters. This motivates the need for an approach that combines both and where cell
tear-down can assist the parameter estimation using current/voltage data in achieving
physically meaningful parameters.

This chapter is based on Publication P.1.
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3.1. INTRODUCTION
One of the goals of this thesis is to investigate the use of electrochemistry-based models
for aging-aware charging. In the previous chapter, we have addressed the computational
complexity of the Doyle-Fuller-Newman (DFN) model, which is a popular electrochemistry-
based battery model [1]. However, as stated in Chapter 1, another challenge in the use
of electrochemistry-based models is uniquely identifying all the model parameters. In
the remaining part of this introduction, we will summarize the methods that are used
to determine the parameters of the DFN model, which will lead to the problem for-
mulation of this chapter. For a more complete overview of parameter estimation for
electrochemistry-based models, we refer the reader to Chapter 1.

Generally, the DFN model parameters can be determined in several ways. One way
is to determine several parameters based on information provided by the cell manu-
facturers, who know the material properties that have been chosen during cell design.
However, the manufacturer often does not have all the parameter values or might not
want to disclose them. Another way is to measure the parameters by cell teardown and
experimental testing [2–4]. Such methods generally involve costly equipment, and it is
sometimes not allowed to tear down a cell by the cell manufacturer. Finally, parame-
ters can be determined through parameter estimation using input-output data [5–10].
In these methods, some, or all, of the parameters are estimated based on optimization
of the model predictions to input/output measurements (i.e., external current/voltage
measurements). Generally, two approaches are taken in the estimation of the parame-
ters based on input/output measurements. One approach is to estimate some (or all) of
the parameters simultaneously based on measured input/output data [5, 6, 8, 10]. Since
the identifiability of the DFN model is poor [6], a sensitivity analysis can be done to de-
termine the parameters to which the model output is most sensitive, in order to select a
smaller set of parameters for estimation [5]. The other approach is to design experiments
specifically in an attempt to isolate the effects of parameters in the output [7, 9, 11]. Here,
the parameters are grouped based on their effect to the output, after which the groups
of parameters are estimated separately using their respectively designed input current.
However, often, there is no justification given for this approach [7, 11], or the approach
is justified with the intuition that identifying too many parameters simultaneously may
lead to unexpected uncertainty and errors [9]. However, this intuition has not yet been
verified.

In this chapter, we propose a model parameterization approach of the DFN model,
by first reparameterizing the DFN model through normalization and grouping, followed
by a sensitivity analysis of [12] that will show that some parameters have only a limited
influence on the input-output behavior, and a parameter estimation procedure. The
sensitivity analyis is similar to the approach taken in [5], in which the procedure of [12]
is applied to a DFN model, but in which the parameters have not been grouped and nor-
malized. The normalization and grouping procedure is similar to the approach taken in
[13, 14], in which no sensitivity analysis has been done. For the model parameteriza-
tion, two cases are considered: one where the individual electrode potentials have been
characterized, for which we have one set of experimental data available for parameteri-
zation, and one where only the electro-motive force (EMF)/open-circuit potential (OCP)
measurements of the complete cell are provided, but for which we have 3 experimental
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data sets available. In the parameter estimation routine, we will study the influence of
the number of estimation parameters on the obtained model accuracy for both cases,
as well as the influence of data length of identification data on accuracy. Finally, we will
study the consistency and accuracy of the parameter estimation routine by analyzing
the parameter estimation routine for a so-called synthetic cell, which is represented by a
DFN model with a randomly chosen (within specific and realistic intervals) set of param-
eters. This will show how consistently and accurately the parameters of the DFN model
can be estimated, and how far the resulting internal states deviate from the true internal
states. Through introducing additional model equations on the synthetic cell, this study
will also show the impact of modeling errors on the meaningfulness of the estimated
model parameters and internal states.

The remainder of this chapter is organized as follows. In Section 3.2, the DFN model
is formulated and the reparameterization procedure is described. In Section 3.3, the
model parameterization approach to identify the parameters of the reparameterized
model is explained. In Section 3.4, the results for the model parametrization approach
are presented, i.e., the sensitivity analysis and the parameter estimation results are ex-
plained and discussed. Finally, conclusions are drawn in Section 3.5.

3.2. BATTERY MODELING
The objective of this chapter is to parameterize the Doyle-Fuller-Newman (DFN) model
using measured voltage and current data. This section first presents the DFN model,
including its parameters and, subsequently, proposes to reparameterize the model to
reduce the number of unknown parameters using an approach similar to that proposed
in [13].

3.2.1. DOYLE-FULLER-NEWMAN MODEL EQUATIONS

The DFN model is a widely used electrochemistry-based model introduced in [1]. Fig.
4.1 illustrates the functionality of the model schematically for a Li-ion cell. The DFN
model is often referred to as a pseudo-two-dimensional model, since the model de-
scribes concentrations and potentials in two dimensions, namely in a radial direction
r along the radius of the particle, and in the x dimension, along the thickness of the
electrode stack. In the x dimension, the cell is divided into three regions, namely the
negative electrode, the separator, and the positive electrode. The reader is referred to
[15] for a detailed description of the DFN model, and the underlying assumptions made.

The original model equations, i.e., before reparameterization, are based on the for-
mulation given in Chapter 2, and references therein. These equations have been sum-
marized in Table 3.1, given by (3.1)-(3.6). For compactness of notation, where possi-
ble, the time and space dependency of the variables have been left out of the equations.
The symbols used in the original DFN model equations together with their respective
descriptions are given in Table 3.2. Note that U in (3.5d) denotes the equilibrium po-
tential of the electrode, which can be given by a pre-defined function typically of the
solid-phase concentration at the solid-electrolyte interface (cs,e (x, t ) = cs (Rs , x, t )). Fur-
ther note that there are a few small differences with the formulation of the DFN model
in Chapter 2. Firstly, in Chapter 2, we did not consider a film resistance R f which now
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Table 3.1: Model equations of the original DFN model1.

Solid-phase Li-ion concentration ∂cs
∂t = Ds

r 2
∂
∂r (r 2 ∂cs

∂r ) (3.1a)

Boundary Condition
∂cs
∂r |r=0=0, −Ds

∂cs
∂r |r=Rs= jn (3.1b)

Electrolyte-phase Li-ion concentration εe
∂ce
∂t = ∂

∂x (Deε
p
e
∂ce
∂x )+ 3εs (1−t 0+)

Rs
jn (3.2a)

Boundary condition
∂ce
∂x |x=0 = ∂ce

∂x |x=L = 0 (3.2b)

Solid-phase potential ∂
∂x (σεs

∂φs
∂x ) = 3εs F

Rs
jn (3.3a)

Boundary condition
σεs

∂φs
∂x |x=0= σεs

∂φs
∂x |x=L= Ia

A (3.3b)

∂φs
∂x |x=δn = ∂φs

∂x |x=L−δp =0 (3.3c)

Electrolyte-phase potential ∂
∂x

(
κε

p
e
∂φe
∂x +κεp

e (t 0+-1) 2RT
F

∂ lnce
∂x

)
=− 3εs F

Rs
jn (3.4a)

Boundary condition
∂φe
∂x |x=0 = ∂φe

∂x |x=L =φe |x=L = 0 (3.4b)

Butler-Volmer kinetics jn = i0
F

(
exp

(
αa F
RT η

)
−exp

(
−αc F

RT η
))

(3.5a)

Exchange current density i0 = k0cαa
e (cmax

s − cs,e )αa cαc
s,e (3.5b)

Particle surface concentration cs,e (x, t ) = cs (Rs , x, t ) (3.5c)

Electrode over-potential η=φs −φe −U −F R f jn (3.5d)

Terminal voltage V (t ) =φs (L, t )−φs (0, t )+ Rcc
A Ia (t ) (3.6)

Maximum reversible capacity constraint Q = AFδi εs,i cmax
s,i (si ,100%−si ,0%), i ∈ {n, p} (3.7)

appears in (3.5d). Secondly, in this chapter, we assume that the mean molar activity co-
efficient f± is a constant (which is a common assumption, see e.g., [1, 16–21]), and there-
fore it does not appear in (3.4a). The solid-phase variables (i.e., cs (r, x, t ),φs (x, t ), i0(x, t ),
U (x, t ), and η(x, t )) are defined only in the electrodes, i.e., for x ∈ [0,δn]∪[L−δp ,L], while
the electrolyte-phase variables (i.e., ce (x, t ) and φe (x, t )), are defined over the whole
length of the cell, i.e., for x ∈ [0,L].

Over the three regions, the model parameters are defined as, e.g.,

εe (x) =


εe,n for x ∈ [0,δn],

εe,sep for x ∈ [δn ,L−δp ],

εe,p for x ∈ [L−δp ,L],

(3.8)

where the subscripts n, sep, and p refer to the negative electrode, separator, and positive

1Note that compared to P.1, corrections has been made in (3.4b) and (3.6).
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electrode, respectively, and the other parameters are defined similarly. Because the pa-
rameters that only define a property of the electrodes, e.g., Ds or σ, do not have a value
defined in the separator region, i.e., for x ∈ [δn ,L−δp ], the total number of parameters of
the DFN model as formulated in Table 3.1 amounts to 35. Note that depending on how
the DFN model is formulated, and what kind of assumptions are made, this number can
vary. For example, in Chapter 2 and most papers, e.g. [13, 22], either the particle surface
film resistance R f or the current-collector resistance Rcc are considered as a parameter

Table 3.2: List of symbols used in the original DFN model equations

Symbol Description Unit
Latin
A Active electrode area [m2]
ce Electrolyte-phase Li-ion concentration [mol/m3]
ce,a Average electrolyte concentration∗ [mol/m3]
cs Solid-phase Li-ion concentration [mol/m3]
cs,e Particle surface concentration [mol/m3]
cmax

s,n ,cmax
s,p Maximum solid-phase concentration∗ [mol/m3]

De Li-ion diffusion coefficient in electrolyte∗ [m2]
Ds,n ,Ds,p Solid-phase Li-ion diffusion coefficient∗ [m/s]
F Faraday’s constant [C/mol]
i0 Exchange current density [A/m2]
Ia Applied current [A]
jn Pore wall flux of Li-ions [mol/m2/s]
k0,n ,k0,p Kinetic constant∗ ∗∗
L Cell thickness∗ [m]
pn , psep, pp Bruggeman porosity exponent∗ [−]
Q Maximum reversible cell capacity [C]
r Radial position across a spherical particle [m]
R Universal gas constant [J/mol/K]
Rcc Current collector contact resistance∗ [Ωm2]
R f ,n ,R f ,p Particle surface film resistance resistance∗ [Ωm2]
Rs,n ,Rs,p Radius of active material particles∗ [m]
sn,0%, sp,0% Stoichiometry at 0% state of charge∗ [−]
sn,100%, sp,100% Stoichiometry at 100% state of charge∗ [−]
t Time [s]
t 0+ Transference number∗ [−]
U Electrode equilibrium potential [V]
V Terminal voltage [V]
x Position across cell [m]
Greek
αa Anodic charge-transfer coefficient∗ [−]
αc Cathodic charge-transfer coefficient∗ [−]
δn ,δp Electrode thickness∗ [m]
εe,n ,εe,sep,εe,p Electrolyte volume fraction∗ [−]
εs,n ,εs,p Active-particles volume fraction∗ [−]
η Electrode over-potential [V]
κ Ionic conductivity∗ [S/m]
σn ,σp Electrical conductivity∗ [S/m]
φe Electrolyte-phase potential [V]
φs Solid-phase potential [V]
∗Considered parameters of the DFN model.
∗∗[C/s · (m/mol)ˆ(1+3αc )]
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Table 3.3: Model equations of the reparameterized DFN model2.

Solid-phase Li-ion concentration ∂ĉs
∂t = ( D̂s

r̂ 2 ) ∂
∂r̂ (r̂ 2 ∂ĉs

∂r̂ ) (3.9a)

Boundary Condition
∂ĉs
∂r̂ |r̂=0=0, −D̂s

∂ĉs
∂r̂ |r̂=1= ĵn (3.9b)

Electrolyte-phase Li-ion concentration ε̂e
∂ĉe
∂t = ∂

∂x̂ (D̂e p̂ ∂ĉe
∂x̂ )+ ĵn (3.10a)

Boundary condition
∂ĉe
∂x̂ |x̂=0 = ∂ĉe

∂x̂ |x̂=3 = 0 (3.10b)

Solid-phase potential ∂
∂x̂ (σ̂

∂φs
∂x̂ ) = ĵn (3.11a)

Boundary condition
σ̂
∂φs
∂x̂ |x̂=0= σ̂

∂φs
∂x̂ |x̂=3= Ia (3.11b)

∂φs
∂x̂ |x̂=1= ∂φs

∂x̂ |x̂=2=0 (3.11c)

Electrolyte-phase potential
∂
∂x̂

(
κ̂p̂

∂φe
∂x̂ +κ̂p̂(t 0+−1) 2RT

F
∂ ln ĉe
∂x̂

)
=− ĵn (3.12a)

Boundary condition
∂φe
∂x̂ |x̂=0 = ∂φe

∂x̂ |x̂=3 =φe |x̂=3 = 0 (3.12b)

Butler-Volmer kinetics ĵn = î0

(
exp

(
αa F
RT η

)
−exp

(
−(1−αa )F

RT η
))

(3.13a)

Exchange current density î0 = k̂0 ĉαa
e (ĉmax

s − ĉs,e )αa ĉ1−αa
s (3.13b)

Particle surface concentration ĉs,e (x, t ) = ĉs (1, x, t ) (3.13c)

Electrode over-potential η=φs −φe −U − R̂ f ĵn (3.13d)

Terminal voltage V (t ) =φs (3, t )−φs (0, t )+ R̂ccIa (t ) (3.14)

Maximum reversible capacity constraint 3Q = ĉmax
s,i (si ,100%−si ,0%), i ∈ {n, p} (3.15)

to model any additional voltage drop that is generally observed at the output. However,
as both these parameters can be linked to a physical phenomenon, in this chapter, we
consider both of these effects, i.e., film resistance and current-collector resistance, as
having separate parameters, in order to study their sensitivity to the output.

3.2.2. PARAMETER NORMALIZATION AND GROUPING

From the equations of the DFN model in Table 3.1, it can be observed that the variation
of certain parameters leads to the same physical effect. For example, by decreasing the
diffusion coefficient Ds and increasing the particle size Rs accordingly, the diffusion dy-
namics in the solid phase remain unchanged. Thus, intuitively speaking, this means that
one of these parameters is redundant, and the desired effect can instead be described
with a single parameter. Mathematically, this can be achieved by normalization of (3.1),
where the radial coordinate r is normalized through division by Rs . This results in a new

2Note that compared to P.1, corrections has been made in (3.12b) and (3.14).
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radial coordinate r̂ = r /Rs ∈ [0,1], after which the parameter Rs can be absorbed in a new
parameter D̂s = Ds /R2

s . Similarly, in the other equations (3.2)-(3.4), the coordinate x can
be redefined to

x̂ =


x
δn

for 0 ≤ x ≤ δn ,

1+ x−δn
L−δp−δn

for δn ≤ x ≤ L−δp ,

2+ x−L+δp

δp
for L−δp ≤ x ≤ L,

(3.16)

and the parameters can be grouped. This results in a new set of normalized equations
(3.9)-(3.14), shown in Table 3.3, with a new set of parameters resulting from the grouping
of the original set of parameters, shown in Table 3.4. In the process, some of the variables
have also been redefined, i.e.,

ĵn = 3εs F Aδi
Rs

jn , ĉe = ce

ce,a
,

ĉs

3
= εs F Aδi cs , (3.17)

where i = n for x ∈ [0,δn], i = p for x ∈ [L−δp ,L].
Note that, although the approach taken here is similar to the one in [13], there are

a few differences. The differences mainly originate from the formulation of the original
DFN model. In [13], the current collector resistance Rcc is not accounted for, and the dif-
fusion and conductivity coefficients are formulated as their effective counterparts, e.g.,

Table 3.4: Parameters of the reparameterized DFN model

Parameter Grouping Range Unit
Q Q N/A [C]
sn,0% sn,0% [0.002,0.04] [−]
sp,0% sp,0% [0.86,0.97] [−]
sn,100% sn,100% [0.75,0.89] [−]
sp,100% sp,100% [0.22,0.44] [−]
D̂s,n Ds,n /R2

s,n [0.00013,0.0016] [s−1]
D̂s,p Ds,p /R2

s,p [0.0004,0.63] [s−1]

D̂e De F Ace,a /(1− t 0+) [4.1 ·10−7,7.9 ·10−6]Q∗ [Cs−1]
p̂n ε

pn
e,n /δn [50,5700] [−]

p̂p ε
pp
e,p /δp [58,4100] [−]

p̂sep ε
psep
e,sep/(L-δn -δp) [3700,31000] [−]

t 0+ t 0+ [0.26,0.38] [−]
σ̂n σnεs,n A/δn [1.2,170]Q∗ [Ω−1]
σ̂p σpεs,p A/δp [0.011,8.3]Q∗ [Ω−1]
κ̂ κA [7 ·10−6,2 ·10−5]Q∗ [Ω−1]
R̂ f ,n R f ,n Rs,n /(3Aδnεs,n ) [20,330]/Q∗ [Ω]
R̂ f ,p R f ,p Rs,p /(3Aδpεs,p ) [0,0]/Q∗ [Ω]
R̂cc Rcc /A [32,170]/Q∗ [Ω]
αa αa [0.48,0.52] [−]
k̂0,n k0,n cαa

e,a /(Rs,n F ) [5.7 ·10−5,0.00078] ∗∗
k̂0,p k0,p cαa

e,a /(Rs,p F ) [7.9 ·10−5,0.001] ∗∗
ε̂e,n εe,n F Aδn ce,a /(1− t 0+) [0.017,0.76]Q∗ [C]
ε̂e,p εe,p F Aδp ce,a /(1− t 0+) [0.01,0.14]Q∗ [C]
ε̂e,sep εe,sepFA(L-δn -δp)ce,a /(1−t 0+) [0.0049,0.083]Q∗ [C]
∗Note that some parameter ranges are scaled with the cell capacity Q.
∗∗[s−1 · (m/mol)ˆ(3(1−2αa ))]
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Deff
e = Deε

p
e , from which Deff

e is chosen as the original model parameter. By treating the
non-effective diffusion and conductivity coefficients as the model parameters, and bas-
ing the reparameterization procedure on this parameter set, an effectively lower amount
of parameters is obtained here than in [13]. Furthermore, by considering the maximum
reversible capacity constraint (3.7), an additional parameter is reduced, as cmax

s,n and cmax
s,p

can be determined from the reversible capacity Q using this constraint. The total num-
ber of parameters of the reparameterized model is 24. While the total number of param-
eters of the reparameterized model presented in [13] is also 24, it has to be considered
that we have an additional parameter (Rcc), and in [13] a further assumption is made
that αa =αc = 0.5, which leads to reduction of an additional parameter. Thus, the repa-
rameterized model proposed here has effectively two parameters less.

3.3. MODEL PARAMETERIZATION APPROACH
This section describes a systematic parameterization approach to identify the parame-
ters of the reparameterized model. First, an equilibrium potential model, which is used
to identify the stoichiometric values and maximum concentrations, is described. Then
the steps to identify the remaining parameters are explained, which include defining
new ranges, the sensitivity analysis, and the parameter estimation procedure.

3.3.1. EQUILIBRIUM POTENTIAL MODEL
Besides the determination of the 24 parameters listed in Table 3.4, the equilibrium po-
tential curves Un and Up need to be characterized. The equilibrium potential curves give
the so-called EMF (or the OCP) of the battery as

UEMF(sc ) =Up (sp )−Un(sn), (3.18a)

where sc refers to the state of charge (SoC) of the cell, and sp and sn , refer to the stoi-
chiometry at the negative and positive electrode, respectively, defined as

si = ĉs
ĉmax

s,i
, (3.18b)

where i = n for x̂ ∈ [0,1], i = p for x̂ ∈ [2,3]. The electrodes of the battery generally have
a larger capacity than the reversible capacity of the cell, and therefore sn and sp gener-
ally do not cycle between 0 and 1. Instead, when the battery is empty, i.e., at 0% SoC
(sc = 0), sn and sp have a certain pre-defined value (related to the balancing of the cell)
of sn,0% and sp,0%, respectively. Similarly, at 100% SoC (sc = 1), sn and sp have a certain
pre-defined value of sn,100% and sp,100%, respectively. These parameters, together with
Un , Up , and the maximum reversible cell capacity Q comprise the equilibrium potential
model. Note that while the same EMF-SoC relation can be reached with any choice be-
tween 0 and 1 for the parameter values of sn,0%, sn,100%, sp,0%, sn,100%, these parameters
also affect the dynamics of the cell through the (ĉs,max − ĉs,e )αa term in (3.13b). There-
fore, these parameters should be considered in the parameter estimation routine, rather
than assuming their values from literature to complete the equilibrium potential model,
as done in, e.g., [5, 23].

Generally, to determine the equilibrium electrode potential curves of the cell, the
EMF of the cell needs to be determined as a function of SoC from input/output data.
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There are several techniques available to determine the EMF, where an overview can
be found in [24]. From these measurements, the maximum reversible battery capacity
Q can also be determined. However, in principle, the equilibrium potential curves of
the electrodes cannot be determined individually from input/output data, and different
techniques are required depending on whether a cell teardown can be performed or not.
We therefore consider the following two cases:

1. The electrode equilibrium potential curves cannot be determined through cell
teardown. In this case, the electrode equilibrium potential curves can be deter-
mined using (3.18a), by assuming the negative equilibrium potential Un from lit-
erature, from which Up can be determined, as done in e.g. [5, 23, 25]. Since the
negative electrode is generally the same or similar (usually a graphite-based com-
posite) across different types of battery chemistries, and the negative-electrode
equilibrium potential Un is relatively small compared to Up , we propose to take
Un from literature. In this approach, it is necessary to choose the values of sn,0%,
sn,100%, sp,0%, sn,100%, before Up can be determined.

2. The electrode equilibrium potentials can be measured through cell teardown. In
this case, the equilibrium potential curves are measured in relation to the sto-
ichiometry of the electrode over a sufficiently wide range of the stoichiometry.
Then, the stoichiometric values sn,0%, sn,100%, sp,0%, sn,100% are chosen such that
the difference between the measured Up −Un and the measured UEMF is mini-
mized in some way [2–4]. For further details on how the stoichiometric values are
chosen in this case, we refer to the aforementioned papers.

Note that in the first case, information on the chemistry of the electrode materials
is not required. If the chemistry of the electrode materials is known, but the electrode
equilibrium potentials cannot be measured through cell teardown, then it is possible
to determine an equilibrium potential model by taking the approach described for the
second case, by taking the equilibrium potential curves from a database or literature, as
done (or described) in, e.g., [7, 8, 11, 13, 26]. However, since the EMF can vary even be-
tween individual cells that were made in the same factory, the obtained EMF using this
method may not sufficiently describe the measured EMF of the considered cell, espe-
cially if the purpose is to estimate some or all of the remaining DFN model parameters
from input/output data. Deviations of the modeled EMF from the measured EMF can
significantly impact the identifiability of the model parameters, as also shown in [27].
Therefore, even if the chemistry of the electrode materials is known, it may still be prefer-
able to use the approach described in the first case, since in that approach it is ensured
that the modeled EMF coincides exactly with the measured EMF (by definition). Further-
more, we note that even if the electrode equilibrium potentials can be measured through
cell teardown, it may still be preferable to use the approach described in the first case,
since the electrode equilibrium potentials, and therefore the EMF, can also vary from cell
to cell of the exact same type. However, in this case the information resulting from cell
teardown is still useful, as the stoichiometric values found and the measured electrode
equilibrium potentials can be used for the approach described in the first case.

We should further note that the obtained Up using the approach described in the first
case often leads to a physically non-intuitive function for Up . Fig. 3.1 demonstrates this,
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Figure 3.1: Illustration of the correction of the calculated equilibrium potentials. Here, the measured equilib-
rium potentials are taken from [3], and the assumed negative electrode equilibrium potential curve is taken
from [2].

where the measured electrode equilibrium potentials from [3] are compared to the cal-
culated electrode equilibrium potentials. Here, the assumed Un has been obtained from
[2], from which Up is calculated from the measured EMF shown in Fig. 3.1 using the
method described in the first case above. We can observe that around 10% SoC towards
0% SoC, the calculated Up rises significantly, which is contrary to what would be physi-
cally intuitive, as is demonstrated by the measured Up . To correct for this, we replace the
values of Up from 0% to 10% SoC with a linear function, where the resulting corrected
Up is shown in Fig 3.1 with the dotted lines. Here, the slope is chosen as the mean of the
slope of the modeled Up curve between 10% and 40% SoC. Note that to ensure that the
modeled EMF still matches the measured EMF, Un must also be corrected, which can
be computed from the measured EMF and the corrected Up as Un = Up −UEMF. This
corrected Un is also shown in Fig. 3.1, where we can see that the corrected Un also more
closely matches the measured Un , compared to the initially assumed Un .

3.3.2. RANGES OF THE GROUPED PARAMETERS

After the parameters of the equilibrium potential model have been determined, the rest
of the parameters can be determined through a parameter estimation routine, similar to
what has been done in [5] for a model without normalized and grouped parameters. This
involves performing a sensitivity analysis, and estimating (some of the) parameters from
input/output data. The sensitivity analysis requires a range of values that the estimation
parameters can have in order to assess the sensitivity of each parameter. Furthermore,
the ranges can be used as bounds in the parameter estimation routine.

The ranges of the reparameterized model parameters are shown in Table 3.4. These
parameter ranges have been obtained by gathering a set of values for each of the parame-
ters from various papers, i.e., [2–4, 28–32], where largely actual measurements have been
done to obtain the parameter values (rather than using parameter estimation techniques
to determine the parameters). The batteries for which the parameter ranges apply are of
various chemical compositions, where the negative electrode chemistry generally con-



3.3. MODEL PARAMETERIZATION APPROACH

3

73

sists of graphite or silicon-doped graphite, and the chemical composition of the positive
electrode is a nickel-manganese-cobalt material in [3, 4, 30], LiMn2O4 in [28, 32], LiCoO2

in [29, 31], and LiMnCoO2 in [2]. Since the parameters given in these papers are for the
non-reformulated DFN model, the parameters need to be converted to the parameters
of the reformulated model, which can be done using Table 3.4. Note that in the compu-
tation of the reformulated DFN model parameter values, many of these parameters have
a grouping that contains any of the parameters A, L, εs,n , and εs,p , which are related to
the capacity of the cell. In order to account for this, the parameters that have any of the
capacity-related parameters in their grouping are scaled by the capacity of the cell, as
can be seen in Table 3.4. Further note that the range of R̂ f ,p is [0,0], since we could not
find any non-zero values for R̂ f ,p in the prior-mentioned literature that we have used to
determine the parameter ranges.

Within the given ranges, every parameter can be expressed on a linear or a logarith-
mic scale, i.e,

θi =βiθi + (1−βi )θi , (3.19a)

logθi =βi logθi + (1−βi ) logθi , (3.19b)

where βi ∈ β ∈ [0,1], in which β denotes the vector of normalized parameters,
θi ∈ θ denotes every parameter, in which θ denotes the vector of all parameters, and
θi , θi denotes the minimum and maximum value of the parameter, respectively. For pa-

rameters whose range is in the same order of magnitude, i.e., θi /θi ≤ 10, (3.19a) is used

and for parameters whose range is of a different order of magnitude, i.e., θi /θi > 10,
(3.19b) is used.

3.3.3. SENSITIVITY ANALYSIS OF THE GROUPED PARAMETERS
With the parameter ranges determined, a sensitivity analysis can be performed in order
to determine the sensitivity of the output to the variation of the parameters. The results
of the analysis can be used to select the appropriate (most sensitive) estimation parame-
ters, in order to avoid solving an ill-conditioned optimization problem in the parameter
estimation routine. The sensitivity analysis is done as described in [5], which in turn is
based on the work of [12], where a parameter sensitivity ranking is obtained by orthogo-
nalization of the sensitivity matrix of a model. Therefore, we will shortly summarize the
sensitivity analysis approach, and refer to [12] and [5] for a more detailed description.

If we define the model output V̂ as a nonlinear function g of the parameters θ(β),
input Ia , and initial conditions x0, i.e., V̂ = g (θ(β), Ia , x0), the sensitivity of the model
output V̂ to the parameters θ can be defined as

S(θ(β), Ia , x0) = ∂V̂

∂β
, (3.20)

where the gradient ∂V̂
∂β ∈ Rn×m , in which n is the number of time samples and m is the

number of parameters, is numerically approximated using a finite-difference method.
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A permutation matrix P ∈ Rm×m to determine the ranking of the sensitivity can be ob-
tained using the pivoted QR decomposition of S such that

SP =QR, (3.21)

where Q ∈ Rn×n is an orthogonal matrix, and R ∈ Rn×m is an upper-triangular matrix. If
Πinit = [1,2, ...,m] denotes the initial ordering of the parameters, the set of rank-ordered
parametersΠranked can be obtained throughΠranked =ΠinitP . Information on the magni-
tude of sensitivity Ms of the parameters is contained in the matrix R, and the magnitudes
are given by the absolute value of the values on the diagonal of R, i.e., Ms = |diag(R)|.
Note that the sensitivity matrix as defined in (3.20), and therefore the parameter rank-
ing Πranked, depend on the chosen input profile as well as the initial conditions. For the
purpose of selecting the appropriate estimation parameters, the input profile and initial
conditions can be chosen the same as in the parameter estimation routine.

3.3.4. ESTIMATING THE GROUPED PARAMETERS
After performing the sensitivity analysis and determining the ranking order, the selected
estimation parameters βs can be optimized to the model output by minimizing the sum
of the squared error between the experimental voltage Vexp and the predicted voltage V̂ ,
i.e.,

β̂s := argmin
β

n∑
i=1

(Vexp(ti )− V̂ (θ(β), ti ))2, (3.22)

where β̂s is the vector of optimized parameters, and ti denotes the time at which mea-
surement i ∈ {1, ...,n} is taken. This optimization problem can be solved using any non-
linear least-squares algorithm. The parameters that are not very sensitive will not be
optimized and are selected as the nominal value in their ranges, i.e., by setting βi = 0.5
in (3.19).

3.4. RESULTS AND VALIDATION
In this section, we will use the model parameterization approach presented in the pre-
vious section for two different cells. For one cell, only the EMF (or OCP) data of the
complete cell is provided (Cell 1, see [33]), but 3 sets of experimentally obtained current
and voltage measurements are available, and for the other cell, the equilibrium poten-
tial functions of the individual electrodes have been provided (Cell 2, see [3, 34]), but
for which we only have one set of current and voltage measurements available. The
battery chemistry of Cell 2 consists of a silicon-doped graphite negative electrode and
a nickel-manganese-cobalt positive electrode [3, 34], whereas the battery chemistry of
Cell 1 is unspecified. We will first show the parameter sensitivity ranking for the two cells,
and then investigate the influence of the number of estimation parameters and the data
length of identification data on obtained model accuracy. Furthermore, for Cell 2, a DFN
model has already been parameterized in [3], where some of the parameters have been
determined experimentally, and others have been assumed as values obtained from lit-
erature. We will compare the model accuracy obtained using the parameters from [3],
which were determined through cell teardown, and the model accuracy obtained using
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Figure 3.2: Experimental data from Cell 1 and Cell 2 used for model parameterization.

the model parameterization approach described in Section 3.3, and show that a signif-
icant improvement can be made by using the presented model parameterization ap-
proach. Finally, we will analyze the consistency and accuracy of the parameter estima-
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tion routine using a synthetic cell, represented by a DFN model of which its parameters
have been randomly selected (within specific and realistic intervals). The estimated pa-
rameters, and the resulting internal states will be compared to the true known param-
eters and states of the synthetic model when the model used for estimation is equal to
the true system, and when there are modeling errors present. This will show how con-
sistently and accurately the parameters of the DFN model can be estimated, and how
far the resulting internal states deviate from the true internal states. Note that in this
investigation of the physical meaningfulness of the parameters and internal states, mea-
surements cannot be used, since measured parameters and states are not available from
current-voltage measurements.

The experimental data sets used for the sensitivity analysis and parameter estimation
are shown in Fig. 3.2. For Cell 1, three different data sets were available, where one is
used for the estimation of the parameters, and the other two are used for validation of
the obtained parameters. However, for Cell 2, only one data set was available, which
is used for both estimation as well as validation, where only a part of the data is used
for estimation and the entire data is used for validation. Furthermore, for Cell 2, the
equilibrium potentials have been measured in [3], which are shown in Fig. 3.1, while for
Cell 1, the equilibrium potentials have been obtained from the EMF measurements, with
the method described in the first case in Section 3.3.1.

3.4.1. SENSITIVITY ANALYSIS
In order to show how to make a selection of parameters to be estimated in the parameter
estimation routine, the sensitivity analysis described in Section 3.3.3 has been applied.
The current input profiles for the sensitivity matrix S in (3.20) have been chosen as the
estimation profiles shown in Fig. 3.2. Note that, therefore, the model used for the sensi-
tivity analysis of both cells is the same, with the only differences being the current input
profiles and the EMFs, leading to different results of the sensitivity analysis. The param-
eter sensitivity rankingΠranked and the normalized magnitude of sensitivity (to the most
sensitive parameter) Ms /max(Ms ) of each parameter obtained for the two cells can be
seen in Fig. 3.3. Note that since we assume that the reversible capacity Q is measurable
and because the range of R̂ f ,p in Table 3.4 was determined to be [0,0], the remaining
number of parameters to be estimated is 22. We can observe that, while the normal-
ized magnitudes and the order of the ranking are slightly different, the parameters occur
roughly in the same order for both cells. Based on these rankings, for any desired num-
ber of estimation parameters, a selection of parameters can be made. These results have
also been used in the studies shown below.

3.4.2. INFLUENCE OF THE NUMBER OF ESTIMATED PARAMETERS ON THE

ACCURACY
With a choice of the number of estimation parameters, the parameter estimation routine
described in Section 3.3.4 has been done using the estimation current profiles shown in
Fig. 3.2 for both cells. The nonlinear least-squares problem formulated in (3.22) has been
solved using the lsqnonlin function in MATLAB with the trust-region-reflective algo-
rithm, in which the parameter bounds have been selected as those listed in Table 3.4,
and the initial parameter guesses have been obtained by setting βs = 0.5 for the estima-
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Figure 3.3: Normalized magnitude of sensitivity for Cell 1 and Cell 2, where the parameters are ranked by
decreasing magnitude of sensitivity.

tion parameters. For Cell 1, the model with the estimated parameters can be validated
using a different data set than the one used for estimation. Note that based on the results
shown in Fig. 3.4b, which will be further explained below, only 90% of Data 1 has been
used for estimation, while the entire length of Data 1 as well as the remaining data have
been used for validation. For Cell 2, as only one dataset was available, the first 70% of the
data has been used for estimation, and the entire data has been used for validation.

Fig. 3.4a shows the variation in root-mean-square error (RMSE) between the various
data of Fig. 3.2 and the model with a varying number of estimated parameters. Here,
the selected estimation parameters have been chosen in the order that corresponds to
the ranking shown in Fig. 3.3. For both cells, we can see that after about 12 parameters
the RMSE for all data sets does not significantly change. This seems to indicate that 12
estimation parameters is a fair selection in order to reach a small RMSE. For both cells,
the RMSE seems to fluctuate somewhat at some points, e.g., for Cell 2, the validation
RMSE with 14 estimation parameters is lower than with 15 estimation parameters, even
though the estimation RMSE does not show this fluctuation. This can be explained by
the fact that the parameter estimation problem is non-convex, and therefore there are
multiple local minima, as we will also show further below.



3

78 3. PARAMETER ESTIMATION OF THE DOYLE-FULLER-NEWMAN MODEL

5 10 15 20
0

10

20

5 10 15 20
0

10

20

30

(a)

20 40 60 80 100
3

4

5

6

20 40 60 80 100
0

10

20

(b)

Figure 3.4: RMSE between the measured data and simulated data for (a) a varying number of estimated param-
eters used in the estimation procedure and (b) a varying data length used in the estimation procedure, where
for Cell 1, the percentage data used from Data 1 has been varied.

3.4.3. INFLUENCE OF THE LENGTH OF ESTIMATION DATA

The lack of a second set of data for Cell 2 means that the estimated model can only be
validated using the original data used for estimation. Of course, validating a model with
the exact same data as the model has been estimated with, does not give much confi-
dence that this model will also accurately predict the output using a different current
profile. Therefore, one way is to only use a subset of the available data for estimation,
and then using the entire data for validation, as we have done in the previous subsection,
where 70% of the data was used for estimation. However, the choice for the length of the
estimation data is not obvious, as having less estimation data can lead to a worse esti-
mate, while having less validation data can lead to false conclusions. In order make this
apparent trade-off between a better model fit with more estimation data and a higher
confidence in validation with more validation data, in Fig. 3.4b, the RMSE of the vali-
dation for both cells is shown for a varying percentage of data used for estimation. Note
that for Cell 1, the percentage is varied for the estimation data, and validated for all avail-
able data. We can observe that for both cells, the RMSE varies considerably based on the
percentage of data used. It seems that for both cells, choosing at least around 70% of the
estimation data is required to obtain a good model fit, which leaves 30% of the data to
be validated over if there is only one data set available. Also notable is that for Cell 1, the
RMSE is relatively small for all data sets even when only using 10% of the data. This is in
contrast to Cell 2, where the obtained errors until using 65% of the data are much larger.
This could be caused by more unmodeled behavior showing up in the experimental volt-
age of Cell 2 than of Cell 1.

In the lower plot of Fig. 3.5, we can see a comparison of the errors obtained using
30% of the data, 65% of the data, and with the parameters from [3]. We can see that
when using 30% of the data for estimation (corresponding to the first 510 s), the errors
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Figure 3.5: Error between the measured voltage Vmeas and the simulated voltage Vsim for both cells and their
available data. For Cell 2, the error from using a DFN model with the parameters from [3] is also shown. The
parameters used for simulation for Cell 1 have been obtained from using 60% of Data 1 for simulation with 14
estimated parameters and the parameters used for simulation for Cell 2 have been obtained from using 30%
and 65% of the data for simulation with 14 estimated parameters.

are relatively small until 800 s, after which the error increases considerably again. When
using 65% of the data (corresponding to the 1105 s), the error remains small, for the en-
tire data. This could indicate that between 800 s and 1105 s there are some significantly
large unmodeled effects leading to large errors when less than 65% of the data is used.
Furthermore, we can see that the simulation using the parameters from [3] shows a clear
deviation from the experimental voltage, even larger than when using 30% of the data
for estimation. Thus, we can see that by estimating some of the parameters, rather than
relying on experiments and values from literature, a significantly more accurate model
output can be obtained. However, we may still question whether the internal states
represented by the model obtained from estimating the parameters are still physically
meaningful. This will be discussed in the remaining subsections below.

Furthermore in Fig. 3.4b, for Cell 1, we can see that with 100% of data used for esti-
mation, there seems to be a sharp rise in the RMSE of Data 2 and Data 3, whereas the
RMSE of Data 1 decreases considerably compared to using 90% of the estimation data.
This indicates that there is a considerable case of increased overfitting of the parameters
when using 100% of the estimation data. If we observe the upper plot in Fig. 3.5, we can
see that for Data 1 there are significantly larger errors at the beginning, between 0.2 and
0.25 SoC, which explains the large increase in RMSE seen from 90% length of estimation
data used in Fig. 3.4b. These observations show that it is crucial to study where the un-
modeled effects in the measured output occur the most, in order to avoid overfitting of
the parameters to this unmodeled behavior as much as possible.
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3.4.4. CONSISTENCY AND ACCURACY OF THE ESTIMATED PARAMETERS

The goal of parameter estimation is to find model parameters through fitting the mod-
eled output and the measured output. If the identifiability of the parameters is suffi-
ciently large, the estimated parameters should correspond to physically meaningful pa-
rameters. However, identifiability has been a key issue for the DFN model [6], which
means that not all parameters can be found reliably. Furthermore, the nonlinear nature
of the DFN model also means that there are multiple local minima, further complicating
the issue. Finally, due to modeling errors, it can occur that even when the (internal) dy-
namics of the actual system is actually closer to a particular DFN model, a larger error in
the validation of the terminal voltage is seen. Consequently, a smaller output validation
error from a particular DFN model does not necessarily imply a better representation of
the internal states of the system. In order to get an idea of how much these issues affect
the parameter estimation procedure, we can perform a Monte Carlo simulation, where
the parameter estimation procedure is done from several random initial conditions, and
study the obtained parameters. Specifically, for Cell 1, we have done the parameter es-
timation routine, with 22 estimation parameters and 90% of Data 1 used for estimation,
for 50 different random initial conditions of the parameter estimation routine.

The results of this study are shown in the upper plot of Fig. 3.6, where a boxplot repre-
sentation is used to show the obtained data for each of the parameters. We can see here
that it is also clear that most parameters can be estimated consistently. However, it also
seems that many of the estimated parameters are at the extremal values, e.g., parameter
6 (s100,n) and 8 (D̂s,n). This could be caused either by the unmodeled behavior in the ex-
perimental voltage, to which the parameters are being fit, or it could be that the ranges
chosen for the parameters are too small. Therefore, we have done the same study, but
this time with an increased range for the parameters, where the lower bound is found
by setting βi =−0.3 in (3.19) and the upper bound is found by setting βi = 1.3 in (3.19).
We can now see that, as could be expected, the variability of the estimated parameters
increases. The variability is especially more for the lower ranked parameters, which is
expected, as these were also found to be the least sensitive parameters according to the
sensitivity analysis done above. For example, parameter 6 (s100,n), which was consis-
tently estimated as β= 1, now varies between around 0 and 1.3 (where we should point
out that with β = 1.3, the parameter value is still physically meaningful, i.e., s100,n < 1),
although the median is still around β= 1. It could be somewhat unexpected that the pa-
rameter after extending the range also has estimated values that are below β = 1, since
with the original ranges it did not go belowβ= 1. However, because the parameters have
some dependency on each other, by extending the ranges, the number of combinations
of parameters that achieves a local minimum increases. This can explain why, for pa-
rameter 6 with the extended ranges, we get combinations within the original range that
would not show up with the original ranges in the upper plot of Fig. 3.6.

Of course, it could also be that the physically meaningful or "true" parameters of the
cell are in fact in the original ranges, but that the parameters have been fit so much to
the unmodeled behavior that they tend to go to the extremes of the ranges. In order
to investigate the impact of unmodeled behavior on the estimation of the parameters,
we have generated a synthetic cell, of which its parameters have been chosen randomly
(within the specified ranges). In this case, the estimation model is now exactly the same
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Figure 3.6: Boxplots showing the variability and accuracy of the parameter estimation routine for Cell 1 and
the synthetic cell. The parameter identifiers relate to the ranking shown in Fig. 3.3.

as the system that is to be estimated, which is considered to be the ideal scenario for
parameter estimation. With this modeled cell, we can do the same study as outlined
above (with the same input data used for simulation), where we start from 50 different
random initial conditions.

The results of this simulation study are shown in the third plot of Fig. 3.6. We can now
see that the variability of the parameters is considerably more than for Cell 1 in Fig. 3.6
(upper plot). This can be explained by the fact that for the synthetic cell, the values
of the parameters fall within their respective parameter ranges (as this is how the pa-
rameters have been selected), while with Cell 1, this is not guaranteed, where the "true"
parameter values can be out of their respectively chosen parameter ranges. Generally, as
we have seen from the discussion of Fig. 3.6, when one parameter shows a higher vari-
ability, it will also lead to a higher variability in the other parameters, since there is an
inter-dependency between the parameters. Therefore, when the value of a parameter is
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consistently at the edge of the range, i.e., its estimated values are always close to β = 0
or β = 1, as is the case for some parameters in the case of Cell 1, the other parameters
will show a smaller variation. We can also observe that especially for the first 10 param-
eters, the estimated parameters are close to the true parameters, with a relatively small
variability. Notably, parameter 5 (D̂s,pos) seems to be the most identifiable parameter,
since it has a very small variability and the estimated values are very close to the true
value. This implies that the model output is very sensitive to D̂s,pos, while at the same
time there is a low inter-dependency of D̂s,pos with the other parameters.

To see the effect of unmodeled behavior on the estimated parameters, we first add a
nonlinearity in D̂s,pos in the synthetic cell, since this parameter has a large effect on the
output. Specifically, we change D̂s,pos into a concentration-dependent parameter equal
to

D̂s,pos(sp ) = 5.705×10−4+8(sp−0.5)2
.

Note that the scaling 5.705 is chosen such that D̂s,pos((s100,p + s0,p )/2) is equal to the
originally chosen parameter value for D̂s,pos, since we would like to discount the effect
of a bias in the parameter as much as possible. We then also introduce an error in the
EMF, which translates into an error in Up , as

UEMF(sc ) = ŪEMF +0.003sin(4πsc ),

where ŪEMF is the original EMF. The various values in the modifications are chosen such
that the RMSE between the original model output and the modified model output after
parameter estimation is approximately 1.2 mV using the current profile of Data 1, which
is in the same range as the errors shown in the upper plot of Fig. 3.5. The results for these
modified models are shown in the bottom three plots in Fig. 3.6. We observe that when
only adding a nonlinearity in D̂s,pos, apart from parameters 1 and 8, the first 9 param-
eters are still estimated almost as well as the synthetic cell without any modifications.
However, when adding an error in Up , the estimates deviate significantly more from the
true values than when adding a nonlinearity in D̂s,pos, even though the added errors are
similar in magnitude.

This is further supported by Table 3.5, where we can see the median of the RMSE
between the estimated parameters and the true parameters. As a reference, the me-
dian RMS error (MRMSE) between random sets of parameters and the true parameters
is also shown. Here, we observe that the MRMSE of the parameters for the synthetic
cell is clearly smaller than the MRMSE of a random set of parameters. This indicates
that in the ideal circumstance, when there are no modeling errors, there is a correlation
between the closeness of the estimated parameters to the true parameters and the close-
ness of the resulting output to the true output. However, when adding modeling errors,
we can see that this correlation no longer holds. In fact, the MRMSE of the parameters
with both of the modifications is almost equal to the MRMSE using a random set of pa-
rameters. Interestingly, when computing the MRMSE using only the first 9 parameters,
we can see that with a nonlinearity in D̂s,pos, the MRMSE is still significantly lower than
the MRSE of random sets of parameters. This means that under this circumstance, with
a nonlinearity in D̂s,pos, the first 9 parameters can still be somewhat reliably estimated.
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With an error in EMF, the MRMSE of the parameters is still close to the MRMSE of ran-
dom sets of parameters. This suggests that EMF modeling errors affect the identifiability
of the parameters significantly more than neglecting the concentration-dependency of
parameters. Therefore, when designing experiments for the parameter estimation rou-
tine, it is critical that EMF modeling errors are minimized. This might seem obvious as
the battery voltage mostly depends on the EMF, see [35], but it demonstrates once more
that when designing experiments, it is critical that the EMF is accurately determined.

3.4.5. CONSISTENCY AND ACCURACY OF THE INTERNAL STATES

The results presented above show the consistency and accuracy of the estimated param-
eters. However, in some applications, such as fast charging of batteries, see e.g., [36–38],
and Chapter 4 of this thesis, only certain internal states are of interest, which are not
necessarily significantly affected by all the parameters of the DFN model. Generally, the
internal states of interest are the stoichiometry in the electrodes sn and sp , which ei-
ther are constrained directly, e.g., [38], or are constrained through particle stress models,
which depend on the stoichiometry of the electrodes, e.g., [36]. Side-reaction models are
also used for the purpose of fast charging, in e.g., [37] and Chapter 4 of this thesis, which
mainly depend on the potential drop between the solid and electrolyte phase φs −φe in
the negative electrode. Finally, constraints on electrolyte concentration ce are also used
in [38] for the purpose of fast charging.

In Fig. 3.7, the lower and upper bound of these aforementioned internal states from
simulations using the estimated parameters resulting from the study above in
Section 3.4.4 is shown. For the synthetic cell without modifications, we can see that the
true states are within the bounds for all internal states. This is no longer the case for the
synthetic cell with modifications, where we see that the estimated sp and ce in the posi-
tive electrode deviate substantially from their respective true states. This also shows that
identifiability of the parameters is in principle not a large issue when the desire is to ob-
tain parameters that lead to a good representation of the considered states. Rather, the
bigger issue in this case are modeling errors which lead to a biased estimate of the pa-
rameters, leading to estimated states that can be far from the true states. This would be
an issue when these estimated models are used in fast charging, especially when there
are constraints imposed on the electrolyte concentration. In the example of this syn-
thetic cell, the constraint would be activated conservatively, since the estimated positive
electrode ce varies much more in magnitude than the true ce . This would lead to a con-
servative use of the battery. On the other hand, it could equally occur that the estimated
states show a smaller variation in magnitude, which could lead to the scenario where for

Table 3.5: Median of the output RMS error (RMSE) and the median deviation from the true parameters of the
obtained estimated parameters from the various synthetic models. The notation βest,N indicates that first N
parameters have been used for the calculation of the RMSE.

Median of Synthetic
cell

Nonlinearity
in D̂s,pos

Error
in EMF

Random
parameters

RMSE Vest −Vtrue 0.13 1.19 1.17 36.2
RMSE βest,22 −βtrue 0.30 0.43 0.44 0.43
RMSE βest,9 −βtrue 0.14 0.22 0.34 0.38
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Figure 3.7: Upper and lower bounds of the resulting estimated states obtained using the estimated parameter
sets.

the true cell the constraints are violated.

The results shown in this section signify the importance of both the work done in
determining the parameters through cell teardown and the work done in determining
the parameters based on input/output measurements. As we have shown, using only
input/output measurements can lead to a model that does not sufficiently represent the
internal states of the cell. On the other hand, we have shown in Fig. 3.5 that by mea-
suring the parameters, the obtained model does not sufficiently represent the output of
the cell. Therefore, in determining a model that both sufficiently represents the inter-
nal states and the output, it is crucial that both these approaches in determining model
parameters are combined in some way. For example, as we have seen in Fig. 3.6, de-
termining tighter parameter ranges leads to more consistent parameter estimates, while
at the same time limits the deviation that the estimated parameters can have from the
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true parameters. Note that experimentally determining parameters, as done in e.g., [2]
and [3], is thus especially useful in defining tighter parameter ranges, which again shows
the usefulness of this approach in combination with parameter estimation based on in-
put/output measurements.

3.5. CONCLUSIONS
In this chapter, we have proposed a model parametrization approach of the DFN model,
by first reparameterizing the DFN model through normalization and grouping, followed
by a sensitivity analysis and a parameter estimation procedure. We have presented re-
sults for the parameterization of two cells using experimental data of current and volt-
age measurements, one where only the EMF (or OCP) measurements of the complete
cell have been provided, and one where the individual electrode potentials had been
been characterized. Here, we have studied the influence of the number of estimated pa-
rameters and the length of identification data on the obtained model accuracy. We have
found that for both cells, estimating 12 out of all 22 model parameters is sufficient to
obtain an accurate model (with respect to the output voltage), and we have found that
the length of the identification data should be carefully selected to avoid overfitting of
the parameters to modeling errors as much as possible. Finally, we have shown the con-
sistency and accuracy of the parameter estimation routine by analyzing the parameter
estimation routine for a synthetic cell. Through this analysis, we have demonstrated that
modeling errors, and in particular EMF modeling errors, can lead to a large bias and vari-
ability in the estimated parameters. We have further shown that this bias and variability
can be reduced by determining tighter parameter ranges, which can be done through cell
teardown. The results of this analysis motivate the need for an approach that combines
parameter estimation using current/voltage data and parameter estimation through cell
teardown. While the former approach can lead to a significantly better model accuracy,
it might lead to parameters that are not as physically meaningful as those resulting from
the latter approach.
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4
DOYLE-FULLER-NEWMAN MODEL

WITH CAPACITY-LOSS SIDE

REACTIONS FOR AGING-AWARE

CHARGING

In this chapter, we utilize a Doyle-Fuller-Newman (DFN) model including capacity-loss
side reactions to present a model-based design method for multi-stage charging protocols.
This design method allows for making a trade-off between charging time and battery ag-
ing in a more systematic way. The results are leveraged by a highly efficient implementa-
tion of the DFN model, that has a short computation time. We show that by obtaining the
Pareto front that describes the optimal trade-off between charging time and battery ag-
ing for a single cycle, the results can be extended to the lifetime of the battery. Finally, we
show that the negative-electrode over-potential is not always a good indicator for aging,
and that aging will occur even when the battery operates in over-potential regions that are
considered not to lead to aging.

This chapter is based on Publication P.4.
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4.1. INTRODUCTION
As mentioned in the introduction of this thesis, lithium-ion batteries are commonly
charged using a so-called constant-current-constant-voltage (CC-CV) protocol, see e.g.,
[1], where the battery is initially charged at a set constant current, followed by a phase
where the battery is kept at a constant voltage, until the current drops below a certain
value. This current limit and voltage limit are determined by a trade-off between a short
charging time and long cycle life. Indeed, besides the main chemical reactions, i.e., the
ones that store energy in the battery, several side reactions occur that eventually lead to
capacity fade and power fade [2]. Shortening the charging times without affecting the
longevity of the battery is of interest, particularly for electric vehicles, where the rela-
tively long charging times (when compared to refueling time of a conventional vehicle)
are considered to be problematic.

Optimizing the charging protocol to achieve short charging times and limited aging
has received ample attention in both the electrochemical as well as the control-systems
literature. A traditional approach has been to improve on the CC-CV protocol by intro-
ducing additional CC or CV stages, e.g., the CV-CC-CV protocol [3], or the CC-CC-CV
protocol [4]. However, the selection of current and voltage limits is not trivial. To find
the limits that provide a good trade-off between battery aging and charging time, many
experiments need to be performed, see e.g., [5–7].

A more recent trend lies in the use of model-based control to systematically make
the trade-off between battery aging and charging time. The models used in these papers
can vary from empirical models, such as the so-called equivalent-hydraulic model [8] or
equivalent-circuit model (ECM) [9] to electrochemistry-based models that describe the
main electrochemical reactions (i.e., the reactions that leads to storing energy) such as
the Doyle-Fuller-Newman (DFN) model [10], e.g. in [11–13] or the single-particle model
(SPM) [14], e.g. in [15, 16]. However, since these models do not describe the aging of the
battery, these papers rely on estimated states obtained through battery models, and de-
fine regions based on these states that should be avoided in order not to promote exces-
sive aging. These regions are incorporated as constraints in the optimization problem,
and show the potential of model-based control for aging-aware charging.

Of course, aging can never be prevented and the transition between excessive and
non-excessive aging is not necessarily a sharp transition. Therefore, alongside this ap-
proach, there has been attention into incorporating aging models into the optimization
problem. These aging models can be empirical as done in, e.g. [17], which are used
in conjunction with ECMs, or they can be electrochemical, such as the side-reaction
model introduced in [18, 19], which are incorporated into the DFN model. Some results
using such side-reaction models exist in literature, e.g. [20], which uses external tool-
boxes such as CasADi [21] for simulation. However, the use of such toolboxes does not
necessarily provide for a computationally efficient model, which restricts the prediction
horizon in the model-predictive control (MPC) approach taken in [20].

In this chapter, we present a model-based design method for multi-stage charging
protocols, where this leads to a trade-off between charging times and aging. The re-
sults are leveraged by the highly efficient implementation of the DFN model presented
in Chapter 2. This highly efficient model has low computation times, which allows this
model to be used in model-based optimization methods. To investigate the use of this
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Figure 4.1: DFN modeling approach for a Li-ion cell.

model for aging-aware charging, in this chapter, we will focus on multi-stage charging
protocols. Extensions to full model-based charging can be done based on the model
implementation presented in this chapter, and will be presented in the next chapters of
this thesis. Finally, we will show that the negative-electrode over-potential is not always
a good indicator for aging, and that an effective trade-off between charging time and
aging cannot be made by merely setting constraints on this over-potential.

The remainder of this chapter is as follows. In Section 4.2, the DFN model, and the
aging model are introduced. Furthermore, in Section 4.2, the implementation of this
aforementioned model is shortly described. In Section 4.3, the aging-aware charging
protocol design will be discussed. Finally, conclusions are drawn in Section 4.4.

4.2. BATTERY MODELING
In this section, we briefly formulate the DFN model, including the modeling of capacity-
loss side reactions. The model represents the side reactions, in which Li-ions are con-
sumed to form a so-called solid-electrolyte interface (SEI) layer at the negative electrode
[18]. Furthermore, we will formulate the equations that describe the aging model, which
is used to compute the capacity of an aged cell. Finally, we will briefly describe a com-
putationally efficient implementation of the DFN model considering this side reaction,
which is based on the approach taken in Chapter 2 of this thesis.

4.2.1. DOYLE-FULLER-NEWMAN MODEL WITH CAPACITY-LOSS SIDE RE-
ACTIONS

In this chapter, the DFN model will again be considered, and will be extended with a
side-reaction model, where this modeling approach is illustrated in Fig. 4.1. In the con-
sidered side-reaction model [18], the particles in the negative electrode have an SEI layer,
which is formed at the first charge of the battery. During the operation of the cell over its
lifetime, side reactions consume Li-ions which leads to a continuous growth of the SEI.
This consumption of Li-ions leads to capacity fade of the cell, while the build-up of the
SEI layer leads to power fade of the cell. In Table 4.1, we have shortly summarized the
governing equations of the DFN model considering side reactions. The formulation of
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Table 4.1: Equations of the DFN model with capacity-loss side reactions

Solid-phase Li-ion concentration ∂cs
∂t = Ds

r 2
∂
∂r (r 2 ∂cs

∂r ) (4.1a)

Boundary Condition
∂cs
∂r |r=0=0, −Ds

∂cs
∂r |r=Rs= j1 (4.1b)

Electrolyte-phase Li-ion concentration εe
∂ce
∂t = ∂

∂x (Deε
p
e
∂ce
∂x )+ 3εs (1−t 0+)

Rs
jn (4.2a)

Boundary condition
∂ce
∂x |x=0 = ∂ce

∂x |x=L = 0 (4.2b)

Solid-phase potential ∂
∂x (σεs

∂φs
∂x ) = 3εs F

Rs
jn (4.3a)

Boundary condition
σεs

∂φs
∂x |x=0= σεs

∂φs
∂x |x=L= Ia

A (4.3b)

∂φs
∂x |x=δn = ∂φs

∂x |x=L−δp =0 (4.3c)

Electrolyte-phase potential ∂
∂x

(
κε

p
e
∂φe
∂x +κεp

e (t 0+-1) 2RT
F

∂ lnce
∂x

)
=− 3εs F

Rs
jn (4.4a)

Boundary condition
∂φe
∂x |x=0 =φe |x=L = 0 (4.4b)

Net reaction flux jn = j1 + j2 (4.5)

Main reaction flux j1 = i0,1
F

(
exp

(
αa F
RT η1

)
−exp

(
−αc F

RT η1

))
(4.6a)

Exchange current density i0,1 = k0cαa
e (cmax

s − cs,e )αa cαc
s,e (4.6b)

Particle surface concentration cs,e (x, t ) = cs (Rs , x, t ) (4.6c)

Electrode over-potential η1 =φs −φe −U −F R f jn (4.6d)

Side reaction flux j2 =− i0,2

F
exp

(
− 2αc,2F

RT
η2

)
(4.7a)

Electrode over-potential η2 =φs −φe −U2 −F R f jn (4.7b)

Terminal voltage V (t ) =φs (L, t )−φs (0, t )+ Rcc
A Ia (t ) (4.8)

the DFN model is mostly based on the formulation given in Chapter 2, and the references
therein, while the side-reactions model is based on [18]. For compactness of notation,
where possible, the time and space dependency of the variables have been left out of the
equations. While the symbols used in Table 4.1 are mostly the same as those introduced
in the previous chapters, for the sake of convenience, all the symbols used in Table 4.1
have been summarized in Table 4.2. Note that U in (4.6d) denotes the equilibrium po-
tential of the electrode, which is a a pre-defined function that typically depends on the
solid-phase concentration at the solid-electrolyte interface (cs,e (x, t ) = cs (Rs , x, t )). Fur-
ther note that Ia > 0 indicates charging.

From Table 4.1, we can see a few key differences as a result of the addition of the
side-reaction model to the DFN model. Firstly, in (4.1b), in contrast to (3.1b) we can see
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Table 4.2: List of symbols used in the DFN model with capacity-loss side reactions

Symbol Description Unit
Latin
A Active electrode area [m2]
ce Electrolyte-phase Li-ion concentration [mol/m3]
ce,a Average electrolyte concentration [mol/m3]
cs Solid-phase Li-ion concentration [mol/m3]
cs,e Particle surface concentration [mol/m3]
cmax

s Maximum solid-phase concentration [mol/m3]
De Li-ion diffusion coefficient in electrolyte [m2]
Ds Solid-phase Li-ion diffusion coefficient [m/s]
F Faraday’s constant [C/mol]
i0,1 Exchange current density of the main reaction [A/m2]
i0,2 Exchange current density of the side reaction [A/m2]
Ia Applied current [A]
j1 Main reaction flux [mol/m2/s]
j2 Side reaction flux [mol/m2/s]
jn Net reaction flux [mol/m2/s]
k0 Kinetic constant ∗
L Cell thickness [m]
p Bruggeman porosity exponent [−]
r Radial position across a spherical particle [m]
R Universal gas constant [J/mol/K]
Rcc Current-collector contact resistance [Ωm2]
R f Particle surface film resistance [Ωm2]
Rs Radius of active material particles [m]
t Time [s]
t 0+ Transference number [−]
U Electrode equilibrium potential [V]
U2 Equilibrium potential of the side reaction [V]
V Terminal voltage [V]
x Position across cell [m]
Greek
αa Anodic charge-transfer coefficient [−]
αc Cathodic charge-transfer coefficient [−]
αc,2 Cathodic charge-transfer coefficient of the side reaction [−]
δn Negative electrode thickness [m]
δp Positive electrode thickness [m]
εe Electrolyte volume fraction [−]
εs Active-particles volume fraction [−]
η Electrode over-potential [V]
κ Ionic conductivity [S/m]
σ Electrical conductivity [S/m]
φe Electrolyte-phase potential [V]
φs Solid-phase potential [V]
∗[C/s · (m/mol)ˆ(1+3αc )]

that the boundary condition of the solid-phase Li-ion concentration equation is only
changed by the main reaction flux j1, since we no longer assume that there are no side
reactions, as we had done implicitly in Chapter 2 and Chapter 3. Secondly, in contrast to
Table 4.1, we can observe the addition of the equation describing the side-reaction flux
by a Tafel equation in (4.8), in which the exchange current density of the side reaction
i0,2 is assumed to be a constant. Note that we consider only SEI build-up in the negative
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electrode, and therefore in the separator and in the positive electrode j2 = 0.

4.2.2. AGING MODEL
In the considered aging model, power fade is described by an increase of the negative-
electrode film resistance, due to the build-up of the SEI layer, as follows

∂R f

∂t
=− Ṽ f

σ f
j2, (4.9)

with initial condition R f (x,0) = R f ,0, and where Ṽ f is the molar volume and σ f is the
conductivity of the SEI. The amount of charge lost due to loss of Li-ions as a result of
side reactions can be computed as [18]

dQl

d t
=−as AF

∫ δn

0
j2d x. (4.10)

The Li-ion loss does not directly result into loss of battery capacity [19]. To see this,
it should be noted that the total amount of charge stored in a fresh cell is given by

Qtot = sn,maxγn + sp,minγp = sn,minγn + sp,maxγp , (4.11a)

where γi = εs,iδi cmax
s,i AF , for i ∈ {n, p}, where n and p denote the values of the parame-

ters at the negative and postive electrode, respectively. Furthermore, sn and sp denote
the stoichiometric values at the negative and positive electrode, respectively, while the
subscripts min and max indicate the minimum and maximum values of sn and sp , re-
spectively, for a fresh cell. The stoichiometric values at 0% and 100% state of charge
(SoC) for an aged battery must satisfy

sn,0%γn + sp,0%γp =Qtot −Ql ,

sn,100%γn + sp,100%γp =Qtot −Ql . (4.11b)

Note that for a fresh cell, sn,0%, sn,100%, sp,0%, sp,100% correspond to
sn,min, sn,max, sp,max, sp,min, respectively. Furthermore, since 0% SoC and 100% SoC are
defined at specified voltages, the equilibrium potentials must satisfy

Up (sp,0%)−Un(sn,0%) =Vmin,

Up (sp,100%)−Un(sn,100%) =Vmax, (4.11c)

where Vmax = Up (sp,min) −Un(sn,max), and Vmin = Up (sp,max) −Un(sn,min). By solving
(4.11) , solutions for sn,0%, sn,100%, sp,0%, and sp,100% are obtained. These solutions can
be used to compute the degraded capacity of the cell Qbat, i.e.,

Qbat = (sn,100% − sn,0%)γn = (sp,0% − sp,100%)γp . (4.12)

How the aging reaction affects the battery capacity is illustrated in Fig. 4.2a. In this
figure, it can be seen that for an aged cell, the charge in the positive and negative elec-
trodes decreases as Li-ions are lost, which leads to a decrease in battery capacity. The
capacity drop of the battery, however, is not necessarily equal to the amount of Li-ions
consumed by the side reaction, as the side reaction also leads to a shift in the equilibrium
potential of the electrodes, as also illustrated in Fig. 4.2b.
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Figure 4.2: In (a), a schematic representation of the aging model is shown. In (b), a schematic representation of
the shifting of the equilibrium potential of the electrodes due to Li-ion loss is shown. The green dots represent
the fresh cell stoichiometric values and the red dots represent the resulting stoichiometric values of an aged
cell. The green arrows show how the stoichiometric values shift.

4.2.3. MODEL IMPLEMENTATION
The implementation of the DFN model described by (4.1a)-(4.8) is largely the same ap-
proach as taken in Chapter 2. After spatial and temporal discretization of the model, the
resulting set of algebraic equations (AEs) can be reduced to a much smaller set of AEs
through substitution of equations, which can then be solved using Newton’s method.
However, since the above model considers side reactions, we will shortly summarize the
implementation of the DFN model. For further details on the discretization of the model,
we refer the reader to [22], and for further details on the implementation approach we
refer the reader to Chapter 2 of this thesis.

First, after spatial and temporal discretization, the DFN model equations can be writ-
ten in the form

0 = Âcs cs (tk )+ B̂cs j1(tk )+cs (tk−1), (4.13a)

0 = Âce ce (tk )+ B̂ce jn(tk )+ce (tk−1), (4.13b)

0 = Aφsφs (tk )+Bφs jn(tk )+Cφs Ia(tk ), (4.13c)

0 = Aφeφe (tk )+Bφe jn(tk )+Dφe log(ce (tk )), (4.13d)

where tk ∈ δt k,k ∈N is the sample time, in which δt is the sampling time. Furthermore,
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Âcs = (δt Acs − Inr nnp ), B̂cs = δt Bcs , Âce = (δt Ace − Inx ), and B̂ce = δt Bce . In (4.13), jn(tk ) =
j1(tk )+ j2(tk ), where j1(tk ) and j2(tk ) are given by

j1 = diag

(
i0,1

F

)(
exp

(αaF

RT
η1

)
−exp

(
− αc F

RT
η1

))
, (4.14)

in which diag(v) denotes a diagonal matrix with the elements of vector v on the main
diagonal, and i0,1 is given by

i0,1 = k0cαa
e

(
cmax

s − c̄s
)αa c̄αc

s . (4.15)

Furthermore, in (4.14), η1 =φs − φ̄e −U(c̄s )−F R f jn , and

j2 =−diag

(
i0,2

F

)(
exp

(
− 2αc,2F

RT
η2

)
, (4.16)

where η2 = φs − φ̄e −U2 −F R f jn . Note that R f given by (4.9) varies through space and
time. However, since the dynamics of R f are very slow, for computational efficiency, it
can be pseudo-linearized such that

R f (x, tk ) = R f (x, tk−1)−δt
Ṽ f

σ f
j2(tk−1), (4.17)

To solve this set of AEs, similar to as done in Chapter 2, we can solve (4.13c) for jn , to
get

jn(tk ) =−B−1
φs

(
Aφsφs (tk )+Cφs Ia(tk )

)
. (4.18)

Then, by substituting (4.14) and (4.16) into (4.13a), (4.13b), (4.13d), and solving each of
the equations (4.13a), (4.13b), (4.13d) for cs , ce , φe , respectively, the resulting equations
can be substituted into (4.18), to arrive at a set of AEs of the form F (φs ) = 0. This result-
ing set of AEs can then be solved using Newton’s method.

4.3. AGING-AWARE CHARGING PROTOCOL DESIGN
In this section, we will study the impact of several charging strategies on battery aging.
First, we will study aging over a single cycle, to determine the Pareto optimal set of pa-
rameters of several charging strategies that lead to the ideal trade-off that can be made
between charging time and battery aging. Then, we will study aging over a long period,
by simulating the Pareto optimal set of parameters over the lifetime of the battery. Fi-
nally, we investigate the use of over-potential information to limit battery aging. The
parameters of the main-reaction model (including the electrode equilibrium-potential
expressions) are taken from [21], which are based on a battery with a LiC6 negative elec-
trode and LiCoO2 positive electrode chemistry. Note that this set of parameters repre-
sents a high-energy cell, for which it is generally known that the minimum charging time
that can be achieved is generally higher than for a high-power cell. The parameters of
the side-reaction model have been selected such that a somewhat realistic amount of ag-
ing is observed, i.e., 80% of the capacity is left after around 600 charge-discharge cycles.
These side-reaction model parameters have been listed in Table 4.3.
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Figure 4.3: The 2-CC-CV(3) protocol shown as an example of a multi-stage charging protocol used for simula-
tion. The red-colored variables indicate the design-adjustable parameters.

4.3.1. CHARGING PROTOCOLS

The simulation studies have been done using a CC-CV (Constant-Current-Constant-
Voltage) charging protocol and several multi-stage charging protocols. Note that for the
remainder of this chapter the following notation will be used to indicate the multi-stage
charging protocols: N -CC-CV(D), where N denotes the number of CC stages, and D de-
notes the amount of design-adjustable variables. As an example of a multi-stage charg-
ing protocol, the 2-CC-CV(3) charging protocol is shown in Fig. 4.3. In this protocol,
the battery is first charged with a constant current ICC,1 until a voltage VCC,1 is reached.
Then, the battery is charged with a constant current ICC,2 until the next voltage limit
VCC,2 is reached. Finally, a CV stage follows where the battery is kept at a constant volt-
age VCV until a final state of charge SoC f is reached. For this protocol there are three
design-adjustable parameters, namely ICC,1, ICC,2, and VCC,1. The value for VCC,2 = VCV

is chosen as Vmax in (4.11c) for a fresh cell, and SoC f is fixed to SoC f = 95%. Note that,
for the remainder of the chapter, we constrain VCV =VCC,n , where n indicates the last CC
stage. Further note that we use SoC to terminate the charging algorithm to ensure a fair
comparison between different charging profiles, while in practice generally the CV stage
is terminated when the current drops below a certain value Imin. The CC-CV charging
protocol is defined in a similar way, except that there is only one CC stage, and therefore
the only design-adjustable parameter is ICC,1. Other charging strategies that are con-
sidered in this chapter are the CC-CV(2), 2-CC-CV(2), and 3-CC-CV(3). For CC-CV(2),
the design-adjustable parameters are the CC current ICC,1 and the CV voltage VCV. For
2-CC-CV(2), the design adjustable parameters are CC currents ICC,1 and ICC,2. Finally,
for 3-CC-CV(3), the design-adjustable parameters are CC currents ICC,1, ICC,2, and ICC,3.

Table 4.3: Parameters for the side-reaction model. Parameters U2 and σ f have been extracted from [19].

Symbol Unit Value
i0,2 [Am−2] 1.178×10−7

U2 [V] 0.21
Ṽ f [m3mol−1] 1×10−5

σ f [Ω−1m−1] 2.3×10−6

R f ,0 [Ωm2] 5.5×10−3
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Figure 4.4: In (a), a comparison of degradation vs charging time of several charging protocols is shown. In (b),
selected current profiles at several points on (a) are shown.

Note that in the case of 2-CC-CV(2) and 3-CC-CV(3), the voltage limits, e.g. VCC,1, are
fixed as Vmax.

4.3.2. PARETO OPTIMAL FRONT FOR A SINGLE CYCLE

In Fig. 4.4a, the degradation of the cell, in terms of Li-ions lost, i.e., Ql , is plotted against
charging time, for the CC-CV and multi-stage charging protocols. In order to obtain
these results, the design-adjustable parameters for the charging protocols have been
varied over a range of values. Specifically, the CC-stage currents have been varied in
the range of 0.1 C to 2.5 C, and the voltage limits have been varied in the range of 3.7 V to
4.4 V, and in the case of CC-CV(2), VCV has been varied in the range of 4.125 V to 4.4 V. The
curves in Fig. 4.4 are then obtained by taking the minimal degradation for a given charg-
ing time, for each charging protocol. Note that for the CC-CV protocol, since there is only
1 design-adjustable parameter, all the simulated points have by definition the minimal
degradation for a given charging time. Note that, as an example, the trade-off curve for
the 3-CC-CV(3) was constructed using 8000 charge-cycle simulations, while the other
trade-off curves have been constructed using fewer simulations. As each charge cycle
takes about 1 second to compute (on average) using the model implemented presented
in this chapter, even the trade-off curve for the 3-CC-CV(3) protocol can be computed
within 2.5 hours, which shows the potential of the presented implementation for (off-
line) model-based optimization.

In Fig. 4.4a, we can first observe that the degradation of the multi-stage protocols
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Figure 4.5: Comparison of the CC-CV(1), 2-CC-CV(2), and 3-CC-CV(3) charging protocols at a specified charg-
ing time of 92 minutes, where in (a) the current, (b) the voltage, (c) the side-reaction flux j2, and (d) the side-
reaction over-potential η2 is shown.

is always equal to or less than the degradation using the CC-CV protocol. This is to be
expected, since multi-stage protocols are a generalization of the CC-CV protocol. Fur-
thermore, we see that up to around 170 min charging time, the curves follow an intuitive
trend, where the battery degradation becomes smaller as charging time increases. How-
ever, after around 170 min charging time, the opposite trend happens, where battery
degradation increases with increasing charging time. This can be explained by the fact
that the degradation is computed through an integral over time. Therefore, as charging
time increases, the integral is taken over a longer time, leading to higher degradation.

Another interesting observation is that a larger amount of CC-stages seems to give
better performance at lower charging times, until around 115 minutes, while the charg-
ing protocols that provide more flexibility in the adjustment of the voltage limits, i.e.,
CC-CV(2) and 2-CC-CV(3), give better performance at higher charging times. This can
be explained by investigating the current profiles shown in Fig. 4.4b. Here, we see that
at the lower charging times (point 1), the flexibility in CC-stage currents allows to maxi-
mize the effect that the side-reaction over-potential η2 is smaller at lower voltages. This
effect can be seen in Fig. 4.5, where the CC-CV(1), 2-CC-CV(2), and 3-CC-CV(3) charging
protocols are compared at a charging time of 92 minutes. When we observe the side-
reaction over-potential η2 =φs −φe −U2−F R f jn , we can see that, generally η2 is smaller
at lower voltages than at higher voltages, for the same current. This is especially visible
with the 3-CC-CV-(3) protocol, where we can see that at around 5 minutes and 18 min-
utes, the peaks in η2 are approximately equal, even though the current at 5 minutes is
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around twice as large as at 18 minutes. This then also results in a comparatively lower
side-reaction flux j2 at lower voltages than at higher voltages, and in turn comparatively
less Li-ion loss. Thus, by charging the battery more at lower voltages, less charge needs to
be put in at higher voltages, which explains why additional flexibility of the multi-stage
protocols leads to a lower Li-ion loss for the same charging time.

The better performance of the algorithms with more flexibility in selecting the volt-
age levels at higher charging times in Fig. 4.4a, can be explained by observing the current
shown in Fig. 4.4b at point 2. Here, we see that the battery is simply charged with a con-
stant current rate until the desired SoC of 95% is reached. The CC-CV(2) and 2-CC-CV-(3)
protocols allow this, since the voltage limit can be chosen sufficiently high such that it is
never reached until the battery is full. Note that the CV stage in general takes a signifi-
cant amount of time when charging, which explains why charging in CC stages as long
as possible is effective.

Finally, if we observe point 3 (the dashed-red line) in Fig. 4.4b, we can see that at high
charging times, the best strategy to minimize degradation is to start with a low charging
current, followed by a larger charging current. This seems counter-intuitive to what was
observed in point 1 (the solid blue line). This can be explained by the fact that, because
η2 is smaller at lower battery voltages than at higher battery voltages, as explained above,
it also means that the battery generally ages more at higher battery voltages. Therefore,
when the battery is to be charged over a large duration of time, it is not beneficial to
charge the battery quickly, only for it to remain at rest at full charge, and consequently
a high voltage, for the remaining duration of time. Instead, the battery should ideally
remain at rest until the point where the remaining amount of time corresponds to the
point on the Pareto curve where the battery can be charged with the least amount of
aging. For example, for the CC-CV(2) and 2-CC-CV(3) protocol, this point corresponds
to a charging time of about 150 minutes, as we can observe in Fig. 4.4a. This corresponds
to what can be observed at point 3 in Fig. 4.4b, where the battery is charged with the
lowest possible current, until about 150 minutes charging time remains, after which the
battery is essentially charged using the CC-CV(2) protocol.

4.3.3. LIFETIME DEGRADATION

In Fig. 4.6a, the battery cycle life is plotted against the average charging time during the
course of the lifetime of the cell. This result has been obtained by taking the Pareto op-
timal combinations found in Fig. 4.4, and simulating for each of these combinations
over the lifetime of cell, i.e., when the capacity of the battery reaches 80% of the initial
capacity. However, rather than performing a single continuous simulation, the simula-
tions have been done for each cycle separately. Here, the stoichiometric values at 0%
and 100% are computed and updated at each cycle using (4.11). This is mainly done for
the reason that the difference in scale between j1 and j2 causes numerical inaccuracies
which add up over the lifetime of the cell. Note that the results in Fig. 4.4 have been ob-
tained using only charge cycles, while the results shown in Fig. 4.6 have been obtained
from discharge-charge cycles in order to represent actual use of the battery. The dis-
charge cycle occurs at a rate of -0.1 C, until a lower voltage limit Vmin, computed from
(4.11c), is reached, after which the battery is charged.

As could be expected, the multi-stage charging protocols perform better than the CC-
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Figure 4.6: In (a), cycle life vs average charging time for several charging protocols is shown. In (b), the dif-
ferential capacity loss ∆Qbat is shown. The crosses in (a) indicate at which charging time the curves in (b) are
evaluated for.

CV(1) protocol. Furthermore, the trends observed in Fig. 4.4a are still visible, in which
the performance of the 2-CC-CV(2) and 2-CC-CV(3) are almost equal up to around 100
minutes charging time, and the performance of the 2-CC-CV(3) protocol is much better
than the 2-CC-CV(2) after around 100 minutes charging time. Therefore, we can con-
clude that the trends observed over a single cycle can be roughly extrapolated over the
lifetime of the cell.

However, while the trends at the end-of-life of the cell are conserved, this is not nec-
essarily true over the whole lifetime of the cell. In Fig. 4.6b, the differential capacity loss
∆Qbat of the considered charging protocols at a charging time of around 130 minutes
is shown over the lifetime of the cell. We can observe that the difference in differential
capacity loss between the charging protocols varies over the lifetime of the cell. Until
around 50 cycles, this difference gets larger, while after 50 cycles the difference becomes
smaller. In the case of the difference between the CC-CV(1) and 2-CC-CV(2) protocol,
after 250 cycles, this difference becomes visually indiscernible. This could suggest that
when the battery ages, there is less to gain when choosing different charging strategies.
However, if we observe the zoomed-in plot in Fig. 4.6b, we can also see that at some
point, the 2-CC-CV(2) protocol actually has a higher ∆Qbat compared to the CC-CV(1)
protocol, while it had a lower ∆Qbat than the CC-CV(1) in the beginning stages of its
lifetime. This suggests then that even if a charging strategy is better than another for a
fresh battery, it does not necessarily mean that it is better than the other strategy over the
lifetime of the cell. Thus, we can conclude that in order to retain optimal performance
over the lifetime of the cell, it is crucial to have a smart (model-based) charging strategy,
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Figure 4.7: Results showing the side-reaction over-potential η2 for combinations of CC and CV levels with
the CC-CV charging protocol, where (a), (b), (c), and (d) show the current, voltage, Li-ion loss Ql , and η2,
respectively. The black dotted line indicates the points where η2 ≤−U2.

which can adapt to the changing conditions of the cell over its lifetime.

4.3.4. SIDE-REACTION OVER-POTENTIAL AS AGING INDICATOR

The side-reaction over-potential η2 over time plotted for combinations of CC and CV
levels for the CC-CV(2) protocol can be seen in Fig. 4.7d. We can see that as C-rates in
the CC stage get larger, the over-potential becomes more negative, and as the CV voltage
gets larger, the over-potential also becomes more negative. The constraint φs −φe >
0 is often used to prevent lithium plating in the battery [8, 11–13]. This constraint is
equivalent to η2 >−U2, which is the black dotted line shown in Fig. 4.7d. However, from
Fig. 4.7c, we can see that even at the highest C-rate, where a relatively short charging time
of around 75 minutes is reached, this constraint is still not violated. The blue curve shows
a scenario where this constraint is violated, which is at a combination of high currents
and high voltages. From Fig. 4.7c, we can also see that when η2 ≤ −U2, the Li-ion loss
increases significantly. Note that the blue curve is not actually fully charged, as the solid-
phase concentration became saturated before the battery could become fully charged.
Of course, even in the other two cases of the black and red curves, even though the over-
potential constraint is not violated, there is still a difference in how much the battery
ages with each of the current profiles, as we can see from Fig. 4.7c. Still, it can serve as
a hard constraint to prevent extreme scenarios that lead to lithium plating. However,
as shown by the above analysis, side-reaction over-potential cannot be used to make a
trade-off between charging time and battery degradation effectively.
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4.4. CONCLUSIONS
In this chapter, we have utilized a Doyle-Fuller-Newman (DFN) model including capacity-
loss side reactions to present a model-based design method for multi-stage charging
protocols, which has led to a trade-off between charging times and battery aging. The re-
sults have been leveraged by a highly efficient implementation of the DFN model, which
has a short computation time, presented in Chapter 2 of this thesis. We have shown that
by obtaining the Pareto front that describes the optimal trade-off between charging time
and battery aging for a single cycle, the results can be extended to the lifetime of the
battery. Finally, we have shown that the negative-electrode over-potential is not always
a good indicator for aging, and that aging will occur even when the battery operates in
over-potential regions that are considered not to lead to aging.
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5
OPTIMAL AGING-AWARE

CHARGING USING A SURROGATE

MODEL

In this chapter, we present an optimal-control-based method for aging-aware charging. A
surrogate modeling approach is used to approximate aging-related Doyle-Fuller-Newman
(DFN) model states, where the surrogate model is a combination of a black-box finite-
dimensional linear-time-invariant model and a static nonlinear model that is a func-
tion of state of charge. We formulate the optimal-control problem as minimizing the
side reactions for a given charging time and subject to several aging-related constraints
that are commonly used in literature. We will show that the aging-related DFN model
states can be well approximated by the proposed surrogate model. Furthermore, we will
show that with the surrogate modeling approach, even in an open-loop execution of the
optimal-control-based method, the considered constraints are only marginally violated
when applied to the DFN model. Finally, we will compare the Pareto front achieved with
the proposed optimal-control-based method with the Pareto fronts achieved with various
multi-stage charging protocols, obtained from Chapter 4. Here, we will show that the pro-
posed optimal-control-based method achieves a significantly improved Pareto front over
the multi-stage charging protocols.

This chapter is based on Publication P.3.
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5.1. INTRODUCTION
One of the objectives of this thesis is to develop optimal aging-aware charging algo-
rithms. In the previous chapter, we have considered multi-stage constant-current (CC)
constant-voltage (CV) charging protocols. While we have shown that these protocols al-
low for a better trade-off between charging time and aging compared to the convention-
ally used CC-CV protocol, they do not provide for any guarantee of optimality. As rea-
soned in Chapter 1 of this thesis, optimal-control-based methods should at least provide
for some level of optimality. However, in order to restrict or minimize aging effectively,
an electrochemistry-based aging model is required, such as the Doyle-Fuller-Newman
(DFN) model with capacity-loss side reactions, introduced in Chapter 4. The proposed
highly computationally efficient implementation of the DFN model presented in Chap-
ter 2 has substantially reduced the computation times of the DFN model, although em-
pirical models, such as equivalent-circuit models (ECMs) [1] still have a lower complex-
ity. However, while empirical models are computationally fast, they do not describe the
actual electrochemical processes in the battery, which are necessary to effectively restrict
or minimize aging.

An alternative approach to using electrochemistry-based models, while still having a
description of the internal states, is the use of surrogate models [2–4], or by using a lin-
earized electrochemistry-based model [5]. However, a linearized model is typically only
accurate around the linearization point. In the surrogate modeling approach, several
states of a desired (complex) model are approximated by a model of a lower complex-
ity. However, in the aformentioned papers that consider surrogate models, a black-box
modeling approach is chosen for the surrogate model, which may lead to a difficulty in
estimating the inherent (nonlinear) dependency of some of the DFN model states on the
state of charge of the battery.

In this chapter, we present an off-line optimal-control-based method for aging-aware
charging, where an a-priori-computed optimal current profile is applied (in open loop)
to the battery. A surrogate modeling approach is used to approximate aging-related DFN
model states, such as the side-reaction over-potential, similar to the approach taken in
[2]. Compared to [2], we use a grey-box model to approximate the aging-related DFN
model states, whereas in [2] black-box models such as the AutoRegressive Exogenous
(ARX) model or the piece-wise affine ARX model are used. The surrogate model pro-
posed in this chapter consists of a combination of a black-box finite-dimensional linear-
time-invariant model and a static nonlinear model that is a function of state of charge.
Using the surrogate model, we can formulate the optimal-control problem as minimiz-
ing the side reactions for a given charging time and subject to several aging-related con-
straints that are commonly used in literature. We will validate the proposed surrogate
model with the DFN model, and we will furthermore compare the Pareto front achieved
with the proposed optimal-control-based method with the Pareto fronts achieved with
the multi-stage charging protocols as studied in Chapter 4 of this thesis.

The remainder of this chapter is structured as follows. In Section 5.2, we present the
surrogate modeling method. In Section 5.3, the optimal-control problem is formulated.
In Section 5.4, we will show the results, where the semi-empirical model is validated
against the DFN model, the Pareto optimal fronts of the various aging-aware charging
methods are compared, and the performance, in terms of constraint satisfaction, of the
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proposed optimal-control-based method is validated. Finally, conclusions are drawn in
Section 5.5.

5.2. BATTERY MODELING
In this section, the surrogate modeling method to model various considered states of the
DFN model is described. First, we formulate the proposed surrogate modeling method,
which is followed by the selection of the to-be-modeled DFN model states, after which
the surrogate modeling method is applied to the selected DFN model states obtaining a
surrogate model that describes these states.

5.2.1. THE SURROGATE MODELING APPROACH
The model that we base the surrogate model on is the DFN model considering side reac-
tions, formulated in Chapter 4. Therefore we refer the reader to Chapter 4 for the equa-
tions of this model. The DFN model describes the internal electrochemical reactions,
from which some of the states relate to the aging of the cell. Since only these states are
of interest, it is seemingly inefficient to compute all the other states, just to get a descrip-
tion of the variables that are of interest. Thus, there has been some work in obtaining
an adequate description of the variables of interest with a minimal computational ef-
fort, e.g. by using black-box modeling techniques as done in [2]. However, in black-box
modeling methods, estimating the inherent (nonlinear) dependency of some of the DFN
model states on the state of charge of the battery is difficult. For example, the terminal
voltage Vt is often described with an equivalent-circuit model, e.g. [6], where Vt is ex-
pressed as a sum of the output of a finite-dimensional (FD) linear-time-invariant (LTI)
model and a static non-linearity, i.e., the electro-motive force (EMF), that is a function
of the state of charge (SoC). With many of the other DFN model states showing a simi-
lar static dependency on the SoC, this empirical model can be extended to also model
these DFN model states. This extended empirical model, which can also be referred to
as a surrogate model of the DFN model, is depicted in Fig. 5.1 as an input/output model,
where the input is the applied current, and the output is the predicted voltage and the
predicted virtual outputs, representing the relevant parts of the DFN model states. The
relevant parts of the DFN model states are represented as virtual outputs, since in an
actual battery cell, these states cannot be measured.

In a discrete-time representation, yk being the vector of the voltage and virtual out-
puts of the surrogate model at time kδt , in which k is the discrete time instant, and δt is
the sampling time, is given by

yk = ȳk +h(sk ), (5.1a)

where ȳk is the output of an FD-LTI model, and h(sk ) is a static model with the SoC sk as
the input, in which sk is given by the coulomb counting equation as

sk+1 = sk + δt
Q Ia,k , (5.1b)

where Ia,k is the applied current and Q is the reversible capacity of the battery. The
choice for h(s) can be reasoned through the mechanisms of the DFN model.
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Figure 5.1: Schematic illustration of the surrogate modeling method, where the (virtual) outputs of the Doyle-
Fuller Newman (DFN) model are approximated with a surrogate model, of which its output is a combination
of a finite-dimensional (FD) linear-time-invariant (LTI) model and a static model.

The choice for the FD-LTI model can, in principle, be any of the (possibly linear)
input/output models that are commonly used for system identification [7]. However,
since the various outputs of the model are dynamically interconnected, it is sensible to
choose a model that allows for the possibility to include this interconnection between
the outputs, such as the AutoRegressive Exogenous (ARX) model [7]. The ARX model
with ny number of outputs and the single input Ia,k can be formulated as a one-step-
ahead predictor where the prediction ŷk can be written as

ŷk = BARX(q,θ)Ia,k − AARX(q,θ)ȳk , (5.1c)

where q is the forward shift operator, such that Ia,k−1 = q−1Ik , and θ are the parameters
of the ARX model. Furthermore, in (5.1c), AARX is an ny×ny matrix of polynomials of q−1,
where the polynomials contain a delay of at least one sample, i.e., they start with zero,
and BARX is an ny × 1 matrix of polynomials of q−1, where the polynomials are monic,
i.e., the leading coefficients are one. As defined in the MATLAB System Identification
Toolbox [7], the choice for the order of the polynomials of AARX can be expressed by a
matrix NA ∈ Rny×ny , where every element of NA indicates the order of the polynomial
of the corresponding element of AARX. Similarly, the orders of the polynomials of each
element of BARX can be expressed by a matrix NB ∈Rny×1. With a certain choice for NA

and NB , and data obtained from the simulation of the DFN model, the parameters θ of
the ARX model can be determined by minimizing a least-squares criterion of the form

∑
k∈K

||ȳk − ŷk (θ)||, (5.2)

for k ∈K = {0,1, ...,K −1}, where K = t f /δt is the time horizon with t f the final time step,
and ȳk can be computed from the measurements yk using (5.1a), assuming that h(sk ) is
known.
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The system (5.1) can then be written as a state-space model as

xk+1 = Aξk +B Ia,k , (5.3a)

yk =Cξk +D Ia,k +h(sk ), (5.3b)

where x = [
s x̄

]>
, A = diag(1, Ā), B = [

δt /Cb B̄
]>

, C = [
0 C̄

]
, D = D̄ , in which x̄, Ā,

B̄ , C̄ , and D̄ are obtained from any state-space representation of (5.1c).

5.2.2. SELECTION OF DFN MODEL STATES FOR THE SURROGATE MODEL
In general, any combination of the DFN model states can be chosen as virtual output
for the surrogate model. However, for the purpose of aging-aware charging, not all the
variables of the DFN model are equally interesting, as there are only several variables of
the DFN model that are typically associated with the aging of the battery. When the ob-
jective is to constrain or minimize side reactions, as e.g. in [8], the variable of interest is
η2. Besides the side-reaction overpotential, the stoichiometries in the electrodes sn and
sp are also of interest, which either are constrained directly, e.g. in [9], or are constrained
through particle stress models, which depend on the stoichiometries of the electrodes,
e.g. in [10]. Furthermore, constraints on electrolyte concentration ce are also used in [9]
for the purpose of aging-aware charging. Finally, constraining the terminal voltage Vt

should also be considered, since there may be unmodeled reactions at extreme voltages
that can lead to potentially dangerous scenarios.

As we can observe from (4.1)-(4.4) in Table 4.1, each of the states is
infinite-dimensional, due to the nature of the partial differential equations. While after
spatial and temporal discretization, as done in e.g., Chapter 2, a finite number of states is
obtained, generally the number of states is still significantly large. Modeling these states
with the proposed surrogate modeling method would lead to a system with a large num-
ber of states, defying the purpose of generating a simpler model than the DFN model.
However, not all the states are necessary in order to constrain or minimize the aging of
the cell. As we can see from Fig. 5.2, while charging, every state generally experiences its
extreme at either ends of the electrodes or at either ends of the cell. Therefore, to con-
strain these variables, it is sufficient to only describe the states at the extreme ends that
are of interest.

Typically, sn and sp are upper and lower bounded, respectively, during charging, in
order to avoid excessive stress (in the negative electrode) and lithium depletion (in the
positive electrode), in the particles [9, 10]. While charging, assuming a positive applied
current Ia > 0, Li-ions strictly move from the positive electrode to the negative electrode.
Therefore, in the negative electrode the total number of Li-ions increases, while in the
positive electrode, the total number of Li-ions decreases. As the Li-ions diffuse through-
out the cell in this process, in the negative and positive electrode, Li-ions accumulate
and are removed, respectively, more near the separator than at the other ends of the
electrodes. Thus, over the gradient of sn , sn is largest at x = δn and over the gradient of
sp , sp is smallest at x = L −δp , as we can also see in Fig. 5.2. This means that to prevent
lithium depletion and excessive stress on the particles while charging, it is sufficient to
bound sn from above at x = δn and to bound sp from below at x = L −δp . Similarly, ce is
typically upper and lower bounded, in order to avoid lithium saturation and depletion,
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Figure 5.2: The DFN model variables of interest for the purpose of aging-aware charging. The colored dots
indicate the times where the variables are shown.

respectively, in the electrolyte [9]. Therefore, it would be sufficient to have a description
of ce at x = 0 and x = L, as the extremes occur at these points, as we can see from Fig. 5.2.

The side-reaction overpotential η2 is typically either minimized through Ql in (4.10),
e.g., in Chapter 4, in order to minimize side reactions, and/or has a constraint to have a
certain lower bound, in order to prevent lithium plating, e.g. [8]. For the purpose of pre-
venting lithium plating, we can see from Fig. 5.2 that over the gradient of η2, the lowest
potential occurs at x = δn . Therefore, it is sufficient to bound η2 from below at x = δn .
When the objective is to minimize Li-ion loss due to side reactions, i.e., to minimize Ql

in (4.10), the integral
∫ δn

0 j2dx suggests that a description of j2, and therefore η2, over the

entire negative electrode is necessary. To simplify the problem, the integral
∫ δn

0 j2(t )dx
can be simplified to j2(δn , t )δn . From Fig. 5.3, we can see that while there is a signifi-

cant difference between
∫ δn

0 j2(t )dx and j2(δn , t )δn , they still generally show the same
crucial behavior, i.e., applying a certain current at a lower state of charge leads a lower
magnitude of j2 than at a higher state of charge.

To summarize, the selection of the DFN model states for the surrogate modeling
method is Vt , η̄2(t ) = η2(t ,δn), s̄n(t ) = sn(t ,δn), s̄p (t ) = sp (t ,L−δp ), c̄e,0(t ) = ce (t ,0)/ce,a ,
and c̄e,L(t ) = ce (t ,L)/ce,a , where ce,a is the average electrolyte concentration.

5.2.3. APPLICATION OF THE SURROGATE MODELING APPROACH TO THE

SELECTED DFN MODEL STATES

We apply the surrogate modeling approach to obtain a model that describes the selec-
tion of the DFN model states of interest for aging-aware charging made in Section 5.2.2.
The surrogate model output yk and static functions h(sk ) in (5.3b) are then, respectively,
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∫ δn
0 j2(t )dx and j2 at x = δn , in order to indicate the impact of the simplification

of
∫ δn

0 j2(t )dx to j2(δn , t )δn in (4.10), with the simulation done with the current profile shown in Fig. 5.2.

given by

yk = [Vt ,k η̄2,k s̄n,k s̄p,k c̄e,0,k c̄e,L,k ]>,

h(sk ) = [Up (sk )−Un (sk ) Un (sk )−U2 s̄n,e (sk ) s̄p,e (sk ) 1 1 ]>, (5.4)

where Up and Un are the positive- and negative-electrode equilibrium potential, respec-
tively, which are pre-defined functions of s, and U2 is the equilibrium potential of the
side reactions, given as a fixed value. Furthermore, s̄i ,e , i ∈ {n, p}, in which n indicates
the negative electrode and p the positive electrode, is the equilibrium stoichiometry in
electrode i , which can be computed as s̄i ,e = (s100,i − s0,i )s + s0,i , in which s100,i and s0,i

are the stoichiometries in electrode i at 100% state of charge and 0% state of charge,
respectively.

5.3. OPTIMAL AGING-AWARE CHARGING

The goal of this chapter is to develop an aging-aware charging method that can system-
atically make a trade-off between charging time and aging. We propose to do this using
optimal control, based on the surrogate model presented in Section 5.2. As mentioned
in Chapter 1, to achieve a Pareto-optimal combination of battery aging and charging
time, the optimal-control problem can be generally formulated in three different ways.
First, most commonly, the charging time is minimized subject to certain aging-related
constraints, see, e.g., [8, 9]. The minimum charging time problem can be approximated
by an SoC-reference-tracking problem, e.g., [11], where the reference SoC is the desired
final SoC. Secondly, another way to reach a Pareto-optimal trade-off between battery ag-
ing and charging time is to minimize a weighting between charging time and battery ag-
ing, as done in, e.g., [6, 11, 12]. Thirdly, aging can be minimized for a given charging time.
In this chapter, we choose the latter approach, as this problem formulation avoids the
difficulties that come with a minimum-time optimization problem, while still achieving
a Pareto-optimal combination of battery aging and charging time. To solve this optimal-
control problem efficiently, we employ a sequential-quadratic-programming algorithm
(SQP). In this section, the optimal-control problem for aging-aware charging is formu-
lated and the SQP algorithm for the application of the proposed optimal-control-based
method is given.
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5.3.1. PROBLEM FORMULATION
We consider the problem formulation where the Li-ion loss due to side reactions Ql in
(4.10), with the integral

∫ δn
0 j2(t )dx simplified to j2(δn , t )δn , is minimized with a given

charging time t f , i.e.,

min
ξk ,Ia,k

Ql (ξk , Ia,k ) = min
ξk ,Ia,k

∑
k∈K

α1 exp(α2η2,k (ξk , Ia,k )), (5.5a)

where α1 = i0,2as Asurfδt , α2 = −2αc,2F
RT , η2,k (ξk , Ia,k ) =C2ξk +D2Ia,k +h2(sk ), where, C2,

D2, and h2(sk ) indicate the second row of C , D , and h(sk ) in (5.3b), respectively. The
objective (5.5a) is subject to the state dynamics (5.3a) for k ∈ K = {0,1, ...,K −1}, where
K = t f /δt is the optimization horizon with x0 given, and δt > 0 is the step size, which
is chosen such that δt K ∈N. Note that the optimization horizon K can have a different
value from the K used to fit the model in (5.2). The objective (5.5a) is further subject to
the bounds on the input Ik

Ia,min ≤ Ia,k ≤ Ia,max, (5.5b)

for k ∈K and the output yk in (5.3b), i.e.,

ymin ≤ yk (ξk , Ia,k ) ≤ ymax, (5.5c)

where yk (ξk , Ia,k ) =C xk +D Ia,k +h(sk ) for k ∈ K , and the (undefined) output yK is as-
sumed to be given by yK =C xK +D Ia,K−1 +h(sK ) in order to constrain the terminal out-
puts. Finally, (5.5a) is also subject to a minimum stored charge constraint, i.e.,

sK = s0 + δt
Cb

∑
k∈K

Ia,k ≥ s f , (5.5d)

for a given initial SoC s0 and a final (desired) SoC s f .

5.3.2. SOLUTION METHOD
We can observe that the optimization problem (5.5) is nonlinear, due to the exponen-
tial and the nonlinear term h2(sk ) in η2(xk , Ia,k ) in the objective function (5.5a) and the
nonlinear output constraints (5.5c). Since h(sk ) in the output (5.5c) can, in principle, be
given by any (nonlinear) function, the problem (5.5) is also possibly nonconvex. There-
fore, the solution of (5.5) requires a nonlinear optimization solver. In this paper, we have
solved (5.5) using SQP [13], which aims at solving a nonlinear optimization problem by
sequentially solving linearly constrained quadratic programs (LCQP), which are formed,
e.g., by approximating the objective function with a quadratic equation and linearizing
the constraints. In this paper, each SQP subproblem is derived by making a quadratic
approximation of (5.5a), and linearizing the nonlinear constraints (5.5c). For a more de-
tailed description of the SQP algorithm, we refer the reader to Chapter 6.

5.4. RESULTS
In this section, we will show the results of the aging-aware charging simulation study.
We will first show the validation of the surrogate model on the DFN model. Then, we
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Figure 5.4: Current profiles used for the parameterization of the ARX model for the surrogate model.

consider the problem of aging-aware charging with active constraints on the virtual out-
puts. Finally, we will compare the Pareto front of the proposed optimal-control-based
aging-aware charging method with several multi-stage charging protocols considered in
Chapter 4. The parameters of the DFN model used in this chapter can be found in Chap-
ter 4.

5.4.1. VALIDATION OF THE SURROGATE MODEL
The surrogate model is given by (5.3) with yk and h(sk ) given in (5.4). The parameter-
ization of the ARX model has been done using the System Identification Toolbox [7] in
MATLAB, where the matrices NA and NB have been chosen such that a good compro-
mise between model accuracy and model complexity is achieved, and are given by

NA =



0 1 1 1 1 1
0 1 1 1 0 1
0 1 1 0 1 0
0 1 0 2 1 0
0 1 1 0 1 1
0 1 0 1 1 1

 , NB =



2
2
2
2
1
1

 . (5.6)

With a chosen current profile, the DFN model can be simulated to obtain data from
which the ARX model (5.1c) can be parameterized with the least-squares criterion (5.2).
This parameterization will be done in two stages. First, a multi-stage charging current
profile, as shown in Fig. 5.4, is used to get an initial surrogate model. This resulting
model is used to compute an optimal solution for a charging time of 75 minutes using
the optimal-control-based method described in Section 5.3, where the step size δt of the
optimization problem is chosen as δt = 20 s. The obtained solution shown in Fig. 5.4 is
then used to get a subsequent surrogate model. This is the model that is used for ob-
taining the remaining results presented in this chapter, as its parameters are determined
with a current profile that is representative of the expected solutions to the optimization
problem (5.5). The model has been validated using the optimal solution with a charging
time of 100 minutes, which is shown in Fig. 5.5. To indicate the computational advan-
tage of the surrogate model, the DFN model simulation using the implementation of
Chapter 2 took 1.75 s, while the surrogate model simulation merely took 0.024 s on a
consumer-grade PC. We should note here that the DFN model implementation is highly
efficient. In Fig. 5.5, we observe that there is some mismatch between the DFN model
and the surrogate model, although generally the obtained fit can be considered to be
good enough for optimal control, especially considering the computational advantage
of the surrogate model over the DFN model.
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Figure 5.5: Validation of the surrogate model with the DFN model, where the current, voltage, side-reaction
over-potential η2, side-reaction flux j2 at x = δn , stoichiometry in the negative electrode s̄n at x = δn , stoi-
chiometry in the positive electrode s̄p at x = L −δp , normalized electrolyte concentration at x = 0 c̄e,0, and
normalized electrolyte concentration at x = L c̄e,L are shown.

5.4.2. OPTIMAL SOLUTION WITH VIRTUAL OUTPUT CONSTRAINTS

In this chapter, we consider an open-loop optimal-control-based aging-aware charging
method, where an a-priori-computed current profile is applied (in open loop) to the bat-
tery. In order to test the validity of this method under active virtual output constraints
(5.5c), we will create an artificial scenario where most of these constraints are active. In
doing so, we consider the problem of solving (5.5) in a given time t f of 100 minutes,
with s̄n,max = 0.93, s̄p,min = 0.52, c̄e,0,min = 0.85, c̄e,L,max = 1.27. The step size of the op-
timization problem has been chosen as δt = 50 s, which we have found to strike a good
balance between accuracy and computation time of the optimization problem. Note
that the values chosen in these constraints are entirely artificial and are not represen-
tative of what the values should be in order to realistically restrict aging. Ideally, these
constraints should be chosen in the least restrictive way possible and are only meant to
restrict the battery into reaching states that lead to unmodeled aging phenomena. In
this case, most likely, the considered constraints restrict the battery conservatively in
order to show to what extend the considered constraints are violated due to modeling
errors. In Fig. 5.6, we can see the solution to the considered problem, where both the
simulation using the DFN model and the surrogate model are shown. We observe that,
as could be expected from the model validation, the constraints are violated slightly by
the DFN model. However, since aging is not an on-off behavior, a slight violation of the
constraints is not necessarily an issue for the purpose of aging-aware charging.
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Figure 5.6: The solution to the virtual-output-constrained problem simulated with the DFN model and the sur-
rogate model, where the current, voltage, stoichiometry in the negative electrode s̄n at x = δn , stoichiometry
in the positive electrode s̄p at x = L −δp , normalized electrolyte concentration at x = 0 c̄e,0, and normalized
electrolyte concentration at x = L c̄e,L are shown. The blue dashed lines indicate the constraints.

5.4.3. PARETO OPTIMAL FRONT COMPARISON
In Fig. 5.7, the degradation of the cell, in terms of Li-ions lost due to side reactions, i.e.,
Ql , is plotted against charging time, for the proposed optimal-control-based method,
CC-CV, CC-CV(2), and 2-CC-CV(2). The multi-stage charging protocol CC-CV(2) indi-
cates a protocol where the CC-stage current and the CV-stage voltage limit can be varied,
whereas 2-CC-CV(2) indicates a protocol with 2 CC stages followed by a CV stage, where
the two CC-stage currents can be varied, with a fixed voltage limit throughout. For fur-
ther details on how the multi-stage charging protocols are defined, we refer the reader
to Chapter 4. In the proposed optimal-control-based method, we consider two cases,
where one is the optimal problem (5.5) with only the minimum-charge constraint (5.5d)
and one with an additional maximum-current constraint chosen as Imax = 1C . Note that
in both of these cases, we still use the constraint s̄n < 1, since a violation of this constraint
leads to numerical issues in the simulation of the DFN model. Further note that we refer
the reader to Chapter 4 for a detailed description of how one charging protocol achieves
a better Pareto front than another.

We observe in Fig. 5.7(a) that the Pareto front obtained using the optimal-control-
based method is a significant improvement over the multi-stage protocols. For example,
when the battery is charged in 80 minutes, the optimal-control-based method ages the
battery about 25% less than when using the multi-stage protocol. Alternatively, the bat-
tery can be charged in 70 minutes using the optimal-control-based method, while with
the multi-stage protocols it would take about 87 minutes with the same amount of ag-
ing. Notably, the optimal-control-based method shows the most improvement over the
multi-stage protocols at low charging times, while the improvement decreases as the
charging time is increased. This is explained by the fact that when the charging time is
large, a large initial current is not as beneficial, since this current must be compensated
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Figure 5.7: Trade-off between charging time and Li-ion loss (Ql ) for the various considered aging-aware charg-
ing methods in (a), and the current, voltage, and side-reaction flux j2 for the indicated charging times of about
70 minutes (1) and 140 minutes (2) in (b).

elsewhere at higher SoCs, where the side reactions are generally more sensitive to the
magnitude of the current. This leads to a flattening of the current profile, as we can also
see in Fig. 5.7(b). This could also suggest that the method proposed in this chapter and
the CC-CV(2) protocol are already close to the best possible Pareto front at high charging
times.

In Fig. 5.7, we can also see the effect of imposing a maximum applied current of 1
C. As could be expected, the Pareto front using this constraint is worsened compared to
the case without the constraint. Even so, we can see that the achieved trade-off between
charging time and aging is still a significant improvement over the multi-stage charging
protocols, even when these use higher currents than 1 C. This shows that large charging
currents are not necessary to achieve a good trade-off between charging time and aging.
Note that in this work, we have only presented the trade-off between charging time and
aging for a single cycle. Over the lifetime of the battery, the battery degrades, leading to
a change in the dynamics of the battery over its lifetime. Therefore, in a practical appli-
cation of the proposed aging-aware charging method, the changing dynamics should be
taken into account in the surrogate modeling framework, which will be facilitated by a
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computationally fast model, such as the proposed surrogate model of this chapter.

5.5. CONCLUSIONS
In this chapter, we have presented an optimal-control-based method for aging-aware
charging. A surrogate modeling approach has been used to approximate aging-related
DFN model states, where the surrogate model is a combination of a black-box finite-
dimensional linear-time-invariant model and a static nonlinear model that is a function
of state of charge. This surrogate modeling approach has been applied to a DFN model
that considers the capacity loss due to side reactions.

We have shown that the aging-related DFN model states can be well approximated
by a surrogate model. Furthermore, we have shown that with this surrogate model, even
in an open-loop execution of the optimal-control-based method, the considered con-
straints are only narrowly violated. Finally, we have compared the Pareto front achieved
with the proposed optimal-control-based method with the Pareto fronts achieved with
various multi-stage charging protocols considered in Chapter 4 of this thesis. Here, we
have shown that the proposed optimal-control-based method achieves a significantly
improved Pareto front over the multi-stage charging protocols.
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6
OPTIMAL AGING-AWARE

CHARGING USING

ELECTROCHEMISTRY-BASED

MODELS

In this chapter, we present an optimal aging-aware charging approach using the Doyle-
Fuller-Newman (DFN) model. In this approach, an optimal-control problem is formu-
lated that has a low computational complexity. Furthermore, to solve the optimal-control
problem, we employ a sequential-quadratic-programming (SQP) algorithm, which can
solve nonlinear optimization problems in a computationally efficient manner. To further
reduce the computional complexity of the optimal-control problem, we investigate the ef-
fect of spatial and temporal discretization of the resulting discrete-time optimal-control
problem on the computational complexity and achieved trade-off between charging time
and aging. In the validation of the proposed optimal aging-aware charging approach,
we show that with the employed SQP algorithm, the formulated optimal-control prob-
lem can be solved roughly an order of magnitude faster than with an off-the-shelf solver.
Furthermore, we show that with a well-considered choice of spatial and temporal dis-
cretization of the optimal-control problem, and with the employed SQP algorithm, the
optimal-control problem can be solved in about 0.1 s. This makes the proposed optimal
aging-aware charging approach suitable for a closed-loop implementation.
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6.1. INTRODUCTION
As introduced in Chapter 1, batteries are commonly charged using so-called constant-
current-constant-voltage (CC-CV) protocol [1]. In order to improve the trade-off be-
tween charging time and aging that can be made compared to the CC-CV protocol, multi-
stage CC-CV protocols, e.g., [2, 3], and Chapter 4 of this thesis, have been investigated, as
well as model-based aging-aware methods, e.g., [4–8], where both methods aim to make
a Pareto-optimal trade-off between battery aging and charging time. For an overview of
aging-aware charging methods, we refer the reader to Chapter 1.

To make an effective and systematic trade-off between battery aging and charging
time, optimal aging-aware charging methods are particularly of interest, where the aging-
aware charging problem is formulated as an optimal-control problem using a particu-
lar battery model. Since electrochemistry-based models can provide a description of
the internal states of the batteries, such models are often used in optimal aging-aware
charging, see, e.g., [4, 5, 8–11]. Among the electrochemistry-based models used in op-
timal aging-aware charging, the Doyle-Fuller-Newman (DFN) model is typically used as
a benchmark to evaluate other (simplified) models against, as the DFN model provides
a most complete description of the internal states, at the cost of a high computational
complexity. Therefore, simplified electrochemistry-based models, such as the single-
particle model (SPM) [12] or reduced-order models are often used in optimal aging-
aware charging, e.g. in [5, 9], and Chapter 5 of this thesis. However, while such simplified
models are computationally less complex than the DFN model, they typically also lead
to a sacrifice in accuracy.

The use of the DFN model in optimal aging-aware charging has often been consid-
ered infeasible, due to the high computational complexity of the DFN model, where the
computation time of obtaining an optimal solution using the DFN model has been re-
ported to be several hours in [4], which makes the DFN model seemingly impractical
for a closed-loop implementation. Meanwhile, the use of the DFN model has been pro-
posed in closed-loop optimal aging-aware charging methods, e.g. the model-predictive
control (MPC) approach taken in [10, 11]. However, due to the computational complex-
ity of the DFN model, the choice for the control horizon of the MPC approach is limited
in the aforementioned papers, which leads to a sacrifice in the optimality of the obtained
solution. Alongside these developments, focus has been put on reducing the computa-
tional complexity of the DFN model, as also studied in Chapter 2. Such methods for re-
ducing the computional complexity of the DFN model may also reduce the computional
complexity of the resulting optimization problem using a DFN model. Furthermore, in
optimal aging-aware charging approaches, typically off-the-shelf-solvers, such as IPOPT
[13] in [11] or MATLAB’s fmincon in [10] are used. Such off-the-shelf-solvers may limit
the possibilities in taking advantage of the properties in the structure of the considered
optimization problem.

In this chapter, we present an optimal aging-aware charging approach using the
DFN model. Here, we apply the method of the substitution of equations presented in
Chapter 2 to arrive at a reformulated optimal-control problem with a reduced compu-
tational complexity to the originally formulated optimal-control problem. Furthermore,
to solve the optimal-control problem, we employ a sequential-quadratic-programming
(SQP) algorithm [14], which, as we have shown in [15], can solve nonlinear optimization
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problems in a computationally efficient manner. The aging-aware charging problem is
formulated similarly to the formulation in Chapter 5, where the side reactions leading
to solid-electrolyte interface (SEI) growth are minimized for a given charging time. To
further reduce the computional complexity of the optimal-control problem, we will in-
vestigate the effect of spatial and temporal discretization of the resulting discrete-time
optimal-control problem on the computational complexity and achieved trade-off be-
tween charging time and aging. To validate the proposed optimal aging-aware charg-
ing approach, we will compare our proposed approach with a simplified DFN (SDFN)
model, as introduced in 2, to several rule-based protocols, such as those considered in
Chapter 4, as well as optimal aging-aware approaches using the SPM and the surrogate
modeling approach that we proposed in Chapter 5. To reflect the effect of modeling er-
rors on the achieved trade-off between charging time and aging, we define a so-called
synthetic cell, which is a DFN model with concentration-dependent parameters and an
electro-motive force (EMF) that is different from the DFN model used for the proposed
approach, similar to the study done in Chapter 3 of this thesis.

The remainder of this chapter is structured as follows. In Section 6.2, the optimal
aging-ware charging approach is given, where the optimal aging-aware charging prob-
lem is first formulated, after which the SQP approach to solve this problem is given.
In Section 6.3, the results for the comparison between the various aging-aware charg-
ing methods is presented, which will serve as a validation of the proposed aging-aware
charging method. Finally, conclusions are drawn in Section 6.4.

6.2. OPTIMAL AGING-AWARE CHARGING
The goal of this chapter is to develop an aging-aware charging method that can system-
atically make a trade-off between charging time and aging. We propose to do this using
optimal control with the DFN model formulated in Chapter 4. For the reasons stated
in Chapter 5, we formulate the optimal-control problem as minimizing Li-ion loss due
to side reactions subject to a given charging time. To solve this optimal-control prob-
lem efficiently, we employ an SQP algorithm [14]. In this section, the optimal-control
problem for aging-aware charging is formulated. Here, we will first formulate the op-
timal aging-aware charging problem in continuous time, after which we will give the
discretized problem formulation. Finally, we will formulate the SQP approach for the
considered optimal aging-aware problem.

6.2.1. PROBLEM FORMULATION
The problem of minimizing Li-ion loss due to side reactions Ql in (4.10) can be formu-
lated as

min
cs ,ce ,φs ,φe , j1, j2,Ia

Ql ( j2) = min
cs ,ce ,φs ,φe , j1, j2,Ia

−as AF
∫ t f

t0

∫ δn

0
j2(x, t )dxdt , (6.1a)

where t0 and t f are the initial and final time, respectively. The objective function in
(6.1a) is minimized subject to the DFN model dynamics given by (4.2)-(4.8), and lower
and upper bounds on the input current, i.e.,

Ia,min < Ia(t ) ≤ Ia,max. (6.1b)
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Furthermore, (6.1a) may also be subject to particular inequality constraints, i.e.,

G (cs (x,r, t ),ce (x, t ),φs (x, t ),φe (x, t ), j1(x, t ), j2(x, t ), Ia(t )) ≤ 0, (6.1c)

which can be e.g., a constraint on the negative electrode overpotential to avoid lithium
plating [16] or to impose a maximum solid-phase concentration constraint to prevent
over-charging, and, finally, a minimum stored-charge constraint, i.e.,

s f = s0 + 1

Q

∫ t f

t0

Ia(t )dt , (6.1d)

for t ∈ [t0, t f ], and a given initial SoC s0 = s(0), cs (x, t0), ce (x, t0), and a final (desired) SoC
s f = s(t f ). Note that for compactness of notation, in (6.1), where possible, the time and
space dependency of the variables given have been left out of the equations.

To arrive at a finite-dimensional optimization problem, we discretize (6.1) at time
tk = kδt , with k ∈ K = {1, ...,K } using a backward Euler discretization, where
K = (t f − t0)/δt is the time horizon, in which the step size δt is chosen such that
δt (t f −t0) ∈N. Furthermore, (6.1) is discretized in space at position along the width of the
cell xl for l ∈ {1, . . . ,nn+ns+np } using the finite-volume method, and positions along the
radial direction of the particles rn,mn for mn ∈ {1, . . . ,nr,n} and rp,mp for mp ∈ {1, . . . ,nr,p }
in the negative electrode and positive electrode, respectively, using the finite-difference
method, as described in Chapter 2. This gives a discrete-time nonlinear optimal-control
problem with objective function

min
cs,k ,ce,k ,φs,k ,φe,k ,j1,k ,j2,k ,Ia,k

= δtδn as AF
nn

∑
k∈K

nn∑
l=1

j2(xl , tk ), (6.2a)

subject to the model dynamics

F (cs,k ,ce,k ,φs,k ,φe,k , j1,k , j2,k , Ia,k ) = 0, (6.2b)

where F (·) in (6.2b) is given by (4.13)-(4.16), the bounds on the input current,

Ia,min < Ia,k ≤ Ia,max, (6.2c)

the inequality constraints,

G (cs,k ,ce,k ,φs,k ,φe,k , j1,k , j2,k , Ia,k ) ≤ 0, (6.2d)

and the minimum stored-charge constraint,

sK = s0 + δt
Q

∑
k∈K

Ia,k ≥ s f , (6.2e)

with a given s0, cs,0, ce,0, s f . Furthermore, in (6.2), the bold-faced variables are similarly
defined as in (2.11), and φs,k , for example, denotes φs (k). For the remainder of this
chapter, the bold-faced variables without a time index indication, e.g. φs , will denote

φs = [φs,0 φs,1 ... φs,K−1 ]>. (6.3)
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The optimization problem as formulated in (6.2) is, computationally speaking, highly
complex as the number of decision variables of the optimization problem, given by(
(5+nr,n)nn + (5+nr,p )np +2ns +1

)
K , quickly increases with the fineness of the cho-

sen discretization. To reduce the computational complexity of (6.2), we can perform a
substitution of equations, similar to the method presented in Chapter 2. Since the steps
taken in this substitution of equations are largely the same as those in Chapter 2, we re-
fer the reader to the appendix of this chapter for the complete derivation. The resulting
reformulated optimization problem, which is given by

min
φs ,I

=Ql (φs ,Ia), (6.4a)

subject to

Frf(φs ,Ia) = 0, (6.4b)

Grf(φs ,Ia) ≤ 0, (6.4c)

in which Ql (φs ,Ia), Frf(φs ,Ia), and Grf(φs ,Ia) are given in the appendix of this chapter.
The objective (6.4a) is further subject to (6.2c) and (6.2e). Note that by comparison to
(6.2), (6.4) has only

(
nn +np +1

)
K decision variables. Further note that when assum-

ing j2 ¿ jn , j1 can be decoupled from j2, and in j2 in (6.2) will no longer be a decision
variable. This assumption is fair, as the battery should not age significantly within one
cycle.

6.2.2. SQP APPROACH TO OPTIMAL AGING-AWARE CHARGING
As (6.4) is a nonlinear optimization problem, obtaining its solution requires a nonlin-
ear optimization solver. In this chapter, we have solved (6.4) using SQP [14], which
aims at solving a nonlinear optimization problem by sequentially solving linearly con-
strained quadratic programs (LCQP), which are formed, e.g., by approximating the ob-
jective function with a quadratic equation and linearizing the constraints. In particular,
we will solve (6.4) by recursively solving the SQP subproblem

{φ̂s , Îa} = argmin
φs ,Ia

1
2

[
φs
I

]>
H i [φs

I

]+ (
F i

)> [
φs
I

]
, (6.5a)

where

H i =∇2Ql (φi
s ,Ii

a), (6.5b)

F i =∇Ql (φi
s ,Ii

a)>−∇2Ql (φi
s ,Ii

a)
[
φi

s

Ii
a

]
, (6.5c)

The objective (6.5a) is subject to the linearized state dynamics

Frf(φ
i
s ,Ii

a)+∇Frf(φ
i
s ,Ii

a)

[
φs −φi

s

Ia − Ii
a

]
= 0, (6.5d)

the linearized inequality constraints

Grf(φ
i
s ,Ii

a)+∇Grf(φ
i
s ,Ii

a)

[
φs −φi

s

Ia − Ii
a

]
≤ 0, (6.5e)
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input bound constraints (6.2c) and the minimum-stored charge constraint (6.2e), for
i ∈ N, and for some suitably chosen {φ0

s ,I0
a}, such that a feasible solution exists for the

next iteration of the SQP subproblem (6.5), on which we will elaborate upon in the next
section. For the next iteration i + 1, φi+1

s and Ii+1
a can be given by φ̂s and Îa , respec-

tively. We have derived the SQP subproblem (6.5) by making a quadratic approximation
of (6.4a), and linearizing the nonlinear constraints (6.4b) and (6.4c).

Note that the First-Order Necessary Conditions for optimality (FONC) [17] for (6.5)
are identical to the FONC for (6.4) if the SQP problem has converged, i.e., φi+1

s =φi
s and

Ii+1
a = Ii

a . The SQP algorithm can be terminated when, e.g.,

| j i+1 − j i | ≤∆tol, (6.6a)

in which ∆tol is a certain specified tolerance, and

j i =Ql (φi
s , I i )+λ11×(nn+np )K |Frf(φ

i
s , I i )| (6.6b)

is the optimal cost at iteration i , which can be considered as a merit function for the
SQP approach (6.5), and where the notation 1nr ×nc indicates a matrix of ones with nr

rows and nc columns. In (6.6b) the weight λ≥ 0 is chosen such that infeasible solutions
to the SQP subproblem (6.5) at iteration i return a higher cost than optimal feasible so-
lutions. Note that in this SQP approach, we allow infeasible solutions for the original
nonlinear optimal-control problem at iteration i , and as the algorithm converges, i.e.,
| j i+1− j i |→ 0, feasibility is obtained in the limit. Further note that we have not included
the inequality constraints (6.5e) into the merit function (6.6b), as we assume that when
the feasibility of (6.5d), which is included in the merit function (6.6b), holds within a
certain tolerance, then the inequality constraints (6.5e) also hold within that same toler-
ance.

We remark that the state variables, and with that also the constraint (6.5d), may be
eliminated in the SQP problem (6.5), by rewriting the linearized state equations (6.5d) in
a prediction form, where the state variables are given by a set of prediction matrices and
the inputs, i.e.

φs =Π(φi
s ,Ii

a)+Γ(φi
s ,Ii

a)Ia , (6.7a)

where

Π=−
(
∂Frf(φ

i
s ,Ii

a)

∂φi
s

)−1 (
Frf(φ

i
s ,Ii

a)−∇Frf(φ
i
s ,Ii

a)

[
φi

s

Ii
a

])
, (6.7b)

Γ=−
(
∂Frf(φ

i
s ,Ii

a)

∂φi
s

)−1
∂Frf(φ

i
s ,Ii

a)

∂Ii
a

. (6.7c)

By substituting (6.7) into the objective function (6.5a) and the inequality constraints
(6.5e), as is often done in model-predictive control, we can arrive at an SQP subprob-
lem with only the input variables as decision variables, and the state variables can be
updated with (6.7).
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6.2.3. INITIALIZATION OF THE SQP ALGORITHM
As we can observe from (6.5), the SQP algorithm needs to be initialized with an initial
guess φ0

s and I0
a for the decision variables φs and Ia . Choosing a good initial guess is

important, particularly when optimizing with the DFN model, for two reasons. The first
reason is that with a good initial condition, the SQP algorithm will require fewer itera-
tions i to converge, and will converge monotonically, i.e., the cost strictly decreases after
each iteration. The second reason has to do with the fact that in the SQP approach we
allow infeasible solutions at iteration i , and therefore we allow Frf(φ

i
s ,Ii

a) 6= 0. Therefore,
it can occur that at iteration i , the linearized system is far from physically meaningful,
and (6.5) becomes numerically sensitive due to the the logarithmic term in (4.13d), the
various root terms in (4.15), and the exponential term in (4.16). Particularly, this can
occur when the initial guess φ0

s ,I0
a is far from the optimal solution φ∗

s ,I∗a , such that the
calculated Newton step in the SQP subproblem leads to a large change from φi

s ,Ii
a to

φi+1
s ,Ii+1

a , which will in turn lead to a large change from Frf(φ
i
s ,Ii

a) to Frf(φ
i+1
s ,Ii+1

a ), for
which then the aforementioned numerical inaccuracies can occur. Note that as long
as the initial guess is feasible, i.e., Frf(φ

0
s ,I0

a) = 0, the numerical inaccuracies can be
avoided by taking a sufficiently small step, i.e.,

Ii+1
a =λs Îa + (1−λs )Ii

a , (6.8)

where λs ∈ [0,1] can be chosen to warrant convergence. However, when λs < 1, conver-
gence will also be slower, and therefore, λs should be 1 ideally. This can be achieved by
an adequate intitial condition, to which we can assign two criteria, based on the obser-
vations above, i.e.,

• The initial guess should be feasible in the sense that Frf(φ
0
s ,I0

a) = 0. In doing so,
we can ensure that at least in the first iteration of the SQP algorithm, numerical
inaccuracies do not occur.

• The initial guess should be somewhat close to satisfying the constraints. By choos-
ing an initial guess that is close to satisfying the constraints, the solution to the first
LCQP problem at iteration 1 does not need to substantially differ from the initial
guess. For example, when the initial guess for Ia is chosen as zero, the initial guess
will be far from satisfying the minimum stored-charge constraint (6.2e) (assum-
ing, of course, a realistic choice for s0 and s f ). The solution to the LCQP at the first
iteration will ensure that this constraint is met, as it is a linear constraint, and the
resulting solution will be far from the initial guess.

When determining an initial guess for φs and Ia , generally, first an initial guess for
Ia is determined, from which φ0

s can be obtained by simulating the DFN model with
I0

a . However, it can quite easily occur that the guessed current leads to the situation
cs > cmax

s , cs < 0 or ce ≤ 0, which is numerically an issue due to the logarithmic term in
(4.13d) and the various root terms in (4.15). Thus, a methodological approach is required
to reliably obtain an adequate initial guess. Note that based on the analysis done in
Chapter 5, if the constraints

cs (δn ,Rn , t ) ≤ cmax
s,n , cs (L−δp ,Rp , t ) ≥ 0, ce (0, t ) > 0, (6.9)
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Figure 6.1: Constant-current-constant-cs approach to obtain an initial guess of the decision variables for the
optimization problem (6.5).

are satisfied, then the constraints cs (x,r, t ) ≤ cmax
s , cs (x,r, t ) ≥ 0, and ce (x, t ) > 0 will also

be satisfied. Then, we propose to base the initial guess to the original optimization prob-
lem (6.4) for a particular charging time on an approximate solution to the problem where
the battery is charged in a minimum amount of time, i.e.,

min
cs ,ce ,φs ,φe , j1, j2,Ia ,t f

t f − t0, (6.10)

subject to (6.9) and the minimum-stored charge constraint (6.2e). An approximate so-
lution to this problem can be reasoned as follows. In the first stages, the current is set
to a maximum bound Imax, which should be chosen as large as possible, while keeping
ce > 0, until either of the other limits cs > cmax

s or cs < 0 are met. However, we should
remark that the choice for Ia,max is not crucial, as making it lower than necessary will
only result in a larger charging time, which can still be sufficiently small for the purpose
of finding an initial guess. Then, the battery is operated at whatever limit it has met first,
until the next limit is met, after which the battery is kept at that limit. At any stage, if
the minimum-stored charge constraint (6.2e) is met, the approximate solution I∗a has
been found, which charges the battery with a t∗f − t0 charging time. Note that keeping

the battery at the limit defined by ce > 0 should be avoided, because charging the bat-
tery at the limits defined by cs > cmax

s or cs < 0 is faster, since the amount of charged
stored in the battery is directly related to these quantities, while that is not the case for
ce . Fig. 6.1 illustrates this with an example, where we can see that after charging with a
large constant current, while avoiding ce ≤ 0, the limit cs = cmax

s −ε is reached, where ε is
some small number, after which the battery is kept at this limit until it is fully charged.
The applied current in the stages where it needs to be determined, can be found rela-
tively easily by extending the model implementation given in Chapter 2 with an addi-
tional algebraic equation corresponding to the particular stage which the battery is in.
For instance, if the battery is in a constant-cs stage, we would need to add the algebraic
equation cs (xnn ,rnr,n , tk ) = cmax

s − ε to (2.14) and then solving the resulting set of alge-
braic equations in the same way as described in Chapter 2. Note that the battery is not
kept at cs = cmax

s , as solving the resulting algebraic equations is numerically difficult, and
instead the battery is kept slightly below this limit. The initial guess for the optimization
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problem (6.2) for a particular charging time (t f − t0) ≥ (t∗f − t0), can then be found by

scaling the approximate solution I∗a as

I 0(t ) =
t∗f − t0

t f − t0
I∗(t

t∗f − t0

t f − t0
), (6.11)

and φ0
s is obtained by simulating the DFN model with I 0.

6.3. SIMULATION STUDY
In this section, we will validate the proposed optimal aging-aware charging method. In
doing so, we will firstly compare the computational complexity of several solution meth-
ods based on the choices made in Section 6.2, as well as a solution method that uses an
off-the-shelf solver. Then, we will study the impact of the coarseness of the spatial and
temporal discretization of the optimal-control problem (6.2). This is followed by a study
where several models for optimal aging-aware charging are compared in terms of the
accuracy of the model output as well as the internal states. Here, we define a synthetic
cell, that has concentration-dependent parameters as well as an error in the electro-
motive force (EMF), that represents a "true" battery, to which the other models (without
concentration-dependent parameters and with the original EMF) are fit to, similar to
the study done in Chapter 3. Specifically, we consider here the (simplified) DFN model,
the SPM, and the surrogate modeling approach presented in Chapter 5. Finally, we will
compare several aging-aware charging methods, including the multi-stage charging ap-
proach proposed in Chapter 4, the optimal-control approach using a surrogate model
in Chapter 5, and the method proposed in this chapter. Additionally, we also include an
optimal-control approach using the SPM in this comparison. The methods are validated
against the optimal-control approach presented in this chapter using the synthetic cell
model, which represents the best achievable trade-off between charging time and aging.

6.3.1. COMPARISON OF SOLUTION METHODS
In Section 6.2.2, we have made several choices in the formulation of the SQP subprob-
lem. Firstly, we proposed to apply the method for the substitution of equations to arrive
at (6.4). However, it is also possible to apply the SQP approach on the original discrete-
time optimal-control problem (6.2). In this case, the various derivative matrices, i.e., the
Jacobians and Hessian used in (6.5) would be highly sparse, of which solvers can possibly
take advantage of. A second choice that has been made in Section 6.2.2 is that we have
proposed to substitute the linearized state equations (6.5d) into the objective function
and constraints of (6.5). In this way, the resulting SQP subproblem has only the input
variables I as decision variables. However, the computation of the matrices in (6.7) in-
volves either solving an inverse or solving a system of linear equations, which both may
take a significant amount of computation time. To study impact of these choices on
computation time, we have implemented the SQP problems resulting from the various
possible combination of choices, which we will denote as follows:

• Variant 1A: (6.2) is solved using SQP without substituting the linearized dynamics
into the objective function and constraints.
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Figure 6.2: Results showing the comparison between the various considered solution methods, where in (a) the
effect of the time horizon on the solution time of the optimization problem is shown, in (b) the computation
times of the matrices in (6.5) and (6.7), and the computation time of the QP problem (6.5) is shown, and in (c)
the convergence of the various solution methods is shown. Note here that the convergence of Variants 1A and
1B coincides exactly.

• Variant 1B: (6.2) is solved using SQP with the substitution of the linearized dynam-
ics into the objective function and constraints.

• Variant 2A: (6.4) is solved using SQP without substituting the linearized dynamics
into the objective function and constraints.

• Variant 2B: (6.4) is solved using SQP with the substitution of the linearized dynam-
ics into the objective function and constraints. This is the proposed method.

We will furthermore solve (6.4) using IPOPT [13] to show the advantage of using the
proposed SQP approach. Note that IPOPT optionally allows the Hessian function of the
optimization problem to be specified by the user. However, determining the Hessian
function is not trivial, and therefore this option has not been used, which means that
the Hessian is approximated numerically by IPOPT. This may result in a slower conver-
gence of the algorithm used in IPOPT. However, we have specified the Jacobian of the
objective function and the nonlinear dynamics to IPOPT, as these are also used in the
SQP approach. Further note that we have also solved (6.2) using IPOPT, however, this
implementation was slower than when solving (6.4) with IPOPT, and therefore this im-
plementation has been left out of the results shown below. Finally, we note that Variant
2A is also not shown in the results below, as the H i matrix was nonconvex, even at a
(locally) optimal solution (obtained using any of the other variants). However, when
substituting the state dynamics into the objective function, as is done in Variant 2B, and
as also described above, the objective function of the LCQP becomes convex.

In Fig. 6.2a, the solution times for the various considered variants is shown for a
range of time horizons K . In these simulations, the grid parameters have been chosen as
nn = ns = np = nr,n = nr,p = 3, and the battery is charged from 20% SoC to 99% in a given
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charging time of 50 minutes. The time horizon is then varied by varying the step size δt .
We observe that Variant 1A is the slowest in terms of computation. In Fig. 6.2b, we can
see that the bottleneck in the solution time for this variant is given by the total time it
takes to solve the LCQPs given by (6.5), which have vastly more decision variables than
the LCQPs of Variants 1B and 2B. For example, with K = 100, the number of decision
variables for the LCQPs of Variant 1A is 4900, while the number of decision variables for
the LCQPs of Variants 1B and 2B is only 700. On the other hand, the computation time
of the matrices in (6.5) and (6.7) actually takes the least amount of time compared to the
other variants. This is largely because in Variant 1A the matrices in (6.7) do not need to
be computed, which involves either computing an inverse or solving a linear system of
equations, where both are computationally intensive operations. We can furthermore
observe that the computation time of the LCQPs for Variants 1B and 2B is roughly the
same, since they both have an equal amount of decision variables, while the large differ-
ence in solution time is caused by the computation time of the matrices. This is due to
the fact that for Variant 1B, the matrices that are computed in (6.7) are of a significantly
larger size than for Variant 2B. Thus, we observe that Variant 2B strikes the best balance
in the computational effort required to compute the various matrices in (6.5) and (6.7),
and the computational effort in solving the LCQPs of the SQP algorithm.

In Fig. 6.2a, we can also see the solution time of solving (6.4) with IPOPT. While IPOPT
is much faster than Variant 1A and almost as fast as Variant 1B, it is roughly an order of
magnitude slower than Variant 2B. In Fig. 6.2c, we can see that this is partly because
IPOPT takes about 3 times as many iterations as the other variants to converge to the
same solution. We can further see that all SQP variants converge at roughly the same
speed, where Variants 1A and 1B converge in exactly the same manner, as these vari-
ants both solve the same SQP subproblem derived from (6.2), with the only difference
being the method for solving the LCQPs, whereas Variant 2A solves the SQP subproblem
derived from (6.4). However, the average computation time per iteration is also signifi-
cantly larger for IPOPT, which could be because IPOPT has to numerically approximate
a Hessian at every iteration. Therefore, if an analytic Hessian function would be sup-
plied to IPOPT, a faster implementation could be obtained. However, besides the sec-
ond derivates of the objective function, the Hessian function also requires the second
derivatives of the constraints, which are not necessary for the proposed SQP approach,
which can be seen as an advantage. Another advantage of the proposed SQP approach
over IPOPT is that it is simpler in implementation, and therefore can more easily be im-
plemented on an embedded system.

6.3.2. IMPACT OF DISCRETIZATION ON THE PARETO FRONT

As we have shown in Chapter 2, the spatial discretization of the DFN model has a large
influence on the resulting computational complexity. Besides varying the spatial dis-
cretization of the DFN model, the choice for the coarseness of the temporal discretiza-
tion of the optimization problem (6.4) is also of importance, as the number of decision
variables for the optimization problem (6.4) decreases inversely with an increasing step
size δt . To study the impact of spatial and temporal discretization of (6.4), we define a
base choice of discretization that is fine, and compare different combinations of spatial
and temporal discretization to this base choice. To define this base choice, we firstly de-
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Figure 6.3: Results showing the trade-off that can be made in computational complexity and model accuracy
by varying the spatial and temporal discretization for the purpose of optimal aging-aware charging, where in
(a) the normalized root-mean-square error (NRMSE) and solution time of the optimization problem is shown,
in (b) the obtained Pareto fronts using various combinations of spatial and temporal discretization are shown,
and in (c) where the electrolyte concentration for these various combinations is shown.

fine various levels of model orders to consider, shown in Table 6.1, which have been ob-
tained with the same methodology as presented in Chapter 2. In Table 6.1, the normal-
ized root-mean-square error (NRMSE) given by (2.18) in relation to the output voltage
of a base DFN model with grid parameters nn ,ns ,np ,nr,n ,nr,p = 40 is also shown. Then,
the base choice of discretization that we compare other choices to is given by the combi-
nation of the high-order spatial discretization and a step size given by δt = 0.005t f , with
t0 = 0. For each combination of model order and step size, we solve (6.4) for a range of
charging times, and then simulate the resulting solution with a DFN model with the high
model order and a step size of 1 s.

In Fig. 6.3a, the NRMSE between the various considered combinations and the base
choice of discretization, and the mean solution time of (6.4) for the range of charging
times is shown. Specifically, the mean solution time of a particular combination of spa-
tial and partial discretization is computed from the mean of the solution times of solving
the optimization problem (6.4) for the range of charging times shown in Fig. 6.3b. We can
firstly observe that even with a coarse spatial and temporal discretization, the resulting
NRMSE can still be considered to be very low, as also illustrated in Fig. 6.3b. Note we
can also observe that at large step sizes, it can occur that the combination of a large step

Table 6.1: Selected grid parameters of the varying degrees of model orders shown in Fig. 6.3.

Model order Grid param.∗ NRMSE [10−3]
Extra low [6,2,5,3,3] 9.6
Low [8,2,6,3,3] 5.6
Medium [11,2,8,3,3] 2.7
High [16,2,12,3,3] 0.98
∗The order of the grid parameters is [nn ,ns ,np ,nr,n ,nr,p ].
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size and a high model order gives a larger NRMSE than the combination of a large step
size and a low model order, which is counter-intuitive. This can be explained by the fact
that, at large step sizes, the errors made due to the choice of step size dominate over the
errors made due to the choice in model order. Since all solutions are simulated with the
same model, it can then coincidentally occur that with the choice of a large step size, a
higher model order shows a larger error than a lower model order.

While Fig. 6.3b shows that the obtained Pareto front with a large step size (dashed
green line) shows a small error compared with the base Pareto front (black line), from
Fig. 6.3c, we can see that the representation of the internal states is more significantly
affected by the choice of the step size, which is especially relevant when the goal is to
constrain the internal states to avoid certain regions (that are not considered in the ag-
ing model) in order to avoid excessive aging or to ensure a safe operation of the battery.
Therefore, based on the results shown in Fig. 6.3, a good choice of discretization is an
extra-low model order with a step size δt = 0.05t f , achieving a mean solution time of
0.1 s, a NRMSE less than 2% (green square in Fig. 6.3a), and still an adequate descrip-
tion of the internal states. These results show that with the proposed SQP approach, and
with a well-considered choice of spatial and temporal discretization of the optimization
problem, the optimal aging-aware charging problem with the DFN model can be solved
with a small computation time, which makes it suitable for a closed-loop implementa-
tion. Note that the solution times achieved here are with a control horizon that spans the
entire charging time, which is in contrast to the MPC approaches taken in, e.g., [10, 11],
where similar solution times were reported for a control horizon of only 5 time steps.

6.3.3. COMPARISON OF MODELS FOR OPTIMAL AGING-AWARE CHARGING

In the previous chapters, we have compared our proposed methods for aging-aware
charging with the assumption that the DFN model represents a "real" battery. However,
in doing so, we ignore any modeling errors that can also further affect the effectiveness
of the proposed methods. Specifically, in the method proposed in Chapter 4, we select
the design-adjustable variables of the multi-stage protocols using a DFN model, which
is the same DFN model that is then used to validate the method. However, in reality, the
methods should be validated with a real battery, although this would require extensive
experimental work, which was not intended for the work done in Chapter 4. To reflect
the effect of modeling errors on the proposed aging-aware charging methods, in this
section, we represent the "true" battery with a DFN model, which we will refer to as the
synthetic cell, that has concentration-dependent parameters, as well as an error in the
electro-motive force (EMF), similar to the approach taken in Chapter 3. A DFN model
without concentration-dependent parameters, which we will refer here to as the simpli-
fied DFN (SDFN) model, is then parameterized with the method described in Chapter 3.
The aging-aware charging methods described in Chapters 4 and 5, as well as the method
proposed in this chapter are then based on this estimated model, and all the methods
are validated on the synthetic cell.

The parameters of the synthetic cell model are shown in Table 6.2, and are based
on one of the parameter sets that have been obtained based on the experimental data
presented in Chapter 7. The parameters D̂s,p and D̂e are considered to concentration-



6

136 6. OPTIMAL AGING-AWARE CHARGING USING ELECTROCHEMISTRY-BASED MODELS

dependent, and are given by

D̂s,p (sp ) = 2.6603×10−4+21.5(sp−sp,100%)2
, (6.12a)

D̂e (ce ) = 0.17exp(−0.65ce
ce,0

), (6.12b)

of which the type of functions have been chosen roughly based on the concentration-
dependency of the parameters observed in Fig. 2.2 in Chapter 2 and the measured EMF
of the battery used in Chapter 7 is also adapted to reflect an error in the EMF, as follows

UEMF(sc ) = ŪEMF +0.01sin(4πsc ), (6.12c)

where ŪEMF is the original EMF. The various values in (6.12) have chosen such that an
RMSE of around 10 mV between the synthetic cell model output and the estimated model
using the input currents shown in Fig. 6.4, which are the same current profiles that have
been used in the experimental work of Chapter 7. This is a realistic error that has been
observed in the analysis of the experimental data that will be presented in Chapter 7 as
well. We should remark that in this chapter, aside from the parameters listed in Table 3.4,
we also estimate ∂ lnce

∂x as a parameter, which was assumed to be zero in Chapter 3. We
further remark that the range for sn,100% has been chosen as [0.7,0.8] to reduce the ef-
fect of numerical sensitivities due to the root terms in the exchange current density i0

in (2.5c). Such numerical sensitivities can occur when cs is close to cmax
s , where in the

process of numerically solving the DFN model equations, cs may exceed cmax
s , leading

to negative values in the root terms in i0 in (2.5c). This is particularly a problem when
simulating with a current profile that has been obtained using a different model, where
in the model that is simulated with, cs may reach cmax

s sooner than the model that has
been used to determine the optimal current profile. By reducing the bounds in the range
of sn,100%, this problem can be somewhat mitigated.

Aside from considering the methods proposed in Chapter 4, Chapter 5, and this
chapter, we also compare these methods with an optimal-control approach with the

Table 6.2: Parameters of the synthetic cell model.

Parameter Unit Cell Neg. electrode Separator Pos. electrode
Q [C] 10802 - - -
R̂cc [Ω] 0.000736 - - -
s0% [−] - 0.037 - 0.922
s100% [−] - 0.747 - 0.379
D̂s [s−1] - 0.000343 - *
D̂e [Cs−1] - * * *
p̂ [−] - 144 21785 638
t 0+ [−] - 0.306 0.306 0.306
σ̂ [Ω−1] - 6.81×106 - 7.61×104

κ̂ [Ω−1] - 3.62 3.62 3.62
R̂ f [Ω] - 0.000443 - 0
αa [−] - 0.506 0.506 0.506
k̂0

∗∗ - 0.000361 - 0.000923
ε̂e [C] - 6927 586 2475
∗Concentration-dependent parameters, given by 6.12
∗∗[s−1 · (m/mol)ˆ(3(1−2αa ))]
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Figure 6.4: Current profiles used to generate data with the synthetic cell model for parameter estimation.
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Figure 6.5: Difference between the output voltage and various internal states of the DFN model simulated with
the original parameters obtained from the experimental data shown in Fig. 7.4 presented in Chapter 7, and the
DFN model simulated with the synthetic cell model parameters.

SPM. Specifically, the SPM is used to solve the problem formulated in (6.1), since the
SPM often used in literature for the purpose of aging-aware charging, see e.g. [5, 7]. The
parameters of the SPM are estimated in the same way as for the SDFN, based on the
same estimation data that has been generated with the synthetic cell.

In Fig. 6.5, the difference in the output voltage and several internal states is shown
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Figure 6.6: Comparison of the output voltage and several internal states resulting from the various considered
models. The dashed-blue line has been obtained by simulating the SPM model with the same parameters that
have been used to simulate the SDFN model. Further note that sn is the stoichiometry at x = δn , and sp is the
stoichiometry at x = L−δp .

for the DFN model simulated with the original parameters obtained based on experi-
mental data and the synthetic cell. It can be seen that the differences in the internal
states can be considered to be small, while the difference in the output voltage can be
considered large, which is around 28 mV for the data shown in Fig. 6.5. Furthermore, it
seems that the difference in the output voltage is mostly caused by a difference in the
positive-electrode solid-phase diffusion dynamics and a difference in the electrolyte dif-
fusion dynamics. This can be explained by the fact that the concentration-dependent
parameters introduced have a direct influence exactly on the two aforementioned dy-
namics. This again shows the difficulty in estimating the DFN model parameters based
on only input/output data, as over-fitting of the parameters to the data can easily occur,
since a small change in the internal model dynamics can lead to a large change in the
output voltage, as can be observed from Fig. 6.5.

In Fig. 6.6, a validation simulation is shown of the various models that are considered
in this study. As described above, the parameters of the models have all been estimated
based on the same synthetic estimation data, of which the data shown in Fig. 6.6 is not a
part of. The surrogate model parameters are based on the identified SDFN model using
the methodology described in Chapter 5. Note that with the surrogate model it is crucial
that the estimation data represents the data to which it will be applied to. Therefore, the
surrogate model has been determined based on data obtained from solving the prob-
lem (6.2) with the identified SDFN model for two different charging times (specifically,
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50 minutes and 83 minutes) when charging the battery from 20% to 99%. In Fig. 6.6,
we observe that, with all models (excluding the dashed-blue line), an adequate fit to the
output voltage is obtained of around 12 mV RMSE. However, the differences in the inter-
nal states are substantially larger. Notably, all the determined models seem to estimate
the side-reaction over-potential η2 conservatively, i.e., the estimated η2 is at its extreme
larger for the identified models compared to the η2 from the synthetic cell. It is also no-
table that the SPM seems to perform rather well (in describing the output voltage) for
what can be considered a high-energy (HE) cell, while with the HE cell parameters con-
sidered in Chapter 2, the output voltage of the SPM deviated significantly from the out-
put voltage of the DFN model. On the other hand, we observe that most of the internal
states are not adequately described by the SPM. The dashed-blue line in Fig. 6.6 shows
the resulting output and internal states when simulating the SPM with the parameters
obtained from estimation with the SDFN model. We observe then that both the output
voltage and internal states do not correspond well to those of the SDFN model, which
shows that the internal states described by the SPM in this case are not physically mean-
ingful, even if its parameters would be physically meaningful. This supports the conclu-
sion that the SPM does not adequately describe the internal dynamics of the battery, and
therefore caution should be taken when using the SPM, particularly for HE cells.

We can furthermore observe from Fig. 6.6 that the estimated internal states of the
SDFN model also deviate significantly from those of the synthetic cell, especially com-
pared to the differences in internal states shown in 6.5. This supports the conclusion
made in Chapter 3, that cell teardown should be used to determine tighter parameter
ranges, in order to avoid over-fitting of the parameters to the estimation data. Finally,
we can observe that the output voltage of the SDFN model and the surrogate model cor-
respond relatively well, which additionally validates the surrogate modeling approach.

6.3.4. PARETO-OPTIMAL-FRONT COMPARISON

The Pareto front for the various approaches are shown in Fig. 6.7a. Here, the battery is
charged from 20% to 99% with various charging times. Based on the conclusions stated
in Section 6.3.2, the grid parameters of the SDFN model are selected as the extra-low
model-order grid parameters, and the step size is selected as δt = 0.05t f . The grid pa-
rameters of the synthetic cell model have been selected as the high model-order grid pa-
rameters, and the step size has been selected as δt = 0.005t f . For the surrogate model,
the step size is selected as δt = 0.01t f , which we have found to strike a good balance be-
tween the solution time and the obtained Pareto front. The grid parameters of the SPM
have been selected as the high model-order parameters, as for the SPM approach the dif-
ference between the solution time with the high model-order parameters and extra-low
model-order parameters was marginal. Furthermore, for the SPM approach, the step
size is selected as δt = 0.02t f . The design-adjustable parameters of the CC-CV(1) and
3-CC-CV(5) protocols have been determined using the SDFN model with the methodol-
ogy presented in Chapter 4. Note that the 3-CC-CV(5) protocol has 5 design-adjustable
parameters, namely 3 CC-stage currents and 2 voltage thresholds, which specify when to
switch to the next CC-stage. Therefore, with 5 parameters, it is not computationally fea-
sible to find the best combination of parameters using brute-force optimization, as done
in Chapter 4. Instead, we have found the parameters by switching the CC-stage currents
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Figure 6.7: Comparison of the Pareto optimal fronts of the various considered aging-aware charging ap-
proaches, where in (a) the trade-off between charging time and Li-ion loss due side reactions Ql is shown,
and in (b) the current, voltage, side-reaction over-potential η2 and side-reaction flux j2 for the various aging-
aware charging approaches is shown for a charging time of around 61 minutes. The dashed black line in (b)
represents the threshold for when lithium plating occurs [16].

based on SoC thresholds, since we have found the obtained Pareto optimal front to be
less sensitive to the selection of SoC thresholds than voltage thresholds, similar to what
has been done in e.g., [3, 18]. The corresponding voltages at the threshold SoC are then
selected as the threshold voltages, essentially leading to closed-loop controlled charg-
ing based on voltage levels. Finally, the multi-stage protocols are terminated when the
CV-stage current becomes smaller than 1 A, which generally corresponds to the battery
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being charged to around 99%.

The resulting current profiles from the various approach are all simulated with the
synthetic cell model with δt = 1s and the high model-order parameters. Furthermore,
we note that with the optimal approaches, the Pareto front could not be obtained for
the same range as shown for the synthetic cell, because at low charging times, the solid-
phase concentration cs in the negative electrode would reach cmax

s sooner in the various
models used in the optimal approaches than in the synthetic cell model with a particular
current profile, as explained before. Note that this is a limitation of the DFN model. In
reality, this would not be a limitation, of course, although over-lithiation of the negative
electrode material can also have averse aging effects [19], although these aging effects
are not considered in this study. Finally, we remark that in this simulation study, we
apply the computed current profiles from the optimal approaches in open-loop to the
synthetic cell. Unlike the multi-stage charging protocol, where the charging protocol
switches the applied current based on voltage levels, robustness to modeling errors is
not present in the optimal approach.

In Fig. 6.7a, we can first observe that, as could be expected, the optimal approaches
have a substantially better Pareto front than the CC-CV and 3-CC-CV protocols. With
a 60-minute charging time, for example, a roughly 2 times reduction in Li-ion loss due
to side reactions is achieved with the optimal approaches compared to the 3-CC-CV(5)
protocol. In Fig. 6.7b, we can see why a large difference between these approaches is ob-
served. Due to the fact that the multi-stage protocols do not exceed 4.2 V, the charging
protocols have a relatively long CV stage, in which the battery cannot be charged much,
which also means that the battery has to be charged more in the CC-stage(s) with a rela-
tively higher current compared to the optimal approaches. These large currents lead to
a high side-reaction over-potential, which in turn leads to a large amount of Li-ion loss.
Note that while the optimal approaches show a higher maximum voltage than the 3-CC-
CV(5) protocol, the battery is not charged more with the optimal approaches than with
the 3-CC-CV(5) protocol, which means that the EMF voltage at the end of charging is the
same for all the various charging methods. This is in contrast to other studies, e.g., [20],
where a higher CV voltage of their proposed fast-charging protocol leads to harmful ef-
fects. At the charging time of 61 minutes shown in Fig. 6.7b, the CC-CV(1) protocol even
exceeds the lithium-plating threshold, which is −0.21V in this case [16], indicated by the
dashed black line. We can further observe that the 3-CC-CV(5) protocol does not exceed
this threshold, and yet its current profile leads to a considerably larger aging compared
to the optimal approaches. This again shows the importance of considering an actual
aging model in aging-aware charging, since just imposing the lithium plating constraint
η2 >−0.21, as done in e.g., [4, 21–23], renders it impossible to make an effective trade-off
between charging time and aging.

We can furthermore see in Fig. 6.7a that all the optimal approaches are close to the
best possible Pareto front, obtained by solving the optimal aging-aware charging prob-
lem (6.1a) with the synthetic cell model. This shows that the accuracy of the model used
is not crucial for obtaining a good trade-off between charging time and aging, as long
as constraints on the internal states are not considered. This also means that, at least
for the considered model parameters, modeling errors do not have a large effect on the
minimization of Li-ion loss due to side reactions, which bodes well for a practical ap-
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plication of these methods. We can observe in Fig. 6.7b that the charging currents of
the optimal approaches also significantly differ from each other, and yet lead to similar
amount of Li-ion loss. This suggests that the amount of Li-ions lost due to side reactions
is not particularly sensitive to the exact choice of current profiles, which also explains
why the Pareto front of the various optimal protocols are close to each other. The cru-
cial aspect to avoid excessive aging seems to be to minimize the time spent in CV mode,
by allowing a larger maximum voltage, and thereby allowing the battery to be charged
relatively more in the final stages of charging.

While the optimal approaches show a good performance in 6.7a, their practical im-
plementation should be considered. Firstly, we notice that the output voltage can be-
come considerably large, up to around 4.3V. Although this does not have any averse aging
effects according to the considered side-reaction model, in reality, it could be desirable
to avoid excessively large voltages, as this could lead to unsafe phenomenons that have
not been modeled. Secondly, in the considered approach, the current profiles are com-
puted for a specific amount of charge transfer s f − s0. In a practical situation, the initial
state of charge and the capacity of the cell may not be estimated accurately, which could
lead to over-charging of the battery if care is not taken. Therefore, there should be some
form of feedback in a practical implementation, in order to ensure that, at least, the
battery is not overcharged. This could be achieved using a closed-loop optimal-control
approach, as done in, e.g., [9–11] or a reference tracker approach, as done in, e.g., [24].
However, for these approaches, a state estimator is necessary, which additionally com-
plicates the implementation. A relatively straight-forward alternative is to charge the
battery with the computed optimal profile up to a maximum threshold voltage (if this is
reached), after which the battery is relaxed until it reaches a threshold CV voltage, e.g.,
4.2 V, followed by a CV stage until the threshold current of 1 A (corresponding to about
0.03 C-rate) is reached. In the next simulation study, we apply the latter approach to
study its impact on the achievable Pareto front.

The results of this study are shown in Fig. 6.8. Here, the maximum allowable volt-
age is set to 4.28 V. Note here also that the Pareto front using the synthetic cell has been
computed with a 4.28 V constraint on the output voltage, to reflect the best possible
Pareto front with a 4.28 V voltage limit. Further note that the obtained Pareto front is
only marginally worse than without the voltage limit, since in the simulations of the
Pareto front of the synthetic cell in Fig. 6.7a this voltage limit was only exceeded slightly.
We then consider two cases for the optimal SDFN approach. In the first case, the op-
timal aging-aware charging problem is solved with a 4.28 V constraint, shown as the
solid red line in Fig. 6.8. However, due to modeling errors, the simulated voltage of the
SDFN model is generally lower than the simulated voltage of the synthetic cell, which
means that when constraining the SDFN model to 4.28 V, the voltage of the synthetic
cell exceeds this limit when applying the corresponding current profile on the synthetic
cell. We can observe this in Fig. 6.8b, where we see that the battery is charged with the
optimal profile computed using the SDFN model, until the 4.28V limit is reached (red
curve). After a brief relaxation period, the battery is kept in the CV mode for a consid-
erable time, although still considerably less than with the 3-CC-CV(5) protocol. As we
can observe in Fig. 6.8a, this has a large impact on the achieved Pareto front, although its
pareto front is still better than those of the multi-stage protocols. In the second case, the
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Figure 6.8: Results showing the impact of applying a voltage limit on the resulting Pareto front, where in (a) the
trade-off between charging time and Li-ion loss due to side reactions Ql is shown, and in (b) the current and
voltage of the various considered cases for a charging time of around 65 minutes is shown.

optimal aging-aware charging problem is solved with a conservative 4.23 V constraint
(dashed red curve), thereby avoiding the 4.28V with a significant margin. In doing so, a
good Pareto front can still be achieved, without reaching an excessively large voltage. In
Fig. 6.8a, we can furthermore see that the best possible Pareto front with a 4.2V voltage
limit roughly coincides with the Pareto front of the 3-CC-CV(5) protocol, which shows
that the design-adjustable parameters found for this protocol are close to optimal. It
also shows again that in order to achieve a good trade-off between charging time and
aging, the maximum voltage limit should be as large as possible.

6.4. CONCLUSIONS
In this chapter, we have presented an optimal aging-aware charging approach using the
DFN model. Here, we have formulated the optimal aging-aware charging problem and
applied the method of the substitution of equations presented in Chapter 2 to arrive at
a reformulated optimal-control problem with a reduced computational complexity to
the originally formulated optimal-control problem. Furthermore, to solve the optimal-
control problem in a computationally efficient manner, we have employed a sequen-
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tial quadratic programming (SQP) algorithm. To validate the proposed optimal aging-
aware charging approach, we have compared our proposed approach to several rule-
based protocols, such as those considered in Chapter 4, as well as optimal aging-aware
approaches using the SPM and the surrogate modeling approach that we proposed in
Chapter 5. To reflect the effect of modeling errors on the achieved trade-off between
charging time and aging, we have defined a so-called synthetic cell, which is a DFN
model with concentration-dependent parameters and an electro-motive force (EMF)
that is different from the DFN model used for the proposed approach, similar to the
study done in Chapter 3.

In the validation of the proposed optimal aging-aware charging approach, we have
shown that with the employed SQP algorithm, the formulated optimal-control problem
can solved roughly an order of magnitude faster than with an off-the-shelf solver. Fur-
thermore, we have shown that with a well-considered choice of spatial and temporal dis-
cretization of the optimal-control problem, and with the employed SQP algorithm, the
optimal-control problem can be solved in about 0.1 s for a full control horizon, which
makes the proposed approach suitable for a closed-loop implementation, without com-
promising with a short control horizon, as is done in the MPC approaches taken in, e.g.,
[10, 11], where similar solution times were reported for a control horizon of only 5 time
steps. Then, we have shown that despite large differences in internal states between the
considered SDFN model for optimal aging-aware charging and the synthetic cell, a good
trade-off in battery aging and charging time has been achieved using the proposed op-
timal aging-aware charging approach. This shows that the accuracy of the model used
is not crucial for obtaining a good trade-off between charging time and aging, as long as
constraints on the internal states are not considered, which may be important for safety
considerations, in which case a well-parameterized DFN model is crucial.

6.A. APPENDIX: REFORMULATION OF THE DISCRETE-TIME

OPTIMAL-CONTROL PROBLEM

Starting from the discrete-time optimal-control problem (6.2), we will derive the refor-
mulated problem (6.4) through substitution of the model equations. Note that through-
out this derivation, we assume that j2 ¿ jn , and therefore j1 u jn , and we will apply
Simplification [S1] introduced in Chapter 2, which will simplify the derivation. Under
this assumption, the model equations are then given by

0 = Âcs cs,k + B̂cs j1,k +cs,k−1, (6.13a)

0 = Âcs ce,k + B̂cs jn,k +ce,k−1, (6.13b)

0 = Aφsφs,k+Bφs jn,k+Cφs Ia,k , (6.13c)

0 = Aφeφe,k+Bφe jn,k+Dφe log(ce,k ), (6.13d)

jn,k = diag

(
i0,1,k

RT

)
η1,k , (6.13e)

j2,k =− i0,2

F
exp

(
− 2αc,2F

RT
η2,k

)
, (6.13f)
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in which the diag(v) denotes a diagonal matrix with the elements of vector v on the main
diagonal, and where

η1,k =φs,k − φ̄e,k −U(c̄s,k )−F R f jn,k , (6.13g)

η2,k =φs,k − φ̄e,k −U2 −F R f jn,k . (6.13h)

Over the entire time horizon, cs , ce , φe , and jn can be given by

cs =Ωcs jn +Πcs , (6.14a)

ce =Ωce jn +Πce , (6.14b)

φe =Ωφe jn +Πφe log(ce ), (6.14c)

jn =Ωφsφs +Πφs Ia , (6.14d)

where

Ωcs =−
([

0ncm (K−1)×ncm (K−1) 0ncm (K−1)×ncm (K−1)

Incm (K−1) 0ncm (K−1)×ncm (K−1)

]
+ IK ⊗ Âcm

)−1 (
IK ⊗ B̂cm

)
,

Πcs =−
([

0ncm (K−1)×ncm (K−1) 0ncm (K−1)×ncm (K−1)

Incm (K−1) 0ncm (K−1)×ncm (K−1)

]
+ IK ⊗ Âcm

)−1
[

cm,0

0ncm (K−1)×1

]
,

Ωφe =−IK ⊗
(

A−1
φe

Bφe

)
, Πφe =−IK ⊗

(
A−1
φe

Dφe

)
,

Ωφs =−IK ⊗
(
B−1
φs

Aφs

)
, Πφe =−IK ⊗

(
B−1
φs

Cφs

)
,

for m ∈ {s,e}, and where the notation 0 represents a matrix of zeros, I is the identity
matrix, ⊗ is the Kronecker product, ncs = nr,nnn +nr,p np , and nce = nn +ns +np . Note
that we can further substitute jn into the other equations in (6.14), to arrive at

cs = Γcs Ia +Φcsφs +Πcs , (6.15a)

ce = Γce Ia +Φceφs +Πce , (6.15b)

φe = Γφe Ia +Φφeφs +Πφe log(ce ), (6.15c)

in which

Γc,m =Ωc,mΠφs , Φc,m =Ωc,mΩφs , Γφe =ΩφeΠφs , Φφe =ΩφeΩφs ,

for m ∈ {s,e}. Then, by substituting (6.14d) and the equations in (6.15) into (6.13e), we
can arrive at a set of equations that depends only on the variables φs and Ia , which we
will denote as

Frf(φs ,Ia) = 0. (6.16)

The equations in (6.15) can subsequently be substituted in j2 in (6.13), which can then
be written as

j2 =Ω j2 exp
(
Γ j2 Ia +Φ j2φs +Π j2 log(ce )

)
, (6.17)
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in which

Ω j2 =
i0,2

F
exp

(
2αc,2FU2

RT

)
, Γ j2 =−2αc,2F

RT

(
Γφe +Πφs

)
,

Φ j2 =−2αc,2F

RT

(
F R f Ωφs +Φφe − Inn K )

, Π j2 =−2αc,2F

RT
Πφe ,

and Ql can be expressed as

Ql =Θ j2 j2, (6.18)

whereΘ j2 = as,n AFδt
δn
nn

11×nn K , in which 1 denotes a matrix of ones. Finally, the original
optimal-control problem (6.2) can be reformulated as

min
φs ,Ia

Ql = min
φs ,Ia

Θ j2Ω j2 exp
(
Γ j2 Ia +Φ j2φs +Π j2 log(ce )

)
, (6.19a)

subject to

Frf(φs ,Ia) = 0, (6.19b)

Grf(φs ,Ia) ≤ 0, (6.19c)

δt

Qb
11×K Ia ≥ s f − s0, (6.19d)

where Grf(φs ,Ia) is obtained by substituting (6.14d) and the equations in (6.15) into the
original G (·).
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7
EXPERIMENTAL VALIDATION OF

OPTIMAL AGING-AWARE

CHARGING METHODS

In this chapter, we experimentally validate several aging-aware charging methods us-
ing an electrochemistry-based battery model. Specifically, we consider the conventional
constant-current-constant-voltage (CC-CV) protocol, a multi-stage charging protocol, and
an open-loop optimal-control-based approach. In order to visualize the achieved trade-
off between aging and charging time of the various considered protocols, two different
charging speeds are evaluated for each of the charging protocols. We show that both the
multi-stage charging protocol as well as the optimal-control-based protocol achieve a sub-
stantially improved trade-off between charging time and aging compared to the conven-
tionally used CC-CV protocol. We further show that the multi-stage charging protocol
achieves a better trade-off between charging time and aging compared to the optimal-
control-based protocol. This may be due to a lack of feedback in the open-loop optimal-
control-based approach, which shows the importance of feedback in aging-aware charg-
ing, in order to adequately compensate for modeling errors. These results also show the im-
portance of considering relatively simple multi-stage protocols in the validation of more
complex aging-aware charging approaches, as relatively simple multi-stage protocols can
already be a significant improvement over the conventional CC-CV protocol.
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7.1. INTRODUCTION
In Part II of this thesis, we have investigated various aging-aware charging methods us-
ing an electrochemistry-based battery model. The electrochemistry-based model con-
sidered in this part of the thesis was a Doyle-Fuller-Newman (DFN) model [1], extended
with a capacity-loss side-reaction model introduced in [2]. The aging-aware charging
methods considered range from relatively simple rule-based charging protocols to com-
plex optimal-control-based charging protocols. Leveraged by the implementation of the
DFN model proposed in Chapter 2, a computationally efficient optimal-control-based
approach was obtained in Chapter 6. This optimal-control-based approach allowed for
a significantly improved trade-off between charging time and aging compared to the
rule-based protocols.

It should be noted that the validation of the methods considered in Part II of this the-
sis has only been done in simulation using the DFN model with capacity-loss side reac-
tions. However, this model only considers one, albeit major, aging mechanism, namely
solid-electrolyte-interface (SEI) build-up due to side reactions [2]. In reality, many other
aging mechanisms may occur while charging a battery, such as the loss of active elec-
trode material, through stress or fractures [3]. However, as the considered SEI build-up
aging mechanism is one of the major contributors to aging [3], the results obtained in
simulation could still correspond to an experimental validation of the charging meth-
ods.

Ample attention has been paid to the experimental validation of rule-based charging
methods [4–8]. The rule-based protocols considered in these papers are mostly multi-
stage constant-current-constant-voltage (CC-CV) protocols, where the battery is charged
in a sequence of CC and CV stages, and can be considered an extension of the conven-
tional CC-CV protocol. On the other hand, there has been little literature devoted to
the experimental validation of optimal-control-based methods, where to the author’s
knowledge, the only examples are found in [9, 10]. However, in these papers, the (com-
plex) proposed optimal-control-based method is only validated against the conventional
CC-CV protocol. Meanwhile, it has been shown that multi-stage CC-CV charging proto-
cols, which are only marginally more complex than the CC-CV protocol, can be a con-
siderable improvement over the CC-CV protocol, e.g., in [6]. Of course, for a complex
optimal-control-based approach to be worthwhile, it should not only perform better
than the conventional CC-CV protocol, but it should also perform better than consid-
erably less complex and well-known alternatives, such as multi-stage CC-CV protocols.

In this Chapter, an experimental validation of several aging-aware charging methods
is done. Specifically, we consider a multi-stage CC-CV charging protocol, as investigated
in Chapter 4 and 6, and further consider the open-loop optimal-control-based approach
using the DFN model with capacity-loss side reactions of Chapter 6. We will experimen-
tally validate these charging methods against the conventionally used CC-CV protocol.
In experimentally validating the methods, each charging method is applied with two dif-
ferent charging speeds, in order to visualize the trade-off between charging time and
aging that can be achieved with the considered charging methods.

The remainder of this chapter is structured as follows. In Section 7.2, details on the
experimental set-up are given. In Section 7.3, we will show how the design-adjustable
variables (DAVs) of the various considered charging protocols are computed. Here, the
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Figure 7.1: Schematic representation of the considered charging methods, where in (a) the CC-CV(1) protocol
is shown, in (b) the 3-CC-CV(5) protocol is shown, and in (c) the optimal-control-based charging protocol is
shown. The red-marked variables indicate the design-adjustable variables of the respective protocols.

model used to compute the DAVs is experimentally validated, and the simulated Pareto-
optimal fronts of the charging protocols are shown. In Section 7.4, the experimental
aging results are given, where the trade-off between charging time and aging achieved
by the considered charging protocols is compared. Finally, conclusions are drawn in
Section 7.5.

7.2. EXPERIMENTAL SET-UP
The experimental validation of aging-aware charging methods has been done using a
climate-controlled chamber at a testing facility in Forschungszentrum Jülich. Batteries
can be charged or discharged with a particular pre-defined current profile. Additionally,
there is functionality for keeping the batteries at a pre-defined voltage. In this work, we
tested 10 high-energy pouch cells with a nominal capacity of 25 Ah with varying charging
strategies in the climate-controlled chamber. Due to the proprietary nature of the con-
sidered cells, the chemistry of the cells is unknown. The considered charging methods
for experimental validation are shown in Fig. 7.1. Note that the nominal capacity of 25 Ah
is used in the definition of the C-rate unit. As a baseline strategy, we consider the conven-
tionally used CC-CV protocol, which we will denote here as the CC-CV(1) protocol, since
we only consider the CC-stage current to be a DAV. We furthermore also consider a multi-
stage CC-CV protocol, which is similar to the one considered in Chapter 6, i.e., the 3-CC-
CV(5) protocol. We refer the reader to Chapter 6 for how this protocol is defined. Finally,
we consider an optimal-control-based charging protocol, where an optimal current pro-
file is computed by solving (6.2) using the methods presented in Chapter 6, which is then
applied in open-loop to the battery. In order to prevent over-charge of the battery, while
at the same time ensuring that all the protocols are charged approximately to the same
state of charge, the battery is allowed to be charged using the optimal profile until a cer-
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tain threshold voltage Vmax, after which the battery is relaxed until it reaches a threshold
CV voltage Vcv, followed by a CV stage until a minimum threshold current is reached.
For all the protocols, the minimum threshold current is 1 A, Vcv is 4.2 V, and Vmax is se-
lected as 4.3 V. Furthermore, for all experiments, the climate-controlled chamber is set
to a 25 ◦C temperature. To reflect a realistic scenario, the DAVs of the rule-based proto-
cols are determined once and are kept fixed throughout the entire battery aging test. On
the other hand, to consider a best-case scenario of the optimal-control-based charging
protocols, given the hardware and safety limitations, the optimal profile that is applied
to the battery is re-computed every 200 cycles. In doing so, the optimal-charging-based
protocols also have some degree of adaptability to aging.

One of the goals of the experimental validation is to obtain the experimental Pareto
front for the various considered protocols. To do so, each considered charging protocol
is evaluated at two different charging times. Furthermore, to check the variability in
aging between cells with identical charging protocols, each considered protocol with a
certain charging time should be tested at least twice. However, with 10 available battery
cells, a choice must be made between the amount of different charging times tested for
each protocol, and the number of protocols that are repeated for the variability check.
The assignment of the battery cells made in this work is shown in Table 7.1. Here, all
the protocols with a certain charging time, except for the CC-CV protocols, are repeated
twice. Furthermore, for each protocol, two different charging speeds are considered, one
with a relatively low charging time and another one with a relatively high charging time.
Note that finding the DAVs for the protocols that give a certain desired charging time
is not trivial. However, as the goal is to eventually compare the Pareto optimal fronts
of the charging protocols, it is not necessary for the charging time between the various
protocols to match exactly. In the next section of this chapter, we elaborate on how the
DAVs are computed.

In Fig. 7.2, a schematic overview of the experiments for testing the charging protocols
is shown, where we can see that the experiments are repeated with four main stages:

1. EMF measurements: here, the relation between the electro-motive force (EMF)
and state of charge (SoC) is determined using an extrapolation method, where the
battery is charged from a certain initial voltage with a constant current at several
C-rates, and the charging is terminated at 4.2 V. The result of these measurements
are used to determine the EMF based on the voltage extrapolation towards zero

Table 7.1: Assignment of the battery cells

Battery Protocol Charging speed Measured capacity [Ah]
1 CC-CV(1) Fast 31.7
2 CC-CV(1) Slow 31.7
3 3-CC-CV(5) Fast 31.8
4 3-CC-CV(5) Fast 31.5
5 3-CC-CV(5) Slow 31.7
6 3-CC-CV(5) Slow 31.6
7 Optimal Fast 31.2
8 Optimal Fast 31.5
9 Optimal Slow 31.5
10 Optimal Slow 31.7
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Figure 7.2: Schematic overview of the experiments for testing the charging protocols. The dashed lines indicate
the processes that are only necessary for the optimal-control-based charging protocols.

current. For more detail on this method of determining the EMF, the reader is
referred to [11]. The experiments done for determining the EMF can also be used
to get an estimate of the battery capacity, which can later be used for the battery
aging analysis.

2. Experiments for parameter estimation: here, data is gathered to estimate the pa-
rameters of the DFN model, which will be used to compute a new optimal current.
The results of this stage are only used for the optimal-control-based charging pro-
tocols, although this stage is done for all charging protocols, to be able to make
a fair comparison between the various protocols. The currents shown in Fig. 7.3
are applied to the battery, with an initial SoC values of approximately 20% for the
top four current profiles. The last three current profiles are identical, although the
initial SoC values are different, which are 40%, 60%, and 80%. The intention of the
bottom three experiments are to minimize the influence of EMF modeling errors
on the estimated parameters, which was observed in Chapter 3. In these exper-
iments, the battery is charged and discharged around a certain state of charge,
which means that there is also less variation in the EMF, and thereby reducing the
influence of EMF modeling errors on the estimated parameters. However, in doing
so, in these experiments, the diffusivity behavior is less pronounced, which leads
to the diffusivity-related parameters to be less identifiable. Therefore, the top four
current profiles in Fig. 7.3 are also applied, where the battery is mostly charged,
such that diffusivity behavior is more pronounced. Note that in the first iteration
of this stage only the bottom three experiments in Fig. 7.3 were done, as the top
four experiments were added from the second iteration onward based on the ob-
servations made from estimating the parameters using the experiments done at
the first iteration.

3. Compute optimal profile and rest: in this stage, the new optimal profile Iopt is
computed based on the experimental data from the previous stage. Specifically,
the DFN model parameters are first estimated based on the experimental data, af-
ter which the identified model is used to compute a new optimal profile using the
methods described in Chapter 6. In the first iteration of this stage, the DAVs of the
rule-based protocols, i.e., the CC-CV(1) protocol and the 3-CC-CV(5) protocol are
also computed. We refer to Section 7.3 for details on how the DAVs of the con-
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Figure 7.3: Experimental data used for parameter estimation.

sidered protocols are calculated. In the mean-time, the battery remains at rest at
around 20% SoC to minimize the aging loss occurring in this stage. Note again that
while the optimal profile is only computed for the optimal-control-based charging
protocols, the batteries charged with the other protocols also remain at rest until
the new optimal profiles are computed, to ensure that a fair comparison can be
made between the various charging protocols.

4. Discharge-charge: each cycle in this stage itself will follow 4 sub-stages, which are
repeated for 200 cycles.

(a) Discharge the battery with 30 A until 3.4V, discharging the battery to around
25% SoC, in which the SoC range corresponds to a typical usage of (commer-
cial) electric vehicles.

(b) Rest for 1 hour.

(c) Charge the battery with the respective charging protocol.

(d) Rest for 15 minutes.

Besides the EMF measurement data gathered in the first stage, the data gathered
in this stage can also be used to get a measure of the battery capacity, e.g., the
amount of discharged capacity at every cycle.
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7.3. COMPUTATION OF THE DESIGN-ADJUSTABLE VARIABLES

OF THE CHARGING PROTOCOLS

To obtain the Pareto optimal front of a particular charging protocol, the DAVs should
be carefully chosen. The choice of the DAVs determines the trade-off between charg-
ing time and aging. Ideally, this trade-off lies on the Pareto optimal front, which would
amount to the least possible aging at a particular desired charging time that is feasible
with the considered protocol. As the CC-CV(1) protocol only has 1 DAV, any choice of
the DAV leads to a point on the Pareto optimal front, since each value of the DAV cor-
responds to a single and unique charging time. Therefore, the only consideration that
should be made in determining the DAV of the CC-CV(1) protocol, is that it is chosen
such that a desired charging time is obtained. The 3-CC-CV(5) protocol, on the other
hand, has 5 DAVs, which means that not every particular choice of DAVs leads to a point
on the Pareto optimal front, since several DAV combinations may lead to the same charg-
ing time, while only one combination will yield the lowest amount of aging. To optimally
determine the DAVs of the 3-CC-CV(5) protocol, many combinations of the DAVs would
have to be tested experimentally, to select the ones that are Pareto optimal. However,
this would take a large amount of experimentation and, therefore, we instead follow the
method of determining the DAVs proposed in Chapter 4. In this approach, a DFN model
with capacity-loss side reactions is utilized in order to determine the combinations of the
DAVs that lie on the Pareto curve through a form of brute-force optimization. We should
remark that due to modeling errors, these obtained combinations of the DAVs that lie on
the modeled Pareto curve, do not necessarily lead to a point on the actual (experimen-
tal) Pareto front. However, in Chapter 6, we have shown that even considering model-
ing errors, the proposed approach of determining the DAVs for the 3-CC-CV(5) protocol
still leads to a good trade-off between charging time and aging. To determine the op-
timal profile for the optimal-control-based protocol, we again use the DFN model with
capacity-loss side-reactions presented in Chapter 3. Following the approach of Chap-
ter 6, the optimal profile can be computed using this model. In the remainder of this
section, we will first show the validation of the identified battery model, after which the
results on the obtained Pareto front of the various protocols in simulation are given.

7.3.1. PARAMETER ESTIMATION VALIDATION

The DFN model used for determing the DAVs of the 3-CC-CV(5) protocol, as well as the
optimal profile applied at the first 200 cycles of the optimal-control-based protocol, has
been parameterized using the experimental data obtained in the second stage of the
aging experiments shown in Fig. 7.2. As mentioned above, only the bottom three ex-
periments shown in Fig. 7.3 were performed at the first iteration of the second stage of
the aging experiments. However, in validating the parameters determined based on the
data obtained from these experiments with a CC-CV experiment, the modeled voltage
deviated significantly from the experimental voltage, as can be seen in Fig. 7.4a. This
indicates that the experiments designed for parameter estimation were not informative
enough to reliably estimate the parameters of the DFN model. Since no other experi-
mental data was available, the parameters were estimated using the bottom three exper-
iments shown in Fig. 7.3, as well as the CC-CV experiment, which did not leave any data
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Figure 7.4: Obtained fit after parameter estimation, where in (a) the model fit is shown when only the bottom
three current profiles of Fig. 7.3 are used for parameter estimation, and in (b) the model fit is shown for the
second iteration of the aging experiments, where all the current profiles of Fig. 7.3 were used. Note that in
(a) and (b) only 2 out of the three bottom experiments of Fig. 7.3 are shown, since the fit of the remaining
experiment was similar in both cases of (a) and (b).

for validation. This improved the fit with the CC-CV experiment to 11 mV, since this data
now was also accounted for in the estimation of the parameters. Based on these obser-
vations, for the second iteration of the aging experiments, the top four experiments in
Fig. 7.3 were added to get more informative data for parameter estimation. An example
of the fit obtained using this data is shown in Fig. 7.4b. Here, we can observe that the
root-mean-square error (RMSE) between the simulated voltage and experimental volt-
age is around 8-13 mV. These errors are significantly larger than those observed in the
results of Chapter 3, where RMSEs between 3-5 mV were observed. This difference is
attributed to two factors. A first factor is that the currents applied to the battery are sub-
stantially larger, relatively, than those in Chapter 3, since the data in Chapter 3 did not
involve charging the battery. A larger current induces more unmodelled (non-linear)
battery behavior, which in turn will lead to larger observed errors. A second factor is
that in this chapter, experimental data is used where the current is mostly applied in one
direction, i.e., either mostly charging or discharging, as is done in the first four experi-
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ments that are shown in Fig. 7.3. Combined with a relatively large charging current, this
induces large concentration gradients in the cell, which further induces unmodelled bat-
tery behavior. Therefore, while the data used in this chapter to estimate the parameters
can be considered to be more informative, it may also affect the estimated parameters
to a larger degree due to modeling errors. Thus, it may be that the model used to sim-
ulate Fig. 7.4a better reflects the internal states of the battery, while the model used to
simulate Fig. 7.4b better reflects the voltage output. This shows that there is a trade-off
that needs to be considered between the informativity of the estimation data and the
induced unmodelled battery behavior.

7.3.2. SIMULATED PARETO FRONT OF THE CHARGING PROTOCOLS

With the model obtained using the experimental data from the first iteration of the aging
experiments, the simulated Pareto fronts can be obtained using the methods of Chap-
ters 4 and 6. Note that since the parameters of the side-reaction model are not estimated
with the parameter determination approach of Chapter 3, we have assumed them as
the values given in Chapter 4. However, the choice of the αc,2 parameter, in particu-
lar, affects the computed optimal current profile. Therefore, ideally, these parameters
of the side-reaction model should be determined and validated based on aging experi-
ments, although to the author’s knowledge, the estimation of these side-reaction model
parameters has not been investigated yet in literature. The Pareto fronts of the various
considered protocols are shown in Fig. 7.5a. We observe that, consistent with the re-
sults shown in the previous chapters, the multi-stage protocol is an improvement over
the CC-CV protocol, while the optimal approach provides for a further improvement in
the trade-off between charging time and aging. We further observe that the differences
between the Pareto fronts is largest at lower charging times. Therefore, the points on
the Pareto curve that will be experimentally evaluated are at a (simulated) charging time
time of 50 minutes to capture one extreme, and a charging time of 65 minutes, to cap-
ture the other extreme. The current profiles and the corresponding simulated voltages
are shown in Fig. 7.5b. These current profiles are applied to the corresponding batteries,
as summarized earlier in Table 7.1.

The experimentally realized current profiles are shown in Fig. 7.6. Here, we observe
that the actual batteries reach the threshold voltage of 4.3 V earlier than the model pre-
dicts, which leads to a rest and subsequent CV stage in the realized profiles. Since the
battery is charged more slowly in CV, the total charging time of the realized profiles is
longer than the designed profile. As we have seen in Chapter 6, the necessity of the
rest and CV stage in the realized profile leads to a significantly worse trade-off between
charging time and aging than an optimal profile. However, this trade-off may still be bet-
ter than what a rule-based protocol can achieve as was also shown in Chapter 6. Note
that the designed current profiles at the first iteration differ significantly from those at
the second iteration of the aging experiments. This is explained by the fact that the mod-
els used to design the current profiles were significantly different, due to the large differ-
ence in estimation data that was used in the first and second iterations, as explained
in Section 7.3.1. This is also reflected in the difference in modeling errors that can be
observed in Fig. 7.6, where the modeling errors at the second iteration in Fig. 7.6b are
clearly smaller than at the first iteration in Fig. 7.6a, since the estimation data at the sec-



7

160 7. EXPERIMENTAL VALIDATION OF OPTIMAL AGING-AWARE CHARGING METHODS

50 52 54 56 58 60 62 64 66 68 70

10

20

30

2
(a)

50 52 54 56 58 60 62 64 66 68 70

0 10 20 30 40 50
0

1

2

0 10 20 30 40 50

3.8

4

4.2

0 20 40 60
0

1

2

0 20 40 60

3.8

4

4.2

(b)

Figure 7.5: Comparison of the simulated Pareto optimal fronts of the various considered aging-aware charging
approaches, where in (a) the trade-off between charging time and Li-ion loss due side reactions Ql is shown,
and in (b) the current and voltage for the various aging-aware charging approaches are shown at two different
charging times.

ond iteration better reflected the implemented charging current profiles.

7.4. EXPERIMENTAL AGING RESULTS
In this section, the results of the aging experiments are given. Due to time limitations,
the batteries were cycled for only 400 iterations. As we will show below, this was not
enough to age the batteries to what is typically considered to be end-of-life, i.e., 80%
state of health (SoH), defined as

SoH = Qaged

Qfresh
, (7.1)

where Qaged and Qfresh are a measure of the aged and fresh battery capacity, respectively.
Therefore, it should be kept in mind that some of these results shown below may change
when the batteries reach their end-of-life. In the first part of this section, we will show the
course of aging of the experimentally tested batteries. This is followed by a part where we
will show the experimental trade-off between charging time and aging that is achieved
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Figure 7.6: Comparison of the designed optimal current profile versus the realized experimental current pro-
file, where in (a) the results are shown for the first iteration of the aging experiments, and in (b) the results are
shown for the second iteration of the aging experiments.

with the various considered charging protocols.

7.4.1. EXPERIMENTAL AGING

In Fig. 7.7a, the course of aging for the batteries is shown, where in the definition of the
SoH in (7.1), the amount of discharged capacity at every cycle is taken for Qaged. In this
definition of the SoH, besides the effect of capacity fade, the effect of power fade is also
included, since a higher battery impedance also results in a lower discharged capacity.
Note that Qfresh is taken as the highest measured discharged capacity throughout the cy-
cling experiments. One of the most notable observations that can be made in Fig. 7.7a,
is that after 200 cycles, all the batteries seem to regain a significant amount of capacity
of around 3-5 % SoH. Furthermore, Cells 1 and 3 even have a larger discharged capac-
ity at cycle 400 than at cycle 200, which is also unexpected. The reason for this jump is
not yet known, although it could be a diffusion phenomenon with a large time constant.
After 200 cycles, the second iteration of the aging experiments starts, where in stages 1
through 3 (see Fig. 7.2), the battery is at rest at various instances, which may have al-
lowed the battery to recover from this speculated diffusion phenomenon, leading to a
rise in the discharged capacity at the subsequent cycling experiments. However, this rise
in capacity may also be due to the various experiments performed in the first 3 stages
of the aging experiments, where the battery is subjected to several full charge and dis-
charge cycles, which may reactivate certain parts inside the battery. These experiments
may therefore also have led to a recovery of capacity in some way. This observed phe-
nomenon could have practical implications, where it may be that the considered battery
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Figure 7.7: Results on the aging of the cells, where in (a), the state of health derived from the discharged ca-
pacity at every cycle according to (7.1) is shown, and in (b) the state of health derived from a full charge of the
battery at every iteration of the aging experiments is shown.

needs to be serviced once in a while in order to recover capacity.
In Fig. 7.7a, we can further observe that there seems to be a considerable difference

between some batteries that have been tested in an identical way. Most notably, this is
observed with Cells 3 and 4, which particularly until 200 cycles show a large difference in
discharged capacity, although this difference decreases suddenly after 200 cycles. Fur-
thermore, it is clear that the battery with the CC-CV protocol with a fast charging speed
(solid black line) ages considerably more than the batteries with the other protocols,
while the protocols with a slower charging speed also age less generally, as could be ex-
pected. In Fig. 7.7b, the measured capacity in stage 1 of the batteries at each iteration of
the aging experiments is shown. As opposed to the definition of SoH used in Fig. 7.7a, in
this case, the SoH only includes the effect of capacity fade. Although the general trends
in aging observed in Fig. 7.7b are similar to Fig. 7.7a, there are also some notable differ-
ences. The differences in SoH observed in Fig. 7.7a do not seem to correspond to those
observed in Fig. 7.7b. For instance, in Fig. 7.7a, Cell 9 generally shows a higher degree
of aging compared to Cell 10, while in Fig. 7.7b, it is the other way round, i.e., Cell 10
shows a higher degree of aging than Cell 9. This suggests Cell 10 has lost more capacity,
but has a lower increased resistance than Cell 9, leading to a smaller loss in discharged
capacity as can be observed in Fig. 7.7a. The results in Fig. 7.7 show that in compar-
ing charging protocols, the definition of SoH should be carefully considered, as different
definitions of SoH can lead to different conclusions. Furthermore, even when cells of
the same chemistry are tested in an identical manner, they may still show a significant
difference in aging. This uncertainty in the observed aging of the cells should be taken
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Figure 7.8: Results showing the correlation between the measured capacity loss and (a) average charging time,
(b) average time spent in rest and CV mode during charging, (c) average measured maximum temperature per
cycle.

into account when comparing various protocols.

7.4.2. IMPACT OF THE CHARGING PROTOCOLS ON THE TRADE-OFF BE-
TWEEN CHARGING TIME AND AGING

Since all the cells are charged with different charging times, an adequate comparison
between different charging protocols cannot be made by only observing the course of
aging of the cells. Instead, the trade-off between aging and charging time should be
considered, as is shown in Fig. 7.8a for the charging protocols considered in this work.
To facilitate the comparison between the charging protocols, a power regression is made
for each of the protocols, where the regression model is given by

Ql = p1c−p2
t +2, (7.2)

where Ql is the capacity loss, ct is the charging time, and p1 > 0 and p2 > 0 are fitting
parameters. Note that this regression model is not necessarily accurate, and only serves
as an approximation of the achievable trade-off between charging time and aging. In
Fig. 7.8a, we can firstly observe that the CC-CV protocol allows for a significantly worse
trade-off compared to the other protocols, particularly at a low charging time. With
a charging time of around 55 minutes, the 3-CC-CV protocol ages the battery almost
twice as less as the CC-CV protocol. This validates the approach of Chapter 4, which
shows that a DFN model with capacity-loss side reactions can be used to choose the
design-adjustable variables of rule-based protocols effectively. Comparing the trade-off
curves of these two protocols with those shown in the simulated Pareto optimal fronts
in Fig. 7.5a, we observe that the trends roughly match, where the difference between the
protocols is largest at low charging times and smaller at high charging times. However,
in Fig. 7.8a, we also observe that the optimal-control-based protocol, while still being
better than the CC-CV protocol, seems to have a worse trade-off curve than the 3-CC-CV
protocol, which is unexpected. It could not have been expected to lead to as large of an
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improvement as in Fig. 7.5a, due to the implementation of the optimal-control-based
protocol, where in Chapter 6 we have shown that this implementation sacrifices the op-
timality of the protocol for robustness. The 3-CC-CV protocol, on the other hand, has
an inherent feedback mechanism, where the current is regulated based on several mea-
sured voltage limits. This shows an advantage of the 3-CC-CV protocol compared to the
considered optimal-control-based protocol, where due to a higher degree of feedback in
the protocol, it is affected to a lesser degree by modeling errors. Thus, to alleviate the
lack of feedback in the optimal-control-based protocol, a closed-loop optimal-control
approach, as done in, e.g., [9, 12, 13], should be considered. However, such an approach
would also be more complex in implementation compared to the open-loop approach
taken in this work. The results in Fig. 7.8a show that when validating a particular (com-
plex) charging protocol, the multi-stage CC-CV protocols should be considered in the
comparison, rather than only making a comparison with the conventional CC-CV pro-
tocol, as done in, e.g., [9, 10]. The multi-stage CC-CV protocols are only slightly more
complex in implementation than the CC-CV protocol, while still allowing for a substan-
tially better trade-off in charging time and aging.

In Fig. 7.8b, the average time spent in rest and CV mode during charging for the
various protocols is shown on the horizontal axis. Here, we observe that the optimal-
control-based protocol spends significantly less time in rest and CV mode compared to
the other protocols. Based on this observation, it could also have been expected that
the optimal-control-based protocol would allow for a better trade-off in charging time
and aging compared to the other protocols, as in Chapter 4 and Chapter 6, we observed
that the rule-based charging protocols with a better Pareto front also had a compara-
tively shorter CV stage. In Fig. 7.8b, we observe that this is still true when comparing
the 3-CC-CV protocol with the CC-CV protocol, although the relation does not hold for
the optimal-control-based protocol. This may point to aging phenomena, other than
side reactions, that are induced to a larger degree by the optimal-control-based protocol
compared to the 3-CC-CV protocol.

In Fig. 7.8c, the average maximum temperature per cycle is shown for the various
protocols. Here, it seems that there is a correlation between the temperature of the cells
and the resulting capacity loss. However, this correlation can be mostly explained by
the fact that at faster charging speeds, the battery is charged with higher currents, lead-
ing to higher temperatures. When comparing batteries with a similar charging time, it
is clear that there is no clear correlation between temperature and capacity loss. For
example, when comparing the batteries with a fast charging speed, the 3-CC-CV proto-
col reaches higher temperatures than the CC-CV protocol with a smaller capacity loss.
These results also rule out the possibility that the optimal-control-based protocol per-
forms worse than the 3-CC-CV protocol due to reaching higher temperatures, since the
temperatures reached using the optimal-control-based protocol are lower than with the
3-CC-CV protocol. Thus, although it is generally known that battery temperature has
a significant effect on aging, the fluctuations in temperature observed during charging
and discharging in these experiments has not had an observable effect on aging. This
shows that, at least for the considered batteries, using temperature as an aging indica-
tor does not allow for making an effective trade-off between charging time and aging, as
done in, e.g., [14–16].
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7.5. CONCLUSIONS
In this chapter, we have experimentally validated several aging-aware charging methods.
Specifically, we have considered the conventional CC-CV protocol, a multi-stage charg-
ing protocol, such as those investigated in Chapter 4 and Chapter 6, and the open-loop
optimal-control-based approach of Chapter 6. For the experimental validation, a total
of 10 high-energy commercial battery cells have been used. For each charging proto-
col, we have evaluated two different charging speeds, in order to visualize the trade-
off that can be achieved with the charging protocols. Furthermore, we have done a
consistency check on the aging of the cells, where we have duplicated several cycling
tests in order to check the deviation in aging that may occur between different cells of
the same chemistry. In validating the considered aging-aware charging methods, we
have found that even when cells of the same chemistry are tested in an identical man-
ner, they may still show a significant difference in aging. This shows that this uncer-
tainty in the observed aging of the cells should be taken into account when comparing
the various protocols. Furthermore, we have shown that both the multi-stage protocol
and the optimal-control-based protocol achieve a substantially improved trade-off be-
tween charging time and aging compared to the CC-CV protocol. However, contrary to
what the simulations have shown in Chapter 6, where the same cells were used to fit
the models to, we have observed that the multi-stage protocol actually achieves a better
trade-off between charging time and aging compared to the optimal-control-based pro-
tocol. This result may be explained by a lack of feedback of the considered open-loop
optimal-control-based approach. Therefore, a closed-loop implementation of the con-
sidered optimal-control-based approach may still allow for a better trade-off between
aging and charging time than a multi-stage charging protocol. These results also show
the importance of considering relatively simple multi-stage protocols in the validation
of more complex aging-aware charging approaches, as multi-stage protocols can already
be a significant improvement over the conventional CC-CV protocol, as also observed in
this chapter.
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8
CONCLUSIONS AND

RECOMMENDATIONS

The increase in popularity of battery-electric vehicles (BEVs) has made aging-aware charg-
ing a crucial problem to be solved in order to further accelerate the adoption of BEVs,
which facilitates a transition into a more sustainable society. While the charging time of a
battery should be ideally as small as possible, charging a battery faster usually leads to an
acceleration in aging. However, the severity in aging is influenced by the charging strat-
egy. The goal in aging-aware charging is to find a charging solution that achieves a best-
possible trade-off in charging time and battery aging. In this thesis, we have approached
the aging-aware charging problem from an optimal-control perspective, where compu-
tationally efficient modeling and optimization are instrumental to arrive at an imple-
mentable optimal aging-aware charging solution. While physics-based models provide
information on the internal states of the battery that can be crucial to limit battery aging,
their complexity has made it a challenge to incorporate such models into an optimal-
control approach. This resulted in the following main research question, formulated in
Chapter 1.

Main Research Question

Do optimal-control-based charging algorithms that use electrochemical aging
models lead to a better trade-off between aging and charging time compared to
rule-based protocols, while having a manageable computational complexity?

In order to answer this main research question, in Chapter 1, we have posed sev-
eral research sub-questions. In this chapter, we will state the conclusions of this thesis
through answering each of the research sub-questions in Section 8.1. This is followed
by the recommendations for future research that are provided in Section 8.2. Finally, the
possible implications of the contributions of this thesis are given in Section 8.3.
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8.1. CONCLUSIONS
In this section, the conclusions and contributions of this thesis are given through an-
swering each of the research sub-questions presented in Chapter 1. In doing so, we will
present the sub-questions again, that relate to each of the three parts of this thesis, and
state the conclusions that address the respective sub-question.

8.1.1. BATTERY MODELING AND PARAMETERIZATION

Research Sub-Question 1

What is the impact of model simplifications on the trade-off between computa-
tional complexity and model accuracy of electrochemistry-based battery mod-
els?

This sub-question has been addressed in Chapter 2, where we have studied the im-
pact of several types of model simplifications on the trade-off between model accuracy
and computation time for the Doyle-Fuller-Newman (DFN) model. As a base model for
comparison, we considered a, what we referred to as, a complete DFN (CDFN) model.
Furthermore, we have proposed a computationally efficient implementation of the CDFN
model that has led to a significant reduction in computation time. We have shown that
while several parameters are typically considered to be concentration-dependent, their
influence on the model dynamics were marginal for both studied parameter sets. By ig-
noring these concentration-dependencies, we have shown that the computation time of
the DFN model can be significantly decreased, with a small sacrifice in model accuracy.
Finally, we have shown that with the proposed implementation, and by selectively mak-
ing the proposed simplifications, as well as selectively choosing the discretization grid
parameters, a model can be obtained that has a small impact on model accuracy, while
the computation time can be drastically decreased, to achieve a simulation time of over
5000 times faster than real-time. This has been an important enabler into using the DFN
model in optimal aging-aware charging, as has been done in Chapter 7.

Research Sub-Question 2

How can the parameters of electrochemistry-based battery models be deter-
mined to obtain an accurate model with physically meaningful parameters?

In Chapter 3, we have addressed this sub-question, where we have compared two
DFN model parameterization approaches, one where cell teardown experiments are used
to determine the parameters, and another where the parameters are based only on cur-
rent/voltage data. In doing so, we have proposed a model parameterization approach
of the DFN model that can estimate the parameters based on current/voltage data and
an assumed range of the model parameters. In this approach, the DFN model is repa-
rameterized through normalization and grouping, followed by a sensitivity analysis and
a parameter estimation procedure. Through this comparison, we have shown that using
the proposed approach, a model can be obtained that better describes the output voltage
than a model of which its parameters have been obtained through cell teardown. Fur-
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thermore, we have validated the physical meaningfulness of the estimated parameters
using the proposed approach by analyzing the parameter estimation routine for a syn-
thetic cell. Through this analysis, we have demonstrated that modeling errors can lead
to a large bias and variability in the estimated parameters, which can lead to parameters
that are not physically meaningful. Finally, we have shown that this bias and variability
can be reduced by determining tighter parameter ranges, which can be done through cell
teardown. The results of this analysis motivate the need for an approach that combines
parameter estimation using current/voltage data and parameter estimation through cell
teardown, in order to obtain parameters that are both physically meaningful and still
possibly lead to a model that can accurately describe the output voltage.

8.1.2. AGING-AWARE CHARGING

Research Sub-Question 3

Can aging indicators, such as the negative-electrode over-potential, be used to
effectively make a trade-off between charging time and battery aging?

This sub-question has been answered in Chapter 4, where we have utilized a DFN
model including capacity-loss side reactions to compare several rule-based charging
protocols by obtaining the Pareto front that describes the optimal trade-off between
charging time and aging for the considered protocols. Through this comparison, we have
shown that by obtaining the Pareto front that describes the optimal trade-off between
charging time and aging for a single cycle, the results can be extended to the lifetime
of the battery, which facilitates the comparison between different charging strategies.
Furthermore, we have shown that the negative-electrode over-potential is not always a
good indicator for aging, and that aging will occur even when the battery operates in
over-potential regions that are not considered to lead to aging. Therefore, by only con-
sidering the negative-electrode over-potential as an aging-indicator, an effective trade-
off between charging time and battery aging cannot be made.

Research Sub-Question 4

What modeling approach, with a lower computational complexity than the DFN
model, is suitable to approximate aging-related DFN model states accurately,
such that it can be used in optimal aging-aware charging?

This sub-question has been addressed in Chapter 5, where we have presented an
optimal-control-based method for aging-aware charging using a surrogate model. In
the proposed surrogate modeling approach, the aging-related DFN model states are ap-
proximated by a combination of a black-box finite-dimensional linear-time-invariant
model and a static nonlinear model that is a function of state of charge. Through the
validation of the surrogate model, we have shown that the DFN model states can be well
approximated using the proposed surrogate modeling approach, while the computation
time when simulating with the surrogate model is over 70 times smaller than when sim-
ulating with the considered DFN model. Furthermore, we have compared the Pareto
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front achieved with the proposed optimal-control-based method with the Pareto fronts
achieved with various multi-stage CC-CV charging protocols from Chapter 4. Here, we
have shown that the proposed optimal-control-based method achieves a significantly
improved Pareto front over the multi-stage CC-CV charging protocols.

Research Sub-Question 5

Can the computational complexity of the optimal aging-aware charging problem
using the DFN model be reduced such that it is suitable for a closed-loop imple-
mentation?

To address this sub-question, in Chapter 6, we have presented an optimal aging-
aware charging approach using the DFN model. Here, we have used the resulting model
implementation from Chapter 2 to reformulate the optimal-control problem with a re-
duced computational complexity compared to the originally formulated optimal-control
problem. Furthermore, to solve the optimal-control problem in a computationally effi-
cient manner, we have employed a sequential-quadratic-programming (SQP) algorithm.
To reflect the effect of modeling errors on the achieved trade-off between charging time
and aging, we have defined a so-called synthetic cell, which is a DFN model with
concentration-dependent parameters and an EMF that is different from the DFN model
used for the proposed approach, similar to the study done in Chapter 3. In the valida-
tion of the proposed optimal aging-aware charging approach, we have shown that de-
spite large differences in internal states between the considered simplified DFN model
for optimal aging-aware charging and the synthetic cell, a good trade-off between bat-
tery aging and charging time has been achieved using the proposed optimal aging-aware
charging approach. This shows that the accuracy of the model used is not crucial for
obtaining a good trade-off between charging time and aging, as long as constraints on
the internal states are not considered, in which case a well parameterized DFN model
is crucial. Furthermore, we have shown that with the employed SQP algorithm, the for-
mulated optimal-control problem can be solved roughly an order of magnitude faster
than with an off-the-shelf solver. Finally, we have shown that with a well-considered
choice of spatial and temporal discretization of the optimal-control problem, and with
the employed SQP algorithm, the optimal-control problem can be solved in about 0.1 s
for a full control horizon, which makes the proposed approach suitable for a closed-loop
implementation, without compromising with a short control horizon.

8.1.3. EXPERIMENTAL VALIDATION

Research Sub-Question 6

Do optimal-control-based charging algorithms that use electrochemistry-based
models lead to a better trade-off between aging and charging time than rule-
based algorithms in practice?

This sub-question has been addressed in Chapter 7, where we have compared an
open-loop optimal-control-based charging method to two rule-based charging proto-
cols through experimental validation. The rule-based charging protocols considered
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were the conventional CC-CV protocol and a multi-stage CC-CV protocol. In order to
visualize the achieved trade-off between aging and charging time of the various consid-
ered protocols, two different charging speeds were evaluated for each of the charging
protocols. We have shown that both the multi-stage protocol and the optimal-control-
based protocol achieve a substantially improved trade-off between charging time and
aging compared to the CC-CV protocol. However, contrary to what the simulations have
shown in Chapter 6, where the same cells were used to fit the models to, we have ob-
served that the multi-stage protocol actually achieves a better trade-off between charg-
ing time and aging compared to the optimal-control-based protocol. This result may
be explained by a lack of feedback of the considered open-loop optimal-control-based
approach. Therefore, a closed-loop implementation of the considered optimal-control-
based approach may still allow for a better trade-off between aging and charging time
than a multi-stage charging protocol. These results also show the importance of con-
sidering relatively simple multi-stage protocols in the validation of more complex aging-
aware charging approaches, as relatively simple multi-stage protocols can already be
a significant improvement over the conventional CC-CV protocol, as also observed in
Chapter 7.

8.2. RECOMMENDATIONS FOR FUTURE RESEARCH
In this thesis, optimal aging-aware charging using electrochemistry-based models has
been studied. However, there are still several important limitations to the work pre-
sented in this thesis, that should be addressed in future research. In this section, we
will discuss several recommendations for future research, based on the findings of this
thesis.

8.2.1. MODELING

ADVANCING BATTERY AGING MODELING

In this thesis, we have mainly considered the capacity-loss side-reaction model to de-
scribe aging of the battery. However, while side reactions are one of the major contrib-
utors to aging, they are still only a part of the puzzle that is battery aging. Therefore,
there is a need for research into battery aging, for which we have several recommen-
dations. Firstly, battery aging for Li-ion batteries is still not fully understood, particu-
larly by researchers that are in the field of the control of batteries. Therefore, there is a
need for developing aging models that can be coupled with the known and commonly
used electrochemistry-based models, such as the DFN model. For instance, while fatigue
and stress effects on electrode particles have been studied and modeled, the connection
of these effects to battery aging, in terms of modeling, has not been investigated, even
though these fatigue and stress effects are considered to be a major contributor to aging.
A second approach that can be taken to advance battery aging modeling, is to investigate
aging models that only consider the observed effects of aging, rather than modeling spe-
cific aging mechanisms. For example, if there are two different aging mechanisms that
lead to aging under the same circumstances, then there is no point in individually mod-
eling these aging mechanism for the purpose of aging-aware charging. Only focusing on
the observed aging effects instead of on the mechanisms may lead to interesting insights
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into battery aging, and could lead to accurate battery aging models that can then be used
for aging-aware charging, among other applications.

VARIABLE STEP-SIZE SOLVERS

In Chapter 2, we have proposed a highly computationally efficient model implementa-
tion that has led to a significant reduction in computation time. This implementation
could be further improved by considering a variable-time-step discretization approach,
rather than using the fixed-step backward Euler method of discretization, as was done in
the proposed implementation. In a variable-time-step approach, the step size is varied
throughout the simulation, where the step size is reduced to increase the model accu-
racy when the model dynamics are changing rapidly, and the step size is increased when
the model dynamics are changing slowly. This could significantly reduce the simulation
time of the DFN model further compared to the implementation proposed in Chapter 2.

8.2.2. PARMETERIZATION

PARAMETERIZATION OF BATTERY AGING MODELS

In the use of the capacity-loss side-reaction model for experimental validation of the
considered aging-aware charging methods, we have determined the parameters of the
aging model through a rather pragmatic approach. In determining the parameters, we
have first estimated the DFN model parameters based on current/voltage data on a short
time scale, and the parameters of the capacity-loss side-reaction model were assumed
from literature. If aging data would have been available, the DFN model parameters
could have been fixed, after which the aging model parameters could have been deter-
mined using the cycling data and the observed aging of the battery. However, in doing so,
the assumption is made that the aging of the battery is not affected by the DFN model
parameters, which is an assumption that does not actually hold. In order to improve
the physical meaningfulness of the DFN model parameters, and the accuracy of the ag-
ing model, this assumption should not be made. Therefore, a possible research direction
would be to investigate the use of both the observed aging data as well as current/voltage
data to determine the parameters of the DFN model and the capacity-loss side-reaction
model simultaneously.

EXPERIMENTAL VALIDATION OF PARAMETERIZATION

In Chapter 3, the results motivated the need for an approach that combines both param-
eter estimation using current/voltage data and parameter estimation through cell tear-
down. However, performing a cell teardown and validating this approach experimen-
tally was outside the scope of this work. Therefore, there is still a need to experimentally
validate this recommended approach. The two aforementioned parameter estimation
approaches can possibly be combined, by using the cell teardown experiments to deter-
mine the possible range that a parameter can have based on the estimated measurement
error. Other ways of determining the parameter ranges based on cell teardown can also
be investigated.
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COMPARISON OF SEVERAL CURRENT/VOLTAGE-BASED PARAMETER ESTIMATION METH-
ODS

As stated in the introduction of Chapter 3, there are generally two approaches taken to
estimate the DFN model parameters based on current/voltage measurements. One ap-
proach is to estimate some (or all) of the parameters simultaneously based on measured
current/voltage data, which is also the approach that we have considered in our pro-
posed model parameterization approach in Chapter 3. However, another approach is to
design experiments specifically in an attempt to isolate the effects of parameters in the
output. However, the justification for this approach is often lacking. Therefore, a possi-
ble research direction is to make a direct comparison between these two aforementioned
model parameterization approaches. This could provide insight into the possible advan-
tages and disadvantages of the considered approaches. This comparison could be done
along similar lines as done in Chapter 3, where the influence of modeling errors could
be included using a synthetic cell.

8.2.3. AGING-AWARE CHARGING

CLOSED-LOOP IMPLEMENTATION

In Chapter 7 of this thesis, we have experimentally validated an open-loop approach
to the optimal-control-based aging-aware charging methodology using the DFN model,
using the methods presented Chapter 6. In the experimental validation, this proposed
approach has a worse Pareto front compared to the considered multi-stage CC-CV pro-
tocol, as the open-loop approach could not adequately compensate for modeling errors.
Therefore, a possible research direction would be to consider the proposed approach in
a closed-loop implementation, such as the closed-loop optimal-control approach pre-
sented in Chapter 1. An experimental validation of such as approach will provide insight
into whether the proposed approach can actually achieve a significantly improved trade-
off between charging time and aging compared to rule-based protocols. Furthermore,
such a study would provide insight into how to implement the proposed approach in a
closed-loop application.

8.2.4. STATE ESTIMATION OF THE DFN MODEL FOR OPTIMAL AGING-AWARE

CHARGING

Continuing from the previous recommendation, an important part of the optimal-control-
based approach to aging-aware charging taken in this work, is the state estimator. In a
closed-loop optimal-control implementation, as presented in Chapter 1, the state esti-
mator estimates the model states based on the observed output. These estimated states
define the initial condition of the optimization problem that is solved to find the optimal
input current. However, estimating the DFN model states is not trivial, as the DFN model
states are likely not observable, as indicated by the results in Chapter 3 and Chapter 6,
where we have observed that an equal output model accuracy can be obtained through
significantly different internal state dynamics. Therefore, an investigation on how to es-
timate the DFN model states from the observed output should be considered.
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8.2.5. INCLUDING THERMAL BEHAVIOR

Throughout this thesis, we have mostly considered isothermal battery models, as well
as isothermal conditions for aging-aware charging, although in the developed TOOFAB
toolbox, we have shown that it is possible to extend the DFN model implementation
with a thermal model. Of course, in reality, the battery cell temperature can significantly
fluctuate while charging, which should be considered when designing an aging-aware
charging strategy, since aging is well known to be temperature-dependent. Therefore, a
possible research approach is to extend the work that has been done in this thesis with
thermal models. This could involve an investigation into how battery aging is affected by
temperature, and how this relation can be modeled, rather than just using temperature
as an aging indicator, as is often done in literature.

8.2.6. OPTIMIZATION UNDER UNCERTAINTY

In the experimental validation of the open-loop optimal-control based aging-aware
charging approach in Chapter 7, we have observed the importance of feedback to ac-
count for modeling errors. However, introducing feedback, in this case, requires a state
estimator, which as we have mentioned in Section 8.2.4, is not trivial to obtain. An al-
ternative approach to introducing feedback is to account for the uncertainty in mod-
eling when defining the constraints of the optimization problem, which could lead to
a solution that is robust to modeling errors. While such an uncertainty-based open-
loop approach could lead to a worse trade-off in charging time and aging compared to a
closed-loop approach, it may have a significant advantage in computational complexity.

8.3. IMPLICATIONS
The contributions of this thesis can be used as a basis for future research, and have led to
an advancement in aging-aware charging. The contributions made in battery modeling
and implementation can facilitate the research into the analysis and control of batter-
ies, through the use of computationally efficient models. Furthermore, the method of
comparing various model parameterization approaches can be used as a framework to
validate any model parameterization approach. An important part in this framework,
is the consideration of modeling errors, and their impact on the resulting estimated pa-
rameters and the estimated states of the battery.

The main contribution of this thesis is the approach of systematically making a trade-
off between computational complexity and accuracy of various methods. Using this ap-
proach, we have been able to considerably reduce the complexity of the optimal-control-
based approach to aging-aware charging using elecrochemistry-based models. This has
made an important step into using the proposed aging-aware charging approach in a
closed-loop application, such that an optimal trade-off can be made between charging
time and battery aging. In making a comparison between various aging-aware charging
methods, we have shown that optimal-control-based algorithms that use electrochem-
ical aging models lead to a better trade-off between aging and charging, while having a
limited computational complexity. The implementation of this optimal-control-based
method can lead to a more aging-aware use of batteries in electric vehicles, which can
lead to shorter charging times and longer lasting batteries. As a result, these advance-
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ments in aging-aware charging can contribute to a more sustainable society by acceler-
ating the adoption of electric vehicles.
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