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Summary

Mitigating global climate change requires, amongst other measures, the replacement
of Fossil Fuel based Energy Technologies (FFETs) by Renewable Energy Technolo-
gies (RETs). Policies aiming to strengthen in particular RET development can
benefit from a deep understanding of the characteristics of the knowledge required
to develop RETs, i.e. the knowledge base of RETs.

Knowledge bases consist of various dimensions. A first relevant dimension of
the knowledge base of a technology is the extent to which it builds on scientific
knowledge, which is referred to as the ’science-dependence’. Technologies however
also build on earlier technological knowledge, their development is ’cumulative’. A
second dimension of the knowledge base of a technology is therefore the extent
to which it depends on its earlier development, also referred to as ’technological
cumulativeness’. A third relevant dimension is the mobility of knowledge, the extent
to which knowledge travels geographically. This third dimension is expected to
depend on the first two dimensions. In this research, I developed methodologies to
study the science-dependence and technological cumulativeness, and systematically
compared these to the knowledge mobility of various RETs.

In the first part of this research, I performed a detailed descriptive analysis of
the science base of both RETs and FFETs, allowing me to study characteristic dif-
ferences between both types of energy technologies. I found that RETs generally
have a more substantial science base and draw on a more diverse set of scientific dis-
ciplines. On average, the science on which RETs build is more recent, less applied,
and is published in journals with a higher WOS Journal Impact Factor. However, for
different RETs (e.g., photovoltaics, wind turbines, and non-fossil fuels), I observed
much more variation across these dimensions than for different FFETs (e.g., com-
bustion and gas turbines). Furthermore, the broad spectrum of sciences on which
RETs build largely includes the smaller spectrum on which FFETs build.

In the second part of this research, I performed a theoretical and empirical
analysis of technological cumulativeness. Despite the recognized importance of this
concept, approaches in the academic literature to cumulativeness vary, and it of-
ten remains unclear what role cumulativeness plays in developing technology. I
characterize the cumulativeness of a technology by the structure of its knowledge
base (that is, how knowledge flow connects inventions), which is different from, but
closely related to, the size of its knowledge base (that is, the number of inventions).
Approaching the knowledge base structure as a relational network, where inventions
(nodes) are connected by knowledge flow (links), we can define indicators to proxy
cumulativeness. A simple conceptual model of researching engineers allows me to
analytically derive equations describing a proportional relationship between the cu-
mulativeness and the size of the knowledge base, where the rate of proportion may
vary across technologies. Empirical tests of this model, using patent data on in-
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ventions, confirm this relation and indicate that the rate varies considerably across
technologies. At the same time I found that across technologies, this rate is inversely
related to the rate of invention over time. This suggests that the cumulativeness
increases relatively slow in rapidly growing technologies.

In the third part of my research, I investigated in more detail how the notions
of ’network paths’ and ’path length’ can be used to study cumulative knowledge
structures, where again the network nodes represent elements of knowledge (such as
inventions or scientific papers) and links represent the knowledge flow between these.
Starting from the Price model of network growth, I derive an exact solution for the
path length distribution of all unique paths from a given initial node to each node in
the network. I study the relative importance of the average in-degree and cumulative
advantage effect and implement a generalization where the in-degree depends on the
number of nodes. The cumulative advantage effect is found to fundamentally slow
down path length growth. As the collection of all unique paths may contain many
redundancies, I additionally consider the subset of the longest paths to each node
in the network. As this case is more complicated, I only approximate the longest
path length distribution in a simple context. Where the number of all unique paths
of a given length grows unbounded, the number of longest paths of a given length
converges to a finite limit, which depends exponentially on the given path length.
Fundamental network properties and dynamics therefore characteristically shape
cumulative structures in those networks, and should therefore be taken into account
when studying those structures.

In the fourth part of this research, I determined for an extensive group of RETs
both their science dependence and their technological cumulativeness. I systemati-
cally compared these to the mobility of their knowledge base. Knowledge mobility
measures the extent to which developing technological knowledge travels geographi-
cally, and is positively related to the analyticity of the knowledge base (i.e. the extent
to which it builds on analytic knowledge) and negatively related to the cumulative-
ness of a knowledge base. I identified a substantial group of RETs (photovoltaics,
fuel cells, energy storage) which have a highly analytic knowledge base and (indeed)
a substantial knowledge mobility, there is also a substantial group of RETs (wind
turbines, solar thermal, geothermal, and hydro energy) for which the knowledge base
is less analytic and (indeed) less mobile. Likewise, the technological cumulativeness
tends to be lower for the former than for the latter group.

The previously mentioned characteristics of the knowledge base of RETs have
several implications for science and technology policies that aim to strengthen the
development of RETs. RETs overall build strongly on scientific knowledge, signif-
icantly more than FFETs do. For that reason I expect policies promoting scien-
tific research in general (and basic, high impact science in particular) to lead to a
strengthening of RETs. At the same time, there is substantial variation across differ-
ent RETs in both science-dependence and cumulativeness, which characteristically
relates to variation in other dimensions such as the knowledge mobility and the rate
of invention over time. This calls for the policies which aim to strengthen the devel-
opment of specific RETs to be specific for those RETs, i.e. taking for a given RET
into account both the type of knowledge it builds on as well as the local presence of
this knowledge and the difficulty of catching up with a possible knowledge gap.
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Chapter 1

Introduction

Whether it is a device to harvest flowers, or a ship to fly to the moon, humans have
come up with ingenious technological solutions to fulfill their daily needs or solve
their societal issues. By studying nature and putting natural phenomena to work,
we have effectively created our own, second nature. While this is a success story
in many ways, the negative effects of some technological solutions are not always
obvious at the outset. This makes that our second nature introduces some problems
of its own. One of those, which is of particular urgency today, is the issue of global
warming caused by excessive greenhouse gas emissions (IPCC, 2018). Although this
problem could partially be solved by a set of behavioral changes, for the remaining
part we again depend on the solutions provided by technological development.

This applies in particular to the gradual replacement of Fossil Fuel based Energy
Technologies (FFETs) by Renewable Energy Technologies (RETs). In 2016 the
energy sector accounted for about 60% of the greenhouse gas emissions worldwide
(Ritchie & Roser, 2020). While it is, on the one hand, encouraging that many
countries and organizations have policies in place to strengthen the development
of RETs and the share of renewable energy sources in our total energy mix has
been steadily increasing (IRENA, 2018), it is, on the other hand, alarming that
the FFETs still largely dominate the energy mixes worldwide and emissions are
peaking. Furthermore, introducing greater shares of renewable energy will bring
about all kinds of serious further technological challenges such as the requirement
of greater grid and storage capacities (IRENA, 2018). While on our way, therefore,
we still have a long way to go.

There are various ways for policies to strengthen or accelerate the development
of RETs. A first way for policies to do this is by implementing a regulatory frame-
work that (partly) prohibits the use of FFETs, thus forcing people to choose for
RETs. If effective at all, the measures of this type are usually avoided in free-
market economies. In a second way, policies intervene in the diffusion process of
RETs through tax reductions and subsidies, resulting in economies of scale due to
optimization of production processes. While these demand stimulation measures
work well to create a level-playing field for RETs that are (almost) market-ready,
their impact on the development of novel RETs is unclear and only indirect at
best. Stimulating the development of the latter is however equally relevant, espe-
cially from a long-term perspective. Therefore, in a third way of strengthening RET
development, policies intervene at a more fundamental level of knowledge develop-
ment, specifically aiming to encourage the knowledge development of RETs and not
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Chapter 1 Section 1.1

of FFETs. Coming up with policies that can effectively aim research and technology
development towards a certain mission is, however, not straightforward (Mazzucato,
2016). These policies should make well-considered choices about stimulating the de-
velopment of which technology where. As I discuss in more detail later, the difficulty
to enter the development of a technology and the extent to which its development
is location-bound are expected to partially depend on fundamental properties of the
knowledge underlying the technology. Organizing such mission-oriented research
therefore in the first place requires a deep understanding of the body of knowledge
on which technologies build, that is the knowledge base of these technologies, and,
in particular, the knowledge base dimensions that relate to the difficulty of entry
and the extent to which the development is location-bound. While a number of con-
tributions study various different knowledge aspects of RETs (Barbieri et al., 2020;
Dechezleprêtre et al., 2014; Ocampo-Corrales et al., 2020), the literature currently
lacks a systematic overview of what the knowledge base of RETs exactly entails, and
how it may vary for individual RETs. In this research, I aim to improve this under-
standing, by developing methodologies to systematically study various knowledge
base dimensions and applying these specifically to RETs.

1.1 Knowledge base dimensions

What are the relevant dimensions in which the knowledge base of a technology can
be studied? Before I dive into that question, let me first clarify the subject matter,
’technological knowledge’. Technological knowledge exists in many forms, varying
from the intuition of engineers to detailed descriptions of the workings of machines.
In this research, which is both theoretical and empirical, I focus on technological
knowledge in the tangible form of inventions. I define invention rather generally as
a new practical application of some theoretical principle. This ’theoretical principle’
can be some discovered natural law, or geometric property, or even some knowledge
of a social process: it is essentially a description (not scientific per se) of a particular
relation between objects or processes1. A ’new practical application’ conveys that
the theoretical principle is for the first time used to achieve some specified real-world
purpose or fulfill some human need. I understand invention to differ from science
in the sense that the latter focuses on developing new theoretical principles and
is less (or not at all) focused on the application aspect. At this point it is also
useful to distinguish between invention and innovation: an invention can become
an innovation when it is implemented in society. Technological change, therefore,
encompasses both invention and innovation. While acknowledging that the concept
’technology’ includes multiple facets and can be approached from various angles
(Mitcham, 1978), I will mainly focus on the knowledge aspects of technology in
this work. In line with Arthur’s perspective on technology (Arthur, 2009), we will
therefore mainly approach ’technology’ as the collection of all inventions, a subset of
which (following some classification principle) can then be considered ’a technology’.

What does the development of technological knowledge require and under which
circumstances does it flourish? Fundamentally, it requires motivated, well-trained

1Note this does not require the phenomena involved with the theoretical principle to be ’fully
understood’: the understanding of a phenomenon may change with the development of later the-
ories.
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Chapter 1 Section 1.1

researchers and/or engineers, which in turn require stimulating environments, am-
bitious organizations, and intensive collaborations, which in turn require effective
research and innovation (public) policies at regional, national, and international
levels. All of these (and more) factors are relevant to knowledge development, and
their effects are, both separately and collectively, studied as Science, Technology and
Innovation Systems(Asheim et al., 2016; Binz & Truffer, 2017; Markard & Truffer,
2006). While acknowledging the relevance of these factors, I note that they mostly
relate to, or are properties of, the producers of that knowledge (henceforth the ’in-
ventors’). In this research, my aim is to focus more directly on the properties of
knowledge itself (or ’knowledge intrinsic properties’). Approaching technology as a
(growing) body of knowledge, I arrive at another fundamental requirement or source
for the development of new technological knowledge: other (technological) knowl-
edge. Philosophers of science and technology generally agree that new knowledge or
content is created at least partly by recombining earlier knowledge (Arthur, 2009;
Basalla, 1989; Freeman & Soete, 1997). To better understand the requirements for
knowledge development to proceed, it therefore makes sense to study the knowledge
linkages and dependencies between different bodies of knowledge. I identify two
main different sources of knowledge on which technological knowledge may depend:
scientific knowledge and other technological knowledge. In the following two sections
I will discuss how the dependence on these two respective sources can be studied
using the dimensions science dependence and technological cumulativeness.

While the inventors can theoretically be distinguished from the content they
produce, in reality, they are two sides of the same coin. Properties of the inventors
may therefore closely relate to knowledge intrinsic properties. In particular, the
earlier mentioned science dependence and technological cumulativeness are expected
to relate closely to knowledge mobility, a dimension that measures the extent to
which knowledge travels geographically (discussed in more detail in Section 1.1.3).
Where the first two dimensions are more content-related, the third is arguably less
content-related and more inventor-related. The knowledge mobility, apart from
being a useful indicator for the geography of innovation, can therefore be interpreted
as a linking pin between on the one hand content-related dimensions and on the other
hand inventor-related dimensions. As science and technology policies typically act
in the domain of inventor dimensions, the knowledge mobility may be useful to
translate findings from content-related dimensions into evidence-based science and
technology policies.

To study the knowledge base of a technology, I therefore in the following three
sections I discuss in more detail: (i) the science dependence, (ii) the cumulativeness
and (iii) the mobility of technological knowledge.

1.1.1 The science dependence

The first knowledge dimension I focus on is the science dependence. I define the
science dependence of a given technology as the extent to which the development
of this technology depends on scientific knowledge. A substantial part of technology
owes its working principles to the understanding of natural laws provided by science.
In turn, science owes the possibility of many experiments and observations to the
tools provided by technology. This symbiosis between science and technology (or to
be precise physical science and industrialism) was described by A.J. Toynbee as "...

3
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a pair of dancers, both of whom know their steps and have an ear for the rhythm
of the music. If the partner who has been leading chooses to change parts and to
follow instead, there is perhaps no reason to expect that he will dance less correctly."
(Toynbee, 1963) Although this image is also criticized by authors who stress the
development of the two is largely independent (Price, 1965a), the idea that there is
some dynamic interaction appeals to many scholars, at least more than the ’linear
model’ does, in which all technology is applied science. Indeed there are in the
history of science and technology plenty of examples where technology was crucial
to science, as well as examples where the roles were reversed. The invention of the
telescope essentially meant the birth of modern astronomy, yet without Newton’s
laws, we would still only be staring at the moon. The metaphor of a dance thus
seems rather fitting: sometimes the partners are close together and touch, sometimes
they are far apart and move rather differently to the same rhythm (be that more of
a 21st-century dance than the elegant waltz Toynbee perhaps had in mind).

In the end, the suitability of Toynbee’s metaphor probably depends on the way we
demarcate science and technology, which may be challenging especially for disciplines
on the borderline. Yet these grey areas can of course also be interpreted as instances
of strong interaction (Narin et al., 1997), and it all boils down to the perception of
technology-science dependence as a varying scale. In this work, I mainly focus on
the dependence of technology on science, where I distinguish between the strength
of the dependence, i.e. the earlier mentioned science dependence, and the body
of scientific knowledge on which a technology builds, i.e. the science base of that
technology. The type of knowledge (basic-applied) that forms the basis of inventions
and the type of organizations (universities-companies) in which they are developed
vary with the science dependence. Studying this dimension therefore not only reveals
interesting differences between technologies, but may also provide policies with a
lever to encourage the development of specific technologies.

Despite its relevance to science and technology policies, it is not always clear
how the science dependence can systematically be measured (Meyer, 2000; Narin &
Noma, 1985). A problem that arises when we consider various technologies, is how
we can account for variations across these technologies in dimensions other than
the science dependence, such as, for example, variation in age and the number of
inventions associated with a technology. More generally, apart from a number of
relevant examples (Leydesdorff & Zhou, 2007; McMillan et al., 2000), there is no
clear-cut approach in the literature to what exactly a science base study should
entail. Before I can therefore study the science base of RETs in all detail, I need to
in the first place develop the methodology to identify, characterize and measure the
science base of a technology.

1.1.2 The cumulativeness of knowledge

The second knowledge dimension I focus on is the cumulativeness of knowledge,
which I define as the continuous relevance of knowledge developed at any earlier
stage to later knowledge development. In other words, the idea that today’s knowl-
edge forms the basis for tomorrow’s knowledge, which in its turn forms the basis
for knowledge thereafter. I distinguish between technological and scientific cumu-
lativeness, where the former concerns the relevance of technological knowledge to
technological knowledge, the latter concerns the relevance of scientific knowledge to
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scientific knowledge. Cumulativeness (or ’cumulativity’) comes about when people
adapt their creations based on learning about previous creations or learning from
other people and is often believed, at least in the context of science and technol-
ogy, to be an important mechanism for progress (Dean et al., 2014; Richerson &
Boyd, 2008; Tennie et al., 2009). Cumulativeness of knowledge enables people to
reach accomplishments they would not have been able to reach by themselves, or,
in the often-quoted words of Newton: "If I have seen further it is by standing on
the shoulders of Giants."(Newton, 1675). For these reasons philosophers of science
and technology regard cumulativeness as a fundamental property of both scientific
and technological knowledge (Arthur, 2009; Basalla, 1989).

Next to its relevance in philosophy of science and technology, the cumulativeness
concept plays a key role in the economics and the geography of innovation. Scholars
have suggested that the technological cumulativeness varies characteristically across
technologies in the extent to which they develop cumulatively (Malerba & Orsenigo,
1996; Nelson & Winter, 1977; Winter, 1984), and that this partly determines the
ease (or difficulty) with which inventors or innovators may enter or diversify into
a technology. Where an entry in higher cumulativeness technologies requires more
effort and specialized knowledge, an entry in lower cumulativeness technologies is
relatively easier. Furthermore, recent studies from the geography of innovations in-
dicate that regions are more likely to diversify into technologies that are related to
their existing knowledge base (Balland, 2016; Balland & Rigby, 2017; Boschma et
al., 2015), and that greater cumulativeness associates positively with the geograph-
ical concentration of innovative activities (Breschi et al., 2000; Malerba, 2005). An
understanding of the cumulative nature of technological development is thus piv-
otal for public policies looking to promote regional innovative activities, such as
’smart specialization’ (Foray, 2014), where regions seek out attractive technologies
for future economic development.

Despite its theoretical and practical relevance, it is not always clear in the schol-
arly literature what the cumulativeness concept exactly entails. Perspectives on
cumulativeness vary from the incremental change in artifacts (Basalla, 1989; Butler,
2014; Gilfillan, 1935b; Ogburn, 1922), to the persistence of inventive activity (Cefis,
2003; Malerba & Orsenigo, 1993; Suárez, 2014), to the building of technological
knowledge on earlier findings (Enquist et al., 2011; Merges & Nelson, 1994; Scotch-
mer, 1991; Trajtenberg et al., 1997). Furthermore, most of these descriptions or per-
spectives of cumulativeness are strictly conceptual, hence it often remains unclear
how - if at all - cumulativeness can be measured systematically across technologies.
The notable exceptions which do attempt to measure cumulativeness, mostly using
the ’persistence perspective’, often do not implement or check for the key character-
istic of cumulative development that later knowledge builds on/depends on earlier
knowledge. Research aiming to systematically compare cumulativeness across tech-
nologies would therefore benefit from a methodology that internalizes the property
of knowledge building on earlier knowledge.

The elements of technological knowledge and the dependencies between them
should be clearly represented in such a methodology, which leads naturally to a
network approach to technological knowledge, where nodes represent inventions and
links represent the dependencies between them. This ’knowledge network’ approach
has already been applied extensively in science and technology studies and, often
following a basic network model introduced by Price (Price, 1976), has led to im-
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portant insights about the mechanisms of scientific development (Garfield, 1979;
Wang & Guan, 2011). In the field of innovation studies too the network approach is
applied extensively, for example in the analysis of breakthrough innovation (Dahlin
& Behrens, 2005; Fleming, 2001; Verhoeven et al., 2016), main paths (Hummon &
Dereian, 1989; Verspagen, 2007), emerging technologies (Érdi et al., 2013; Shibata
et al., 2009) and technological network evolution (Valverde et al., 2007). It appears
however that this approach has not yet been applied for the analysis of technological
cumulativeness. It is therefore not yet clear how exactly network structures might
be used to measure technological cumulativeness.

Cumulative technological knowledge structures are characterized by inventions
building on inventions, which themselves build on inventions, etc. An important ele-
ment of these structures is therefore that there are sequences of inventions connected
by knowledge flow, which, using a network approach, are conveniently represented
by the well-studied notion of network paths and path length (Katzav et al., 2015;
Newman, 2010; Watts & Strogatz, 1998). Yet there are various ways in which net-
work paths can be applied methodologically. Where most contributions use metrics
based on the shortest paths, that choice is not at all obvious for the study of cu-
mulative structures, where it is important to take into account intermediate steps
of development (which may not be included in the shortest paths). An alternative
could be to use the longest paths instead, which necessarily includes the maximum
number of intermediate steps. Another alternative might be to consider the various
distinct paths leading to an invention, hence introducing metrics based on all unique
paths in the network. This would indirectly account for the possibility that a combi-
nation of various ideas leads to a new invention, thus internalizing the recombinative
nature of discovery and invention (Arthur, 2009; Kaplan & Vakili, 2015; Strumsky
& Lobo, 2015). It is however not clear how the well-studied metrics based on the
shortest paths (such as network distances and diameters) can be generalized to met-
rics based on the longest or all unique paths. In particular, it is unclear how, for
typical knowledge network dynamics such as those in the earlier mentioned Price-
model, the number of paths might be distributed over the various path lengths, i.e.
what typical path lengths we might encounter in such networks. Understanding the
path length distributions is therefore a starting point for a deeper understanding of
cumulative knowledge structures and how these structures arise in different scientific
disciplines or technologies.

1.1.3 The mobility of technological knowledge

The third knowledge dimension I focus on is the knowledge mobility, that is, the
extent to which knowledge travels geographically. I define the knowledge mobility
of a technology as the extent to which the knowledge it builds on was created at
a geographical distance from where it was utilized. More mobile (or ’footloose’)
knowledge is developed widespread in ever-changing geographical locations, whereas
less mobile (or ’sticky’) knowledge, is confined to specific locations that change
little over time. Unlike the science dependence and cumulativeness, which we can
interpret as intrinsic knowledge properties more closely related to the particular
content of that knowledge, the mobility of knowledge is a result of the actions
of the users, intermediates, and producers of that knowledge, which are indirectly
determined by intrinsic properties of that knowledge. In this work, I therefore mainly
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investigate how the knowledge mobility is affected by the science dependence and
cumulativeness.

Various factors determine the location where technologies are developed, amongst
others: market prospects, advantageous circumstances for production, or geograph-
ical aspects of their application (wind turbines where the wind blows, solar panels
where the sun shines). While acknowledging that these factors likely affect the
knowledge mobility, I focus in this work on the role that knowledge intrinsic prop-
erties may play in the geographic dynamics of technology development. Earlier con-
tributions have connected the knowledge mobility to different modes of knowledge
production, associating global, ’footloose’ knowledge to a ’Science-Technology and
Innovation mode’ observed in science-based industries, and local, ’sticky’ knowledge
to a ’Doing, Using and Interacting mode’ observed in engineering-based industries
(Asheim & Coenen, 2005; Binz & Truffer, 2017; Jensen et al., 2007). This suggests
that technological knowledge bases with a high science dependence are generally
more geographically mobile. This is rather different for cumulativeness, which, as
I mentioned earlier, is associated positively with the geographical concentration of
innovative activities. This suggests that highly cumulative knowledge bases are
generally less mobile.

It is however unclear if these expectations also count for RETs. Some con-
tributions indeed find that RETs are on average highly science-based and, in line
with expectation, develop rather widespread (Ocampo-Corrales et al., 2020). How-
ever, other contributions indicate that RETs are a rather heterogeneous collection
of various technologies (Barbieri et al., 2020), which themselves not only build on a
heterogeneous set of other technologies (Noailly & Shestalova, 2013a), but are also
built on by a heterogeneous set of other technologies (Nemet, 2012). What counts for
RETs overall might therefore not count for the different individual RETs. To better
understand if the expected relationship between the science dependence, cumula-
tiveness, and knowledge mobility is therefore applicable, the different RETs need
to be considered individually, and the knowledge dimensions need to be determined
and measured separately for each of them.

To recap, I list the most relevant research challenges in studying the knowledge
base of RETs using the science dependence, cumulativeness, and knowledge mobility.

1. It is unclear how the science base and science dependence can be systematically
determined for various technologies. As such it is unclear what characterizes
the science base of RETs and how that is different for FFETs.

2. Interpretations of technological cumulativeness vary and it is unclear how cu-
mulative knowledge structures can systematically be measured across various
different technologies (not necessarily limited to RETs and FFETs).

3. In a network approach to technological knowledge, a convenient way to study
cumulative knowledge structures is by using the notion of network paths and
the metrics derived from this notion. It is however unclear how the commonly
used metrics based on the shortest paths can be generalized for the longest
or all unique paths, which are of special interest in the study of cumulative
knowledge structures.

4. RETs are considered to be a heterogeneous collection of different technologies.
It is unclear how the different RETs can be categorized with respect to the sci-
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ence dependence and technological cumulativeness, and how these dimensions
relate to their knowledge mobility.

1.2 Research contribution

In this research I use Toynbee’s science-technology dance and Newton’s cumula-
tive giants to characterize the knowledge base of Renewable Energy Technologies
(RETs), providing input for evidence-based policies aiming to steer technology onto
the renewable energy course. I thereby focus on the following research questions,
which link one-to-one with the earlier mentioned research challenges:

1. What is the science base of RETs and how does it differ from FFETs?

2. How can we identify and measure technological cumulativeness?

3. How can metrics based on network paths be generalized to study cumulative
knowledge structures?

4. How do different RETs vary with respect to science dependence and cumula-
tiveness, and how does this relate to their knowledge mobility?

To address these questions, I develop a methodology to empirically characterize
the science base of a technology and a methodology to measure technological cu-
mulativeness. I develop and apply these methodologies by explicitly approaching
technological knowledge as a network structure of inventions and associated knowl-
edge flows. This to some extent allows me to approach the above questions both
theoretically and empirically, using data on patents and patent references.

In the following, I explain how my research is structured in more detail. Chapter
2 is dedicated mostly to the first of the above research questions. In this chapter,
I develop a methodology that allows for a detailed analysis of the science base of
technologies. I do this by identifying and classifying the references in patents (be-
longing to a certain technology) to scientific journals (belonging to certain scientific
disciplines). I then apply the analysis both for RETs and FFETs, allowing me to
study characteristic differences between both types of energy technologies. Next to
the strength of the science dependence, I compare the science bases on a number
of aspects, such as the diversity of scientific disciples, the degree to which they are
’basic’ or ’applied’, and the ’scientific impact’. The scientific impact of a scientific
finding is a measure for its importance to other scientific findings and is in this re-
search mainly approached using indicators that count how often a finding is referred
to by other scientific findings (i.e. ’forward citations’).

Chapter 3 is dedicated mostly to the second of the above research questions. In
this chapter, I develop a methodology that allows for a detailed analysis of the cumu-
lativeness of technologies. Despite the recognized importance of cumulativeness from
various disciplinary angles, its exact meaning is not always clear in the literature.
For that reason, I dedicate a substantial part of this work to clarifying the meaning
of this concept in the context of technological knowledge. Subsequently, I apply a
methodology in which I explicitly approach the knowledge base of technologies as
a network of inventions connected through knowledge flow. The cumulativeness of
a technology is thus approached as property of the structure of its knowledge base,
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which is different from, but closely related to, the size of its knowledge base. Using
a simple model of the invention process I analytically derive equations describing
the relation between the cumulativeness and the size of the knowledge base. In
addition, I empirically test these ideas for a number of selected technologies, using
patent data.

Chapter 4 is dedicated mostly to the third research question, where I explore
how in knowledge networks, the notion of network paths can be used to identify cu-
mulative structures. Where the metrics based on the shortest paths are rather well
developed, it is unclear how these can be generalized when we consider the longest
paths, or all unique paths instead. In particular, I am interested in the question of
how the paths are, for these cases, distributed over the various lengths. Knowing
these distributions allows for a calculation of the expected path length, which rep-
resents the typical value of such path lengths in real-life networks. Starting from
the Price model, I derive an exact solution for the distribution of all unique paths
and investigate in detail how the different network properties affect this distribu-
tion. Deriving the distribution for the longest paths instead is analytically more
challenging, which is why we approximate it instead, choosing the simplest possible
network dynamics. Finally, I investigate how the expected path length depends on
various network properties and the knowledge base size.

Chapter 5 is dedicated mostly to the fourth of the above research questions. In
this chapter, the earlier developed methodologies are combined, where I determine
for an extensive group of RETs both the science dependence and technological cu-
mulativeness, and systematically compare this to the knowledge mobility of their
knowledge base. I estimate the degree of knowledge mobility using geographical
data about patents, thereby bringing together various data sets. I recap my main
findings in Chapter 6, including a discussion of implications for further research and
policy.
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The science base of renewables

Peter Persoon, Rudi Bekkers and Floor Alkemade
This chapter is published as: Persoon, P.G.J., Bekkers, R.N.A., Alkemade, F.
(2020). The science base of renewables. Technological Forecasting & Social Change
158, DOI: 10.1016/j.techfore.2020.120121.

Abstract

Initiatives to foster the development of Renewable Energy Technologies
(RETs) can benefit from a deep understanding of the science base that under-
lies such technologies, and especially how that science base differs from that
of Fossil Fuel based Energy Technologies (FFETs). This paper investigates
both science bases using citations in patents to scientific journals. We find
that RETs generally build stronger on science and draw on a more diverse set
of scientific disciplines. On average, the science on which RETs build is more
recent, less applied and is published in journals with a higher WOS Journal
Impact Factor. However, for different RETs (e.g., photovoltaics, wind turbines
and non-fossil fuels), we observe much more variation across these dimensions
than for different FFETs (e.g., combustion and gas turbines). Furthermore, the
broad spectrum of sciences on which RETs build largely includes the smaller
spectrum on which FFETs build. Based on these findings, we offer several
policy recommendations to better stimulate the development of RETs.
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2.1 Introduction

Reducing carbon emissions is high on the policy agenda of many countries. Often
such policies seek to stimulate the development Renewable Energy Technologies
(RETs) through subsidies and tax reductions. While these demand stimulation
measures work well to create a level-playing field for RETs that are (almost) market
ready, the influence on the development of novel and immature technologies is less
clear. Moving from general stimulation of science and R&D to more targeted policies
that stimulate knowledge development specifically for RETs, while ceasing support
to Fossil Fuel based Energy Technologies (FFETs), is not trivial. Incentives for such
mission-oriented research (Mazzucato, 2016) require a deep understanding of the
technologies, their underlying scientific knowledge base, and the interaction between
science and technology.

The interaction between science and technology is understood to be pivotal for
technological development(Freeman & Soete, 1997; Rosenberg, 1976), yet the na-
ture of this interaction may be very different for each field of technology(Mansfield,
1995; Verbeek et al., n.d.). Possible benefits of science, such as accelerating or im-
proving the efficiency of technology development, are found to depend on the extent
to which a technology consists of highly coupled components (Fleming & Sorenson,
2004) or highly novel combinations of components (Arts & Fleming, 2018). Recent
findings indeed suggest that green technologies combine a higher number of techno-
logical components and are based on more novel combinations than their non-green
counterparts (Barbieri et al., 2020), and that energy technology generally builds on
a large and diverse set of other technologies (Nemet, 2012; Noailly & Shestalova,
2013b; OECD, 2010). This suggests that RETs may benefit greatly from develop-
ments in science, and more so than FFETs. In this study we therefore evaluate how
strongly RETs build on science, how the RETs science base can be characterized
and how this differs for FFETs.

In an earlier analysis of the science base of environmental technology (including
RETs) for the period 2000-2007, the OECD found a broad dependence on scientific
disciplines (OECD, 2010). With the OECD study as a starting point, this paper
seeks to carve out the specifics of the RET knowledge base by answering the question:
What is the scientific knowledge base of renewable energy technology, and how does
that differ from non-renewable energy technology? To do so, we present an in-
depth investigation, looking at various dimensions of the science bases, such as the
relative importance of basic versus applied research, and the scientific impact of that
research. We use recent data, and also investigate time trends, as several studies
have suggested that policy for RETs should also take into account the development
stage of the technology (Abernathy & Utterback, 1978; Anderson & Tushman, 1990;
Huenteler, Schmidt, et al., 2016). Our analysis of these different aspects of the
science base of RETs can help policymakers to make informed and targeted decisions.

The paper is structured as follows. In Section 2.2 we discuss the theoretical
background of determining the science base of a technology and what may be ex-
pected for RETs and FFETs. Next, Section 2.3 explains how we identify RETs and
FFETs and the methodology used for measuring technology-science links. We do so
by constructing these science bases using patent data and references from patents
to the non-patent literature. Section 2.4 describes the relevant science bases and
science base quantities. We will explicitly address the distinction between RETs,
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FFETs and overlapping technologies.

2.2 Theoretical aspects of science bases

In line with Arthur’s perspective on technology (Arthur, 2009), we define technology
as the body of knowledge which applies science and/or engineering to fulfill a hu-
man purpose. In evolutionary economics, technological change is often understood
in terms of technological paradigms and trajectories (Dosi, 1982). A technologi-
cal paradigm is an outlook on technological progress, kept by a certain engineering
community and based on a particular collection of scientific and/or technological
findings. A technological trajectory is the continuous development of a particular
product or technological design within such paradigm. Important scientific discov-
eries largely set the playground for changing paradigms. Any attempt to better
understand a given technology, therefore, should start with a deep understanding
of its science base. Even though the respective knowledge bodies of science and
technology may overlap, their differences and mutual interaction are relevant topics
in innovation sciences. Some scholars thereby emphasize the importance of science
to the development of technology (Freeman & Soete, 1997) while others emphasize
the reverse relation (Rosenberg, 1976). Yet, most authors seem to agree that the
influences in both directions are essential, resulting in a complicated, non-linear pat-
tern of interaction. However, the extent to which technological innovation builds on
scientific knowledge varies greatly across economic sectors (Pavitt, 1984) and tech-
nologies (Mansfield, 1995; Verbeek et al., n.d.). Fleming et al. approach inventing
as a combinatorial search process, in which science may lead inventors more directly
to useful combinations (Fleming & Sorenson, 2004). Their findings suggest that
especially R&D in technologies that combine a large number of interrelated ’cou-
pled’ components may greatly benefit from the guiding role of scientific knowledge.
Furthermore, the usage of scientific literature may help inventors overcome the un-
certainties of exploring new fields and trying novel combinations of knowledge (Arts
& Fleming, 2018). A recent study by Barbieri and co-authors focuses on the tech-
nological knowledge base differences between green and non-green technologies and
indeed suggests that green technologies combine more technological components and
are based on more unique combinations of knowledge than their non-green counter-
parts (Barbieri et al., 2020). We therefore expect that RETs may benefit more from
scientific knowledge than FFETs, and hence to a larger extent build on scientific
knowledge.

Energy technology consists of a diverse set of technologies, each extensively build-
ing on a larger collection of other technologies (Barbieri et al., 2020; Nemet, 2012;
Noailly & Shestalova, 2013b). In general, we therefore expect a large disciplinary
diversity for the science base of energy technology. This broad dependence may,
however, be different for RETs and FFETs. The 2010 OECD report mentioned
above indicates that green technology depends on a very broad spectrum of scien-
tific fields. While technological knowledge is not the same as scientific knowledge,
the earlier mentioned study by Barbieri suggests that the green technologies rely on
more diverse technological knowledge than their green counterparts. Next to the
technologies built on, this difference is also found for the technologies building on
RETs and FFETs: RETs were found to have more spillovers, and to a greater vari-
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ety of technological fields than FFETs (Barbieri et al., 2020; Dechezleprêtre et al.,
2014). Dechezleprêtre et al. found that the spillover rates of RETs are comparable
to upcoming tech-science fields such as biotechnology, nanotechnology, robotics, and
3D-printing. Finally, yet perhaps most importantly, RETs and FFETs differ greatly
in terms of exploited phenomena. Where FFETs revolve around exothermic chem-
ical processes (such as combustion), RETs reside to a multitude of fundamentally
different phenomena, such as wind and sunlight but also, in the case of bio-fuels,
on traditional exothermic chemical processes. Taking all these aspects into account,
we expect a greater diversity in the science base of RETs than in the science base
of FFETs.

In the industrialized countries, energy generation in the 20th century was largely
fossil fuel based, leading to a strong development of FFET (Wilson, 2012). Even
though early developments of RETs started over a hundred years ago, most RETs
are generally considered to be in an earlier stage of development than FFETs. In
terms of market readiness, RETs vary considerably (McKinsey, 2013), for instance
wind is in a more mature phase than photovoltaics (Popp, 2017). Technologies in
an early phase of development may also have a more diverse underlying science
base. Where for technologies in a more mature phase a dominant design may be
established, building on a (small) number of relevant scientific fields, for technologies
in more early phase a number of designs may still be competing, each exploring ideas
from several fields (Anderson & Tushman, 1990; Murmann & Frenken, 2005). The
differences in distance to market may thus correspond to differences in the extent
and diversity of the underlying science base.

To further understand science base differences between RETs and FFETs, it is
useful to distinguish between radical innovation (understood to initiate new paradigms)
and incremental innovation (understood to happen within technological paradigms).
Innovation in FFETs is largely understood to happen within current energy tech-
nology paradigms, and can therefore mostly but not exclusively be associated with
incremental innovation (Markard et al., 2012; Markard & Truffer, 2006). Likewise,
RETs can mostly but not exclusively be associated with radical innovation. In the
context of energy technology, incremental innovation is linked to large technological
systems, characterized by slow innovation and path-dependent development. Rad-
ical innovation is linked to fast developments in niches (Markard & Truffer, 2006).
Radical innovations are understood to be based on novel knowledge (combinations)
of both technological and scientific nature (Verhoeven et al., 2016). Even though
paradigm change may not be synchronized for science and technology, breakthroughs
in science may lead to breakthroughs in technology (and vice versa). Given that
scientific breakthroughs are characterized by high-impact factors, we expect radi-
cal innovation to build on high-impact science more than incremental innovation.
Technology may incrementally co-develop with a certain field of science, and spe-
cialize along their trajectories, in tandem. Such specializing science may only be
relevant to a limited number of neighboring fields of science and may therefore have
a lower impact. That could be another reason why incremental innovation may be
associated with lower impact science. Given this radical-incremental distinction, we
therefore have three expectations: (1) for RETs we expect a larger science base than
for FFETs, (2) the impact of the science RETs build on is expected to be higher
than that for FFETs and (3) we expect a smaller science technology time lag for
RETs than for FFETs.
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2.3 Data and methods

2.3.1 Knowledge base definitions

We define the knowledge base of a technology (or technological field) as the body
of knowledge on which it builds. In section 2.2, technology itself was identified as
a body of knowledge as well. In this analysis, we assume that we can meaningfully
attribute a size to both types of knowledge bodies. That allows us to define the
knowledge dependence of a technology as the size of the knowledge base relative
to the size of the technology. This measures to what extent a technology builds
on earlier knowledge. The knowledge base may be of a technological, scientific
and/or other type of knowledge1. We define the science base of a given technology
(or technological field) as the scientific part of the knowledge base. Accordingly, the
science dependence is the size of the science base relative to the size of the technology.
The technology base of a technology (or technological field) is the technological part
of the knowledge base. Within the technology base, a part of the knowledge may
refer to the technology itself (e.g. to earlier versions or ideas which are part of
the same technology). The size of this part of the technology base relative to the
size of the technology we define as the intra-technology dependence. It indicates to
what extent a technology builds on itself rather than on other technologies. A high
intra-technology dependence of a technology may indicate a more mature phase of a
technological development, as in the beginning a technology mainly builds on other
technologies (and/or science). The size of the other part of the technology base, we
define as the inter-technology dependence.

Using a classification of scientific disciplines, the science base can be studied in
more detail. The distribution of the science base over these disciplines also allows for
diversity comparisons between technologies. Another perspective on science distin-
guishes between basic and applied science. Both are about acquiring new knowledge,
yet where the first is directed primarily towards the underlying foundation of phe-
nomena and observable facts, the second is primarily directed towards a specific,
practical aim or objective (OECD, 2015). Views on what is basic and applied re-
search vary however (Calvert & Martin, 2001). Still, most researchers would agree,
as our definition of technology implies, that applied research is closer to practical
application and technology than basic research. Arguably, a "technology" or "engi-
neering" classification of a research field therefore signals a more applied character
of research. To effectively stimulate the development of a technology, it is important
to understand to what extent it builds on basic or applied science.

Finally, we consider the time scales of the science-technology interaction. Knowl-
edge of typical time scales is vital to accelerate technological development, and the
planning of policies. We define the science-technology time lag as the average time
lag between the publication of the scientific knowledge and the usage of this knowl-
edge by technology. This lag signifies how fast knowledge flows, and indicates the
temporal proximity of the science and technology interaction.

We use patents to study the interactions between science and technology. A tech-
nology is represented by a body of patents applications (henceforth shortly ‘patents’)
within a defined technological class. Patent data is arguably the most extensive and
detailed source of technological developments. Yet, using patent data to represent

1In this analysis we will only consider scientific or technological knowledge.
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a technology also has its limitations. Not all technology that is developed, is or can
be patented, and not all patents lead to successful technology. In this research, we
consider patents filed at the European Patent Office (EPO) between 1977 and 2016,
and use data from the Patstat Spring 2017 version.2 Patents usually contain refer-
ences, which are added by the patent examiner to identify the relevant body of prior
art, in order to decide whether the application meets the patentability criteria. Such
references are also known as backward citations. For EPO patents, references are
exclusively determined by the examiner, even though the inventor may suggest rele-
vant prior art. For innovation scholars, these references are a useful tool to retrieve
the possible building blocks of a technology. Most references are to other (exist-
ing) patents, but they can also refer to other knowledge sources, generally known
as Non-Patent Literature (NPL). Most NPL references are to scientific literature,
mostly journal articles (Callaert et al., 2006; van Vianen et al., 1990).

The total number of NPL references in patents for a given technology is a useful
indicator for the extent to which that technology builds on science: For example, us-
ing NPL references, Narin found a general trend of increasing dependence on science
at the end of the 20th century(Narin et al., 1997). Additionally, NPL references can
also provide insight into the scientific content exploited by the technology, for in-
stance by looking at the scientific discipline of these references. NPL data, however,
should be used with caution. For instance, increasing numbers of NPL references
could also be the result of improved search mechanisms at the patent office (instead
of reflecting an increased reliance on science). Moreover, NPL data may be incom-
plete (not exhaustive) or may not always be relevant (Meyer, 2000). The larger the
dataset, the more such imperfections can be expected to level out.

Below, we will first discuss how we identified the relevant patent data sets for
RETs and FFETs, and second, how we processed and cleaned the NPL data in those
data sets. Third, we explain how we determined science base quantities from that
data.

2.3.2 RETs and FFETs patent classes

To identify Renewable Energy Technologies (RETs), we use the Y02 classification
scheme introduced in the Cooperative Patent Classification (CPC). The Y02 tag
signals patents that enable or stimulate climate change mitigation (Veefkind et al.,
2012). The Y02 classification further distinguishes a number of subclasses. For
our study, we focus on patents that have at least one classification in the Y02E
subclass, which contains technologies related to energy generation, transmission, or
distribution. When we refer in this work to ’all RETs’ or ’RETs aggregated’ we
refer to unique patents in this subclass. Y02E is further divided into a number of
’groups’, a selection of which we will focus on in this research. We base this selection
on the main categories of RETs as proposed by the International Renewable Energy
Agency (IRENA)(IRENA, 2018): hydropower, bioenergy, solar energy, wind energy,
geothermal energy and tide- wave- and ocean energy (also called ’energy from sea’).
In addition to that, we include a number of relevant enabling technologies, which
can complement RETs to become feasible alternatives to FFETs: energy storage,
hydrogen energy, fuel cells, and smart grids. Table 2.1 provides an overview of the

2We chose EPO patents because of the relatively high quality NPL data for such patents in
Patstat

16



Chapter 2 Section 2.3

Short term CPC code Nr of EPO
patents

NPL of
journal-type

Average earli-
est filing year

RETs Y02E 69,904 40,421 2006
Geothermal energy Y02E 10/1 544 20 2005
Hydro energy Y02E 10/2 2,040 80 2006
Energy from sea Y02E 10/3 1,308 109 2006
Solar thermal energy Y02E 10/4 6,219 503 2005
Photovoltaic energy Y02E 10/5 16,589 14,951 2007
Wind energy Y02E 10/7 10,882 1,286 2008
Enabling technology Y02E 60 18,110 6,397 2006
Energy storage Y02E 60/1 8,396 2,548 2006
Hydrogen technology Y02E 60/3 4,167 1,797 2005
Fuel cells Y02E 60/5 3,882 1,508 2005
Smart grids Y02E 60/7 1,522 496 2007
Non-fossil fuels Y02E 50 7,156 16,430 2006
Clean combustion Y02E 20 5,330 1,451 2004

Table 2.1: RETs and CPC descriptions (CPC, 2018)

RET technologies we consider individually in our study, as well as their CPC codes
(Column 2), and the total number of patents for those technologies (Column 3).
Column 4 shows the number of NPL references to (academic) journals3. We will
use these NPL references - and specifically their academic disciplines - to investigate
the science base of these technologies. (Note that three technologies - energy from
sea, geothermal and hydro energy - have too few NPL observations to allow detailed
analysis.) The last column shows the average (earliest) filing year, and here we can
see that all these technologies are relatively young (between 2005-2008).

To identify Fossil Fuel based Energy Technologies (FFETs), we will largely fol-
low the list of CPC subclasses constructed by Dechezleprêtre (Dechezleprêtre et al.,
2014). These patent classes are presented in Table 2.2, along with relevant char-
acteristics. When we refer in this work to ’all FFETs’ or ’FFETs aggregated’, we
consider each unique patent with (at least one) classification mentioned in of Table
2.2. Note that most FFETs have an average (earliest) filing year between 2001-2002,
which indicates that FFETs are, on average, older technologies than RETs.

Remarkably, many of the patents in the FFET (sub)classes also have a Y02
tag, for example, the inventions that aim to reduce carbon gas emission of fossil
fuel based technologies. These inventions both have a ’clean’ and ’dirty’ element to
them, and we can call them ’hybrid’ technologies. In order to carefully deal with
such hybrids in our analysis, we perform our analysis for both the total set of FFETs,
as well as for a set of FFETs excluding these hybrids. Dechezleprêtre copes with
this challenge by separately considering "clean", "grey" and "dirty" technologies on
the group level of classification. Our exclusion, however, is on the more precise level
of individual patents.

Patents also often list multiple CPC codes, and as a result, many patents are
both present in multiple RET and/or multiple FFET technologies. In fact, the
140,874 unique patents in our data set include a total of 374,731 CPC classifications.
Figure 2.2 illustrates which technologies often co-occur in these classifications. The
connections between RETs show a lower density than those between FFETs. We

3Patstat offers a specific classification of NPL types, and references to (academic) journals are
recognized as the ’s’-type in Patstat)
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Short term (italics) and extended de-
scription

CPC
code

Nr of
EPO
patents

NPL of
journal-
type

Average
earliest
filing
year

Cracking : cracking hydrocarbon oils; produc-
tion of liquid hydrocarbon mixtures, recovery
of hydrocarbon oils from oil-shale, oil-sand, or
gases; refining mixtures mainly consisting of
hydrocarbons; reforming of naphtha; mineral
waxes

C10G 12,712 3,703 2001

Gasification: production of producer gas,
water-gas, synthesis gas from solid carbona-
ceous material, carburetting air or other gases

C10J 2,661 294 2002

Fuels: fuels not otherwise provided for; natu-
ral gas; liquefied petroleum gas; adding mate-
rials to fuels or fires to reduce smoke or unde-
sirable deposits or to facilitate soot removal;
firelighters

C10L 8,165 3,305 2002

Steam engines: steam engine plants, steam ac-
cumulators; engine plants not otherwise pro-
vided for, engines using special working fluids
or cycles

F01K 4,432 414 2006

Gas turbines: Gas-turbine plants, air intakes
for jet-propulsion plants, controlling fuel sup-
ply in air-breathing jet propulsion plants

F02C 10,305 476 2007

Steam generation F22 3,779 272 2001
Combustion apparatus, combustion processes F23 20,632 853 2001
Furnaces, kilns, ovens, retorts F27 8,154 722 2001
Heat exchange in general F28 20,547 1,099 2002

Table 2.2: FFETs and CPC descriptions (from CPC descriptions 2018 (CPC, 2018))
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Figure 2.1: Number of European patent applications by earliest filing year for selected
RETs and FFETs The number of patents increase exponentially for each depicted technology.
The decrease towards 2015 is likely an truncation effect (see main text).

also observe that a number of RETs have more co-classifications with FFETs than
with other RETs. Focusing on patents that are only classified in RETs and patents
only classified in FFETs (and not considering patents classified in both), we see
that these RET patents have an average of 1.3 CPC classifications, whereas the
average for these FFETs is 3.3. This suggests that specific RETs (e.g., hydro and
photovoltaics) are relatively unconnected, while FFETs are more connected.

Finally, we focus on the time dimension of the considered EPO patents. As
explained above, our data set starts with patents from 1977 (one year after EPO
was established). Figure 2.1 shows the number of applications by year, for the largest
technologies considered in this research. A drop in patents can be observed in the
last few years of our dataset: this is most likely not an actual decline, but due to
the fact that it takes up to 18 months before a filed patent is published (which is
necessary to be included in Patstat), and the update cycle of Patstat. The (few)
patents in our data set applied for in 2016 are considered in our overall analyses,
but not shown separately.

Figure 2.1 shows that in the early time frame there are fewer patents for RETs
than for FFETs. We see that, after approximately 2001, the number of patents for
RETs starts to grow very fast (note the logarithmic scale). Both observations are
consistent with the earlier finding of RETs being a younger technology (Table 2.1
vs. Table 2.2).
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Figure 2.2: Co-classification between RETs and FFETs Node size corresponds to total num-
ber of patents. Line thickness corresponds to the number of patents co-classified in these technologies
(green = RET-RET, grey = FFET-FFET, blue=FFET-RET)

2.3.3 Linking NPL data with WOS journal entries

In order to calculate the indicators discussed in section 2.3, we link the NPL journal
references with journal entries in the Web Of Science (WOS) database. As a signifi-
cant share of NPL data in Patstat is far from harmonized (e.g., a single journal may
be referred to in many different ways), this also requires extensive cleaning of NPL
data. While this section will only briefly explain the main steps we took, Appendix
A provides a detailed explanation.

Our data set contained a total of 68,042 NPL references. We first considered
the references that contained an ISSN (about 13,000). We used these to create a
matching list that contained the full names of those journals as used in the WOS
as well as other common abbreviations and alternative names used for that journal.
To do so, we also used the online database of the ISSN International Centre (“ISSN
international Centre”, n.d.). The matching list was further complemented with terms
from the Science and Engineering Journal Abbreviations list from the University of
British Columbia (Library, n.d.).

We then used this matching list to find matches for the NPL references that
did not contain an ISSN code (approximately 55,000). To that end, we applied two
different string matching algorithms (Van der Loo, 2014). Where the two algorithms
provided the same best match (which was in 72 percent of all cases), the match was
accepted and, if not, it was discarded.

Finally, for each technology, we determined the frequency distribution of cited
journals, and downloaded the WOS Journal Impact Factor, Eigenfactor and WOS
Category for the most frequently cited journals (where available). For all tech-
nologies together, this amounted to 1577 journals, representing 82 percent of all
matches.
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2.3.4 Science base characteristics, distributions and indica-
tors

We calculate the knowledge dependence of a technology as the number of references
per patent (to other patents and to NPL). Similarly, the science dependence of a
given technology is the number of NPL references per patent and the intra-technology
dependence of the technology is the number of references to patents in the same class
per patent. The science dependency by year are calculated for patents applied for in
a given year. The science-technology time lags are determined, for each technology,
as the average time difference between the publication date of the NPL and the
earliest filing date of the patent that cites it.

To determine the science base distribution over different fields of science, and cal-
culate the values of related indicators we use the classification system for scientific
journals by the Web Of Science (WOS). This classification distinguishes 252 ’smaller
categories’ (ClarivateAnalytics, n.d.-b). We determine the science base distribution
over these categories by counting the total number of NPL references to journals in
these categories (note that our data set refers to journals in 140 of these categories).
This method is similar to the approaches used by McMillan (McMillan et al., 2000)
and by Leydesdorff (Leydesdorff & Zhou, 2007), who used it to study biotechnology
and nanotechnology, respectively. Where a journal was classified in multiple cate-
gories, it was counted fractionally. To compare the diversities of different science
bases, we calculate the Shannon index of the relative distributions.

The WOS also offers a more aggregated level of classification called ’broader cate-
gories’, containing ’Life Sciences-Biomedicine’, ’Physical Sciences’, ’Social Sciences’,
’Arts-Humanities’ and ’Technology’. We use the ’Technology’ broader category to
distinguish between a basic and an applied science base. For every technology (RETs
or FFETs), we calculate the A-fraction as the fraction of NPL references to journals
in the ’Technology’ broad category. We note that patents in our data set do not - or
very rarely - refer to the broader categories ’Arts-Humanities’ and ’Social Sciences’.4

Finally, WOS also offers data that allows us to calculate the average Journal
Impact Factor (JIF) associated with the science base of a given technology. The
JIF is a measure of the frequency with which the "average article" in a journal
has been cited in a particular year (ClarivateAnalytics, n.d.-a), and is considered
to reflect the scientific relevance of contributions published in that journal. This
view however is also criticized, see Waltman, 2016 and references therein. Amongst
other limitations, the JIF may not account for variation in citation densities across
scientific fields. For robustness, we therefore (i) check for the JIF variations we may
expect for citing journals in a certain scientific field and (ii) repeat the analysis for
a second measure of scientific relevance which WOS offers, namely the normalized
eigenfactor (West et al., 2010). While the normalized eigenfactor is also based on
forward citations, the NEF also takes into account the impact of the source of the
citations and excludes the effect of self-citations. As the NEF is based on proportions
of citations rather than absolute numbers of citations, it is relatively insensitive to

4The WOS broad categories ’Physical Sciences’ and ’Life Sciences-Biomedicine’ may include
’smaller categories’ which can reasonably be characterized as applied research as well. Therefore,
we also constructed an alternative indicator, for which we separately considered each ’smaller
category’ that is part of these two broader categories, and characterized them manually as ’applied’
or ’basic’. The results for this alternative indicator were mostly identical to that of the A-fraction,
so we present the results for the latter and simpler indicator only.

21



Chapter 2 Section 2.4

variations in citation densities across scientific fields (West et al., 2010).

2.4 Results

This section consists of two parts. First, we discuss the overall knowledge base
characteristics of RETs and FFETs. In the second part, we investigate the actual
nature/content of these references to scientific sources, and determine their academic
impact, diversity, their most relevant science categories and the extent to which they
are basic or applied.

2.4.1 Overall knowledge base characteristics

Figures 2.3 and 2.4 present, for RETs and FFETs respectively, the knowledge de-
pendence. For each technology, we break down the knowledge dependence (the total
number of references per patent) into (1) the science dependence (references to NPL),
(2) the intra-technology dependence (references to patents in the same technology)
and (3) the inter-technology dependence (references to patents in another technol-
ogy). For a substantial part of the RETs, the relatively high knowledge intensities
are mainly the result of high science dependencies. We observe that the knowledge
dependence varies more across different RETs, than it does across different FFETs.
If we only focus on science dependence, we make the same observation (see Fig-
ure 2.5). Overall, RETs have higher science dependencies, especially photovoltaics
and non-fossil fuels: for RETs aggregated, the science dependence represents about
22 percent of the total knowledge dependence. For FFETs aggregated, this is only
about 8 percent, and even decreases to 7 percent when the Y02 patents are taken
out. The intra-technology dependence also varies a lot more across different RETs
than across the FFETs. Even though some RETs have high intra-technology de-
pendence, the FFETs generally show higher intra-technology dependencies. Insofar
individual FFETs build on other technologies, these are usually other FFET tech-
nologies. In summary, (i) RETs vary more than FFETs in the extent to which
they build on previous knowledge, (ii) RETs build stronger on science than FFETs,
(iii) RETs build less on themselves than FFETs. Figure 2.5 combines the different
results indicating the ranges of the different science dependencies. The range is far
wider for the RETs, mainly due to non-fossil fuels and photovoltaics. Taking out
the Y02 patents from the FFETs, the FFETs range becomes even smaller.

Next, we consider the RETs in Figure 2.3 in more detail. The knowledge de-
pendence varies considerable across different RETs with a standard deviation of
1.0 ref/pat. The knowledge dependence of non-fossil fuels (6.9 ref/pat) is the abso-
lute maximum and that of energy from sea (2.9 ref/pat) the minimum, with other
technologies mostly on the lower side of this spectrum. The science dependencies ap-
pear to be proportional to the knowledge intensities (standard deviation 0.8 ref/pat).
Geothermal and solar thermal are exceptions in this respect: they show a relatively
low science dependence of 0.21 ref/pat, while their knowledge intensities are rel-
atively high. This appears to be largely due to relatively high intra-technology
dependencies. The fact that these technologies build more on themselves than on
external (scientific) knowledge may indicate a more mature phase of development
for these technologies. The science dependence therefore indicates key differences

22



Chapter 2 Section 2.4

0 1 2 3 4 5 6 7 8

clean combustion

non‐fossil fuels

smart grids

fuel cells

hydrogen energy

energy storage

wind

photovoltaics

solar thermal

energy from sea

hydro

geothermal

all RETs

ref/pat

science dependence intra‐technology dependence inter‐technology dependence

Figure 2.3: RETs knowledge dependence Break down of the knowledge dependence of RETs in
science dependence, intra- and inter-technology dependence. The shown error bounds are defined
by the 35th percentile and 65th percentile of the knowledge dependence. Note that for photovoltaics
and non-fossil fuels the mean can be observed to exceed the 65 percentile.

between the RETs. We have on the one hand strong science dependencies for pho-
tovoltaics, non-fossil fuels and most enabling technologies. For wind, geothermal,
solar thermal, hydro and energy from the sea, science appears less important and
the intra-technology dependencies are relatively high. Photovoltaics however is ex-
ceptional in this demarcation, which despite a high science dependence also has a
relatively high intra-technology dependence. This seems to indicate that although
the technology is maturing, science is still important to its development.

Subsequently, we turn to the FFETs, shown in Figure 2.4. We first discuss the
FFETs in general, which includes patents with a Y02 tag, and then the FFETs
without Y02 patents. There is little variation in the knowledge dependence across
different FFETs (standard deviation of 0.4 ref/patent). Only fuels seem to have a
relatively high knowledge dependence, which appears to be largely due to a relatively
high science dependence and inter-technology dependence.

Overall, the science dependence and intra-technology dependence are remarkably
uniform for different FFETs, with respective standard deviations of 0.1 ref/pat and
0.6 ref/pat. Interesting to note is that the knowledge dependence of all FFETs
together consists for almost 90 percent of intra-technology dependence. The inter-
technology dependencies for the individual FFETs can therefore be understood to
almost exclusively refer to other FFET technologies.

Further, we consider the FFETs in Figure 2.4 without the Y02 patents. Most
knowledge intensities are similar to their versions including Y02 patents. The science
dependencies however appear to slightly decrease for cracking and fuels. The intra-
technology dependencies of these technologies instead appear to increase, which also
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Figure 2.4: FFETs knowledge dependence Similar to caption Figure 2.4, but then for FFETs.
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Figure 2.5: Schematic representation of science dependence range. Here, we show the
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Figure 2.6: science dependence by year. Yearly science dependencies for a number of RETs,
FFETs and average EPO patents.

holds for a number of other FFETs, such as combustion and heat exchange.
Finally, we discuss the time dimension of the overall science base characteristics

of the technologies under investigation. From tables 2.1 and 2.2, we have seen that
the average earliest filing years are somewhat older for FFETs than RETs. We have
also seen that all RETs and FFETs from the early beginning show continuous growth
(e.g., have a non-zero and increasing number of patents over the period 1978-2015).
The propensity to cite science, however, does not follow a similar regularity. In
Figure 2.6, which depicts the science dependence by year, we observe considerable
variation across different technologies. Where the science dependence of non-fossil
fuels and fuels seem to continuously increase, that of wind and combustion seem to
first increase and then decrease. The science dependence of photovoltaics follows
a pattern which is somewhat in between those patterns. If we study the science
dependence by year for the other technologies, we find similar variation both across
RETs as FFETs. The importance of science may therefore not just be technology-
specific, but also be specific to the phase of development of that technology.

We conclude this subsection by considering the science-technology time lags.
In Figure 2.7 we present the time lags of both the FFETs and RETs along with
the number of NPL references. For the FFETs, we plot the time lag both on the
CPC classification group level as on the CPC (sub)class level. Though we are
mainly interested in the (sub)class level, we include the values of the subgroup
level to demonstrate a general relation between the time lags and the number of
NPL references. It appears that the higher the number of NPL references, the less
variation in time lags, resulting in a cone shape with a horizontal axis at the height
of about 10 years. The FFETs on (sub)class level neatly fall within the cone, their
time lags vary only little between 8.8 and 12.5 years. These lags do not significantly
change once the Y02 patents are removed from the FFETs. A number of RETs,
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Figure 2.7: Science Technology Time Lags. Time lags (in years) for each RET and FFET
ordered by number of NPL references.

however, appear to fall outside the cone to the lower side, their time lags ranging
between 5.3 and 12.4 years, despite rather high numbers of NPL references. For
fuel cells, wind and smart grids, the time lags are particularly small, indicating a
rapid interaction between science and technology in these fields. Overall, given that
the RETs generally have more NPL references than FFETs, the RETs time lags
seem relatively shorter than those of FFETs. Again, however, we observe larger
heterogeneity for RETs than for FFETs.

2.4.2 Science base distributions and indicators

The following section discusses the actual nature/content of the references to sci-
entific sources for the various technologies5. We determine the academic impact of
these sources, their diversity, and their most relevant science categories and level of
applied versus basic science.

To determine the academic impact of these sources, we determine the average
WOS Journal Impact Factor (JIF) of references in each technology and the tech-
nologies aggregated, (see Table 2.B.1 in appendix 2.B). For RETs aggregated the
average JIF is 7.57 (standard deviation 10.3), for FFETs aggregated it is 5.36 (stan-
dard deviation 7.9), for FFETs without Y02 patents this drops to 4.64 (standard
deviation 6.9). A simple Welch t-test points out that these averages are significantly
different. The majority of RETs we consider individually also have higher average
JIFs than the FFET maximum (6.30 for fuels). To account for the JIF bias towards

5Note that the relatively small number of NPL references of the RETs hydro, energy from the
sea and geothermal energy, (see Table 2.1) did not allow for these more detailed analyses and will
therefore not be considered individually in this section
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Figure 2.8: Average JIF RETs and FFETs with Y02 We plot for all RETs and FFETs with
Y02 patents the average JIF for the number of references, where the grey bars indicate the standard
deviations and the lines indicate a logarithmic fit. Note that the positive relation between the JIF
and log number of references equally counts for RETs and FFETs and the coefficients hardly differ.

certain scientific categories, we calculate the expected JIF based on the distribution
of references over the scientific categories for each technology and the technologies
aggregated (see appendix 2.B). These expected values indicate that the average JIF
is indeed expected to be slightly larger for RETs than for FFETs. However, when we
consider the proportion between these expected values with the (measured) average
JIF per technology, we find these proportions are substantially larger for RETs than
for FFETs. This suggest that, within a scientific category, RETs tend to build on
sources with a scientific impact which is relatively high for that category, and more
so than FFETs.

These conclusions however are more nuanced when we consider how the average
JIF relates to the number of references, which we depict for the different RETs and
FFETs in Figure 2.8 and similarly for FFETs without Y02 in Figure 2.9. We find
that both for the RETs and FFETs, there is a significant, positive relation between
the logarithm of the number references and the average JIF, the coefficient of which
does not significantly differ for the RETs and FFETs (for the statistical details
see appendix 2.B). We find this relation considering the average JIF on the level
of technologies and to some extent also on the level of individual patents. While
the coefficients are significant, most constants (i.e. the value of the JIF when the
number of references =1) are not. This therefore does not allow us to conclude
that the RETs have higher values than FFETs for a similar number of references,
even though Figures 2.8,2.9 suggest this. The fact that the aggregated RETs refer to
sources with a higher average scientific impact than the aggregated FFETs therefore
appears to be closely related to the greater tendency of RETs to refer to scientific
literature. Finally, as a robustness check, we repeat a large part of this analysis
for the normalized eigenfactor, the results of which are presented in appendix 2.B.
These results are very much in line with the earlier conclusions based on the JIF.

Considering now the diversity of the science base, as measured with the Shannon
entropy (Figure 2.10), we come to a rather different conclusion. Note that for the
FFETs, we plot the entropy both on the CPC classification group level as on the
CPC (sub)class level. Though we are mainly interested in the (sub)class level, we
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Figure 2.9: Average JIF RETs and FFETs without Y02 Same as Figure 2.8 except for
the FFETs without Y02 patents. Both the JIF and number of references are lower when the Y02
patents are removed.

include the values of the subgroup level as they better demonstrate a positive relation
between the number of NPL references and the Shannon entropy. While we again
observe a positive relation between the number of NPL references and the Shannon
entropy, RETs are rather on the lower end of the spectrum, compared to FFETs
with similar numbers of NPL references. This conclusion does not change if the
Y02 patents are taken out from the FFETs (sub)classes in Figure 2.11. The RETs
aggregated have a Shannon entropy of 3.3, for the FFETs, this is 3.4 and when
the Y02 patents are removed this reduces to 3.3. If we instead take the Herfindahl
index as a measure of diversity, it leads to similar conclusions. These measures
of diversity, though attractive for their simplicity, do not account for variations in
mutual similarity or dissimilarity relations between research categories. To account
for these relations, we will therefore also take a more qualitative perspective by
considering the most important research categories in the science bases.

The most relevant science categories in the science base distributions for both
the RETs and FFETs are illustrated schematically in Figures 2.12 and 2.13. The
pies represent the most important science categories, where the size corresponds to
the total number of references to these categories. In Figure 2.12 the green part of
the pies represents the number of references from RETs, the red part those from
FFETs. The vertical coordinate of each pie indicates the number of different RETs
which build on it for 5% or more, the horizontal coordinate indicates the number of
different FFETs which build on the category for 5% or more.

From Figure 2.12 it is immediately clear how much stronger the RETs build on
science: almost all pies have a larger degree of green. The only considerably large
category showing the contrary is ’chemical engineering’. The categories ’physical
chemistry’, ’multidisciplinary chemistry’ and ’energy and fuels’ are important for
FFETs, yet are positioned high and hence important to multiple RETs. In other
words, there appear to be few scientific categories only relevant to FFETs, and those
that are, are only sparsely referred to. RETs, however, have a number of categories
on which they uniquely build, such as ’polymer science’, ’electrochemistry’ and
’organic chemistry’. These findings become even stronger once the Y02 patents are
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Figure 2.12: Most important WOS Research Categories. Each bubble represents a WOS
research category which makes up at least 5% of the science base of at least one of the RETs
(without hydro, geothermal, and sea energy) and/or FFETs. The size of the bubble indicates the
total number of references from all technologies to journals in these categories, where the proportion
of references coming from RETs is depicted in green and from FFETs is depicted in red. The
vertical coordinate of a bubble indicates the number of different RETs which build on it for 5%
or more, the horizontal coordinate indicates the number of different FFETs which build on the
category for 5% or more. This figure was created using the R package scatterpie (Yu, 2018).
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taken out of the FFETs (Figure 2.13): almost all pies are now on the higher left. The
considerable importance to FFETs of some large categories, such as ’biotechnology’
and ’microbiology’, visible in Figure 2.12, disappears in Figure 2.13. This is likely
the effect of in- or excluding bio-fuels in FFETs. Figures 2.12 and 2.13 offer a rather
different perspective on the diversity of the science base than the Shannon entropy.
RETs strongly refer to various fields of physics, chemistry, and biology as well as a
number of interdisciplinary and engineering fields. References in FFETs are mostly
limited to fields of chemistry, such as chemical engineering, multidisciplinary- and
physical chemistry. Therefore, from a disciplinary perspective, the RET science base
is a lot more diverse than the FFET science base.

In conclusion, we observe an asymmetry in the extent to which RETs and FFETs
build on scientific categories. RETs build on most categories more strongly and
have various large categories uniquely useful to them. Furthermore, the relevant
categories RETs build on, cover a large spectrum of scientific disciplines. FFETs,
in turn, weakly build on most categories. The few categories they strongly build on
are mostly related to fields of chemistry only.

Finally, we discuss the A-fraction, which indicates the extent to which a science
base consists of applied science. Here, we find no relation at all between the number
of NPL references in the science base and the A-fraction. Yet, as Table 2.3 shows,
this indicator does signal important differences between the science bases of RETs
and FFETs. In general, the A-fractions of the RETs are lower than those of FFETs,
which suggests that RETs build less on applied science than FFETs. However, the
A-fractions vary more across different RETs, with very high values for wind and
smart grids (0.92) and very low values for non-fossil fuels (0.30) and photovoltaics
(0.22). For most FFETs, the A-fraction increases when the Y02 patents are removed.
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RETs A-fraction FFETs A-fraction A-fraction
no Y02

all RETs 0.20 all FFETs 0.40 0.46
solar thermal 0.54 cracking 0.32 0.35
photovoltaics 0.22 gasification 0.59 0.67
wind 0.84 fuels 0.29 0.38
energy storage 0.27 steam engines 0.71 0.75
hydrogen 0.30 gas turbines 0.65 0.69
fuel cells 0.29 steam generation 0.73 0.82
smart grids 0.92 combustion 0.63 0.66
non-fossil fuels 0.07 furnaces 0.79 0.74
clean combustion 0.63 heat exchange 0.56 0.55

Table 2.3: A-fraction for RETs, FFETs and FFETs without the Y02 patents. A high
A-fraction (between 0-1) signals a high level of applied science.

2.5 Discussion

There is inherent uncertainty about understanding future technological develop-
ments on the basis of a snapshot of those technologies today. Identified character-
istics of those technologies, such as the extent to which it builds on science, may
or may not change throughout the further development of such technologies. The
indicators, while useful, therefore have to be used with caution and in context. Fur-
ther, we discuss a number of limitations on a more technical level. Firstly, we base
our study on non-patent references in patents. While this allows us to observe the
influence of science on technology, it does not allow us to see the reverse influence.
Secondly, we rely on several classifications for our analyses; the CPC Y02 coding
by the EPO and USPTO to identify RETs, and the coding by Dechezleprêtre to
identify FFETs. We analyzed RETs at the class or subclass level and FFETs at the
group or subgroup level. In addition, we build on existing classifications of scientific
areas into disciplines, and into basic and applied science. While these classifications
have been validated, their use to study emerging technologies is not trivial. Finally,
we focused in this research on EPO patents. Repeating this research for USPTO
patents would be interesting, as citation behavior may be very different in those
patents (Criscuolo & Verspagen, 2008). The greater tendency of US patent appli-
cants to cite is likely to intensify the science dependences and broaden the spectra
of scientific disciplines in the science bases found in this work.

2.6 Conclusions and policy recommendations

This paper compares the science bases of Renewable Energy Technologies (RETs)
and Fossil Fuel based Energy Technologies (FFETs), driven by the assertion that
such an understanding is helpful in formulating policies to stimulate the development
of RETs. Our empirical analysis shows that:

1. RETs build on science stronger than FFETs. The aggregated RETs on average
refer 3 times more to scientific literature than the aggregated FFETs.

2. RETs build on a larger and more diverse set of relevant scientific disciplines
than FFETs. Where RETs build on very different WOS research categories
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such as applied physics, chemistry, materials science, and various fields of
biology, FFETs build on more closely related categories, such as chemical
engineering and other fields of chemistry. Furthermore, the broad spectrum of
sciences on which RETs build includes the smaller spectrum on which FFETs
build.

3. For RETs, the time lags between scientific publication and usage in a techno-
logical invention are generally shorter than for FFETs.

4. RETs generally build on higher impact science than FFETs. The average Jour-
nal Impact Factor of journals referred to is 1.5 times greater for the aggregated
RETs than for the aggregated FFETs.

5. RETs generally build more on basic research, whereas FFETs rely more on
applied research. The fraction of applied research fields in the science base of
RETs is on average 2 times less than for FFETs.

In our data, we distinguish RETs and FFETs on the basis of patent technology
classification (CPC) codes. A complicating factor here is that some technologies
can be classified both as RETs and FFETs. For the above conclusions (1-5), these
technologies were included with the FFETs. If we exclude these ’hybrid’ technologies
from our definition of FFETs, all five conclusions become more pronounced.

Yet, our empirical findings also point out a number of subtleties. Across the
dimensions in all five conclusions, we find much more variety between different RETs
than we find for different FFETs, which are more homogeneous. RETs such as
photovoltaics and non-fossil fuels intensively refer to scientific literature, and rely
on very basic, high-impact science. Other RETs such as wind- and geothermal
energy refer less often to scientific literature, and, in the case of wind energy, more
to applied science. In fact, the backward citation rates of these last two technologies
are more comparable to FFETs. As we will discuss below, this heterogeneity of
RETs does have consequences for policy. Furthermore, we note that the average
scientific impact of the sources referred to by a technology is related logarithmically
to the number of references of such a technology. The greater reliance on high-
impact science of RETs as opposed to FFETs is therefore closely related to the
greater tendency of RETs to refer to scientific literature.

On the basis of our findings, we formulate a number of policy recommendations
for stimulating research and development for RETs. This study has shown that
RETs rely much more on science than FFETs (and especially on basic, high-impact
science). As such, a policy that promotes scientific research in general (and basic,
high-impact science in particular) is expected to lead to a strengthening of RETs.
Further, this study has shown that RETs rely on a broad spectrum of scientific dis-
ciplines, a spectrum that encompasses the smaller spectrum FFETs rely on. While
this study has identified a number of scientific disciplines particularly relevant to a
number of FFETs, the relevance of these disciplines to RETs is at least compara-
ble. It appears therefore that reducing support for particular scientific disciplines
is not likely to be a successful policy for fostering RETs rather than FFETs, or
an accelerated phasing out of FFETs. At the same time, our study has shown
considerable heterogeneity across different RETs: photovoltaics and non-fossil fuels
are rather different in their science base from wind- and geothermal energy, for in-
stance. For policies to be as effective as possible, policymakers are advised to take
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these differences into account, and develop technology-specific policies that focus on
strengthening fields in science that are known to promote specific renewable tech-
nologies. Such technology-specific policies should consider to what degree specific
RETs depend on science (some do more so than others, as we have shown), and
the spectrum of scientific disciplines that would qualify for strengthening, given the
choice for a specific RET. Such policies could also consider the time lag between
science and application (which is much shorter for some RETs than for others) and
the degree to which RETs build on applied science (instead of basic science). Tak-
ing the above considerations into account, smart grids and wind energy are among
the most suitable candidates for technology-specific policies with short-time goals
(investments in related applied science), whereas non-fossil fuels and photovoltaics
are the main candidates for technology-specific policies with a longer time window
(investment in the related basic science).
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2.A Linking NPL data with WOS journal entries

Classifying a large number of NPL references can be a non-trivial task.6 The Patstat
Spring 2017 version is advantageous in this respect, as it is the first to have a
more harmonized recording of NPL references.7 The classes in Table 2.2 plus the
Y02E patents amount to a total of 68,042 NPL references, where we only consider
npl_type=’s’, which indicates journal citations. For about 13,000 references the
ISSN of the journal is recorded. As a preliminary step, we did a check on patents
with large number of NPL references. We recorded examples with more than 300
NPL references, and some of these patents appeared to occur multiple times (with
sequential application numbers and almost identical references). Applying for a
patent several times, each time with only minor variations, is strategy used by some
patentees, yet could bias our research if the number of NPL references is high. We
therefore performed a quick scan of all patents with numbers of NPL with 30 or
higher to erase ’duplicates’ of these patents, which were 94 in total. Then we were
ready to further clean and sort the data in a number of systematic steps.

• First, these ISSN references were selected and their journal names were looked
up in WOS and if not available in an online ISSN database (“ISSN international
Centre”, n.d.). The result was the ISSN journal list.

• Second, to classify the remaining about 55,000 NPL references, which trans-
lated to 37,849 unique references, the journal name data under the Patstat
header ‘npl_title2’ was used. As this is still a substantial number, the match-
ing with journal names was automatized using two string comparison algo-
rithms. The first, "Optimal String Alignment" (OSA), minimizes the Lev-
enshtein distance and at the same time allows for transposition of adjacent
characters. The second, "Jaro distance" (JARO), is a more heuristic distance
measure which matches characters between two strings that are not a given
number of positions apart (Van der Loo, 2014).

• Third, the string matching algorithms need a list with journal names to com-
pare the raw data to. We created this list combining ISSN journal list with
the Science and Engineering Journal Abbreviations list from the University of
British Columbia (Library, n.d.), which includes approximately 13100 journal
names and their abbreviations. After a number of trials, the list was further

6For the linkage of NPL references in patents to scientific articles see also the database by Marx
and Fuegi, 2019 (which was not yet available at the time of this research)

7This recording was in May 2017 still work in progress, yet was surprisingly complete for the
EP patents.
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improved by including new terms on the basis of frequently occurring mis-
matches. This resulted in a reference list of 6042 search terms, where search
terms resulting in no matching were discarded.

• Fourth, in the final automated comparison of the npl_title2 data and the
match list, we selected only the item with the best matching score for both
algorithms. On the basis of this we created two lists: the first with matched
journal names on which both the OSA and JARO algorithms agreed, which
happened for the majority of the cases (72%), and a second where they dis-
agreed (28%).

• Fifth, we did a manual test on a random 500 piece sample of the first list, which
revealed that for 7 percent of the references the matching was inaccurate. A
manual test on a random 500 piece sample of the second list revealed that for
11 percent of the references the OSA method was correct, in 13 percent of the
references the JARO method was correct. This test gave further confidence
to use only the matched terms on the first list and discard the other. A
second quick inspection of the discarded list revealed that for a substantial
part (estimated 14 percent) of these references it was hard to identify a journal
in the first place.

• Sixth, given the large number of items on the match list, we were required
to make a selection of search terms for which further journal data would be
acquired. To this end the following steps were taken. (a) We ordered the
matched journal names/abbreviations by frequency of occurrence and selected
the top 500. (b) We made a separate frequency ordering for the smaller RETs
and FFETs and from these the top 350 terms were selected. (c) We comple-
mented this selection with the journal names from the ISSN journal list and
removed any doubles, which completed the shortlist of a total of 2041 journal
names and/or abbreviations.

• Seventh, we searched for all terms on the shortlist in Web Of Science (WOS).
For 464 of the journal names there was no data available in WOS, reducing
the shortlist to 1577 search terms. Fortunately, the journal names not avail-
able in WOS were not frequently occurring in the references. The shortlist
was sufficient to cover 82% of all identified NPL references and attained cover-
age percentages well over 55% for all individual RETs and FFETs separately.
The only exceptions to this were wind energy and smart grids with respective
coverage of 40% and 32%. However, a more careful analysis of the matched
search terms of wind energy, including the ISSN matching, showed that 35%
of the wind energy references was in the group of 464 journal names about
which WOS has no data. Similarly, for smart grids this was a 26%. These
percentages are relatively high: for photovoltaics it was only 6% for example.
The low coverage percentages of wind and smart grids were therefore mainly
the result of frequently referring to journals which were/are not represented
in WOS at the time of reference. For the 1577 journal names/abbreviations
we downloaded the WOS categories, Journal impact factor, normalized eigen-
factor and how these change over all available years. For the large majority of
journals recent data was available.
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with Y02 without Y02

RET average
JIF (SD) JEk f FFET average

JIF(SD) JEk f average
JIF (SD) JEk f

all RETs 7.57(10.3) 3.61 2.10 all FFETs 5.36(7.9) 3.56 1.50 4.64(6.9) 3.58 1.29
solar thermal 5.17(7.3) 2.88 1.80 cracking 5.95(8.2) 3.88 1.54 5.21(6.6) 3.97 1.31
photovoltaics 9.08(11.7) 3.61 2.52 gasification 4.52(5.8) 3.26 1.39 3.41(1.9) 3.10 1.10
wind 4.21(4.8) 3.94 1.07 fuels 6.30(8.8) 3.50 1.80 5.59(8.4) 3.58 1.56
energy storage 7.88(9.8) 3.77 2.09 steam engines 3.19(5.8) 2.77 1.15 2.93(5.9) 2.85 1.03
hydrogen energy 8.80(11.0) 3.83 2.30 gas turbines 3.65(6.5) 3.03 1.21 3.59(7.2) 2.92 1.23
fuel cells 6.32(8.3) 3.63 1.74 steam generation 1.55(2.1) 2.78 0.56 1.13(1.3) 2.75 0.41
smart grids 5.10(6.0) 5.03 1.01 combustion 3.71(5.8) 3.05 1.22 3.74(5.7) 3.02 1.24
non-fossil fuels 6.54(9.0) 3.51 1.86 furnaces 2.01(4.2) 3.15 0.64 2.56(5.0) 3.15 0.81
clean combustion 4.12(6.5) 3.03 1.36 heat exchange 4.92(8.3) 3.03 1.63 4.43(7.9) 3.06 1.45

Table 2.B.1: Comparison average JIF and expected JIF For each technology we determine
the average JIF, the expected JIF JEk based on the reference distribution over the WOS scientific
categories, and the factor of proportionality f between these quantities.

2.B JIF and NEF statistics

In this appendix, we provide as statistical background of the analysis done for the
Journal Impact Factor (JIF) and Normalized EigenFactor (NEF).

The JIF is known to be biased towards certain WOS scientific categories (Walt-
man, 2016). We therefore retrieved from WOS for each scientific category i the
aggregated JIF (Ji). From the distribution of references of a technology k to scien-
tific categories specific, we calculate the expected JIF (JEk ) based on the aggregated
JIF of these scientific categories, i.e.,

JEk =
∑
i

Jiri,k
rTk

(2.1)

where ri,k are the number of NPL references in technology k to scientific category i
and rTk is the total number of NPL references of technology k (where we only count
the NPL references for which a JIF factor could be retrieved). In Table 2.B.1 we
compare the JEk with the measured JIF averages for each technology and for the
aggregated RETs8 and aggregated FFETs. We observe small variations in JEk across
technologies, where the values of the RETs indeed appear slightly larger (for RETs
aggregated 3.61 versus for FFETs aggregated 3.56). However, as we indicate in the
same table, the average JIF are generally a factor f > 1 larger than JEk , where the
values of f shown in the same table. Where f is for RETs aggregated 2.10 and for
the different RETs on average 1.75, it is for different FFETs aggregated 1.50 and
for different FFETs on average 1.23. Within a certain scientific category, the RETs
therefore appear to cite journals with impact factors which are relatively high for
that category, and more so than FFETs. When we remove the Y02 patents from the
FFETs, this difference becomes even more pronounced. This suggests that, while
there are small differences between RETs and FETs due to the bias of JIF towards
certain scientific categories, the large differences found between RETs and FFETs
are mostly due to a tendency of RETs to build on higher impact science within those
categories.

The average JIF in table 2.B.1 is for the aggregated RETs and FFETs determined
using respectively 27509 and 5881 references. While the distribution of the JIF itself

8Note that the aggregated RETs include more than the 9 other technologies in Table 2.B.1, see
table 2.1
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is highly skewed, we trust that our sample size is large enough that the distribution
of the average JIF can be approximated to be normal. We can thus do a Welch
t-test comparing the average JIF of aggregated RETs and FFETs, which points out
that the averages are significantly different (t = 18.504, df = 10650, p < 2.2e− 16).
The average JIF of the FFETs and FFETs without Y02 is similarly found to be
significantly different (t = −4.3096, df = 6103.3, p = 1.661e− 05).

We repeat the impact analysis for a second measure of scientific relevance offered
by WOS: the normalized eigenfactor. The eigenfactor is an ’influence measure’ based
on applying pagerank (or eigenvector centrality) to citation networks of scientific
journals (West et al., 2010). Like the JIF, the eigenfactor of a source is mainly
based on the number of forward citations this source receives. Unlike the JIF, the
eigenfactor of a journal takes into account the eigenfactor of the source of citations,
thereby rewarding being cited by a source which is itself highly cited. Further,
where the JIF varies across disciplines, the eigenfactor is relatively insensitive to
these differences, because it focuses on the proportion of citations going to a given
source rather than on the absolute number going to that source (West et al., 2010).
Finally, self-citations do not play a role in the calculation of the eigenfactor. The
normalized eigenfactor is determined "by rescaling the total number of journals in
the JCR [Journal Citation Report] each year, so that the average journal has a score
of 1" (“Web of Science Core Collection Help”, n.d.). Analogous to the procedure with
the JIF, we then (1) retrieve when available the normalized eigenfactor (NEF) from
WOS for each cited journal cited by the technologies, (2) determine the distribution
of references to each journal for each technology and (3) calculate the average NEF
per technology.

For the average NEF the aggregated RETs and FFETs have respective values
22.88 and 14.07, with standard deviations 39.57 and 31.81 and number of references
25844 and 5229. Similarly applying a Welch t-test points out that the NEF average
is significantly different for RETs than for FFETs (t = 17.477, df = 8838.8, p <
2.2e − 16). The NEF average of the aggregated FFETs without Y02, valued 11.78
with standard deviation 26.98, is likewise found to be significantly different from
that of aggregated FFETs (t = −3.2625, df = 5521, p = 0.0011).

Next, we have a closer look at the relation between the log of the number of
references and the JIF in Figures 2.8,2.9, and likewise for the NEF in Figures 2.B.1,
2.B.2 (found in this appendix). The observed positive relation is tested and fitted
with an OLS estimation for the JIF in Table 2.B.2 and for the NEF in Table 2.B.3.
We draw three conclusions based on these regressions

1. The coefficients are significant to a 0.05 level for the RETs, FFETs and FFETs
without Y02, both for the JIF and NEF.

2. The coefficients are rather similar for RETs, FFETs and FFETs without Y02.
As a matter of fact the coefficient difference between the RETs and FFETs
(and FFETs without Y02) turns out to be insignificant for both indicators.
We conclude this using the test for small sample sizes described in (COHEN,
2016), the details of which can be found in Table 2.B.4.

3. While the coefficients are significant, most constants (i.e. the value of the
JIF or NEF when the number of references =1) are not. This therefore does
not allow us to conclude that the RETs have higher values than FFETs for
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Figure 2.B.1: Normalized eigenfactor RETs and FFETs with Y02We plot for all RETs and
FFETs with Y02 patents the average normalized eigenfactor for the number of references, where
the grey bars indicate the standard deviations and the lines indicate a logarithmic fit. Note that the
positive relation between the JIF and log number of references equally counts for RETs and FFETs
and the coefficients hardly differ.

a similar number of references, even though Figures 2.8,2.9 and 2.B.1 suggest
this.

Together, these three conclusions point out that the higher average impact of the
sources built on by RETs (as opposed to FFETs) is closely related to the greater
tendency of RETs to refer to scientific literature.

Table 2.B.2: Normalized Journal Impact Factor for the number of references This table
presents three regressions, where the dependent variable is the average JIF for the RETs, FFETs
and FFETs without Y02 patents and the independent variable is the log of the number of references.
All coefficients are significant on a 0.05 level, yet the constants are not.

Dependent variable:

JIF RETS JIF FFETs JIF FFETs no Y02

(1) (2) (3)

log references 0.864∗∗ 1.235∗∗∗ 0.984∗∗
(0.305) (0.314) (0.303)

Constant 0.363 −3.474 −1.542
(2.167) (1.925) (1.623)

Observations 9 9 9
R2 0.534 0.688 0.600
Adjusted R2 0.467 0.643 0.543
Residual Std. Error (df = 7) 1.373 0.969 0.923
F Statistic (df = 1; 7) 8.018∗∗ 15.419∗∗∗ 10.512∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 2.B.2: Normalized eigenfactor RETs and FFETs without Y02 Same as Figure
2.B.1 except for the FFETs without Y02 patents. Both the NEF and number of references are
lower when the Y02 patents are removed.

Table 2.B.3: Normalized eigenfactor for the number of references This table present three
regressions, where the dependent variable is the average NEF for the RETs, FFETs and FFETs
without Y02 patents and the independent variable is the log of the number of references. All
coefficients are significant to a 0.05 level, yet not all constants are.

Dependent variable:

NEF RETs NEF FFETs NEF FFETs no Y02

(1) (2) (3)

log references 3.945∗∗ 4.062∗∗∗ 2.914∗∗
(1.182) (0.585) (0.933)

Constant −10.433 −14.576∗∗∗ −5.794
(8.314) (3.481) (4.832)

Observations 9 9 9
R2 0.614 0.873 0.582
Adjusted R2 0.559 0.855 0.523
Residual Std. Error (df = 7) 5.397 1.909 2.973
F Statistic (df = 1; 7) 11.134∗∗ 48.283∗∗∗ 9.766∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

JIF NEF
coefficient pair t statistic p t statistic p
RET-FFET -0.793 0.22 -0.077 0.47
RET-FFET no Y02 -0.258 0.40 0.619 0.27

Table 2.B.4: Coefficient differences We statistically evaluate for the JIF and NEF the coefficient
difference between RETs & FFETs and the RETs & FFETs no Y02 using the test described in
(COHEN, 2016), which applies to the difference of coefficients based on pairs of independent, small
samples. As we see all p values are larger than 0.05 and the differences are therefore not significant.
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ber of references We sort each reference
(for which a JIF could be identified) by the
number of references of the patent in which
it appears, and we accordingly determine the
average JIF and standard deviation (see er-
ror bars). The average JIF is reasonably fit-
ted by the logarithm of the number of ref-
erences, which is confirmed by the relatively
high correlation coefficient.

R² = 0.5321

-40

-20

0

20

40

60

80

100

0 5 10 15 20 25 30

Av
er

ag
e 

N
EF

Number of references in patent

Figure 2.B.4: Average NEF for the num-
ber of references We sort each reference
(for which a NEF could be identified) by the
number of references of the patent in which
it appears, and we accordingly determine the
average NEF and standard deviation (see er-
ror bars). The average NEF is reasonably
fitted by the logarithm of the number of ref-
erences, which is confirmed by the relatively
high correlation coefficient.

Finally, we note that the positive relation is found between the (log) number
of references and the average JIF (and NEF) for different technologies. This does
not necessarily imply the relation also counts on the level of individual patents.
Comparing the JIF averages of technologies in Figure 2.8 to the science dependences
of technologies in Figures 2.3 and 2.4 however appears to indicate a close relation
between these as well, suggesting that the average JIF is not only related to the
number of references, but also to the number of references per patent. To test
the relation with the number of references per patent more directly we plot it for
the JIF and NEF respectively in Figures 2.B.3 and 2.B.4 (for all references in this
study). Indeed for these, we also observe a logarithmic relation between the number
of references per patent and the average JIF and NEF (both are highly significant).
The standard deviations are large however, suggesting there is substantial variation
across patents. While there appears to be a clear relation, it is not exactly clear
what mechanism is behind this relation. Finding this mechanism is however beyond
the scope of this research.
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Abstract

Technological cumulativeness is considered one of the main mechanisms
for technological progress, yet its exact meaning and dynamics often remain
unclear. To develop a better understanding of this mechanism we approach a
technology as a body of knowledge consisting of interlinked inventions. Tech-
nological cumulativeness can then be understood as the extent to which in-
ventions build on other inventions within that same body of knowledge. The
cumulativeness of a technology is therefore characterized by the structure of its
knowledge base, which is different from, but closely related to, the size of its
knowledge base. We analytically derive equations describing the relation be-
tween the cumulativeness and the size of the knowledge base. In addition, we
empirically test our ideas for a number of selected technologies, using patent
data. Our results suggest that cumulativeness increases proportionally with
the size of the knowledge base, at a rate that varies considerably across tech-
nologies. Furthermore, this rate is inversely related to the rate of invention
over time. This suggests that the cumulativeness increases relatively slow in
rapidly growing technologies. In sum, the presented approach allows for an
in-depth, systematic analysis of cumulativeness variations across technologies
and the knowledge dynamics underlying technology development.
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3.1 Introduction

Technology progresses when engineers adapt their designs based on learning about
previous designs. Consequently, a key element of theories of technological change is
the cumulative nature of knowledge and invention: the idea that new results build
on - or recombine - previous results (Basalla, 1989; Freeman & Soete, 1997; Nelson
& Winter, 1982; Trajtenberg et al., 1997). Indeed, many of today’s technologies
have rich histories of development, some going back all the way to antiquity. While
the size of the knowledge base of these technologies is substantial, this does not
necessarily imply the underlying knowledge structure is cumulative: a pile of stones
is different from a stone wall, and some walls are higher than others.

Cumulativeness (or sometimes ’cumulativity’) may therefore vary per technology
and over time. A better understanding of the underlying mechanisms of techno-
logical cumulativeness is important for a number of reasons. From an economics
perspective, the extent to which a technology develops in a cumulative manner has
implications for how easy it is to enter or diversify into that technology. Entry
is considered more difficult in complex technologies that require extensive and in-
depth knowledge about the underlying principles (Breschi, 2000; Breschi et al., 2000;
Winter, 1984). Recent contributions from the geography of innovation describe how
regions are more likely to diversify into technologies that are related to their existing
knowledge base (Balland, 2016; Balland & Rigby, 2017; Boschma et al., 2015). An
understanding of the cumulative nature of technological development is thus pivotal
for ongoing efforts of smart specialization (Foray, 2014), where regions seek out at-
tractive technologies for future specialization. From a philosophical perspective, a
better understanding of cumulativeness and its role in the evolution of technolog-
ical knowledge (Arthur, 2009) may help to clarify the relation between knowledge
accumulation and the complexity of that knowledge, which is an ongoing discussion
in the ’cumulative culture’ literature (Dean et al., 2014; Tennie et al., 2009; Vaesen
& Houkes, 2017). Developing this understanding starts from a clear definition and
measure of cumulativity.

Surprisingly, despite the recognized importance of cumulativity, the exact mean-
ing of the concept often remains unclear. Characterizations vary from the incre-
mental change in artifacts (Basalla, 1989; Butler, 2014; Gilfillan, 1935b; Ogburn,
1922), to the persistence of innovative activity (Cefis, 2003; Malerba & Orsenigo,
1993; Suárez, 2014), to the building of technological knowledge on earlier findings
(Enquist et al., 2011; Merges & Nelson, 1994; Scotchmer, 1991; Trajtenberg et al.,
1997).

In this contribution we aim to develop a better understanding of technological
cumulativeness by taking the following steps: In Section 3.2 we present a comprehen-
sive review of the various perspectives on cumulativeness and identify their common
grounds. In Section 3.3 we use this analysis to formulate two indicators which mea-
sure cumulativeness: the internal dependence and internal path length. In Section
3.4 we then discuss how the values of these indicators are expected to change as a
technology develops. In Section 3.5 we test these expectations empirically for a num-
ber of technologies, using patent data as a proxy for inventions. Finally, we discuss
some deeper implications of our contribution to the understanding of technological
cumulativeness in Section 3.6 and summarize our main conclusions in Section 3.7.
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3.2 Theoretical perspectives on technological cumu-
lativeness

Where in most texts ’cumulative’ simply means ’summed up’, in the innovation liter-
ature the term has come to represent a type of technological development. Perspec-
tives on cumulative technological development however vary across contributions.

The earliest ideas about technological cumulativeness arise in studies of the grad-
ual change in pre-20th century artifacts (Butler, 2014; Gilfillan, 1935a; Pitt-Rivers,
2018), which are reminiscent of fossil records of gradually evolving species. Inspired
by evolutionary theory, these theories understand technological change as a process
in which antecedent artifacts are replicated with incremental modifications, thereby
creating descendant artifacts (Gilfillan, 1935b; Ogburn, 1922). In this first perspec-
tive, artifacts are literally the sum of many incremental modifications, justifying the
term ’cumulative’.

While the cumulative aspect of technology arises naturally in this perspective, it
is unclear when a development is not cumulative: as in genetic lineage, each descen-
dent is supposed to have an antecedent. Some authors have argued that in reality,
technological developments occasionally ’jump’; when a radical finding breaks fun-
damentally with past engineering practices and ideas (Schoenmakers & Duysters,
2010; Verhoeven et al., 2016) it may initiate a new model of solutions to selected
technological problems, i.e., a new technological paradigm (Dosi, 1982). In this sec-
ond perspective, cumulative development is the opposite of radical development, and
interpreted as the incremental change happening within a technological paradigm.

Yet, to base cumulative change solely on the notion of incremental change raises
two difficulties. First, there is a certain arbitrariness to when a change is incremental
or not. Depending on the context and their knowledge of the subject, different people
may characterize incrementality differently. Second, even if the change from an
antecedent to descendant is radical, the antecedent may still be of crucial importance
to the formation of the descendant (Basalla, 1989).

These difficulties are sidestepped in a third perspective, where a development
is cumulative if a later result depends or builds on an earlier result (Breschi et
al., 2000; Enquist et al., 2011; Merges & Nelson, 1994; Trajtenberg et al., 1997).
’Dependence’ or ’dependency’ is here interpreted in the context of technology as
a body of knowledge, where new technological ideas or inventions (the ’results’)
draw on earlier insights, and are themselves used in later ideas and inventions.
Note in this perspective, cumulativeness is a property of the development (not of
one of the results). If we are interested in the cumulativeness of a technology,
we therefore consider all developments within that technology, i.e. all dependencies
between results that are part of that technology. Alternatively, authors have studied
the cumulativeness of the union of multiple (or all) technologies (Acemoglu et al.,
2016; Clancy, 2018; Napolitano et al., 2018), thereby focusing on inter-technology
developments or dependencies. Both approaches are relevant to better understand
the advancement of technology and knowledge production. In this work, we however
focus on the former approach, as we are mainly interested in the question to what
extent cumulativeness is an intrinsic property of a technology, and how this property
varies for different technologies.

The relevance of cumulativeness as an intrinsic property of a technology is re-
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flected by its role as defining element of a technological regime (Nelson & Winter,
1982), which defines the relevant circumstances under which innovating firms or
organizations compete, thrive or fail. Within a technological regime, higher cu-
mulativeness is associated with greater appropriability of innovation and greater
(geographical) concentration of innovative activity (Breschi et al., 2000; Malerba &
Orsenigo, 1996; Winter, 1984). The framework of technological regimes gave rise
to a number of contributions which use yet another perspective of cumulativeness,
where the emphasis is not so much on the dependence of later generations of a tech-
nology on earlier ones, but more on the continuation of those generations (Apa et
al., 2018; Breschi, 2000; Cefis, 2003; Frenz & Prevezer, 2012; Hölzl & Janger, 2014;
Malerba et al., 1997). Cumulativeness is then characterized by the persistence of in-
ventive and innovative activity in a technology: the longer a development continues
(without significant interruption), the greater the cumulativeness. Where previous
perspectives focus more on cumulativeness as an intrinsic property of technology,
this fourth perspective also attributes a role to the creators of the technology (and
their persistence to continue along a given path).

In summary, we recite from these four different perspectives the key notions of
technological cumulativeness: (1) as replication with incremental modifications, (2)
as within-paradigm (opposite to radical) development, (3) as dependence or building
on earlier technology and (4) as persistence of inventive or innovative activity. The
first two perspectives approach cumulativeness as ’incremental change’, the latter
two perspectives approach cumulativeness as ’continuous dependence’ of technology
on earlier generations of technology. Though apparently very different, there are
similarities between incremental change and continuous dependence. Incremental
change supposes a series of modifications to what is, in some sense, a single object
(often pictured as an artifact). Similarly, continuous dependence supposes a series
of dependencies between objects which are, in some sense, different (often pictured
as a set of inventions). Essentially therefore, the discrepancy is about the object(s)
to which a series of changes is applied, yet both advocate the relevance of a series of
developmental steps. Further, both for incremental change and continuous depen-
dence, cumulativeness appears in two dimensions: (i) the size of each developmental
step: if the modification is small (dependence is great), the cumulativity is large and
(ii) the number of steps in the process: if there are many small modifications (a long
chain of dependency links) the cumulativity is large. While (i) and (ii) both relate
to cumulativity, they are theoretically very different, and we shall henceforth refer
to them as the transversal- and longitudinal dimension of cumulativity respectively.
Although both dimensions can be meaningfully interpreted in all four cumulative-
ness perspectives, it appears the first two perspectives focus more on the transversal
dimension and the latter two perspectives more on the longitudinal dimension. In
the next section, we will propose a separate indicator for each dimension. We em-
phasize that both are measured within a certain technological field or technology.
Although the interaction between multiple fields or technologies is interesting and
worth studying, the focus of this work is on understanding these cumulativeness
dimensions within a single technology.

Finally, we discuss the relation between technological cumulativeness and com-
plexity. In this contribution we will not enter the discussion about the exact meaning
of technological complexity (for a good overview see Vaesen and Houkes, 2017), but
instead work with the general description of a complex system consisting of many,
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non-trivially interacting subsystems (Simon, 1962). One way to interpret this in
the context of technology, is to consider an invention to be a system consisting of
subsystems, which are (parts of) other inventions or borrowed ideas. The complex
character of an invention is therefore in an abstract sense captured by the transversal
dimension of cumulativeness, which focuses on these direct dependencies. Intuitively,
the more subsystems and dependencies, the greater the complexity (although this
strongly depends the chosen measure for complexity). However, this is not the entire
story. A relevant criterion for increasing complexity in the context of evolutionary
systems is that a representative sample of lineages of descent increases in com-
plexity (McShea, 1991; Vaesen & Houkes, 2017). Not only therefore should ’more
complex’ systems appear in time, but these should also fit into the lines connecting
antecedents and descendants. In the context of technological knowledge, the lines of
descent appear rather literally in the mentioned first perspective of cumulativeness,
and correspond to the longitudinal dimension of cumulativeness. Especially the
joint consideration of the transversal and longitudinal dimensions of cumulativeness
therefore allows us to study the dynamics of technological complexity.

3.3 Measuring cumulativeness

In most contributions mentioning cumulative technological development, cumula-
tiveness remains an abstract property without explicit measure. There are a number
of exceptions however, in particular the contributions adhering to the earlier men-
tioned ’persistence perspective’ of cumulativeness. These contributions base their
measures of cumulativeness on a variety of sources: survey data (Breschi et al.,
2000; Frenz & Prevezer, 2012; Hölzl & Janger, 2014), licensing data (Lee et al.,
2017) and statistical properties of patent count time series (Breschi, 2000; Cefis,
2003; Malerba et al., 1997). While all of these highlight interesting aspects of cumu-
lative processes, none of them seem to directly proxy the key property of knowledge
building on knowledge. Survey data may offer detailed information on the usage
of particular knowledge, yet it is challenging to quantify and generalize this infor-
mation in order to compare different technologies. Approaches based on counting
backward citations (Apa et al., 2018) arguably do measure the extent to which
knowledge builds on earlier knowledge, yet without specifying which technologies
are cited, only partially capture the underlying knowledge structure of technolo-
gies. However, as was argued in the previous section, to understand technological
cumulativeness along both the transversal and longitudinal dimension, studying the
underlying knowledge structure is pivotal. In this contribution, our starting point
is to interpret this structure as a network of interconnected elements of knowledge.
Each node then represents a single invention, and each link represents a knowledge
flow. A link thus naturally corresponds to a dependence, or knowledge building on
other knowledge. This approach has been successfully applied to the analysis of
breakthrough innovation (Dahlin & Behrens, 2005; Fleming, 2001; Verhoeven et al.,
2016), main paths (Hummon & Dereian, 1989; Verspagen, 2007), emerging tech-
nologies (Érdi et al., 2013; Shibata et al., 2009) and technological network evolution
(Valverde et al., 2007). We denote the knowledge flows to an invention (i.e., the
links which indicate on which knowledge the invention builds) as ’backward links’
and the knowledge flows from an invention as ’forward links’.

Further, we assume that there is a technology classification that allows us to
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assign each invention to at least one class, hence allowing us to distinguish between
internal links (link to an invention in the same class) and external links (link to an
invention of another class)1. In the previous section we introduced the transversal
and longitudinal dimensions of cumulativeness. Exploiting useful network struc-
tures, we will in the next two subsections introduce two indicators measuring the
cumulativeness along these dimensions. For the transversal dimension we introduce
the internal dependence and for the longitudinal dimension we introduce the internal
path length.

3.3.1 The transversal dimension: Internal dependence

The transversal dimension of cumulativeness reflects the extent to which findings in
a given technology depend on other findings within that technology. In a network
of inventions, each directed link can rather literally be interpreted as a relation
of dependence. Ideally, we would go into the content of each knowledge link to
distinguish a degree of dependence. Yet this approach would be difficult to auto-
mate when the number of links and inventions becomes large (which is the case for
most technologies). Most network approaches to technology therefore count each
knowledge link equal, so the number of internal links becomes a measure for the
dependence. Each invention that is added to the technology introduces a number
of backward internal links, see Figure 3.3.1 (left panel) for a network illustration.
The more internal backward links it introduces, the more the technology builds on
itself. As a measure for the transversal dimension, we therefore define the internal
dependence (id) of a technology as the average number of backward internal links
per invention. A high id signals high cumulativity in the transversal dimension.

3.3.2 The longitudinal dimension: Internal path length

Figure 3.3.1: Useful network structures Left:
The number of internal backward links of node a
is 3. Right: the length of the internal path between
node b and c is 4. For a precise definition of path
and path length we refer to section 3.4.3.

The longitudinal dimension of cumula-
tivity reflects the number of steps in
a series of technological developments.
Approaching technology as a network of
inventions, we can translate this rather
literally to a chain of internal inventions
connected by links, which translates to
the notion of a ’path’ in the terminol-
ogy of network analysis, see Figure 3.3.1
(right panel) for a network illustration.
The longer the internal paths, the longer
a series of developments within a tech-
nology is continued. As multiple knowl-
edge aspects of a technology may develop in parallel, we generally deal with several,
intertwined paths. As a measure for the longitudinal dimension, we therefore define
the internal path length (ipl) of a technology as the average length of all paths within

1Inevitably, there is some room for interpretation here as there can be various grounds on which
technologies are classified. In the Section 3.6 we discuss a number of alternative approaches to
making the external-internal distinction.
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that technology. A high ipl signals high cumulativity in the longitudinal dimension.2

3.4 Modeling the knowledge dynamics

In this section we discuss how the values of the internal dependence (id) and internal
path length (ipl) are expected to change as a technology develops, i.e. when the size
of its knowledge base increases. More specifically, we analyze (a) how the id and
ipl change as the number of inventions increase and (b) how the id and ipl are
interrelated. We thereby describe both general and technology-specific elements.

3.4.1 Invention as search process

In this section, we sketch a highly simplified model of the invention process in
a certain technology, which consists of an inventor performing a series of searches.
Essentially, the inventor searches until he or she succeeds in completing an invention,
where a knowledge flow (equivalent to a backward internal link) is picked up along
with each search. The relevant quantity in this process is the probability ρ of
completing an invention before performing another search, which may depend on the
size of the knowledge base of a technology, as measured by the number of inventions
n. For each n, the probability of inventing is therefore ρ(n), the probability for
performing a search is 1− ρ(n). We have two main assumptions in this model:

1. The probability ρ(n) decreases proportionally with the number of inventions
n. This reflects the intuition that it becomes harder, as a technology develops,
to produce an invention without using any prior knowledge developed in that
technology. In other words, the inventor needs to consider some knowledge in
a certain field before delivering a contribution to that field, and the larger the
field, the more the inventor needs to consider.

2. The probability of success is independent of the number of searches: in the
invention process, there is no guarantee that a certain amount of effort leads
to success.

Given these assumptions we may write down for the probability ρ(n) = 1
qn+m1

,
introducing the technology specific constants q > 0 andm1 > 1. Here, the parameter
m1 describes the need to have knowledge of the technology in order to invent at the
initial stage of this technology, and q describes how fast this need increases as the
technology develops. As a consequence of the two assumptions, the probability for
a node to have m backward internal links (i.e. the probability that m searches take
place before invention) is given by Pn(m) = (1 − ρ(n))mρ(n), i.e. the number of
backward internal links per node is distributed geometrically.3 This distribution is
characterized by a highly skewed shape towards lower values ofm, yet as n increases,
it slowly becomes less skewed.

2Similar ideas are presented in (Frenken et al., 2012), where innovations attain ’higher quality’
with longer path lengths. The study of Frenken et al., which is based on numerical simulations,
thereby focuses on the (re)combination principle in relation to diffusion.

3We then assume that the number of backward links per node stays well below n, which appears
to be reasonable if we consider technologies with large n.
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The rate q is related to the type of technological knowledge and we therefore
assume it is a technology-specific quantity. Yet we hypothesize it is also related to
the rate of invention over time. Our reasoning is as follows. If the rate of invention
over time is high, this means that more people work on the same technology at
the same time. If multiple researchers work on the same technology, they tend to
specialize, focusing only on a particular sub-field or sub-part of the technology. As
an effect, multiple aspects of the technology develop in parallel, perhaps more so
than if a smaller group of people had worked on it. As a result, the development
of the technology is more fragmented into sub-fields, which causes inventors active
in these sub-fields to focus on the relevant findings within their sub-field. We may
therefore suppose that there is structurally less need for these inventors to master
the entire knowledge base, which leads to lower values of q. In reverse, it is possible
that a low need for prior knowledge of a technology accelerates innovative activities
in a technology, as it may then be more easily accessible, thus inviting more people
to contribute. Deriving a more precise form and causal direction of the inverse
relation between q and rate of inventing over time however is beyond the scope of
this work. For a more elaborate discussion of the causality we refer to Section 3.6.

3.4.2 Internal Dependence Dynamics

Using the distribution of the number of backward internal links, we can calculate
〈m〉 =

∑n
m=0 mPn(m) the expected value of the number of backward internal links

per invention, i.e. the internal dependence (id). Assuming that n is large, we
can approximate this sum by choosing infinity for the upper limit and using the
expression Pn(m) = (1− ρ(n))mρ(n), obtaining

〈m〉 =
1

ρ(n)
− 1 = qn+m1 − 1 = qn+m0, (3.1)

introducing m0 = m1 − 1 for convenience. We therefore conclude that the id is
expected to increase proportionally with the number of inventions (i.e. with the
size of the knowledge base), where the rate can by approximated by q for a large
number of inventions. This technology-specific coefficient q describes how fast the
need to have specialized knowledge increases in order to produce an invention in
that technology.

3.4.3 Internal Path Length Dynamics

Next we will discuss how we expect the internal path length (ipl) to depend on
the number of inventions. Although these results can be generalized by including
external links, we focus in this contribution for simplicity on the role of internal links.
A new invention creates at least one new path with each of its internal backward
links. The internal dependence, besides measuring a complementary dimension of
cumulativity, therefore also plays a key role in the ipl dynamics. Let us again
consider a technology with n inventions, where the nth invention has on average
〈m〉 internal backward links. Some inventions however will have no backward links,
which we will refer to as initial inventions. As a first assumption, we take that the
number of initial inventions n0 is a fixed fraction r of n, i.e., n0 = rn.4 We use the

4As we explain in more detail in Appendix 3.E this assumption is compatible with the found
backward link distribution if q is small compared to m0, we then have that r ≈ 1/(m0 + 1).
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initial inventions to define a path and path length:

- A path is a sequence of inventions i0, i1, ..., ik in which for any k ≥ 0 and x > 0,
ix has a backward link to invention ix−1 and i0 is an initial invention.

- The path length of path i0, i1, ..., ik is k.

We denote the number of paths of length k by fk(n). From the first assumption5,
we have that, f0(n) = rn. As a second assumption, each invention is equally likely
to be used as prior knowledge with probability 1

n
. Let us consider what happens to

fk(n) for k > 0 when we introduce the n + 1th invention. If that invention builds
on a prior invention i that has li,k−1 paths of length k − 1, each of these paths will
increase by 1, hence fk(n) increases by li,k−1. This holds for all inventions, which in
total have

∑
i li,k−1 = fk−1(n) paths of length k− 1. For ∆nfk(n), i.e. the expected

increase in fk(n) from n to n + 1, we therefore have ∆nfk(n) ∝ fk−1(n), and for
k > 1 we have

∆nfk(n) = 〈m〉fk−1(n)

n
. (3.2)

In the previous section we established that 〈m〉 ≈ qn + m0. When n gets large,
〈m〉/n→ q, further reducing Equation 3.2 to

∆nfk(n) = qfk−1(n). (3.3)

As there are no paths for n = 0, we take that fk(0) = 0 for all k. Using this initial
condition and the expression for f0(n), the solution to Equation 3.3 is derived to be

fk(n) = rqk
(

n

k + 1

)
, (3.4)

where
(
x
y

)
is the binomial coefficient. The steps leading to this solution and later

ones are explained in more mathematical detail in Appendix 3.E. Summing over
all k we obtain the total number of paths

∑n
k=0 fk(n) = r(1 + q)n/q − r/q. The

total number of paths is therefore expected to increase exponentially in n. For the
normalized path length distribution f̃k(n), describing the probability to have a path
of length k, we subsequently obtain

f̃k(n) =

(
n

k + 1

)
qk+1

(1 + q)n − 1
, (3.5)

which is a distribution closely related to the binomial distribution. This indicates
that as n increases, the path length distribution will shift from a skewed shape
towards more symmetric, parabolic shape (on a log scale) and its maximum, the
most frequent path length, will continuously shift to higher values. Subsequently,
we can calculate the expected path length 〈k〉 =

∑n
k=0 kf̃k(n), i.e. the ipl, which

reduces for large n to
〈k〉 ≈ q

q + 1
n+ k0, (3.6)

5If we also consider external inventions, we can choose a more general definition, where a path
can also start at an external invention. Note that, ignoring the links to external inventions, the
inventions which only link to external inventions become initial inventions
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where k0 is some constant value. As we focus on large n behavior, we are less
interested in this constant. What is more important is the expectation that the ipl
increases proportionally with the number of inventions, by a rate p = q/(q + 1).
This rate p is a number between 0 and 1: for large q it is close to 1 and for small
q, it is close to q. We end this section by mentioning two extensions of the model
which improve its explanatory power.

• In this derivation, we assumed that 〈m〉/n ≈ q, even though we know it in
fact only approaches q for large n. This approximation can be significantly
improved by instead calculating the average 〈m〉/n for n inventions. We can
determine this quantity in two ways, (a) by directly using the data of the num-
ber of backward links for each invention, i.e. by calculating q′a = 1/n

∑n
i mi/i

where mi is the number of backward links of invention i and (b) by using
estimates for parameters in the relation 〈m〉 = m0 + nq, i.e. calculating
q′b = 1/n

∑n
i q + m0/i = q + m0H(n)/n, where H(n) is the nth harmonic

number. Analogous to Equation 3.6, we then have q′a/(1 + q′a) = p′a and sim-
ilar for p′b. p′a Is likely to be more accurate as it is more directly based on
the backward link data, yet p′b is less sensitive to outliers in this data. Both
predictions should however be close to one another. Note that this correction
depends proportionally on m0.

• Equation 3.2 implies that as we add the nth invention to the system, the
number of paths of length n increase from 0 to some positive value. In fact,
this equation therefore establishes a ’maximum speed’ v of 1 path length per
invention, faster than which the path lengths cannot increase. This maximum
speed is rather lenient: technologies with paths increasing with 1 length per
invention (i.e. forming perfect chains) would be highly unrealistic. While
Equation 3.2 is accurate for the more frequent path lengths (i.e. the lengths
close to the mean), it may therefore be less accurate for the less frequent path
lengths (i.e. the shortest and longest lengths). A more realistic estimate of
the maximum speed v may therefore help establish a better description of the
overall distribution of path lengths. Let us suppose that we at once add δn
inventions to the system which do not connect amongst themselves, and of
which the total added number of backward links is M(n). Equation 3.2 then
becomes

fk+1(n+ δn)− fk+1(n) = M(n)
fk(n)

n
(3.7)

If we choose δn such thatM(n) ≈ n, then each of the n inventions in the system
approximately obtains 1 forward link. This implies that all paths in the system
increase on average by 1, including the longest path(s). δn Therefore defines
a typical interval for the longest path to increase by 1, and 1/δn therefore
presents a more reasonable estimate for the maximum speed v. We will use
this idea to derive a new expression for the path length distribution. Note
that Equation 3.7 then becomes

fk+1(n+ δn)− fk+1(n) = fk(n). (3.8)

If we introduce the variable n′ = n/δn and the function f ′k(n
′) = fk(n), we

may write this relation as f ′k+1(n′ + 1)− f ′k+1(n′) = f ′k(n
′), which is solved by
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f ′k(n
′) = r

(
n′

k+1

)
(this time using the condition that f ′k(n′) = 0 for k < n′ = nv).

This leads to the normalized distribution

f̃ ′k(n
′) =

1

2n′ − 1

(
n′

k + 1

)
(3.9)

and expected path length (i.e. the ipl)

〈k〉′ ≈ n′

2
+ k′0, (3.10)

where k′0 is again a constant we are less interested in. Rewriting this expression
in terms of n gives the coefficient 1

2δn
or v

2
, describing how fast the ipl increases

with n. Assuming the earlier analysis with a greater maximum speed is ac-
curate for the mean path length values, this should coincide with the earlier
established coefficient p. We can therefore approximate the maximum speed
as v ≈ 2p.6 This implies that the paths with maximum length grow about
twice as fast as paths with mean length, i.e. the distribution becomes more
symmetric as n increases. Noting that n′ = nv, we identify n′ as the maximum
path length after n inventions, which can be used to evaluate Equation 3.9.
Alternatively, we use the expression for v = 2p to rewrite this expression in
terms of n and p,

f̃k(n) =
1

4pn − 1

(
2pn

k + 1

)
. (3.11)

3.5 Empirical analysis

In this section, we empirically test the models developed in Section 3.4 using patent
and patent citation data. We start with a discussion of our type of data and a number
of limitations of these data. Subsequently, we perform the analysis on three different
levels: first, we consider the development and distributions of both cumulativeness
indicators for four focus technologies into detail. Second, we consider the relation
between the two indicators and the consistency of the indicators, using a larger set of
technologies. Third, we choose a more aggregated level of technology classification
to obtain a more general overview of the cumulativeness variation across different
technological fields, which also allows us to compare our findings to earlier results
from the literature and to some extent validate the indicators.

3.5.1 Data description

In order to study the knowledge dynamics empirically, we need some codification of
that knowledge. Patents are an important codification of technological knowledge,
as each patent is a detailed description of a new, non-trivial technological devel-
opment. Furthermore, patent systems have two elements that allow us to study
technological content without necessarily having to consider the detailed meaning of

6This is consistent with the earlier assertion that M(n) ≈ n. To see this, note that the total
number of links is n〈m〉 (as 〈m〉 is an average), hence between n and n+δn we add δn(m0 +q(δn+
2n)) links. For this to equal n in the limit where n becomes large, we require δn → 1

2q . In the
same limit, p→ q/(q + 1), which is approximately q for small q. This is therefore consistent with
1
δn = v ≈ 2p
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each individual patent. The first element is that of patent citations, which identify
one to one, directional content relations between patents. This enables us to study
the flow of knowledge (A. Jaffe, 1989; A. Jaffe et al., 1993). The second element is
that of the patent classifications, which hierarchically groups patents on the basis
of their content. This enables us to focus specifically on the development of a par-
ticular technology, distinguishing between internal and external knowledge. A basic
assumption of our work is that cumulativeness is an intrinsic property of technol-
ogy, which is independent from the way the technology is patented. It is therefore
important to keep in mind the limitations of representing technological knowledge
by patent data, which will henceforth discuss. For each limitation, we mention how
we attempt to account for it.

1. Not all technology is or can be patented, (Jaffe Adam B. & de Rassenfosse
Gaétan, 2017) and the ’quality’ of patents (evaluated against the patentabil-
ity requirements) varies (de Rassenfosse et al., 2016; A. B. Jaffe & Lerner,
2004). Especially when the number of patents involved is small, without a de-
tailed examination of the content we risk misrepresenting a technology. In this
analysis, we therefore choose technologies for which the number of patents is
relatively large. Also, we only consider granted patents, which have withstood
the critical assessment of patent examiners.

2. Citations may not always represent actual knowledge flows (Criscuolo & Verspa-
gen, 2008). Citations may be provided by inventors but may also be added
by examiners, and while the first may be more indicative for knowledge flow,
the distinction was not always documented by all patent offices (Azagra-Caro
& Tur, 2018). We therefore include an additional analysis in Appendix 3.D
of the effect of both types of citations (examiner or inventor added) to the
knowledge dynamics.

3. There are institutional differences between patent offices around the globe,
which may affect the way inventions and linkages to prior art are documented.
(Bacchiocchi & Montobbio, 2010). An important difference is for example is
the greater tendency to cite in the United States patent system than in the
European patent system (Criscuolo & Verspagen, 2008), which may impact the
value of our indicators. To account for these differences we therefore do this
analysis for patents from two different patent systems, choosing the US system
(organized by the US patent office USPTO) and European system (organized
by the European Patent Office EPO).

To aggregate patents of which the technological content is the same, we choose a
patent family as a basic unit or node, creating a US data set selecting families with
at least one USPTO member and a European data set selecting families with at least
one EPO member7. In the US data set each unique reference (backward citation)
of a US member of each family to any member of another family in our data set
represents a unique link (hence we do not limit our selection to US-US citations
only).8 Our European data set is created analogously. Henceforth by ’US patent’

7To be precise, we choose the DOCDB type of patent family, where all family members have
exactly the same priorities

8Note that if we had selected any family citation we effectively take the union of all citations,
hence failing to distinguish between the citing tendencies of different patent systems.
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we actually refer to an patent family containing a US member which is granted, and
similar for ’European patent’ or ’EP patent’.

In order to select and demarcate technologies, we used the Cooperative Patent
Classification (CPC) (CPC, 2018). In this analysis, we consider technologies on two
levels of classification: the CPC group/subgroup level and a more aggregated level
of classification. For the group/subgroup analysis we choose a set of 24 arbitrary
technologies, yet making sure that (i) the set is diverse (including technologies from
each main CPC section and from mostly different subclasses) and (ii) each technol-
ogy contains a reasonably large number of patents (for US >700 and EP >200).
Table 3.5.1 and Table 3.B.1 indicate the CPC codes and number of patents of these
technologies. Table 3.5.1 singles out four ’focus technologies’ which we will analyze
in more detail. The sub-selection of the focus technologies was made choosing con-
siderable variation in (a) knowledge base size (where nuclear fission has 3608 US
patents, photovoltaics has over 9000), (b) age (where nuclear fission started devel-
oping in the 1960’s, the main development of wind turbines starts from the 1990’s),
(c) the working (theoretical) principles behind the technologies (varying from nu-
clear physics to aerodynamics). From both Table 3.5.1 and 3.B.1 it is clear there
are generally more US than European patents, even taking into account that the
EP patents do not go back further than 1978. As the column with the number of
patents in the same family indicates, most European patents (around 75 percent)
have a US equivalent as well.

For the more aggregated level of classification, we grouped together patent classes
analogous to the approach by Malerba and Orsenigo (Malerba & Orsenigo, 1996).
However, given that their publication now dates more than 20 years back, and the
patent classification system is subject to constant change, some differences between
their grouping of classes and ours is inevitable9. In Table 3.B.2 in Appendix 3.B we
present an overview of our grouping, note that we take the union of CPC classes
(hence counting each patent once). The data in this research comes from the Patstat
2019 spring edition. Time is not adopted as an explicit variable in our models, yet

Table 3.5.1: Description of the four focus technologies. The selected patents have an earliest
filing year<2009.

Technology
short name CPC code CPC description

#US
granted
patents

# EP
granted
patents

# same
family

Nuclear Fission Y02E 30/3 Energy generation of nuclear
origin: nuclear fission reactors 3608 745 558

Photovoltaics Y02E 10/5 Energy generation through
renewable energy sources: photovoltaic energy 9088 2599 1947

Wind Turbines Y02E 10/7 Energy generation through
renewable energy sources: wind energy 5405 1767 1323

Combustion Engines F02B 3/06
Engines characterised by air
compression and subsequent fuel
addition with compression ignition

6466 2089 1344

we check for the consistency of our models over time and at a later point consider the
invention rate over time. We do that by using the earliest filing date of the patent, as
it is the closest point in time to the actual invention and therefore helps to establish a
chronological ordering of inventions. It generally takes several years however before
filed patents are actually granted: the European patents granted in 2012 were on
average first filed 6.5 years earlier, for US patents this was about 5 years. Likewise,

9As a matter of fact, the CPC did not yet exist at the time of the Malerba and Orsenigo paper,
yet the closely related International Patent Classification (IPC) did.
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from all patents eventually granted which were filed earliest in 2005, it took 50
percent 6.9 years to be granted, and it took about 12.5 years for 95 percent of them
to be granted. For US patents filed earliest in 2005 the same percentages correspond
to about 5 and 10 years respectively. To be relatively confident to include 95 percent
of the patents for each year considered, hence avoiding a ’truncation effect’ as much
as possible, calculating back from 2019, we should therefore not consider earliest
filing years later than 2008.

3.5.2 Id and ipl for the focus technologies

In Figure 3.5.1 we plot the id and ipl of the four focus technologies for the number of
patents. We include the results from both the US and EP patents. We observe for all
four technologies a linear increase of both the id and ipl, yet the rate of increase varies
considerably across technologies. In the US data set, where wind turbines is after
2000 patents already at an ipl of 10, combustion engines reaches the same ipl only
after 6000 patents. These variations are also found considering the id or EP dataset
instead. It is therefore instructive to consider not only the absolute cumulativeness
of a technology, but also its cumulativeness relative to the size of its knowledge base.
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Figure 3.5.1: Id and ipl for number of patents (US
and European patents) We plot the id and ipl for every
100 patents (represented by symbols) and linear fits (rep-
resented by lines). For statistical details of the fit see Ap-
pendix 3.A.

To obtain a more detailed
understanding of the linear re-
lationship between cumulative-
ness and the number of inven-
tions, we consider the coeffi-
cients of the linear fits in Fig-
ure 3.5.1 for US patents in Ta-
ble 3.5.2 and for the EP patents
in Table 3.5.3, the statistical de-
tails of these fits can be found
in Appendix 3.A. The coef-
ficients in Table 3.5.2 indeed
vary considerably across tech-
nologies, and high values for
m0 correspond to high values
of q. This suggests that if the
need for specialized knowledge
is high at the initial stages of
a technology, it also increases
faster as the technology devel-
ops. More importantly, Table
3.5.2 shows that the fitted ipl coefficients p (on the left, determined empirically) are
in reasonable agreement with the predicted values (on the right, calculated). This
suggests that the id and ipl are interrelated in accordance with the simple model
described in section 3.4.3. This implies that the relation between id and ipl is rather
predictable for each technology, suggesting that the transversal and longitudinal di-
mensions of cumulativeness (using a proper re-scaling) can be used interchangeably.
In Table 3.5.3 the variation across technologies for EP patents is largely similar to
the variation for US patents, and again shows reasonable agreement between the
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Table 3.5.2: Coefficients of id and ipl for US. On the left we present the fitted id and ipl
coefficients and the id constants from Figure 3.3.1 for US patents. On the right we present the
predicted ipl coefficients, where p′a is directly based on the id data and is p′b calculated using the
fitted m0 and q (see Section 3.4.3). With the exception of US wind turbines, these predictions agree
rather well with the fitted ipl coefficients. As expected p′a is generally more accurate than p′b. For
statistical details see Appendix 3.A

id const
m0 (ref/pat)

id coeff
q (ref/pat2)

ipl coeff
p (1/pat) p′a (1/pat) p′b (1/pat)

Nuclear Fission 0.65 0.0006 0.0029 0.0029 0.0022
Photovoltaics 1.45 0.0005 0.0024 0.0024 0.0020
Wind Turbines 2.42 0.0014 0.0044 0.0067 0.0067
Combustion Engines 0.26 0.0002 0.0011 0.0011 0.0006

Table 3.5.3: Coefficients of id and ipl for EP. Same as Table 3.5.2, but then for EP patents.

id const
m0 (ref/pat)

id coeff
q (ref/pat2)

ipl coeff
p (1/pat) p′a (1/pat) p′b (1/pat)

Nuclear Fission 0.07 0.0011 0.0023 0.0024 0.0017
Photovoltaics 0.25 0.0002 0.0008 0.0008 0.0010
Wind Turbines 0.18 0.0008 0.0021 0.0019 0.0016
Combustion Engines 0.07 0.0002 0.0004 0.0005 0.0005

fitted and predicted ipl coefficients. There are however also some overall differences
with the US patents. The constants m0 are generally smaller and, as a consequence,
the ipl coefficients p are also smaller. There are minor differences per technology, the
id coefficient q of nuclear fission being remarkably higher for the EP patents than
for the US patents. We will revisit cross technology differences more systematically
at the end of this chapter.

Finally, we observe in Figure 3.5.1 some minor deviations from the linear devel-
opments, in particular the ipl of nuclear fission and combustion engines speeding up
for higher number of patents, and that of wind turbines slowing down. Additionally,
the ipl of combustion engines and photovoltaics increases fast at a lower number of
patents. (A closer analysis of the id leads to similar observations, though this is less
clear in Figure 3.5.1). We will come back to these deviations in our discussion of
Figure 3.5.2.

In Figure 3.5.2 we plot for the US patents the id and ipl over time, together with
the total number of patents over time.10 The ipl values (shifted by k0) are re-scaled
by the corresponding factor p and the id values (shifted by m0) are re-scaled by
the corresponding factor q from Table 3.5.2. We observe for all four technologies
that the time development of all three quantities largely coincides. In hindsight,
this should not be a surprise given the observed linear relations in Figure 3.5.1: the
id and ipl are mainly a function of the total number of patents and hence their
developments are synchronized. The synchronization indicates that our modeling
of the knowledge dynamics consistently applies over time, i.e. that it is to some
extent time-independent. Still, we note the synchronization is not always perfect:
towards 2009, we observe that the ipl of nuclear fission and especially combustion
engines increases faster than the number of patents, and vice versa for wind turbines.
Further, in the 1960s, the ipl of photovoltaics and combustion engines is somewhat
lower than the number of patents.

10The number of backward citations only starts to become substantial from 1940 onward for
all considered technologies, which is why we choose this as a starting point. We note that wind
turbines have a substantial a number of patents (about 1300) before 1940, yet citations before that
period are either rare or not recorded in our data set.
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Figure 3.5.2: Total patents and re-scaled id and ipl
over time For each earliest filing year we plot the total
number of patents and the ipl and id, where ipl-k0 is re-
scaled by a factor 1/p and id-m0 is re-scaled by a factor
1/q (the factors are taken from Table 3.5.2 and appendix
3.A). Both cumulativeness indicators closely follow the de-
velopment of the total patents over time.

Note that these asynchronous
developments correspond ex-
actly to the previously men-
tioned deviations from linear-
ity in Figure 3.5.1. Note in
Figure 3.5.2 that the ’fast ipl’
deviations correspond to peri-
ods in time where the number
of patents increase very slow,
(nuclear fission and combus-
tion engines towards 2009, pho-
tovoltaics and combustion en-
gines in the 1960s) and that
the ’slow ipl’ deviations corre-
spond to periods in time where
the number of patents increase
very fast (wind turbines to-
wards 2009). To some extent,
but less clearly in Figure 3.5.2,
this also counts for the id devel-
opments. These observations
are therefore in agreement with
the hypothesized inverse rela-
tion between the rate of invention over time and cumulativeness coefficients.

3.5.3 Distributions of backward links and path length

The measured linear relationships between the id, ipl and number of patents are in
line with the model predictions of Section 3.4, yet linear relationships may also arise
in various other models. Additionally, we therefore study the empirical backward
link and path length distributions and compare these to the predicted distributions.
For brevity we focus on the US patents in this section, as the analysis for EP patents
is largely similar.

In Figure 3.5.3 we plot the internal backward link distribution for the four focus
technologies for US patents, plotting the distribution for each technology for every
1000 patents. We observe two characteristics: (1) the frequency drops exponen-
tially (note the logarithmic axis) with the number of references and zero references
occurring most frequently, (2) as the number of patents increase, the skewness de-
creases. Where (1) is indicative for a geometric distribution, (2) indicates that the
parameter of this distribution depends on the number of patents. To test if these
distributions agree with the predictions of Section 3.4.2, we in Figure 3.5.3 simulta-
neously plot the predicted distributions using the parameters q and m0 from Table
3.5.2. We observe the predicted distributions fit the empirical distributions rather
well. In appendix 3.C we compare these fits to a number of alternative distributions
using probability plots, which again confirm the data is reasonably well described
by geometric distributions with parameters from Table 3.5.2.

In Figure 3.5.4 we consider the path length distribution (for each internal path)
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Figure 3.5.3: Backward link distribution
(US patents) With symbols we plot the empir-
ical distribution each time the number of patents
increase by a 1000. With lines we plot the pre-
dicted geometric distributions using the param-
eters q and m0 from Table 3.5.2. For clarity,
we omit n = 5000,7000 and 8000 (applicable to
combustion engines and photovoltaics only).
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Figure 3.5.4: Path length distribution (US
patents) With symbols we plot the empirical
distribution each time the number of patents in-
crease by a 1000. With lines we plot the pre-
dicted distributions from Equation 3.9, where
the maximum path length values plotted by nu-
merals in Figure 3.5.5 are used as values of n′.

for US patents, plotting the distribution for every 1000 patents. We observe two
characteristics: (1) as the number of patents increase, the distribution becomes less
skewed, approximating a parabolic shape (on a log scale) (2) the most frequent path
length shifts right as the number of patents increase. Before we discuss the fitting of
the path length distributions, we shortly consider the development of the maximum
internal path length (mipl) for the number patents in Figure 3.5.5. The patterns
are for each technology rather similar to those of the ipl in Figure 3.5.1, except that
the mipl increases at about double the pace.
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Figure 3.5.5: Maximum path length for US
patents We plot the maximum internal path
length for the number of patents (in symbols)
and include linear fits (in lines) of the develop-
ment. Details of the fits are included in Ap-
pendix 3.A. The plotted numerals each correspond
to one of the fitting distributions plotted in Figure
3.5.4, the x-coordinate representing the number
of patents n, the y-coordinate representing the n′
used in the fitting distribution (see equation 3.9).

Indeed, linear fits of the mipl, see
Appendix 3.A for the details, yield
the coefficients 0.0062 (nuclear fission),
0.0046 (photovoltaics), 0.0089 (wind
turbines) and 0.0021 (combustion en-
gines), which are as expected very close
to 2p (using the values p from Table
3.5.2). As explained at the end of Sec-
tion 3.4.3, we can use the maximum
path lengths as estimates for n′ in Equa-
tion 3.9. The values of n′ used in the fit-
ting path length distributions in Figure
3.5.4 are the y-coordinates of the plot-
ted numerals in Figure 3.5.5. We note
that the empirical distributions in Fig-
ure 3.5.4 are very well fitted, and at the
same time the numerals in Figure 3.5.5
fall neatly in the line of development of
each technology. We therefore conclude
that Equation 3.9 provides a rather ac-
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curate description of the path length distributions. A closer examination of the
distribution fits is provided in Appendix 3.C.

3.5.4 Cross technology variations

Finally, we discuss the variation in id and ipl across technologies in more detail. As
we have two indicators for cumulativity and two data sources (EPO and USPTO), we
can identify cross cumulativity variations along 4 dimensions. Figure 3.5.6 presents
a systematic overview of the 24 technologies from Table 3.5.1 and 3.B.1. We ob-
serve positive trends for each comparison in Figure 3.5.6, and the technologies for
each comparison remain rather consistently in a characteristic (high or low) range
of cumulativity. These observations are supported by the reasonable values of the
squared correlation coefficient R2 and the statistical significance we find for each
comparison (for the statistical details see Appendix 3.A). The positive association
between the two indicators in Figure 3.5.6 provides some evidence that the rela-
tion established in Equation 3.6 applies across a wider range of technologies than
the four focus technologies. This suggests again that the degree of cumulativeness
measured along the transversal and longitudinal dimensions largely agree for each
technology, i.e. that both dimensions can be used more or less interchangeably. As
expected from the greater citation tendency in the US system, the values of the US
indicators are a factor 3-4 greater than their EP counterparts (see also Appendix
3.A). However, the positive association we find between US and EP patents for both
the id and ipl indicates that this factor is approximately constant across different
technologies. This suggests that, despite institutional differences, both indicators
can be applied consistently within different patent systems, confirming that we can
think of cumulativity as a technology-specific characteristic.

In our discussion of the four focus technologies we provided some evidence for the
hypothesized inverse relation between the time rate of invention and the id coefficient
q (i.e. the rate at which the id increases per patent). The joint consideration of
24 technologies allows us to test this relation for a wider range of technologies. In
Figure 3.5.7 the invention rate (measured by the average number of patents per
year) is plotted for the id coefficients q (determined by the number of references
per patent squared) for both the US and EP patents. In line with expectation, the
two quantities are negatively associated (best fitted by a power law with a power
≈ −0.6 for US patents and ≈ −0.9 for EP patents). Again see Appendix 3.A for
the statistical details. Figure 3.5.7 therefore confirms that the linear coefficient
determining the increase of the id per patent (and indirectly the ipl) is related
inversely with the rate of invention over time. Note that this does not mean the rate
of cumulativeness development is exclusively determined by the rate of invention,
as there may still be other factors at play related to the type of technology or
technological knowledge. From Figure 3.5.6 it is not directly clear however what
type of technologies we can typically associate with high and low cumulativeness:
we observe technologies from various disciplines both on the higher and lower end
of the spectra. In the final subsection, we therefore consider the differences between
technologies on a more aggregated level of classification.
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Figure 3.5.6: Id and ipl for 24 technologies in EPO and USPTO. Linear fits are included
based on the pairwise regressions in Appendix 3.A.
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3.5.5 Cumulativeness across technological fields

Finally we consider the cumulativeness of technologies on a more aggregated clas-
sification level, which we will henceforth refer to as ’technological fields’, (for an
overview see Table 3.B.2 in Appendix 3.A). This allows us to develop an overall
understanding of which technologies can typically be associated with high or low
cumulativeness. Furthermore, it allows us to check if our approach to cumulative-
ness is in line with earlier approaches (Breschi et al., 2000; Malerba & Orsenigo,
1996)11, thus to some extent validating the indicators for cumulativeness suggested
this contribution. However, as determining the ipl is computationally challenging
for very large numbers of nodes (i.e. >100,000), we limit this analysis to determin-
ing the id of these technological fields. We plot the id for the number of patents for
these fields for the US patents in Figure 3.5.8, where we also include a legend. Note
that the different icon colors correspond to the different CPC main sections. Figure
3.5.9 shows a similar plot for the European patents.

For a deeper understanding of a technology’s cumulativeness, we again stress the
need to additionally consider the cumulativeness relative to the size of the knowledge
base. For example, in Figure 3.5.8, while the knowledge base size is similar for the
field Packing & Transporting and the field Optics & Photography, the latter has
reached a far greater level of cumulativeness. Similarly, Nucleonics reaches the same
cumulativeness level as Packing & Transporting while the knowledge base is about
15 times larger in the latter. The cumulativeness therefore appears to increase
faster with each patent for Nucleonics and Optics & Photography than for Packing
& Transporting. The expected increase in cumulativeness for the knowledge base
size is indicated by the fits (dashed line) in Figures 3.5.8 and 3.5.9 and may depend
on the level of classification. For this level of classification we can use these fits
to distinguish relatively high cumulativeness (above the line) from relatively low
cumulativeness (below the line). Using this distinction we see for the US patents
the fields belonging to CPC sections Physics (red icons), Electricity (yellow icons),
and Chemistry (purple icons) show relatively high levels of cumulativeness. Fields
belonging to Sections Human Necessities (brown icons) and Performing operations
& Transporting (blue icons) show relatively low levels of cumulativeness. The larger
fields in the Sections Textiles (pink icons) and Fixed Constructions (black icons) too
show relatively low levels of cumulativeness.

The study by Malerba and Orsenigo (M&O) distinguishes a number of highly
aggregated technologies as Schumpeter Mark I (associated with low cumulativeness)
and Schumpeter Mark II (associated with high cumulativeness). Our observations
are in overall agreement with the general conclusion of M&O that "Schumpeter
Mark I technological classes are to be found especially in the ’traditional’ sectors, in
the mechanical technologies, in instruments as well as in the white electric industry.
Conversely, most of the chemical and electronic technologies are characterized by the
Schumpeter Mark II model."12. To make a more detailed comparison, we individu-
ally consider 23 technological fields which occur both in the M&O and our own set of
fields and which M&O classify as either Schumpeter I or II. For the purpose of this

11The contribution by Breschi is largely consistent with the one by Malerba and Orsenigo. As
the latter consider more detailed technological classes and a wider geographical range of patents,
we will focus on the latter.

12We interpret M&Os ’traditional’ sectors to correspond to the early industrial and craft-like
sectors such as Textiles, Domestic Articles and Wearables
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Figure 3.5.8: Cumulativeness versus size of knowledge base for US patents We plot the
cumulativeness (measured by the internal dependence) for the knowledge base size (measured by
the number of patents) for 40 technological fields based on USPTO data. Fields in the same CPC
section are colored similarly. Note both axes are logarithmic, hence the fitted regression line is a
power law. The cumulativeness of technologies appearing substantially above (below) the fitted line
can identified as relatively high (low).
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Figure 3.5.9: Cumulativeness versus size of knowledge base for European patents Same
as Figure 3.5.8 but then for European patents. A legend for the icons is included in Figure 3.5.8.
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comparison, we associate a technological field below the fitted line with low cumula-
tiveness (which should correspond to M&O’s Schumpeter Mark I) and technologies
on or above with high cumulativeness (corresponding to M&O’s Schumpeter Mark
II). From the 23 thus considered technologies, 18 are identified correctly: 7 as low
cumulativeness (Wearables, Domestic Articles, Agriculture, Shaping of Materials,
Railways & Ships, Building, Mechanical Engineering) and 11 as high cumulative-
ness (Aviation, Petroleum, Gas & Coke, Macromolecules, Biochemistry, Engines &
Pumps, Weapons, Photography & Optics, Nucleonics, Telecommunications, Com-
puting & Controlling, Electronic Components & Circuitry). 5 Technological fields do
not correspond to M&O’s labeling: Inorganic Chemistry (Mark II), Printing & Dec-
oration (Mark II), Lighting (Mark I), Measurement & Testing (Mark I) and Health
and Wellbeing (Mark II). Note the first four are rather close to the line, however.
The cumulativeness of Health and Wellbeing is exceptionally high though in our
analysis. The reason for these deviations is not directly clear. We emphasize that
M&O’s Schumpeter Mark I or II labels are based on various aspects of the organiza-
tion of innovation, and are therefore only an indirect indication of cumulativeness.
Also, there might be some variation between the grouping of patent classes by M&O
and ours. Finally, some technologies may have developed substantially between the
M&O study (1996) and the final year we consider (2009).

The variations found across technological fields using the European patents in
Figure 3.5.9 are largely similar to those we observed for the US patents. Notable
differences are that for the European patents, the chemistry fields show relatively
high cumulativeness and the physics and electricity fields show relatively low cu-
mulativeness (as compared to the US patents). In general, the variations across
technological fields are less for the European patents than for the US patents, which
is likely related to the fact that the number of patents is substantially lower for the
former. Although there are some differences with the US patents, the European

64



Chapter 3 Section 3.6

patents too show overall agreement with the results of M&O (of the 23 fields, 18 are
identified correctly). The agreement between the M&O approach to cumulativeness
and our results provide a validation for the use of the id to measure the cumula-
tiveness of a technology, and indirectly for the ipl, given the earlier established close
relation between both indicators.

3.6 Discussion

In this paper, we established an approach to interpret, model and measure the cu-
mulative nature of technological knowledge development. We can identify a number
of deeper implications and possible extensions of the theoretical model developed in
this contribution.

A main point in the search model is the increasing difficulty to invent without
any prior knowledge of the field, which leads to a geometric distribution for the num-
ber of backward links. In a number of other approaches, invention is perceived as
a process of (re)combining existing pieces knowledge (Arthur, 2009; Fleming, 2001;
Fleming & Sorenson, 2001). When we would focus on the number of combinations
allowed by the number of existing inventions, a reasonable suggestion for the dis-
tribution of backward links would be a binomial type of distribution. This option
may seem attractive, as assigning equal probability to each combination would lead
the expected value of the number of backward links per invention to increase pro-
portionally with the number of inventions, in agreement with observation. However,
for the id we fail to observe characteristics of a binomial type of distribution. The
fact that we obtain stronger evidence in Appendix 3.C for a geometric distribution
suggests therefore that the mechanism of combination plays a lesser role than we
might expect, or at least that we are dealing with a special type of combination,
where for example only a small subset of the combinations is allowed.

While linear relations are common in descriptions of social phenomena, we em-
phasize that the linearity of the id and ipl in the number of inventions is neither an
obvious nor an expected result. In a number of network approaches to knowledge
dynamics it is instead supposed that the number of backward links per node is on
average constant as the number of nodes increase (Albert & Barabasi, 2002; Price,
1976; D. Wang et al., 2013). It can be demonstrated this would imply a constant id
and a logarithmically increasing or even constant ipl. These mechanisms would thus
predict a stagnating cumulativeness, even though the number of inventions keeps in-
creasing. One may raise the objection that the external nodes are not included in our
analysis, and that the id linearity may disappear once these are included. Additional
checks on the four focus technologies in Table 3.5.1 however reveal that the external
dependence (i.e. the average number of external nodes each node builds on) equally
well shows a linear increase. Although considering only four technologies gives no
guarantee, it is an indication that the linearity is a more general phenomenon. In
this contribution we explored some possible mechanisms driving the increase of id
and ipl. At the same time, we acknowledge that there may be other societal factors
driving the increase, such as increased computerization or other factors improving
the availability of search results. Accounting for the effect of these factors is however
challenging, as it would require us to compare similar technological developments
over different time periods.

Our approach suggests that the cumulativeness of technologies develops largely
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in sync with the size of the respective knowledge base, which suggests that these
knowledge dynamics are to some extent time-independent, i.e. less impacted by
historical events. Likewise, the description was formulated independently of spa-
tial (geographical) factors (and appeared consistent between the US and Europe).
This appears to contradict a commonly held notion that technology development is
highly path dependent, i.e. that history and local circumstances crucially matter.
However, the time and space independence here only applies to the relation between
cumulativeness and the size of the knowledge base, hence the crucial choices de-
termining particular technological content may still largely depend on historical or
local events. Furthermore, we observed that the rate of invention of this technology
over time is inversely related to the rate of proportionality between the cumulative-
ness and size of the knowledge base. If there is causation from former to latter,
then technological cumulativeness may in the end be less determined by intrinsic
knowledge properties than generally understood. If there is causation from latter
to former, then the cumulativeness rate of a technology can be interpreted as key
determinant and predictor of its rate of invention. Alternatively, a simultaneous
effect of both causalities may also be the case. Regardless of a possible causality
direction, it would for later work be interesting to compare the deviations from lin-
earity in Figure 3.5.1 with different phases in the technology life cycles (Abernathy
& Utterback, 1978; Anderson & Tushman, 1990). The development of combustion
engines and nuclear fission indeed show hints of typical life-cycle s-shapes in Figure
3.5.2, the points of acceleration and deceleration corresponding to the deviations in
Figure 3.5.1. While the present model does not account for these deviations, we
note that, at least for the technologies here considered, the deviations are minor,
and linearity remains the dominant pattern.

In this contribution we focused on the cumulativity of technological knowledge.
It would be interesting to compare this to cumulativity in other fields of knowledge
such as science or art. The indicators and models discussed in this contribution
can reasonably well be generalized to these areas. Also, it would be interesting to
look at science-technology or art-technology dependencies, which then allow us to
consider the cumulativity of technology as a whole, i.e. consider all technology as
internal and the influence of science and/or art as ’external’. These questions are
however beyond the scope of this work.

Finally we mention two limitations to our approach. First, our results critically
depend on a particular choice for a demarcation/classification of different technolo-
gies, in our case the CPC. Even though a validated classification, innovation re-
searchers should keep in mind the CPC is in the first place designed to aid patent
examiners in their search for prior art, which may not always align with the technol-
ogy definitions and level of detail researchers require. Furthermore, as new technolo-
gies develop the CPC is continuously restructured, causing possible misalignment
with the researcher’s time perspective of a developing technology. To allow for
a more detailed classification or a more sophisticated internal-external distinction
researchers may consider alternatives based on textual analysis of patents (Kelly
et al., 2018), technological relatedness (Castaldi et al., 2015) or distance measures
(Gilsing et al., 2008; A. Jaffe, 1989). While we acknowledge these points, we note
that the main focus of this work was on developing a methodology to determine a
technology’s cumulativeness, which is generally applicable once the internal-external
distinction is in place. In general, we emphasize that a better understanding of the
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applicability of our analysis requires us to research a greater number of technologies.
This would also help us understand if more closely related technologies also differ less
in cumulativeness (hints of which we observe in Figures 3.5.8 and 3.5.9). Second, we
kept the models in this contribution as simple as possible, thereby excluding a num-
ber of arguably relevant factors, amongst others: (i) the average time lag between
the appearance of knowledge and the usage of that knowledge (ii) more advanced
mechanisms in patent networks such as preferential attachment effect (Albert &
Barabási, 2000; Érdi et al., 2013; Valverde et al., 2007), (iii) linkage to external
inventions, which allows paths to start directly from external nodes. Though we
can think of possible extensions of the model including these factors, we preferred a
simple version for clarity.

3.7 Conclusions

This paper presents both a theoretical and an empirical investigation of technological
cumulativeness. Theoretical perspectives agree that technological cumulativeness in-
volves a series of developmental steps within a technology, where the cumulativeness
is higher (i) when the dependence between subsequent steps is larger, and (ii) when
the total number of subsequent steps is higher. We capture these transversal (i)
and longitudinal (ii) dimensions of cumulativeness through our indicators internal
dependence (id) and internal path length (ipl).

We then analytically derive how the id and ipl interrelate, and how they change
as the size of the knowledge base of a technology increases (as measured by the
total number of inventions). To this end, we model the invention process as a series
of searches. A relevant parameter in this process is the technology-specific rate q
at which it becomes harder to invent without using the existing knowledge in the
field. We expect q to be inversely related to the rate of invention over time, as there
tends to be more specialization (and hence less need for complete knowledge) at
greater rates of invention. From this model we deduce that the id and ipl, while
following different distributions, are both expected to increase linearly with the size
of the knowledge base. The coefficients of these linear relations are predicted to
approximate q as the knowledge base becomes larger.

Empirical tests on several technologies, using patent and citation data from both
USPTO and EPO as proxies for invention and knowledge flow, provide empirical
support for these expectations and show that the id and ipl can be used consis-
tently for both patent systems. Further, the variations in cumulativeness across
technological fields are found to be largely consistent with earlier contributions that
used different approaches to technological cumulativeness: chemistry, physics and
to some extent electronics are generally characterized by relatively high cumula-
tiveness, while the craft-like and mechanical engineering fields show relatively low
cumulativeness.

Our study leads to a number of new insights about technological cumulativity
and its relation to technological knowledge:

1. The cumulativeness of a technology develops proportionally with the size of
its knowledge base, with a technology-specific cumulativeness rate. A thor-
ough understanding of a technology’s cumulativeness therefore considers the
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cumulativeness both absolute as well as relative to the size of its knowledge
base.

2. The measurements of cumulativity along the transversal dimension and the
longitudinal dimension are found to be consistent for various technologies. It
appears therefore that both provide an equivalent description of a technology’s
cumulativeness. Measuring the transversal dimension by means of the internal
dependence is (computationally) simple, and therefore provides a relatively
fast and reliable indication of a technology’s cumulativeness.

3. The time development of the cumulativeness indicators is largely synchro-
nized with the time development of the knowledge base size. This suggests
that short term, immediate effects have a limited influence on the relation
between cumulativeness and knowledge base size (meaning that the cumula-
tiveness rate remains constant). However, across technologies we observe an
inverse relation between the cumulativeness rate and the rate of invention over
time. This suggests that effects acting over long periods of time, such as the
gradual acceleration or deceleration of inventive efforts, may therefore affect
the cumulativeness rate.

4. Technological cumulativeness is understood to be a mechanism for the emer-
gence of technological complexity. For a comprehensive understanding of the
dynamics of technological complexity, it is important to take into account
both the transversal and the longitudinal dimension of cumulativeness. Our
study shows that cumulativeness increases along both these dimensions (for
the considered technologies), which suggests an overall increase of technolog-
ical complexity as well, yet this partially depends on the chosen measure of
complexity.

These insights lead to a number of implications for innovation policies that ben-
efit from a detailed understanding of the cumulativeness of technologies, such as
smart specialization. In their consideration of various technologies, these policies
are advised to choose a comprehensive approach, including both the absolute cu-
mulativeness as well the cumulativeness relative to the size of the knowledge base.
Where the first is indicative for the overall difficulty of entry in a technology, the
second is indicative for the relative difficulty of entry as compared to technologies
with similar-sized knowledge base. Furthermore, given that near future inventive
activity (and with that knowledge output) allows for some estimation or planning,
these policies are advised to additionally take into account the expected develop-
ment of the cumulativeness of these technologies. Although these developments are
sometimes considered a black box, we have demonstrated that the cumulativeness in
fact develops rather predictably with the size of the knowledge base. In the longer
run, policymakers should be aware that the rate of invention over time of a technol-
ogy, usually a direct or indirect subject of policy interventions, is inversely related
to the cumulativeness rates. Although the possible causality in this relation is as
of yet unclear, the consequences are either way considerable. In the most extreme
cases, it either implies a certain ’counter effect’: that a substantial acceleration of
inventive activities indirectly slows down the cumulativeness rate of a technology,
or it implies that, despite efforts of acceleration or deceleration, the inventive rate
is largely conditioned by the cumulativeness rate alone.
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Appendix

In the following appendices, we include more detailed information about various
aspects of the paper. In Appendix 3.A we discuss the statistics of the linear fits ap-
plied throughout the paper. Subsequently, in Appendix 3.B we present an overview
of the selected technologies and their corresponding CPC classifications. Then, in
Appendix 3.C we discuss the probability plots of the fitted distributions in Figures
4 and 5. This is followed by Appendix 3.D, in which we discuss and investigate the
difference between applicant and examiner added citations and Appendix 3.E where
we provide the detailed derivations of the equations appearing in the paper. Finally
we include the T-SQL scripts in Appendix 3.F which allow for the reproduction of
our results using Patstat.

3.A Statistics of the linear fits

In this section we present in the statistical details of the linear fits in Figures
3.5.1,3.5.5,3.5.6 and 8 of the paper. The fits are estimated using an ordinary least
squares approach. We start with the linear fits id and ipl in Figure 3.5.1 of the
paper. Tables 3.A.1 and 3.A.2 respectively represent the id and ipl for US patents,
and Tables 3.A.3 and 3.A.4 respectively represent the id and ipl for EP patents.
Next Table 3.A.5 present the results of the linear regressions in Figure 3.5.5. Then,
Table 3.A.6 presents the outcomes of the pairwise regressions of Figure 3.5.6. Finally
Table 3.A.7 presents the outcomes of the fits in Figure 3.5.7.

Table 3.A.1: Estimated linear models for Internal Dependence (US patents)

Dependent variable:

Nuclear Fission Photovoltaics Wind Turbines Combustion Engines

(1) (2) (3) (4)

Patents 0.0006∗∗∗ 0.0005∗∗∗ 0.0014∗∗∗ 0.0002∗∗∗
(0.000002) (0.000001) (0.000004) (0.000000)

Constant 0.6462∗∗∗ 1.4492∗∗∗ 2.4157∗∗∗ 0.2560∗∗∗
(0.0032) (0.0045) (0.0096) (0.0012)

Observations 3,595 9,066 3,979 6,068
R2 0.98 0.97 0.96 0.98
Adjusted R2 0.98 0.97 0.96 0.99
Residual Std. Error 0.096 (df = 3593) 0.214 (df = 9064) 0.303 (df = 3977) 0.047 (df = 6066)
F Statistic 166,232∗∗∗ (df = 1; 3593) 340,069∗∗∗ (df = 1; 9064) 108,235∗∗∗ (df = 1; 3977) 422,204∗∗∗ (df = 1; 6066)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

70



Chapter 3 Section 3.B

Table 3.A.2: Estimated linear models for Internal Path Length (US patents)

Dependent variable:

Nuclear Fission Photovoltaics Wind Turbines Combustion Engines

(1) (2) (3) (4)

Patents 0.0029∗∗∗ 0.0024∗∗∗ 0.0044∗∗∗ 0.0011∗∗∗
(0.00001) (0.000003) (0.00001) (0.000004)

Constant −0.4162∗∗∗ 2.6356∗∗∗ 0.9349∗∗∗ −0.0644∗∗∗
(0.0198) (0.0139) (0.0302) (0.0127)

Observations 3,595 9,066 3,979 6,068
R2 0.96 0.99 0.97 0.94
Adjusted R2 0.96 0.99 0.97 0.94
Residual Std. Error 0.595 (df = 3593) 0.664 (df = 9064) 0.951 (df = 3977) 0.496 (df = 6066)
F Statistic 90,488∗∗∗ (df = 1; 3593) 828,425∗∗∗ (df = 1; 9064) 113,419∗∗∗ (df = 1; 3977) 98,777∗∗∗ (df = 1; 6066)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3.A.3: Estimated linear models for Internal Dependence (European patents)

Dependent variable:

Id Nuclear Fission Id Photovoltaics Id Wind Turbines Id Combustion Engines

(1) (2) (3) (4)

patents 0.0011∗∗∗ 0.0002∗∗∗ 0.0008∗∗∗ 0.0002∗∗∗
(0.00001) (0.000002) (0.000003) (0.000001)

Constant 0.0665∗∗∗ 0.2522∗∗∗ 0.1812∗∗∗ 0.0690∗∗∗
(0.0042) (0.0029) (0.0028) (0.0009)

Observations 744 2,598 1,766 2,092
R2 0.95 0.81 0.98 0.97
Adjusted R2 0.95 0.81 0.98 0.9616
Residual Std. Error 0.057 (df = 742) 0.073 (df = 2596) 0.059 (df = 1764) 0.021 (df = 2090)
F Statistic 13,048∗∗∗ (df = 1; 742) 11∗∗∗ (df = 1; 2596) 76∗∗∗ (df = 1; 1764) 52,396∗∗∗ (df = 1; 2090)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3.A.4: Estimated linear models for Internal Path Length (European patents)

Dependent variable:

Ipl Nuclear Fission Ipl Photovoltaics Ipl Wind Turbines Ipl Combustion Engines

(1) (2) (3) (4)

patents 0.0023∗∗∗ 0.0008∗∗∗ 0.0021∗∗∗ 0.0004∗∗∗
(0.00001) (0.000003) (0.00001) (0.000002)

Constant −0.0473∗∗∗ 0.2337∗∗∗ 0.0913∗∗∗ 0.0274∗∗∗
(0.0046) (0.0046) (0.0070) (0.0023)

Observations 744 2,598 1,766 2,088
R2 0.98 0.96 0.98 0.95
Adjusted R2 0.98 0.96 0.98 0.95
Residual Std. Error 0.062 (df = 742) 0.117 (df = 2596) 0.147 (df = 1764) 0.052 (df = 2086)
F Statistic 47,153∗∗∗ (df = 1; 742) 69∗∗∗ (df = 1; 2596) 92∗∗∗ (df = 1; 1764) 37,728∗∗∗ (df = 1; 2086)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.A.5: Development of Maximum Internal Path Length (mipl) (US patents) The
results of this regressions are plotted in Figure 3.5.5.

Dependent variable:

Mipl Nuclear Fission Mipl Photovoltaics Mipl Wind Turbines Mipl Combustion Engines

(1) (2) (3) (4)

patents 0.0062∗∗∗ 0.0046∗∗∗ 0.0089∗∗∗ 0.0021∗∗∗
(0.0002) (0.0001) (0.0003) (0.0002)

Constant 1.54∗∗∗ 8.31∗∗∗ 2.07∗∗∗ 3.34
(2.6496) (0.4073) (1.6830) (0.7232)

Observations 28 49 33 17
R2 0.97 0.98 0.97 0.91
Adjusted R2 0.97 0.98 0.97 0.91
Residual Std. Error 1.48 (df = 26) 1.84 (df = 47) 1.65 (df = 31) 1.54 (df = 15)
F Statistic 814∗∗∗ (df = 1; 26) 2,836∗∗∗ (df = 1; 47) 1,062∗∗∗ (df = 1; 31) 157∗∗∗ (df = 1; 15)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3.A.6: Pair wise regression between id and ipl for EP and US patents The results
of these regressions are plotted in Figure 3.5.6.

Dependent variable:

id US patents ipl EP patents

(1) (2) (3) (4)

id EP patents 3.284∗∗∗ 4.625∗∗∗
(0.870) (1.449)

ipl US patents 0.127∗∗∗ 0.264∗∗∗
(0.043) (0.057)

Constant 1.509∗ 2.278∗∗∗ −0.256 −0.599
(0.828) (0.795) (1.378) (1.045)

Observations 24 24 24 24
R2 0.39 0.28 0.32 0.50
Adjusted R2 0.37 0.25 0.29 0.47
Residual Std. Error (df = 22) 1.49 1.62 2.48 2.13
F Statistic (df = 1; 22) 14.25∗∗∗ 8.73∗∗∗ 10.19∗∗∗ 21.76∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.A.7: Invention rate over time for the id coefficients q The log of US invention rate
(patent/year) is regressed for the log of the id coefficient q (reference/patent2) for the 24 technologies
in Tables 3.5.1 and 3.B.1, for both the US and EP patents. The q coefficients are calculated by
dividing the total references by the total patents squared. The results of these regressions are plotted
in Figure 3.5.7

Dependent variable:

Log Invention Rate US Log Invention rate EP

(1) (2)

Log US id coefficient q −0.595∗∗∗
(0.166)

Log EP id coefficient q −0.867∗∗∗
(0.186)

Constant 0.302 −2.463∗
(1.174) (1.398)

Observations 24 24
R2 0.368 0.496
Adjusted R2 0.339 0.473
Residual Std. Error (df = 22) 0.625 0.579
F Statistic (df = 1; 22) 12.791∗∗∗ 21.635∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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3.B Overview of selected technologies and corre-
sponding CPC classifications

Earlier we included more detailed information on the four focus technologies in
Table 3.5.1. A more detailed description of the other 20 technologies in Figure
3.5.6, including their CPC classifications and number of granted patents, can be
found in Table 3.B.1. While the choice for these technologies was mostly arbitrary,
we took care to include technologies from each main CPC section (indicated by
first letter A,B,C,D,E,F,Y) and from mostly different CPC subclasses (indicated
by first 4 symbols e.g. C10J). To limit the scope of the technologies we selected
the technologies on the CPC groups and subgroup level (the most dis-aggregated
two levels of the CPC). Even though this selection of the group and subgroups
was mostly arbitrary, we took into account that we require a substantial number of
patents for each technology (>200). Then, in Table 3.B.2 we present an overview of
technologies on a more aggregated level of classification, which we earlier referred to
as ’technological fields’ (and appear in Figures 3.5.8 and 3.5.9). The choice for this
level of classification and the particular grouping of CPC classes was done such that
the technological fields correspond as much as possible to the technologies appearing
in Malerba and Orsenigo (Malerba & Orsenigo, 1996). We also include the number
of unique US and EP patents in these fields.

3.C Evaluating the distribution fits

In this appendix we discuss the fits of the distributions in Figures 3.5.3 and 3.5.4.
For the distributions where less data is available (i.e. n=1000, 2000), χ2 tests in-
dicate there is not enough evidence to reject the null hypothesis that the backward
link distributions are described by geometric distributions with parameters from
Table 3.5.2. However, for larger n, the p-values quickly get very small for virtually
any distribution we try, which suggests that the χ2 test is rather strict for our pur-
pose. Instead, we therefore consider probability plots instead, where we compare the
performance of the predicted distribution to a number of other possible candidates,
such as the binomial distribution for the backward links and the normal distribution
for the path length. The x-value of each point in the probability plot represents the
empirical probability of a certain occurrence and its y-value represent the predicted
probability of its occurrence. The closer the points to the x = y line, the better
the distribution fit therefore. The Figure 3.C.1 shows the probability plots for the
(empirical) backward link distribution of the four focus technologies and three can-
didate distributions: the geometric, normal and binomial distributions. We choose
to show the n = 3000 case, yet the other cases are largely comparable. The parame-
ters of each distribution are chosen such that the fit with the empirical distribution
is optimized. We observe that the geometric distribution is for all technologies very
close to the x = y line, more so than the other distributions.

Similarly, Figure 3.C.2 shows the probability plots for the path length distri-
bution and three candidate distributions: the Poisson, normal and binomial type
of distribution of Equation 3.913. For the path length distributions too we observe
that the distribution from Equation 3.9 is generally close to the x = y line for each

13We choose again the n = 3000 cases, except for computational reasons we chose n = 2000 for
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Table 3.B.1: CPC code and description of additional technologies

Technology name CPC description CPC code
# US granted
patents filed
earliest<2009

# EP granted
patents filed
earliest<2009

animal housings animal husbandry:
equipment for housing animals A01K 1 5974 851

soil reclamation reclamation of contaminated soil B09C 1 2118 608
fusion polypeptide fusion polypeptide C07K2319 7847 4049

film sheet manufacturing
manufacture of articles or shaped materials
containing macromolecular substances:
films or sheets

C08J 5/18 3570 2114

filament manufacturing general methods for the manufacture of
artificial filaments or the like D01F 1 1383 570

laundry dryers domestic laundry dryers D06F 58 2701 839

homopolymers
Homopolymers and copolymers of
unsaturated aliphatic hydrocarbons having
only one carbon-to carbon double bond

C08F 10 8554 3461

soil-shifting machines soil-shifting machines E02F 9 6456 1560

exhaust purifiers
exhaust or silencing apparatus having means
for purifying, rendering innocuous, or otherwise
treating exhaust for extinguishing sparks

F01N 3/2066 766 629

combustibles supply control electrical control of supply of
combustible mixture or its constituents F02D 41 18187 6816

gearing control functions
Control functions within control
units of changespeed- or reversing-gearings
for conveying rotary motion

F16H 61 15253 4463

sensing record carriers methods or arrangements for sensing
record carriers, G06K 7 11142 3316

object actuated machines

mechanisms actuated by objects other
than coins to free or to actuate vending,
hiring, coin or paper currency dispensing
or refunding apparatus

G07F 7 6799 2214

control signal transmission
arrangements for transmitting signals
characterised by the use of a
wireless electrical link

G08C 17/02 907 313

speech recognition procedures procedures used during a speech recognition
process, e.g. man-machine dialogue G10L 15/22 919 223

information storage editing
editing; indexing; addressing; timing or
synchronising; monitoring; measuring
tape travel

G11B 27 14607 3501

lithium battery manufacturing
manufacturing of secondary cells,
accumulators with non-aqueous electrolyte,
lithium accumulators

H01M 10/052 5550 2203

predictive video signal coding

methods or arrangements for coding, decoding,
compressing or decompressing digital video
signals using transform coding in combination
with predictive coding

H04N 19/61 5411 1371

electroluminescent light sources electroluminescent light sources H05B 33 6933 1848

non-fossil fuels technologies for the production of fuel
of nonfossil origin Y02E 50 3627 1549
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Table 3.B.2: Aggregration of CPC classes and number of unique patents

AGGREGATED CLASS CPC classes US patents earliest filed <2009 EP patents earliest filed <2009
AGRICULTURE A0 199829 62274
FOODSTUFFS & TOBACCO A21-A24 99283 99283
WEARABLES A41-A46 158168 31274
FURNITURE & DOMESTIC ARTICLES A47 198137 35881
HEALTH & WELLBEING A61-A63 551343 1057394
SEPARATING & MIXING PROCESSES B01-B09 299444 188607
SHAPING OF MATERIALS B21-B33 569035 257470
PRINTING & DECORATION B41-B44 164956 106699
RAILROADS & SHIPS B61,B63 113111 9208
AVIATION B64 50379 7350
OTHER, VEHICLES RELATED B60,B62 364114 76396
PACKING & TRANSPORTING B65-B68 343185 124825
MICRO & NANOTECHNOLOGY B81,B82 33116 14804
INORGANIC CHEMISTRY C01 64289 29767
OTHER CHEMICAL INDUSTRIES C02-C06,C13,C14 130118 69540
ORGANIC CHEMISTRY C07 335300 105630
MACROMOLECULES C08 217371 72606
PAINTS C09 113624 124642
PETROLEUM, GAS & COKE C10 80664 31815
BIOCHEMISTRY C11,C12 110121 190851
METALLURGY C21-C25 143398 71321
OTHER CHEMISTRY C30,C40 14622 9095
TEXTILES D01-D10 174651 63344
PAPER-MAKING D21 35187 29176
BUILDING E01-E06 292294 64659
MINING E21 81643 20124
ENGINES & PUMPS F01-F05 276811 151200
MECHANICAL ENGINEERING F15-F17 392610 145528
LIGHTING F21 40427 8417
HEATING F22-F28 229621 63076
WEAPONS F41,F42 61036 11039
MEASURING & TESTING G01,G04 452562 229884
OPTICS & PHOTOGRAPHY G02,G03 314480 159094
COMPUTATION & CONTROLLING G05-G07 493428 200383
SOUND, SIGNALLING & INFORMATION G08-G16 331302 133285
NUCLEONICS G21 21952 9357
ELECTRIC ELEMENTS & CIRCUITRY H01-H03, H05 846273 351941
ELECTRIC POWER GENERATION H02 148028 52661
TELECOMMUNICATION H04 456994 429038
CLIMATE CHANGE MITIGATION Y02 229074 131096
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Figure 3.C.1: Probability plots for the backward link distributions (US patents) We
plot the probability plots for the backward link distributions for the four focus technologies, for
the geometric distribution G(ρ), the normal distribution N(µ, σ2) and the binomial distribution
B(n, p). The parameters ρ, µ, σ2 and p are optimized to obtain the best fit.
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technology. Only for the lower path length values of combustion engines this dis-
tribution deviates slightly more than the other distributions, yet overall it presents
still the best fit. Note that the quality of fits provided by the geometric distributions
in Figure 3.C.1 and the distribution from Equation 3.9 in Figure 3.C.2 (both single
parameter distributions) is quite remarkable, especially in comparison to the normal
distribution, which allows us to fit two parameters instead.

3.D Examiner versus applicant citations

In most patent offices, a citation can be introduced both by the applicant and the
patent examiner. The citations added by the applicant are often perceived to be
as the better indicator for knowledge flows (Criscuolo & Verspagen, 2008; A. Jaffe
et al., 2000), yet the difference between the types of citation is/was not always
recorded for each patents office, not the least being USPTO before the year 2000.
This research therefore uses a general citation instead to represent a knowledge flow.
As a justification for this choice we investigate in this appendix (when possible)
the similarity between the knowledge dynamics based on applicant citations ("type
APP") to the overall dynamics.

In line with (Azagra-Caro & Tur, 2018; Criscuolo & Verspagen, 2008), we de-
termine for the European patents the type APP citations as those with Patstat’s
citn_categ=’D’. For the US patents the type APP citations are selected as those

wind turbines.
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Figure 3.C.2: Probability Plots for the path length distributions (US patents) We plot the
probability plots for the path length distributions for the four focus technologies, for the Poisson
distribution P (η), the normal distribution N(µ, σ2) and the binomial type of distribution B(n′)
from Equation 3.9, (where the values of n′ correspond to those in in Figure 3.5.5). The parameters
η, µ, σ2 and are optimized to obtain the best fit. Each distributions is plotted for n = 3000, except
for wind turbines n = 2000.
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Figure 3.D.1: Type APP id for US patents
We plot the ’normal’ id and the id based on type
applicant citations (type APP) for the earliest
filing year. Both develop largely similar, which
is also reflected by the relatively high correlation
coefficients R2
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Figure 3.D.2: Type APP id for EP patents
Similar to Figure 3.D.1 but then for EP
patents. Contrary to the US data, the distinc-
tion between applicant and examiner citations
is recorded for the European data for the entire
period of operation of the EPO.

with Patstat’s citn_origin=’APP’.14 As mentioned earlier, for the US patents we
only include data from about 2000 onward, as only after 2000 the distinction was
made between examiner and applicant citations by USPTO (EPO, n.d.). In Figures
3.D.2 and 3.D.1 we plot the internal dependence based on Type APP citations both
for the US and EP patents for different years. We observe that both dependences
develop rather similarly over time, which is confirmed by the high correlation coef-
ficients R2 for each technology. The type APP id’s are consistently a fraction lower
as the citations added by the application are a subset of the total citations. Where
for the EP patents the type APP citations are about a quarter of the total citations,
for the US patents it is about a half. For both cases however the fraction varies
somewhat per technology. We therefore systematically compare both id’s for the
entire set of 24 technologies in Figure 3.D.3. While a power law provides the best
fit (as illustrated in 3.D.3), the relation is also rather well fitted by a simple linear
relation. Regardless of the exact form, both id’s are rather closely (and positively)
related across technologies. As the id is closely related to the internal path length,
this suggests that we can draw a similar conclusion for the latter indicator.

In conclusion, while there is no guarantee that both types of citation result
in similar knowledge dynamics, these results suggest that the knowledge dynamics
based on type app citations are closely (and positively) related to the knowledge
dynamics based on general citations.

3.E Mathematical appendix

In this appendix we explain the number of mathematical derivations appear in Sec-
tion 3.4.3 in more detail. We start by explaining how the assumption that n0 = rn is
compatible with the geometric distribution found for the number of backward links
in Section 3.4.2 if q is small compared to m0. Using that the probability to obtain

14We supplemented the 2019 Patstat dataset with the 2018 Patstat dataset, which contains a
more complete recording of the citn_categ ’D’.
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Figure 3.D.3: Id versus id type APP for 24 technologies In the left panel we compare the two
id’s for the US patents and on the right for European patents. Note that both axes are logarithmic,
hence the fitted line is a power law.
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an initial node is Pn(m = 0) = 1
qn+m1

, we note that the expected number of initial
nodes 〈n0〉 after n inventions is

n∑
n′=1

Pn′(m = 0) =
1

q
H(n+

m1

q
)− 1

q
H(

m1

q
) (3.12)

≈ 1

q
log(n+

m1

q
)− 1

q
log(

m1

q
) (3.13)

≈ 1

q
log(1 +

qn

m1

), (3.14)

where we approximated the harmonic numbers H(n) by logarithms. When qn
m1

is
small, i.e. when q << m1, we can approximate the last expression as 〈n0〉 ≈ n

m1
.

This suggests that, for q << m1 we can approximate the coefficient r ≈ 1
m1

= 1
m0+1

.
Next we discuss the steps leading to Equation 3.4,3.5,3.6 and 3.10. To see that

the expression in Equation 3.4 satisfies Equation 3.3, first note that
(
n
k

)
= 0 for

k > n and that r
(
n
1

)
= rn, as the initial conditions require. Then, start from the

recursive property of the binomial coefficient
(
n+1
k+1

)
−
(
n
k+1

)
=
(
n
k

)
and multiply left

and right by rqk. We then obtain

rqk
(
n+ 1

k + 1

)
− rqk

(
n

k + 1

)
= rqqk−1

(
n

k

)
(3.15)

fk(n+ 1)− fk(n) = qfk−1(n), (3.16)

which is Equation 3.3. To sum fk(n) from k to n (we need not sum further as all
fk(n) = 0 for k > n), we can use the binomial theorem

∑n
k=0

(
n
k

)
xkyn−k = (x+ y)n,

which counts for any real (or complex) number x and y. Taking x = q and y = 1
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we get

n∑
k=0

(
n

k

)
qk = (q + 1)n (3.17)

n∑
k=1

(
n

k

)
qk = (q + 1)n − 1 (3.18)

r
n∑
k=0

(
n

k + 1

)
qk+1 = r(q + 1)n − r (3.19)

n∑
k=0

fk(n) =
r(q + 1)n − r

q
. (3.20)

To obtain the expression in Equation 3.5 we divide Equation 3.4 by the right-
hand side of Equation 3.20. To obtain Equation 3.6, we have to calculate 〈k〉 =∑n

k=0 kf̃k(n). We first calculate
∑n

k=0 kfk(n) = r
∑n

k=0 k
(
n
k+1

)
qk instead. Note that

this is exactly the expression we get if we differentiate r
∑n

k=0

(
n
k+1

)
qk, i.e. the

left-hand side of Equation 3.20, with respect to q and then multiply once by q.
Equivalently, we do this to the right-hand side of Equation 3.20, obtaining

n∑
k=0

kfk(n) = q
∂

∂q

r(q + 1)n − r
q

= r

(
n(1 + q)n−1 − (1 + q)n − 1

q

)
. (3.21)

To obtain
∑n

k=0 kf̃k(n) from
∑n

k=0 kfk(n), we divide simply by the total number of
paths (the right-hand side of Equation 3.20),

n∑
k=0

kf̃k(n) =
qn(1 + q)n−1

(1 + q)n − 1
− 1 (3.22)

=
nq

q + 1
· 1

1− (1 + q)−n
− 1. (3.23)

For large n, this expression quickly goes to nq
q+1
− 1. Hence we obtain Equation 3.6

for k0 = −1.
Finally, we note that solving the expression f ′k+1(n′ + 1) − f ′k+1(n) = f ′k(n

′)
goes completely analogous, (where f → f ′ and n → n′), except that there is no
coefficient q (or the coefficient is ’1’). Equivalently, therefore, we redo the approach
in this appendix and do the substitutions f → f ′, n→ n′ and q → 1. Substitutions
in Equation 3.5 and 3.6 directly lead to respective Equations 3.9 and 3.10. Note
that the initial conditions change accordingly: (a) with a maximum speed v = 1/δn,
f ′k(n

′) = 0 for k > nv = n′ and (b) at n′ nodes we expect to have n′r initial nodes.

3.F Data scripts

To facilitate the reproducing of key findings and conclusions of our manuscript, and
to enable building upon our work, we below provide information on how our data
set was created. The provided T-SQL scripts are to be used in combination with
the Patstat patent database, which is available for licensing by the European Patent
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Office (EPO). While our paper used the Patstat 2018 and 2019 autumn release, the
scripts can be modified to be used with other Patstat releases.

The below overview includes the queries used to retrieve the relevant data sets.
The technologies were selected on two levels of classification, (A) the CPC group /
subgroup level and (B) the CPC class level (where some classes were aggregated).
For a table with the exact coding of these groups and classes, see Section 3.B.

3.F.1 Technology selection using CPC group/sub group level

The below query selects patents for defined technologies on the CPC group or sub-
group level (the provided example is for EP patents for the group “F16H 61”)

select distinct a.docdb_family_id,
MIN(a.earliest_filing_date) as earliest_date,
MIN(a.earliest_filing_year) as earliest_year
into F16H_61_EP
from Patstat2019b.dbo.tls201_appln as a
inner join Patstat2019b.dbo.tls224_appln_cpc as d
on a.appln_id=d.appln_id
where a.earliest_filing_year<2009
and a.granted=’Y’
and a.appln_auth=’EP’
and a.appln_kind=’A’
and d.cpc_class_symbol like ’F16H 61/%’
group by a.docdb_family_id
order by earliest_date

As discussed in the methodology section of the paper, an ‘EP patent’ in our study
implies a DOCDB family with at least one EP member. The internal citations for
EP patents are determined by considering the references in the EP members of a
technology X to other patents in X, the references thereby need not be to other EP
members per se. When there are multiple of such references between two families,
one reference is counted. The above is performed by the following query (the pro-
vided example is for EP patents group “F16H 61”).

select distinct a.docdb_family_id as cited_family,
b.docdb_family_id as citing_family,
min(a.earliest_filing_date) as earliest_date_cited,
min(b.earliest_filing_date) as earliest_date_citing
into F16H_61_EP_citations
from Patstat2019b.dbo.tls201_appln as a
inner join Patstat2019b.dbo.tls228_docdb_fam_citn as c
on a.docdb_family_id=c.cited_docdb_family_id
inner join Patstat2019b.dbo.tls201_appln as b
on c.docdb_family_id=b.docdb_family_id
inner join Patstat2019b.dbo.tls224_appln_cpc as d
on a.appln_id=d.appln_id
inner join Patstat2019b.dbo.tls224_appln_cpc as e
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on b.appln_id=e.appln_id
inner join Patstat2019b.dbo.tls211_pat_publn as f
on b.appln_id=f.appln_id
inner join Patstat2019b.dbo.tls212_citation as g
on f.pat_publn_id=g.pat_publn_id
inner join Patstat2019b.dbo.tls211_pat_publn as h
on h.pat_publn_id=g.cited_pat_publn_id
inner join Patstat2019b.dbo.tls201_appln as i
on h.appln_id=i.appln_id
where
i.docdb_family_id=c.cited_docdb_family_id
and a.earliest_filing_year<2009
and b.earliest_filing_year<2009
and a.granted=’Y’
and b.granted=’Y’
and a.appln_auth=’EP’
and b.appln_auth=’EP’
and a.appln_kind=’A’
and b.appln_kind=’A’
and e.cpc_class_symbol like ’F16H 61/%’
and d.cpc_class_symbol like ’F16H 61/%’
group by a.docdb_family_id, b.docdb_family_id
order by earliest_date_citing, earliest_date_cited

3.F.2 Technology selection using CPC class level

In order to select technologies on the CPC class level, the below query first creates
a list that assigns each DOCDB family to one or more CPC classes. The provided
example is for EP patents.

select distinct a.docdb_family_id,
MIN(a.earliest_filing_year) as earliest_year,
LEFT(d.cpc_class_symbol, 3) as cpc_class
into all_nod_EP_class
from Patstat2018b.dbo.tls201_appln as a
inner join Patstat2018b.dbo.tls224_appln_cpc as d
on a.appln_id=d.appln_id
where a.earliest_filing_year<2009
and a.granted=’Y’
and a.appln_auth=’EP’
and a.appln_kind=’A’
group by a.docdb_family_id
order by earliest_year

The resulting dataset can be used to count the number of internal citations for a
given class. The following query does so specifically for the combined class “Other,
vehicle related” (combination of CPC classes B60 and B62), for EP patents:
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select distinct count(distinct a.docdb_family_id) as int_references,
b2.docdb_family_id, b2.earliest_year
into OTH_VEH_EP
from all_nod_EP_class as a
inner join Patstat2019b.dbo.tls228_docdb_fam_citn as c
on a.docdb_family_id=c.cited_docdb_family_id
inner join Patstat2019b.dbo.tls201_appln as b
on c.docdb_family_id=b.docdb_family_id
inner join all_nod_EP_class as
on b.docdb_family_id=b2.docdb_family_id
inner join Patstat2019b.dbo.tls211_pat_publn as f
on b.appln_id=f.appln_id
inner join Patstat2019b.dbo.tls212_citation as g
on f.pat_publn_id=g.pat_publn_id
inner join Patstat2019b.dbo.tls211_pat_publn as h
on h.pat_publn_id=g.cited_pat_publn_id
inner join Patstat2019b.dbo.tls201_appln as i
on h.appln_id=i.appln_id
where
i.docdb_family_id=c.cited_docdb_family_id
and (a.cpc_group like ’B60%’
or a.cpc_group like ’B62%’)
and (b2.cpc_group like ’B60%’
or b2.cpc_group like ’B62%’)
group by b2.docdb_family_id,
b2.earliest_year,b2.cpc_group

3.F.3 Selecting applicant-added references

Finally, to identify all references added by the applicant, citations are selected with
citn_origin “APP” and/or those with citn_categ “D”. As noted in the supplemen-
tary material, we complemented the data from the Patstat 2019 edition with data
from the Patstat 2018 autumn edition, which was found to be more complete. In
the example below the citations are selected for the 2018 edition, specifically for EP
patents group “F16H 61”:

select distinct a2.docdb_family_id as cited_family,
a2.earliest_date as cited_earliest_date,
b2.docdb_family_id as citing_family,
b2.earliest_date as citing_earliest_date,
b2.earliest_year as citing_earliest_year
into F16H_61_EP_citations_type_app
from F16H_61_EP as a
inner join Patstat2018b.dbo.tls228_docdb_fam_citn as c
on a.docdb_family_id=c.cited_docdb_family_id
inner join Patstat2018b.dbo.tls201_appln as b
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on c.docdb_family_id=b.docdb_family_id
inner join F16H_61_EP as b2
on b.docdb_family_id=b2.docdb_family_id
inner join Patstat2018b.dbo.tls211_pat_publn as f
on b.appln_id=f.appln_id
inner join Patstat2018b.dbo.tls212_citation as g1
on f.pat_publn_id=g1.pat_publn_id
inner join Patstat2018b.dbo.tls211_pat_publn as h
on h.pat_publn_id=g1.cited_pat_publn_id
inner join Patstat2018b.dbo.tls201_appln as i
on h.appln_id=i.appln_id
inner join Patstat2018b.dbo.tls211_pat_publn as f2
on b.appln_id=f2.appln_id
inner join Patstat2018b.dbo.tls212_citation as g2
on f2.pat_publn_id=g2.pat_publn_id
inner join Patstat2018b.dbo.tls215_citn_categ as j
on j.pat_publn_id=g2.pat_publn_id
inner join Patstat2018b.dbo.tls211_pat_publn as h2
on h2.pat_publn_id=g2.cited_pat_publn_id
inner join Patstat2018b.dbo.tls201_appln as i2
on h2.appln_id=i2.appln_id
where
and b2.earliest_filing_year<2009
and b.appln_auth=’EP’
and ((g1.citn_origin=’APP’ AND
i.docdb_family_id=c.cited_docdb_family_id) or
(i2.docdb_family_id=c.cited_docdb_family_id AND
j.citn_id=g2.citn_id AND j.citn_categ like ’%D%’))
group by b2.docdb_family_id,
b2.earliest_date,a.docdb_family_id,
a.earliest_date,b2.earliest_year
order by b2.earliest_date, a.earliest_date
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Chapter 4

Cumulative structure and path
length in knowledge networks

Peter Persoon This chapter is currently being prepared for submission to a journal

Abstract

An important knowledge dimension of science and technology is the extent
to which their development is cumulative, that is, the extent to which later
findings build on earlier ones. Knowledge structures can be studied using a
network approach in which nodes represent findings and links represent knowl-
edge flows. This network approach allows us to use the notion of network paths
and path length to study cumulative knowledge structures. Starting from the
Price model of network growth, we derive an exact solution for the path length
distribution of all unique paths from a given initial node to each node in the
network. We study the relative importance of the average in-degree and cu-
mulative advantage effect and implement a generalization where the in-degree
depends on the number of nodes. The cumulative advantage effect is found to
fundamentally slow down path length growth. As the collection of all unique
paths may contain many redundancies, we additionally consider the subset of
the longest paths to each node in the network. As this case is more compli-
cated, we only approximate the longest path length distribution in a simple
context. Where the number of all unique paths of a given length grows un-
bounded, the number of longest paths of a given length converges to a finite
limit, which depends exponentially on the given path length. Fundamental
network properties and dynamics therefore characteristically shape cumula-
tive structures in those networks, and should therefore be taken into account
when studying those structures.

87



Chapter 4 Section 4.1

4.1 Introduction

Science and technology advance when scientists and inventors learn from earlier
findings and use this knowledge to create new findings. A key element of theories of
knowledge development is therefore the cumulative nature of discovery and inven-
tion (Basalla, 1989; Dean et al., 2014; Freeman & Soete, 1997; Trajtenberg et al.,
1997), i.e. the building of new knowledge on earlier knowledge. A better under-
standing of this phenomenon may provide insight into what knowledge development
needs to flourish, and how knowledge structures can be built robustly (Albert &
Barabasi, 2002; Albert et al., 2000). Furthermore, a general understanding of cu-
mulative knowledge structures can provide a framework to study how different fields
or disciplines of knowledge vary in this dimension, which may help explain variations
found across these fields in other knowledge dimensions. In the specific context of
technological knowledge, for example, the ’cumulativeness of knowledge’ is conjec-
tured to closely relate to the appropriability of that knowledge, as well as to the
difficulty by which knowledge travels geographically (Breschi et al., 2000; Malerba &
Orsenigo, 1996; Nelson & Winter, 1982). Understanding how cumulative structures
develop is therefore not only relevant from a theoretical perspective, but of great
importance as well to targeted science and technology policies aiming to strengthen
the development of particular fields.

Approaches to cumulative knowledge structures that aim for a quantitative de-
scription may benefit from a network perspective on knowledge. In this perspective,
nodes represent findings (which can be any element of knowledge, but usually a
scientific finding or an invention) and links represent knowledge connections (indi-
cating that a finding builds on another finding, i.e. knowledge flow in the system).
While this may sound abstract, this perspective can, given some limitations1, be
approached empirically using data about publications and citations (Garfield, 1979;
Price, 1965b; Trajtenberg, 1990). Many contributions studying knowledge networks
in this fashion use - or are variations on - a model introduced by Price (Price, 1976).
In this model, nodes are more likely to connect to nodes that already have a large
number of knowledge connections, referred to by Price as the ’cumulative advantage
effect’2 also known as, in the context of un-directed links, ’preferential attachment’
(Barabasi & Albert, 1999). In many applications of the Price model, the focus is on
degree distributions, which describe how outgoing or incoming links are distributed
over nodes (Barabasi & Albert, 1999; Steinbock et al., 2019; D. Wang et al., 2013).
While these distributions to an important extent determine network structures, they
are mainly revealing for the variation in the relative importance of nodes, and per-
haps less useful to study to what extent there is knowledge flow in such networks.
Yet these knowledge flows are an essential element of cumulative structures, in which
findings build on findings, which build on other findings, etc. It may therefore be
more useful to focus instead on the extent to which sequences of findings appear,
which are defined naturally by the well-studied notions of network paths and path

1For example, not all citations may represent knowledge flow. While acknowledging these
limitations, we will not go into that discussion here. For an overview in the context of scientific
citations see (Bar-Ilan & Halevi, 2017; Catalini et al., 2015) or patent citations see (Alcácer &
Gittelman, 2006; Duguet & MacGarvie, 2005)

2The term ’cumulative’ in this expression, coined by Price, simply means ’added up’, and differs
from earlier used meaning in ’cumulative knowledge structures’, where it suggest the characteristic
aspect of knowledge building on knowledge
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length (Katzav et al., 2015; Newman, 2010; Watts & Strogatz, 1998). Yet, where
most studies of network paths focus on distance metrics based on considering the
shortest paths in the network (Caravenna et al., 2019; Dereich et al., 2012, 2017;
Dommers et al., 2010), that choice is not at all obvious for knowledge networks. The
shortest paths could be misleading in the context of cumulative structures, where
one might want to take into account all necessary intermediate steps of development
(Evans et al., 2020; Hu et al., 2011; Martinelli & Nomaler, 2014), which may not be
included in the shortest paths.

As an alternative, one might therefore consider metrics based on the longest
paths instead (see Figure 4.1.1), the length of which necessarily represents the max-
imum number of intermediate developmental steps. Yet, if we limit the analysis to
the longest (or shortest) path between two findings, we ignore that there may be
more paths between these findings, which may describe equally relevant sequences
of developmental steps. Indeed a key element of invention and discovery is exactly
the combination (or sometimes ’recombination’) of different ideas (Arthur, 2009;
Kaplan & Vakili, 2015; Strumsky & Lobo, 2015), which may be drawn from differ-
ent sequences of development. To account for these, we may as another alternative
consider metrics based on all unique paths (for an illustration see Figure 4.1.1), for
example, the average length of these paths. A downside of considering all paths is
that, especially when the average degree is large, there may be many paths between
two findings, and not all of these may represent distinct knowledge flows leading to
distinct recombined ideas. For example, when two paths leading to a finding largely
overlap, the content conveyed in the knowledge flow they represent may largely be
the same, and considering them separately is largely a redundant effort. As both
alternatives therefore have advantages as well as disadvantages, it may be useful to
consider both of them to study cumulative structures.

a b

Figure 4.1.1: Types of paths Be-
tween node a and b we can dis-
tinguish between the shortest path
(dashed links), the longest path
(fat links) and all unique paths
(the paths formed by dashed, fat
or thin links or any combination
thereof).

It is however not immediately clear how, in the
context of knowledge networks, the metrics based
on shortest paths can be generalized for the longest
paths or all unique paths. Starting from the Price
model, Evans et al. make an important contribution,
deriving a lower bound for the length of the longest
path in a network (Evans et al., 2020). While this is
insightful about the longest stretch of knowledge flow
in a network, as we argued earlier, there are usually
many more paths in a network, some of them rep-
resenting equally interesting sequences of findings.
The longest path with length l might be exceptional,
begging the question of how many paths there are of
length l − 1, l − 2 etc, i.e. how the number of paths
is distributed over various lengths.

A detailed understanding of the path length dis-
tributions in knowledge networks allows us to form

well-founded expectations of the typical stretch of knowledge flows in cumulative
structures and is therefore key to interpret variation in these structures across dif-
ferent scientific disciplines or technologies. In this contribution, we therefore explore
the typical path length distributions we might encounter in knowledge networks, and
how we can use these to calculate metrics such as the expected path length. We
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will in a first way of counting network paths consider the distribution of all unique
paths coming from a given initial node (see Section 4.2). Following the Price model,
we thereby investigate the role of the cumulative advantage effect. Motivated by
recent results which indicate that the average degree, which is usually kept constant,
may in fact steadily increase with the number of nodes in a knowledge network (P.
Persoon et al., 2021), we consider a generalization of the model allowing for this
increase. In a second way of counting paths (see Section 4.3), we focus on a subset
of all unique paths, by selecting only the longest paths from the initial node to each
node in the network. As deriving an exact solution for this distribution is chal-
lenging, we will approximate it instead, thereby ignoring the cumulative advantage
effect. Though simplified, this allows us to derive the main characteristics of the
distribution, approximate the expected longest path length and compare it to the
case of all unique paths.

4.2 All unique paths in the Price model

For each discrete step in time n, the Price model generates a directed acyclic graph
G(n) consisting of N nodes and M links (Price, 1976). Starting from some initial
acyclic graph G(1), at each step in time, a new node is added to the network,
which is connected with incoming links to an average of 〈m〉 existing nodes in the
network. The number of incoming links of a node l in G(n), i.e. its in-degree,
therefore does not change as n increases, yet the number of outgoing links of l, i.e.
its out-degree, is however expected to gradually increase with n. In the context of
knowledge networks, the incoming links of a node l represent the set of knowledge
connections appearing at once when l is introduced (i.e. published, patented), hence
l can be interpreted to ’build on’ the set of nodes to which it is connected by the
incoming links. Reversely, the set of nodes to which l is connected by its outgoing
links can be interpreted to build on l. Note this implies that the links, (and thus
the paths), are in the direction of knowledge flow, which is a convention in line with
Evans, yet opposite to a number of others (Newman, 2010; Steinbock et al., 2019;
Vazquez, 2001). In most applications of the Price model, it is assumed that the
average in-degree M/N = 〈m〉 is approximately constant as the network grows.

In this contribution, our initial graph G(1) consists of a single ’initial node’ 1 and
we number the subsequent nodes by the order of appearance: 2, 3, ..., n, hence at any
time, N = n. While this choice for an initial graph allows for a simple description
of the growth process, it also introduces two subtleties. First, for n = 1 there
are no other nodes to connect to, so insisting that 〈m〉 > 0 at that point appears
problematic. As an exception, we will allow this node (and only this node) to connect
to itself. Second, especially when n is small and 〈m〉 is large, new nodes may not
have enough distinct nodes to connect to. Therefore, we allow multiple linkages to
the same node, which should occur more rarely when the network becomes larger.
We refer to Evans (Evans et al., 2020) for a more elaborate discussion of these
subtleties.

In the Price model, the probability Π(n, l) for a new node n+ 1 to connect to an
existing node l consists of two parts: (i) a part which is non-zero and equal for all
nodes, and (ii) a part which is proportional to the out-degree h(l, n) of l. Introducing
the constant c ≥ 0 which represents the strength of effect (ii) in proportion to effect
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(i)3, we can thus write

Π(l, n) =
1 + ch(l, n)∑n
t 1 + ch(t, n)

=
1 + ch(l, n)

n+ c〈m〉n
, (4.1)

hence note that when c = 0, the ’cumulative advantage effect’ is switched off, and
we are left with the neutral case where new nodes link equally likely to any node in
G(n). For simplicity we will in this work only consider the paths in G(n) starting
from the initial node (in the Section 4.5 we discuss some generalizations of this
choice), so when we mention in the following ’a path to node l’ we mean a unique
path from the initial node to node l. The number of paths fk(n) are likewise defined
as the total number of unique paths of length k in G(n) starting from the initial
node. We assume there is a single path of length zero from the initial node to itself,
i.e. f0 = 1 for all n, though this largely a matter of convention. We will derive an
expression for the expected value 〈fk(n)〉, yet for brevity we drop the 〈〉 notation,
also for 〈m〉. Let qk(l) be the number of paths to node l with length k, hence when
a new node connects to l, there are qk(l) new paths of length k + 1. The expected
increase in the number of paths of length k + 1 is therefore

∆nfk+1(n) = m
n∑
l=1

qk(l)Π(l, n) = m
n∑
l=1

qk(l) + cqk(l)h(l, n)

(1 + cm)n
. (4.2)

We note that each of the qk(n) paths going through l extend into qk(n)h(l, n) paths
of length k+ 1, therefore

∑
l h(l, n)qk(n) = fk+1(n) and using that

∑
l qk(l) = fk(n),

we obtain

∆nfk+1(n) = m
fk(n) + cfk+1(n)

(1 + cm)n
. (4.3)

Additionally, we have the initial condition that fk(1) = 0 for all k > 0 as there are
no paths of length k > 0 when n = 1. Before we discuss the general solution, let us
focus briefly on the simple neutral case where we exclude the cumulative advantage
effect.

4.2.1 Excluding the cumulative advantage effect

Excluding the cumulative advantage effect amounts to setting c = 0. Equation 4.3
then becomes ∆nfk+1(n) = mfk(n)/n. Noting that f0 = 1, this basic relation is
directly solved by

fk(n) =
mk

Γ(n)
S(n, k + 1) (4.4)

where Γ(n) is the gamma function and S(n, k) is the n, kth unsigned Stirling number
of the first kind. The latter appear as coefficients in the rising factorial of a real
number x to height n, defined in mathematics as

xn = x(x+ 1)...(x+ n− 1) =
n∑
k=0

S(n, k)xk. (4.5)

3We note that in the original model of Price, c = 1 and in the approach by Evans, the parameter
p = cm/(1 + cm) is instead introduced.
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Stirling numbers can be expressed in terms of harmonic numbers and general-
ized harmonic numbers (Adamchik, 1997), for example allowing us to write for
f1(n) = mH(n − 1), where H(n) is the nth harmonic number. When n gets large,
the leading term of S(n, k+1)/Γ(n) is approximately log(n)k/Γ(k+1) (Wilf, 1993).
For large n, the number of paths of length k can for large n therefore be approxi-
mated as mk log(n)k/Γ(k+1), which we can recognize as a (not normalized) Poisson
distribution of the variable k.

Using Equation 4.5 we can derive the expected total number of paths K(n) =∑
k fk(n), to equal

K(n) =
Γ(m+ n)

Γ(n)Γ(m+ 1)
(4.6)

This expression increases approximately as nm. To obtain the expected path length
`(n) =

∑
k kfk(n)/K(n) note that we can differentiate K(n) with respect to m and

multiply by m/K(n), resulting in

`(n) = mψ(m+ n)−mψ(m+ 1), (4.7)

where ψ(m + n) is the digamma function, which increases logarithmically in n.
We conclude therefore that the expected path length of all unique paths increases
logarithmically with the number of nodes n, along with a coefficient m. To be able
to compare this relation to later cases we can denote it more generally as

`(n) ≈ dm log(n) + `1, (4.8)

where the coefficient dm is some constant depending on m and `1 is another constant
we are less interested in. For the case where there is no cumulative advantage effect
we therefore have dm = m.

4.2.2 Including the cumulative advantage effect

For general values of c the analysis becomes slightly more complicated. Going back
to Equation 4.3, let us start by writing down the general solution (we refer to the
supplementary material for a detailed derivation):

fk(n) =
1

Γ(n)(−c)k
n∑

t=k+1

(t− k)Sp(n, t)(−p)t−1. (4.9)

where p = cm/(1+cm) and Sy(n, t) is the n, tth non-central unsigned Stirling number
of the first kind (Koutras, 1982; M. D. Schmidt, n.d.), which are defined for any
real y by a slight variation of Equation 4.5, namely xn =

∑n
k=0 Sy(n, k)(x− y)k and

in particular S0(n, k) = S(n, k). Note that for c → 0, we have p → 0, p/c → m
and the only member in the sum of Equation 4.9 not going to zero is the first term
(p/c)kSp(n, k + 1)→ mkS(n, k + 1), thus retrieving the solution for c = 0. We plot
the distribution, for a number of values of m and c, in Figure 4.2.1 (left two panels),
including the case c = 0. We observe the distributions for greater c are more skewed
towards lower path length values, it appears therefore that the cumulative advantage
effect tempers the path length growth. Specifically considering

f1(n) =
1

c

( Γ(p+ n)

Γ(p+ 1)Γ(n)
− 1
)
, (4.10)
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we see that f1(n) is initially smaller than mH(n− 1) (i.e. the value for f1(n) when
c = 0), yet for a given n, it will overtake mH(n − 1) and subsequently grow much
larger. Where in the limit of large n, mH(n − 1) increases logarithmically, the
expression in Equation 4.10 increases as np. We can show that the fk(n) for k > 1
show similar behavior. This leads us to the conclusion that, up to a given length k,
there are many more paths when there is a cumulative advantage effect, yet beyond
that length k, there are actually fewer paths (compared to the c = 0 case). In
other the words, there tend to be more shorter paths when there is a cumulative
advantage effect. Finally, in the supplementary material we show that the leading
order of fk(n) for large n can be approximated as

fk(n) ≈
(p
c

)k Γ(n+ p)

pΓ(1 + p)Γ(n)Γ(k)
log
(n+ p

1 + p

)k−1

, (4.11)

which, up to a factor depending on n, we may again recognize as a (not normalized)
Poisson distribution of the variable k.

Again summing fk(n) over all k, we obtain for the total number of paths

K(n) =
Γ(mc + n)

(1 + c)Γ(n)Γ(mc + 1)
+

c

1 + c
, (4.12)

where mc = m(1 + c)/(1 + cm). For large n we can conclude this expression grows
approximately as nmc . Note that mc < m for m > 1, hence the power of n by which
the number of paths increase is here smaller than the one derived in the c = 0 case.
In line with the observations with Figure 4.2.1, the cumulative advantage effect thus
slows down the growth of the number of paths form > 1. However, when 0 < m < 1,
mc is actually larger than m, hence, in that case, the cumulative advantage effect
somewhat accelerates the growth of the number of paths. This effect, apart from
the fact that m < 1 may be rather uncommon in knowledge networks, is however
limited: rewritingmc as 1− 1−m

1+cm
, we see that, given 0 < m < 1, it will still always be

smaller than 1 for any c. Therefore, we conclude that m alone determines whether
the number of paths increases faster than linear or not. We can divide fk(n) byK(n)
to obtain the normalized path length distributions, which we depict for a number
of values in Figure 4.2.1 (right two panels). In line with the observations for the
not-normalized distribution, these plots indicate that the shorter paths are more
probable for lower m and greater c.

To obtain the expected path length `(n), we show in the supplementary material
how K(n) can with a minor adaptation be approached as a generating function,
which allows us to straightforwardly calculate `(n) =

∑
k kfk(n)/K(n), resulting in

`(n) =
1 + c+mcψ(mc + n)−mcψ(mc + 1)

cr(n) + 1 + c
− 1

1 + c
(4.13)

where r(n) = (K(n)− c/(c+ 1))−1. In the limit of large n, r(n)→ 0. We can then
approximate

`(n) ≈ mcψ(mc + n)−mcψ(mc + 1) + c

1 + c
. (4.14)
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Figure 4.2.1: Distribution of path lengths In the left two
panels we plot the distribution of the number of paths for
various values of m and c, in the right two panels we plot
the same distributions but then normalized for the number
of paths. Unless otherwise specified, n = 80, m = 1.5 and
c = 0.5. We observe that there are less paths for lower m
and greater c and that the distributions are more skewed to
lower path length values for lower m and greater c.

This again shows that the
expected path length increases
logarithmically in n. The only
difference with the c = 0 case is
that the coefficient of ψ(mc +
n), i.e. dm, is here mc/(1 +
c) instead of m. Noting that
mc/(1 + c) = m/(1 + cm) <
m for any m > 0, we con-
clude that, compared to the c =
0 case, the cumulative advan-
tage effect slows down the de-
velopment of the expected path
length by a factor proportional
to c. Furthermore, the cumu-
lative advantage effect puts an
upper limit on dm of value 1/c
(which is reached only for very
large in-degree). This upper
limit is therefore lower when the cumulative advantage effect is greater. Note that
the upper limit on dm disappears only when c = 0.

4.2.3 Generalization for increasing in-degree

Finally we discuss an extension of the model where we allow the in-degree µ(n) of
node n to depend on n, i.e. considering a number of expressions for µ(n). Equation
4.2 then becomes

∆nfk+1(n) = µ(n)
fk(n) + cfk+1(n)

n+ c
∑n

l=1 µ(l)
. (4.15)

When we take µ(n) to be any linear combination of integer or non-integer powers
of n, which is finite and positive for all n and in which the largest power of n has
an exponent α > 0, then in the limit of large n, Equation 4.15 reduces to

∆nfk+1(n) ≈ (1 + α)
fk(n) + cfk+1(n)

cn
. (4.16)

This equation is similar to Equation 4.3 if we make the substitution (1 + α)/c =
m/(1 + mc). For large n, we therefore have the same dynamics as in earlier model
with m = −α+1

cα
(where c 6= 0). This substitution may at first seem odd, as when m

was interpreted as the average in-degree, it was restricted to positive values. This
assumption was used mainly to interpret the results however, and we see that as
long as mc > 0, the derivation leads to the same equations for negative m. In
fact we obtain perfectly acceptable results when, using m = −α+1

cα
, we note that

the parameter p (appearing in Equation 4.9) becomes α + 1 and mc, (appearing in
Equation 4.12) becomes (α + 1)(1 + c)/c. Recalling that mc is the power of n by
which the total number of paths increase, we thus conclude that the smaller the
cumulative advantage effect, the stronger the number of paths increase, but at least
by a power α + 1. For the expected path length we similarly conclude that the
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coefficient dm = mc/(1 + c) appearing in Equation 4.14 becomes (α + 1)/c. We
therefore conclude the expected path length still increases logarithmically in n, yet
with a coefficient dm which is (a) proportional to the largest power of n appearing
in µ(n) and (b) inversely proportional to the strength of the cumulative advantage
effect.

In the above generalization the assumption that c 6= 0 is rather crucial. As is
shown in detail in (P. Persoon et al., 2021), the situation becomes rather different
with c = 0 and µ(n) ∝ n. The number of paths then increases exponentially in n
and the expected path length increases linearly in n.4 It can be demonstrated that
when µ(n) grows faster than linear in n for c = 0, the number of paths increases even
faster than exponentially, and likewise the expected path length increases even faster
than linear in n. This suggests therefore that the cumulative advantage effect plays
a crucial role in keeping the number of paths a power of n and the expected path
length a logarithmic relation in n, thus fundamentally slowing down the path length
dynamics for the case that µ(n) increases with n. Only when µ(n) increases even
faster in n, namely exponentially, the sum appearing in the denominator of Equation
4.15 will be proportional to µ(n), thus leading for large n to the relation ∆nfk(n) ∝
fk(n) + cfk+1(n), which can be demonstrated to result in expected path length
growth linear in n. We conclude that, in order to break through the ’logarithmic
barrier’ imposed by the cumulative advantage effect, the in-degrees need to grow at
least exponentially with the number of nodes.

4.3 Sub-selecting the longest paths

In Section 4.2 we derived that, when the average in-degree is larger than 1, the
number of paths in the network increases rather fast. In the context of knowledge
networks, not all of these paths may represent relevant knowledge flows, and there
will be many redundancies when each unique path is considered separately. It may
therefore make sense to focus instead for each node l on the longest path from the
initial node to l. We will call these paths in the following ’longest paths’, yet they
should not be confused with the single, unique longest path in the whole network,
which is the subject of work by Evans (Evans et al., 2020).

Note that the longest path from the initial node to a node l may not be unique.
In the following, we will however assume we just choose one longest path from the
initial node to each node in G(n) and we are interested in deriving an expression
for the number fk(n) of such longest paths of length k. As before we have f0 = 1 for
all n. For simplicity we will focus in this derivation on the c = 0 case and keep m
constant, we leave those generalizations for later work.

We start by noticing that, when a new node n+ 1 connects to a node l in G(n),
and there is a longest path from the initial node to node l of length k, we necessarily
obtain a longest path of length k + 1 from the initial node to node n+ 1. As there
are exactly fk(n) nodes to which the initial node has a longest path of length k, the
probability of obtaining a longest path of length k + 1 to node n + 1 using one of
the links in the in-degree of n+ 1 is fk(n)/n. The probability to create a path with

4The approach in (P. Persoon et al., 2021) is slightly different: in that contribution we count
each path to an increasing number of initial nodes. Yet it can be demonstrated (see supplementary
material) that this amounts to a simple change of initial conditions, the effect of which on the
number of paths and expected path length is negligible for large n.
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length k+ 1 or less using one the links in the in-degree of n+ 1 is thus
∑k

t=0 ft(n)/n.
Hence collectively considering all links in the in-degree of n + 1, the probability to
obtain a longest path of length k+ 1 is (

∑k
t=0 ft(n)/n)m− (

∑k−1
t=0 ft(n)/n)m, and the

expected increase ∆nfk+1(n) is

∆nfk+1(n) =
( k∑
t=0

ft(n)

n

)m
−
( k−1∑
t=0

ft(n)

n

)m
(4.17)

Introducing Hk(n) =
∑k

t=0 ft(n) i.e. the number of longest paths with length shorter
than k+1, and summing both the left and the right of Equation 4.17 over k, starting
from k = 0, we obtain

∆nHk+1(n) = n−mHk(n)m. (4.18)

It is not straightforward to obtain an exact solution to this equation, we can however
identify a number of characteristic properties and use these to derive a greater
estimate of fk(n). First, we rewrite Equation 4.18 as

Hk+1(n) = 1 +
n−1∑
s=1

Hk(s)
m

sm
(4.19)

From this form, knowing that H0(n) = 1 for all n, it is clear that for n → ∞ and
m > 1, we have H1(n) → ζ(m) + 1, where ζ(m) is the Riemann Zeta function.
The number of longest paths of at most length 1 hence does not grow unbounded,
but instead converges to some finite value. In turn we can use the fact that H1(n)
converges to show that H2(n) converges, etc., concluding that each Hk(n) ultimately
converges to some limit for n → ∞, which we will denote by H∞k . Likewise, the
fk(n) will converge to f∞k = H∞k − H∞k−1. A main question about the distribution
is therefore: how does H∞k depend on k? In the following we analyze this relation
in more detail by simplifying the dependence of Hk(n) on n. More precisely, in
the next section we discuss a zeroth order approximation in n of Hk(n) and in the
section that follows a first order approximation in n.

4.3.1 Zeroth order approximation

We will investigate the dependence of H∞k on k by maximally simplifying the de-
pendence of Hk(n) on n. We start by noting that, since Hk(n) counts the number
of longest paths of length k or less, we have that Hk(n) = n for n < k. For n < k
therefore, Hk(n) increases linear with 1 path per added node. At the same time,
we see from Equation 4.18 that, for n > k, ∆nHk(n) monotonously decreases to
zero, hence Hk(n) slowly but gradually comes closer to H∞k . We can roughly ap-
proximate this development by assuming Hk(n) continues to grow linear in n until
it reaches H∞k at n = H∞k , after which it no longer increases and takes the constant
value H∞k . As there is no real dependence on n in this approximation, we will refer
to this as a zeroth order approximation in n. As Hk(n) in fact already starts to
be slightly smaller than n for n > k, we note that our approximation is generally
equal or greater than the actual value, hence resulting in an overestimation of H∞k .
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Equation 4.19 in this approximation becomes

H∞k+1 ≈ 1 +

H∞k∑
n=1

1 +
∞∑

n=H∞k

H∞mk

nm
(4.20)

≈ 1 +H∞k +H∞mk

(H∞(1−m)
k

m− 1
+O(H∞−mk )

)
. (4.21)

From this last expression we see that H∞k+1 ≈ 1 +H∞k
m
m−1

, hence H∞k ∝ ( m
m−1

)k. We
therefore conclude that the upper bounds of the number of longest paths of length
k depend exponentially on k, and a first approximation for the base of the exponent
is β0 = m

m−1
. This base approaches 1 for larger values of m with a rate 1/(m − 1).

The upper bounds of fk(n) therefore increase more slowly in k when the average in-
degrees are larger. This makes sense, as with larger in-degrees, the creation of longer
paths is more likely, hence resulting in relatively less longest paths with short length.
As will turn out later however, this approximation to the exponential base could use
some improvement. We will lay out the main steps to arrive at this improvement,
for the details we refer to the supplementary material.

4.3.2 First order approximation

In Equation 4.20 we approximate Hk(n) by a linear and a constant part. This
translates to an fk(n) which is zero for n < H∞k , and then abruptly fk(n) = f∞k for
n ≥ H∞k , hence there is no real dynamic dependence on n in that approximation. As
an improvement, we could therefore include the first order of n in our approximation
for Hk(n). As Hk(n) = n for n < k let us suppose, as before, that Hk(n) = n up
to some nk which we specify later. This allows us to split the sum in Equation 4.19
in a part for 1 ≤ n < nk and a part for greater values of n ≥ nk, and we suppose
that nk is sufficiently large such that the latter sum can be well approximated by
an integral, leaving us with, for an n > nk

Hk+1(n) = nk +

∫ n

nk

Hk(n)m

nm
dn. (4.22)

This relation is satisfied to first order in n for

Hk(n) =

{
n if n < nk

ak −
amk−1

(m−1)nm−1 if n ≥ nk
(4.23)

where it counts for the parameters ak that

ak+1 = nk +
am+1
k

(m+ 1)amk−1

− 1

(m+ 1)amk−1

(
ak −

amk−1

(m− 1)nm−1
k

)m+1

. (4.24)

Note therefore that for n→∞, we have Hk(n)→ ak and therefore ak = H∞k . Next
we specify nk. From Equation 4.18 we know that ∆nHk+1(n) = 1 for n < k and for
greater values of n it (slowly) decreases. While we would like to therefore choose
nk as close to k as possible, it should also satisfy ∆nHk+1(n) ≤ 1. If we take the
solution in Equation 4.23 for k + 1, differentiate with respect to n and substitute
nk, we obtain an expression for the slope of Hk+1(n) at n = nk, which is amk /nmk .
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The least value for nk we can thus choose while keeping the slope at nk smaller or
equal than 1 is nk = ak, which we shall henceforth implement. Note that this value
implies that slope of Hk+1(n) equals 1, thus ensuring a smooth transition between
the part n < nk and the part n ≥ nk. Similar to the zeroth order approximation, we
can show that this first order approximation to Hk(n) is generally equal or above
its actual value, and will therefore result in an overestimation of H∞k .

While obtaining an exact solution for the relation in Equation 4.24 after substi-
tuting nk = ak remains challenging, we note all the terms on the right-hand side of
the equation are of net order 1 in ak and/or ak−1, indicating that, at least for large
k, ak and thus H∞k increases exponentially in k. Let us suppose for large k we can
write ak−1β1 = ak, Equation 4.24 then reduces to

β1 = 1 +
βm1

m+ 1
− βm1
m+ 1

(
1− 1

(m− 1)βm1

)m+1

(4.25)

While this equation does not allow us to write β1 in terms of elementary functions
of m, expanding the part in brackets to second order in 1/βm gives

β1 ≈ 1 +
1

m− 1
− m

2(m− 1)2βm1
+ ... (4.26)

This shows that 1 < β1 < β0 for all m, thus confirming this approximation is an
improvement to the zeroth order approximation. Also, the last term on the right-
hand side is of net order 1/(m−1), which implies that the term of order 1/(m−1) in
the expansion of β1 cannot simply be taken to equal 1/(m−1) (as it is for β0). This
indicates that this first order approximation to Hk(n) is not just an improvement
in orders greater than 1/(m− 1). In the supplementary material it is demonstrated
how may use Equation 4.25 to derive the greater estimate

β1 = 1 +
e− e1− 1

e

m− 1
+
e−1− 1

e (1 + 3e+ 3e2)− 3e

2(m− 1)2
+ ... (4.27)

This therefore shows that, similar to β0, the exponential base β1 approaches 1 for
larger values of m, yet where β0 does so by a rate 1/(m − 1), β1 does so by a rate
which is an approximate factor e− e1− 1

e ≈ 0.84 smaller.

4.3.3 Expected path length

Theoretically, as long as we can find solutions for Hk(n) to second, third etc order
in n we can continue to derive better approximations β2,β3 etc for the exponential
base of H∞k . In this contribution we however stop here and instead derive what the
exponential dependence of H∞k implies for the expected path length. Even though
we only demonstrated that H∞k approaches a exponential function for larger values
of k, let us approximate ak ∝ βk1 for all k. Using the condition that for all n we have
a single path of length 0, thus H∞0 = f∞0 = 1, we can approximate

H∞k =
βk+1

1 − 1

β1 − 1
and f∞k = βk1 . (4.28)

Let us define kn as the largest k for which fk(n) is non-zero. As we require that the
sum fk(n) over all k to equal n, (as there is one longest path for each node), this
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allows us to write n =
∑kn

s=0 fs(n) = Hkn(n), or

n =
βkn+1

1 − 1

β1 − 1
−
(βkn1 − 1

β1 − 1

)m 1

(m− 1)nm−1
. (4.29)

When n gets large the second term on the right-hand side goes to zero (and note
this term is absent in the zeroth order approximation of Section 4.3.1). For both
the zeroth and first order approximation we can therefore deduce that, when n is
large kn ≈ log(n(β1−1)+1)

log(β1)
− 1, allowing us to compactly write for the distribution

fk(n) =

{
βk1 if k ≤ log(n(β1−1)+1)

log(β1)
− 1

0 if k > log(n(β1−1)+1)
log(β1)

− 1.

We can use this to calculate the expected longest path length `(n) =
∑

k kfk(n)/n.
For large n this expression can be shown to reduce to, up to constant terms,
`(n) ≈ kn. We therefore conclude that the expected longest path length increases
logarithmically in n, with a coefficient dm = log(β1)−1 (see also Equation 4.8), which
implies that a greater estimate of β1 results in a lower estimate of dm. Before we
consider the value of dm for β1 in more detail, let us first consider it for β0 instead.
We can for m > 2 approximate log(β0)−1 ≈ m− 1

2
. Recall that we derived the exact

value dm = m when we considered all unique paths in Section 4.2.1. While the value
for dm based on β0 is thus of the same proportion, the small shift of 1/2 in fact makes
it somewhat smaller. β0 Should therefore not be considered an accurate approxima-
tion: the longest paths are expected to be at least as long, yet probably longer on
average, than the collection of all unique paths. Hence let us finally approximate
dm based on β1. We thereby use the greater estimate for β1 from Equation 4.27.
This gives log(β1)−1 ≈ 1.2m − 0.6. Note that, up to a minor shift, this is a factor
1.2 greater than the dm found for all unique paths, which makes more sense than
results based on β0. It suggests that, regardless of the number of nodes and average
in-degree in the network, the longest paths are larger than the rest of the paths at
least by a fixed proportion. We derived a lower estimate for this of 1 : 1.2, yet with
an improved approximation of the exponent base β1 we are likely to find a greater
value for this proportion.

4.4 Conclusions

Studying cumulative structure in knowledge networks is key to understanding the
advancement of science and technology, and has besides theoretical implications also
relevance for science and technology policies. Approaching a body of knowledge as
a network of discrete findings connected through knowledge flows, the notion of
network paths and path length can be used to study to what extent sequences of
findings appear, which form a key element of cumulative knowledge structures. It
is in that context key to study (all) intermediate steps of development, hence not
to limit the analysis to the shortest paths. In this contribution, we have therefore
studied the path length distribution of (i) all unique paths from a given initial node
to each node in the network and (ii) the longest paths from the initial node to each
node in the network.

In the part of this work where we considered all unique paths, we derived an
exact solution for the path length distribution and expected path length in the
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particular context of the commonly used Price model. In this model, two main
properties play a role: the average in-degree (AID) and the ’Cumulative Advantage
Effect’ (CAE). We find that, for large networks, the path length distributions can be
characterized as Poisson-like, and are more skewed to lower path length values when
the AID is smaller and the CAE is stronger. Similarly, we find that the expected
path length grows logarithmically with the number of nodes and that the coefficient
of this growth is smaller when the AID is smaller and the CAE stronger. In fact,
the CAE puts an upper limit to this coefficient, and this upper limit is lower when
the CAE is stronger. The upper limit disappears when there is no CAE. These
results are more nuanced when the AID is less than 1 (which, though possible, may
be rather uncommon in knowledge networks). In that case, a stronger CAE may
slightly accelerate the growth of the number of paths, yet still has a tempering effect
on the path length growth.

These results may be generalized by allowing the AID to increase with the num-
ber of nodes in any power relation. As it turns out, the CAE then plays a crucial
role in keeping Poisson-like path length distributions and logarithmic expected path
length growth. Only when the AID increases very fast, to be precise exponentially
with the number of nodes, then we obtain binomial-like path length distributions
and linear path length growth. Without the CAE, these types of path length dis-
tribution and expected path length growth would already be obtained for an AID
that increases linearly with the number of nodes. The CAE therefore categorically
tempers path length growth.

In the part of this work where we consider only the longest paths from an initial
node to each node in the network, we only approximate the path length distribution
and expected path length, as deriving exact solutions is in this case analytically
more challenging. For simplicity, we also focus on the neutral case where the CAE
is absent. Notwithstanding our analysis indicates key differences with the case where
we consider all unique paths. Where for the latter, the number of paths of a given
length grows unbounded, the number of longest paths of a given length is bound
to an upper limit. Our approximation suggests that these upper limits increase
exponentially with associated lengths and that the base of this exponent is a number
slightly larger than 1, and approaches 1 for a greater AID. This makes sense as with
a greater AID, we obtain longer paths at a rather earlier stage of the network
development than for lower AID. While the distributions over the path lengths thus
appear to be rather different, the expected path length appears to develop in fact
rather similar. First-order estimates indicate that the expected path length of the
longest paths increases at least logarithmically with the number of nodes, with a
coefficient proportional to the AID, and an additional constant factor of at least
1.2. This is similar to the case of all unique paths without the CAE, except for
the constant factor of 1.2. This is however a first theoretical approximation of this
factor, and more elaborate approximations are likely to correct this to a greater
value.

To conclude, we have shown that fundamental network properties and dynamics
characteristically shape elements of knowledge networks that we can associate with
cumulative structures, such as the notion of path length. In particular, the (devel-
opment of the) AID and the strength of the CAE are relevant properties to consider
in this context, as they can be meaningfully interpreted to determine variations in
cumulative structures across different knowledge networks.
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4.5 Discussion

Finally, we discuss some deeper implications and shortcomings of our analysis. First,
our results have a number of deeper implications in particular for the study of cumu-
lative knowledge structures. While researchers aiming for a quantitative approach
benefit from a network approach to knowledge structures, they should be aware of
the various choices that network analysis allows to identify knowledge flow, in par-
ticular the differences between using the shortest, longest, or all unique paths in the
network. Where the average distance based on the length of the shortest paths in a
scale-free network (of which the Price network is a special case) is known to increase
with the log log number of nodes (R. Cohen & Havlin, 2003), we have shown that
the average path length based on the length of all unique paths from an initial node
to each node in a Price network increases with the log number of nodes. Further-
more, we have shown that there are fundamentally different properties of the path
length distributions of all unique paths and the subset of longest paths, even without
including sophisticated dynamic principles such as the cumulative advantage effect.

Additionally, before a certain path length metric is applied to study the cumu-
lative structure of a particular field of knowledge or discipline, the researcher is
advised to investigate a number of characteristics of the network, such as a possible
development of in-degree as the network grows as well as the presence of the cumula-
tive advantage effect. Our work indicates that the presence of either (and especially
the presence of both) greatly affects cumulative structures in those networks. Our
work allows the researcher to then formulate a number of specific expectations, espe-
cially for the path length distribution and expected path length of all unique paths.
Our contribution thus provides a first step towards a framework in which cumula-
tive structures can generally be studied and in which variations between fields or
disciplines can meaningfully be interpreted.

A second deeper implication of our results is of more theoretical nature. In
this contribution, we have shown that the cumulative advantage effect explicitly
prohibits path lengths to grow faster than logarithmically as long as the average
in-degree does not increase exponentially. In another contribution (P. Persoon et
al., 2021), where we include an empirical analysis of technological knowledge using
patent and patent citation data, we actually find that the average path length (based
on counting all unique paths) increases linearly, even though the in-degrees do not
increase exponentially (but linearly instead). This may imply that the cumulative
advantage effect plays no role in these networks, yet, interestingly, other contribu-
tions have suggested that the cumulative advantage effect does play a role in these
networks (Érdi et al., 2013; Valverde et al., 2007). Another explanation may be that
this differs per technology, or that there may be other effects at work, which were
not included in this analysis.

One of those excluded effects, which brings us to the first shortcoming of this
analysis, is the time dependence of knowledge dynamics. As other contributions have
indicated, these effects may play a rather substantial role (Garavaglia et al., 2017;
Golosovsky, 2017). Indeed one of the criticisms of the Price model is that the oldest
nodes in the networks effectively gain the greatest out-degree. In real-life situations,
the fact that a finding is old need not automatically imply it is more relevant than
any new finding. The model discussed in this work would therefore benefit from an
extension that takes into account time effects, such as the fading of relevance. While
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a number of such models can be found in the literature (Golosovsky, 2017; D. Wang
et al., 2013; Wu et al., 2014), it is however not directly clear how to analytically
calculate the path length distributions in these models.

A second shortcoming is our focus on (only) counting the paths from a single
given initial node. While this focus may be perfect for studies interested in the
particular impact or role of a single finding, for a general understanding of cumulative
structures, depending too much on a particular choice for a single node might appear
arbitrary and may even be misleading. A simple way to generalize this would be to
allow for the possibility of multiple initial nodes, or for the number of initial nodes
to increase as the network grows. We explain in more detail in the supplementary
material and in (P. Persoon et al., 2021), how these choices could be implemented
by slightly changing the initial conditions for Equations 4.3 and 4.15. While these
changes introduce an extra parameter, they are found not to lead to fundamentally
different results when we consider networks with a substantial number of nodes.
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Appendix

4.A Derivations with all unique paths

In this section of the supplementary material we consider for all unique paths in a
Price network first the path length distribution (first excluding, then including the
cumulative advantage effect), then calculate the total number of paths, the expected
path length and finally we consider the generalization for increasing in-degree.

4.A.1 Excluding the cumulative advantage effect

When we exclude the cumulative advantage effect (i.e. c = 0) the solution for fk(n)
involves the unsigned Stirling numbers of the first kind S(n, k), which are defined as
the coefficients in the rising factorial, xn = x(x+ 1)...(x+ n− 1) =

∑n
k=0 S(n, k)xk,

which satisfy the recurrence relation S(n+ 1, k+ 1) = nS(n, k+ 1) +S(n, k) and for
which it counts in particular that S(n, k) = 0 for n < k and S(n, 1) = Γ(n) for all
n, where Γ(n) is the gamma function, which satisfies Γ(n+ 1) = nΓ(n). We need to
show that

fk(n) =
mk

Γ(n)
S(n, k + 1) (4.30)

i.e. Equation 4.4, satisfies the relation ∆nfk+1(n) = mfk(n)/n. Substituting Equa-
tion 4.30 in ∆nfk+1(n) = fk+1(n+ 1)− fk+1(n) gives

∆nfk+1(n) = mk+1
(S(n+ 1, k + 2)

Γ(n+ 1)
− S(n, k + 2)

Γ(n)

)
(4.31)

=
mk+1

Γ(n+ 1)

(
S(n+ 1, k + 2)− nS(n, k + 2)

)
. (4.32)

using the recurrence relation, we end up with

∆nfk+1(n) =
mmk

nΓ(n)
S(n, k + 1) =

m

n
fk(n). (4.33)

Furthermore, because S(n, 1) = Γ(n), f0(n) = 1 for all n. Finally, noting that
S(n, k+ 1) = 0 for n < k, we note that fk(1) = 0 for all k > 0, as required. Finally,
we derive Equation 4.6. We use that

xn = x(x+ 1)...(x+ n− 1) =
Γ(x+ n)

Γ(x)
(4.34)
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and that S(n, 0) = 0 for all n 6= 0. Summing over all k < n (hence up to n− 1), we
can write

K(n) =
n−1∑
k=0

fk(n) (4.35)

=
n−1∑
k=0

mk

Γ(n)
S(n, k + 1) (4.36)

=
1

mΓ(n)

n∑
k=1

mkS(n, k) (4.37)

=
1

mΓ(n)

Γ(m+ n)

Γ(m)
(4.38)

=
Γ(m+ n)

Γ(n)Γ(m+ 1),
(4.39)

which is Equation 4.6 in the paper.

4.A.2 Including the cumulative advantage effect

The general solution for fk(n) involves unsigned non-central Stirling numbers of
the first kind Sy(n, k) (Koutras, 1982; M. D. Schmidt, 2016), which are defined
as xn =

∑n
t=0 Sy(n, t)(x − y)t, satisfy the recurrence relation Sy(n + 1, k + 1) =

(n+ y)Sy(n, k+ 1) +Sy(n, k) and for which it counts in particular that Sy(n, k) = 0
for n < k and Sy(n, n) = 1 for all y and n. We need to show that the general
solution for fk(n) (i.e. Equation 4.9),

fk(n) =
1

Γ(n)(−c)k
n∑

t=k+1

(t− k)Sp(n, t)(−p)t−1, (4.40)

which introduces the parameter p = mc/(1+mc), satisfies the relation (i.e. Equation
4.3)

∆nfk+1(n) = m
fk(n) + cfk+1(n)

(1 + cm)n
. (4.41)

We start by rewriting this expression as

∆nfk+1(n) =
p

cn
fk(n) +

p

n
fk+1(n) (4.42)

fk+1(n+ 1)− fk+1(n) =
p

cn
fk(n) +

p

n
fk+1(n) (4.43)

fk+1(n+ 1)− n+ p

n
fk+1(n) =

p

cn
fk(n). (4.44)
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Before we show that Equation 4.40 satisfies f0(n) = 1 for all n, we first need
to derive a more general result. We will need that the derivative of the Gamma
function Γ(x)′ = ψ(x)Γ(x), where ψ(x) is the digamma function, which satisfies the
recurrence relation ψ(x)+ 1

x
= ψ(x+1). Using Equation 4.34, let us differentiate the

definition of the non-central unsigned Stirling numbers
∑n

t=0 Sy(n, t)(x−y)t = Γ(n+x)
Γ(x)

left and right with respect to x to obtain
n∑
t=0

tSy(n, t)(x− y)t−1 =
Γ(n+ x)

Γ(x)

(
ψ(n+ x)− ψ(x)

)
(4.53)

=
Γ(n+ x)

Γ(x)

(
ψ(n+ x)− ψ(x+ 1) +

1

x

)
(4.54)

=
Γ(n+ x)

Γ(x)

(
ψ(n+ x)− ψ(x+ 1)

)
+

Γ(n+ x)

Γ(x+ 1)
. (4.55)

If we take the limit of x→ 0, note that Γ(x)→∞, hence we obtain for n ≥ 1 and
y 6= 0,

n∑
t=0

tSy(n, t)(−y)t−1 =
n∑
t=1

tSy(n, t)(−y)t−1 = Γ(n). (4.56)

Using Equation 4.40 to write

f0(n) =
1

Γ(n)

n∑
t=1

tSp(n, t)(−p)t−1, (4.57)

we can directly use Equation 4.56 to see that f0(n) = 1 for all n. Finally, we note
that from the sum appearing in Equation 4.40, it is obvious that fk(n) = 0 for
k > n.

Total number of paths

Next we will calculate the total number of paths K(n) =
∑∞

k=0 fk(n), i.e. deriving
Equation 4.12. Because fk(n) is zero for k > n we only need to sum up to k = n.
First, we use Equation 4.56 and the fact that

∑n
t=0 Sy(n, t)(−y)t = 0 to rewrite the

Equation 4.40 as

fk(n) =
1

Γ(n)(−c)k
n∑

t=k+1

(t− k)Sp(n, t)(−p)t−1 (4.58)

=
1

Γ(n)(−c)k

( n∑
t=0

−
k∑
t=0

)
(t− k)Sp(n, t)(−p)t−1 (4.59)

=
1

Γ(n)(−c)k

( n∑
t=0

tSp(n, t)(−p)t−1 −
n∑
t=0

kSp(n, t)(−p)t−1 −
k∑
t=0

(t− k)Sp(n, t)(−p)t−1

)
(4.60)

=
1

Γ(n)(−c)k

( n∑
t=0

tSp(n, t)(−p)t−1 −
k∑
t=0

(t− k)Sp(n, t)(−p)t−1

)
(4.61)

=
1

Γ(n)(−c)k

(
Γ(n)−

k−1∑
t=0

(t− k)Sp(n, t)(−p)t−1

)
(4.62)

=
1

(−c)k

(
1− 1

Γ(n)

k−1∑
t=0

(t− k)Sp(n, t)(−p)t−1

)
(4.63)
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Summing this expression for all k ≤ n gives

K(n) =

n∑
k=0

1

(−c)k

(
1− 1

Γ(n)

k−1∑
t=0

(t− k)Sp(n, t)(−p)t−1

)
(4.64)

=

n∑
k=0

1

(−c)k
+

n∑
k=0

(−1/c)k

pΓ(n)

( k−1∑
t=0

tSp(n, t)(−p)t − k
k−1∑
t=0

Sp(n, t)(−p)t
)

(4.65)

=
(−1/c)n + c

1 + c
+

n∑
k=0

(−1/c)k

pΓ(n)

( k−1∑
t=0

tSp(n, t)(−p)t − k
k−1∑
t=0

Sp(n, t)(−p)t
)

(4.66)

=
(−1/c)n + c

1 + c
+

n∑
k=0

(−1/c)k

pΓ(n)

k−1∑
t=0

tSp(n, t)(−p)t −
n∑
k=0

(−1/c)k

pΓ(n)
k

k−1∑
t=0

Sp(n, t)(−p)t (4.67)

To proceed, we for clarity separately consider the two ’sum of a sum’ terms. For the
first term we have

n∑
k=0

(−1/c)k

pΓ(n)

k−1∑
t=0

tSp(n, t)(−p)t =
n∑
k=2

(−1/c)k

pΓ(n)

k−1∑
t=1

tSp(n, t)(−p)t (4.68)

Explicitly writing out the right-hand side of this equation, choosing a separate line
for each k, gives us (without the prefactor 1

Γ(n)p
)

(−1/c)2S(n, 1)(−p)+ (4.69)
(−1/c)3S(n, 1)(−p) + (−1/c)32S(n, 2)(−p)2+

(−1/c)4S(n, 1)(−p) + (−1/c)42S(n, 2)(−p)2 + (−1/c)43S(n, 3)(−p)3+

...
(−1/c)nS(n, 1)(−p) + (−1/c)n2S(n, 2)(−p)2 + . . .+ (−1/c)n(n− 1)S(n, n− 1)(−p)n−1.

We see that we can alternatively sum the geometric progressions in the vertical
direction. Using that

∑n
k=r x

k = (xn+1 − xr)/(x− 1), or that
n∑
k=r

(−1/c)k =
(−1/c)n+1 + (−1/c)r

−1/c− 1
(4.70)

=
(−1/c)n − (−1/c)r−1

1 + c
, (4.71)

we can rewrite Expression 4.69 as

(−1/c)n − (−1/c)

1 + c
S(n, 1)(−p) + 2

(−1/c)n − (−1/c)2

1 + c
S(n, 2)(−p)2 (4.72)

+ 3
(−1/c)n − (−1/c)3

1 + c
S(n, 3)(−p)3 + . . .+ (n− 1)

(−1/c)n − (−1/c)n−1

1 + c
S(n, n− 1)(−p)n−1.

Writing this in a summation form, again including the prefactor 1
Γ(n)p

, this becomes

n−1∑
t=1

t(−p)tSp(n, t)
pΓ(n)(1 + c)

(
(−1/c)n − (−1/c)t

)
. (4.73)

Next we consider the second ’sum of sum’ term in Equation 4.67, for which we have

n∑
k=0

(−1/c)k

pΓ(n)
k

k−1∑
t=0

Sp(n, t)(−p)t =
n∑
k=2

(−1/c)k

pΓ(n)
k

k−1∑
t=1

Sp(n, t)(−p)t (4.74)
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Analogous to the first sum of sum term, we write this out without the prefactor
1

Γ(n)p
, giving

2(−1/c)2S(n, 1)(−p)+ (4.75)

3(−1/c)3S(n, 1)(−p) + 3(−1/c)3S(n, 2)(−p)2+

4(−1/c)4S(n, 1)(−p) + 4(−1/c)4S(n, 2)(−p)2 + 4(−1/c)4S(n, 3)(−p)3+

...

n(−1/c)nS(n, 1)(−p) + n(−1/c)nS(n, 2)(−p)2 + . . .+ n(−1/c)nS(n, n− 1)(−p)n−1.

Using that, for any real number x

n∑
k=r

kxk =
xr(r(1− x) + x)− xn+1(n(1− x) + 1)

(x− 1)2
, (4.76)

so that

n∑
k=r

k(−1/c)k =
(−1/c)r(r(1 + 1/c) + (−1/c))− (−1/c)n+1(n(1 + 1/c) + 1)

((−1/c)− 1)2
(4.77)

=
c(−1/c)r

(
(c+ 1)r − 1

)
+ (−1/c)n

(
(c+ 1)n+ c

)
(1 + c)2

(4.78)

=
c(−1/c)r

(
(c+ 1)(r − 1) + c

)
+ (−1/c)n

(
(c+ 1)n+ c

)
(1 + c)2

(4.79)

=
−(−1/c)r−1

(
(c+ 1)(r − 1) + c

)
+ (−1/c)n

(
(c+ 1)n+ c

)
(1 + c)2

, (4.80)

we can rewrite Expression 4.75 as

(−1/c)n
(
(c+ 1)n+ c

)
− (−1/c)

(
(c+ 1) + c

)
(1 + c)2

S(n, 1)(−p)+ (4.81)

(−1/c)n
(
(c+ 1)n+ c

)
− (−1/c)2

(
(c+ 1)2 + c

)
(1 + c)2

S(n, 2)(−p)2+

(−1/c)n
(
(c+ 1)n+ c

)
− (−1/c)3

(
(c+ 1)3 + c

)
(1 + c)2

S(n, 3)(−p)3+

. . .+
(−1/c)n

(
(c+ 1)n+ c

)
− (−1/c)n−1

(
(c+ 1)(n− 1) + c

)
(1 + c)2

S(n, n− 1)(−p)n−1,

or, more compactly written in summation form (bringing back the prefactor 1
Γ(n)p

),

n−1∑
t=1

(−p)tSp(n, t)
pΓ(n)(1 + c)2

(
(−1/c)n

(
(c+ 1)n+ c

)
− (−1/c)t

(
(c+ 1)t+ c

))
. (4.82)

We note that we may equally well choose do to this sum from t = 0 to n, as this
amounts to adding terms that are zero (note that Sy(n, 0) = 0 for n > 0), thus
writing

n∑
t=0

Sp(n, t)(−p)t

pΓ(n)(1 + c)2

(
(−1/c)n

(
(c+ 1)n+ c

)
− (−1/c)t

(
(c+ 1)t+ c

))
. (4.83)
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Using that
∑n

t=0 Sy(n, t)(−y)t = 0, this simplifies to

−
n∑
t=0

Sp(n, t)(−p)t

pΓ(n)(1 + c)2
(−1/c)t

(
(c+ 1)t+ c

)
. (4.84)

For Expression 4.73 we can likewise adjust the summation limits to t = 0 and n.
Doing this, substituting the Expressions 4.73 and 4.84 back into Equation 4.67, gives

K(n) =
(−1/c)n + c

1 + c
+

n∑
t=0

t(−p)tSp(n, t)
pΓ(n)(1 + c)

(
(−1/c)n − (−1/c)t

)
(4.85)

+

n∑
t=0

Sp(n, t)(−p)t

pΓ(n)(1 + c)2
(−1/c)t

(
(c+ 1)t+ c

)
=

(−1/c)n + c

1 + c
+

n∑
t=0

tSp(n, t)(−p)t

pΓ(n)(1 + c)

(
(−1/c)n − (−1/c)t

)
(4.86)

+

n∑
t=0

tSp(n, t)(−p)t

pΓ(n)(1 + c)
(−1/c)t +

n∑
t=0

cSp(n, t)(−p)t

pΓ(n)(1 + c)2
(−1/c)t

=
(−1/c)n + c

1 + c
+

n∑
t=0

tSp(n, t)(−p)t

pΓ(n)(1 + c)
(−1/c)n +

n∑
t=0

cSp(n, t)(−p)t(−1/c)t

pΓ(n)(1 + c)2
(4.87)

=
(−1/c)n + c

1 + c
− (−1/c)n

Γ(n)(1 + c)

n∑
t=0

tSp(n, t)(−p)t−1 +
c

pΓ(n)(1 + c)2

n∑
t=0

Sp(n, t)(p/c)
t

(4.88)

Using Equation 4.56 to do the sum in the second term and the definition of the non-central unsigned
Stirling numbers,

∑n
t=0 Sy(n, t)(x− y)t = Γ(n+x)

Γ(x) to do the sum in the third term, we obtain

=
(−1/c)n + c

1 + c
− (−1/c)n

1 + c
+

cΓ(n+ p/c+ p)

p(1 + c)2Γ(n)Γ(p/c+ p)
(4.89)

=
c

1 + c
+

cΓ(n+ p/c+ p)

c(1 + c)(p/c+ p)Γ(n)Γ(p/c+ p)
(4.90)

=
c

1 + c
+

Γ(n+ p
c + p)

(1 + c)Γ(n)Γ(pc + p+ 1)
(4.91)

=
c

1 + c
+

Γ(n+mc)

(1 + c)Γ(n)Γ(mc + 1)
, (4.92)

where we used on the last step that mc = m(1 + c)/(1 + mc) = p/c + p. Note that
this reproduces Equation 4.12 in the paper.

To obtain the generating function Kz(n) of the series f0(n), f1(n), f2(n), ..., we
need to sum Kz(n) =

∑∞
k=0 fk(n)zk. Using Equation 4.58, note this effectively

amounts to doing the same calculation as in Equation 4.64 except that instead of c,
we take c/z. Hence doing this substituting in Equation 4.91, we get the generating
function

Kz(n) =
c/z

1 + c/z
+

Γ(n+ z p
c

+ p)

(1 + c/z)Γ(n)Γ(z p
c

+ p+ 1)
(4.93)

=
c

z + c
+

Γ(n+ z p
c

+ p)

(1 + c/z)Γ(n)Γ(z p
c

+ p+ 1)
. (4.94)

Note that k times differentiating Kz(n) =
∑∞

k=0 fk(n)zk with respect to z takes
away all fk(n) with k < k and subsequently setting z = 0 takes away all fk(n)
with k > k, thus leaving us with k!fk(n). An alternative way to obtain fk(n) is to
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therefore differentiate Kz(n) k times with respect to z, divide by k! and set z = 0.
For example for f1(n) we get

f1(n) =
∂Kz(n)

∂z

∣∣∣
z=0

(4.95)

=
∂

∂z

( c

z + c
+

Γ(n+ z pc + p)

(1 + c/z)Γ(n)Γ(z pc + p+ 1)

)∣∣∣
z=0

(4.96)

=
(
− c

(c+ z)2
+

c

z2(1 + c/z)2

Γ(n+ z pc + p)

Γ(n)Γ(1 + z pc + p)
+

p
cΓ(n+ z pc + p)ψ(n+ z pc + p)

(1 + c/z)Γ(n)Γ(1 + z pc + p)
(4.97)

−
Γ(1 + z pc + p)pcΓ(n+ z pc + p)ψ(1 + z pc + p)

(1 + c/z)Γ(n)Γ(1 + z pc + p)2

)∣∣∣
z=0

=
(
− c

(c+ z)2
+

c

(z + c)2

Γ(n+ z pc + p)

Γ(n)Γ(1 + z pc + p)
+
z pcΓ(n+ z pc + p)ψ(n+ z pc + p)

(z + c)Γ(n)Γ(1 + z pc + p)
(4.98)

−
z pcΓ(n+ z pc + p)ψ(1 + z pc + p)

(z + c)Γ(n)Γ(1 + z pc + p)

)∣∣∣
z=0

=− c

c2
+

cΓ(n+ p)

c2Γ(n)Γ(1 + p)

)
(4.99)

=
1

c

(
− 1 +

Γ(n+ p)

Γ(n)Γ(1 + p)

)
(4.100)

Differentiating again to obtain f2(n) and again to obtain f3(n), the expressions
quickly become very large. Already for f2(n) there will be 21 distinct terms, which
makes doing these calculations by hand labor-intensive and prone to mistakes. It
is advisable to use a computer program to do these calculations. The following
steps leading to f2(n) are derived using the program Mathematica to differentiate
Equation 4.94 two times with respect to z, setting z = 0 and dividing by 2,

f2(n) =
1

2

∂2Kz(n)

∂z2

∣∣∣
z=0

(4.101)

=
1

c2

(
1− Γ(n+ p)

Γ(n)Γ(1 + p)
+
pΓ(n+ p)

(
ψ(n+ p)− ψ(1 + p)

)
Γ(n)Γ(1 + p)

)
. (4.102)

Similarly, we let the program differentiate Equation 4.94 three times with respect to z, set z = 0
and divide by 3!, to obtain f3(n)

f3(n) =
1

3!

∂3Kz(n)

∂z3

∣∣∣
z=0

(4.103)

=
1

c3

(
− 1 +

Γ(n+ p)

Γ(n)Γ(1 + p)
−
pΓ(n+ p)

(
ψ(n+ p)− ψ(1 + p)

)
Γ(n)Γ(1 + p)

)
(4.104)

+
p2Γ(n+ p)

((
ψ(n+ p)− ψ(1 + p)

)2
+ ψ1(n+ p)− ψ1(1 + p)

)
2Γ(n)Γ(1 + p)

The latter shows that, even after setting z = 0, the expressions quickly become very
large for larger k. It therefore makes more sense to focus on the highest order in
n instead, which we will explore in the following. We note that differentiating the
Gamma function Γ(x) l times results in terms proportional to Γ(x) and different
(powers of) polygamma functions ψ0(x),ψ1(x), ...ψl(x). The polygamma functions
converge to constant values for large x, with the exception of the digamma function
ψ0(x) = ψ(x), which grows unbounded and can be approximated by ψ(x) ≈ log(x).
To select the highest order in n, we therefore focus on the terms with (powers of)
ψ(n). Using Equation 4.100 we observe no power of ψ(n) for f1(n), yet in Equation
4.102 we observe a first power of ψ(n) in f2(n) and in Equation 4.102 we observe a
second power of ψ(n) in f2(n). Furthermore, using that Γ(x+a)/Γ(x) ≈ xa for large
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x, we note that the prefactor in Equation 4.100,4.102 and 4.104 Γ(n+p)
Γ(n)Γ(1+p)

increases
approximately as np/Γ(1 +p). Considering only the terms proportional to Γ(n+p)

Γ(n)Γ(1+p)

and selecting from Equation 4.102 only the term linear in ψ(n) and from Equation
4.104 only the term quadratic in ψ(n), we obtain

f1(n) ≈ Γ(n+ p)

cΓ(n)Γ(1 + p)
(4.105)

f2(n) ≈
pΓ(n+ p)

(
ψ(n+ p)− ψ(1 + p)

)
c2Γ(n)Γ(1 + p)

(4.106)

f3(n) ≈
p2Γ(n+ p)

(
ψ(n+ p)− ψ(1 + p)

)2

2c3Γ(n)Γ(1 + p)
(4.107)

Continuing for f4(n),f5(n),... etc we see that

fk(n) ≈
(p
c

)k Γ(n+ p)

pΓ(1 + p)Γ(n)Γ(k)

(
ψ(n+ p)− ψ(1 + p)

)k−1 (4.108)

≈
(p
c

)k Γ(n+ p)

pΓ(1 + p)Γ(n)Γ(k)

(
log(n+ p)− log(1 + p)

)k−1 (4.109)

≈
(p
c

)k Γ(n+ p)

pΓ(1 + p)Γ(n)Γ(k)
logk−1

(n+ p

1 + p

)
, (4.110)

which corresponds to Equation 4.11. Using that the prefactor in Equation 4.108
Γ(n+p)

Γ(n)Γ(1+p)
≈ np/Γ(1 + p), we note that all fk(n) in the limit of large n grow as np,

which is faster than the case where c = 0, when fk(n) grows as log(n)k. To show
that there is an n below which fk(n) is greater for the c = 0 case than for general
c > 0, we note that for n = k + 1, we obtain from Equation 4.40

fk(k + 1) =
1

Γ(n)(−c)k
Sp(k + 1, k + 1)(−p)k (4.111)

=
1

Γ(n)(−c)k
(−p)k (4.112)

=
1

Γ(n)

( m

1 +mc

)k
(4.113)

Note that this expression for c > 0 is always smaller than the same expression for
c = 0. We therefore conclude, for n = k + 1, which is the first n for which fk(n)
is non-zero, that fk(n) for general c > 0 is smaller than fk(n) for c = 0. As it is
opposite for greater n, there will be some n for which the fk(n) for c > 0 overtakes
the value of fk(n) for c = 0.

Expected path length

The most straightforward way of calculating the expected path length `(n) =∑
k kfk(n)/K(n) is by using the generating function Kz(n) =

∑∞
k=0 fk(n)zk. We

first obtain
∑

k kfk(n) by differentiating Kz(n) with respect to z and then taking
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z = 1. Using the expression in Equation 4.98, we obtain
∂Kz(n)

∂z

∣∣∣
z=1

=
∑
k

kfk(n) =
(
− c

(c+ z)2
+

c

(z + c)2

Γ(n+ z pc + p)

Γ(n)Γ(1 + z pc + p)
+ (4.114)

z pcΓ(n+ z pc + p)ψ(n+ z pc + p)

(z + c)Γ(n)Γ(1 + z pc + p)
−
z pcΓ(n+ z pc + p)ψ(1 + z pc + p)

(z + c)Γ(n)Γ(1 + z pc + p)

)∣∣∣
z=1

=
Γ
(
n+ p+ z pc

) (
c2 + zp(c+ z)ψ

(
n+ p+ z pc

)
− zp(c+ z)ψ

(
z pc + p+ 1

))
Γ(n)Γ

(
z pc + p+ 1

)
c(c+ z)2

(4.115)

− c

(c+ 1)2

∣∣∣
z=1

=
Γ
(
n+ p+ p

c

) (
c2 + p(c+ 1)ψ

(
n+ p+ p

c

)
− p(c+ 1)ψ

(
p
c + p+ 1

))
Γ(n)Γ

(
p
c + p+ 1

)
c(c+ 1)2

− c

(c+ 1)2

(4.116)

=
Γ (n+mc) (c+mc (ψ (n+mc)− ψ (mc + 1)))

(c+ 1)2Γ(n)Γ (mc + 1)
− c

(c+ 1)2
, (4.117)

where we used on the last step that mc = p + p/c. Then, using Equation 4.92 to
divide by K(n), we obtain

`(n) =

∑
k kfk(n)

K(n)
=

Γ(n+mc)(c+mc(ψ(n+mc)−ψ(mc+1)))
(c+1)2Γ(n)Γ(mc+1)

− c
(c+1)2

c
1+c

+ Γ(n+mc)
(1+c)Γ(n)Γ(mc+1)

(4.118)

=

Γ(n+mc)(c+1+mc(ψ(n+mc)−ψ(mc+1)))
(c+1)2Γ(n)Γ(mc+1)

− Γ(n+mc)
(c+1)2Γ(n)Γ(mc+1)

− c
(c+1)2

c
1+c

+ Γ(n+mc)
(1+c)Γ(n)Γ(mc+1)

(4.119)

=

Γ(n+mc)(c+1+mc(ψ(n+mc)−ψ(mc+1)))
(c+1)2Γ(n)Γ(mc+1)

c
1+c

+ Γ(n+mc)
(1+c)Γ(n)Γ(mc+1)

− 1

1 + c
(4.120)

=
Γ(n+mc)

(
c+ 1 +mcψ(n+mc)−mcψ(mc + 1)

)
(1 + c)

(
cΓ(n)Γ(mc + 1) + Γ(n+mc)

) − 1

1 + c
(4.121)

=
c+ 1 +mcψ(n+mc)−mcψ(mc) + 1

(1 + c)cΓ(n)Γ(mc + 1)/Γ(n+mc) + 1 + c
− 1

1 + c
(4.122)

=
c+ 1 +mcψ(n+mc)−mcψ(mc + 1)

cr(n) + 1 + c
− 1

1 + c
, (4.123)

where we introduced
r(n) =

(1 + c)Γ(n)Γ(mc + 1)

Γ(n+mc)
, (4.124)

which, using Equation 4.92, can be observed to equal 1
K(n)−c/(1+c)

. Equation 4.123
corresponds to Equation 4.13.

4.A.3 Generalization for increasing in-degree

Finally we consider the generalization where we allow the in-degree µ(n) of node n
to depend on n (note that µ(n) 6= m(n), the latter being the average in-degree when
then total number of nodes is n). More specifically, we will consider the case where
µ(n) is any linear combination of integer or non-integer powers of n, which is finite
and positive for all n and in which the largest power of n has an exponent α > 0.
We can write this as

µ(n) = w0n
α0 + w1n

α1 + ...+ wnα, (4.125)
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for any set of constants w0,w1,...,w where w > 0 and where the constants α0,α1,...
are smaller than α. To explore the dynamics for large n, let us calculate the total
number of links M(n) =

∑
l=1 µ(l), which appears in the denominator of Equation

4.15, i.e.

∆nfk+1(n) = µ(n)
fk(n) + cfk+1(n)

n+ c
∑n

l=1 µ(l)
(4.126)

= µ(n)
fk(n) + cfk+1(n)

n+ cM(n)
, (4.127)

Let us assume we can approximate M(n) by an integral, i.e.∫ n

1

µ(l)dl =
w0

1 + α0

nα0+1 +
w1

1 + α1

nα1+1 + ...+
w

1 + α
nα+1 +M0, (4.128)

where M0 is some constant. Using this approximation, we can write for µ(n)/M(n)

µ(n)

M(n)
=

w0n
α0 + w1n

α1 + ...+ wnα

w0

1+α0
nα0+1 + w1

1+α1
nα1+1 + ...+ w

1+α
nα+1 +M0

(4.129)

=
w0n

α0−α−1 + w1n
α1−α−1 + ...+ wn−1

w0

1+α0
nα0−α + w1

1+α1
nα1−α + ...+ w

1+α
+M0n−α−1

(4.130)

=
1

n
· w0n

α0−α + w1n
α1−α + ...+ w

w0

1+α0
nα0−α + w1

1+α1
nα1−α + ...+ w

1+α
+M0n−α−1

(4.131)

In the limit where n gets very large, this expression reduces to µ(n)/M(n) → (1 +
α)/n. Furthermore, as M(n) increases with n by a power α+ 1 > 1, note also that
in the same limit, n/M(n)→ 0. Hence dividing the numerator and denominator in
Equation 4.126 by M(n) gives, in the limit of large n

∆nfk+1(n) ≈ (1 + α)

n

fk(n) + cfk+1(n)

c
. (4.132)

If instead we would have chosen µ(n) ∝ un, note that we would then approximate
M(n) ∝ un/ log(u), so in the limit where n is large, in that case mn/M(n)→ log(u)
and n/M(n)→ 0. We would then obtain, in the limit of large n,

∆nfk+1(n) ≈ log(u)
fk(n) + cfk+1(n)

c
. (4.133)

In P. Persoon et al., 2021 we solve a similar equation, which arises when there is
no cumulative advantage effect and when µ(n) increases linear in n. There the
solution allow us to show that expected path length growth linear in n. Equation
4.133 however has an additional term with fk+1(n), yet we will briefly demonstrate
this only affects the coefficient of linear expected path length. Let us first rewrite
Equation 4.133 as

fk+1(n+ 1)− fk+1(n) ≈ log(u)
fk(n) + cfk+1(n)

c
(4.134)

fk+1(n+ 1) ≈ log(u)fk(n)/c+ log(u)fk+1(n) + fk+1(n) (4.135)
fk+1(n+ 1) ≈ log(u)fk(n)/c+ (1 + log(u))fk+1(n) (4.136)

1

1 + log(u)
fk+1(n+ 1) ≈ fk+1(n) +

log(u)

c(1 + log(u))
fk(n). (4.137)
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In the following we will show that the leading term of the solution to this equation
is given by

fk(n) =
( log(u)

c

)k
(1 + log(u))n−k

(
n

k

)
(4.138)

= uk1u
n−k
2

(
n

k

)
, (4.139)

where we introduced the short-hand notation u1 = log(u)
c

and u2 = 1 + log(u).
Rewriting Equation 4.137 in short-hand notation gives

1

u2

fk+1(n+ 1) ≈ fk+1(n) +
u1

u2

fk(n). (4.140)

Let us substitute in the equation the expressions for fk(n), fk+1(n) and fk+1(n+ 1)
using Equation 4.139. We then obtain

1

u2

uk+1
1 un−k2

(
n+ 1

k + 1

)
≈ uk+1

1 un−k−1
2

(
n

k + 1

)
+
u1

u2

uk1u
n−k
2

(
n

k

)
(4.141)(

n+ 1

k + 1

)
≈
(

n

k + 1

)
+

(
n

k

)
(4.142)

which is immediately satisfied given the recurrence relation for the binomial coef-
ficient

(
n+1
k+1

)
=
(
n
k+1

)
+
(
n
k

)
. Note that, using that

(
n
k

)
= 0 for k > n, fk(n) also

satisfies the initial condition that fk(n) = 0 for k > n. Using the binomial theorem∑n
k=0

(
n
k

)
xkyn−k = (x+ y)n and Equation 4.138, we can directly sum fk(n) over all

k ≤ n, thus obtaining for large n that

K(n) ≈
n∑
k=0

uk1u
n−k
2

(
n

k

)
(4.143)

≈ (u1 + u2)n (4.144)

≈
( log(u)

c
+ 1 + log(u)

)n
(4.145)

≈
(

1 +
1 + c

c
log u

)n
. (4.146)

Furthermore, the expressions in Equation 4.138 and 4.146 we can directly calculate
the expected path length `(n) =

∑
k kfk(n)/K(n), which is

`(n) ≈ 1

(u1 + u2)n

n∑
k=0

kuk1u
n−k
2

(
n

k

)
(4.147)

≈ 1

(u1 + u2)n
u1(u1 + u2)n−1n (4.148)

≈ u1n

u1 + u2

(4.149)

≈ n log(u)

c+ (1 + c) log u
. (4.150)

We therefore obtain, for a large number of nodes, when the cumulative advantage
effect is nonzero and the in-degree depends exponentially on the number of nodes,
that the expected path length then grows linear with the number of nodes.
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4.B Derivations with longest paths

In this section we will focus on the case where we consider the longest paths as a
subset of all unique paths, which is discussed in Section 4.3. We will mostly focus
on the steps in ’first order n’ derivation of Hk(n), yet also briefly discuss how these
derivations may be extended to include higher orders.

4.B.1 First order approximation

We start this analysis from Equation 4.22, which says for an n > nk

Hk+1(n) = nk +

∫ n

nk

Hk(n)m

nm
dn. (4.151)

Substituting the expression Hk(n) = ak −
amk−1

(m−1)nm−1 (appearing in Equation 4.23)
gives

nk+

∫ n

nk

1

nm

(
ak−

amk−1

(m− 1)nm−1

)m
dn = nk+

[ 1

(m+ 1)amk−1

(
ak−

amk−1

(m− 1)nm−1

)m+1]n
nk

, (4.152)

and substituting the integration limits becomes

nk +
1

(m+ 1)amk−1

(
ak −

amk−1

(m− 1)nm−1

)m+1

− 1

(m+ 1)amk−1

(
ak −

amk−1

(m− 1)nm−1
k

)m+1

.

(4.153)
Expanding the m + 1 power, selecting the constant terms and the largest term
involving n, i.e. the term of O( 1

nm−1 ), gives

nk +
am+1
k

(m+ 1)amk−1

− amk
(m− 1)nm−1

− 1

(m+ 1)amk−1

(
ak−

amk−1

(m− 1)nm−1
k

)m+1

. (4.154)

As this expression should equal Hk(n) = ak+1−
amk

(m−1)nm−1 , we directly conclude this
is satisfied for the term proportional to 1/nm−1 and for the constant term ak+1 we
obtain

ak+1 = nk +
am+1
k

(m+ 1)amk−1

− 1

(m+ 1)amk−1

(
ak −

amk−1

(m− 1)nm−1
k

)m+1

. (4.155)

This is Equation 4.24. As explained earlier, we approximate nk by ak. Hence
substituting nk = ak,

ak+1 = ak +
am+1
k

(m+ 1)amk−1

− 1

(m+ 1)amk−1

(
ak −

amk−1

(m− 1)am−1
k

)m+1

, (4.156)

and dividing by ak gives

ak+1

ak
= 1 +

amk
(m+ 1)amk−1

− 1

(m+ 1)amk−1ak

(
ak −

amk−1

(m− 1)am−1
k

)m+1

(4.157)

= 1 +
amk

(m+ 1)amk−1

− amk
(m+ 1)amk−1

(
1−

amk−1

(m− 1)amk

)m+1

. (4.158)
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Using that ak ∝ βk1 , we rewriting this expression in terms of the β1 = ak+1

ak
= ak

ak−1
,

β1 = 1 +
βm1

m+ 1
− βm1
m+ 1

(
1− 1

(m− 1)βm1

)m+1

. (4.159)

This is Equation 4.25 in the paper. Expanding the part in brackets to third order
gives

β1 = 1 +

(
m+1

1

)
(m+ 1)(m− 1)

−
(
m+1

2

)
(m+ 1)(m− 1)2βm1

+

(
m+1

3

)
(m+ 1)(m− 1)3β2m

1

... (4.160)

= 1 +
1

m− 1
− m

2(m− 1)2βm1
+

m

6(m− 1)2β2m
1

+ ... (4.161)

Equation 4.161 (note this corresponds to Equation 4.26) shows more clearly that,
choosing a greater estimate for β1 on the right-hand side will lead to an underesti-
mate of the second order term, which is negative. Choosing a greater estimate for
for β1 on the right-hand side will therefore lead to an overestimate of the total of
the right-hand side of the equation. Let us suppose we substitute a greater estimate
for β1 only on the right-hand side. As the left hand side is simply β1, we conclude
that we obtain an overestimate for this β1 when the total of the right-hand side is
overestimated. Substituting the greater estimate β1 = 1 + 1

m−1
on the right hand

side gives

β1 ≈ 1 +
(1 + 1

m−1
)m

m+ 1
−

(1 + 1
m−1

)m

m+ 1

(
1− 1

(m− 1)(1 + 1
m−1

)m

)m+1

. (4.162)

We will expand these expressions for large m− 1 to specifically consider the coeffi-
cients of the first and second order in 1/(m− 1). We will first expand the term

y0(m) =
(1 + 1

m−1
)m

m+ 1
(4.163)

=
(1 + 1

m−1
)m−1+1

m− 1 + 2
(4.164)

=
1

m− 1

(1 + 1
m−1

)m−1

1 + 2
m−1

(
1 +

1

m− 1

)
(4.165)

Using that (1+1/x)x → e for large x, we conclude that for largem−1, y0(m)→ e
m−1

to first order 1/(m− 1). Next we consider the term

y1(m) =
(1 + 1

m−1
)m

m+ 1

(
1− 1

(m− 1)(1 + 1
m−1

)m

)m+1

. (4.166)

Introducing the shorthand notation zm = (1 + 1
m−1

)m, we can rewrite this as

y1(m) =
zm

m+ 1

(
1− 1

(m− 1)zm

)m+1

(4.167)

=
zm

m+ 1

(
1− 1

(m− 1)zm

)m−1+2

(4.168)

=
zm

m+ 1

(
1− 1

(m− 1)zm

)(m−1)−zm
−zm

+2

(4.169)

=
zm

m+ 1

(
1 +

1

−(m− 1)zm

)−(m−1)zm
−zm

(
1− 1

(m− 1)zm

)2

(4.170)
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We see the first part of this multiplication, zm/(m+1), is just y0(m)). As we showed
earlier, for large m − 1 this is approximated by e

m−1
. For the second term of the

multiplication, we again using that (1+1/x)x → e for large x, (yet this time choosing
x = zm(m− 1)). Note that, while taking this limit, in the exponent of this term we
are left with −1/zm, which goes for large m − 1 to −1/e. Concluding, for second
part of the multiplication we obtain e−e−1 . Finally, the third part, (1 − 1

(m−1)zm
)2,

simply goes to 1. In total, we therefore obtain that y1(m)→ e1−e−1

m−1
to first order in

1/(m− 1). The expressions that allow us obtain the terms of order 1/(m− 1)2 for
y0(m) and y1(m) quickly become very lengthy. We therefore calculate these using
the computer program Mathematica. We then obtain for the expressions up to order
1/(m− 1)2

y0(m) =
e

m− 1
− 3e

2(m− 1)2
+O(

1

(m− 1)3
) (4.171)

y1(m) =
e1− 1

e

m− 1
− e−1− 1

e (1 + 3e+ 3e2)

2(m− 1)2
+O(

1

(m− 1)3
). (4.172)

Noting that, using Equation 4.162, we can write β1 ≈ 1 + y0(m) − y1(m), we may
summarize our results as

β1 ≈ 1 +
e− e1− 1

e

m− 1
+
e−1− 1

e (1 + 3e+ 3e2)− 3e

2(m− 1)2
(4.173)

Noting that e − e1− 1
e ≈ 0.84, we conclude that the first order term is a factor 0.84

smaller than the first order term in β0. Earlier we explained that the expected path
length of the longest paths `(n) ≈ kn, where kn ≈ log(n(β1−1)+1)

log(β1)
− 1. This indicates

that, to calculate the the coefficient dm of the log number of nodes (see Equation
4.8), we need to calculate 1/ log(β1). To obtain a simple expression for dm, we
therefore expand 1/ log(β1) for large m − 1. We note first that for large m − 1 we
can approximate, for any parameters γ0 and γ1,

1

log
(

1 + γ0
m−1

+ γ1
(m−1)2

) ≈ m− 1

γ0

+
γ2

0 − 2γ1

2γ2
0

(4.174)

≈ m

γ0

− 1

γ0

+
1

2
− γ1

γ2
0

. (4.175)

Hence choosing γ0 = e−e1− 1
e and γ1 = 1

2

(
e−1− 1

e (1 + 3e+ 3e2)− 3e
)
using Equation

4.173, we obtain

dm =
1

log(β1)
(4.176)

≈ m

e− e1− 1
e

− 1

e− e1− 1
e

+
1

2
− e−1− 1

e (1 + 3e+ 3e2)− 3e

2(e− e1− 1
e )2

(4.177)

≈ 1.2m− 0.6, (4.178)

which is the approximation used earlier.
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The knowledge mobility of renewable
energy technology
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Abstract

In the race to achieve climate goals, many governments and organiza-
tions are encouraging the local development of Renewable Energy Technology
(RET). The spatial innovation dynamics of development of a technology partly
depends on the characteristics of the knowledge base on which this technology
builds, in particular the analyticity and cumulativeness of knowledge. Theo-
retically, greater analyticity and lesser cumulativeness are positively associated
with more widespread development. In this study, we first empirically evaluate
these relations for general technology and then systematically determine the
knowledge base characteristics for a set of 14 different RETs. We find that,
while several RETs (photovoltaics, fuel-cells, energy storage) have a highly
analytic knowledge base and develop more widespread, there are also impor-
tant RETs (wind turbines, solar thermal, geothermal, and hydro energy) for
which the knowledge base is less analytic and which develop less widespread.
Likewise, the technological cumulativeness tends to be lower for the former
than for the latter group. This calls for regional and country-level policies to
be specific for different RETs, taking for a given RET into account both the
type of knowledge it builds on as well as the local presence of this knowledge.

Keywords: Renewable Energy Technology, Knowledge Base, Geography, Patents

5.1 Introduction

The widespread development and use of Renewable Energy Technologies (RETs)
is an essential part of the transition towards a carbon-free society (IPCC, 2014).
The ability of a country or region to participate in the development of a technol-
ogy not only depends on the locally available knowledge and capabilities (Li et al.,
2020), but also on the characteristics of the knowledge base of that technology. More
specifically, Binz and Truffer (Binz & Truffer, 2017) argue that it is typically easier
to enter in knowledge fields with a more global (and ’footloose’) knowledge base
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when compared to knowledge bases that are more local (and ’sticky’). These char-
acteristics of the knowledge base have been linked to different modes of knowledge
production; global, footloose knowledge to a ’Science-Technology and Innovation
(STI) mode’ observed in science-based industries that lean very much on analytical
knowledge, and local, sticky knowledge bases to a ’Doing, Using and Interacting
(DUI) mode’ observed in engineering-based industries that lean very much on syn-
thetic knowledge (Asheim et al., 2016; Jensen et al., 2007). RETs may thus differ
in the extent to which their development spreads over countries or regions, i.e.,
the mobility of their knowledge base. Where the development of some RETs may
take place in STI-mode, widespread and expanding, the development of other RETs
may take place in DUI-mode, concentrated and difficult to relocate. This has im-
plications for countries that seek to move closer to the knowledge frontier through
technology and R&D investments as this may be easier for more footloose technolo-
gies (Keller, 2004). Understanding the knowledge base characteristics of renewable
energy technologies—in particular the knowledge dimensions relating to the spa-
tial dynamics of innovation—is thus pivotal input for targeted and evidence-based
renewable energy policies.

Earlier studies analyzing RETs as a single technology class find that RETs on
average build more on analytical and geographically distant knowledge than other
technologies (Ocampo-Corrales et al., 2020), and that they benefit greatly from
knowledge flows transcending national borders (Garrone et al., 2014; J. Noailly &
Ryfisch, 2015). However, recent studies at the more detailed level of individual
technologies find considerable heterogeneity in the extent to which RETs build on
analytical knowledge (Hötte et al., 2020; P. G. J. Persoon et al., 2020). For ex-
ample, the science dependence of some RETs, such as wind turbines, is relatively
low, and closer to fossil fuel based energy technologies, whereas photovoltaics and
non-fossil fuels are characterized by a high science dependence. Similar variations
have been observed in other dimensions of the knowledge base that may affect the
place-dependence of RETs such as the cumulativeness (P. Persoon et al., 2021),
which is associated with greater geographical concentration of innovative activities
(Breschi et al., 2000; Malerba et al., 1997). Building on the framework outlined by
Binz and Truffer (Binz & Truffer, 2017), we systematically investigate these differ-
ent characteristics of the knowledge base of RETs in order to assess whether these
technological are more local or global in nature. More specifically, we map analyt-
icity, cumulativeness, and knowledge mobility for the knowledge base of 14 different
RETs.

The remainder of this paper is structured as follows. In Section 5.2 we dis-
cuss the theoretical background of the mentioned knowledge dimensions and our
expectations for the different RETs. Then in Section 5.3 we explain how we mea-
sure the knowledge dimensions and distinguish the different RETs. Subsequently,
we report our main observations in Section 5.4, discuss some deeper implications
and shortcomings in Section 5.5 and end with a number of conclusions and policy
recommendations in Section 5.6.

5.2 Theory

The process of knowledge creation and innovation in a certain technology depends
for an important part on characteristics of the body of knowledge on which this
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technology builds(Asheim & Coenen, 2005; Breschi et al., 2000), henceforth referred
to as the ’knowledge base’ of a technology. In the following, we will discuss three di-
mensions of the knowledge base which can theoretically be linked to spatial dynamics
of innovation: the analyticity (Section 5.2.1) the cumulativeness (Section 5.2.2), and
the knowledge mobility (Section 5.2.3). We then discuss our expectations for these
dimensions for the different RETs (Section 5.2.4).

5.2.1 Analyticity of knowledge

Knowledge bases are described to consist of three types of knowledge: analytic, syn-
thetic, and symbolic knowledge (Asheim & Coenen, 2005; Moodysson et al., 2008).
In this context, analytic knowledge is understood to be science-based, created in
deductive processes based on formal models. Synthetic knowledge is understood as
engineering-based, created through the application of existing knowledge or through
inductively combining existing knowledge. Finally, symbolic knowledge is charac-
terized as cultural or artistic knowledge.1 As the knowledge base of technologies
often contains multiple types of knowledge, it is more instructive to think about
the extent to which it is analytic as a spectrum or a scale. In this line of thinking,
we define the analyticity of a knowledge base as the extent to which it consists of
analytic knowledge.

The analyticity of knowledge has been associated with several other theoretical
dimensions of knowledge. First, where analytical knowledge is associated naturally
with basic research, i.e. research aimed at truth-finding, synthetic knowledge is
associated with applied research, i.e research aimed at solving practical problems
(Bentley et al., 2015; OECD, 2015). Technologies that strongly depend on analytic
knowledge are therefore understood to have stronger ties with the natural sciences.
While closely related, basic and analytic (or applied and synthetic) cannot be consid-
ered synonyms: basic research may occasionally produce synthetic knowledge, and
vice versa. Second, and closely related, where analytic knowledge is universal and
theoretical, synthetic knowledge is context-specific and practice related (Moodysson
et al., 2008). It is therefore expected that it is more difficult to work with synthetic
knowledge outside the context in which it was developed, that is synthetic knowl-
edge is stickier and place dependent. Third, analytic knowledge is often associated
with codified knowledge and synthetic knowledge with tacit knowledge. However,
here too, there are certainly exceptions. Not all published work is easy to fully
understand or reproduce without the aid of those that produced the work. Authors
have therefore argued that there sometimes is a tacit element to analytic knowledge
as well (Moodysson et al., 2008).

5.2.2 Technological cumulativeness

Knowledge bases can also be characterized by their ’technological cumulativeness’,
the idea that today’s technologies are developed by building on the insights from
yesterday’s technologies and will themselves be used to develop the technologies of
tomorrow (Breschi et al., 2000; Trajtenberg et al., 1997). Perspectives on the ex-
act meaning of technological cumulativeness however vary, for an overview of this

1In this research we will mostly focus on the distinction between analytic and synthetic knowl-
edge.
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discussion we refer to (P. Persoon et al., 2021). In this work, we understand a tech-
nological development to be cumulative when a later technological result depends on
an earlier technological result. In the context of technological knowledge, we broadly
interpret this dependency as the usage, modification or improvement of earlier ideas.
In this line of thinking, we understand the knowledge base of a technology to be
more cumulative when the developments in this technology are more cumulative.
This allows us to define the cumulativeness of a technology as the extent to which
developments within this technology are cumulative. In other words, the more a
technology builds on its earlier developments, the greater its cumulativeness.

Technological cumulativeness is often mentioned as a defining characteristic of a
technological regime, which is a description of the relevant environment or circum-
stances for companies and organizations to innovate (Breschi et al., 2000; Nelson &
Winter, 1977). When a technological regime is characterized by high cumulativeness,
established parties largely dominate innovative activities and it is relatively hard for
new parties to enter. Highly cumulative technologies allow firms or organisations
to gain absorptive capacity through learning and specialization (W. M. Cohen &
Levinthal, 1990). Within a technological regime therefore, greater cumulativeness
is associated with a greater appropriability of innovation and a greater geographical
concentration of innovative activities (Malerba & Orsenigo, 1996; Malerba et al.,
1997).

In an earlier contribution, where the cumulativeness was explicitly approached as
the extent to which a technology builds on its earlier developments, we established
that the cumulativeness of a technology increases approximately linearly with the
size of its knowledge base, at a technology-specific rate (P. Persoon et al., 2021).
Especially when cumulativeness is compared across technologies, this suggests that
next to considering the cumulativeness of a technology, it will be useful to consider
the rate at which the cumulativeness increases, i.e., the cumulativeness relative to
the size of the knowledge base.

When cumulative developments stretch over longer periods of time, the prod-
ucts associated with a technology tend to become ’more complex’, meaning that the
number of interrelated (functional) parts of a product architecture increases. Tech-
nological complexity is therefore often associated with greater cumulativeness. The
complexity of technologies is in the literature however mostly approached anecdo-
tally or on a case-to-case basis, as there is no general agreement on a single objective
measure for complexity (Vaesen & Houkes, 2017).

5.2.3 Knowledge mobility

Where some types of knowledge travel easily from one place to another, other types
are bound to a certain location. In order to investigate this dimension of knowledge,
we define the knowledge mobility as the extent to which knowledge travels geo-
graphically. By geographical traveling, we mean that knowledge developed in one
location is subsequently used or applied in another location, where the two locations
are separated by a geographical distance. High knowledge mobility then corresponds
to knowledge that travels with ease to more distant locations, i.e., ’footloose knowl-
edge’. Low knowledge mobility corresponds to Knowledge that travels less easily, i.e.
’sticky knowledge’. A highly mobile body of knowledge is thus expected to travel
farther, in other words, we expect mobile knowledge to be more widespread (or less
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concentrated) than sticky knowledge.
Knowledge bases characterized by greater analyticity are expected to be more

mobile (or ’footloose’) (Asheim et al., 2011; Herstad et al., 2014). A motivation for
this first expectation is the universality and theoretical nature of analytic knowledge,
which almost per definition implies time, location, and application independence.
The context specificity and practical nature of synthetic knowledge on the contrary
make it more time, location, and application bound. Another motivation is the sup-
posed association with codified knowledge: what is written down travels easier than
know-how fixed in the minds of experts (Gertler, 2003; Lundvall & Johnson, 1994).
As mentioned earlier though, this association is also criticized. These motivations
also count when the causality is reversed: when innovative activities are fixed and
concentrated geographically, there may be less need to formalize or rationalize find-
ings because knowledge is communicated orally, developed during collaboration and
hence may remain largely tacit and fragmented. A gradual shift towards knowledge
more synthetic in nature is thus expected when engineers work close together. Like-
wise, when collaborators are forced to communicate their results at a distance, it
may stimulate them to formalize or rationalize their implicit ideas or intuitions.

Knowledge bases characterized by higher cumulativeness are expected to be stick-
ier(Herstad et al., 2014). A motivation for this second expectation is the expected
greater geographical concentration of innovative activities in technological regimes
characterized by high cumulativeness. With greater geographical concentration, we
expect the development to be less widespread and hence to travel shorter distances.
Note that this relation too can be reversed, namely that the knowledge is concen-
trated because it is sticky. Another motivation for this second expectation comes
from the association between cumulativeness and technological complexity: techno-
logically complex knowledge does not travel well (Balland & Rigby, 2017). Working
with or improving a complex system from a distance is challenging, because it be-
comes more difficult to experiment or interact with the system.

5.2.4 Knowledge dimensions of RETs

In this research, we aim to investigate how the knowledge dimensions vary for dif-
ferent Renewable Energy Technologies (RETs). While a ’technology’ can be ap-
proached or characterized from many different angles, we will in this contribution
largely focus on the knowledge properties of technologies, hence approaching the dif-
ferent RETs as distinct bodies of knowledge. The knowledge properties may cover
various aspects of the technology, for example, how the technology operates or how
it is constructed. While the purpose of the various RETs largely coincides (enable
the generation of renewable energy), the renewable energy sources that the various
RETs exploit (and thus their working principles) fundamentally differ. Following the
International Renewable Energy Agency (IRENA), we distinguish between geother-
mal, hydropower, ocean, wind, solar thermal, solar photovoltaic, and bio-energy
(IRENA, 2018). In addition, we include a number of enabling technologies allow-
ing for the storage of energy such as hydrogen technology, and three energy-related
technologies that are not entirely renewable yet may help reduce CO2 emissions: nu-
clear energy, carbon capture & storage (ccs) and clean combustion. We will provide
a more precise list of the individual RETs in the next section.

Earlier contributions have indicated that RETs generally build strongly on sci-
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entific knowledge, suggesting a highly analytic knowledge base (Ocampo-Corrales
et al., 2020). In agreement with this finding, innovative activities related to RETs
are observed to take place on ever-larger geographic scales (Garrone et al., 2014;
J. Noailly & Ryfisch, 2015). At same time the knowledge bases are known to vary
greatly across different RETs (Barbieri et al., 2020) and across energy technology in
general (Nemet, 2012). More specifically, we know there is a large variation across
RETs in the extent to which the knowledge base is science-based (Hötte et al., 2020;
P. G. J. Persoon et al., 2020). Where photovoltaics, non-fossil fuels and to some
extent fuel-cells and hydrogen technology were found to be more science-based, wind
turbines, hydroelectric and geothermal energy were found to be less science-based.
The more a RET depends on science, the more analytic its knowledge base, the
greater a knowledge mobility we expect for these technologies.

While the development of different RETs has been studied in numerous con-
tributions, it appears that the current literature lacks a systematic comparison of
the cumulativeness across different RETs. Even though the size of the knowledge
base varies across RETs, this does not automatically translate to a similar varia-
tion in cumulativeness (P. Persoon et al., 2021). The closely related technological
complexity however does appear to vary largely across RETs. Interpreting a larger
technological complexity for systems with many interdependent parts, RETs such
as wind turbines, geothermal energy, nuclear fission, and energy from sea are iden-
tified as rather complex (Huenteler, Ossenbrink, et al., 2016), more complex than
photovoltaics and non-fossil fuels.2 The variation in technological complexity sug-
gests there may be large variation across RETs in cumulativeness too (though this
needs empirical validation). As the knowledge bases characterized by high cumula-
tiveness tend to be stickier, we expect the higher cumulativeness RETs to show a
lower knowledge mobility. Taking a slightly different perspective, Binz, Tang and
Huenteler distinguish between ’complex engineered systems for specialized users’
and ’standardized mass-manufactured goods’, wind-turbines again being an exam-
ple of the former and household energy storage systems, stationary fuel-cells and
photovoltaics an example of the latter (Binz et al., 2017). Based on their findings
about photovoltaics, they expect the life-cycle dynamics of the latter group to be
more ’spatially fluid’.

Summarizing, we expect to observe greater knowledge mobility for RETs with a
stronger dependence on science and RETs characterized by lower cumulativeness.

5.3 Methodology

This section presents the methods used to measure analyticity, cumulativeness and
knowledge mobility for RETs. First, we discuss our data and present indicators for
the knowledge dimensions. Subsequently, we discuss our selection of various RETs
and present some descriptive statistics.

2In some cases the technological complexity varies with different applications of a technology.
For example for solar thermal energy, the systems in domestic use are limited to elements that
efficiently capture and store heat, and are therefore relatively simple, whereas the systems used in
power plants are typically larger, contain more different elements and have the additional features
of concentrating the heat and transforming it to electric power, making these systems far more
complex.
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5.3.1 Patents

Earlier approaches to measuring the analytic-synthetic knowledge distinction were
often based on data from questionnaires or professional occupations (Martin, 2012;
Moodysson et al., 2008; Plum & Hassink, 2012). While useful, these data are
largely an indirect measure of knowledge characteristics, because they are based on
the characteristics of the people that use or produce the knowledge, instead of the
knowledge itself. In this contribution, we aim to directly measure the knowledge
characteristics by studying codified forms of knowledge, more specifically, patent
data.

Patent data directly represent technological knowledge, containing a wealth of
detailed information about both the technological content as well as the inventor
or applicant. Furthermore, the citations in patents, both to other patents and
scientific literature, to some extent allow us to proxy knowledge connections and
flow. While patent data offer a unique opportunity to quantitatively study novel
and relevant technological knowledge development, there are also some limitations.
Not all technology is patented and not all patents represent relevant technological
developments. While acknowledging these disadvantages, we believe that for the
purpose of understanding RET development there is a great potential for patent
data.

A possible criticism of the usage of patent data to proxy the analytic-synthetic
distinction is the supposed association with the codified-tacit distinction: as patents
are codified knowledge, we risk observing analytic knowledge only. However, as men-
tioned earlier, the association with codified-tacit distinction is also criticized, and
we strongly believe that patents, a key element of engineering practices, may equally
well contain a large degree of synthetic knowledge. Our approach is, therefore, that
within codified knowledge, there may be different degrees of analytic knowledge.
More specifically in the context of technological knowledge, the more a body of cod-
ified knowledge can be associated with scientific activity, the greater we will interpret
its degree of analytic knowledge.

Finally, we shortly comment on the geography of patents. In this research we
will do a separate analysis for patents from the EPO (European Patent Office) and
the USPTO (United States Patent and Trademark Office), henceforth ’EP patents’
and ’US patents’ respectively. There are two reasons for this choice. First, different
patent offices, but in particular EPO and USPTO, have institutionalized different
rules for citation, hence limiting the analysis of knowledge connections to one patent
office may give biased results. Second, an applicant files a patent with an office if
there is market potential in the geographical jurisdiction of that office. As we are
interested in the worldwide geography of innovation, we do not want to limit the
analysis to a single geographical jurisdiction.

5.3.2 Indicators

For the analysis of analyticity, we will mostly use the scientific character of this type
of knowledge. To proxy for a given technology the dependence on science and the
scientific content of the knowledge base we define the following indicators:

• The science dependence(sd) of a technology is defined as the average number
of references to scientific literature per patent. A reference in a patent to
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a scientific source can be interpreted as a dependency link, suggesting that
scientific knowledge was somehow relevant in the content of the patent. The
more scientific sources a patent therefore refers to, the more we expect it to
be science-based. We therefore take the science dependence as an indicator of
analytic knowledge.

• The science dependence fraction(sdf) of a patent is defined as its number of
references to scientific literature divided by its total number of references.
To obtain the sdf of a technology, we take the sdf of each patent in that
technology and take the average. Hence where the sd is based on the absolute
number of references, the sdf is based on the relative number of references, thus
taking into account variation across patents and technologies in the number
of references. A similar indicator was earlier used in (Hötte et al., 2021; Hötte
et al., 2020).

• The university fraction(uf) of a technology is defined as the number patents
in that technology for which the inventor or applicant is university3 affiliated
divided by the total number of patents in that technology. When the inventor
is affiliated with a university, we expect the patent to be based more on scien-
tific knowledge than the average patent from non-scientific organizations. We
therefore take the university fraction to be an indicator of analytic knowledge.

To proxy the cumulativeness we will use

• The internal dependence(id) of technology is defined as the average number of
internal references per patent. An internal reference is a reference in a patent to
a patent within the same technology, which can be interpreted as a dependency
link from the technology to itself. Cumulativeness can be interpreted as the
extent to which a technology builds on itself. This indicator was earlier used
in (P. Persoon et al., 2021). For an approach based on general references, we
refer to (Apa et al., 2018).

• The internal dependence fraction(idf) of a patent is defined as its number of
internal references divided by its total number of patent references4. To obtain
the idf of a technology, we take the idf of each patent in that technology and
take the average. Hence where the id is based on the absolute number of
references, the idf is based on the relative number of references, thus taking into
account variation across patents and technologies in the number of references.

• The relative internal dependence(rid) of a technology is defined as the inter-
nal dependence of that technology relative to its total number of patents, or
equivalently, the number of internal references per patent squared. As ex-
plained earlier, the internal dependence tends to increase linearly with the
number of patents. When we compare technologies with a different number
of patents or when we are interested in the rate at which the cumulativeness
increases, it is therefore useful to additionally consider the cumulativeness per
patent.

3As we will see later it more correct to speak of university-related organizations
4Alternatively, we can also include the references to scientific and/or other sources in this total.

However, in this contribution we choose to define it as a fraction of patent references only, so that
we can consider it to be independent of the sdf
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For the knowledge mobility we define the following indicators:

• The inter-patent distance(ipd) of a technology is defined as the average geo-
graphic distance between each pair of patents within that technology. From
the inventor or applicant addresses in patents we can create an overview of the
approximate5 locations of inventing. The mutual distances between patents
can thus be used to proxy the geographical spread of inventing in a certain
technology.

• The reference distance(rd) of a patent is defined as the average geographic
distance between that patent and the (set of) patent(s) it refers to6. The
reference distance of a technology is defined as the average reference distance
per patent. Where the inter-patent distance proxies the geographical spread,
it does not directly proxy the possible knowledge flow between distant places.
With the reference distance we therefore additionally consider the kilometers
covered by references to obtain a better estimate of the actual movement of
knowledge. Note however that the reference distance also includes references
to other technologies, thus to some extent also measuring the knowledge flow
of other technologies.7

Note that all of these indicators can be determined for technologies (i.e. groups
of patents) and a selection of these indicators can also be determined on the level
of individual patents. In the first part of our analysis, we will use the indicators
acting on the level of individual patents to establish a baseline and demonstrate
more general relations between analyticity, cumulativeness and knowledge mobility
(where the patents are not necessarily confined to the considered technologies).

This analysis is mainly based on data from Patstat (spring 2020 edition) focusing
on European and US patents. As a consequence, there are a number of subtleties
involved with the actual measurement of the indicators:

1. We count as a ’patent’ each unique DOCDB patent family, where an ’EP
patent’ represents each unique family with an EPO patent application and
likewise for ’US patent’ but then for USPTO applications8.

2. To identify the references to scientific literature we use the type ’s’ classification
of the cited non-patent-literature (NPL), which signals articles in journals and
periodicals. Where in Patstat the NPL appears to be classified rather well for
EP patents, for the US patents the large majority of NPL, probably due to a
lacking of rich structure in references, is classified in the general category ’a’
(abstract of no specific kind). To obtain a better indication of which fraction
of the cited NPL is actually scientific, we use the database by Marx and Fuegi
(Marx & Fuegi, 2020) which links the references in patent applications to
scientific publications and is accurate for US patents.

5That is approximate, as there is no guarantee the actual process of inventing took place at the
mentioned address

6We take the reference distance of a patent which does not refer to any other patent to be
undefined

7Excluding the references to other technologies can be demonstrated to result in an indicator
very closely related to the inter-patent distance

8The Patstat records of USPTO applications are biased to granted patents before the year 2000.
As our focus is not on the time development we expect this to be a minor issue for our purpose
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3. To identify the inventors or applicants affiliated with a university we use the
automatized sector allocation in Patstat of persons (Magerman et al., 2006;
Van Looy et al., 2006). This classification however allows an applicant to
be allocated to multiple sectors. For the university fraction, we include each
patent where at least of one the allocations is the ’UNIVERSITY’ sector. We
therefore also include organizations closely related to the university, making it
more correct to speak of ’university-related organizations’.

4. To link the patents to geographical coordinates we use the ’Geocoding of world-
wide patent data’ database (shortly ’Geocoding’) constructed by Rassenfosse,
Kozak, and Seliger (de Rassenfosse et al., 2019) based on the applicant or
inventor addresses. The Geocoding database is limited to first filed patent ap-
plications, which we linked back to patent families using Patstat. This research
is based on the Geocoding table with inventor addresses. Yet, as the makers
of the database acknowledge, disambiguation of inventors and applicants is
generally challenging and a research task on its own. Indeed a quick compar-
ison with the table bases on applicant addresses does not seem to amount to
substantially different results.

5. The addresses of inventors of EP patents are not necessarily confined to Eu-
rope, and likewise for US patents and the US. The typical reference distance
of a EP patent with an inventor from the US however structurally differs from
that with an inventor from Europe: the reference distance is location-specific.
While these variations are expected to average out when the number of patents
in a technology is large, this effect may be disproportional for technologies with
a smaller number of patents. To demonstrate this effect, we determine the ref-
erence distance from EP patents with US inventors and vice versa and compare
these to the reference distances of EP (US) patents with European (US) in-
ventors in Appendix 5.B. To account for this effect, when we determine the
reference distance of EP patents we sub-select the patents with an inventor
in Europe. Likewise, when we determine the reference distance of US patents
we sub-select the patents with an inventor from the US. These sub-selections
contain for most of the technologies considered the majority of patents. Note
that, while we sub-select patents based on the location of the inventor, the
references in these may still be to patents from inventors located anywhere in
the world.

5.3.3 Technology selection and descriptive statistics

We base our selection of energy generating technologies on the set of renewable
energy sources identified by the International Renewable Energy Agency IRENA
(IRENA, 2018)), including geothermal, hydropower, ocean, wind, solar, and bioen-
ergy. As mentioned earlier, these energy-generating technologies are complemented
with a set of technologies relating to energy storage and a set of technologies that
may not be considered fully renewable but nonetheless help reducing greenhouse gas
emissions, such as nuclear energy, clean combustion, and carbon capture and stor-
age (ccs). For an overview see Table 5.3.1. To identify the patents associated with
these (partial) RETs we use the Cooperative Patent Classification (CPC) used by
both EPO and USPTO, or more specifically the CPC tagging scheme ’Y02’ which
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0.04 1491

Figure 5.3.1: Worldwide distribution of photovoltaics US patents based on inventor
or applicant address We plot the number of US patents per grid-cell for a grid defined for
each longitudinal and latitudinal half degree. The scale chosen for the color coding of the cells is
logarithmic (see scale-legend).

0.0625 241

Figure 5.3.2: Worldwide distribution of wind turbine US patents based on inventor or
applicant address Similar to Figure 5.3.1, except for adjusting the color scale (the maximum is
here 241 patents).

identifies technologies with the potential to mitigate climate change (Veefkind et al.,
2012). Each of these RETs corresponds then to a collection of patents classified on
the group or subgroup level in CPC. The various technologies and corresponding
CPC descriptions are shown in Table 5.3.1, including the symbols which represent
them in later figures. Note that a substantial number of EP and US patents are
members of the same patent family, hence there is a substantial overlap between
both data sets.

In Table 5.3.2 we include the descriptive statistics for a number of indicators
discussed in the previous section. All of these indicators are only positive and
characterized by distributions skewed towards the value zero, which is in line with
the observation that the standard deviations are of the same order as the averages.
The variation across technologies is substantial, especially across the analyticity and
cumulativeness indicators. The science dependence of non-fossil fuels is much higher
than that of the other RETs. This is in line with earlier findings (Hötte et al., 2020;
P. G. J. Persoon et al., 2020) and may be related to the strong link of non-fossil
fuels to fields such as (Applied) Microbiology, Biochemistry, and Molecular Biology.
While we will measure and plot the indicator values for non-fossil fuels, we will not
include it in data fits and statistical analysis.

To explore the geographical distributions of inventive activity in RETs world-
wide, we use the geographical coordinates to plot the number of US patents (using
the inventor or applicant address in the patents) in a grid defined for each longitu-
dinal and latitudinal half degree. We do this for photovoltaics and wind-turbines
respectively in Figures 5.3.1 and 5.3.2. Because the patenting activity is distributed
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Technology CPC description CPC code EP US in
patents patents common

Geothermal Energy Y02E 10/1 495 1088 240

Hydro Energy Y02E 10/2 1865 6223 1159

Energy from the sea, e.g.
using wave energy or salinity

gradient
Y02E 10/3 1228 2624 902

Solar thermal energy, e.g.
solar towers Y02E 10/4 5425 11247 3034

Photovoltaic energy
(photovoltaics) Y02E 10/5 14947 31490 12492

Wind energy (wind turbines) Y02E 10/7 10112 16454 7471

Combustion technologies
with mitigation potential

(clean combustion)
Y02E 20 4956 7646 3575

Nuclear fission reactors Y02E 30/3 1337 4325 1038

Technologies for an efficient
electrical power generation,
transmission or distribution

(electric grids)

Y02E 40 2171 4031 1718

Technologies for the
production of fuel of

nonfossil origin (non-fossil
fuels)

Y02E 50 6310 9625 4548

Energy storage using
batteries, capacitors, thermal

or mechanical systems.
Y02E 60/1 8858 17502 7166

Hydrogen Technology Y02E 60/3 4029 7307 3220

Fuel cells Y02E 60/5 3501 7254 3152

Carbon capture and storage
(ccs) Y02C 3791 6297 3091

Table 5.3.1: Symbols, CPC codes and total number of patents of selected RETs To the
CPC descriptions we added for some technologies a shortname (in brackets). The final column
indicates the number of EP and US patents of which the family is the same.
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Table 5.3.2: Descriptive statistics of main indicators Note that all presented indicators are
averages, the standard deviations are included in brackets. The units of the science and internal
dependence are in reference/patent. All of the considered indicators are positive values only and
highly skewed to zero. As explained earlier in Section 5.3.2, the reference distance is determined
for a sub-selection of the patents.
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highly unevenly (a small number of areas producing the majority of patents), we
chose a coloring following a logarithmic scale. We observe some variation between
the figures, Germany and France innovating strongly in photovoltaics, while Den-
mark focusing more on wind turbines. The main observation, however, at least
on a global scale, is that the geographical distributions of innovative activities are
fairly similar, even for rather different technologies such as photovoltaics and wind
turbines. In fact in a ranking of countries by the total number of US patents, see
appendix 5.A, the US, Japan and Germany are consistently in the top 5 for each
RET considered in this research (and France for all but 3 RETs). For EP patents,
these countries likewise dominate each top 5. Together these four countries account
for 76 and 58 respective percentages of the US and EP patents (for RETs). This is
in line with the findings of earlier literature considering energy technology in general
(Bointner, 2014). The uneven distribution is not due to our choice for counting at
the country level. When instead consider spatial the level below countries (corre-
sponding to the ’name_1’ level in the Geocoding database), we again see the same
regions or locations recurring: California, New York, Tokyo, Bayern and Baden-
Württemberg rather consistently dominate in the top 10 locations with most patents
for each considered RET. An important part of the knowledge base development of
RETs therefore appears to take place in a small number of dominant areas. Together
with the similarity of the worldwide geographical distributions, these are relevant
descriptive statistics: it indicates that despite the obvious location-boundness of
the application of specific RETs (hydro energy near rivers, photovoltaics in sunny
locations, wind turbines near windy locations, etc.), the development of the knowl-
edge base of these RETs still largely occurs in dominant areas which work on the
development of all RETs at the same time.

5.4 Results

We will start this section by exploring the general relations between the analyticity,
cumulativeness and the knowledge mobility, where we consider a general data set of
patents. We then focus the analysis on the considered RETs, thereby discussing the
various relations between indicators both qualitatively and quantitatively. Following
the first expectation in Section 5.2, we expect to observe a positive relation between
analyticity and knowledge mobility. Following the second expectation in Section 5.2,
we expect to see a negative relation between the cumulativeness and the knowledge
mobility.

5.4.1 General relations between knowledge dimensions

We will first explore some general relations between on the one hand the knowledge
mobility and on the other hand analyticity or cumulativeness of knowledge. We
explore these relations using the indicators that are defined on the level of individual
patents: the science dependence fraction (sdf), the internal dependence fraction (idf)
and the reference distance (rd). In the following analysis we include all EP and US
patents for which a reference distance could be determined. One exception is the
analysis of the US sdf: there we include, due to calculation challenges, a random
selection of 20 percent of all such patents. As explained in Section 5.3.2, we sub-
select those EP patents for which the inventors are from Europe and those US
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Figure 5.4.1: Science dependence fraction, reference distance and number of patents
We divide the sdf into exponential bins (base 1.25) and determine for each bin the average rd
(left panel) and the normalized cumulative number of patents (right panel). Note the sdf axes are
logarithmic, hence the exponential bin sizes are constant in this plot. For sdf bins lower than 0.5
we observe a positive relation between the sdf and rd.

patents for which the inventor is from the US. To calculate the idf, the internal
references are determined using within CPC-group references.

In Figure 5.4.1 we divide the sdf in exponential bins and plot the average rd
(left panel) and number patents (right panel) for each bin. We observe in the left
panel that the rd increases with increasing sdf for both EP and US patents (though
more strongly for EP patents). Not included in these figures are the many patents
for which the sdf is zero (7.0 · 105 EP patents and 2.8 · 105 US patents, respectively
6.4 and 2.0 times the total number of EP and US patents in Figure 5.4.1). The
average rd of these zero sdf patents are 4114 km for EP patents and 3380 km for
US patents, which are similar values to those in the lowest sdf bins in Figure 5.4.1
and therefore in accordance with the observed relation. Even though the reference
distance appears to go down for large sdf for both the EP and US patents, we
note from the right panel that there are relatively few patents with an sdf> 0.5 (to
be precise respectively 4 and 8 percent of the total EP and US patents). For the
majority of the patents it therefore counts, in line with expectation, that the greater
the sdf, the greater the rd. In other words, greater analyticity can be associated
with greater knowledge mobility.

In Figure 5.4.2 we divide the idf in bins of constant size and plot the average rd
(left panel) and cumulative number of patents (right panel) for each bin. We clearly
observe that the rd decreases when the idf decreases (illustrated also by the linear
fits). This is the case almost over the entire range of the idf. A minor exception
are the US idf values < 0.15. As is clear from the right panel, however, there are
relatively little patents in this range. As the right panel in Figure 5.4.2 illustrates,
most of the patents have mid-range idf values, although there are relatively many
patents with idf equal to one (counted in the bin with the largest idf value). As
the left panel illustrates, the average rd of the patents in this bin is however in
line with the observed pattern. We therefore conclude, in line with expectation,
that the greater the idf, the smaller the rd. In other words, greater technological
cumulativeness can be associated with lesser knowledge mobility
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Figure 5.4.2: Internal dependence fraction, reference distance and number of patents
We divide the idf into bins of constant size (0.01 for US and 0.02 for EP patents) and determine
for each bin the average rd (left panel) and the normalized cumulative number of patents (right
panel). For the rd linear fits are included, which indicate a negative relation between the idf and rd.
Because the idf is a fraction, we observe small breaks in the right panel for highly frequent values
such as 1/2 and 2/3.

5.4.2 Knowledge relations of RETs

Where in the previous section we discussed the general relations between knowledge
dimensions based on a general data set of patents, we will in the following analyze
these relations specifically considering the RETs. We will first qualitatively discuss
the relation between on the one hand a knowledge mobility indicator and on the
other hand either an analyticity or cumulativeness indicator. Subsequently, we will
consider these relations more quantitatively, where we determine the correlations
and estimate some models.

In Figure 5.4.3 we plot the rd for the sdf for both the EP patents (left) and the
US patents (right). The main observation for both graphs is a positive relationship
between both quantities which is well fitted by a linear relation. We refer to Table
5.3.1 for a legend of the icons and the short-names of the technologies. The sdf
of non-fossil fuels can be observed to be exceptionally large, which is, as discussed
earlier, not included in these and later fits. It is therefore also challenging to compare
the rd of this technology to the rest. It appears the values of the other technologies
do allow for comparison however, and in line with expectation, technologies such as
wind turbines, geothermal, hydro, solar thermal and energy from sea show relatively
low rd, whereas photovoltaics, fuel-cells, energy storage and hydrogen technology
show relatively large rd. Nuclear fission, ccs, clean combustion and electric grid
technology are somewhat in between these two groups. Using Table 5.3.1, we note
that technologies with a large number of patents (wind turbines, solar thermal,
photovoltaics, fuel-cells) occur on both ends of the spectrum. It seems therefore
that sheer numbers of patents, often a proxy for the size of the knowledge base,
are not sufficient to explain the observed relation. In Figure 5.4.4 we instead plot
the inter-patent distance (ipd) for the university fraction (uf). The positive relation
from Figure 5.4.3 remains largely unchanged, the technologies we find upper right
(down left) in Figure 5.4.3 also tend to be in the upper right (down left) of Figure
5.4.4. This indicates that the variation across RETs in the considered knowledge
dimensions is consistent for the different indicators for these dimensions. A closer
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Figure 5.4.3: Reference distance for science dependence fraction On the left we display EP
patents and on the right US patents. See Table 5.3.1 for a legend of the icons. Non-fossil fuels is
excluded in the linear fit.

look reveals some minor variations. The differences between the EP and US patents
in Figure 5.4.3 are relatively large in particular for wind turbines and fuel cells. In
Figure 5.4.4, these differences are relatively less. This suggests that the ipd indicator
may be more uniform between EP and US patents. We discuss the rd variations
(and in particular those of wind turbines and fuel cells) in more detail in a part
of Appendix 5.B. Especially for the US patents, the uf of nuclear fission and clean
combustion is relatively low in Figure 5.4.4 as compared to their sdf in from Figure
5.4.3. This suggests that the knowledge base of these technologies, while retaining
a scientific component, is to a lesser extent developed in universities. While there
are these minor differences, for most technologies the overall pattern is in agreement
with Figure 5.4.3, again confirming that the technologies that build stronger on
science also tend to show greater knowledge mobility.

Next, we plot the ipd for the internal dependence (id) in Figure 5.4.5. The main
observation is a negative relationship between both quantities which is rather well
fitted by a negative logarithmic relation (note the horizontal axis is logarithmic).9
This is in line with the expected negative relation between knowledge mobility and
technological cumulativeness. The only technology defying this pattern, both for
EP and US patents but especially US patents, appears to be photovoltaics, which
despite a relatively large id, shows great ipd. In an earlier contribution however, we
already demonstrated that the internal dependence tends to increase linearly with
the number of patents (P. Persoon et al., 2021). Photovoltaics consists of far more
patents than the other RETs (especially for US patents), which possibly explains
the exceptional value for the internal dependence in this context. Alternatively, we
may therefore consider the cumulativeness relative to the size of the knowledge base,
which we measure by the relative internal dependence (rid) in Figure 5.4.6. In that
figure the value of photovoltaics indeed shifts both for the EP and US patents to
the left, in better agreement with its large value for the ipd. We observe a similar

9We may also take the log of the ipd and instead fit a power relation, the results will be largely
comparable.
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Figure 5.4.4: Inter-patent distance for the fraction of university patents On the left we
display EP patents, on the right US patents. See Table 5.3.1 for a legend of the icons.
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Figure 5.4.6: Inter-patent distance for the relative internal dependence On the left we
display EP patents, on the right US patents. Note the horizontal axis is logarithmic. See Table
5.3.1 for a legend of the icons.

shift for wind turbines, though to a lesser extent, which is in line with expectation
given its shorter ipd. Other than these changes the pattern is largely similar to the
one in Figure 5.4.5.

Finally, note in both Figure 5.4.5 and 5.4.6 that the values for non-fossil fuels are
more or less in line with the rest of the technologies, where earlier for the science de-
pendence its values were rather exceptional. This therefore presents an extra reason
for considering both the science dependence and internal dependence: an exceptional
value for the former need not automatically imply an exceptional value for the latter.
We will not plot all possible combinations between the indicators we consider, yet for
completeness, we include in Figure 5.4.7 the Pearson correlation coefficients of each
combination and whether or not this combination is statistically significant. We
conclude from Figure 5.4.7 that all correlation coefficients, most of which are sub-
stantial, have the expected sign: all analyticity indicators have positive signs with
knowledge mobility indicators and all cumulativeness indicators have a negative sign
with all knowledge mobility indicators. Especially the analyticity indicators show
strong correlations with the knowledge mobility indicators. As expected the corre-
lations between indicators of the same knowledge dimension are generally strong.
One exception is the relative internal dependence (rid), which despite strong cor-
relations with knowledge mobility indicators does not correlate strongly with other
cumulativeness indicators. Interestingly, the rid does not (anti)correlate strongly
with analyticity indicators either, which suggests its relation to the knowledge mo-
bility is to some extent independent of the other indicators. We also observe this for
internal dependence (id) of the European patents. To follow up on this suggestion,
we will finally consider the possibility to model the knowledge mobility as a linear
combination of an analyticity indicator and a cumulativeness indicator. Again we
will not present here all such possible linear combinations here in detail, there are
simply too many, but instead share our general conclusions and include two exam-
ples (Table 5.4.1). As we only consider 13 technologies, i.e. 13 data points, it does
not make much sense go much further than combinations of 2 variables. We will
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Figure 5.4.7: Mutual correlations between indicators On the left we display the correlations
for EP patents, on the right for US patents. rd=reference distance, ipd=inter-patent distance,
sdf=science dependence fraction, sd=science dependence, uf=university fraction,idf= internal de-
pendence, id=internal dependence, rid=relative internal dependence. Each circle represents a mu-
tual relation, the size and color of which represent the Pearson correlation coefficient. When a
cross is included the relation is not significant on a 0.1 level. Non-fossil fuels are excluded while
determining these correlations.

first discuss this for the EP patents and then for the US patents.
When we model for the EP patents the internal patent dependence (ipd) as a

linear combination of any given analyticity and any given cumulativeness indicator,
the performance of the model in terms of minimizing the residual standard error
and maximizing the Pearson correlation squared (R2) is much better than for the
case where all these indicators are individually considered as predictors. One spe-
cific example is given in Table 5.4.1(left panel), where the EP ipd is modeled as a
linear combination of the sdf and rid. The residual standard error (548.6) is much
lower than that in a model with only the sdf (662) or the rid (724). The found
R2 = 0.72, corresponding to a Pearson coefficient of R = 0.85, is also greater than
the R values in Figure 5.4.7 for ipd-sdf and ipd-rid. When we take linear combi-
nations of only analyticity or only cumulativeness indicators to model the ipd, this
only results in a better model in half of the cases. This therefore indicates it makes
sense to consider the analyticity and cumulativeness as independent factors relating
to the knowledge mobility. As Figure 5.4.7 already indicates, the EP patent refer-
ence distance very strongly correlates with most of the analyticity indicators, which
is difficult to improve considering extra indicators. For the EP rd, we therefore
only find very few combinations which present better models than the indicators
considered individually.

When we model the knowledge mobility indicators for the US patents as a linear
combination of indicators we reach similar conclusions. We find for both knowledge
mobility indicators that any combination between the rid and any analyticity indi-
cator result in a better model than when the indicators are considered individually
(again judged on the basis of the residual standard error and R2). We present one
example in Table 5.4.1 (right panel), where we model the US rd as a linear combi-
nation of the US sdf and US rid. The found residual standard error (207.4) is much
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Dependent variable:

ipd EP patents

sdf EP patents 8,548∗∗
(2,826)

rid EP patents −225,936∗∗
(91,980)

Constant 4,726∗∗∗
(302)

Observations 13
R2 0.72
Adjusted R2 0.66
Residual Std. Error 548.6 (df = 10)
F Statistic 12.8∗∗∗ (df = 2; 10)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Dependent variable:

rd US patents

sdf US patents 3,490∗∗
(1,521)

rid US patents −112,047∗∗
(45,023)

Constant 3,535∗∗∗
(180)

Observations 13
R2 0.67
Adjusted R2 0.61
Residual Std. Error 207.4 (df = 10)
F Statistic 10.2∗∗∗ (df = 2; 10)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 5.4.1: Examples of regression outcomes for linear models We present the results of
two regressions, one for EP patents (left panel) and one for US patents (right panel). On the left,
we choose the ipd as the dependent variable and the sdf and rid as independent variables, where we
also allow a constant term. On the right, we choose the rd as the dependent variable instead. Note
there are 13 data points as we exclude non-fossil fuels.

smaller than that in a model with only the sdf (251) or only the rid (244). Also the
found R2 = 0.67, corresponding to R = 0.82, is greater than the R values in Figure
5.4.7 for rd-sdf and rd-rid. We note that this is largely due to the success of the
rid. It is not directly clear why this indicator, as compared to the other cumula-
tiveness indicators, performs much better for the US patents. At least it underlines
the need to consider multiple indicators to describe these knowledge dimensions.
Only one combination (sd & sdf) of either considering only analyticity indicators or
only cumulativeness indicators can be evaluated as a better model than considering
the indicators individually. This again indicates that especially the combination of
a cumulativeness indicator and an analyticity indicator results in a better model,
thus confirming the earlier assertion that the science and internal dependence are
complementary indicators, both relating to the knowledge mobility.

In sum, while there is considerable variation across different RETs in terms of
knowledge mobility, this variation is to some extent explained by their variation
in analyticity and cumulativeness, thus in line with the expectations of Section 5.2.
We can distinguish rather consistently a collection of footloose RETs (photovoltaics,
energy storage, and fuel cells) characterized by relatively high analyticity and low
cumulativeness, from a collection of sticky RETs (energy from sea, wind-turbines,
geothermal, hydro, and solar thermal energy) characterized by relatively low ana-
lyticity and high cumulativeness.

5.5 Discussion

In this research, we established a close relationship between the analyticity, cumu-
lativeness and the knowledge mobility of technology in general and in particular
for various RETs. In this section, we discuss several deeper theoretical aspects and
limitations of our approach.
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First, our results suggest that analyticity and cumulativeness are two distinct
characteristics of a knowledge base, in the same way that technological cumulative-
ness and building on scientific knowledge are two distinct mechanisms for technolog-
ical change. While both the science dependence and internal dependence strongly
relate to the knowledge mobility, we find that they are largely independent indica-
tors, i.e., that a high value for the one need not imply a low value for the other. A
comprehensive approach to the mechanisms underlying knowledge mobility there-
fore should not be limited to analyticity or technological cumulativeness but should
instead treat these as complementary.

Second, we emphasize our focus is on technological cumulativeness in this re-
search, i.e. studying the relevance of technological knowledge to later technological
knowledge. This is not to mean scientific knowledge is not cumulative: ’scientific
cumulativeness’ should however be studied in the context of science building on sci-
ence. Neither does it imply technology does not influence science: where technology
provides science with the necessary instruments, science provides technology with
the necessary analytical knowledge.

We can also identify a number of limitations to our research. Our focus in this
contribution is on the knowledge aspects of technology, though we acknowledge that
there may be many more factors determining the geographical development of a
technology, perhaps most importantly the (prospective) market valuation of that
technology. For a more inclusive perspective we refer to (Binz & Truffer, 2017).
Furthermore, earlier contributions have argued that, while geographical distance re-
mains an important or possibly the most important metric to measure knowledge
mobility (Caragliu & Nijkamp, 2016), a more comprehensive approach additionally
includes a number of other metrics, based on, for example, organizational, insti-
tutional or cognitive proximity (Boschma, 2005). Recognizing this criticism, we
performed additional analyses with alternative distance measures, such as the frac-
tion of references staying with a region or country and the Herfindahl index of the
distribution of patents over regions and countries. In both cases, however, the results
were challenging to interpret, especially since we only considered 13 technologies.
Where the fraction of references within region or country suggested contrary results
for regions and countries, the Herfindahl index showed contrary results for EP and
US patents (and showed some scaling with the number of patents, which further
complicated matters). To keep this contribution simple, we excluded a detailed
discussion of these results.

5.6 Conclusions and policy implications

This paper contributes to the literature on local and global innovation systems
through a systematic empirical analysis of the extent to which Renewable Energy
Technologies (RETs) can be characterized as sticky or footloose (Binz & Truffer,
2017). It illustrates the relationship between the spatial innovation dynamics of
technologies and characteristics of the knowledge base of these technologies, such
as the extent to which this knowledge base is analytic (the ’analyticity’) and the
extent to which it is cumulative (the ’cumulativeness’). The tendency of technology
to be spatially sticky or footloose can be systematically approached using concept
of knowledge mobility, that is, the extent to which knowledge travels geograph-
ically. After empirically confirming, for general technology, the positive relation
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between analyticity and knowledge mobility and the negative relation between cu-
mulativeness and knowledge mobility, we investigate these relations in more detail
for various RETs. We find, in line with theoretical expectations, that the RETs
with high analyticity, low cumulativeness knowledge bases (photovoltaics, fuel-cells,
energy storage and hydrogen technology) show a greater knowledge mobility than
those with low analyticity, high cumulativeness knowledge bases (wind turbines,
geothermal, solar thermal, hydro energy and energy from sea). We will refer to the
former group with ’analytic RETs’ and the latter group with ’cumulative RETs’.
Comparing non-fossil fuels to the other RETs is challenging, as its dependence on
analytic knowledge appears to be exceptionally strong.

Our findings lead to a number of recommendations for decarbonizing strategies
and policies. For the transition from general R&D stimulating and technology-
neutral subsidy schemes to more mission-oriented science and technology policies,
a deep understanding of the knowledge characteristics of the considered technology
is key. As RET in general depends strongly on analytic knowledge, stimulating sci-
entific research appears to be an effective and targeted measure to stimulate RET
development. However, in this work, we have demonstrated that there is also sub-
stantial variation across different RETs in various knowledge dimensions, and that
this variation across RETs can be used to more effectively target the development
of these RETs. More precisely, we have demonstrated that we can distinguish be-
tween analytic and cumulative RETs. Where the development of the former allows
for easier entry and more flexibility in choosing locations, the development of the
latter may be relatively harder to enter and is limited to locations providing the
necessary synthetic knowledge. To encourage the development of analytic RETs in
particular, policymakers may focus more on strengthening scientific activity. To en-
courage the development of cumulative RETs in particular, policy mixes focusing on
system building are needed to stimulate the local presence of synthetic knowledge.
In sum, our results call for policies that are more RET specific, taking into account
the variation across RETs in various knowledge dimensions, which relate predictably
to spatial dynamics of innovation.
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Table 5.A.1: Country rankings of EP RET patents We denote the countries by their alpha-2
letter codes and include the number of EP patents.
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Table 5.A.2: Country rankings of US RET patents We denote the countries by their alpha-2
letter codes and include the number of US patents.

5.B Reference distances of inventors in and outside
Europe and US

In this appendix, we discuss the effect of considering the reference distance of patents
where the inventor is located (far) away from the jurisdiction of the patent office,
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Figure 5.B.1: Reference distance for science dependence fraction On the left we display
EP patents of which the inventor is from the US and on the right we display US patents of which
the inventor is from EP. See Table 5.3.1 for a legend of the icons.

for example EP patents with a US inventor (Figure 5.B.1 left panel) or US patents
with a EP inventor (Figure 5.B.1 right panel).

In Figure 5.B.1, the relation between the science dependence fraction and the
reference distance again appears to be positive, be it more irregular than the earlier
observed relations. However, there are also a number of differences with Figure
5.4.3. The most striking difference is that the reference distance of the US patents
in 5.B.1 are much greater. The reference distances can therefore be concluded to
partly depend on the location of the inventor. If we would have included the US
patents from Figure 5.B.1 in Figure 5.4.3, this would especially affect the reference
distance (which is an average over all patents) of technologies with lower numbers
of patents. Another striking difference is that the positive relation between science
dependence fraction and reference distance is for the EP patents a lot steeper in
Figure 5.4.3 than in Figure 5.B.1. This might be a result of the following. There
are generally more US patents and inventors than EP patents and as a consequence,
the US patents are cited relatively often. The reference distances of an EP inventor
referring to a US inventor are much larger than that of US inventor referring to
a US inventor. There may therefore be less variation in the reference distance of
US inventors, because even when they apply for a EP patent (i.e. Figure 5.B.1 left
panel), they may still be citing US inventors relatively often. Finally, we note some
typical differences on the level of individual technologies. Where wind turbines has
a relatively high reference distance in the left panel of Figure 5.B.1 (as compared
to both the right panel and Figure 5.4.3). This indicates that the EP wind turbine
inventors refer to patents from inventors close to home (most likely within Europe)
whereas the US wind turbine inventors tend to refer to patents from inventors far
from home (most likely Europe). This may illustrate a European lead in the wind
turbine innovative activities. We see the reverse relation with fuel cells, of which
the reference distance in the left panel of Figure 5.B.1 is relatively low as compared
to Figure 5.4.3. In the right panel, its the reference distance is actually relatively
large, indicating a US innovative lead for this technology.
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Conclusions and research
implications

Humanity has in many ways benefited from technological development and the func-
tioning of society has come to strongly depend on various technological solutions.
These technological solutions have however introduced problems of their own, of
which the problem of global warming caused by the continuous emission of green-
house gases is arguably most imminent and impacting. Ironically, technology is at
the same time expected to partially solve this issue. This applies in particular to
the replacement of Fossil Fuel based Energy Technologies (FFETs) by Renewable
Energy Technologies (RETs). Most policies attempt to encourage the development
of RETs through demand stimulation measures. While these policies work well to
create a level-playing field for RETs that are (almost) market-ready, their influence
on the development of novel and early-stage technologies is less clear. Coming up
with policies that instead act on the level of knowledge development and specifically
target RET development, hence including novel and early-stage RETs, is however
not trivial, and in the first place requires a deep understanding of these technologies
and the scientific and technological knowledge they build on, i.e. their ’knowledge
base’. By studying various dimensions of the knowledge base of RETs, this research
aims to generate insights that may form a useful evidence base for developing or
modifying these policies.

In this research, I focused on three relevant knowledge base dimensions. The
first dimension I focused on is the extent to which a technology depends on scientific
knowledge, also referred to as the ’science dependence’. Technological development
is intricately related to scientific development, yet the strength of the interaction
varies across technologies. A concept closely related to the science dependence is
the ’science base’, which is a more detailed overview of the specific scientific dis-
ciplines on which a technology builds. Technologies however also build on earlier
technological knowledge, their development is ’cumulative’. Therefore, the second
dimension I focused on is the extent to which a technology depends on its earlier
development, also referred to as ’technological cumulativeness’. Finally, the third
dimension I focused on is the extent to which the knowledge a technology builds on
travels geographically, also referred to as the ’knowledge mobility’. Other than the
first two dimensions, which can be considered as knowledge intrinsic properties, the
knowledge mobility can to a significant degree be considered a property of the users
and producers of that knowledge. Therefore, I expected the knowledge mobility
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to depend on the other two dimensions. In this research, I developed methodolo-
gies to study the science base and technological cumulativeness, and systematically
compared these to the knowledge mobility of various RETs.

6.1 Main research conclusions

In the first part of this research, I focused on the question: what is the science base
of RETs and how does it differ from that of FFETs? To answer this question, I
developed a methodology to study the science base of a technology, which allowed
me to identify characteristic differences between both types of energy technologies.
I found that RETs generally have a more substantial science base and draw on a
more diverse set of scientific disciplines. On average, the science on which RETs
build is more recent, less applied, and is published in journals with a higher WOS
Journal Impact Factor. However, while the previous findings hold for the average
of all RETs, for different RETs (e.g., photovoltaics, wind turbines, and non-fossil
fuels), I observed much more variation across these dimensions than for different
FFETs (e.g., combustion and gas turbines). Furthermore, the broad spectrum of
sciences on which RETs build largely includes the smaller spectrum on which FFETs
build.

In the second part of this research, I focused on the question: how can technologi-
cal cumulativeness be identified and measured? To answer this question I performed
an in-depth theoretical and empirical analysis of cumulativeness in the context of
technological knowledge. I interpreted a development to be cumulative when a later
invention builds on an earlier invention. When this development takes place within a
given technology, the technology is understood to develop cumulatively. The cumu-
lativeness of a technology is therefore characterized by the structure of its knowledge
base (how knowledge flow connects inventions), which is different from, but closely
related to, the size of its knowledge base (the number of inventions). Based on
various perspectives appearing in the literature, I further distinguished between cu-
mulativeness in two dimensions. The transversal dimension measures to what extent
a technology builds on earlier knowledge at a given step of the development. The
longitudinal dimension measures to what extent the intermediate steps of develop-
ment form sequences of developments, i.e. to what extent there is a continuous chain
of developments. To develop a better understanding of how cumulativeness develops
along these two dimensions I approached technology as a body of knowledge consist-
ing of interlinked inventions, i.e. a network approach. Following a highly simplified
model of the search process that inventing engineers undertake, I derived a set of
elementary rules describing how inventions are connected by knowledge flow. Using
these rules, I analytically derived that the cumulativeness along both dimensions
approximately increases proportionally with the size of the knowledge base, at a
rate that may vary across technologies.

Empirical tests of the above ideas, using patent data, confirmed this proportional
relation and indicated that the rate varies considerably across technologies. At the
same time, I found that across technologies, this rate is inversely related to the rate
of invention over time. This suggests that the cumulativeness increases relatively
slow in rapidly growing technologies. I also found the empirical distributions for both
the transversal as well as the longitudinal dimension of cumulativeness are in good
agreement with the predicted distributions for these dimensions, and that likewise,
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the mutual relation between both dimensions agrees with analytical expectations.
This is not a trivial result, as both dimensions are theoretically very different. There
are some consequences to this finding concerning the practicality of the indicators,
as the cumulativeness along the transversal dimension is typically a lot easier and
faster to calculate. The transversal dimension may hence provide a way to obtain
a relatively quick estimate of a technology’s cumulativeness, though I emphasize
again this conclusion is based on observing a limited number of technologies, and
that more research is required before general validity can be safely assumed. Finally,
I also found that my cumulativeness measurements of a set of various technologies
are largely consistent with other cumulativeness measurements of the same technolo-
gies appearing elsewhere in the literature, which were determined using a different
methodology.

In the third part of this research, I focused on the question: how can the metrics
based on network paths be generalized to study cumulative knowledge structures?
The commonly used metrics, such as network distance and diameter, are often based
on the shortest paths in a network, yet for the study of cumulative knowledge struc-
tures, it makes sense to consider the longest, or all unique paths instead. To answer
this research question, I studied the theoretical path length distributions of the
longest and all unique paths, which could subsequently be used to calculate the
metrics. Using the Price model as a starting point, in which the in-degree is con-
stant as usual, I derived an exact solution for the path length distribution of all
unique paths from a given initial node to each node in the network. This led me
to the conclusion that, where a stronger cumulative advantage effect fundamentally
slows down path length growth, a greater average in-degree of the network on the
contrary accelerates path length growth. Using this distribution I calculated the
expected path length, which as a metric can be considered analogous to the average
network distance based on the shortest paths. Where, for a non-zero cumulative
advantage effect, the average network distance based on the shortest paths is known
to increase with the log log number of nodes, I found that the expected path length
increases with the log number of nodes, with a pre-factor which is greater for larger
in-degree, yet smaller for a stronger cumulative effect. Furthermore, in a generaliza-
tion of the Price model, where I allowed the in-degree to increase with the number of
nodes, the cumulative advantage effect was found to play a crucial role in maintain-
ing logarithmic path length growth. I demonstrated that, without the cumulative
advantage effect, the expected path length would already increase linearly with the
number of nodes for a linearly increasing in-degree. For a non-zero cumulative ad-
vantage effect, linear expected path length growth is only attained when the number
of nodes increases very fast, namely exponentially.

As the collection of all unique paths may contain many redundancies, I addition-
ally considered the subset of the longest paths to each node in the network. As this
case is more complicated, I only approximated the longest path length distribution
in a context where the cumulative advantage effect is ignored. Where the num-
ber of all unique paths of a given length grows unbounded, the number of longest
paths of a given length converges to a finite limit, which depends exponentially
on the given path length. The distributions of all unique paths and the subset of
longest paths are therefore rather different, and this distinction should be carefully
taken into account in research approaches to cumulative structures. More generally,
my research demonstrated that to meaningfully apply metrics based on the longest
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and/or all unique paths in studies of cumulative knowledge structures, it is crucial
to take into account network properties such as the cumulative advantage effect and
in-degree.

In the fourth part of this research, I focused on the question: how do different
RETs vary with respect to science dependence and cumulativeness, and how does
this relate to their knowledge mobility? To answer these questions I determined
for an extensive group of RETs both the science dependence and technological cu-
mulativeness and systematically compared this to the knowledge mobility of their
knowledge base. Theoretical considerations relate the knowledge mobility positively
to the analyticity of the knowledge base (which closely relates to the science de-
pendence) and negatively to the cumulativeness of a knowledge base. After having
confirmed these relations for general technology, I found that, while several RETs
(photovoltaics, fuel cells, energy storage) indeed have a highly analytic knowledge
base and indeed develop more widespread, there are also important RETs (wind
turbines, solar thermal, geothermal, and hydro energy) for which the knowledge
base is less analytic and which develop less widespread. Likewise, the technological
cumulativeness tends to be lower for the former than for the latter group.

More generally, these results demonstrate the use and relevance of studying
knowledge bases to better understand how intrinsic properties of technological knowl-
edge characterize technologies and affect the economics and geography of techno-
logical development. Where technological development is sometimes considered a
’black box’ in economics, these results show that the way people invent and the un-
derlying knowledge structures allow for systematic study, which may lead to useful
insights for policies aiming to steer technology development. More precisely, I have
demonstrated that there are important variations in the economics and geography
of individual RET development, which arise as a result of characteristic variations
in the knowledge base properties of these individual technologies. Knowing these
variations is therefore of great relevance to policies aiming to specifically strengthen
RET development.

6.2 Policy implications

Many countries and organizations have policies in place to increase the share of
renewable energy sources in their total energy mix. Most of these policies make use
of demand stimulating measures. Although these policies can be expected to create
a level-playing field for RETs that are (almost) market-ready, their influence on the
development of novel and early-stage RETs is less clear. The insights created in
this study may be helpful for the design of policies that instead directly stimulate
knowledge development specifically for RETs, thus including the development of
novel or early-stage RETs. Note that such policies, while in the first place fostering
more robust and long-term development of RETs, would still positively affect the
diffusion of RETs.

For such policies, it is important to understand what distinguishes the knowledge
development in RETs from that in other technologies. The answer is perhaps less
exciting: that depends. It depends in the first place on which technologies the
RETs are compared to and in the second place on the particular RET it is focused
on. When I compared RETs overall to FFETs overall, I found that the former
build relatively stronger on scientific knowledge than the latter. This suggests that
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policies promoting scientific research in general (and basic, high-impact science in
particular) are expected to lead to a strengthening of RETs. Yet when I considered
RETs and FFETs individually, I found far more variation in the science dependence
for the different RETs than for the different FFETs. In fact, I found that a number
of important RETs, such as wind turbines and geothermal energy, have a science
dependence that is on the same level as most FFETs. Therefore, instead of asking
what characterizes the science dependence of RETs, it may make more sense to
ask what characterizes the science dependence of FFETs (the answer being that is
relatively low).

I reached a similar conclusion when I considered the spectra of scientific disci-
plines RETs and FFETs build on. Where the spectrum of scientific disciplines RETs
build on is very broad, that of FFETs is rather thin, consisting only of a small num-
ber of disciplines. Again, therefore, it appears to be more difficult to characterize
the science base of RETs than that of FFETs. For policymakers, it is however im-
portant to take into account that the broader spectrum of scientific disciplines RETs
build on encompasses the smaller spectrum FFETs build on (and oftentimes RETs
depend even stronger than FFETs on key disciplines for FFETs). Reducing support
to specific scientific disciplines is therefore not likely to be a successful policy for
promoting RETs as a replacement for FFETs or for accelerating the phasing out of
FFETs.

While policies promoting scientific research in general may therefore lead to an
overall strengthening of RETs, it should be taken into account that these policies
may, intentionally or unintentionally, have a disproportionate effect on different
RETs. As it is to some extent possible to identify scientific disciplines particularly
relevant for specific RETs, it would make more sense for such policies to specify a
particular set of RETs they aim to strengthen and subsequently stimulate research
in the scientific disciplines relevant to that set of RETs.

When I instead considered the technological cumulativeness of RETs I arrived
at a similar conclusion. For this dimension too, it is challenging to characterize
the knowledge base of RETs, as again, considerable heterogeneity was found across
different RETs. Policies aiming to encourage entry or diversification into specific
RETs (which is generally more difficult when their cumulativeness is higher) are
therefore advised to take into account the cumulativeness of these specific RETs and
should be aware that there may be alternative RETs for which the cumulativeness
is rather different. However, in case there is no real choice as to which RET to go
with, such policies should take into account the specialized and often location-bound
knowledge that the development of highly cumulative technologies requires.

Finally, when I considered the knowledge mobility of RETs, I observed, for the
third time, considerable variation across different RETs. Moreover, this variation
across RETs agreed rather well with theoretical expectations based on the variation
in science dependence and cumulativeness. I concluded, therefore, that the RET
knowledge dimensions vary as they would for technology in general, which suggests
that the variation in knowledge dimensions for different RETs is in fact not ex-
traordinary or unusual. Altogether, therefore, it turns out to be challenging to give
a typical characterization of the RET knowledge base, as the considerable hetero-
geneity across different RETs results in substantial variation across all considered
knowledge base dimensions. If one should insist on a characterization, then per-
haps it is exactly this heterogeneity that characterizes the knowledge base of RETs.
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I therefore repeat the general advice to policymakers to make a well-considered
choice for a particular set of RETs and accordingly design a specific science and
technology policy to strengthen the development of this particular set of RETs.

To guide policymakers through the heterogeneity of RETs, I end this section with
typification based on the variation across knowledge mobility, cumulativeness and
science dependence. On the one hand, there are type I RETs, characterized by high
science dependence, low cumulativeness, high knowledge mobility, and high rates of
invention of time. Most of these characteristics count for photovoltaics, non-fossil
fuels, general technologies for energy storage, fuel cells, and hydrogen technology.
On the other hand, there are type II RETs, characterized by low science dependence,
high cumulativeness, low knowledge mobility, and low rates of invention over time.
Most of these characteristics count for wind turbines, geothermal, solar thermal,
hydro energy, and energy from sea. I stress that this typification is not exhaus-
tive for all RETs and that there are exceptions (for example high cumulativeness
does not automatically imply low science dependence). This typification however
may provide a starting point for policies aiming to stimulate a subgroup of RETs,
as science-enhancing policies may be more effective for type I RETs and are less
location bound, but stimulating type II RETs may require long term investments
in developing local specialized technological knowledge. Assuming that novel or
early-stage RETs can consistently be typified using intrinsic knowledge base prop-
erties, the typification may further be useful in quickly setting up targeted policies
to accelerate the development of these technologies.

6.3 Implications to further research

In the following, I will first mention how a number of my findings can be useful
for future knowledge bases research. Second, I discuss a number of remaining open
problems that touch the nature of knowledge development on a deeper level.

This study required in the first place the development of methodologies to de-
termine the science base and the cumulativeness of a technology. Under the premise
that similar data is available for other technologies, the approach I chose can be
applied equally well to those other technologies and in that sense provides a gen-
eral framework for future studies. It would for example be interesting to study the
knowledge bases of other upcoming, potentially high-impact technologies such as
artificial intelligence, robotics or genetic modification. Researchers aiming to use
these methodologies are strongly recommended to approach the science base and
cumulativeness from various angles, using multiple indicators. The discussion about
the diversity of the science base in Chapter 2 pointed out that, while some quan-
titative indicators, such as the Shannon entropy, provided relatively quick insights,
a more qualitative analysis involving the various scientific disciplines substantially
nuanced the insights provided by these indicators. Likewise, for the cumulativeness
dimension, I emphasized the need to complement the measurement of the absolute
cumulativeness of a technology with the cumulativeness relative to the size of its
knowledge base.

My research also demonstrated the importance of considering both the cumula-
tiveness and the science dependence when researching the knowledge base of a tech-
nology. The theoretical association between the science dependence and analytic
knowledge might lead one to associate cumulativeness with synthetic knowledge,
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which would suggest that high analyticity implies low cumulativity. My research
however indicated that the science dependence and cumulativeness are largely in-
dependent (at least for RETs) thus representing rather distinct properties of the
knowledge base. As both dimensions associate (the first positive, the second nega-
tive) with knowledge mobility, considering both of them substantially increases the
explanatory potential. Especially for studies interested in the geography of a devel-
oping technology, it is therefore vital to analyze both the science dependence as well
as the cumulativeness.

6.3.1 Open problems

Finally, I discuss three somewhat puzzling findings that would be worth further
research. The first of these findings concerns the nature of the inventive process.
Starting from a simple search model which is essentially a series of trial and error,
I derived a geometric distribution for the number of backward links per invention,
which I also observed rather convincingly in patent data. Because of the trial and er-
ror nature of the process, it does not matter how many errors the inventor has already
undergone, the probability to succeed on the next trial stays the same, (a property
sometimes referred to as ’memorylessness’) and overall, the case of succeeding at
once remains most probable. However, considering that inventions are created in
process of (re)combining existing pieces of knowledge (Arthur, 2009; Fleming, 2001;
Fleming & Sorenson, 2001), I would expect the number of possible combinations of
existing inventions to play a role in these dynamics. If each combination is equally
likely to crystallize into a real invention, this would suggest that the inventor is
more likely to succeed for some ideal number of combined elements greater than 1.1
This idea is attractive, as it would for an increasing number of inventions automat-
ically lead to an expected number of combined elements which develops linear with
the total number of elements, (something which I observed). However, the above
essentially describes a binomially distributed number of backward links, which is
something I did not observe. The fact that I obtained stronger evidence for a ge-
ometric distribution suggests therefore that the mechanism of combination plays a
lesser role than it is often expected, or at least that there is a special type of com-
bination at play, which for example only allows a small subset of the combinations.
It remains an open problem how exactly the memoryless geometric distribution can
be reconciled with the nature of invention as a basic recombinative process.

A second somewhat puzzling finding in my research concerns the negative relation
I found between the cumulativeness rate (i.e. the pace at which the cumulativeness
increases for the number of inventions) and the rate of inventions over time in Chap-
ter 3. This seems to contradict the intuition that, when technological developments
quickly succeed one another in time, the cumulativeness increases extra fast. The
hypothesis in this work was that, when a technology develops rapidly, many different
people work on it at the same time, causing them to specialize in different sub-fields
of the technology. This fragments the technology and causes its development to be
less linear (instead of a single line of development, there are multiple). This linearity
may be greater when a small group of inventors continues to build on its own work
over a long period of time, thus resulting in a relatively stronger cumulative devel-

1For example, when there are a total of 6 elements to recombine, there are 15 ways to combine
2 elements, 15 ways to combine 4 elements, yet 20 ways to combine 3 elements.
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opment. While this indeed predicts a greater cumulativeness rate for a lower rate
of invention over time, the empirical analysis I did does not allow me to verify this
specific hypothesis. It therefore remains unclear whether this explanation indeed
applies or whether there is perhaps some other mechanism at work.

A third somewhat puzzling finding in my research concerns the linear growth I
observed both for the transversal as well as the longitudinal dimension of cumulative-
ness in Chapter 3. As was rigorously demonstrated in Chapter 4, these dynamics can
only take place in case there is no cumulative advantage effect (note the transversal
dimension is then associated with the in-degree and the longitudinal dimension with
the expected path length). However, other contributions have indicated that the
cumulative advantage effect likely plays a role in networks of technological knowl-
edge (Érdi et al., 2013; Valverde et al., 2007). This brings me to the conclusion
that either it differs per technology whether the cumulative advantage effect plays
a role, or there are yet other effects at play that accelerate path length growth.
This remains an open question for now. One of such mechanisms may be an ’aging
effect’, in which inventions gradually lose relevance, thus making it more likely that
new inventions build on recent inventions. For future path length research, it would
therefore be interesting to explore if such effects can additionally be implemented,
which may not be a straightforward task.
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Nederlandse samenvatting

Eén van de belangrijkste maatregelen om klimaatverandering wereldwijd tegen te
gaan is de vervanging van Fossiele Brandstof gebaseerde Energie Technologie (FET)
door Hernieuwbare Energie Technologie (HET). Beleid dat zich tot doel stelt de
ontwikkeling van HET te bevorderen kan profiteren van een diepgaand begrip van
de kennisbasis van HET, dat wil zeggen, de kennis die nodig is om HET te ontwikke-
len. Binnen een kennisbasis kunnen meerdere kennisdimensies bestudeerd worden.
Een eerste relevante dimensie is de mate waarin die kennis voortbouwt of afhanke-
lijk is van wetenschappelijke kennis, ik noem dit de ’wetenschaps-afhankelijkheid’.
Uiteraard bouwen technologieën ook op technologische kennis, de ontwikkeling van
technologie is in essentie ’cumulatief’. Een tweede relevante dimensie van de ken-
nisbasis van een technologie is daarom de ’technologische cumulativiteit’, de mate
waarin het voortbouwt op eerdere technologische kennis ontwikkeld binnen dezelfde
technologie, dat wil zeggen, voortbouwt op zichzelf. In dit proefschrift ontwikkel ik
methodologieën om de wetenschapsbasis en de cumulativiteit te meten en pas deze
toe op de kennisbasis van HET.

Het eerste gedeelte van dit onderzoek is toegewijd aan een gedetailleerde anal-
yse van de wetenschappelijke kennisbasis en wetenschaps-afhankelijkheid van beide
FET en HET, waarbij speciale aandacht wordt besteed aan de verschillen tussen
deze. De wetenschapsbasis van HET is substantieel groter dan die van FET, en
bestaat uit een diversere groep wetenschapsgebieden. De wetenschap waar HET op
bouwt is gemiddeld recenter, minder toegepast van aard en gepubliceerd in weten-
schappelijke tijdschriften met een hogere impact factor. Wel merk ik op dat verschil-
lende HETen (bijv. fotovoltaïsche cellen, windturbines en niet-fossiele brandstoffen)
sterk variëren in de genoemde wetenschapsdimensies, sterker dan de verschillende
FETen (bijv. verbrandingstechnologie, gasturbines). Ik observeer dat de weten-
schapsgebieden waar HET op bouwt de wetenschapsgebieden waar FET op bouwt
grotendeels omvat.

Het tweede deel van dit onderzoek is toegewijd aan een diepgaande theoretis-
che en empirische analyse van technologische cumulativiteit. Ondanks het feit dat
dit concept over het algemeen van groot belang wordt geacht, verschillen de per-
spectieven op het concept, waardoor niet altijd duidelijk is welke rol cumulativiteit
nu werkelijk speelt in kennisontwikkeling, en hoe dat verschilt per technologie. In
dit onderzoek karakteriseer ik cumulativiteit door de structuur van de kennisbasis
(bestaande uit de kennisverbindingen tussen uitvindingen). Dit is iets anders dan
-maar is wel gerelateerd aan- de grootte van die kennisbasis (bestaande uit het aan-
tal uitvindingen). Mijn benadering van de kennisbasis als een netwerk stelt me in
staat om indicatoren te definiëren die de cumulativiteit meten. Aan de hand van
een simpel model van kennis zoekende uitvinders, kan ik een recht-evenredig ver-
band afleiden tussen de cumulativiteit en de grootte van de kennisbasis, waarbij de
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sterkte van dit verband technologie afhankelijk is. Empirische testen van deze aan-
pak, gebruikmakende van octrooi-data, verifiëren deze recht-evenredigheid en wijzen
uit dat de sterkte van het verband substantieel varieert voor verschillende technolo-
gieën. Tegelijkertijd vind ik dat deze variatie in sterkte omgekeerd gerelateerd is
aan de hoeveelheid uitvindingen die gedaan worden per tijdseenheid voor die tech-
nologie. Dit suggereert dat cumulativiteit relatief langzaam groeit in technologieën
die zich relatief snel ontwikkelen.

Het derde deel van dit onderzoek gaat dieper in op de vraag hoe netwerk paden
en het concept padlengte gebruikt kunnen worden om cumulatieve kennis struc-
turen te bestuderen. Uitgaande van het Price model van netwerkgroei, leid ik een
exact oplossing af voor de padlengte distributie van alle unieke paden vanaf een
oorspronkelijke node naar alle andere nodes in het netwerk. Daarbij bestudeer ik
de relatieve invloeden van de gemiddelde netwerkgraad en het cumulatieve voordeel
effect en introduceer ik een generalisering voor een toenemende netwerkgraad. Ik
stel daarbij vast dat het cumulatieve voordeel effect de groei van padlengte sub-
stantieel afremt. Omdat we verwachten dat de verzameling van alle unieke paden
een groot aantal redundanties bevat, beschouw ik daarnaast specifiek de subverza-
meling van alle langste paden van de oorspronkelijk node naar alle nodes in het
netwerk. Aangezien het analytisch beschrijven van deze subverzameling een stuk
uitdagender is, volsta ik in dit geval met een benadering van de padlengte distribu-
tie, waarbij de netwerkdynamiek tot een minimum is versimpeld. Ik toon aan dat,
waar het aantal unieke paden van een gegeven lengte ongelimiteerd groeit, het aan-
tal langste paden van een gegeven lengte een bovenste limiet heeft. Deze limiet
hangt exponentieel af van de gegeven padlengte. Fundamentele netwerk eigenschap-
pen en dynamische effecten bepalen daarom mede hoe cumulatieve structuren in
kennisnetwerken tot stand komen, en moeten daarom binnen beschouwing genomen
worden in studies naar die cumulatieve structuren.

In het vierde deel van dit onderzoek bepaal ik voor een uitgebreide groep HETen
beide de wetenschaps-afhankelijkheid en de cumulativiteit. Verder vergelijk ik deze
systematisch met de kennismobiliteit van de respectievelijke kennisbases. De kennis-
mobiliteit meet hoe ver technologische kennis geografisch reist. De kennismobiliteit
wordt positief geassocieerd met de analyticiteit van de kennisbasis (een begrip nauw
gerelateerd aan mate van afhankelijkheid van wetenschap) en negatief geassocieerd
met de cumulativiteit van de kennisbasis. Ik identificeer aan de ene kant een be-
langrijke groep HETen (fotovoltaïsche cellen, brandstofcellen, technologie voor en-
ergieopslag) met een behoorlijk analytische kennisbasis en (inderdaad) een substan-
tiële kennismobiliteit, en aan de andere kant een belangrijke groep HETen (wind-
turbines, zonnewarmte-, aardwarmte- en waterkracht technologie) met een minder
analytische kennisbasis en (inderdaad) een kleinere kennismobiliteit. Verder is, in
de lijn der verwachting, de cumulativiteit lager voor de eerste dan voor de tweede
groep.

De eerdergenoemde karakteristieken van de HET kennisbasis hebben een aan-
tal consequenties voor beleid dat zich tot doel stelt de ontwikkeling van HET te
bevorderen. HET bouwt over het algemeen significant sterker op wetenschappelijke
kennis dan FET. Om die reden verwacht ik dat beleid dat wetenschap in het alge-
meen stimuleert, en in het bijzonder wetenschap met een hoge impact-factor en van
een meer fundamentele aard, leidt tot een versterking van HET ontwikkeling ten
opzicht van FET ontwikkeling. Tegelijkertijd is er behoorlijke heterogeniteit tussen
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verschillende HETen in de afhankelijkheid van wetenschap en cumulativiteit, welke
op karakteristieke wijze relateren aan andere dimensies zoals de kennismobiliteit en
het aantal uitvindingen gedaan per tijdseenheid. Dit pleit daarom voor regionaal
beleid dat specifiek is voor een specifieke HET, waarbij er rekening gehouden wordt
niet alleen met het type kennis waar de HET op bouwt, maar ook met de vraag of
deze kennis lokaal aanwezig is en hoe moeilijk het is een eventuele achterstand in te
lopen.
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