

On efficient temporal subgraph query processing

Citation for published version (APA):
Zhu, K. (2021). On efficient temporal subgraph query processing. [Phd Thesis 1 (Research TU/e / Graduation
TU/e), Mathematics and Computer Science]. Eindhoven University of Technology.

Document status and date:
Published: 09/11/2021

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/9d9e796e-575f-4f2d-a963-afe0d291aebb

On Efficient Temporal
Subgraph Query Processing

by

Kaijie Zhu

On Efficient Temporal Subgraph Query Processing by Kaijie Zhu

A catalogue record is available from the Eindhoven University of Technology Library

ISBN:978-90-386-5368-6

SIKS Dissertation Series No. 2021-24
The research reported in this thesis has been carried out under the auspices of SIKS,
the Dutch Research School for Information and Knowledge Systems.
Keywords: Temporal graph, network generation, modeling, concurrent set

size, temporal join, temporal clique, checkpoints, query processing,
database system

Printed by: Ipskamp Printing

Copyright © 2021 by Kaijie Zhu

On Efficient Temporal
Subgraph Query Processing

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Technische
Universiteit Eindhoven, op gezag van de rector magnificus
prof.dr.ir. F.P.T. Baaijens, voor een commissie aangewezen

door het College voor Promoties, in het openbaar te
verdedigen op dinsdag 9 November 2021 om 11:00 uur

door

Kaijie Zhu

geboren te Zhuzhou, China

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van
de promotiecommissie is als volgt:

Voorzitter: Prof.dr. Johan J. Lukkien
1e Promotor: Prof.dr. George H.L. Fletcher
Copromotor: Dr. Nikolay Yakovets
Leden: Prof.dr. Boudewijn van Dongen

Prof.dr. James Cheng (Chinese University Hong Kong)
Prof.dr. Toon Calders (Antwerp University)
Prof.dr. Hamamache Kheddouci (Lyon 1 University)

Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven is uitgevo-
erd in overeenstemming met de TU/e Gedragscode Wetenschapsbeoefening.

To my wife, parents, supervisors, friends, colleagues, and all the people I
sincerely concern

Table of Contents

Summary . ix

1 Introduction . 1
1.1 For expressiveness: temporal subgraph query 3
1.2 For efficient processing: query selectivity 6
1.3 Research questions . 7
1.4 Contributions . 10
1.5 Thesis overview and organization 11

2 Background . 15
2.1 Common notations . 15

2.1.1 Data model . 15
2.1.2 Query model . 18

2.2 Network modeling . 20
2.3 Benchmark resources . 21

2.3.1 Real-world datasets 21
2.3.2 Synthetic generator 22

2.4 Query processing . 23
2.4.1 Topological predicates 24
2.4.2 Temporal predicates 24
2.4.3 Temporal subgraph query 25

3 Modeling of temporal networks . 27
3.1 Motivation . 27
3.2 Problem statement . 28
3.3 Contributions . 29
3.4 Characteristics in real-world networks 29

3.4.1 Characteristics of topological structure 30
3.4.2 Characteristics of temporal structure 31
3.4.3 Our observation for CSS 33

3.5 Proposed method: competition-driven model 34

v

3.6 Theoretical analysis . 38
3.6.1 Cardinality . 38
3.6.2 Relative degree . 41

3.7 Experiments . 43
3.7.1 Setup . 43
3.7.2 Results and Analysis 47

3.8 Chapter summary . 53

4 Processing of temporal predicates 59
4.1 Motivation . 59
4.2 Problem statement . 60
4.3 Contributions . 61
4.4 Baseline: EBI and FS algorithms 62
4.5 Methodology . 63

4.5.1 Framework on query processing 63
4.5.2 Proposed method I: CE-EBI 65
4.5.3 Proposed method II: CE-gFS and CE-bgFS 69
4.5.4 Challenge . 71
4.5.5 Proposed method III: STI algorithm 75

4.6 Optimization: checkpointing 78
4.6.1 Problem statement 79
4.6.2 Data-aware strategies 80
4.6.3 Workload-aware strategies 84

4.7 Experiments . 86
4.7.1 Setup . 87
4.7.2 Results and Analysis 88

4.8 Chapter summary . 95

5 Processing of temporal subgraph query 97
5.1 Motivation . 97
5.2 Problem statement . 99
5.3 Contributions . 100
5.4 Methodology following TP 100

5.4.1 Proposed method: TIME algorithm 100
5.4.2 Optimization . 103
5.4.3 Challenge . 106

5.5 Methodology following T&P 108
5.5.1 Local notations . 108
5.5.2 Baseline: Leapfrog triejoin 109
5.5.3 Proposed method: Leapfrog TSRJOIN 111

vi

5.5.4 Optimization . 119
5.6 Experiments . 125

5.6.1 Setup . 125
5.6.2 Results . 127

5.7 Chapter summary . 133

6 Conclusion . 135
6.1 Research summary . 135
6.2 Future works . 136

6.2.1 Temporal network modeling 136
6.2.2 Temporal-predicate processing 137
6.2.3 Temporal subgraph query processing 138

Bibliography . 139

List of Figures . 145

List of Tables . 149

List of Acronyms . 151

Acknowledgments . 153

Curriculum Vitæ . 157

Publications . 159

SIKS Dissertations . 161

vii

Summary

Graph-structured data (i.e., networks) is becoming increasingly ubiquitous
across various application domains. Dominant examples include social net-
works, transportation networks, communication networks, citation networks,
knowledge graphs, chemical databases, and biological networks. Time, as a
data attribute, commonly occurs in many contemporary graph datasets. For
example, in a social network, interactions between participants only hold at
particular times. In transportation networks, each vehicle trip is associated
with a start time and an end time. A common way to extract valuable infor-
mation from graph data is through execution of subgraph(-matching) queries.
This makes the investigation of efficient processing methods for subgraph
queries to be of great interest to data scientists. Prior studies, however, have
primarily focused on optimization of queries which are constrained only by
topology such as edge labels, value predicates, and join predicates. In recent
years, several works have also focused on queries constrained by both topology
and time. Query processing approaches proposed in these studies, however,
are mostly straightforward extensions of the approaches used to study non-
temporal queries and primarily focus on leveraging selectivity of topological
predicates in a query. Since they neglect to fully consider temporal factors,
these studies fail to capture the significant impact of temporal predicates on
query processing and generally prove to be inefficient.

In this thesis, we study efficient processing of temporal subgraph queries,
i.e., queries constrained by both topology and time. Motivated by the need
to fully understand this problem, we start by developing approaches that aim
to accurately model the underlying temporal and topological characteristics of
real-world networks. With better understanding of the behavior of real-world
networks, we are able to capture the most important factors which affect tem-
poral query selectivity. With this, we develop a family of algorithms that focus
on efficient processing of temporal query predicates. These algorithms form
the core of our novel processing approaches for general temporal subgraph
queries. Based on careful theoretical analysis and experimental evaluation,
we show that our proposed methods outperform the state of the art by a wide
margin. Summarizing, the main contributions in this thesis are as follows:

• Modeling of temporal networks. The aim is to provide the insights into
real-world networks as a foundation for further investigation in query
processing. We study the characteristics of real-world networks and
propose a network modeling approach. Our proposed model can cap-

ix

ture important network characteristics that prior studies did not consider.
Moreover, our model can be used as a benchmark to generate realistic
temporal networks in various applications. Our theoretical analysis and
experimental evaluation demonstrate that our approach results in a con-
trollable benchmark that can efficiently simulate real networks.

• Processing of temporal predicates. Temporal-predicate processing in
our investigated query can be realized as a problem of temporal k-clique
enumeration, i.e., to find all k-sized subsets of edges jointly overlapping
in time. To the best of our knowledge, this general problem has never
been studied or identified before. We first propose an improved frame-
work for temporal-predicate processing. With our framework, the state
of the art in an interval join problem (i.e., finding all the pairs of overlap-
ping tuples from two relations) can be easily adjusted to our problem and
the resulting methods are much less complex than straightforward pro-
cessing. Next, based on a careful analysis of these adjusted approaches,
we propose a novel method to overcome the shortcomings of previous
approaches and improve processing efficiency, especially in very large
datasets. Then, we develop checkpoint mechanisms to further speed up
query processing in our proposed approach. Specifically, we discuss
four checkpointing strategies and highlight their benefits. Experimental
evaluation demonstrates that our new approaches can provide efficient
temporal-predicate processing, which lays a solid foundation for effi-
cient temporal subgraph query processing.

• Processing of temporal subgraph queries. Since existing studies pri-
marily focus on leveraging the selectivity of network topology, we de-
termine that it is important to focus our investigation on the relatively
neglected impact of the selectivity of time predicates in a query. We
first propose a processing approach which follows “time then topology”
pipeline and focuses on leveraging the temporal selectivity. Then, based
on a careful analysis of the proposed approach, we propose a second
processing approach which follows “time and topology” pipeline and
focuses on leveraging the selectivity of both time and topology. Exper-
imental evaluation demonstrates that our proposed methods outperform
current methods by a wide margin at a small additional storage cost.
In this way, we succeed in solving the efficient processing problem of
temporal subgraph queries.

1
Introduction

Graphs are widely used to represent complex real-world systems consisting
of multiple relationships (i.e., edges) among entities (i.e., vertices). Nowa-
days, numerous real-world systems are time-related. That is, the relationships
among entities can evolve over time. To represent such evolvement, a prevalent
solution is to associate the relationships with intervals recording their period of
validity. To be more specific, Figure 1.1(a) presents a graph-structured social
dataset that is time-related. The vertices represent residents in a community
while the edges represent the relationships among residents. Each edge is as-
sociated with a time interval representing its period of validity. For example,
an “employee” relationship from Alice to Billy would end on January 28th,
2019, when the company accepted Alice’s resignation. Later, a new “family”
relationship from Alice to Carl would appear on June 10th, 2019, when she
married Carl. It is important to note that multiple edges are allowed to exist
between the same pair of vertices. For example, two “neighbour” relationships
can be found from Billy to Emi, representing that Billy used to be Emi’s neigh-
bor twice. This type of representation is widely known as a temporal graph and
arises in various contemporary applications beyond the social domain. Some
illustrative examples are shown as follows.

• Transportation: Consider the road traffic in New York City. A temporal
network can be constructed where vertices represent road interactions
and edges represent the flow of vehicles in road segments. Each edge is
labeled with a status of ‘fluid’ or ‘congested’ and carries with it a time
interval representing the period of the status.

• Networking: Consider Internet traffic. A temporal network can be con-
structed where vertices represent IPs and edges represent the connec-
tions among them. Each connection is labeled with a protocol type (e.g.,
TCP, UDP) and carries a time interval representing the period of the
connection.

1

2 CHAPTER 1. INTRODUCTION

Alice Billy employee [18-2-1, 19-1-28]

Carl

fam
ily [19-6-10, 20-3-1]

David

em
pl

oy
ee

 [1
5-

7-
1,

18
-2

-1
]

friend [17-6-1,17-12-1]

neighbor [10-1-1,14-3-8] Emi

em
pl

oy
ee

 [1
8-

7-
1,

19
-6

-5
]

(a) a graph-structured social dataset

A

B C

fam
ily

em
pl

oy
ee

(b) non-temporal 2-star query Qn

A

B C

fam
ily

(c) temporal 2-star query Qt

em
pl

oy
ee

 IAB overlaps IAC

 [19-6-1, 19-6-30]

neighbor [16-6-1,18-8-1]neighbor [18-6-10, 19-5-10]

family [19-5-12, 19-10-26]

Fred
fa

m
ily

 [1
1-

3-
11

,1
2-

2-
1] fam

ily [12-4-1,13-5-1]

Gray em
ployee [14-1-9,14-5-4]

Figure 1.1: Examples of (a) temporal graph, (b) non-temporal subgraph query, and
(c) temporal subgraph query. Note that the red and green-colored subgraphs are both
matches of (b). However, only the green-colored subgraph is a match of (c).

• Collaboration: Consider cases of scientific collaboration over the past
few decades. A temporal network can be constructed where vertices rep-
resent the authors and edges represent the collaborations among them.
Each edge carries an interval representing the period of collaboration.

Database systems have been widely used for decades to store and manip-
ulate real-world data. Query, where the users’ desire for data manipulation is
formalized in query language, is one of the most important interfaces provided
by database systems. In recent years, the functionality of database systems has

1.1. FOR EXPRESSIVENESS: TEMPORAL SUBGRAPH QUERY 3

been developed in two important directions: First, following SQL:2011 [1]
standard, database systems have started to provide support for temporal data.
Specifically, records in a database system are allowed to be associated with
intervals to represent their valid periods. Various operations such as tempo-
ral join and temporal aggregation have been studied to support the query for
temporal data. Second, advances in the data model have stimulated the devel-
opment of graph databases (e.g., Neo4j [2]), in which graph-structured data
can be stored and manipulated. All these developments provided the possibil-
ity and support for the storage and manipulation of temporal graphs.

With the recognized graph representation and support from database sys-
tems, graph analysis has attracted great interest as a key to the understand-
ing of real-world systems. Subgraph query processing has emerged as an
important graph analysis operation for capturing the often hidden underlying
structures in real-world graphs. However, prior studies have primarily focused
on queries constrained by only topological predicates (i.e., non-temporal sub-
graph queries). Such queries search for non-temporal matches of specified
subgraphs, but fail to provide pathways for the structural exploration of real-
world systems since they do not incorporate temporal information. Though
several studies have been conducted on processing queries constrained by both
topological and temporal predicates (i.e., the temporal subgraph query), they
primarily follow the processing pipeline of non-temporal subgraph queries
without investigating the behavioral characteristics of queries in a temporal
context. As a result, methods proposed in these studies can be inefficient in
many scenarios.

Summarizing, though temporal subgraph query processing is a field of
great interest, it still remains to be investigated in depth. Motivated by the
great need, we will start a comprehensive investigation of temporal subgraph
query processing in this thesis.

1.1 For expressiveness: temporal subgraph query

Data scientists have demonstrated an increasing interest in using subgraph
query processing to discover and reveal interesting topologies in ever increas-
ing amounts of real-world data. Current works have primarily focused on
non-temporal subgraph queries, which aim to retrieve matches for topology
structures of interest (e.g., star, chain, triangle, clique) from graphs. Consid-
ering a query Qn “finding individuals A, B, C from social dataset such that A
works for B and A is a family member of C”, the queried topology structure in

4 CHAPTER 1. INTRODUCTION

this query can be materialized as a 2-star subgraph as shown in Figure 1.1(b).
Specifically, A is the center of the star and is attached with two out-going
edges to B and C, denoted as (A, B) and (A, C). (A, B) is “employee”-labeled
to represent a “work for” relationship while (A, C) is “family”-labeled to rep-
resent a “family of” relationship. We call the queried topology structure the
topological predicate of the query. As a result of query processing, two triples
(Alice, Billy, Carl) and (Emi, David, Carl) would be identified as the com-
plete matches of Qn in original graph. In the first match, A, B, and C in the
query are respectively mapped to Alice, Billy, and Carl. While in the second
match, A, B, and C are respectively mapped to Emi, David, and Carl. Note
that the complete matches can be realized as obtained view of original graph
by filtering irrelevant topology.

A primary demerit of the non-temporal query is its poor expressiveness.
Specifically, the query does not specify the time-related constraints, which re-
sults in matches which do not make (logical) sense since they are not filtered
according to time attributes. For example, in the first match, the “family” rela-
tionship between Alice and Carl was built up long after the end of “employee”
relationship. In the second match, however, the “family” and “employee” re-
lationships coexist in a period from May 12th to June 5th in year 2019. The
recognition of this highlights the great need for constructing more expressive
queries where filtering would be conducted in both topology and temporal as-
pects. As a result, temporal subgraph queries are proposed to retrieve time-
respecting patterns of interest from temporal graphs. Generally, they can be
viewed as the temporal extension on corresponding non-temporal subgraph
queries. Specifically, revisiting an example graph, constructed query, and our
intent, we desire to find the historical patterns which are guaranteed to be valid
at a specific time in a specified period. For this aim, we could construct the
following temporal subgraph query Qt by extending Qn to produce matches:
“finding individuals A, B, C such that, at some moment in June, A works for B
and A is a family member of C”, which is materialized in Figure 1.1(c). Com-
pared to Qn in Figure 1.1(b), IAB and IAC are used, for ease of expression,
to represent the associated time intervals of (A, B) and (A, C). The “overlaps”
is used to constrain that the interaction of IAB and IAC should be non-empty.
Obviously, the query result would only include (Emi, David, Carl) since Emi
is both an employee of David and a family member of Carl during the period
from June 1st to 5th in year 2019. The key elements of this query include :
(1) the topological structure of interest (i.e., the 2-star pattern) and (2) a time
window (i.e., the whole July), in which all edges of the chain pattern jointly
overlap in time (i.e., the temporal structure of interest). We call the temporal

1.1. FOR EXPRESSIVENESS: TEMPORAL SUBGRAPH QUERY 5

structure the temporal predicate of the query to distinguish it from the topo-
logical predicate.

In general, a temporal subgraph query looks for all embeddings of a topo-
logical structure in a temporal graph occurring in a given time window such
that all edges of the embedding form a “temporal clique”. Here “temporal
clique” emphasizes that the edges are tightly interconnected in time, in ad-
dition to satisfying the topological pattern of interest. This is in contrast to
traditional “cliques”’ in which vertices are tightly interconnected in topology.
This basic problem arises in a wide range of applications beyond the social
domain.

• In the transportation network, for traffic planning, engineers are inter-
ested in finding all traffic jams involving 4 roads that occurred on 14
April 2011 between 5 pm and 7 pm, i.e., during rush hour. In a traffic
jam, road flows should all jointly overlap in time, indicating the conges-
tions occur at a time point.

• For malicious network attack detection on the Internet, find all Denial-
of-Service attack occurring last night between 11 pm and 3 am, where
attackers, bot machines, and victims were connected at the same point
in time.

• For a deeper understanding of scientific collaborations in a bibliographic
database, find all triangles in which 3 people collaborated with each
other at the same time, at some point in time in the 1990s.

It is important to note that in all of these applications, it is not sufficient to
obtain pattern matches that overlap with the query window but do not neces-
sarily jointly occur at a given point in the window, i.e., do not form a temporal
clique. The joint overlap in time is crucial for obtaining correct query results
(e.g., a traffic jam does not happen if congestion on the roads of the chain
occurs on different days in April 2011 for different edges of the chain).

It is also important to note that being able to specify a time window (instead
of just a time point or a small fixed window size) for the search is fundamental
to the analyses in each of these applications. Indeed, the query time window
captures the period of user interest. Depending on the nature of the application,
it can range from seconds to decades. Furthermore, while it is possible to
convert the search for matches in a time window into a set of queries, one query
for each timestamp in the query window, independently solving each of these
queries leads to highly inefficient query evaluation. Indeed, such an approach
can create a tremendous amount of redundant work at each time point, which
could be shared and reused across the time points in the window.

6 CHAPTER 1. INTRODUCTION

1.2 For efficient processing: query selectivity

Big data in real-world applications motivates the need for efficient query pro-
cessing. In this thesis, we focus on efficient query processing via smart lever-
age of query selectivity. The notion “selectivity” refers to the frequency of
certain embeddings in an original graph. That is, we say an embedding has
high selectivity (or is selective) when its existence is not frequent in the graph.
In query processing, smart leverage of query selectivity can help to produce
fewer partial intermediate results and prevent the cost of manipulating irrel-
evant entities. In this way, query processing efficiency can be improved. To
be more specific, a general query processing method based on query selectiv-
ity in current database systems can be described as follows: First, the query
is decoupled into a series of selective sub-queries. Then, the sub-queries are
evaluated and concatenated in order by their selectivity until complete matches
are obtained. For non-temporal subgraph query, the decoupling is carried out
based on the selectivity of topology (e.g., edge labels, value predicates, and
join predicate). Continuing our query example Qn in Figure 1.1(b) and for
efficient processing, a 2-way join operation on the source vertices in edge can-
didates of (A,B) and (A,C) will be first executed because the query vertex A,
which is constrained by both “employee” and “family”-labeled edges, is ob-
viously more selective than B and C in the original graph. Specifically, Alice
and Billy will be returned as bindings of A. Then, the bindings of B and C
can be easily determined through an extensive search from A. In this way, the
complete matches of query Qn can be produced, which is expected to be more
efficient than a naive extensive search starting from either B or C.

For temporal subgraph queries, the selectivity of topology can be realized
as the selectivity of topological predicates. Continuing our temporal subgraph
query example Qt, the straightforward processing is to extend the above pro-
cessing of Qn. That is, for each match of Qn, we check if edges in the match
jointly overlap in time. However, we should note that this processing might
not be sufficiently efficient since the involved temporal predicates (e.g., the
joint overlapping among edge intervals) can be more selective than the topol-
ogy. Specifically, a better way to process this is to first enumerate all 2-sized
temporal cliques composed of “employee” and “family”-labeled edges in the
query window. Then, we check if the source vertices of edges in each temporal
clique can be joined. If so, the temporal clique forms a match of Qt. Since
the set of desired temporal cliques in the original graph includes only {(Emi,
David), (Emi, Carl)}, this processing is expected to be more efficient than the
straightforward processing.

1.3. RESEARCH QUESTIONS 7

To summarize, the selectivity of a temporal subgraph query can be divided
into topological selectivity and temporal selectivity based on its predicates.
Both types of selectivity can impact query processing efficiency. In this thesis,
we would consider the strategies for leveraging both topological and temporal
selectivities to achieve more efficient temporal subgraph query processing.

1.3 Research questions

Motivated by practical interest, in this thesis, we aim at the efficient tempo-
ral subgraph query processing by investigating the full leverage of selectivity
in temporal subgraph queries. However, this is not easy work since prior re-
search [3] has defined the NP-hardness of non-temporal subgraph query pro-
cessing. Futhermore, the involvement of temporal predicates would signifi-
cantly increase the complexity of query processing. Thus, our methodology
of investigation is to start from solving basic relevant questions and progres-
sively approach our final aim. Figure 1.2 presents the schematic diagram of
our specific questions that we would like to answer in this thesis.

Modeling of
temporal
networks

Processing of
topological
predicates

Processing of
temporal

predicates

Processing of
temporal

subgraph queriesQ1

Q2

Q3

Theoretical
Basis

Technical
Basis

Theoretical
Basis

Figure 1.2: Schematic diagram of our research questions. The green-colored block
demonstrates that the question has been primarily investigated in the state of the art.
Note that we would not enter a question until all its preceding questions are investi-
gated.

Modeling of temporal networks. Our first specific question is the modeling

8 CHAPTER 1. INTRODUCTION

of temporal networks. Answering this question helps to lay the theoretical
basis for investigating the remained questions. That is, realistic and compre-
hensive model for temporal networks can guide us to capture the structures
and better understand temporal networks in the real world. Moreover, such a
model might provide us with the inspirations of leveraging selectivity for ef-
ficient query processing. However, prior works for network modeling mostly
focused on the most fundamental characteristics. Therefore, we have a strong
motivation to develop a modeling method for temporal networks that can cap-
ture more complex characteristics. This work can help to understand both
networks and query processing in temporal contexts. We formalize our first
research as follows.

Q1: How to develop a consistent model of temporal networks in the real
world that can provide us with a clearer understanding of their structure?
What network characteristics to capture in order to develop such a real-
istic model?

In Chapter 3, we propose a novel method for temporal network modeling
based on our empirical findings for temporal networks. The straightforward
aim is to capture the concurrent set size (CSS), a characteristic that is important
for understanding temporal networks and query processing. Meanwhile, our
proposed model can also capture other popular characteristics (e.g., degree,
inter-event time, duration) under the constraint of the CSS. Theoretical analysis
and empirical experiments demonstrate the effectiveness of our novel model.

Processing of temporal predicates. As we have discussed, two key elements
in temporal subgraph query are the topological and temporal predicates. Thus,
investigating the processing of these predicates helps to lay the technical basis
for temporal subgraph query processing. Since prior works have primarily
focused on topological-predicate processing, our second specific question is
the efficient temporal-predicate processing. Temporal-predicate processing in
our investigated queries can be realized as a problem of temporal-k clique
enumeration. That is, we would like to enumerate all k-sized temporal cliques
(for short, the temporal k-cliques) in which edges jointly overlap at a time
point. Note that k is the parameter used to specify the number of edges in the
queried pattern. However, the general temporal k-clique enumeration problem
has not been identified and studied before. Prior works [4, 5] primarily studied
the interval join problem, which aims to find all pairs of overlapping records
from two relations and can be realized as a special case of our investigated
problem with k=2. Therefore, we have a strong motivation to investigate the

1.3. RESEARCH QUESTIONS 9

temporal k-clique enumeration. To this end, we formalize our second specific
question as follows.

Q2: How to enumerate temporal k-cliques efficiently in order to derive a
method for temporal-predicate processing?

In Chapter 4, we propose a family of algorithms for efficient temporal
k-clique enumeration. We then optimize the algorithms with checkpoints to
overcome efficiency bottlenecks. Experimental evaluation demonstrates that
our proposed algorithms can provide more efficient temporal k-clique enu-
meration.

Processing of temporal subgraph queries. The developed processing ap-
proaches of predicates enable us to investigate our third specific question, i.e.,
the processing of general temporal subgraph queries, which is also our ultimate
question. Existing studies of temporal subgraph query processing are limited
and primarily focus on the leverage of topological selectivity. Specifically, a
traditional solution is to process queries using an existing pipeline in graph
database systems, where the associated intervals are treated as edge proper-
ties. However, this solution can be inefficient since it follows the “topology
then time” pipeline which ignores the selectivity of temporal predicates. We
consider the temporal predicates as an important factor which can have a sig-
nificant impact on query processing costs. Yet, there has been relatively little
work on leveraging temporal selectivity in temporal subgraph query process-
ing. Therefore, our final aim is to provide efficient processing for temporal
subgraph queries which can fully leverage the query selectivity. We formalize
our ultimate question as follows.

(Ultimate question) Q3: How to process temporal subgraph queries effi-
ciently with full leverage of their selectivity?

In Chapter 5, we propose two methods for temporal subgraph query pro-
cessing. Experimental evaluation demonstrates that our proposed methods can
outperform current methods by a wide margin.

By answering Q1 to Q3, we succeed in efficient processing of temporal
subgraph queries. In brief, our research procedure can be described as follows:
First, we start by proposing a realistic model for temporal networks. Such a
model can capture the structures and guide our understanding of real-world
networks. Then, with our prior knowledge of temporal networks, we propose
our methods for temporal k-clique enumeration. These methods are further

10 CHAPTER 1. INTRODUCTION

used to provide efficient processing of temporal predicates in subgraph queries.
Finally, for temporal subgraph query processing, we analyze the demerits of
the current methods and propose novel methods for efficient processing.

1.4 Contributions

In this thesis, our main contributions can be summarized as follows:

(1) For temporal network modeling,

• We study the characteristics of real-world networks. Particularly, we
focus on a concurrent set size (CSS), an important characteristic of tem-
poral networks but hardly ever considered in the prior works. We present
our empirical findings for the CSS and discuss how it is related to the
query processing in temporal contexts.

• Based on above discussion, we propose a novel competition-driven
model (CDM) as a framework to generate networks constrained by CSS.
We present a theoretical analysis of our CDM to demonstrate how it af-
fects several important characteristics in generated networks. Further,
we carry out an in-depth experimental study and our results demonstrate
that CDM can simulate the real-world networks effectively and the gen-
eration process in CDM is scalable.

(2) For temporal-predicate processing,

• We propose a framework for temporal k-clique enumeration, which can
be used to adjust existing sweep-based interval join algorithms to our
problem. Compared to the most straightforward and naive solutions, the
proposed adjusted algorithms have much lower complexity in tempo-
ral k-clique enumeration. Then, we carry out a careful analysis of the
weaknesses in these algorithms and propose a novel method, the start
time index (STI) algorithm, for more efficient k-clique enumeration.

• We develop checkpoint mechanisms to further improve query process-
ing in STI. We discuss four checkpointing strategies and highlight their
benefits. In addition to STI, these strategies are of independent interest
and could also be applied in combination with other adjusted algorithms.

We carry out an in-depth experimental study and results demonstrate the sig-
nificant improvements in scalability and performance introduced by our new
methods.

1.5. THESIS OVERVIEW AND ORGANIZATION 11

(3) For temporal subgraph query processing,

• We first propose a method based on STI named TIME for processing
queries with general patterns, which focuses on leveraging temporal se-
lectivity. The rationale is to extend temporal k-clique enumeration with
breath-first-based subgraph query processing. We further discuss several
strategies for improving the efficiency of TIME.

• We further propose a novel method named leapfrog TSRJOIN, which
leverages both topological and temporal selectivities for more efficient
query processing. The rationale of this method is to inject the process-
ing of temporal predicates into leapfrog triejoin, a worst-case optimal
(WCO) join algorithm which has presented its excellent performance in
solving various conjunctive queries in the state of the art. We further de-
velop several mechanisms to optimize TSRJoin’s processing efficiency.

We present the results of an in-depth experimental study which demon-
strates significant improvement in performance introduced by our new meth-
ods.

1.5 Thesis overview and organization

Through a series of theoretical and empirical studies, this PhD thesis makes
substantial contributions to the state of the art research in temporal subgraph
query processing. The studies that comprise different chapters of this thesis
have appeared in peer-reviewed conferences and journals. In order to make the
construction of the dissertation more coherent, we make every effort to ensure
that each chapter is consistent in definitions, notations, and so forth. To be
more specific, the thesis is organized as follows.

Chapter 2 We present the common notations for both the data model and
query model used in this thesis and conduct a comprehensive review of the
existing research related to this thesis including network modeling, resources,
and subgraph query processing.

Chapter 3 We investigate the problem of temporal network modeling. We
first present our findings for real networks from an investigation of the existing
literature and empirical observation. Then, based on our findings, we propose a
novel method for modeling and generating temporal networks. Our theoretical
analysis and experimental evaluation demonstrate that our proposed method
results in a controllable benchmark, which can be used efficiently to simulate

12 CHAPTER 1. INTRODUCTION

and generate various networks. This chapter is an extension of our previously
published peer-reviewed paper:

• Kaijie Zhu, George Fletcher, and Nikolay Yakovets. Competition-
driven modeling of temporal networks. EPJ Data Science, 2021, 10(1):
1-24.

Chapter 4 We investigate the problem of temporal-predicate processing, i.e.,
temporal k-clique enumeration. We analyze the complexity of a straightfor-
ward solution and propose a processing framework with lower complexity.
Based on our framework, we first propose three methods (i.e., CE-EBI, CE-
gFS, and CE-bgFS) which are much less complex than the straightforward
solution. Next, based on a careful analysis of the adjusted algorithms, we
propose a novel STI algorithm to provide more efficient processing. Then,
we develop four checkpoint mechanisms to further improve the processing in
our proposed methods. We discuss four checkpointing strategies and highlight
their benefits. Our experimental evaluation demonstrates that our proposed
methods significantly improve processing scalability and performance. This
chapter is an extension of our previously published peer-reviewed paper:

• Kaijie Zhu, George Fletcher, Nikolay Yakovets, Odysseas Papapetrou,
and Yuqing Wu. Scalable temporal clique enumeration. In Proceed-
ings of the 16th International Symposium on Spatial and Temporal
Databases, 2019: 120-129.

Chapter 5 We investigate the problem of temporal subgraph query process-
ing. We note that the state of the art in subgraph query processing primarily
focused on leveraging the selectivity of topological predicates in queries. Thus,
we first propose a method (i.e., TIME) which focuses on leveraging temporal
selectivity. Then, based on a careful analysis of TIME, we propose a novel
method (i.e., leapfrog TSRJOIN) which focuses on leveraging both temporal
and topological selectivities. Our experimental evaluation demonstrates that
our proposed method can provide much more efficient query processing than
the state of the art. This chapter is an extension of our previously published
peer-reviewed paper:

• Kaijie Zhu, George Fletcher, and Nikolay Yakovets. Leveraging tempo-
ral and topological selectivities in temporal-clique subgraph query pro-
cessing. In Proceedings of the IEEE International Conference on Data
Engineering (ICDE), 2021: 672-683.

1.5. THESIS OVERVIEW AND ORGANIZATION 13

Chapter 6 We conclude the thesis with a discussion of future work based on
our proposed temporal network modeling and query processing approaches.
We believe that the methods in this thesis and their described results are of
value to the research community as a basis for understanding the merits of the
approaches and for further research on temporal graph analysis.

2
Background

2.1 Common notations

In this section, we provide a set of common notations used throughout this
thesis. Note that in several chapters, some additional symbols will be used
locally. An overview of notations across the thesis is presented in Table 2.1. In
the following, we present the details for these notations.

2.1.1 Data model

Compared to traditional graph-structured data which considers only the in-
teractions, temporal graphs associate each interaction with a time window to
represent the evolution of data structures over time. Formal definitions are
presented as follows:

Definition 2.1.1 (Time window) A time window is an ordered pair of non-
negative integers [i, j] such that i ≤ j. We refer to i and j as timestamps. We
say time window [i, j] contains time window [k, l] if k ≥ i and l ≤ j, which
we denote by [k, l] v [i, j]. We say [i, j] and [k, l] overlap if i ≤ l and k ≤ j,
i.e., there is a time window w contained in both [i, j] and [k, l]. The length of
window w = [i, j] is the value |w| = j − i.

Moreover, given two time windows [i, j] and [k, l], we define the operation
[i, j] ∩ [k, l] as follows:

• If (1) both windows are non-empty; and, (2) i ≤ l and k ≤ j (i.e., [i, j]
and [k, l] overlap), then [i, j] ∩ [k, l] = [max{i, k},min{j, l}], i.e., the
maximum (w.r.t. v) time window contained in both time windows.

• Otherwise, [i, j] ∩ [k, l] = ∅.

15

16 CHAPTER 2. BACKGROUND

Symbol Notation
Notations for Graph
G The original temporal graph, i.e., G = (V,E, η, λ, τ)
R The non-graph-structured temporal relation, i.e., R = (E, τ)
V The relation of vertices
E The relation of edges
L The set of labels
T The set of timestamps
|V | The number of vertices in V
|E| The number of edges in E
|L| The number of labels in L
T̂ The maximal timestamp in T
η(e) The endpoint pair of edge e ∈ E, i.e., η(e) = (u, v)
λ(e) The label of edge e ∈ E, i.e., λ(e) = l
τ(e) The associated time window of edge e ∈ E, i.e., τ(e) = [ts, te]
source(e) The source of edge e, i.e., source(e) = u
destination(e) The destination of edge e, i.e., destination(e) = v
starttime(e) The start time of edge e, i.e., starttime(e) = ts
endtime(e) The end time of edge e, i.e., endtime(e) = te
RE The edge stream representation of G
G(t) The snapshot of graph G at time t
E(t) The set of edges active at time t in E
Notations for Query

q
The original temporal subgraph query, i.e.,
(e1, . . . , ek)← l1(u1, v1), . . . , lk(uk, vk), [qs, qe]

vq1 . . . v
q
2k The query vertices in q, i.e., u1, v1 . . . uk, vk

eq1 . . . e
q
k The query edges in q, i.e., l1(u1, v1), . . . , ln(uk, vk)

[qs, qe] The query time window of q
ε A complete match of q, i.e., (e1, . . . , ek, [εs, εe])
[εs, εe]) The life-span of ε, i.e., τ(e1) ∩ · · · ∩ τ(ek)

Temporal clique
S = (R, τ) is a temporal clique if there exists a time window t
such that t v τ(r) for ∀r ∈ R

Partial match
(e′1, . . . e

′
m, [ε

′
s, ε
′
e]) is a partial match of q if:

(1) For each i ∈ [1,m] there exists j ∈ [1, k] such that e′i ∼ e
q
j

(2) [ε′s, ε
′
e] = τ(e′1) ∩ · · · ∩ τ(e′m) and [ε′s, ε

′
e] ∩ [qs, qe] 6= ∅

Edge match An edge e is an edge match of eqi if λ(e) = eqi , i.e., e ∼ eqi
Clique match

A temporal clique in [qs,qe] of edges {e1 . . . ek} is a clique match
of q if ei ∼ eqi for ∀i ∈ [1, k]

Table 2.1: Common notations and their symbols across the thesis

2.1. COMMON NOTATIONS 17

Definition 2.1.2 (Temporal graph) Let L be a set of labels and T be a set of
timestamps. A temporal graph is a structureG = (V,E, η, λ, τ), where: V and
E are respectively relations of vertices and edges; η : E → V ×V is a function
assigning to each edge an ordered pair of vertices, denoted η(e) = (u, v),
where e ∈ E and u, v ∈ V ; λ : E → L is a function associating each edge
with a label, denoted λ(e) = l, where e ∈ E and l ∈ L; τ : E → T × T is a
function assigning to each edge a time window, denoted τ(e) = [ts, te] where
e ∈ E, ts, te ∈ T , and ts ≤ te.

For convenience, we call l, u, v, ts, te respectively the label, source,
destination, start time, and end time of e. We overload the source(),
destination(), starttime(), endtime() functions, allowing them to take an
edge e as input and return its u, v, ts, te respectively 1. We say an edge e is
active at a certain timestamp t if t ∈ [starttime(e), endtime(e)]. We use
|V |, |E|, |L| to represent the number of vertices, edges, and labels in G.

If one concerns only the graph topology, the notation can be simplified to
a non-temporal graph denoted Gs = (V,E, η, λ), where function τ to spec-
ify the temporal structure is omitted. This is also the primarily focused model
for graph analysis in the state of the art. Similarly, if one concerns only the
temporal aspect, the notation can be simplified to a non-graph-structured tem-
poral relation where each element is only associated with a time window. We
formalize the notation as follows, which is closely related to Chapter 4 in this
thesis:

Definition 2.1.3 (Temporal relation) A temporal relation is a structure R =
(E, τ), where τ : E → T×T associates each element inE with a time window
[ts, te].

Compared to Definition 2.1.2, V, η, λ are omitted in the notation of tem-
poral relation as R is non-graph-structured. For convenience, we say each
element r ∈ E is an element in temporal relation R, denoted r ∈ R. The size
of temporal relation R is |E|, denoted |R| = |E|.

Since property graph is widely supported in current database systems,
given a temporal graph G, the most general implementation in existing works
is the temporal property graph which stores the start and end time as the edge
properties. Besides, there are still other representation alternatives in cur-
rent works. Different representations reflect researchers’ various interests in

1For label l, there is already λ(e) = l.

18 CHAPTER 2. BACKGROUND

graphs. Here we present the outline of two most popular alternatives. The first
alternative is the edge stream, which is defined as follows.

Definition 2.1.4 (Edge stream) Given a temporal graph G, its edge stream is
a relation RE where:

• For each edge e ∈ E, there is a 6-tuple (e, source(e), destination(e),
λ(e), starttime(e), endtime(e)) ∈ RE ,

• For each tuple (e, u, v, l, ts, te) ∈ RE , there is e ∈ E such that η(e) =
(u, v), λ(e) = l, τ(e) = [ts, te].

Edge stream is a practical and easy implementation for computation pur-
poses on a graph (e.g., computation of graph statistics). However, such repre-
sentation fails in expressing the topology structure of graphs, which can be a
crucial component in many scenarios of graph analysis (e.g., subgraph query
processing). Therefore, the second alternative primarily focuses on the instant
topology, which is named snapshot sequence and defined as follows.

Definition 2.1.5 (Snapshot sequence) Given a temporal graph G, its snap-
shot sequence is a series of non-temporal graphs G(1), . . . G(T̂) where T̂ is
the maximal timestamp in T . Each G(t) = (V,E(t), η, λ) such that t ∈ T is
a non-temporal graph named snapshot where E(t) is the set of edges active at
time t.

A snapshot sequence can clearly reflect the instant status of an original
graph for each t ∈ T . However, such implementation fails to capture the accu-
rate dynamic of G (e.g., start and end time of edges) and can be inefficient in
storage when G is large. For this reason, in this thesis, we consider the tempo-
ral property graph as the general implementation of graphs for its expression
power in both topological and temporal structures.

2.1.2 Query model

We start by presenting the definition of temporal clique, an important under-
lying structure constrained by the temporal predicates in temporal subgraph
query.

Definition 2.1.6 (Temporal clique) Given a temporal relation G = (E, τ), if
there exists a time window t such that for every element e ∈ G it is the case
that t v τ(e), then we say the elements in G forms a temporal |E|-clique.

2.1. COMMON NOTATIONS 19

Moreover, given a time window w, if t v w, we say the elements in G forms a
temporal |E|-clique in w.

Here “temporal clique” emphasizes that the edges are tightly intercon-
nected in time, in addition to satisfying the topological pattern of interest. This
is in contrast to traditional “cliques”’ in which vertices are tightly intercon-
nected in topology.

Next, we present the definition of temporal subgraph query.

Definition 2.1.7 (Temporal subgraph query) A temporal subgraph query is
a pattern q of the form

(e1, . . . , ek) ← l1(u1, v1), . . . , lk(uk, vk), [qs, qe]

where e1, . . . , ek, u1, v1, . . . , uk, vk are variables (possibly with repetition);
l1, . . . , lk ∈ L; and, qs, qe ∈ T where qs ≤ qe. Given a temporal graph
G = (V,E, η, λ, τ), the evaluation of q on G is the set of all matches ε =
(e1, . . . , ek, [εs, εe]) such that:

1. e1, ..., ek ∈ E and εs, εe ∈ T ;
2. there exists a function f : {u1, v1, ..., uk, vk} → V such that f(ui) =
source(ei), f(vi) = destination(ei), and λ(ei) = li, for ∀i ∈ [1, n];
and,

3. [εs, εe] = τ(e1) ∩ · · · ∩ τ(ek) and it holds that [εs, εe] ∩ [qs, qe] 6= ∅.

For convenience, we call li(ui, vi) the ith query edge of q, denoted eqi . We
call ui, vi the query vertices of q, denoted vq2i−1, v

q
2i. We call each match

ε : (e1, . . . , ek, [εs, εe]) a complete match of q. We call source(ei) and
destination(ei) the vertex bindings of vq2i−1 and vq2i, resp. We call [εs, εe]
the lifespan of ε. We call the set of all complete matches the complete result of
q. We call constraint (2) the topological predicate of q since this ensures the
topological structure in a match. Similarly, we call constraint (3) the temporal
predicate of q since it ensures the temporal overlapping behavior in a match.

Note that our defined query aim to find matches for query edges instead
of vertices, since multiple edges (e.g., associated with different time intervals)
can exist between the same pair of vertices. Two matches ε1 and ε2 are viewed
as distinct matches if they differ on their bindings of at least one query edge.
Our presented query example Qn, which aims to find matches for query ver-
tices, can be realized as a reduction of our definition. In Chapter 5, we would
present more concrete examples of our defined temporal subgraph queries.

20 CHAPTER 2. BACKGROUND

The processing pipeline for query is generally not atomic, where numerous
intermediate tuples can be produced before they become complete matches.
We present the following definitions for the convenience of investigating the
intermediate status.

Definition 2.1.8 (Edge match) Given a temporal subgraph query q, an edge
e is an edge match of query edge eiq if λ(ei) = li, denoted ei ∼ eqi . Also,
we call e an edge candidate of query q. Specifically, given a complete match
(e1, . . . , ek, [εs, εe]), there is ei ∼ eqi for ∀i ∈ [1, k].

Definition 2.1.9 (Partial match) Given a temporal subgraph query q,
(e′1, . . . e

′
m, [ε

′
s, ε
′
e]) is a partial match of q if:

1. e′1, ..., e
′
m ∈ E and m < k;

2. For each i ∈ [1,m] there exists j ∈ [1, k] such that e′i ∼ e
q
j ; and,

3. [ε′s, ε
′
e] = τ(e′1) ∩ · · · ∩ τ(e′m) and [ε′s, ε

′
e] ∩ [qs, qe] 6= ∅.

Definition 2.1.10 (Clique match) Given a temporal subgraph query q, a tem-
poral clique in [qs, qe] composed of edges {e1, . . . ek} is a clique match
of q if ei ∼ eqi for ∀i ∈ [1, k]. Specifically, given a complete match
(e1, . . . , ek, [εs, εe]), {e1, . . . , ek} is a clique match of q.

2.2 Network modeling

In the past few decades, numerous studies on temporal network modeling have
been carried out to capture the theoretical grounding and characteristics of
temporal networks in the real world. The most straightforward method [6, 7]
is to model the generation of temporal networks by associating each edge in
non-temporal graphs with timestamps. Currently, the most well-studied net-
work model is the activity-driven network (ADN) model proposed by Perra et
al. [8]. This model initializes each vertex v with a firing rate av drawn from
a given probability distribution F (x). At each timestamp t and with probabil-
ity av, vertex v becomes active and generates m instant outgoing edges linked
to the other vertices randomly. Several studies have been carried out to ex-
tend the model in both structural and temporal fields. For structural extension,
prior studies concentrated on selecting the edge destination [9, 10, 11, 12].
Alessandretti et al. [9] extended each vertex with an attractiveness value rep-
resenting its probability of being selected as the destination of edges. Other
works extended the model with a reinforcement mechanism, which exhibits the
preference of vertices to connect to previously contacted vertices [10, 11, 12].

2.3. BENCHMARK RESOURCES 21

Another collection of works concentrated on the incorporation of community
structure [11, 13]. Laurent et al. [11] introduced focal closure and cyclic clo-
sure, which gives rise to the community structure in the network. Nadin et
al. [13] initialized each vertex to a community. In each turn, a vertex could ei-
ther connect other vertices within (or outside) the same community with prob-
ability µ (or 1 - µ). For temporal extension, Sunny et al. [14] introduced the
duration for edges so that edges are lasting entities rather than instant ones.
Besides ADN, there are also other categories of temporal network generation
models. The Renewal process model extends the Gillespie algorithm [15] to
model the network generation where each vertex is modeled as a Poisson pro-
cess and the superposed vertices are regarded as the inter-event time distribu-
tion [16, 17]. Starnini et al. [18] and Zhang et al. [19] modeled the generation
as a process involving agents performing a random walk in the unit square.
Each agent interacts with its neighbors every time a random walk is performed.
To deal with situations where information of entities is missing, Cho et al. [20]
proposed a self-exciting process model where the event rate between each pair
of entities is modeled as a Hawkes process.

2.3 Benchmark resources

We have considered diverse resources for temporal networks, which can be di-
vided into two categories: real-world datasets and synthetic generators. These
allow a comprehensive study on temporal networks and experimental evalua-
tion of our proposed methods in this thesis. Here we present an overview of
the network resources.

2.3.1 Real-world datasets

In the following, we present several popular repositories of temporal graph-
structured datasets covering social, transportation, and networking domains.
Corresponding temporal graphs can be constructed on the datasets at a small
cost.

Social. Stanford Network Analysis Project (SNAP)2 and Koblenz Network Col-
lection (KONECT)3 collect the networks of interaction in both the real-world
(e.g., college message, email) and online communities (e.g., StackOverflow,
Wikipedia, Google). For example, the largest network in SNAP records the

2https://snap.stanford.edu/data/
3http://konect.cc/networks/

https://snap.stanford.edu/data/
http://konect.cc/networks/

22 CHAPTER 2. BACKGROUND

interactions of comments, questions, and answers among users on StackOver-
flow, which has 2,601,977 vertices and 63,497,050 edges in total. Besides, So-
ciaPattern4 provides 14 temporal interaction networks in much smaller com-
munities such as workplaces, schools, and conferences.

Transportation. Many real transportation datasets record the vehicle trips
associated with their valid period, source, and target locations. Temporal net-
works can be built conveniently on these datasets, where vertices and edges
respectively represent the locations and trips. Several instances are presented
as follows. NYC Taxi&Limousine Commission5 collected the historical vehi-
cle trips (yellow taxi, green taxi, for-hire vehicles) in New York starting from
2009. NYC citibike6, Divvy Data7, Metro bike8, collected the bike trips from
different cities in the US. US department of transports9 collected the national
historical traffic statistics from various transportation domains including avia-
tion, maritime highway, etc..

Networking. Center for Applied Internet Data Analysis (CAIDA)10 collects
various statistics that can be used for benchmarking. The most straightforward
category is the snapshots of networking relationships. For example, relation-
ships among different autonomous systems in hundreds of snapshots are pro-
vided in [21]. Another category is traffic statistics. With knowledge in network
engineering, researchers can construct temporal networks of connections by
extracting and aggregating the traffic packets in datasets. For example, a tem-
poral network of anonymized passive traffic traces can be constructed on [22]
by aggregating the packets into connections associated with periods.

2.3.2 Synthetic generator

Real-world temporal networks are not numerous for their difficulty to be col-
lected and subject to confidentiality agreements. For many researchers, a more
practical choice is to generate synthetic networks which can well reproduce the
characteristics of real networks. The most straightforward method is to gen-
erate synthetic networks with the implementable works on temporal network

4http://www.sociopatterns.org/datasets/
5https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.

page
6https://www.citibikenyc.com/system-data
7https://www.divvybikes.com/system-data
8https://bikeshare.metro.net/about/data/
9https://www.transtats.bts.gov/

10https://www.caida.org/data/

http://www.sociopatterns.org/datasets/
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.citibikenyc.com/system-data
https://www.divvybikes.com/system-data
https://bikeshare.metro.net/about/data/
https://www.transtats.bts.gov/
https://www.caida.org/data/

2.4. QUERY PROCESSING 23

modeling [6, 7, 8, 9, 10, 11, 12, 11, 14, 13] as we summarized. A drawback
of the implementable models is their focus on the simulation of most fun-
damental characteristics (e.g., degree distribution, burstiness phenomenon) in
temporal networks. The state-of-the-art methods have considered the simula-
tion of more complex structures (e.g., clustering, motifs) in temporal network
modeling and generation. Gorke et al. [23] proposed a method for generating
clustered temporal random networks, in form of snapshot sequences. The au-
thors generate the first snapshot by Gilbert’s non-temporal graph model and the
rest from their prior snapshot by atomic updates based on pre-computed prob-
ability. Similarly, Leeuwen et al. [24] extended gMark, a powerful schema-
driven benchmark for non-temporal networks, with their proposed algorithm
to generate snapshot sequences which satisfy the monotonicity and are sig-
nificantly more stable than those generated. Purohit et al. [25] proposed a
method using the computed temporal motifs distribution to generate mono-
tonic increasing networks in which the temporal evolution of the local struc-
tures is preserved. Zeno et al. [26] carried out empirical studies on tempo-
ral motifs in real-world graphs and proposed dynamic motif activity (DMA)
model for sampling synthetic dynamic graphs with parameters learned from
an observed network. Zhou et al. [27] presented a deep generative frame-
work named TagGen. The framework started by sampling temporal random
walks from real-world datasets and generating synthetic randoms walks with
a family of defined local operations. Then, a discriminator is trained over the
sampled random walks and used to determine the plausible synthetic random
walks. Finally, the plausible walks are fed to an assembling module for net-
work generation. The advantage of the framework is its independence from
prior structural assumptions, so it can be used to generate networks without
any prior knowledge.

2.4 Query processing

We divide the current research on query processing into the following three
categories: (1) on topological predicates (i.e., the processing of non-temporal
subgraph queries); (2) on temporal predicates (i.e., the enumeration of tempo-
ral cliques); and (3) on temporal subgraph query (i.e., the processing of queries
involving both topological and temporal predicates).

24 CHAPTER 2. BACKGROUND

2.4.1 Topological predicates

Topological predicates are generally processed by executing a guided search
over a given graph. During the search, query vertices are bound to graph
vertices to produce (partial) matches. Several different search strategies ex-
ist along with pruning strategies which aim to minimize the part of the graph
explored during the search. Specifically, existing works can be divided into
depth-first-based and breath-first-based.

In depth-first-search-based approaches, the matches are extended by
matching query vertices to vertices in a graph, i.e., vertex-at-a-time. The
first method of this category is Ullman’s backtracking algorithm [28]. In the
past few decades, numerous studies have been carried out to improve the ef-
ficiency of Ullman’s backtracking algorithm by leveraging the query selec-
tivity (e.g., optimizing the matching order [29, 30, 31, 32], pruning false-
positive candidates [33, 34]). In the current database systems, a series of
WCO-join algorithms (e.g., NPRR, Leapfrog Triejoin [35], Generic-join [36],
Minesweeper [37]) have been proposed as the core of this category.

In breadth-first-search-based approaches, the matches are produced by pro-
cessing a query graph edge-at-a-time. This category first decomposes a query
into a set of basic query units [38, 39, 40, 41]. Then, each unit is processed
to produce its partial matches. Finally, binary joins (BJ) are performed to
concatenate all intermediate results. To sum up, this category is based on
BJs which extend the partial match by matching query edges to correspond-
ing edges in a graph.

2.4.2 Temporal predicates

Current research primarily focused on the interval join problem, which can
be viewed as a special case to the related processing of temporal predi-
cates. Specifically, given two temporal relation R1 and R2, the problem aims
to enumerate all pairs of elements (r, s) such that r ∈ R1, s ∈ R2, and
τ1(r) ∩ τ2(s) 6= ∅. Research on interval join processing can be classified
in index-based, partition-based, and plane-sweep methods. Index-based meth-
ods construct and maintain specialized data structures in order to speed up
query processing. A bi-temporal index that could be used to compute interval
joins on two temporal dimensions (i.e., both system and application time) is
proposed in [42]. An algorithm based on a two-layer flat index (Overlap Inter-
val Inverted, O2i) is presented in [43]. Indexed segment tree forest (ISTF), in
which the temporal nesting relationships are represented by a binary tree and

2.4. QUERY PROCESSING 25

joins are enumerated by searching related trees, is proposed in [44]. Partition-
based methods cluster intervals into smaller buckets based on their similarity
and join processing is done for certain pairs of buckets to reduce the unproduc-
tive evaluations. Dignos et al. [45] proposed a self-adjusting algorithm named
OIP. The algorithm divides intervals into n equal-sized consecutive granules
with a proposed method for a best n parameter, which could lead to a minimal
compromise of query costs and unproductive join ratio when the timeline is
divided into the same number of granules. Cafagna et al. [46] proposed DIP
to divide temporal relation into partitions containing non-overlapped tuples,
which also reduces the number of unproductive join operations in evaluation.

Currently, the best performing solutions for interval joins are based on
plane-sweep methods [5]. Piatov et al. [4] proposed two memory plane sweep-
based interval join algorithms EBI and LEBI based on endpoint index, which
outperform OIP and prior plan-sweep methods. Bouros et al. [5] proposed
two optimized algorithms based on forward scan named gFS and bgFS. In
Chapter 4, we will present more details about both the state of the art.

2.4.3 Temporal subgraph query

Current research on temporal subgraph query processing is limited. Franzke
et al. [47] proposed a method which creates an index to record the occurrences
of basic motif structures (e.g., triangle) in a graph. In processing, the index is
used to fast locate the candidates and reduce the search space. Moreover, sev-
eral pruning rules are further used to refine the candidate sets. Semertzidis et
al. [48] proposed an indexed method for obtaining the top-k durable matches.
Though these methods can be used for our investigated problem, their con-
sidered graph implementation is the snapshot sequence so that they are not
suitable for query processing in general scalable temporal property graph im-
plementation. Xu et al. [49] proposed a method named TCGPM-E for temporal
subgraph query processing. For each query, TCGPM-E first produces the non-
temporal matches over the subgraphs centering at its selective edges. Then the
algorithm filters the matches with pruning rules based on temporal predicates.
A similar processing method can be found in modern database systems where
query models over property graphs and hybrid planning engines [50, 51] are
supported. Its common idea is to treat the temporal predicates of a query as
general selection properties. In this way, physical plans, which are composed
of join operators to process topological predicates and selection operators to
filter the intermediates that do not satisfy temporal predicates, can be generated
and used for temporal subgraph query processing. However, these methods can

26 CHAPTER 2. BACKGROUND

be very inefficient since the selectivity of temporal predicates is not fully lever-
aged during query processing. To be more specific, the non-temporal matches
can be extremely large while the temporal predicates are naively used as a filter
to select valid matches among them.

Summarizing, currently there is no general and efficient processing method
for temporal subgraph queries, which is also one of the motivations in this
thesis.

3
Modeling of temporal networks

3.1 Motivation

With the aim of efficient temporal subgraph query processing, our first in-
vestigated question is how to model the graph-structured data (i.e., temporal
networks) in the real world. The modeling problem is of various interest to
researchers. First, an implementable temporal model can be used as the bench-
mark to generate numerous synthetic networks as a complement for the limita-
tion in available real-world networks. Second, a consistent model for temporal
networks can capture the essential graph structures and help researchers to
understand real-world systems. Specifically, in this thesis, such a model can
provide us with the guidance of leveraging selectivities in query processing.
Thus, we have a strong motivation to develop a realistic model for temporal
networks.

For network modeling, a key topic is to capture the characteristics of inter-
est. In this chapter, we primarily focus on a characteristic named concurrent
set size (CSS). Given a temporal network, concurrent set (CS) represents the
collection of edges active at time t ∈ T . CSS distribution reflects the evolve-
ment of edges’ density over time. By summarizing the existing models and
synthetic benchmarks of temporal networks in Chapter 2, we note that the dis-
tribution of concurrent set size (CSS) has never been considered in the state of
the arts. We first formalize these notions as follows.

Definition 3.1.1 (Concurrent sets) Given a temporal graph G =
(V,E, η, λ, τ) and a timestamp t, we call the largest temporal clique S ⊆ E in
[t, t] the Concurrent Set at t, denoted CS(t). In other words, CS(t) consists
of all records that are active at timestamp t, i.e., CS(t) = {e ∈ E|t ∈ τ(e)}
The size of CS(t) is denoted by C(t).

27

28 CHAPTER 3. MODELING OF TEMPORAL NETWORKS

Definition 3.1.2 (CSS distribution) Given a temporal graph G and its snap-
shot sequence {G(1) . . . G(T̂)}, a CSS distribution is represented as a function
C(t) = |E(t)| for ∀t ∈ T . That is, the CSS distribution indicates the number
of active edges at each timestamp t.

Note that these notions can be also applied to a non-graph-structured tem-
poral relation since they are determined by only E and τ . Formally, given a
temporal relation R, corresponding CS(t) (or C(t)) represents all active el-
ements (or the number of active elements) at time t in R. In Chapter 4, we
would present more usage examples in non-graph-structured context.

We consider CSS as an important metric for temporal networks. First,
many real-world networks are constrained by specific CSS distribution (i.e.,
the CSS-constrained networks). The distribution in these networks reflects the
aggregation phenomenon of temporal events in temporal aspects. For example,
in a transportation network, peaks in CSS distribution capture the traffic rush
hours. This demonstrates that studying CSS distribution can lead to a better
understanding of real-world networks and that modeling CSS can help to gen-
erate realistic synthetic temporal networks. Second, CSS is a factor which can
impact graph analysis approaches. For example, the interval join algorithm
EBI [4] can be impacted by CSS since it maintains real-time active records in
memory during the whole procedure. Specifically, higher CSS value at times-
tamp t (i.e., C(t)) will generally lead to higher maintenance costs on real-time
active records at time t in EBI. In Section 3.4.3, we would further discuss
how CSS can be used to impact temporal subgraph query processing, i.e., our
ultimate question (Q3) that is going to be investigated in this thesis.

3.2 Problem statement

Motivated by above discussion, in this chapter, we focus on the modeling prob-
lem of CSS-constrained networks. Our goal is to find a better way to model
temporal networks which can capture the CSS distribution in real-world tem-
poral networks. Formally, given a set of vertices V and the target CSS dis-
tribution C(t), we aim to generate a temporal network G such that: given its
snapshot sequence {G(1) . . ., G(T̂)}, there is |E(t)| = C(t) for ∀t ∈ T .

In order to model and generate realistic synthetic networks, our model
should also capture other important network metrics besides CSS distribution.
Table 3.1 presents all our concerned metrics in modeling. In Chapter 3.4, we
would present the notations for these listed metrics except |E| and C(t).

3.3. CONTRIBUTIONS 29

Concerned metrics

|E| Number of generated edges
A(v) Relative degree
I Inter-event time distribution
D Duration Distribution
C(t) CSS distribution

Table 3.1: Overview of the important metrics of the generated networks

Such a model would guide our understanding of temporal networks and
upcoming studies on query processing. Besides, it can be used to generate
realistic synthetic networks in various applications.

3.3 Contributions

In this chapter, our main contributions can be summarized as follows.

• We study the important characteristics of temporal networks in the real
world. For our concerned fundamental characteristics, we summarize
their related findings from the state of the art. For the characteristics
which have never been investigated, we carry out empirical observation
on real-world datasets and summarize our general findings.

• Based on the above study, we propose the competition-driven model
(CDM) for modeling and generating the temporal networks constrained
by CSS. This model can guide us to better capture and understand the
characteristics of real-world datasets, with our aim of leveraging selec-
tivities and providing efficient query processing.

• We carry out both theoretical analysis and experimental evaluation on
CDM. The results demonstrate that CDM is controllable and can well-
simulate the temporal networks in the real world.

3.4 Characteristics in real-world networks

A popular research method for network modeling can be described as follows.
First, researchers observe real-world datasets empirically and capture network
characteristics. Next, based on the empirical observation, researchers propose
their modeling method to mimic their findings and analyze the model theoret-

30 CHAPTER 3. MODELING OF TEMPORAL NETWORKS

Research Description Result

Activity rate [8]

Each individual is associated with
an activity rate. Those with higher
activity rate have a higher probabi-
lity to be selected as sources.

Heterogeneities of
out-going degree

Global popular-
ity [9]

Each individual is associated with
a value of attractiveness. Those w-
ith higher attractiveness have a hig-
her probability to be selected as de-
stinations.

Heterogeneities of
in-going degree

Reinforcement
mechanism
[10, 11, 12]

Individuals tend to start more inter-
actions towards existing strong ties
and less new interaction for weak t-
ies.

Emergence of str-
ong and weak ties

Focal and cyclic
closure [11]

Time-stamped interactions between
individuals give rise to temporal m-
otifs.

Emergence of tria-
ngles and clusters

Burstiness
[52, 14]

There can be a long period of quiet
time and nothing happens. Then, m-
any events can suddenly happen in a
short period.

Emergence of col-
lective phenomena
and heavy-tail phe-
nomenan in IET and
duration distribution

Table 3.2: Several recognized network characteristics in existing works.

ically. Finally, experiments are carried out to verify the validity of the model.
Following the common method, in this section, we first discuss the recognized
network characteristics in existing research, of which an overview is presented
in Table 3.2. Then, we carry out our observation over several real-world net-
works, analyze the empirical findings for CSS, and discuss how CSS is related
to our ultimate question (Q3). Our final proposed model in this chapter should
be compatible with the recognized characteristics.

3.4.1 Characteristics of topological structure

The most fundamental behaviors of topological structure in systems are indi-
vidual activity and engaging preference. In temporal networks, these two be-
haviors demonstrate the propensity of vertices to involve in interactions (i.e.,
to become the source or destination of edges respectively), which can be cap-

3.4. CHARACTERISTICS IN REAL-WORLD NETWORKS 31

tured generally by the out-going and in-going degree of vertices.1 Empirical
observation demonstrates that they both perform variability in many real-world
cases and generally result in the emergence of heterogeneities and hubs. Sev-
eral works have been carried out to simulate the two behaviors. For individual
activity, the activity-driven network (ADN) [8] framework captured the het-
erogeneities by initializing each vertex with an activity rate from an activity
potential function, which represents the probability for each vertex to become
active and generate out-going edges at each time-point. For engaging prefer-
ence, things become more complex since this characteristic can be affected by
various phenomena and mechanisms. Global popularity captured (and mimic)
the heterogeneous opportunities of vertices to be selected as targets in inter-
actions, i.e., a vertex with higher attractiveness has a higher probability to be
selected as targets [9]. Reinforcement mechanisms captured the emergence of
strong and weak ties in networks caused by memory, i.e., individuals tend to
start more interactions towards existing strong ties and fewer new interactions
for weak ties [10, 11, 12]. Focal and cyclic closure captured the emergence of
clusters [11].

In this chapter, we primarily focus on the out-going degree. For the conve-
nience of comparison and analysis, the degree of a vertex needs to be stable in
its distribution across networks of different sizes. For this purpose, we define
a relative degree of a vertex as follows.

Definition 3.4.1 (Relative degree) Given a temporal graph G =

(V,E, η, λ, τ) and ∀v ∈ V , we call A(v) = δ(v)
|E| the relative degree of

v, where δ(v) is the number of edges outgoing from v. As defined, A(v)
denotes the proportion of edges starting from a given vertex v.

Note that vertex degree also provides partial guidance of topological se-
lectivity for query processing. Specifically, a vertex with lower degree demon-
strates that joins on this vertex would be more selective. Such relevance is also
a motivation for us to capture the relative degree in network modeling.

3.4.2 Characteristics of temporal structure

The most fundamental metric used to capture the timing behavior in systems
is inter-event time (IET). Considering a temporal relation in which events are

1In temporal context, the notion of degree varies according to various application and re-
searchers’ interest. For example, it can be either the number of instantly attached edges in a
time temporal, or the accumulating edges over time.

32 CHAPTER 3. MODELING OF TEMPORAL NETWORKS

temporally sorted by start time in ascending order, IET is the period between
any two consecutive events. From the individual level, IET captures the ac-
tivity ratio of vertices over time (i.e., for each vertex, we construct a temporal
relation consisting of its out-going edges). While from the system level, IET
captures the intermittence pattern in the whole system (i.e., we construct a
temporal relation consisting of all edges in a graph).

By assuming a constant activity rate in prior research, the timing of activ-
ities can be modeled with a Poisson process, in which IET follows an expo-
nential distribution. However, recent empirical observations in many datasets
have captured the burstiness [52] behavior for IET. That is, there can be a long
period of quiet time and nothing happens. Then, many events can suddenly
happen in a short period. Burstiness results in the emergence of collective phe-
nomena and apparent heavy-tail phenomenon in IET distribution: first, most
emerged IETs aggregate in the short collection. Second, compared to the ex-
ponential distribution, the observed decaying is much slower, which allows
the emergence of extremely long IET. Specifically, it has been recognized that
IETs in many real-world systems follow a power-law or power-law cut-off dis-
tribution. In recent years, numerous studies [53, 54, 55, 56] have been carried
out to explain and understand the burstiness pattern via various models. These
efforts make burstiness a well-documented phenomenon in temporal network
modeling. Similar characteristics (i.e., the heavy-tail phenomenon) can also be
found in network duration distribution [14], to which related works are much
more limited than IET.

In this chapter, we focus on the distribution of IET and duration to capture
the activity behavior of vertices and edges in the temporal aspect respectively.
These notations are defined as follows.

Definition 3.4.2 (IET distribution) The distribution captures the activity be-
havior of vertices. Given temporal graph G = (V,E, η, λ, τ) and ∀v ∈ V ,
we collect the distinct start times of edges outgoing from v, denoted θ(v) =
{tv1, tv2, . . . , tvε} where tvi ∈ [1, T] and tvi < tvi+1. For i ∈ [1, ε), we call
τi(v) = tvi+1 − tvi an inter-event time (IET). We assume that τ follows a prob-
ability distribution I(f, τ , τ), where f is a parameter distribution function, τ
and τ are minimum and maximum IETs respectively.

Definition 3.4.3 (Duration distribution) The distribution captures the activ-
ity behavior of edges. Given temporal graph G = (V,E, η, λ, τ) and ∀e ∈ E,
we call d(e) = endtime(e) − starttime(e) + 1 the duration of edge e. We
assume that edge duration d follows a distribution D(f, d, d), where f is a

3.4. CHARACTERISTICS IN REAL-WORLD NETWORKS 33

parameter distribution function, d and d are minimum and maximum edge du-
rations, respectively.

Though IET and duration are recognized as important temporal metrics in
networks, they fail to provide guidance of temporal selectivity for query pro-
cessing. This motivates us to consider the following question: what network
characteristics should we capture for temporal selectivity? As a result, we turn
to CSS and its distribution, which is defined at the very beginning of this chap-
ter. In the following, we would discuss our findings about CSS and how it is
related to temporal subgraph query processing.

3.4.3 Our observation for CSS

Here we carry out our observation and analysis on two real-world networks,
FHV [57] and Flight [58]. FHV records the transport trips via for-hired vehi-
cles in New York City, where the time unit is a minute. Flight records the trips
via airline in the whole US, where the time unit is an hour. Figure 3.1 presents
their short-termed (i.e., in a day) and long-termed (i.e., in a week) CSS dis-
tribution. Our general findings can be summarized as follows: First, we find
that short-termed CSS in different systems is heterogeneous. Specifically, for
FHV, the shorted-termed CSS distribution can be approximated via a Poisson
distribution in the morning and then a normal distribution for the rest of the
day. The apparent existence of two peaks (i.e., one in the morning and the
other in the afternoon) corresponds to the rush hours in different periods of a
day. For Flight, however, the short-termed CSS can be modeled via normal
distribution. That is, short-termed CSS begins to increase before dawn and
reaches its peak in the morning. Then it keeps stable for hours until it begins
to decline in the evening. Second, in long-termed CSS, we note an apparent
phenomenon of periodicity. Specifically, for most days in FHV, though the
intensity of fluctuation varies, two CSS peaks can always be found. In Flight,
the periodicity is more regular and stable.

Besides the general findings above, we further recognize that CSS distri-
butions provide guidance of temporal selectivity in networks for query pro-
cessing. Specifically, the valleys in the curves demonstrate that the number of
overlapping edges are much lower at these timestamps. Considering a tem-
poral subgraph query in which the query window focuses on some of these
timestamps, the processing is expected to be more efficient if the temporal
selectivity can be leveraged in a smart way. Thus, we recognize the CSS dis-
tribution as an important factor that is related to our investigation in this thesis.

34 CHAPTER 3. MODELING OF TEMPORAL NETWORKS

0 200 400 600 800 1000 1200 1400
0

2500

5000

7500

10000

12500

15000

17500

C(
t)

CSS distribution of FHV - Day

0 2000 4000 6000 8000 10000
0

2500

5000

7500

10000

12500

15000

17500
CSS distribution of FHV - Week

0 5 10 15 20
t

500

1000

1500

2000

2500

3000

3500

4000

C(
t)

CSS distribution of Flight - Day

0 25 50 75 100 125 150 175
t

0
500

1000
1500
2000
2500
3000
3500
4000

CSS distribution of Flight - Week

Figure 3.1: CSS distribution of several real networks. Left and right column plots
respectively present the daily and weekly CSS distribution.

Unfortunately, to the best of our knowledge, currently there is not bench-
mark which takes CSS distribution into consideration for network modeling
and generation. In the following, we propose the competition-driven model
(CDM) to generate the CSS-constrained networks accurately and efficiently.

3.5 Proposed method: competition-driven model

Table 3.3 presents the input parameters used in our model. In CDM, each
vertex is associated with a power value Π(v) and next active time nat(v). The
former determines v’s strength in edge generation, while the latter determines
its next time to be active. That is, a vertex with higher Π(v) has a higher
chance to become the source of newly generated edges at time nat(v). Values
for Π(v) are drawn from a parameter probability distribution f (e.g., the power
value distribution) and values for nat(v) are drawn from the IET distribution
I.

Based on the above model, the procedure of network generation is shown

3.5. PROPOSED METHOD: COMPETITION-DRIVEN MODEL 35

Input parameters

V Set of vertices
f Power value distribution
I Inter-event time distribution
D Duration distribution
C(t) CSS Distribution

Table 3.3: Overview of the parameters used in the proposed model

in Algorithm 1. The generated graph is outputted in the form of edge stream
RE . That is, each generated edge is represented by a formalized 6-tuple as
shown in Definition 2.1.4. For convenience, we use tuple(e) to represent the
corresponding tuple of e in RE . Using generated RE , general graph imple-
mentation (i.e., temporal property graph) and other alternatives (e.g., snapshots
sequence) can be easily constructed. The basic idea of network generation
can be described as follows: in the whole procedure, we maintain a dedicated
active-list structure [4] named Active to store the tuples of active edges in real
time. Then for each valid time t ∈ T , the size of Active (denoted |Active|) is
adjusted according to the CSS distribution C(t) at a certain timestamp t. Note
that the notation Active would also be used in Chapter 4 and 5 while their
implementation can vary for the ease of maintenance in different applications.
Here, we sort the stored tuples in Active by their end time in ascending order
and define the following two basic operations for maintenance.

• insTuple(Active, tuple(e)): insert tuple(e) into Active; Return 1 for
success and 0 for failure.

• delTuple(Active, t): delete all tuples tuple(e) s.t. t > e.te from
Active; Return the set of deleted edge tuples.

The complexity of insTuple and delTuple is logarithmic in |Active| be-
cause the tuples in Active are well-sorted. With the structure, the specific
operations to be carried out at any given time t could be determined: when
C(t) is smaller than |Active|, some of the existing tuples should be forcibly
deactivated and removed fromActive in order to satisfy |Active| = C(t) con-
straint. We define one additional operation for Active in order to deal with
this situation:

• PruneTuple(Active, t,m): select m tuples, set their end time to t, and
delete them from Active; Return the collection of deleted tuples.

The procedure of PruneTuple in our work is shown in Algorithm 2. Here,

36 CHAPTER 3. MODELING OF TEMPORAL NETWORKS

we apply the end-time-first pruning strategy to pruneActive. That is, we select
the top-m tuples with minimal end time from Active, reduce their end time to
t, and delete them from Active. Various pruning strategies can be used in
PruneActive. We choose end-time-first-pruning for the following reasons.
First, this strategy provides the best efficiency because tuples in Active are
sorted by their end time. Second, end-time-first-pruning also helps to preserve
the duration distribution in the generated network, which is a desirable network
characteristic.

Additionally, a total of n = C(t) − |Active| edges should be gener-
ated and inserted into Active. The algorithm first collects the set of vertices
Γ(t) = {pt1 . . . , ptm} with nat(v) ≤ t. We call these vertices in the collec-
tion participants at current time t 2. Continuously, the algorithm constructs a
probability distribution St(p) by normalizing Π(pti) for each i ∈ [1,m]. We
call St(p) the competition distribution and it reveals the probability for each
participant to “win” in each turn of the coming competition at time t. With the
constructed St(p), the algorithm carries out a n-turn competition to generate
new edges. In each turn, a participant p ∈ Γ(t) is first selected as the source of
link according to St(p). Next, a duration d is generated from duration distribu-
tion D, and another vertex v is selected uniformly from the remaining vertices
as the destination. In this way, a new edge tuple (id, p, v, ·, t, t + d − 1) is
created and inserted into Active. And if it is the first time for p to win in
this turn, the algorithm updates nat(p) to t + τ , where τ is drawn from I to
determine its next time to be active. Similar turns are repeated until n turns
have been carried out, which means n new edges have all been created in this
competition. Note that if p does not win any turns in the competition, nat(p)
is not updated and p would be continuously considered as a participant in the
competition at the next timestamp. This way, p’s IET is prolonged until it can
win at least one turn in a competition.

Though the in-going degree is not considered in Algorithm 1 for simplic-
ity, existing approaches for selecting destinations can be integrated into CDM
at small costs. For example, to integrate global popularity, each vertex can be
associated with a value of attractiveness from a parameter probability distri-
bution. Then in the generation procedure, destinations can be determined via
turns of the same competitions as the determination of sources.

The iterative competitions are repeatedly carried out until C(t) is com-

2If there is no v ∈ V s.t. nat(v) ≤ t, we collect the set of vertices u such that nat(u)− t ≤
ω · (t− nat′(u)) and set each nat(u) to t, where threshold ω ∈ (0, 1.0] and nat′(u) is the last
active time of u

3.5. PROPOSED METHOD: COMPETITION-DRIVEN MODEL 37

Algorithm 1: The network generation using CDM
Input: Set of vertices V , power value distribution f , IET distribution

I, duration distribution D, CSS distribution C(t)
Output: Edge stream RE

1 Initialize Π(v) and nat(v) for each v ∈ V by using f and I
2 t← 1
3 tmax ← max

C(ti)6=∅
ti

4 id← 0
5 while t ≤ tmax do
6 D ← delTuple(Active, t)
7 RE ← RE ∪D
8 n← C(t)− |Active|
9 if n < 0 then

10 D ← PruneTuple(Active, t− 1,−n)
11 RE ← RE ∪D
12 else
13 Collect the participants set Γ(t) = {pt1 . . . , ptm}
14 while i ∈ [1,m] do
15 St(pti)← Π(pti)/

∑m
j=1 Π(ptj)

16 while n > 0 do
17 Draw a participant p from St as source.
18 if it is the first time for p to be drawn in this turn then
19 Draw an IET τ from I
20 nat(p)← t+ τ

21 Draw a duration d from D.
22 Draw a destination v from V − {p}
23 insTuple(Active, (e, p, v, ·, t, t+ d− 1))
24 n← n− 1

25 t← t+ 1

26 RE ← RE ∪Active
27 return E

pletely traversed in time. The complexity of the generation algorithm is
O(T̂ · |V | + |E| · log |E|). Note that |E| is determined by RE instead of
an input parameter in the CDM. That is, its exact value can only be known
when the network is completely generated. Similarly, for each vertex v ∈ V ,

38 CHAPTER 3. MODELING OF TEMPORAL NETWORKS

Algorithm 2: PruneTuple
Input: active list Active, timestamp t, number of pruned tuple n
Output: the set of pruned tuple D

1 D ← ∅
2 while n > 0 do
3 r ← the first tuple in Active
4 D ← D ∪ {r}
5 Active← Active− {r}
6 n← n− 1

7 return D

relative degree A(v) is also known after the generation since they depend on
|E|. In the following section, we present the theoretical analysis of how values
for |E| and A(v) in the produced networks are influenced by the generation
algorithm.

3.6 Theoretical analysis

Two natural questions about the CDM are: (1) As the number of edges |E| is
not an input parameter to the algorithm, what is the expected cardinality for
the generated network? (2) Similarly, what would the relative degree A(v) be
like? Answers to these questions respectively help to evaluate the necessary
storage cost for generation and investigate the structural characteristics of the
generated network. In this section, we provide an analysis to answer these
two questions. For ease of analysis, we make the assumption that the activity
behavior of both v ∈ V and e ∈ E follow the Poisson process and I,D follow
exponential distributions with λ1, λ2 parameters, respectively. Besides, we
assume each participant in a competition can win at least one turn so that their
IETs are not prolonged and follow I strictly.

3.6.1 Cardinality

For t ∈ T , let O(t) demonstrate the number of edges that should be gener-
ated at timestamp t. The equation to describe the relation between network

3.6. THEORETICAL ANALYSIS 39

time0 1 2 3 4 5 6 7 8 9 10

e1

e2

e3

e4

e5

e6

Figure 3.2: Example of an edge generation by the CDM. Dashed line corresponds to
the C(8) = 3.

cardinality |E| and O(t) could be written down as follows:

|E| =
T̂∑
t=1

O(t) (3.1)

Let R(t) demonstrate the number of remaining edges at time t after
delTuple is invoked. The equation to describe O(t) is as follows:

O(t) =

{
C(t)−R(t) C(t) > R(t)

0 C(t) ≤ R(t)
(3.2)

That is, given timestamp t,O(t) merely contributes to the cardinality when
C(t) > R(t). For example, Figure 3.2 presents a collection of edges generated
using the CDM and C(t) = {1 : 1, . . . , 3 : 1, . . . , 5 : 3, 6 : 3, 7 : 4, 8 : 3}.
Each edge is represented by its interval. Consider the edge generation at t = 7
is completed and we are going to generate the collection of edges at t = 8.
Active at t = 7 contains the edges e1, e2, e3, e4. Then delTuple deletes e1, e2

from Active since they both end at t = 8. In this way, only two edges e3, e4

survive in Active after the edge deletion, hence R(8) = 2. Since C(8) = 3
and Equation 3.2 gives O(8) = C(8) − R(8) = 1, this means that a single
edge needs to be generated at t = 8.

40 CHAPTER 3. MODELING OF TEMPORAL NETWORKS

As cardinality analysis is generally used for network storage and construc-
tion time estimation, here we use the worst-case method to estimate the output
of Equation 3.1. In this worst case, we assume thatR(t) is always smaller than
C(t). Then, the worst-case equation for the maximum number of generated
edges |E|m is described as follows:

|E|m =
T∑
t=1

(C(t)−R(t)) (3.3)

From Algorithm 1, we know that R(t) consists of the set of edges active at
both t− 1 and t. Then, R(t) can be computed as follows:

R(t) = C(t− 1) · (1− Pd(t)), (3.4)

where Pd(t) 3 represents the probability for each e ∈ E(t − 1) to end at
time t. In our example, we can estimate that Pd(8) is approximately 0.5 since
there is C(7) = 4 andR(8) = 2. Here, we use the knowledge of the stochastic
process to make further deduction on Pd(t). Considering a probability event
ε, Poisson process uses the following equation to express and compute the
probability that ε happens k times in duration [t, t+ τ]:

P [N(t+ τ)−N(t) = k] =
e−λτ (λτ)k

k!
(3.5)

Note that Pd(t) can be also described as the probability that an edge active
at t − 1 is going to end at time t. Based on our assumed Poisson process
for e and exponential distribution for D, Pd(t) can be transformed into the
following:

Pd(t) = P [N(t)−N(t− 1) = 1] = λ2e
−λ2 (3.6)

By substituting Equation 3.6, 3.4 into 3.3, we could obtain the following
equation of describe the expected cardinality for synthetic network.

|E|m = C(T̂) +
T̂−1∑
t=1

C(t) · λ2e
−λ2 (3.7)

With this equation, the complexity of CDM becomes more intuitive. Also,
maximal memory cost in network generation can be evaluated.

3Since edges share the same D in the CDM, the ending probability is the same for e ∈ E.

3.6. THEORETICAL ANALYSIS 41

3.6.2 Relative degree

Next, we give the derivation of the relative degree A(v). The equation to
describe A(v) is as follows:

A(v) =

∑T̂
t=1 o(v, t)

|E|
(3.8)

where o(v, t) is the number of generated outgoing edges starting from v at
time t. The value of o(v, t) relies on whether v is active at t. Based on our
assumption and letting Pa(t) 4 be the probability for v ∈ V to be active at t,
the equation is as follows:

Pa(t) = P [N(t)−N(t− 1) = 1] = λ1e
−λ1 (3.9)

In this way, the equation to describe o(v, t) is as follows:

o(v, t) =

{
0 with probability p = 1− λ1e

−λ1

St(v) ·O(t) with probability p = λ1e
−λ1

(3.10)

According to Algorithm 1, St(v) could be computed as follows:

St(v) = (Π(v)/

|Γ(t)|∑
i=1

Π(pti)) (3.11)

By substituting Equation 3.11 into 3.10, we could obtain:

o(v, t) =

0 with p = 1− λ1e
−λ1

Π(v)·O(t)∑|Γ(t)|
i=1 Π(pti)

with p = λ1e
−λ1

(3.12)

The combination of Equations 3.8 and 3.12 reveals that in order to analyze
A(v), we only need to concentrate on the o(v, t) in which v is active at times-
tamp t. We use B(v) = {b(v, 1), . . . , b(v, j), . . .} to demonstrate the collec-
tion of v’s active timestamps b(v, j) represent the jth active time of v. Equa-
tion 3.8 could be simplified into following format:

A(v) =

∑|B(v)|
j=1 o(v, b(v, j))

|E|
(3.13)

4Since vertices share the same I in the CDM, the active probability is the same for all v ∈ V .

42 CHAPTER 3. MODELING OF TEMPORAL NETWORKS

Aligning Equations 3.13 with 3.12, we could obtain the following equation
which illustrates the factors impacting A(v):

A(v) =
1

|E|
·
|B(v)|∑
j=1

Π(v) ·O(b(v, j))∑|Γ(b(v,j))|
i=1 Π(p

b(v,j)
i)

(3.14)

Equation 3.14 reveals that the relative degree of vertex v is influenced by fol-
lowing factors:

• |B(v)|, the number of timestamps when v is active (i.e., the number of
competitions v participated). The larger |B(v)| provides more opportu-
nities for v to earn outgoing edges.

• |Γ(t)|, the number of participants in competition at time t. The larger
|Γ(t)| tends to weaken St(v), which in turn leads to less outgoing edges
from v.

• Π(v), the power value of v. The larger Π(v) tends to enhance St(v),
which in turn leads to more outgoing edges from v.

• O(t), the number of generated edges at time t. The larger O(t) leads to
more outgoing edges from v when St(v) is fixed.

In order to mine more underlying factors on A(v), we introduce the mean-
field method to simplify the variables in the model and regard the inferred
result as the benchmark. LetA(v) be the mean relative degree of vertex v. The
equation to describe the mean field is as follows:

A(v) =
1

|E|
·
B∑
j=1

Π(v) ·O∑Γ
i=1 Π(p

b(v,j)
i)

=
O

|E|
·
B∑
j=1

Π(v)∑Γ
i=1 Π(p

b(v,j)
i)

(3.15)

where B is the mean number of competitions v participated. Γ is the mean
number of participants at time t. O is the mean number of edges that should
be generated at time t. Corresponding equations to describe these mean-field
parameters are as follows:

B = E[B(v)] = λ1e
−λ1 T̂ (3.16)

Γ = E[|Γ(t)|] = λ1e
−λ1 |V | (3.17)

O = |E|/T̂ (3.18)

3.7. EXPERIMENTS 43

By substituting equation 3.16, 3.17, 3.18 into 3.15. The mean degree equa-
tion could be transformed as follows:

A(v) =
1

T̂
·
λ1e−λ1 ·T̂∑
j=1

Π(v)∑λ1e−λ1 ·|V |
i=1 Π(p

b(v,j)
i)

(3.19)

Equation 3.19 reveals the two characteristics of the relative degree in our
model: first, as the number of vertices |V | increases, the relative degree of
each vertex will drop because |V | determines the sum of cumulative adding
in denominator. Second, given the number of vertices |V |, more involved
participants make the distribution of A(v) much closer to Π(v) as it makes∑|Γ(t)|

i=1 Π(p
b(v,j)
i) closer to 1. That is, relative degree A(v) is exactly reflected

by Π(v) in the most ideal situation. The larger vertices set size makes A(v)
closer to Π(v).

3.7 Experiments

In this section, we present our experimental investigation for the CDM. We
aim to answer the following questions. First, we would like to know if CDM
could simulate real networks with both structural and temporal characteristics
preserved. Second, we investigate to what extent various graph configuration
parameters influence the synthetic networks generated by the CDM.

3.7.1 Setup

Environment. Our experiments were carried out on a server with 192GB
RAM and 2 Intel(R) Xeon(R) CPU X5670 with 6 cores at 2.93GHz running a
Linux operating system. We implemented the in-memory versions of the CDM
in C++.

Datasets. We consider four real networks in the transportation domain: Yel-
low [57], FHV [57], HVFHV [57], and Flight [58]. Yellow records the trips
on the yellow taxi in New York City on 2 January 2018 and each trip is labeled
with an interval to represent its duration. FHV records the trips on for hired
vehicles in New York City on 1 January 2018. HVFHV records the trips on
high-volume for hired vehicles on 1 June 2019. Flight records the trips on air-
lines in the US in January 2019. An overview of statistics of the four networks
is given in Table 3.4 and their CSS distributions are shown in Figure 3.3.

44 CHAPTER 3. MODELING OF TEMPORAL NETWORKS

Name |V | |E| T̂

Yellow 253 236,522 1,440 minutes
FHV 261 585,691 1,440 minutes

HVFHV 260 823,629 1,440 minutes
Flight 335 566,942 744 hours

Table 3.4: Overview of the real-world networks used in the experiments.

0 200 400 600 800 1000 1200 1400
0

1000

2000

3000

4000

C(
t)

CSS distribution of Yellow

0 200 400 600 800 1000 1200 1400
0

2500

5000

7500

10000

12500

15000

17500
CSS distribution of FHV

0 200 400 600 800 1000 1200 1400
t

0

2500

5000

7500

10000

12500

15000

17500

C(
t)

CSS distribution of HVFHV

0 100 200 300 400 500 600 700 800
t

0
500

1000
1500
2000
2500
3000
3500
4000

CSS distribution of Flight

Figure 3.3: CSS distribution of the real-world networks used in the experiments.

Experiments. We run two categories of experiments to investigate the per-
formance of CDM. The first category of experiments deals with the quality
of network simulation by the CDM. We investigate real networks’ relative de-
gree, IET, duration, and CSS distribution to obtain a graph configuration to
be used in network generation. Specifically, we obtain graph configurations
in two ways. The first method is called the frequency configuration, in which
statistical estimations of real measures are directly used as input schema. The
second method is called the fitted configuration, in which for IET and duration
distributions are used directly as estimated from real networks and we use the
fitted result for I and D distributions. We use the power-law cut-off model
y = β ·τα ·e−

τ
τc +h. The values used in frequency and fitted configuration for

each network are shown in Figure 3.4. The parameter β is the CSS coefficient

3.7. EXPERIMENTS 45

which represents the times that basic CSS value is enlarged.

100 101 102 10310 6

10 5

10 4

10 3

10 2

10 1

100 IET frequency configuration
Yellow
FHV
HVFHV
Flight

100 101 102 10310 6

10 5

10 4

10 3

10 2

10 1

100 IET fitted configuration
Yellow
FHV
HVFHV
Flight

100 101 102 103

d
10 7

10 6

10 5

10 4

10 3

10 2

10 1

100 Duration frequency configuration
Yellow
FHV
HVFHV
Flight

100 101 102 103

d
10 7

10 6

10 5

10 4

10 3

10 2

10 1

100 Duration fitted configuration
Yellow
FHV
HVFHV
Flight

Figure 3.4: IET and duration values used in frequency and fitted configuration.

The second category of experiments investigates the scalability of the
CDM. We use instances with two types of CSS: (1) the linear C(t) ∼ t and (2)
the Gaussian C(t) ∼ N(702, 180.02), to investigate the CDM performance
in both monotonous increasing and non-monotonous CSS respectively. The
former case aims to investigate the CDM performance in monotonic increas-
ing CSS and the later case aims to investigate the CDM performance in non-
monotonic CSS. The default setup for the remainder of the configuration is
shown in Table 3.5. These configuration parameters are either popularly used
in existing benchmark for network modeling and generation [59] or supposed
to impact the underlying structures in networks. To investigate such impact in
various networks generated by using CDM, we vary the configuration param-
eters as follows. (1) We set |V | in [500, 750, 1000, 1250, 1500] to investigate
the vertex cardinality impact in CDM. By setting various |V |, we obtain the
networks involving either more or less entities. (2) We set CSS coefficient β in
[1, 5, 50, 500, 5000]×107 to investigate the CSS coefficient impact. By setting
various β, we obtain the networks with either higher or lower CSS value at
each timestamp. (3) We set |E| in [20, 40, 60, 80, 100] million to investigate
the edges cardinality impact5. By setting various |E|, we generate either small

5Every time C(t) is consumed, we return to C(0) and continue the generation iteration,

46 CHAPTER 3. MODELING OF TEMPORAL NETWORKS

or large networks. (4) We set τ in [1, 10, 100, 1000, 10000] to investigate the
IET impact. By setting various τ , the intensity of IET heavy tail (i.e., the ex-
istence of long IETs) in generated graph can be controlled. (5) We set d in
[1, 10, 100, 1000, 10000] to investigate the duration impact. By setting various
d, the existence of lasting edges can be controlled.

We use six measures to evaluate the result: the distribution of (1) network
generation time, (2) relative degree, (3) closeness, (4) IET, (5) duration, and
(6) stability [24]. Given a vertex v ∈ V , the closeness is a measure of how
close v is to any other vertices in the network. The measure is computed as
the inverse of the average distance from v to any other vertices in the network,
which is shown as follows:

closeness(v) =
|V | − 1∑

u∈V−{v} dist(v, u)
(3.20)

where dist(v, u) represents the minimal distance (i.e., number of hops)
from vertex v to u. The stability is a summary of v’s evolving degree structure
in time, which is measured based on the notion of degree rank. Given the set of
snapshots {G(1) . . . G(T̂)}, the degree rank of v in snapshotG(t) is computed
as follows.

rank(t, v) =
δt(v)

maxu∈V δt(u)
(3.21)

where δt(v) is the number of out-going edges from v in G(t). With these
notions, given the set of snapshots {G(1) . . . G(T̂)} the stability of v is com-
puted as follows.

stability(v, {G(1) . . . G(T̂)}) = 1− 2σv (3.22)

where σv is the standard deviation of v’s degree rank over all snapshots.
As a trade-off between measuring accuracy and efficiency, for each network
in this experiment, we compute the stability based on 1000 uniformly selected
snapshots.

until the desired cardinality is reached.

3.7. EXPERIMENTS 47

Schema Value Description

|V | 500 Number of vertices
|E| 200,000,000 Number of edges
f ∼ x−1.5 Power value distribution
I ∼ τ−1.5, τ = 1, τ = 1000 IET distribution
D ∼ d−1.5, d = 1, d = 1000 Duration distribution
β 50× 107 Coefficient in C(t)

Table 3.5: Default configuration for the scalability experiments.

3.7.2 Results and Analysis

Quality of network simulation. Table 3.6 reports the generation time for the
two types of simulations (frequency and fitted configurations) for different net-
works. We note that even the largest network with around 800K edges could be
constructed in less than 15 seconds. This indicates that CDM is highly efficient
in network generation. Figures 3.5, 3.6, 3.7, 3.8, 3.9 report the measures in the
real, frequency-simulation, and fitting-simulation networks. We note that in
each subplot, the trend of different curve is similar to each other and the dif-
ferences are minimal. This indicates that CDM could simulate real networks
well.

Name |E| construction cost (ms)

FHV-frequency 563,243 12176.3
FHV-fitting 533,572 12574.7

Yellow-frequency 237,275 7859.7
Yellow-fitting 199,298 8770.9

HVFHV-frequency 826,523 14980.0
HVFHV-fitting 755,707 14714.8

Flight-frequency 569,483 10717.4
Flight-fitting 583,964 11266.1

Table 3.6: Generation time of simulation result

Scalability of network generation. Next, we investigate the performance of
CDM in different categories of networks. Table 3.7 reports the construction
time of various networks in CDM and following results could be drawn from it.
First, by varying β, the construction time in the monotonic increases steadily.

48 CHAPTER 3. MODELING OF TEMPORAL NETWORKS

0 50 100 150 200
0.00

0.02

0.04

0.06

0.08
A(

v)
Yellow

real
frequency
fitting

0 50 100 150 200 250
0.000

0.005

0.010

0.015

0.020

0.025

0.030
FHV

real
frequency
fitting

0 50 100 150 200 250
v

0.000

0.005

0.010

0.015

0.020

A(
v)

HVFHV
real
frequency
fitting

0 50 100 150 200 250 300 350
v

0.00

0.01

0.02

0.03

0.04

0.05

Flight
real
frequency
fitting

Figure 3.5: Relative degree of simulation result.

0 50 100 150 200 250
0.000

0.002

0.004

0.006

0.008

Cl
os

en
es

s

Yellow

real
frequency
fitting

0 50 100 150 200 250
0.000

0.001

0.002

0.003

0.004
FHV

real
frequency
fitting

0 50 100 150 200 250
v

0.000

0.001

0.002

0.003

0.004

0.005

Cl
os

en
es

s

HVFHV

real
frequency
fitting

0 50 100 150 200 250 300 350
v

0.000

0.001

0.002

0.003

0.004

Flight

real
frequency
fitting

Figure 3.6: Closeness distribution of simulation result.

3.7. EXPERIMENTS 49

100 101 102 103

10 4

10 3

10 2

10 1

100
Yellow

real
frequency
fitting

100 101 102 103

10 5

10 4

10 3

10 2

10 1

100 FHV

real
frequency
fitting

100 101 102

10 5

10 4

10 3

10 2

10 1

100
HVFHV

real
frequency
fitting

100 101 10210 5

10 4

10 3

10 2

10 1

100 Flight

real
frequency
fitting

Figure 3.7: IET distribution of simulation result.

100 101 102 103

10 5

10 4

10 3

10 2

10 1
Yellow

real
frequency
fitting

100 101 102 103

10 5

10 4

10 3

10 2

FHV

real
frequency
fitting

100 101 102

d

10 6

10 5

10 4

10 3

10 2

HVFHV

real
frequency
fitting

100 101

d

10 5

10 4

10 3

10 2

10 1

Flight

real
frequency
fitting

Figure 3.8: Duration distribution of simulation result.

50 CHAPTER 3. MODELING OF TEMPORAL NETWORKS

0 25 50 75 100 125 150 175
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0
St

ab
ilit

y
Yellow

real
frequency
fitting

0 50 100 150 200 250
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

FHV

real
frequency
fitting

0 50 100 150 200 250
v

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

St
ab

ilit
y

HVFHV

real
frequency
fitting

0 50 100 150 200 250 300 350
v

0.0

0.2

0.4

0.6

0.8

1.0
Flight

real
frequency
fitting

Figure 3.9: Stability distribution of simulation result.

This is expected because higher β leads to larger |Active| in each competi-
tion so that the insert of a newly generated edge becomes more costly. In the
non-monotonic, however, the construction time in the non-monotonic sharply
decreases at the very beginning and then increases steadily. This is because
the low β in the non-monotonic significantly increases the times of invoking
PruneTuple, which is unproductive to the generation of new edges. Second,
by varying |V |, the construction time keeps increasing. This is expected be-
cause higher |V | generally leads to more participants in a competition which
further makes each turn more costly. Third, by varying the desired |E|, the con-
struction time steadily increases because more competitions are carried out to
generate larger networks. Fourth, by varying τ , the construction time steadily
decreases because long IET significantly reduces the number of participants in
a competition. Finally, by varying d, the construction time slightly increases
because more lasting edges increases the maintenance cost of Active. Over-
all, the statistics demonstrate that CDM could generate both small and large
networks efficiently.

Next, we concentrate on the remaining structural and temporal measures.
Figure 3.10 reports the degree distribution in various networks. Several obser-
vations can be made here. First, we note that higher |V | pulls down the degree
proportion of each vertex, which is expected in Equation 3.19. Second, the

3.7. EXPERIMENTS 51

β × 10−7 1 5 50 500 5000

tm 865.5 868.7 889.2 892.7 908.6
tn 2251.8 1010.6 833.6 870.7 921.2

|V | 500 750 1000 1250 1500

tm 889.2 887.9 908.6 925.7 920.5
tn 833.5 867.8 908.6 925.7 948.9

|E| 200M 400M 600M 800M 1000M

tm 889.2 1735.4 2680.1 3573.1 4465.7
tn 833.5 1671.0 2539.8 3390.2 4226.2

τ 1 10 100 1000 10000

tm 942.2 914.0 878.1 889.2 834.5
tn 967.0 921.2 873.6 833.5 804.0

d 1 10 100 1000 10000

tm 821.4 810.3 832.2 889.2 881.4
tn 804.1 819.2 801.0 833.5 840.1

Table 3.7: Generation time in both monotonic (denoted tm) and non-monotonic (de-
noted tn) networks with respect to schemas (secs)

higher β lifts the front of the distribution curve while the tail still keeps sta-
ble. This is because a higher coefficient value provides more opportunities for
higher-power vertices to obtain outgoing edges in each competition so that the
high-power vertices could fully take their advantage in their involved compe-
titions. Third, higher τ pulls down the front and lifts the rest of the curve. This
is because the appearing of longer inactive period allows lower-power vertices
to participate in more competitions without competing with higher-power ver-
tices. Finally, higher d pulls down the front part because lasting edges lead to
a limited number of edges to be generated at each timestamp. This restricts the
degree advantage of high-power vertices.

Figure 3.11 reports the IET distribution in various networks. The dashed
line is there to illustrate the ”ends” of the lines, they cannot be seen otherwise
because of the significant overlap between the lines that correspond to different
studied parameters. We start by drawing two general conclusions about the
IET results. First, the configured I is well modeled in networks generated

52 CHAPTER 3. MODELING OF TEMPORAL NETWORKS

by the CDM since we can observe the heavy-tails in power-law distribution.
Second, the networks with a higher proportion of small IETs tend to have
smaller maximal IET. For convenience, we call this the IET aggregation nature
in the generated networks. Third, the maximal IET in a generated network can
be larger than configured τ . This is because vertices with lower Π(v) may
never win in a competition so their IET would be continuously prolonged.

The rest of the results observed in Figure 3.11 include the following. First,
IET aggregation of the non-monotonic networks tends to be weaker than the
monotonic networks. This is because the generation of non-monotonic net-
works involves the invoking of PruneTuple, which introduces the period
with no competitions and extends vertices’ IETs. Second, higher β enhances
the IET aggregation because this provides more opportunities for lower-power
vertices to win in competitions. Third, higher τ weakens IET aggregation as
expected. Finally, higher d also weakens the IET aggregation because lasting
edges reduce the opportunities for lower-power vertices to win in competitions.

Figure 3.12 reports the duration distribution in various networks. We first
note that the configuredD is also modeled well because of the observed heavy-
tails. Second, higher d pulls down the durations’ aggregation on small values
for the similar reason as in IET. Besides, duration proportion in networks gen-
erated by the CDM tends to be much more stable since they are hardly im-
pacted by other factors (in comparison to the IET).

Finally, we present the result and analysis of vertex stability in various net-
works. A general situation drawn from the resulted statistics is that low-power
vertices are generally more stable than higher-power vertices. This is expected
because the temporal degree of the low-power is generally small or even negli-
gible comparing to the global maximal degree. To be more specific, consider-
ing a vertex v ∈ V , the global maximal temporal degree might probably vary
in v’s inactive period. Since small Π(v) generally leads to small degree, lower-
power vertices tend to be less sensitive to the variation of the global maximal
degree. Oppositely, higher Π(v) generally leads to in-negligible degree. This
makes high-power vertices much more sensitive to the variation.

Figure 3.13 reports the vertex stability in various networks and several re-
sults could also be drawn from it: first, the higher |V | lifts the stability curve
in both monotonic and non-monotonic networks. It is because the higher |V |
leads to the lower degree distribution so that a batch of higher-power vertices
become less sensitive and more stable. Second, the higher β lifts the stability
curve in both categories because a higher CSS coefficient leads to the increase
of the maximal and a higher proportion of stable vertices. Third, higher τ pulls

3.8. CHAPTER SUMMARY 53

down the curve in both categories because vertices’ longer in-active period can
intensify the variation of the maximal. Fourth, higher d pulls down the curve
in both categories because lasting edges can increase vertices’ temporal de-
gree and intensify the variation of the maximal. Finally, we note that vertices
in the non-monotonic are less stable than that in the monotonic when the rest
of the configuration is the same. This demonstrates that PruneActive, which
mainly considers the generation efficiency and duration distribution in this pa-
per, weakens the stability of vertices in generated networks. So in the future,
we would consider various methods used in PruneTuple and investigate their
influence on stability.

3.8 Chapter summary

Motivated by the desire to understand real-world networks, in this chapter,
we investigate the modeling problem of temporal networks. We first present
the important characteristics of real-world networks via both existing litera-
ture and empirical observation. Particularly, we focus on CSS, a characteristic
which is related to our topic but hardly investigated in prior works. Then, we
propose CDM for the modeling and generation of CSS-constrained networks.
The theoretical analysis and experimental evaluation demonstrate that CDM
results in a controllable benchmark which can simulate real networks well and
generate synthetic networks efficiently.

By investigating temporal network modeling, we partially build up the the-
oretical basis for our remained research questions, which provides us a better
understanding of real-world networks. In the rest of the thesis, we will focus
on the query processing problem. Our enhanced understanding will provide
us guidance of query selectivity leverage in order to reach better processing
efficiency.

0.0 0.2 0.4 0.6 0.8 1.00.000

0.004

0.008

0.012

0.016
A(

v)
monotonic

|V|=500
|V|=750
|V|=1000
|V|=1250
|V|=1500

0.0 0.2 0.4 0.6 0.8 1.00.000

0.004

0.008

0.012

0.016 non-monotonic
|V|=500
|V|=750
|V|=1000
|V|=1250
|V|=1500

0.0 0.2 0.4 0.6 0.8 1.0
0.000

0.005

0.010

0.015

0.020

A(
v)

× 10 7=1
× 10 7=5
× 10 7=50
× 10 7=500
× 10 7=5000

0.0 0.2 0.4 0.6 0.8 1.00.000

0.009

0.018

0.027

0.036 × 10 7=1
× 10 7=5
× 10 7=50
× 10 7=500
× 10 7=5000

0.0 0.2 0.4 0.6 0.8 1.00.000

0.004

0.008

0.012

0.016

A(
v)

|E|=200M
|E|=400M
|E|=600M
|E|=800M
|E|=1000M

0.0 0.2 0.4 0.6 0.8 1.00.000

0.004

0.008

0.012

0.016
|E|=200M
|E|=400M
|E|=600M
|E|=800M
|E|=1000M

0.0 0.2 0.4 0.6 0.8 1.00.000

0.004

0.008

0.012

0.016

A(
v)

=1
=10
=100
=1000
=10000

0.0 0.2 0.4 0.6 0.8 1.00.000

0.004

0.008

0.012

0.016
=1
=10
=100
=1000
=10000

0.0 0.2 0.4 0.6 0.8 1.0
v

0.000

0.006

0.012

0.018

0.024

A(
v)

d=1
d=10
d=100
d=1000
d=10000

0.0 0.2 0.4 0.6 0.8 1.0
v

0.000

0.005

0.010

0.015

0.020 d=1
d=10
d=100
d=1000
d=10000

Figure 3.10: Relative degree in various networks.

100 101 102 1030.0

0.1

0.2

0.3

0.4
monotonic

|V|=500
|V|=750
|V|=1000
|V|=1250
|V|=1500

100 101 102 1030.0

0.1

0.2

0.3

0.4
non-monotonic

|V|=500
|V|=750
|V|=1000
|V|=1250
|V|=1500

100 101 102 1030.0

0.1

0.2

0.3

0.4
× 10 7=1
× 10 7=5
× 10 7=50
× 10 7=500
× 10 7=5000

100 101 102 1030.0

0.1

0.2

0.3

0.4
× 10 7=1
× 10 7=5
× 10 7=50
× 10 7=500
× 10 7=5000

100 101 102 1030.0

0.1

0.2

0.3

0.4 |E|=200M
|E|=400M
|E|=600M
|E|=800M
|E|=1000M

100 101 102 1030.0

0.1

0.2

0.3

0.4 |E|=200M
|E|=400M
|E|=600M
|E|=800M
|E|=1000M

100 101 102 103 1040.00

0.25

0.50

0.75

1.00
=1
=10
=100
=1000
=10000

100 101 102 103 1040.00

0.25

0.50

0.75

1.00
=1
=10
=100
=1000
=10000

100 101 102 1030.0

0.1

0.2

0.3

0.4
d=1
d=10
d=100
d=1000
d=10000

100 101 102 1030.0

0.1

0.2

0.3

0.4
d=1
d=10
d=100
d=1000
d=10000

Figure 3.11: IET distribution in various networks.

100 101 102 1030.0

0.1

0.2

0.3

0.4
monotonic

|V|=500
|V|=750
|V|=1000
|V|=1250
|V|=1500

100 101 102 1030.0

0.1

0.2

0.3

0.4
non-monotonic

|V|=500
|V|=750
|V|=1000
|V|=1250
|V|=1500

100 101 102 1030.0

0.1

0.2

0.3

0.4
× 10 7=1
× 10 7=5
× 10 7=50
× 10 7=500
× 10 7=5000

100 101 102 1030.0

0.1

0.2

0.3

0.4
× 10 7=1
× 10 7=5
× 10 7=50
× 10 7=500
× 10 7=5000

100 101 102 1030.0

0.1

0.2

0.3

0.4 |E|=200M
|E|=400M
|E|=600M
|E|=800M
|E|=1000M

100 101 102 1030.0

0.1

0.2

0.3

0.4 |E|=200M
|E|=400M
|E|=600M
|E|=800M
|E|=1000M

100 101 102 1030.0

0.1

0.2

0.3

0.4 =1
=10
=100
=1000
=10000

100 101 102 1030.0

0.1

0.2

0.3

0.4 =1
=10
=100
=1000
=10000

100 101 102 103 104
d

0.00

0.25

0.50

0.75

1.00 d=1
d=10
d=100
d=1000
d=10000

100 101 102 103 104
d

0.00

0.25

0.50

0.75

1.00 d=1
d=10
d=100
d=1000
d=10000

Figure 3.12: Duration distribution in various networks.

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.4

0.6

0.8

1.0
St

ab
ilit

y
monotonic

|V|=500
|V|=750
|V|=1000
|V|=1250
|V|=1500

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.4

0.6

0.8

1.0
non-monotonic

|V|=500
|V|=750
|V|=1000
|V|=1250
|V|=1500

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.4

0.6

0.8

1.0

St
ab

ilit
y × 10 7=1

× 10 7=5
× 10 7=50
× 10 7=500
× 10 7=5000

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.4

0.6

0.8

1.0

× 10 7=1
× 10 7=5
× 10 7=50
× 10 7=500
× 10 7=5000

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.4

0.6

0.8

1.0

St
ab

ilit
y |E|=200M

|E|=400M
|E|=600M
|E|=800M
|E|=1000M

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.4

0.6

0.8

1.0

|E|=200M
|E|=400M
|E|=600M
|E|=800M
|E|=1000M

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.4

0.6

0.8

1.0

St
ab

ilit
y

=1
=10
=100
=1000
=10000

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.4

0.6

0.8

1.0

=1
=10
=100
=1000
=10000

0.0 0.2 0.4 0.6 0.8 1.0
v

0.2

0.4

0.6

0.8

1.0

St
ab

ilit
y d=1

d=10
d=100
d=1000
d=10000

0.0 0.2 0.4 0.6 0.8 1.0
v

0.2

0.4

0.6

0.8

1.0

d=1
d=10
d=100
d=1000
d=10000

Figure 3.13: Vertex stability in various networks.

4
Processing of temporal predicates

4.1 Motivation

With a better understanding of temporal networks, we enter the processing
problem of temporal predicates, i.e., temporal k-clique enumeration: Given a
(1) temporal relation R (2) a query time window [qs, qe]; and (3) a positive
integer k, enumerate all S ⊆ R where S is a temporal k-clique in [qs, qe]. That
is, objects in each S are all mutually overlapping at some time point in the
query window. The investigated problem arises in a wide range of applications.
Some illustrative examples follow.

• In case of disease eruption and its transmission in a community, find all
groups of k people whose infectious periods all pairwise overlap in a
given timeframe.

• For a deeper understanding of scientific collaborations in a bibliographic
database, find all groups of k people who have tightly collaborated with
each other at the same time, in a given time period.

• For calling a meeting, given the availability of one or more time slots
per committee member, determine possible meeting schedules in a given
time period, based on the need to reach a quorum of k available mem-
bers.

• A typical lion pride consists of 8 to 9 adults whereas a large pride con-
sists of 30 to 40 adults.1 Most social animal groups likewise have well-
defined bounds on membership size. In an ecological animal database,
identify large lion prides visiting a particular location in a given time
window (i.e., k = 30 adult lions which temporally co-occur at the loca-
tion).

• For analytics on a temporal graph (i.e., a graph where each edge in the
1https://cbs.umn.edu/research/labs/lionresearch/social-behavior

59

60 CHAPTER 4. PROCESSING OF TEMPORAL PREDICATES

graph has an associated time window), identify k-sized subgraphs which
temporally co-occur in a given time window, where k is the target sub-
graph size. For example, towards targeted recommendations in a social
network, identify small groups of people (k < 5) who are all mutually
socially connected in a given time window.

Prior studies on the interval join problem [5, 60, 4] can be viewed as a
special case in which clique size k = 2. To the best of our knowledge, the
general case has never been identified and studied before. Moreover, the prob-
lem arises as a basic challenge in the context of spatial and uncertain data
management [61]. Specifically, by investigating the problem, we would like
to improve the computation costs in temporal-predicate processing so that we
can better focus on the leverage of selectivities in temporal subgraph queries.
According to our discussion in Chapter 3, temporal predicates can be selective
in real-world networks, especially when the value of CSS is small. Thus, effi-
cient temporal k-clique enumeration algorithms can be used to filter numerous
non-overlapping subsets and reduce the cardinality of partial results produced
in temporal subgraph query processing. In a word, we investigate temporal-
predicate processing for its various interest and direct relevance to our topic.

4.2 Problem statement

Our studied temporal k-clique enumeration problem is formalized as follows:

Definition 4.2.1 (Temporal k-clique enumeration) Given a temporal rela-
tion R, a positive integer k, and time window [qs, qe]. Enumerate all S ⊆ R
where S is a temporal k-clique in [qs, qe].

Example. Figure 4.1 presents our running example for temporal k-clique
enumeration in this chapter. Consider the visualized temporal relation Rex =
{r1 : [0, 2], r2 : [4, 6], r3 : [5, 10], r4 : [7, 9], r5 : [8, 10], r6 : [4, 4]},
time window [5, 8], and k = 3. There is exaclty one temporal 3-clique in
w, namely, {r3, r4, r5}. If k = 2, the collection of temporal 2-cliques is
{(r2, r3), (r3, r4), (r3, r5), (r4, r5)}.

An efficient processing method for temporal k-clique enumeration can pro-
vide enhanced leverage of temporal selectivity and partially lay the foundation
for investigating temporal subgraph query processing.

4.3. CONTRIBUTIONS 61

time0 1 2 3 4 5 6 7 8 9 10

r1

r2

r3

r4

r5

r6

Figure 4.1: A running example of temporal k-clique enumeration. Temporal relation
Rex = {r1 : [0, 2], r2 : [4, 6], r3 : [5, 10], r4 : [7, 9], r5 : [8, 10], r6 : [4, 4]} and query
window [5, 8].

4.3 Contributions

Our contributions in this chapter can be summarized as follows:

• We propose a linear-scan-based processing framework for temporal k-
clique enumeration. The framework can be used to adjust existing
sweep-based interval join algorithms to our investigated problem at a
low cost. The adjusted algorithms have much lower complexity than the
straightforward solution.

• Based on a careful analysis of the weakness of the adjusted algorithms,
we propose a novel method, namely the Start Time Index (STI) algo-
rithm, to provide more efficient processing for clique enumeration.

• We develop checkpoint mechanisms to further improve query process-
ing in STI. We discuss four checkpointing strategies and highlight their
benefits. In addition to STI, these strategies are of independent inter-
est and could also be applied in combination with other state of the art
methods.

• We present an in-depth experimental study of which the results demon-
strate the significant improvements in scalability and performance intro-
duced by our new methods.

62 CHAPTER 4. PROCESSING OF TEMPORAL PREDICATES

4.4 Baseline: EBI and FS algorithms

As we have mentioned, the interval join processing can be regarded as a spe-
cial case of our investigated problem with k = 2. Existing research on inter-
val join processing can be classified into index-based [42, 43, 44], partition-
based [45, 46], and plane-sweep methods [4, 5]. Currently, the best performing
solutions for interval joins are based on plane-sweep methods [5]. Piatov et
al. [4] proposed two memory plane sweep-based interval join algorithms EBI
and LEBI based on endpoint index, which outperforms the prior plan-sweep
methods. Bouros et al. [5] proposed two optimized algorithms based on for-
ward scan named gFS and bgFS. Grouping and bucket indexing techniques are
applied to reduce the cost caused by redundant comparison, which makes this
algorithm competitive to Piatov’s methods. We next discuss in detail these two
general approaches, which are the state of the art methods.

Endpoint-based Index. EBI [4] is an internal-memory-based plane-sweep
algorithm for processing an interval join between temporal relations R1 and
R1. In EBI, each element r ∈ R1 ∪ R2 with associated time window
[starttime(r), endtime(r)] is represented as a pair of endpoint events, where
each event represented by tuple (ti, ty, rid(r)). Here, ti is the timestamp of
an endpoint and is either starttime(r) or endtime(r), ty is the endpoint type
and should be either start or stop, and rid(r) is the index of the record r.
Given a pair of temporal relations R1 and R2, their endpoint indexes I1 and
I2 are then constructed. The events are sorted by their ti in ascending order.
As for join-processing, I1 and I2 are scanned concurrently from the beginning
and each event is accessed forwardly. During the scan for each index, two
active-list structures are maintained to store the concurrent set of relations in
real time, denoted as A1 and A2. The active list is updated depending on the
type of scanned endpoint. And for each scanned start endpoint, EBI matches
it with all the records in the opposite active list to produce joins.

Forward Scan Algorithm. Compared to EBI, forward scan (FS) [62] directly
performs a linear scan on relations without using dedicated structures (i.e.,
active list). Relations R1 and R2 in forward scan algorithm are sorted by the
start time of records. Two linear scans are carried out from the beginning of
relation and stop each time at a new record. For each scanned record in a
relation, FS matches it with all overlapping records in the opposite relation.
In this way, all pairs of interval joins are produced. gFS and bgFS [5] are
improved versions of FS. In gFS, similar consecutive intervals are grouped and
matched with overlapping intervals in opposite relation instead of comparing

4.5. METHODOLOGY 63

pairs of intervals one by one. In bgFS, the temporal domain is segmented into
equal-sized dedicated buckets and intervals are put in corresponding buckets
based on their start time. With the bucket index, the comparisons for join-
matching need merely be made between interval groups in one relation and
buckets in another. The two extensions reduce the cost of comparison and
scanning in original FS.

4.5 Methodology

4.5.1 Framework on query processing

A straightforward method for answering temporal k-clique enumeration is to
carry out k−1 instances of existing interval join over the temporal relation. The
worst-case complexity of the straightforward idea is approximately O(|R|k),
which is extremely large and obviously inefficient in practical application.
Taking advantage of the fact that only self-joins are involved and temporal
domain is linear, we aim to process the clique enumeration via a linear scan of
temporal relation with much smaller complexity in theory. In this section, we
propose a linear-scan-based framework for processing temporal k-clique enu-
meration. Using the framework, we can adjust interval join algorithms (i.e.,
EBI, gFS, and bgFS) to k-clique enumeration with much lower complexity
than the straightforward method. Figure 4.2 presents our framework for pro-
cessing temporal k-clique enumeration. The basic idea of answering temporal
k-clique enumeration in this framework is to scan through the events in their
temporal order overlapping the query window [qs, qe], and generate k-cliques
whenever a new record is encountered (at the timestamp of its start event).
Hence, [qs, qe] is the minimum window we have to scan through to generate
all results.

time
eC(qs) qs qe

query windowLiving History Window

Figure 4.2: Our query processing framework via linear scan

In order to find all k-cliques within the query window, we are interested
in first identifying the cliques at every timestamp where a start occurs. This
timestamp corresponds to when a new clique may form within the query win-

64 CHAPTER 4. PROCESSING OF TEMPORAL PREDICATES

dow. Based on this consideration, our framework takes the concurrent set CS
as the core of our solution. To ensure scanning only [qs, qe] and generating
all results, we need to identify CS(qs) for every possible qs in user queries.
However, given that qs can be any timestamp within the temporal domain of
relation, it is impractical to store the concurrent set for every single timestamp.
A simple remedy is to build the concurrent set on the fly at query processing
time. We call the window that needs to be scanned to construct the concurrent
set of a timestamp t the Concurrent Set Construction Window (CSCW) of t.
Note that it is algorithm-dependent and the intuition is that we want it to be as
small as possible.

A straightforward approach to construct CS(qs) is to start from the very
beginning of temporal relation and scan through all the elements until one with
a timestamp larger than qs is met. This approach is obviously cumbersome
since it introduces numerous unproductive scanning. Continuing our exam-
ple and following the straightforward approach to construct CS(5), the first
scanned element r1 would not be included in CS(5) since it ends at t = 2,
which is far before t = 5. The observation demonstrates the construction win-
dow in the straightforward processing is too large and could be reduced. For
this aim, we consider an alternative approach as follows: Assuming no other
information is available except the intervals associated with the elements in R,
to construct the concurrent set of timestamp t, we need to go all the way back
to the timestamp where the oldest record that is still active at t starts. We call
the alternative approach the Living History Window, and its notion is defined
as follows:

Living history window. Given a temporal relation R and a timestamp t, the
earliest concurrent of t is the timestamp eC(t) corresponding to the earliest
start time of those records that are still active at t, i.e.,

eC(t) =

{
undefined if CS(t) = ∅
minr∈CS(t) starttime(r) otherwise

Note that eC(t) only makes sense when CS(t) 6= ∅. We call the window
[eC(t), t] the Living History Window (LHW) of t, denoted LHW (t); and the
set of events in this window the Living History of t, LH(t) = events(LHW (t))

Example. Continuing our running example (Figure 4.1), two intervals oc-
cur at t = 5, i.e., CS(5) = {r2, r3}. The earliest record r2 starts at t = 4,
Hence, we have eC(5) = 4 and LHW (5) = [4, 5].

Again, assuming no other information is available. The minimum set

4.5. METHODOLOGY 65

of events we need to scan for the reconstruction of CS(qs) are the ones in
LHW (qs). Hence, the ideal Concurrent Set Construction Window is the liv-
ing history window of qs. In this way, the scanning range in query processing
is composed of two adjacent windows as shown in Figure 4.2: (1) the living
history window and (2) the query window. The former is used to construct
CS(qs) while the latter is used for clique enumeration. We could prove that
no intervals that can contribute to the final join result would be missed in the
method using eC(qe) compared to the basic method as follows

Theorem 4.5.1 events(LHW (t)) covers all the records starting no later than
and overlapping qs.

Proof. Assuming a record r can contribute to the join result and is not
included in events(LHW (t)) , there must be (1) starttime(r) < eC(qs) and
(2) endtime(r) >= qs. Statement (1) and (2) illustrate that r is active at
qs. However, eC(qs) is defined as the start time of the earliest interval that is
active at qs, which contradicts the statement (1). So we know that no intervals
associated with the final result are missed in the scan using eC(qs).

In the following sections, we will present a family of data structures and
algorithms. The basic idea for the algorithms is adjusting the state of the art
in interval join processing using our proposed framework to minimize the scan
range.

4.5.2 Proposed method I: CE-EBI

In this section, we propose the adjusted EBI for temporal k-clique enumera-
tion (CE-EBI, for short). The method consists of two main parts: (1) CE-EBI
index, a B+-tree based data structure for temporally indexing the elements
in temporal relation; and (2) CE-EBI algorithm, a processing pipeline which
takes advantage of the CE-EBI index to answer the temporal k-clique enumer-
ation problem efficiently.

Following the original EBI algorithm [4], we proceed to store and index
temporal relation R in a CE-EBI index. The CE-EBI index is a B+-tree overR
such that each tuple can be formalized as (ti, ty, rid(r), eC(ti)). Compared to
the underlying index in [4], each tuple is extended with a new fourth position
which records the earliest concurrent of ti for a fast location on the living
history window of queries. We overload the timestamp(), eventtype(), and
eC() functions and allow them to take an index tuple as input and return the
timestamp (first position), the event type (second position), and the earliest

66 CHAPTER 4. PROCESSING OF TEMPORAL PREDICATES

concurrent of the timestamp (fourth position), respectively. The procedure to
construct CE-EBI index can be described as follows:

• For each element r ∈ R, we construct two index tuples:
[starttime(r), rid(r), start,−1] and [endtime(r), rid(r), stop, ()],
representing the endpoints of r.

• We insert all these tuples into a B+tree, with the time element (i.e., first
position of each entry) as primary search key and event type (i.e., the
third position of each entry) as the secondary search key with the order
defined as start < stop.

• As a final step of index construction, we scan the B+tree tuples from
first to last, and update the fourth position of each tuple r of start type
with eC(timestamp(r)), the starting time of the oldest element which
is still active at the time-stamp of r.

We offer the following look-up methods for an CE-EBI index:

• getEntry(t): given a time-stamp t, retrieve the first tuple r with the
smallest time-stamp among all tuples that satisfy t ≤ timestamp(r).

• getRecentStart(t): given a time-stamp t, retrieve the tuple with the
largest time-stamp among all tuples that satisfy (1) r is of start type;
and (2) t ≥ timestamp(r). If no such tuple satisfies both condition,
then, return the first tuple of CE-EBI index.

• startScan(r): start a linear scan of the index from tuple r and return a
cursor sc for fetching each tuple.

• nextEntry(sc): retrieve the next index entry of scan sc.
• stopScan(sc): stop the scan sc in the CE-EBI index.

With CE-EBI index, the procedure of CE-EBI algorithm for temporal
k-clique enumeration is presented in Algorithm 3. For each query q with
a positive integer k and a window [qs, qe], CE-EBI algorithm involves two
B+tree look-ups and one linear scan of the tuples in CE-EBI index. The
look-ups aim to identify the living history window for the following linear
scan. The first CE-EBI index look-up uses qs as the search key, invokes the
getRecentStart() method, and retrieves the tuple r for the most recent start
event no later than qs. The timestamp of r is marked as t0 in Figure 4.3. The
second CE-EBI index look-up uses eC(t0) as the search key and locates the
left-most index entry with the timestamp. Figure 4.3 presents the determined
scanning range of CE-EBI after the look-ups. Note that there may not be any
event happening at qs, the start point of the query window. Therefore, we
do not have eC(qs) readily available and cannot identify the precise Living
History Window of qs. Instead, we identify the Approximate Living History

4.5. METHODOLOGY 67

Window of qs, ALHW (qs) = [eC(getRecentStart(qs)), qs], as described
above. The scanning range of our CE-EBI is the concatenation of the two ad-
jacent windows: the Approximate Living History Window of qs and the query
window.

time
eC(qs) qs qe

query windowLiving History Window of qs

t0 =timestamp(getRecentStart(qs))eC(t0)

Living History Window of t0

Approximate Living History Window of qs

Scan Window of processing

Figure 4.3: Our framework of temporal k-clique enumeration

During the linear scan, we maintain the active-list structure Active to
record currently active tuples. We define the following operations to manipu-
late the list:

• insActive(Active, r): insert tuple r into active list Active.
• delActive(Active, rid): delete tuple with tuple identifier rid from ac-

tive list Active.
• enumActive(Active, k): generate all subsets of size k over the ele-

ments of active list Active.
• incEnumActive(Active, k, r): first invoke insActive(Active, r) to

insert a tuple r into active list Active, then generate all k-sized subsets
over the elements in Active which contains an occurrence of r.

CE-EBI algorithm takes actions whenever a tuple r is encountered. If r is a
start tuple, algorithm inserts r into Active or, if r is a stop tuple, the algorithm
deletes r from Active. When the first tuple in a query window is encountered,
all k-clique subsets in Active are returned. From then on, every scanned tuple
curr would be matched with all (k − 1)-cliques in Active until either (1) the
newly scanned curr starts after the query window, or (2) the end of the relation

68 CHAPTER 4. PROCESSING OF TEMPORAL PREDICATES

Algorithm 3: CE-EBI
Input: temporal relation R (with CE-EBI index I), query time

window [qs, qe], positive integer k
Output: outstream of k-size subset of tuples in R that forms k-clique

in [qs, qe]
1 startTS ← eC(I.getRecentStart(qs))
2 Active← ∅, result← ∅
3 curr ← I.getEntry(startTS)
4 inRange← false
5 sc← I.startScan(curr)
6 while curr 6= NULL do
7 if timestamp(curr) < qs then
8 if eventtype(curr) = start then
9 insActive(Active, curr)

10 else
11 delActive(Active, rid(curr))

12 else if timestamp(curr) ≤ qe then
13 if inRange = false then
14 if eventtype(curr) = start then
15 insActive(Active, curr)
16 result← result ∪ enumActive(Active, k)

17 else
18 result← result ∪ enumActive(Active, k)
19 delActive(Active, rid(curr))

20 inRange← true

21 else
22 if eventtype(curr) = start then
23 result←

result ∪ incEnumActive(Active, k,rid(curr)))

24 else
25 delActive(Active, rid(curr))

26 else
27 break

28 curr ← getNext(sc)

29 if inRange = false then
30 result← result ∪ enumActive(Active, k)

31 I.stopScan(sc)

4.5. METHODOLOGY 69

is reached. These two situations show that all involved start-event tuples have
been scanned and the algorithm should be halted.

Example. Consider the temporal relation Rex and query window q : [5, 8]
in Figure 4.1. for 2-clique enumeration, we could obtain its CE-EBI index as
follows:

I = {(0, start, r1, 0), (2, stop, r1, 0), (4, start, r2, 4), (4, start, r6, 4),

(4, stop, r6, 4), (5, start, r3, 4), (6, stop, r2, 4), (7, start, r4, 5),

(8, start, r5, 5), (9, stop, r4, 5), (10, stop, r3, 5), (10, stop, r5, 5)}

To enumerate all the 2-cliques in q : [5, 8], CE-EBI algorithm firstly determines
[4, 5] to be the living history window by checking the eC(5) from its index. So
the algorithm starts the linear scan from t = 4 on the index. The procedure
of the linear scan is summarized in Table 4.1, where for each scanned tuple,
the status of Active and conducted operations are listed. For example, the
first encountered endpoint is (4, start, r2, 4). r2 is added into Active because
it represents a start endpoint. And the status of Active is changed to {r2}
because of this operation.

Tuple Active Operation

(4,start,r2,4) {r2} insert r2

(4,start,r6,4) {r2, r6} insert r6

(4,stop,r6,4) {r2} delete r6

(5,start,r3,4) {r2, r3}
insert r3

enumerate (r2, r3);
(6,stop,r2,4) {r3} delete r2

(7,start,r4,5) {r3, r4}
insert r4

enumerate (r3, r4)

(8,start,r5,5)
, {r3, r4, r5}

insert r5

enumerate (r3, r5), (r4, r5)

Rex.end() {r3, r4, r5} End

Table 4.1: Example of CE-EBI processing

4.5.3 Proposed method II: CE-gFS and CE-bgFS

In this section, we present the adjusted FS algorithms for temporal k-clique
enumeration, i.e., CE-gFS (i.e., the adjusted gFS) and CE-bgFS (i.e., the ad-
justed bgFS). We only discuss CE-gFS as an example and CE-bgFS can be
obtained in the same way. The CE-gFS approach consists of two main parts:
(1) Start Time Index (STI index), which is also a B+-tree based data structure

70 CHAPTER 4. PROCESSING OF TEMPORAL PREDICATES

for temporally indexing the elements in temporal relation; and (2) CE-gFS
algorithm, which follows the processing order of gFS to answer k-clique enu-
meration problem via STI. In STI index, only the start-event tuple in the form
of [starttime(r), endtime(r), rid(r), eC(starttime(r))] is used to repre-
sent each element in an STI index, instead of splitting a single interval into
two event tuples. Given a temporal relation R, the procedure to construct a
STI index can be described as follows:

• For each record r ∈ R, we construct an index tuple [starttime(r),
endtime(r), rid(r), -1], and insert all of these tuples into a B+tree,
with the starttime(r) (i.e., the first position of each entry) as primary
search key.

• Similar to that in CE-EBI, as a final step of index construction, we scan
the tuples in B+tree from first to last, and update the fourth position of
each tuple with eC(timestamp(starttime(r))).

STI index inherits all the look-ups from CE-EBI except
getRecentStart(), which should be overloaded as follows.

• getRecentStart(t): given a timestamp t, retrieve the first start-event
tuple r with the largest timestamp among all index tuples that satisfy
t > starttime(r). Return the first start-event tuple of an STI if no such
tuple exists.

The procedure of CE-gFS algorithm is presented in Algorithm 4. The scan-
ning range can be located by the same look-ups as in CE-EBI. Following the
original gFS [5] , a dedicated structure Group is maintained to group “con-
secutive” tuples. In our CE-gFS, “consecutive” means that given the relation
R and for any two time instances t1 and t2 with t1 < t2, all elements in R
are considered “consecutive” if no interval ends in [t1, t2]. Then, all elements
from R starting in [t1, t2] can be grouped together to reduce comparisons. In
other words, we can group all intervals which have succeeding endpoints of the
same type. In Group, all elements are sorted by their end time in ascending
order. We define the following operations to maintain Group.

• insGroup(Group, r): insert the start-event tuple r into Group.
• enumInternal(Group, k): generate all temporal k-clique subsets over

the elements of Group;
• enumExternal(Group, k, sc, qstop): generate all temporal k-clique

subsets containing at least an element in Group, via initializing a for-
ward scan starting from scanner sc. Note that qstop is used as the bound-
ary constraint for the forward scan

4.5. METHODOLOGY 71

• getMininalStop(Group): return the minimal end time among all ele-
ments in Group.

Each encountered tuple curr in the living history window would only be
added to Group if its end time is larger than qs. While for each curr in the
query window, the algorithm first checks if its start time is larger than the
smallest end time in Group. If not, curr is directly added to Group. Oth-
erwise, the algorithm would first (1) enumerate all k-cliques in Group, (2)
initialize a forward scan starting from scanner sc to generate all k-cliques by
joining elements in Group with tuples encountered in the forward scan, and
(3) clears Group after all these are done. Finally, the algorithms end when
either (1) the newly scanned curr starts after the query window, or (2) the end
of the relation is reached, just like in CE-EBI.

Example. Continuing our temporal relation and 2-clique enumeration
query, we could first construct following STI index for the temporal relation:

I = {(0, 2, r1, 0), (4, 4, r6, 4), (4, 6, r2, 4), (5, 10, r3, 4),

(7, 9, r4, 5), (8, 10, r5, 5)}.

CE-gFS algorithm firstly determines [4, 5] to be the living history window
by checking the eC(5) from its index. Starting from t = 4 on the index,
the procedure of running instance is summarized in Table 4.2. For example,
when tuple (7, 9, r4, 5) is scanned, CE-gFS notes that r4’s start time 7 is larger
than the minimal end time 6 (r2’s end time) in Group. Hence, CE-gFS first
enumerates {r2, r3} over Group and then initializes a forward scan to join
elements in Group with encountered elements in the forward scan, during
which {r3, r4}, {r3, r5} would be generated.

4.5.4 Challenge

CE-EBI, CE-gFS, CE-bgFS can solve the temporal k-clique enumeration prob-
lem correctly as they derive from the state of the art in the interval join problem.
Compared to the straightforward method, the adjusted algorithms are much
less complex than the straightforward processing using k − 1 interval join in-
stances since they follow a linear-scan-based framework. We taking CE-EBI
as an example: For index-scanning, the entirety of CE-EBI index would be
scanned in the worst case of processing, where the total cardinality of scanned
tuples should be 2 · |R| as CE-EBI index decouples each element in R into two

72 CHAPTER 4. PROCESSING OF TEMPORAL PREDICATES

Algorithm 4: CE-gFS
Input: temporal relation R (with STI index I), query time window

[qs, qe], positive integer k
Output: outstream of k-size subset of tuples in R that forms k-clique

in [qs, qe]
1 startTS ← eC(I.getRecentStart(qs))
2 Group← ∅,result← ∅
3 curr ← I.getEntry(startTS)
4 sc← I.startScan(curr)
5 while curr 6= NULL do
6 if starttime(curr) < qs then
7 if endtime(curr) >= qs then
8 insGroup(Group,curr)

9 else if starttime(curr) ≤ qe then
10 if getMininalStop(Group) < starttime(curr) then
11 result← result ∪ enumerateInternal(Group, k)
12 result←

result ∪ enumerateExternal(Group, k, sc, qe)
13 Group← ∅
14 insGroup(Group,curr)

15 else
16 break;

17 curr ← getNext(sc)

18 result← result ∪ enumerateInternal(Group, k)
19 I.stopScan(sc)

tuples. For maintenance, every encountered element would trigger an insertion
or deletion to the Active during the process of the scanning. The complexity
of insertion and deletion is determined by the implementation of Active. Con-
sider if Active is a sorted list, the complexity of each insertion and deletion
should be O(log |Active|). In this way, the worst-case complexity of CE-EBI
is O(|R| · log |R|)2 , which is much smaller than the complexity of straightfor-
ward processing (i.e., O(|R|k)).

Note that we consider the index-scanning cost as the most important factor
in processing efficiency. First, in practical applications, |Active| is gener-

2In the worst case, the size of Active should be the number of elements in relation R

4.5. METHODOLOGY 73

Main scan Forward Scan Group Operation
(4, 4, r6, 4) - ∅ ignore r6;
(4, 6, r2, 4) - {r2} insert r2;
(5, 10, r3, 4) - {r2, r3} insert r3;

(7, 9, r4, 5) - {r2, r3}
enumerate {r2, r3};
start a forward scan;

- (7, 9, r4, 5) {r2, r3} enumerate {r3, r4};
- (8, 10, r5, 5) {r2, r3} enumerate {r3, r5};

- Rex.end() ∅ clear Group
exit forward scan

(7, 9, r4, 5) - {r4} insert r4;
(8, 10, r5, 5) - {r4, r5} insert r5;

Rex.end() - {r4, r5}
enumerate {r4, r5};

End

Table 4.2: Example of CE-gFS processing

ally much smaller than the cardinality of scanned tuples. Second, unlike the
maintenance of Active which always happens in memory, the index-scanning
can happen either in memory (i.e., in-memory database) or hardware (in-disk
database). The latter scenario can make a nextEntry() operation on CE-EBI
index much more expensive than insertion or deletion on Active.

Though the adjusted algorithms reduce the complexity of temporal k-
clique enumeration, they still suffer from several inefficiencies in practical
application. CE-EBI is inefficient in several aspects.

• For index-scanning, though the living history window is used, the scan-
ning range is still much larger than the given query window. In the worst
case, the scan could start from the leftmost event tuple, just like the time
when the notation of living history window is not proposed. For exam-
ple, if an element r7 : [0, 10] is added into Rex, there will be eC(t) = 0
for ∀t ∈ [0, 10]. Such a scenario can happen in various applications
because of the existence of extremely long duration as we discussed in
Chapter 3. Besides, decoupling endpoints could lead the scanning cost
to be much larger than the number of events that actually involve enu-
meration: (1) For elements starting and also stopping in the scanning
range, the scanning cost doubles (e.g., r2, r6 in CE-EBI example). (2)
For elements starting before scanning range but stopping in, their stop
event tuples are still to be scanned though they do not involve the enu-
meration.

• For active-list maintenance, either an insertion or a deletion will be per-
formed for each encountered tuple during the scan. Some of these per-

74 CHAPTER 4. PROCESSING OF TEMPORAL PREDICATES

formed before qs are irrelevant to the results (e.g. r6). In the worst case,
the number of operations performed on irrelevant tuples can be signifi-
cantly larger than that of events which contribute to the final query re-
sults.

• Finally, for index storage, as the number of event tuples doubles the
number of elements in relation, the storage cost increases significantly.

In a word, the essential reason for these additional costs is the decoupling
of endpoints in CE-EBI. First, the decouple requires that an element should
be represented via two indexed tuples. The cumbersome representation leads
to additional costs in storage and scanning. Second, the decouple breaks the
dependence between start and end time in elements. That is, CE-EBI algorithm
cannot obtain the ending information of an active element until it encounters
its stop event tuple. The lack of information finally leads to the unproductive
cost of maintenance.

Next, we turn to the analysis of CE-gFS and CE-bgFS. Without decou-
pling endpoints in CE-gFS and CE-bgFS, the living history window scanning
cost does not double. However, the worst case of the living history window
still exists. A key inefficiency in the two algorithms is the production of du-
plicate index-scanning. That is, many elements tend to be scanned more than
twice because of the inconsistent references in grouping and enumeration. In
other words, the scanning range in grouping depends on the smallest end time
of grouped elements while the scanning range in enumeration depends on the
largest end time. For example, consider a relation {r1 : [0, 2], r2 : [1, 10],
r3 : [3, 12], r4 : [4, 6], r5 : [8, 10], r6 : [8, 10])} and a query window [0, 12].
Note that R itself has been sorted by start time and earliest concurrent is not
necessary since the query window covers all elements in R. A running in-
stance of CE-gFS would first group {r1, r2} and match them with {r3, r4, r5,
r6}. Next, it would group {r3, r4} and match them with {r5, r6}. And finally,
{r5, r6} would be grouped and matched with no elements. Note that even in
such a small example, r5 and r6 are scanned three times. The essential reason
for this phenomenon is that the existence of long intervals (e.g., r2, r3) signif-
icantly increases the necessary scanning range in each forward scan instance.
Such impact can also be found in original gFS and bgFS for interval join pro-
cessing easily, which makes gFS and bgFS lose their advantage in processing
relations with many long intervals. Therefore, in FS family of algorithms, the
existence of long intervals can potentially introduce high redundant scanning
costs. Besides, the enumeration via forward scan can be costly when k is larger
than 2.

4.5. METHODOLOGY 75

4.5.5 Proposed method III: STI algorithm

Realizing the in-efficiency in the adjusted methods from analysis, we propose
an optimized method based on STI index (namely, the STI algorithm), with the
aim to provide more efficient temporal k-clique enumeration. The procedure
of STI algorithm is presented in Algorithm 5. Our method uses STI index in
CE-gFS and CE-bgFS as the underlying representation of data, but follows the
processing order in CE-EBI. The aim of using STI index is to avoid inefficien-
cies in CE-EBI. Also, following CE-EBI processing order aims to avoid the
duplicate scanning in CE-gFS and CE-bgFS algorithms. Just like in those ad-
justed algorithms, STI algorithm first determines the living history window via
two look-ups. Then it carries out a linear scan to generate all k-cliques. Dur-
ing the linear scan, the in-memory active-list structure Active is maintained
to record the concurrent set in real time. The tuples in Active are sorted by
their end time in the ascending order. We define the following operations to
maintain Active:

• insActive(Active, r): insert the start-event tuple r into Active;
• delActive(Active, t): delete all start-event tuples r s.t. t > endtime(r)

from Active;
• enumActive(Active, k): generate all temporal k-clique subsets over

the elements of Active;
• incEnumActive(Active, r, k): first insert r into Active, then generate

all temporal k-cliques over the elements in Active which contains an
occurrence of r.

The linear scan starts from the leftmost tuple in approximate living history
window of qs and scans forward. Active is real-time maintained by inserting
newly scanned start-event tuple curr and deleting the expired tuples. When
the first start-event tuple in a query window is scanned, all k-clique subsets in
Active are returned. From then on, every scanned start-event tuple curr would
be matched with all (k−1)-cliques inActive until either (1) the newly scanned
curr starts after the query window, or (2) the end of the relation is reached. If
there are no tuples in a query window, the algorithm directly enumerates all
the k-clique subsets in Active as the result. This way, all k-cliques in [qs, qe]
of relation R are enumerated.

Example. Continuing our temporal relation and 2-clique enumeration
query, we could first construct the same STI index for the temporal relation
as in CE-gFS example: then to enumerate the 2-cliques in q = [5, 8], the al-
gorithm firstly determines [4, 5] to be the approximate living history window,

76 CHAPTER 4. PROCESSING OF TEMPORAL PREDICATES

Algorithm 5: STI algorithm
Input: temporal relation R (with STI index I), query time window

[qs, qe], positive integer k
Output: outstream of temporal k-cliques in [qs, qe] of R

1 startTS ← eC(starttime(I.getRecentStart(qs)))
2 Active← ∅,result← ∅
3 curr ← I.getEntry(startTS)
4 inRange← false
5 sc← I.startScan(curr)
6 while curr 6= NULL do
7 if starttime(curr) < qs then
8 if endtime(curr) >= qs then
9 insActive(Active, curr)

10 else if starttime(curr) ≤ qe then
11 if inRange = false then
12 delActive(Active, qs)
13 result← result ∪ enumActive(Active, k)
14 inRange← true

15 delActive(Active, starttime(curr))
16 result← result ∪ incEnumActive(Active, curr, k)

17 else
18 break;

19 curr ← getNext(sc)

20 if inRange = false then
21 delActive(Active, qs)
22 result← result ∪ enumActive(Active, k)

23 I.stopScan(sc)

by retrieving eC(5) = 4 from (5, 10, r3, 4). Starting from the beginning of
the approximate living history window, the processing procedure in shown in
Table 4.3.

Maintenance. Maintenance of STI index under insertions and deletions of
elements in R incurs the costs of B+tree maintenance and the cost of up-
dating earliest concurrent values of affected tuples. When a new tuple r′

is inserted, eC(starttime(r′)) could be obtained by using the information

4.5. METHODOLOGY 77

Tuple Active Operation

(4, 4, r6, 4) ∅ ignore r6

(4, 6, r2, 4) {r2} insert r2

(5, 10, r3, 4) {r2, r3}
insert r3;

enumerate (r2, r3);

(7, 9, r4, 5) {r3, r4}
delete r2;
insert r4;

enumerate (r3, r4);

(8, 10, r5, 5) {r3, r4, r5}
insert r5;

enumerate (r3, r5), (r4, r5);
Rex.end() {r3, r4, r5} End

Table 4.3: Example of STI processing

provided by its adjacent tuples. In addition, we traverse each tuple r in
[starttime(r′), endtime(r′)] and update eC(starttime(r)) to starttime(r′)
if eC(starttime(r)) > starttime(r′). When an existing tuple r′ is deleted,
we first check if there exists a tuple r′′ in STI such that starttime(r′′) =
starttime(r′) and endtime(r′′) ≥ endtime(r′). If so, no additional main-
tenance needs to be done since the deletion of r′ will not incur any change
on the earliest concurrent of tuples. Otherwise, we carry out a linear scan
on tuples in [starttime(r′), endtime(r′)] with Active maintained and up-
date eC(starttime(r)) to minr∈Active starttime(r) if eC(starttime(r)) =
starttime(r′).

Complexity. The worst-case complexity of STI algorithm is O(|R| · logR)
as in CE-EBI and CE-bgFS. By comparasion, however, STI succeeds in bet-
ter processing efficiency. Contrary to CE-gFS, duplicate scanning would not
happen in STI approach since it follows CE-EBI processing order. Compared
to CE-EBI with decoupling endpoints, STI requires less space for storing tu-
ples and internal nodes in the B+Tree. The scanning cost in STI is improved:
(1) For elements starting and also stopping in the scanning range, the scan-
ning cost is halved because one element is represented by a single tuple rather
than a pair; (2) For elements starting before the scanning range but not end-
ing, no additional scanning cost is introduced because the start-event tuples are
sorted by start time, which makes it impossible for such elements to appear in
the scanning range. Additionally, operations on irrelevant tuples in active-list
maintenance are completely avoided since their end time are compared with
qs. Finally, extra scanning costs introduced by the approximation of the living
history window are minor compared to the scanning benefits gained from the
STI, especially in datasets with extremely long intervals. However, we should

78 CHAPTER 4. PROCESSING OF TEMPORAL PREDICATES

note that the case of the worst living history still exists. That is, the living
history window could still be very large in its absolute temporal measurement.

Summarizing, STI addresses all the inefficiencies in CE-EBI and CE-gFS
except the long living history window problem. In the rest of this section, we
investigate the methods on how to solve this problem.

4.6 Optimization: checkpointing

We introduce Start Time Index with Checkpoints (STI-CP), which is a vari-
ant of STI enhanced with checkpoints (CPs), aiming to speed up the pro-
cessing of long living history windows. A single checkpoint is a dedicated
structure composed of a timestamp c and CS(c), which represents the con-
current set at timestamp c.3 Given a temporal relation R, necessary index
structures in STI-CP include: (1) a STI index and (2) a set of checkpoints
CP = {c1, c2, . . . , cp}. Then, the linear scan in STI index could start from the
timestamp of the latest checkpoint which is smaller than qs rather than from the
beginning of living history window. In the best case, CS(qs) could be directly
obtained. The major difference between STI-CP and STI are:

• In STI-CP, an additional data structure that stores the concurrent set for
each checkpoint inCP is maintained. After the STI index is constructed,
a checkpointing procedure proceeds to select some checkpoints in tem-
poral domain and store them in dedicated structures for further use.

• In STI-CP, LHW (t) starts from max(eC(t), lateCP (t))
where lateCP (t) = maxc∈CP^c≤t(c). We call such timestamp a his-
tory pointer of time t, denoted HP (t). That is, LHW (t) in STI-CP is
[HP (t), t] rather than [eC(t), t] in STI.

The STI-CP algorithm is shown in Algorithm 6. We provide the following
functions are provided in STI-CP in addition to those in STI:

• getHistoryP t(t): Given a timestamp t, returns the history pointer of t.
It may be either eC(t) or a timestamp of a checkpoint.

• isCP (t): Given a timestamp t, returns true if t ∈ CP and false other-
wise.

• getConcurSet(t): Given a timestamp t, returns CS(t) if t ∈ CP and ∅
otherwise.

Example. Continuing our running example, if a checkpoint c is set at t = 5,
3For brevity, c denotes a checkpoint at timestamp c

4.6. OPTIMIZATION: CHECKPOINTING 79

Algorithm 6: STI-CP temporal clique enumeraion
Input: temporal relation R (with STI-CP index I), query time

window [qs, qe], positive integer k
Output: outstream of temporal k-cliques in [qs,qe] of R

1 startTS ← getHistoryP t(starttime(I.getRecentStart(qs)))
2 Active← I.getConcurSet(startTS)
3 . . . continue on with Algorithm 5 starting from line 3.

the scanning of living history window [4, 5] becomes unnecessary, leading to a
saving in scanning costs.

One might argue that checkpoints can introduce another scalability bottle-
neck. Consider a checkpoint c recording CS(c) and a query window [qs, qe].
If only one element r ∈ CS(c) overlaps the query window, the elements in
CS(c) − {r} are redundant and will introduce additional costs for the active-
list maintenance in the living history window. This problem can be solved
with smart implementation. Specifically, we implement the concurrent set of
each checkpoint in the form of a relation in which elements are sorted by their
end time, just like Active in the STI algorithm. Every time a checkpoint c is
obtained as the most recent checkpoint of qs, STI-CP algorithm first locates
the first element r with an end time larger than qs and then takes its following
elements (including r) as the initial Active. For each checkpoint c ∈ CP , the
additional cost introduced by this smart implementation isO(logC(c)), where
C(c) represents the size of concurrent set at timestamp c (see Definition 3.1.1).
In this way, elements which do not contribute to the query window can be
easily filtered so that additional cost can be avoided.

Maintenance. Checkpoints could also be used to accelerate the maintenance
of STI in Section 4.5.5. As for the maintenance of checkpoints themselves,
an insertion of tuple r′ would lead to inserting r′ into CS(c) for each c ∈
[starttime(r′), endtime(r′)]. Similarly, a deletion of tuple r′ would lead to
removing it from the same group of checkpoints.

4.6.1 Problem statement

We note that the effectiveness of STI-CP depends on the selected CPs. Hence,
in the following, we concentrate on the problem of checkpointing. We start by
formalizing our problem as follows.

80 CHAPTER 4. PROCESSING OF TEMPORAL PREDICATES

Definition 4.6.1 (Checkpointing problem) Given a set Q of m queries in
a workload, a set T of n checkpoint candidates, and storage budget B,
a checkpointing problem < Q,T,B > aims to obtain a solution CP =
{c1, c2, . . . , cp} such that

∑p
i=1C(ci) ≤ B, p ≤ n, and ∀ci ∈ T .

That is, we select CPs under a limited storage budget B such that the to-
tal storage cost of CPs should not exceed B. For the best benefits from CPs,
researchers might be interested in finding the optimal solution to our check-
pointing problem. Intuitively, given a query workload Q and a CP solution
CP , the benefit from CP is the scanning costs on indexed tuples saved by ac-
cessing CPs in CP . However, one can easily show NP-completeness of the
corresponding optimal checkpointing problem by producing a reduction to a
0-1 knapsack problem. In the rest of this section, we propose several heuristics
for checkpointing, which could obtain effective solutions at small costs.

The most basic heuristic method is based on random checkpointing. This
method is easy to implement, but it does not make good use of the budget as
random placement of CPs might do little to improve query times. With the aim
of obtaining more effective checkpointing strategies, we consider both data
distribution and query workload. As a result, we propose four checkpointing
strategies classified in two broad categories: data-aware and workload-aware.

Note that the initialization of the CP index consists of two phases: the CP
selection and insertion phase. The complexity of the first phase depends on the
checkpointing strategy while that of the second phase is strategy-independent.4

So, for each strategy, we only analyze the complexity of its CP selection.

4.6.2 Data-aware strategies

Binary strategy. Our first checkpointing strategy is called binary strategy
since it selects the CPs in a binary, breadth-first manner, until the storage bud-
get is consumed. In every round, pairs of elements with the largest distance
in which no CP exists is retrieved, and the middle point of the pairs in the
duration is selected as the position to set a new CP. In this way, the CP dis-
tribution becomes even and pairs of CPs that are too close to each other (and,
thus, potentially wasteful) could be avoided.

As Chapter 3 reveals that real-world data are not evenly distributed tem-
4Given N index tuples and p CPs, it takes O(N logN) time to scan the STI index while

maintaining an active list and O(p log p) time to collect CSs and then insert them into the CP
index bringing overall complexity to O(N logN + p log p).

4.6. OPTIMIZATION: CHECKPOINTING 81

porally because of burstiness [52], we define two types of distances that could
either be used in a binary strategy: (1) event and (2) temporal distance. Event
distance reflects the distance measured in the number of events, while tempo-
ral distance reflects the distance measured in time. By considering temporal
distance, we capture the burstiness of temporal data. To be more specific,
Figure 4.4 and 4.5 presents the examples of event and temporal-binary check-
pointing on Rex respectively, in which we only consider the selection of the
first three CPs.

The complexity of both binary methods is O(p log p), where p is the num-
ber of CPs. As the event and temporal distance are respectively tuple and
timestamp-based, we define following mapping methods from timestamp to
tuple:

time0 1 2 3 4 5 6 7 8 9 10

r1

r2

r3

r4

r5

r6

c3c1 c2

Figure 4.4: Example of event-binary checkpointing on Rex, where dash line repre-
sents the selected CPs. For each CP ci, its index i refers to its order to be selected in
procedure.

• first(t): given a timestamp t, returns the number of the first start-
event tuple r s.t. starttime(r) = t. If there is no tuple starting at t,
getRecentStart(t) is returned.

• last(t): given a timestamp t, returns the number of the last start-event
tuple r s.t. starttime(r) = t. If there is no tuple starting at t,
getEntry(t) is returned.

Long-link-half strategy. Binary strategies do not consider the impact of
long intervals in data. That is, extremely long intervals could influence a
large number of tuples in index. Specifically, given a start-event tuple r and

82 CHAPTER 4. PROCESSING OF TEMPORAL PREDICATES

time0 1 2 3 4 5 6 7 8 9 10

r1

r2

r3

r4

r5

r6

c1c2 c3

Figure 4.5: Example of temporal-binary checkpointing on Rex, where dash line rep-
resents the selected CPs. For each CP ci, its index i refers to its order to be selected in
procedure.

a long interval r′ such that starttime(r) ∈ [starttime(r′), endtime(r′)],
eC(starttime(r)) should be at least as small as starttime(r′). Hence, to
process such queries, algorithm needs to start the scan from starttime(r′) at
least when no CP is present. Meanwhile, we should also note that queries are
more likely to overlap long intervals when they are uniformly distributed.

Based on this, we propose the long link half strategy, which gives priority
to long intervals to be assigned CPs in order to reduce their impact. The core
of long link half strategy is a dedicated structure named link map constructed
on influential intervals in STI. The aim of constructed link map is to provide
guidance for later CP selection. We first present the notation of influential
interval as follows.

Definition 4.6.2 (Influential Interval) Given an STI index I and a start-
event tuple r0, if ∃r ∈ I such that eC(r) = starttime(r0), we call
[starttime(r0), endtime(r0)] an influential interval in I .

Influential intervals are the intervals which determine the earliest concur-
rent of tuples in STI index, which cover the whole domain of temporal relation.
Considering queries in workload are uniformly distributed, longer influential
intervals tend to have more opportunities to cover the uniformly distributed
queries, which also tend to produce longer living history window. With the
notation of influential intervals, our link map is constructed as follows.

4.6. OPTIMIZATION: CHECKPOINTING 83

• We collect all influential intervals via a linear scan on STI index, and
sort them by first(starttime(r0)) in ascending order.

• We refine the collection of influential intervals and build up the link map
on them. Starting from the first interval, each interval is continuously
combined with the following interval into a longer interval until they no
longer significantly overlap (according to some threshold u). The newly
generated interval would be continuously checked and determine if it
could be combined with the next link. Such combination could help to
avoid the potentially wasteful CPs in later selection phase.

In this way, we obtain the link map that could provide us an overview of
the distribution of influential intervals in STI index. Given the link map, CPs
can be selected under its guidance. In every round, the longest interval is taken
out from the map, and the start time of its middle event is selected as a place
to set CP. The CP segments the interval into two sub-intervals and this round
would be carried recursively until the budgetB is consumed. The selected CPs
have a high tendency to segment long intervals, which turns out to weaken the
long interval impact.

time0 1 2 3 4 5 6 7 8 9 10

r1

r2

r3

r4

r5

r6

c1 c2c3

Figure 4.6: Example of long-link-half checkpointing on Rex with threshold u = 0,
where dash line represents the selected CPs. For each CP ci, its index i refers to its
order to be selected in procedure.

Example. Figure 4.6 presents our example for long-link-half check-
pointing over Rex with u = 0. The set of influential intervals in Rex is
{[0, 2], [4, 6], [5, 10]}, which would be directly used as the link-map since the
threshold u for the determination of significant overlapping is set to 0. In the
first round, the longest influential interval [5, 10] is selected and a CP is set at

84 CHAPTER 4. PROCESSING OF TEMPORAL PREDICATES

t = 7, which is exactly the start time of middle event r4 and divides [5, 10] into
[5, 7] and [7, 10]. Next in the second round, [7, 10] is selected and a CP is set
at t = 8, which divides [7, 10] into [7, 8] and [8, 10]. Then in the third round,
[4, 6] is selected and a CP is set at t = 5.

The complexity of link map construction isO(|R|+κ log κ), where κ is the
number of link tuples in map. Considering influential intervals are collected
through a single scan, we could move the collecting step into the initializa-
tion of the STI index. So the additional linear scan is unnecessary and the
map construction complexity could be reduced to O(κ log κ). The complexity
of selection is O(p log κ). Hence, the total complexity of the long link half
strategy is O((κ+ p) log κ).

4.6.3 Workload-aware strategies

The data-aware strategies do not assume any knowledge of the query work-
load. Without query workload, it may waste valuable storage budget to store
CPs pointed in sections of data where no one queries, while the frequently
queried data sections are not sufficiently checkpointed and the query perfor-
mance is sub-optimal. In this section, we present our workload-aware strate-
gies with prior workload information, besides the storage budget. Our goal is
to choose a checkpoint set that maximizes performance gain for queries that
fits this workload within the budget.

We model real-world query workloads as being composed of two parts:
first, a small proportion of uniformly distributed queries, which represents
the outlier behavior performed by some users. Second, a large proportion of
queries distributed around several hotspots in the domain of a dataset. For ex-
ample, considering a scheduling of the free time slots in classrooms in a uni-
versity campus, most queries would aggregate in January and July since it is
the time for final examinations. Using such queries, administration staff could
find the pairs (or larger subsets) of classrooms available to simultaneously hold
examinations. Considering a biological database recording retention period of
zebras in Serengeti National Park in Africa, researchers might be interested
in querying the pairs of zebras staying simultaneously in one place. Most of
such queries would aggregate in the first half of each year as in the later half
zebras would move to Masai Mara for abundant grass and water. This exam-
ple also implies that burstiness patterns in real world could also be a factor in
aggregation of queries.

Based on the prior knowledge, we propose a workload-aware strategy

4.6. OPTIMIZATION: CHECKPOINTING 85

named query-set, which consists of two phases: in the first phase, a batch
of CPs is selected for clusters based on their importance. Secondly, if budget
allows, another batch is selected for the uniformly distributed queries in order
to improve the global efficiency. The basic idea for the first phase is to identify
the hotspots in workload, clustering queries around each hotspot, and select-
ing the CPs for each cluster. Many existing works could be used to detect such
clusters. Here, we choose the mean-ISI method [63] to obtain the aggregated
pattern. Note that there are situations where some clusters could not receive
a CP since budget B is limited, so it is necessary to determine which clusters
should have a priority. For this reason, we introduce a metric named cluster
importance, denoted as CI , to assist in making this decision.

Definition 4.6.3 (Cluster Importance) Given a query clusterCl and the min-
imal time window [Cl, Cl] covering all qs of queries in, its cluster importance
CI could be calculated as follows:

CI = |Cl| · (LH(Cl) + last(Cl)− first(Cl + 1))

where |Cl| refers to the number of queries in Cl. We call the minimal time
window [Cl, Cl] the duration of Cl.

The idea of CI is to approximate the living history window scanning cost
for the whole cluster. This estimation is efficient when Cl is large. We put
all the query clusters in a list and sort them by their importance in descending
order. Recursively, we select the cluster with the highest priority from the
remaining clusters and set a checkpoint at Cl, until the budget is consumed.

After the batch of initial CPs for each cluster are selected, duration of
clusters would be sorted by the number of elements (i.e., last(Cl) - first(Cl +
1)) inside in descending order. Ideas in event binary and long link half strategy
are recursively applied to the re-sorted list until either (1) B is consumed or
(2) the number of elements in every remaining duration is shorter than a pre-
configured threshold x. That is, when (2) happens, it demonstrates most of
queries in the cluster could benefit from CPs so we need to stop selecting CPs
for clustered queries and turn to the next phase.

In the second phase, CPs are selected in the same way as in long link half
strategy, aiming at the improvement on the processing of uniform queries and
full use of the remaining budget.

Example. Figure 4.7 presents the query-set checkpointing over Rex with
query workload Q = {q1 : [0, 1], q2 : [6, 7], q3 : [7, 8], q4 : [8, 9]}. The

86 CHAPTER 4. PROCESSING OF TEMPORAL PREDICATES

procedure starts by detecting the query cluster Q2−4 : [6, 9], in which query
q2, q3, q4 are aggregated. Then, the first CP is set at t = 6, which is the
start time of the query cluster. Following event-binary checkpointing in order
to segment the cluster, the second CP is set at t = 7. Finally, following the
long-link-half checkpointing, [7, 10] (produced after the second CP is set) is
selected and the third CP is set at t = 8.

time0 1 2 3 4 5 6 7 8 9 10

r1

r2

r3

r4

r5

r6

c1 c2 c3

Query cluster Q2−4 : [6, 9]

Figure 4.7: Example of query-set checkpointing on Rex with query workload Q =
{q1 : [0, 1], q2[6, 7], q3 : [7, 8], q4 : [8, 9]}, where dash line represents the selected
CPs. For each CP ci, its index i refers to its order to be selected in procedure.

The complexity of clustering is O(m logm), where m is the number of
queries in workload. The further segmentation of cluster durations takes
O((mc + p0) logmc), where mc is the number of clusters in workload and
p0 is the number of CPs selected in this step. The second phase has the same
complexity as long link half strategy. So the total complexity of query-set
strategy is O(m logm+ (mc + p0) logmc + (p+ κ) log κ).

4.7 Experiments

In this section, we present our experimental investigation of STI and STI-CP
approaches. We aim to answer the following questions. First, we would like
to know if the STI approach can outperform the other methods on a number
of diverse datasets and query workloads. Second, given a storage budget, we
investigate to what extent could various checkpointing strategies improve the
efficiency of the STI family.

4.7. EXPERIMENTS 87

4.7.1 Setup

Environment. Our experiments were carried out on a server with 192GB
RAM and 2 Intel(R) Xeon(R) CPU X5670 with 6 cores at 2.93GHz running
a Linux operating system. We implemented the in-memory versions of CE-
EBI, CE-gFS, CE-bgFS, STI, and STI-CP approaches in C++. The length of
buckets in CE-bgFS is set to 1000 units of time. We use an in-memory version
of BerkleyDB B+tree in which we set the page size to 8KB and use a 12-byte
search key to find 8-byte data values.

Query Generation. We consider two methods of query generation: (1) a uni-
form method, which aims to simulate the workload that has queries with their
start times uniformly distributed in time, and (2) a clustering method, which
aims to simulate the workload that has queries with their start times clustered
in one or more hotspots in time. This query generation model requires three
parameters to be specified: (1) the number of queries m in the workload, (2)
the proportion of the query window size in relation to the entire time domain
ω ∈ [0, 1], which determines the window size of generated queries5, and (3)
the clustering proportion ξ ∈ [0, 1], which represents a proportion of clustered
queries in a workload. Given ξ, we compute the number of queries that need to
be clustered. Denoting the collection hotspots as {t1, t2,tm′} where ti is
the timestamp of the ith hotspot, we assume that each hotspot contains a pre-
determined number of queries which follow a normal distribution with µ = ti
and σ = 100.

The workload in our experiment is composed of above two categories of
queries. For each workload, we generate 2000 queries in total which are then
split into a training set and a test set, 1000 queries each. The training set is
used for workload-aware STI-CPs to learn the clustering structures.

Types of experiments. We run two types of experiments: (1) we process
queries with various query window sizes (which are determined by ω in
[0,10−3,10−2,10−1,1,10,20]%), to investigate the performance of algorithms
in dealing with both long and short queries; and (2) we experiment with
datasets of different sizes. The largest dataset used in this experiment has
400 million elements6 to investigate the scalability of algorithms with respect
to the dataset size.

5We consider a special case when ω = 0 to generate a workload of instant timestamp queries
such that query’s start time is the same as its end time.

6After cleaning, the size of original file for the 400-million dataset is more than 10GB

88 CHAPTER 4. PROCESSING OF TEMPORAL PREDICATES

For each algorithm, we use three metrics to evaluate its efficiency: the
average execution time7 for each query (i.e., its processing cost), memory con-
sumed by indexes (i.e., its storage cost), and index construction time (i.e, its
preparation cost). For processing cost, we set the timeout to 105 seconds, after
which we consider the instance to be not competitive.

For STI-CPs, we carry out two additional types of experiments to investi-
gate the efficiency of various checkpointing strategies: (1) we set the budgetB
to [0.2, 0.4, 0.6, 0.8, 1]% of the dataset size to investigate the effect of budget
size on different checkpointing strategies; (2) we set the clustering proportion
ξ to [0.5, 0.8, 0.9, 0.95, 1] to investigate the effect of query hotspots on STI-CP
evaluation.

Datasets. We consider four real-world datasets from telecommunication and
transportation domains: Yellow [57], CAIDA [22], FHV [57], and Bike [64].
Yellow records the trips on the yellow taxi in New York City from 2010 to
2018 and each trip is labeled with an interval to represent its duration. CAIDA
records the anonymized passive traffic traces from Center for Applied Internet
Data Analysis (CAIDA) in 2018. Each session is labeled with an interval to
represent its duration. FHV records the trips on free hired vehicles in New
York City in the second half of 2017. Bike records the trips on citi-bikes in
New York City in from 2013 to 2018.

4.7.2 Results and Analysis

Investigation for STI. We first investigate the effectiveness of our basic algo-
rithm, the STI algorithm. Figure 4.8 reports the processing cost of CE-EBI,
STI, CE-gFS, and CE-bgFS with respect to the size of the query window. We
note that STI outperforms all of its competitors in the processing cost, espe-
cially when the size of query window increases to 0.1%, 1%, 10%, 20% of the
time domain. Compared to CE-EBI, STI has lower processing cost in both liv-
ing history and query window. Compared to CE-gFS and CE-bgFS, STI scales
better with increasing size of the query window.

Next, we investigate the scalability of algorithms with respect to the size
of the dataset. Figure 4.9 reports processing, storage and preparation costs
for the algorithms with respect to the size of the dataset. The datasets for
this experiment are obtained by selecting subsets of predetermined sizes from
full datasets. We fix the size of the query window to 1% of the time domain

7The time cost of enumeration is not included.

4.7. EXPERIMENTS 89

0% 0.01% 0.1% 1% 10% 20%
Yellow Size of Query Window

103

104

105

P
ro

ce
ss

in
g
 C

o
st

 (
m

s)

EBI STI gFS bgFS

0% 0.01% 0.1% 1% 10% 20%
CAIDA Size of Query Window

102

103

104

105

P
ro

ce
ss

in
g
 C

o
st

 (
m

s)

0% 0.01% 0.1% 1% 10% 20%
FHV Size of Query Window

103

104

105

P
ro

ce
ss

in
g
 C

o
st

 (
m

s)

0% 0.01% 0.1% 1% 10% 20%
Bike Size of Query Window

102

103

104

105

P
ro

ce
ss

in
g
 C

o
st

 (
m

s)

Figure 4.8: Performance for basic algorithms with respect to the query window size

and we set the clustering proportion to 0.9. The result demonstrates that STI
scales better than its competitors with respect to the dataset size in all of the
measured metrics. This result demonstrates that given the same budget (for
index preparation and storage), STI will be significantly more effective than
other methods in query processing in both small and large datasets.

Note that the processing cost of STI changes little as the size of query
window increases. This clearly demonstrates that the processing cost within
the query window is not the efficiency bottleneck for STI approach. In other
words, the scanning cost in the living history window takes up the most time
in STI’s processing. In the rest of this section, we would present how var-
ious checkpointing strategies could reduce this cost and further improve the
effectiveness of the STI approach.

Investigation for STI-CP Figure 4.10 reports the processing cost of several
checkpointing strategies (STI-CPs) with respect to the size of the query win-
dow. We set the budget parameter B to 0.6% and clustering proportion to 0.9.
We note that the query-set strategy outperforms all other strategies in process-
ing short queries and its advantage diminishes as the size of the query window
increases. This is expected because checkpointing strategies aim at reducing

90 CHAPTER 4. PROCESSING OF TEMPORAL PREDICATES

80 160 240 320 400
Yellow Cardinality (million)

103

104

105

P
ro

ce
ss

in
g
 C

o
st

 (
m

s)

EPI STI gFS bgFS

80 160 240 320 400
Yellow Cardinality (million)

100

101

102

S
to

ra
g
e
 C

o
st

 (
G

B
)

80 160 240 320 400
Yellow Cardinality (million)

102

103

104

P
re

p
a
ra

ti
o
n
 C

o
st

 (
s)

80 160 240 320 400
CAIDA Cardinality (million)

103

104

105

P
ro

ce
ss

in
g
 C

o
st

 (
m

s)

80 160 240 320 400
CAIDA Cardinality (million)

100

101

102

S
to

ra
g
e
 C

o
st

 (
G

B
)

80 160 240 320 400
CAIDA Cardinality (million)

102

103

104

P
re

p
a
ra

ti
o
n
 C

o
st

 (
s)

12 24 36 48 60
FHV Cardinality (million)

103

104

105

P
ro

ce
ss

in
g
 C

o
st

 (
m

s)

12 24 36 48 60
FHV Cardinality (million)

100

101

S
to

ra
g
e
 C

o
st

 (
G

B
)

12 24 36 48 60
FHV Cardinality (million)

101

102

103

P
re

p
a
ra

ti
o
n
 C

o
st

 (
s)

12 24 36 48 60
BIKE Cardinality (million)

102

103

104

105

P
ro

ce
ss

in
g
 C

o
st

 (
m

s)

12 24 36 48 60
BIKE Cardinality (million)

10-1

100

101

S
to

ra
g
e
 C

o
st

 (
G

B
)

12 24 36 48 60
BIKE Cardinality (million)

101

102

103

P
re

p
a
ra

ti
o
n
 C

o
st

 (
s)

Figure 4.9: Performance of basic algorithms with respect to the dataset size.

the computation cost within the living history window.

In following experiments, we investigate the effectiveness of STI-CPs with
respect to the size of the dataset, given checkpoint budget, and the distribution
of queries in the workload. We use instant queries in these experiments since
this isolates the effect of the size of the living history window on checkpointing
strategies.

Figure 4.11 reports variation in query processing cost for STI-CPs with
respect to the size of the dataset. We note that the three data-aware strategies
perform close to each other but all outperform the random strategy. The most
important result is that for all STI-CPs, the query-set strategy outperforms the
data-aware strategies in both small and large datasets.

We also record the time consumption on checkpoint-selecting of various
STI-CPs and the result demonstrates that the query-set strategy needs more

4.7. EXPERIMENTS 91

time to select the checkpoints. However, this cost is in the magnitude of mil-
liseconds, which is a very small part of the total preparation cost of the STI
index are could be negligible. So they are not reported in figures.

0% 0.001% 0.01% 0.1% 1%
Yellow Size of Query Window

101

102

103

104

P
ro

ce
ss

in
g
 C

o
st

 (
m

s)

random event temporal long query-set

0% 0.001% 0.01% 0.1% 1%
CAIDA Size of Query Window

100

101

102

103

104

P
ro

ce
ss

in
g
 C

o
st

 (
m

s)

0% 0.001% 0.01% 0.1% 1%
FHV Size of Query Window

101

102

103

104

P
ro

ce
ss

in
g
 C

o
st

 (
m

s)

0% 0.001% 0.01% 0.1% 1%
Bike Size of Query Window

100

101

102

103

104

P
ro

ce
ss

in
g
 C

o
st

 (
m

s)

Figure 4.10: Performance of STI-CPs with respect to the size of the query window.

Figure 4.12 reports the performance of STI-CPs with respect to the check-
point budget B. In most situations, the query-set strategy outperforms other
strategies in processing time. The only exception is in FHV with B = 0.2%
where it performs similar to the others. This is expected as average CSS of
checkpoints in FHV is much larger than the other datasets, so query-set cannot
set enough checkpoints for all clusters when the budget is low. As the budget
increases, the advantage of the query-set strategy becomes apparent.

Figure 4.13 reports the performance of STI-CPs with respect to the distri-
bution of queries in a workload. Observe that the query-set strategy performs
best when the clustering ratio ξ is in [0.8, 0.95]. However, the advantage of the
query-set strategy declines when ξ = 0.5 and ξ = 1. Query-set checkpoint-
ing strategy does not perform as well when ξ = 0.5 due to lack of clustered
queries, hence limited query-aware optimization is possible. In other words,
the checkpoints for clusters do not have much influence on overall processing
cost. Query-set performance when ξ = 1 can be explained by the cluster-
detecting method we use. By analyzing the details in checkpoint selection

92 CHAPTER 4. PROCESSING OF TEMPORAL PREDICATES

80 160 240 320 400
Yellow Cardinality (million)

101

102

103

P
ro

ce
ss

in
g
 C

o
st

 (
m

s)
random event temporal long query-set

80 160 240 320 400
CAIDA Cardinality (million)

100

101

102

103

P
ro

ce
ss

in
g
 C

o
st

 (
m

s)

12 24 36 48 60
FHV Cardinality (million)

101

102

103

104

P
ro

ce
ss

in
g
 C

o
st

 (
m

s)

12 24 36 48 60
Bike Cardinality (million)

10-1

100

101

102

P
ro

ce
ss

in
g
 C

o
st

 (
m

s)

Figure 4.11: Performance of STI-CPs with respect to the dataset size.

0.2% 0.4% 0.6% 0.8% 1.0%
Yellow Budget

101

102

103

P
ro

ce
ss

in
g
 C

o
st

 (
m

s)

random event temporal long query-set

0.2% 0.4% 0.6% 0.8% 1.0%
CAIDA Budget

100

101

102

103

P
ro

ce
ss

in
g
 C

o
st

 (
m

s)

0.2% 0.4% 0.6% 0.8% 1.0%
FHV Budget

101

102

103

104

P
ro

ce
ss

in
g
 C

o
st

 (
m

s)

0.2% 0.4% 0.6% 0.8% 1.0%
Bike Budget

100

101

102

P
ro

ce
ss

in
g
 C

o
st

 (
m

s)

Figure 4.12: Performance for STI-CPs with respect to the budget

4.7. EXPERIMENTS 93

0.50 0.80 0.90 0.95 1.00
Yellow Ratio

100

101

102

103

P
ro

ce
ss

in
g
 C

o
st

 (
m

s)
random event temporal long query-set

0.50 0.80 0.90 0.95 1.00
CAIDA Ratio

100

101

102

103

P
ro

ce
ss

in
g
 C

o
st

 (
m

s)

0.50 0.80 0.90 0.95 1.00
FHV Ratio

101

102

103

104

P
ro

ce
ss

in
g
 C

o
st

 (
m

s)

0.50 0.80 0.90 0.95 1.00
Bike Ratio

10-1

100

101

102

P
ro

ce
ss

in
g
 C

o
st

 (
m

s)

Figure 4.13: Performance for STI-CPs in varying query ratio.

procedure, we find that mean-ISI method cannot properly identify the dura-
tion of each cluster when there are no uniform queries in workload. That is,
the identified duration does not completely cover all queries in a cluster yet
it could identify the correct number of clusters. This is due to the threshold
which is used for clustering being smaller than the possible maximum inter-
time between two consecutive qs in the same cluster, when queries are com-
pletely clustered. However, when some uniform queries are introduced (i.e.,
ξ < 1.0), the calculated threshold could be lifted so it can not properly cover
cluster duration and filter uniform queries.

There are indeed algorithms that outperform the mean-ISI in workload
with no uniform queries. For example, cluster duration identified by the
histogram-based method proposed in [65] could properly cover all queries in
cluster when ξ = 1.0. However, this method does not perform well when
uniform queries involve as it usually fails to intercept short inter-time between
consecutive queries. Besides, the result clearly demonstrates that the mean-
value could achieve notable efficiency at low complexity cost. From this ex-
periment, we could conclude that the effectiveness of workload-aware STI-CPs
is influenced by: (1) distribution of queries and (2) cluster-detecting method
used. More advanced method to identify the query cluster would certainly

94 CHAPTER 4. PROCESSING OF TEMPORAL PREDICATES

0.2 0.4 0.6 0.8 1.0
Training Set Ratio

100

101

102

103

P
ro

ce
ss

in
g
 C

o
st

 (
m

s)
Yellow CAIDA FHV Bike

Figure 4.14: Performance for query-set STI-CP with respect to the size of the training
set

improve its effectiveness.

To further understand the effect of the chosen clustering method, we carry
out an additional experiment to test the performance of the query-set strategy
with respect to the size of training set, reported in Figure 4.14. Comparing
to the processing cost of other strategies (when x = 0% in Figure 4.10), we
observe that the query-set one begins to outperform the others when training
set increases to 0.4 of the test set, and its advantage becomes more stable and
apparent when the ratio increases to 0.6-1.0. This is expected because test set
used in experiments are small (1000 queries in each) so the smaller training
set is not enough for the query-set strategy to learn the clustering structures
especially when training set ratio is low. In other words, if we increase the size
of processing set, even the training set at the size of 0.2 of processing set could
present clear clustering structure information for the query-set strategy.

4.8. CHAPTER SUMMARY 95

4.8 Chapter summary

Motivated by its practical significance in various applications and fundamental
status in temporal subgraph query processing, in this chapter, we investigate
the temporal k-clique enumeration problem, which can be regarded as the gen-
eral case for interval join processing concerned in the state of the art. We start
by proposing a processing framework for the investigated problem based on a
linear scan. Next, we present how we could adjust existing interval join algo-
rithms to our investigated problem via our proposed framework. The adjusted
algorithms have much lower complexity than the straightforward solution to
our problem. Then, we propose STI and STI-CP approaches for more efficient
processing. STI is designed to overcome the efficiency bottlenecks in the ad-
justed algorithms and STI-CP uses checkpoints to further improve processing
efficiency. Finally, our experimental results demonstrate that STI outperforms
current state-of-the-art methods and all proposed checkpointing strategies out-
perform the random checkpoint selection method by a wide margin. In the
rest of this thesis, we will investigate the temporal subgraph matching problem
based on our proposed algorithms in this chapter.

5
Processing of temporal subgraph query

5.1 Motivation

With our developed methods of temporal-predicate processing, we enter the
processing problem of temporal subgraph queries: given (1) a temporal graph
G where each edge has an associated temporal window; (2) a subgraph query
pattern q; and (3) a query time window, find all matches of q in G where
the match life-span (i.e., the time interval on which all of the matched edges
overlap) is non-empty and overlaps the query time window. Specifically,
Figures 5.1 and 5.2 respectively present our examples of graphs G1, G2 and
queries q1, q2, q3 in this chapter. The subgraph query pattern in q1, q2, q3 are
respectively 3-star, 4-chain, 4-circle. And the query time window in q1, q2, q3

are all [10, 20].

As we mentioned, studies of subgraph query processing have primarily fo-
cused on the leverage of topological selectivity [66]. However, temporal selec-
tivity in real-world networks can have a significant impact on query processing
costs, yet there has been relatively little work on leveraging temporal selectiv-
ity in temporal subgraph query processing. Specifically, a straightforward pro-
cessing approach of temporal subgraph queries is to use the existing pipeline
in database systems (i.e., parser, optimizer, and operators), where associated
time windows are stored as edge properties in temporal property graph imple-
mentation. To be more specific, matches are produced by a generated plan
consisting of the following operators.

• ACCESS, which is used to get initial matches of query edges from un-
derlying structures (e.g., edge list).

• JOIN, which is used to concatenate intermediate tuples containing the
same vertices to solve topological predicates. Specifically, it can be ei-
ther binary (e.g., nested-loop, sort-merge, hash) or WCO join operator.

97

98 CHAPTER 5. PROCESSING OF TEMPORAL SUBGRAPH QUERY

v1

v0
e1:(a

,0,5)

v2

e2:
(a,
5,1
0)

v3

e3
:(a
,1
0,
12
)

v4

e4:(a,13,15)

v5

e5:(a,18,20)

v6 e6:(b,1,3)

v7 e7:(b,9,12)

v8 e8:(b,13,15)

v9

e9
:(b
,17
,20
) v10

e10
:(b
,18
,20
)

v11

e11:(c
,3,5)

v12e12:(c,15,16)

e1
3:(
c,2
,2)

G1

v5
v2

e6:(a,10,20)

v1
e4:(
a,15
,25)

v6
e5:(b,1

0,20) v4

e3:(b,5,15)

v3

e1:(c,10,18)

v7

e7:(
a,3
,13
)

v9e8:(a,15
,25)

v8

e9:(b,5,15)

v10

e10:(c,5,5)

e2:
(d,
13,
20)

G2

Figure 5.1: Example of temporal graphs in this chapter.

e q
1

vq0

vq1
a

eq 2

vq2

eq3

vq3

b

c

eq1

vq1

vq2

a
eq2

vq3
c

eq3
vq4

d

eq4

vq5

b

eq4

vq4

vq1

b

eq1
vq2

a

eq2

vq3
d
eq3

c

q1:[10,20]

q2:[10,20]

q3:[10,20]

Figure 5.2: Three temporal-clique subgraph queries.

5.2. PROBLEM STATEMENT 99

(a) Binary join plan for q1

eq
2

Temporal
Selection

Temporal
Selection

eq
3

Temporal
Selection

v2
qv2
q

eq
1

v2
q

Temporal
Selection

eq
2 eq

3

eq
1 eq

3

Temporal
Selection

eq
2

eq
3

eq
3 eq

4

eq
4eq

3

eq
3 eq

4

eq
1

eq
1 eq

2

eq
2

eq
1 eq

2 eq
3 eq

4

Temporal
Selection

Temporal
Selection

Temporal
Selection

Temporal
Selection

Temporal
Selection

Temporal
Selection

Temporal Selection

(b) Binary join plan for q2

eq
1 eq

3
eq

2

Temporal
Selection

(c) WCO join plan for q1

Figure 5.3: Examples of PT processing pipelines, including (a) binary join processing
for q1; (b) binary join processing for q2; and (c) WCO join processing for q1; Red
vertices highlight the topological joins.

• SELECTION, which is used to filter the intermediate tuples that do not
satisfy the temporal predicates (e.g., the overlapping of time windows)
and part of topological predicates (e.g., closure in cycle pattern).

To be more specific, Figure 5.3 presents three examples of query process-
ing using the straightforward approach: (a) binary join processing for q1 over
G1; (b) binary join processing for q2 over G2; (c) WCO join processing for q1

over G1. Temporal selections follow each topological join to filter the tuples
which do not satisfy the temporal predicates. We call this class of methods
“topology then time” (PT) since the temporal predicates are processed after
topological predicates. Such pipelines can be inefficient since the temporal
selectivity is not fully leveraged.

5.2 Problem statement

We study the problem of temporal subgraph query processing. Given a tem-
poral graph G = (V,E, η, λ, τ) (see Definition 2.1.2) and a temporal sub-
graph query q : (e1, . . . , ek) ← l1(u1, v1), . . . , ln(uk, vk), [qs, qe] (see Defini-
tion 2.1.7), we aim to find the set of all complete matches of q over G.

Example. Considering query q1 in Figure 5.2, there are query vertices
vq0, . . . , v

q
3; query edges eq1 = a(vq0, v

q
1), eq2 = b(vq0, v

q
2), and eq3 = c(vq0, v

q
3);

and, query window [10, 20]. q1 aims to return all complete matches of 3-
star pattern overlapping [10, 20] in a given temporal graph. For example,
given the temporal graphs in Figure 5.1, processing q1 over G1 returns (e4,

100 CHAPTER 5. PROCESSING OF TEMPORAL SUBGRAPH QUERY

e8, e12,[15, 15]). Moreover, according to Definition 2.1.9, (e4, [13,15]), (e8,
[13,15]), (e12, [15,16]), (e4,e8, [13,15]), (e4,e12, [15,15]), and (e8,e12, [15,15])
are all partial matches of the q1. According to Definition 2.1.8, e1 . . . e5,
e6 . . . e10, e11, e12 are edges matches of eq1, e

q
2, e

q
3. According to Defini-

tion 2.1.10, {e4, e8, e12} is a clique match of q.

5.3 Contributions

In this chapter, our contribution can be summarized as follows

• We propose a novel method named TIME which follows a “time then
topology” (TP) pipeline. Compared to straightforward PT methods,
TIME focuses more on the leverage of temporal selectivity and can be
more efficient in many scenarios, especially when temporal predicates
are much more selective than topological predicates.

• Base on a careful analysis of the demerits in TIME method, we propose a
novel method, leapfrog TSRJOIN for efficient temporal subgraph query
processing following T&P pipeline. That is, the method processes both
temporal and topological predicates at the same time to fully take ad-
vantage of their selectivities and reach the best efficiency.

• We present the results of an in-depth experimental study which demon-
strates significant improvement in performance introduced by our new
methods.

5.4 Methodology following TP

5.4.1 Proposed method: TIME algorithm

The procedure of our TIME is shown in Algorithm 7. The cores of the algo-
rithm include (1) a binary join plan P and (2) an STI index I . P is the optimal
plan to process topological predicates, which can be generated at the begin-
ning based on graph statistics by the existing optimizer in database systems.
I is constructed on the relation of edges in the temporal graph, which aims to
provide an efficient enumeration of clique matches. We define the following
operations to process P:

• Process(R,P): generate all results by processing P over elements in
relation R.

5.4. METHODOLOGY FOLLOWING TP 101

Clique enumeration
on G1

eq
2 eq

3

eq
1 eq

2 eq
3

eq
1 eq

3

eq
2

Clique enumeration
on G2

eq
3

eq
3 eq

4

eq
4eq

3

eq
3 eq

4

eq
4eq

1

eq
1 eq

2

eq
2

eq
1 eq

2 eq
3 eq

4

Access Access Access AccessAccessAccess
Access

(a) TIME plan for q1 over G1 (b) TIME plan for q2 over G2

Figure 5.4: The examples of TIME processing example for (a) q1 and (b) q2. Red
vertices highlight the topological joins.

• Process(R,P, r): generate all results by processing P over R ∪ {r}
which contain at least an occurrence of r.

The basic idea of TIME can be summarized as follows: we leverage the
framework STI (or STI-CP) algorithm in Chapter 4 for a fast enumeration of
all clique matches. Then, we process P over the enumerated cliques to fil-
ter those which are inconsistent with the topological predicates and produce
the complete matches. Specifically, TIME starts by determining the beginning
of the living history window via STI look-ups, and initializing a linear scan
starting from it, with the dedicated structure Active maintained to record the
clique matches of q in real-time. When the scanning cursor first reaches the
query window, TIME first processes P over Active to produce the set of com-
plete matches which are formed before qs. Then, for each scanned edge curr,
if it is an edge candidate of q, P is processed over Active∪{curr} to produce
all complete matches which contain at least an occurrence of curr. The algo-
rithm’s condition of terminating is the same as that in the STI algorithm. In
this way, the complete result of a temporal subgraph query q can be produced.

Example. Figure 5.4 presents the example of TIME processing for (a) q1

and (b) q2. In TIME plans, STI algorithm is first invoked to solve the temporal
predicates and produce the clique matches in a given query window. Then, a
topological plan is used to produce matches based on the obtained temporal
cliques.

102 CHAPTER 5. PROCESSING OF TEMPORAL SUBGRAPH QUERY

Algorithm 7: Basic TIME algorithm
Input: Temporal subgraph query q, STI index I
Output: Complete matches Result

1 P ← generate the optimal binary join plan of l1(u1, v1) . . . lk(uk, vk)
2 startTS ← eC(starttime(I.getRecentStart(qs)))
3 Active← ∅,result← ∅
4 curr ← I.getEntry(startTS)
5 inRange← false
6 sc← I.startScan(curr)
7 while curr 6= NULL do
8 if curr is an edge candidate of q then
9 if starttime(curr) < qs then

10 if endtime(curr) >= qs then
11 insActive(Active, curr)

12 else if starttime(curr) ≤ qe then
13 if inRange = false then
14 delActive(Active, qs)
15 result← result ∪ Process(Active,P)
16 inRange← true

17 delActive(Active, starttime(curr))
18 result← result ∪ Process(Active,P, curr)
19 insActive(Active, curr)

20 else
21 break

22 curr ← getNext(sc)

23 if inRange = false then
24 delActive(Active, qs)
25 result← result ∪ Process(Active,P)

26 I.stopScan(sc)

The complexity of TIME is O(|E| · log |E| · F(P, Active)), where
F(P, Active) is the average processing complexity of P over Active. Com-
pared to the straightforward method following PT pipeline, the TIME algo-
rithm follows a “time then topology” (TP) pipeline, which indexes the tempo-
ral characteristics of the graph and processes temporal predicates before topo-
logical predicates. Specifically, it starts by solving the temporal predicates

5.4. METHODOLOGY FOLLOWING TP 103

via generating all clique matches jointly overlapping in time, and then solve
the topological predicates via processing a binary join plan over them. The
TP pipeline has advantages in the following aspects: first, as Chapter 3 has
reported the existence of numerous CSS valleys and short edge durations in
real-world networks, temporal predicates (i.e., joint overlapping) in query can
be more selective than topological predicates. Hence, TIME tends to reduce the
candidates which are going to be processed by binary join plan and produce
smaller intermediate cardinality. Second, TIME decouples temporal-predicate
processing from binary plans. That is, SELECTION operations used as tempo-
ral filters can be pruned so that the workload in the plan becomes much smaller.
In this way, TIME is expected to be more efficient than the straightforward ap-
proach following PT pipeline. However, there are several areas in which the
TIME algorithm can be further improved, we summarize these opportunities as
follows.

• The binary join plan P cannot always provide the best efficiency of
topological-predicate processing since it is generated based on the global
statistics of the graph. However, in Algorithm 7, P is processed over
Active, in which practical statistics can vary as the linear scan goes on.

• In Algorithm 7, P is processed every time an edge candidate is encoun-
tered in the query window. Such incremental production of matches
can introduce numerous computation costs. For example, if hash (or
sort-merge) join is used in P , every edge candidate will lead to the re-
construction of hash tables (or the re-sorting of relations) and cause the
redundant cost.

In the following, we present additional optimization techniques to address
these challenges.

5.4.2 Optimization

In this section, we propose an optimized version of the TIME algorithm, which
aims to improve its efficiency in our summarized areas. Compared to basic
TIME, the key extensions in optimized TIME include: (1) the division of active-
list, and (2) the generation of binary join family.

Division of active list. The general idea of division is that, by aggregating
edges which start at the same timestamp t ∈ [qs, qe], we could reduce the com-
putation cost in incremental production. We divide the active-list structure
Active into current-list (denoted Current) and delta-list (denoted Delta).

104 CHAPTER 5. PROCESSING OF TEMPORAL SUBGRAPH QUERY

Current and Delta are both sorted in the same order as in Active. Given
a timestamp t, Current maintains the edges which start before t, while Delta
maintains the edges which newly start at t. Obviously, the union of Current
and Delta is equivalent to Active at time t. We make Current and Delta
inherent all the operations in Active for maintenance.

With the division, we could optimize the incremental production as fol-
lows: For each timestamp t ∈ [qs, qe], we first collect all the encountered
edges with ts = t and insert them into Delta. Then, we process P over
Current andDeltawith the guidance from a set of delta queries [67], denoted
4q1 . . .4qk. Delta queries are pre-constructed with the aim to guide ACCESS
operations whether they should get initial edge matches fromCurrent,Delta,
or Current ∪Delta. For convenience, given a delta query4q that is used to
guide ACCESS operators in a binary join plan P , we say that P is processed
with4q. Let Result+(P, t, i) be the matches obtained by processing P with
4qi at time t. Our constructed delta queries should meet the following two
constraints for correctness and efficiency.

• Result+(P, t) = Result+(P, t, 1) ∪ . . . ∪Result+(P, t, k)
• ∀i, j ∈ [1, k], Result+(P, t, i) ∩Result+(P, t, j) = ∅ if i 6= j.

The first constraint demonstrates the incremental matches at time t should
be covered if we process P with 4q1 . . .4qk one after another. The second
constraint demonstrates that a match can only be produced once to avoid du-
plication. Such a set of delta queries can be constructed at a small cost. The
procedure of constructing the set of delta queries is shown in Algorithm 8.
For ease of expression, here we represent the delta queries in form of tu-
ples. The notations C, D, C ∪ D denote that ACCESS operations should
get initial edges matches from Current, Delta, and the union of Current
and Delta respectively. To be more specific, in Line 1, the initial delta query
4q ← {C ∪D . . . C ∪D,D} demonstrates that for the eq1 . . . e

q
k−1, ACCESS

should get their initial edge matches from the union of Current and Delta.
While for eqk, ACCESS should get its initial edge matches only from Delta.

Example. Continuing our 3-star query q1,GenerateDeltaQueries(3) can
be invoked to construct the following set of delta queries.

∆q1 : ((C ∪D), (C ∪D), D); ∆q2 : ((C ∪D), D,C); ∆q3 : (D,C,C)

In this way, P would be processed three times with ∆q1,∆q2,∆q3 respec-
tively. In the first processing, ACCESS operations for eq1, e

q
2, e

q
3 obtain their

initial edge matches respectively from Current ∪Delta, Current ∪Delta,

5.4. METHODOLOGY FOLLOWING TP 105

Algorithm 8: GenerateDeltaQueries
Input: number of queried edges k
Output: delta query set DQ

1 4q ← {C ∪D . . . C ∪D,D}
2 DQ← {4q}
3 while k > 1 do
4 4q[k]← C
5 4q[k − 1]← D
6 k ← k − 1
7 DQ← DQ ∪ {4q}
8 return DQ

and Delta. In the second processing, ACCESS operations obtain their ini-
tial edge matches respectively from Current ∪Delta, Delta, and Current.
In the final processing, ACCESS operations obtain their initial edge matches
respectively from Delta, Current, and Current.

After all the processing of all delta queries is done, we update Current
by inserting all edges from Delta into Current to prepare for the incremental
production at time t + 1. In this way, the computation cost is expected to be
reduced since the processing of P is carried out for each timestamp t instead
of each encountered edge in the optimized production.

Binary join family. A binary join family is a set of binary join plans, each
of which corresponds to an optimal (or approximate optimal) processing order
in a certain scenario. With a binary join family and in each processing, the
algorithm can use the local optimal plan according to the real-time statistics
in Active (or Current and Delta) to reach better efficiency. In the most
extreme case, the binary join family should cover all possible plans in space
to deal with all possible real-time scenarios. However, such exhaustion of
plans would introduce high additional costs. Hence, we implement the binary
join family as a trade-off between query processing and plan construction: For
each query edge eqi in q, we generate a binary join plan which considers eqi
to be the most selective edge, denoted P(eqi). That is, our constructed binary
join family can be denoted as {P(eq1) . . .P(eqk)}. In our optimized TIME,
every time a query (or delta query) is going to be processed, we first determine
the most selective query edge eq based on the real-time statistics in Active
(or Current and Delta) and then process P(eq) to produce the matches. In

106 CHAPTER 5. PROCESSING OF TEMPORAL SUBGRAPH QUERY

this way, the efficiency of processing topological predicates is expected to be
improved since in most scenarios, we can choose a plan which is more efficient
in real-time than the global optimal plan P , to be processed.

Optimized TIME algorithm. The procedure of our optimized TIME algorithm
is presented in Algorithm 9. We define the following method for the plan
processing in our optimized TIME algorithm.

• Process(Current,Delta,BJ,∆q): start by determining the local op-
timal P ′ from binary join family BJ according to delta query ∆q and
real-time statistics in Current, Delta. Then, generate matches by pro-
cessing P ′ with ∆q over Current, Delta.

Compared to Algorithm 7, our optimized TIME algorithm starts by gen-
erating the binary join family BJ and delta queries DQ. In the beginning
of linear scan, each encountered edge candidate starting before qs would be
directly inserted into Current if it overlaps the query window. When the
scanner first enters the query window, optimized TIME chooses a local opti-
mal plan fromBJ and processes it with a default delta query {C . . . C}, which
demonstrates that all ACCESS operations should get their initial edge matches
from Current. Since then, all encountered edge candidates would be inserted
into Delta instead of Current. The following processing with delta queries
is only carried out when the start time of an encountered edge is non-equal to
the start time of last encountered edge, which demonstrates all edges with the
same start time as the last encountered edge have been inserted into Delta.
For each delta query ∆q ∈ DQ, optimized TIME would select a local optimal
plan P ′ for and then process P ′ with ∆q. In this way, optimized TIME can
produce all matches for query q more efficiently than the basic TIME.

5.4.3 Challenge

TIME algorithms are expected to be more efficient than the straightforward
method following PT in many scenarios, especially when the temporal predi-
cates are more selective than the topological predicates. However, they could
still be in-efficient as they scan all edges which are not candidates of q within
the query window. Such unproductive costs can significantly increase in very
large graphs. Besides, more maintenance costs will be introduced if CSS over
the time domain is large. The essential reason for these inefficiencies is that
TIME algorithms do not take full advantage of the topological selectivity. In
some scenarios, topological predicates can be more selective than the temporal

5.4. METHODOLOGY FOLLOWING TP 107

Algorithm 9: Optimized TIME algorithm
Input: Temporal subgraph query q, STI index I
Output: Complete matches Result

1 Generate binary join family BJ : {P(eq1) . . .P(eqk)}
2 DQ← GenerateDeltaQueries(n)
3 startTS ← eC(starttime(I.getRecentStart(qs)))
4 Current← ∅, Delta← ∅,result← ∅
5 curr ← I.getEntry(startTS)
6 inRange← false
7 lastStart← −1, sc← I.startScan(curr)
8 while curr 6= NULL do
9 if curr is an edge candidate of q then

10 if starttime(curr) < qs then
11 if endtime(curr) >= qs then
12 insActive(Current, curr)

13 else if starttime(curr) ≤ qe then
14 if inRange = false then
15 delActive(Current, qs)
16 result←

result ∪ Process(Current,Delta,BJ, {C . . . C})
17 inRange← true

18 else if starttime(curr) 6= lastStart then
19 delActive(Current, lastStart)
20 for ∆q ∈ DQ do
21 result←

result ∪ Process(Current,Delta,BJ,∆q)
22 Current← Current ∪Delta
23 insActive(Delta, curr)

24 else
25 break

26 lastStart← starttime(curr), curr ← getNext(sc)

27 if inRange = false then
28 delActive(Current, qs)
29 result←

result ∪ Process(Current,Delta,BJ, {C ∪D . . . C ∪D})
30 I.stopScan(sc)

108 CHAPTER 5. PROCESSING OF TEMPORAL SUBGRAPH QUERY

timetimetime

0 2 4 6 8 10 12 14 16 18 20 22

R1(a, v0,−)

R2(b, v0,−)

R3(c, v0,−)

e1

e2

e3 e4 e5

e6 e7 e8 e9

e10

e11 e12

Figure 5.5: Collection of r-TSRs of query edges in q1 under v0. Dash lines represent
the query window.

predicates (e.g., when some query edges are selective). In the following, we
would investigate more efficient query processing methods which fully lever-
ages both topological and temporal selectivities.

5.5 Methodology following T&P

5.5.1 Local notations

We start by presenting our local notations that are going to be used in the rest
of the chapter as follows.

Definition 5.5.1 (Temporal selective relation (TSR)) Given a temporal
graph G = (V,E, η, λ, τ) and a label set L, a temporal selective relation R
in G is a ternary relation R(l, s, d), where

1. l ∈ L is the label constraint,
2. s is the source constraint, which can be either a vertex v ∈ V or ∗ (any

vertex), and
3. d is the destination constraint, which can be either a vertex v ∈ V or ∗.

Let R represent a relation composed by edge e ∈ E such that λ(e) = l and
η(e) = (s, d). Specifically, R(l, s, ∗) (or R(l, ∗, d)) denotes all of s’s outgoing
(or d’s in-going) edges associated with label l.

Definition 5.5.2 (Relevant TSR (r-TSR)) Suppose for a query edge eq =
l(uq, vq) that v1 and v2 are respectively bindings of uq and vq. We say

5.5. METHODOLOGY FOLLOWING T&P 109

R(l, v1, v2) is relevant to eq under v1, v2, and R(l, v1, v2) is the relevant TSR
of eq under v1, v2. If v1 = ∗ (or v2 = ∗), we call R(l, ∗, v2) (or R(l, v1, ∗))
the r-TSR of eq under v2 (or v1).

Definition 5.5.3 (Bound r-TSR) Given a temporal subgraph query q and a
binding vb of query vertex vq in a partial match of q, a r-TSR R is called a
(vq, vb)-bound r-TSR in q if there exists a query edge eq such that

• eq is adjacent to vq,
• eq has not been matched yet, and
• R is relevant to eq under vb.

Example. Considering graph G1 in Figure 5.1, Figure 5.5 presents, for G1,
three TSRs R1(a, v0, ∗) = {e1, . . . , e5}, R2(b, v0, ∗) = {e6, . . . , e10}, and
R3(c, v0, ∗) = {e11, e12}, which are respectively composed of v0’s outgoing
edges associates with label a, b, and c in G1. R1, R2, and R3 are respectively
r-TSRs of eq1, eq2, and eq3 under v0. If the edge matches of eq1, eq2, and eq3 have
not been determined, R1, R2, and R3 are all (vq0, v0)-bound r-TSRs in q1.

5.5.2 Baseline: Leapfrog triejoin

We first describe the TRIEJOIN, which is the baseline used in our apporach.
The TRIEJOIN is a WCO-join algorithm that is currently used in several state-
of-the-art database systems (e.g., in LogicBlox [68], in AVANTGRAPH [69],
and others). The basic idea of a TRIEJOIN is to iteratively extend the deter-
mined bindings for query vertices and filter the candidates by looking ahead
similar to the depth-first search algorithm. We identify three key ingredients of
a TRIEJOIN: (1) the trie representation, (2) the binding production, and (3) the
binding propagation. The trie representation indexes the entities (e.g., labels,
sources, and targets) of a graph in sorted order so that they can be used as a
support for binding production. The binding production determines the vertex
bindings in a sort-merge algorithm on a pre-constructed trie by using multi-
way intersection and leapfrogging. The multi-way intersection technique joins
multiple relations by a series of nested intersections, and leapfrogging tech-
nique skips over data that is guaranteed not to result in a binding. The binding
propagation hands over the determined bindings to the parent operator of a
TRIEJOIN so that they can be further extended in later processing.

We will now present the details of the binding production in TRIEJOIN

since it is directly used in our proposed method. Considering that n sorted
unary relations (e.g., each containing vertex IDs) are going to be processed,

110 CHAPTER 5. PROCESSING OF TEMPORAL SUBGRAPH QUERY

B 1 3 6 end

seek(3)

A 2 3 7 end

seek(3)

C 3 8 end

next()

D 3 end

seek(8)

A ∩B ∩ C ∩D 3

Figure 5.6: Example of binding production procedure for four relations (n = 4).

a method named leapfrog-init() is first invoked to initialize the relations.
leapfrog-init() represents each relation by an iterator initially positioned at its
first vertex, and then sorts the iterators by their positioned keys in ascending
order. Following leapfrog-init(), the main workhorse leapfrog-search() is in-
voked to find the next binding in the intersection of the n relations. The basic
idea of leapfrog-search() is that, in each turn, considering vmax is the current
highest-value key among the n iterators, the method takes the iterator posi-
tioned the lowest-value key and seeks to vmax in the corresponding relation. If
such key value does not exist, the iterator is positioned to the first key that is no
smaller than vmax and updates the positioned key value as the new vmax. Oth-
erwise, the algorithm returns vmax as a vertex binding. Subsequent bindings
are obtained by invoking a method named leapfrog-next(). leapfrog-next() first
positions current iterator at its next key and then invokes leapfrog-search() to
find the next binding in the intersection. The procedure is repeated until the
vertices in a relation are consumed. In this way, all bindings in the intersection
of the k relations are produced.

The overall complexity of TRIEJOIN is O(Q∗ logM), where Q∗ is the
upper bound of result size and M is the largest cardinality among the unary
relations.

Example. Figure 5.6 presents a TRIEJOIN example of four relations
A = {2, 3, 7}, B = {1, 3, 6}, C = {3, 8}, D = {3}. leapfrog-init() initially
positions their iterators at 2, 1, 3, 3 respectively and then sorts them by the po-
sitioned keys from the first to fourth row. Then leapfrog-search() is invoked
and returns 3 as a binding. Later leapfrog-next() is invoked and no binding is
produced until D’s iterator comes to its end.

5.5. METHODOLOGY FOLLOWING T&P 111

5.5.3 Proposed method: Leapfrog TSRJOIN

We propose an operator named Leapfrog TSRJoin (TSRJOIN, for short) de-
signed for efficient processing of temporal subgraph queries. The basic idea
of TSRJOIN is to extend TRIEJOIN into temporal aspects. For each temporal
subgraph query, a physical plan composed of TSRJOINs can be constructed
for efficient processing. To be more specific, Figure 5.7 presents the TSRJOIN

processing plans for q1, q2, q3. We choose TRIEJOIN as our baseline for its ex-
cellent performance in processing general conjunctive queries on graphs [70]
which correspond to resolving the topological predicates in our investigated
queries. Also, TRIEJOIN is easy to be implemented and understood. These
merits of TRIEJOIN allow us to concentrate on a remaining challenge: how
can we inject an efficient processing of temporal predicates? A straightfor-
ward solution is to insert selection operators after each TRIEJOIN as in PT.
An example of processing q1 via the straightforward solution is presented in
Figure 5.3(c). However, this solution suffers from rigidity in predicate order-
ing due to its fixed PT order and vertex-at-a-time matching. In Section 5.6,
we would further illustrate its inefficiency by detailed experiments. Our ulti-
mate solution to the injection of temporal-predicate processing is to use our
STI algorithm, the efficiency of which has been presented through our careful
analysis and empirical experiment in Chapter 4.

Comparing to TRIEJOIN, our proposed TSRJOIN is composed of four key
components: the TSR representation, binding production, partial match pro-
duction, and partial match propagation. Our method starts from the TSR rep-
resentation which indexes the TSRs as support for both binding and partial
match production. Based on the represented TSRs, the binding production can
produce a binding vb of query vertex vq as in TRIEJOIN. Using vb, the (vq, vb)-
bound r-TSRs R1 . . . Rn (n ≤ k) can be retrieved from the represented TSR.
Then, partial match production determines the matches for subgraph com-
posed of vq’s adjacent edges by processing a multi-way STI algorithm over
R1 . . . Rn. This, in fact, extends vb to a series of partial matches, where the
endpoints of edge matches are regarded as the bindings of corresponding ver-
tices. Finally, partial match propagation hands over the partial matches to the
parent operator so that match’s lifespans and bindings can be later used in pro-
cessing the remainder of the query. In the remainder of this section, we present
the details of all the components in TSRJOIN.

TSR representation. Since the aim of TSR representation is to support other
components, we should consider the following prerequisites. First, the or-
dering structure in a trie should be inherited to support the binding production.

112 CHAPTER 5. PROCESSING OF TEMPORAL SUBGRAPH QUERY

vq
2 vq

4

eq
2 eq

3

vq
2 vq

4

eq
2 eq

3

vq
1 vq

5

(b) TSRjoin plan for q2

vq
2

vq
3

vq
4

eq
2 eq

3

vq
3eq

2 eq
3

vq
2

vq
1

vq
4

eq
4

vq
3eq

2 e3
q

vq
2

vq
1

vq
4

e4
qeq

1

(c) TSRjoin plan for q3

eq
1 eq

4

B1

 C3B2

C2

C1

vq
1 vq

2

eq
1

eq
3

eq
2

(a) TSRjoin plan for q1

A1 vq
3

vq
0

vq
3

vq
3

Figure 5.7: Examples of TSRJOIN processing for queries q1, q2, and q3.

Second, the TSRs should also be temporally sorted to support the partial match
production in which a multi-way STI algorithm is carried out.

Based on these prerequisites, we propose temporal adjacency indexes
(TAIs) to represent the TSRs, which are the temporal extensions of a trie in
TRIEJOIN and adjacency indexes in a database system. The proposed TAIs
are composed of four distinct indexes named temporal LS, LD, LSD, LDS
indexes. In each index, edges are categorized by the keys in the order as indi-
cated in its name. The meaning of each capital character in the naming syntax
can be summarized as follows: L for edge labels; S for sources; and, D for
destinations.

The TAI is constructed as a trie in the order as prescribed by its name
thus facilitating efficient topological binding production. Next, corresponding
edge-values in a trie are sorted by their start time in ascending order, just like
in STI index. As a result, the temporally sorted TSRs can be directly obtained
from TAIs, which provides a support for partial match production. Table 5.1
presents the aim of each index.

Example. Figure 5.8 presents the LS and LD of G1. We note the LS and
LD-indexing structure (colored in yellow) in the two indexes have inherited
ordering structure from tries, which can provide a support to binding produc-
tion. Besides, we note that attached TSRs (colored in green) are sorted by start
time so that they can be directly fed to multi-way STI algorithm used in latter

5.5. METHODOLOGY FOLLOWING T&P 113

Name Aim

LS
represent temporally sorted R(l, s, ∗),
with LS ordering for binding production

LD
represent temporally sorted R(l, ∗, d),
with LD ordering for binding production

LSD
represent temporally sorted R(l, s, d),
with LSD ordering for binding production

LDS
represent temporally sorted R(l, s, d),
with LDS ordering for binding production

Table 5.1: Aims of TAIs.

partial match production. More specifically, when necessary, start-time-sorted
R1(a, v0, ∗), R2(b, v0, ∗), R3(c, v0, ∗) can be directly obtained and processed
with the STI, and also other plane-sweep algorithms.

The construction complexity of TAIs is O(|E| · (log |L| + log |V | +
log |E|)). To save the cost, LDS can free its attached TSRs while keep the
trie structure since R(l, s, d) can still be obtained from the LSD alone.

Binding production. Consider a TSRJOIN operator in a physical plan. If the
operator has no child operator (i.e., the bottom operator), binding production is
carried out over the relevant trie structure in TAIs, just like in TRIEJOIN. Oth-
erwise, a new trie of partial matches (namely, the PM trie) propagated from
the child operator will be first constructed based on the value of vertex bind-
ings that are going to be determined in this operator. To be more specific, if
bindings of n different vertices are going to be determined in the operator, a
PM trie can be constructed with h ∈ [0, n], where h is the trie height and re-
flects the number of different vertices used for construction. A larger h value
demonstrates that TSRJOIN relies more on the filtering power of topological
selectivity. Then, binding production is carried out over the newly constructed
trie and other relevant trie structures in TAIs.

Example. Considering that we are going to process q1 over G1 by TSR-
JOIN, binding production would be first carried out over following three unary
relations {v0}, {v0}, {v0, v6}, in order to determine bindings of query vertex
vq0. These relations are respectively composed of source vertices of a, b, and
c-labeled edges in G1, which can be directly obtained from LS index in Fig-
ure 5.8. As a result, v0 would be produced as a binding of vq0

For bottom TSRJOINs, the complexity of binding production in TSR-

114 CHAPTER 5. PROCESSING OF TEMPORAL SUBGRAPH QUERY

a

Label Entry

v0

Temporal LS index

a

Label Entry
Temporal LD index

(0,5,e1) (5,10,e2) (10,12,e3) (13,15,e4) (18,20,e5)

b v0 (1,3,e6) (9,12,e7) (13,15,e8) (17,20,e9) (18,20,e10)

c v0 (3,5,e11) (15,16,e12)

v6 (2,2,e13)

b

c v11 v12v1

(3,5,e13) (15,16,e12)(2,2,e13)

v1 v2 v3

(0,5,e1) (5,10,e2) (10,12,e3)

v4 v5

(13,15,e4) (18,20,e5)

v1 v2 v3

(1,3,e6) (9,12,e7) (13,15,e8)

v4 v5

(17,20,e9) (18,20,e10)

trie TSR

trie TSR

Figure 5.8: LS and LD structures of graph G1. The yellow and green parts respec-
tively refer to the ordering structure in a trie and TSRs

JOIN is O(Q∗P logM). Q∗P logM is the complexity of the original TRIEJOIN

as presented in Section 5.5.2, where Q∗P refers to the upper bound on the
result size of the query with only topological constraints. For non-bottom
TSRJOINs, the general complexity of binding production in TSRJOIN is
O(Q∗P logM + P · h logM). P · h logM is the complexity of PM trie con-
struction, where P is the cardinality of the propagated partial matches. It is
important to note that if h = 0, there will be no binding production, and prop-
agated partial matches will be directly fed to partial match production. Thus,
there is no need to construct the PM trie. Besides, it is also important to note
that h = n results in a full-sized PM trie to be constructed. A smaller h can
be used to reduce the construction cost on PM trie but increase the cost in
the other components since the filtering power of topological selectivity is not
fully leveraged.

Partial match production. As leapfrog-search() has been used as our first
workhorse for binding production, here we define our second workhorse

5.5. METHODOLOGY FOLLOWING T&P 115

named leapfrog-temporaloverlap() (denoted LFTO) for efficient partial match
production. Every time a binding vb of query vertex vq is determined, LFTO
is invoked to process the temporal predicates among (vb, vq)-bound r-TSRs, to
find matches for vq’s adjacent edges, and to produce the collection of partial
matches. Algorithm 10 presents the procedure of LFTO, which can be sum-
marized as a multi-way STI algorithm over bound r-TSRs R1 . . . Rn. Besides
bound r-TSRs, a valid time window [ws, we] is used as the input parameter
to filter the invalid edges. More specifically, if vb is determined by the ini-
tial leapfrog-search(), the valid window should be exactly the query window
[qs, qe]. If vb is determined by a propagated partial match, the valid window
should be its lifespan. Two groups of n-scanners are defined to support the
plane-sweep on r-TSRs: the Scancur and Scanend. For each Ri, Scancur[i]
refers to the currently scanned edge in Ri. Scanend[i] refers to the ending of
the edge-scanning in Ri. To start with, Scancur is initialized at the first edge
in TSRs (Line 2), which represent collection of starting points of the edge-
scanners. Similarly, Scanend is initialized at the first edge which starts later
than we in TSRs (Line 3), which represents the edge-scanning end point in
each relation. A dedicated structure Active is maintained to record the edges
at current time that can be used to produce partial matches (Line 4). Note
that here, edges in Active are categorized by the r-TSR they belong to. Com-
pared to the traditional Active used in prior chapters, the categorzied Active
improves the efficiency of maintenance and enumeration. We use Active[i]
to represent Ri’s currently active edges in Active sorted by their end time in
ascending order. We define following operations to maintain the categorized
Active:

• insActive(Active, e, i): insert the edge e into Active[i];
• delActive(Active, t): delete all edges e s.t. t > τ(e).te from Active;
• enumActive(Active, e): enumerate all partial matches over the ele-

ments in Active which contains exactly one occurrence of edge e.

In each iteration, the algorithm first obtains the scanner sc (Line 6), the
positioned edge of which has the minimal start time, and reads the positioned
edge (Line 7). If the edge overlaps the valid window (Line 8), the algorithm
deletes the expired edges from Active (Line 9), enumerates the matches in
Active containing e (Line 10), and inserts e into Active (Line 11). Finally,
the algorithm positions sc to its next edge (Line 12). If sc reaches its scanning
end (Line 13), the algorithm closes sc (Line 14). The algorithm keeps iterating
until all iterators are closed (Line 5). In this way, LFTO solves the temporal
predicates and produces a collection of partial results extended from vb.

116 CHAPTER 5. PROCESSING OF TEMPORAL SUBGRAPH QUERY

Algorithm 10: Leapfrog temporal overlap
Input: bound r-TSRs R1, . . . , Rn, time window [ws, we]
Output: partial match collection Result

1 for i ∈ [1, n] do
2 Scancur[i]← Ri.begin()
3 Scanend[i]← Ri.upper(we)

4 Active← ∅, Result← ∅
5 while ∃j ∈ [1, n] s.t. Scancur[j] is not closed do
6 sc← Scancur[i] s.t. min

i∈[1,n]
τ(Scancur[i].e).ts

7 e← sc.e
8 if τ(e) ∩ [ws, we] 6= ∅ then
9 delActive(Active, τ(e).ts)

10 Result← Result ∪ enumActive(Active, e)
11 insActive(Active, e, i)

12 sc.next()
13 if Scancur[i] = Scanend[i] then
14 Close Scancur[i] and Scanend[i]

15 return Result

Example. Continuing our example in which vq0 has been bound with v0,
R1, R2, R3 shown in Figure 5.5 are first obtained as the (vq0, v0)-bound r-TSRs.
Scancur[1, 2, 3] are initially set at e1, e6, e11 and Scanend[1, 2, 3] are set at the
end of each relation. The processing procedure is shown in Table 5.2. In
this way, the 3-star query q1 is processed in a single TSRJOIN, as shown in
Figure 5.7(a).

The complexity of Algorithm 10 is O(n · |Rmax| log |Rmax|), where
|Rmax| is the cardinality of the largest participating TSR.

Partial match propagation. Given a partial match produced by the LFTO
algorithm, partial match propagation allows the match to be handed over to a
parent operator so that it can be further extended to the remaining predicates
in a query. Comparing to the binding propagation in TRIEJOIN which only
hands over the bindings, partial match propagation hands over both bindings
and a life-span of the partial result, which fully takes advantage of selectivities
of both topological and temporal predicates.

We also propose a planner for processing queries with various patterns.

5.5. METHODOLOGY FOLLOWING T&P 117

Table 5.2: Example of processing q1 over G1 using LFTO algorithm.

Edge Active Enumerate

e1 ∅ ∅
e6 ∅ ∅
e11 ∅ ∅
e2 [1]:{e2} ∅
e7 [1]:{e2},[2]:{e7} ∅
e3 [1]:{e2, e3}, [2] : {e7} ∅
e4 [1]:{e4} ∅
e8 [1]:{e4},[2]:{e8} ∅
e12 [1]:{e4},[2]:{e8},[3]:{e12} (e4, e8, e12, [15, 15])

e9 [2]:{e9} ∅
e10 [2]:{e9, e10} ∅
e5 [1]:{e5},[2]:{e9, e10} ∅

The general idea of the planner is to first select the most selective query vertex
and carry out iterative extension from it until all query edges and vertices are
included. We use the following equation as the cost model to evaluate the
selectivity of each query vertex:

cost(vq) =

∏
eq∈N(vq) PL(eq)

|N(vq)| · (1 + |N ′(vq)−N(vq)|)

where N(vq) is the collection of edges adjacent to vq, N ′(vq) is the collection
of edges adjacent to edges in N(vq), and PL(eq) is the proportion of edges in
the graph that share the same label with eq. The numerator of the cost model
corresponds to the selectivity of the star centered at vq with respect to labels.
In the denominator, |N(vq)| corresponds to the number of query edges that are
going to be processed in the first TSRJOIN. 1+ |N ′(vq)−N(vq)| corresponds
to the potential for the vq centered star to be further extended. Using this cost
model, the vq with smallest cost(vq) is selected and the processing order in the
query is also determined. In this way, a plan composed of TSRJOIN operators
for query processing can be generated.

Example. Consider we aim to process the 4-chain query q2 and 4-circle
query q3 (shown in Figure 5.2) over G2 (shown in Figure 5.1) with PM trie
height h = 0. Figures 5.7(b) and 5.7(c) present the physical plans for process-
ing. The plan for 4-chain query q2, is composed of two TSRJOINs B1 and B2.
B1 produces the partial matches of the vq3-centered 2-star pattern (i.e. (eq2, e

q
3))

since vq3 is the most selective query vertex according to our cost model. This
determines edge matches for eq2, e

q
3 and bindings for vq2, v

q
3, v

q
4. B2 extends

each partial match produced by B1 with eq1, e
q
4 so that the complete result of

118 CHAPTER 5. PROCESSING OF TEMPORAL SUBGRAPH QUERY

q2 can be processed. To be more specific, consider in B1, leapfrog-search()
has determined v3 a binding of vq3. The following LFTO algorithm would pro-
cess a 2-way interval join over R(c, ∗, v3), R(d, v3, ∗). From the interval join,
(eq2,eq3) are matched with (e1,e2) and (e1, e2, [13, 18]) is produced as a partial
match of q2. The partial match in fact determines v2,v4 to be the bindings of
vq2,vq4 respectively. Based on the partial match, B2 would process a 2-way in-
terval join overR(a, ∗, v2), R(b, v4, ∗), matches (eq1, e

q
4) with (e4, e3), (e4, e5),

(e6, e3), (e6, e5), and produce complete matches (e4,e1,e2,e3,[15,15]),
(e4,e1,e2,e5,[15,18]), (e6,e1,e2,e3,[13,15]), (e6,e1,e2,e5,[13,18]). In this way,
the complete result of q2 over G2 is produced.

Similarly, the plan for q3 is composed of three TSRJOINs C1, C2, and
C3. C1 produces the matches of the vq3-centered 2-star pattern as in q2. Then
C2 extends each match propagated from C1 with eq4 to find edge matches
for eq4 and determine bindings for vq1. Finally, C3 extends each match prop-
agated from C2 with eq1 to produce complete matches for q3. To be more
specific, consider C1 has produced the partial match (e1, e2, [13, 18]) as in
q2. C2 extends the match with R(b, v4, ∅) and produces partial matches
(e1, e2, e3, [13, 15]),(e1, e2, e5, [13, 18]). C3 further extends the two partial
matches with R(a, v6, v2), R(a, v1, v2) to close the circles. Finally, only
(e4, e1, e2, e3, [15, 15]) is produced as a complete match of q3. In this way,
(e4, e1, e2, e3, [15, 15]) is finally produced as the complete result of q3.

Challenges. The worst-case complexity of a TSRJOIN plan is O(Q∗P logM +
Q∗P ·nmax · |Rmax| log |Rmax|+P ·nmax logM), whereQ∗P logM is the com-
plexity of original TRIEJOIN ; Q∗P · nmax · |Rmax| log |Rmax| is the additional
complexity introduced by the temporal overlap; and P · nmax logM is addi-
tional cost of filtering based on the cardinality P of partial matches produced
by TSRjoins. It is important to note that, in order to keep the upper bound
parameter Q∗P, PM tries in all non-bottom TSRJOIN should be full-sized.

However, according to our empirical observation, TSRJOINs with full-
sized PM tries do not provide the best efficiency in most scenarios, though it
fully leverages the topological selectivity. This is because that the efficiency
of binding production in non-bottom TSRJOIN is in fact a trade-off between
topology filtering overhead (i.e., cost on PM trie construction and leapfrogging
interaction) and filtering power (i.e., the cardinality or proportion of filtered
matches). Specifically, if additional filtering overhead exceeds the improve-
ment via filtering power, TSRJOINs will become less efficient. Besides, in
non-bottom TSRJOINs, temporal filtering power (i.e., partial match produc-
tion) can be strong enough for filtering because of the numerous short intervals

5.5. METHODOLOGY FOLLOWING T&P 119

in real world networks, as we discussed in Chapter 3. Specifically, this gener-
ally leads to the extremely short life-spans of produced partial matches, which
can be fast filtered in partial match production if they are irrelevant. Summa-
rizing, we argue that, from the level of practical application, the PM trie height
h should be set with the aim to result in a trade-off between topology filtering
overhead and power, in order to provide the best efficiency.

Compared to the existing methods following PT and our prior TIME

method following TP pipelines, our TSRJOIN approach takes full advantage of
both topological and temporal selectivities. Also, the logarithmic complexity
of the TSR representation and partial match production guarantees that little
additional cost is introduced in query processing. In this way, TSRJOIN is
expected to be more efficient in temporal subgraph query processing than both
PT and TP (i.e., TIME) approaches. However, there are several areas in which
the efficiency of TSRJOIN can be further improved. We summarize these op-
portunities as follows:

• Many irrelevant edges can be scanned in partial match production. Con-
tinuing our running example in Table 5.2, e1, e6, e11, e2, e7, e3, e9, e10,
e5 are all irrelevant edges since only (e4, e8, e12, [15, 15]) is produced
as a match. This demonstrates that the edges can introduce significant
scanning cost in processing selective queries.

• The enumeration of new partial matches can be costly since each
scanned edge would lead to the invoking of enumActive, which nor-
mally traverses almost the whole Active.

In summary, while TSRJOIN addresses the inefficiencies in existing meth-
ods there are several possibilities for further acceleration of query process-
ing. In the following, we present additional optimization techniques to address
these challenges.

5.5.4 Optimization

Skipping irrelevant edges. We start by categorizing the irrelevant edges by
the time they are scanned (i.e., start time). We call the irrelevant edges scanned
before the first partial match is produced the backward edges. We call the irrel-
evant edges scanned after the last partial match is produced the forward edges.
Continuing our running example, {e1, e6, e11, e2, e7, e3} and {e9, e10, e5} are
respectively the collection of backward and forward edges.

We start by presenting our methods of skipping backward edges. Remem-
ber that in Chapter 4, we first define the earliest concurrent to reduce the scan-

120 CHAPTER 5. PROCESSING OF TEMPORAL SUBGRAPH QUERY

ning cost in temporal k-clique enumeration and store it as a property of each
tuple. Here, we also consider to skip backward edges in TSRs by using their
earliest concurrent. However, the “storing as property” can be in-efficient be-
cause of the heavy-tail phenomena of real world duration distribution, which
has been discussed in Chapter 3. Specifically,the existence of extremely long
intervals can make numerous temporally consecutive tuples share the same ear-
liest concurrent. This generally leads to large storage redundancy since each
edge is stored for at least three copies in TAIs. Hence, we propose early cov-
erage indexes (ECIs) for more efficient earliest concurrent retrieving in TSRs.
ECIs are composed of three indexes LS-EC, LD-EC, LSD-EC, which are re-
spectively used to record the earliest concurrent distribution of TSRs in form of
R(l, s, ∗), R(l, ∗, d), and R(l, s, d). For each TSR, earliest concurrent distri-
bution is represented by a series of early coverage tuples. Each early coverage
tuple is formalized as θ : (cs, ce, ec), representing that the earliest concurrent
of each time t ∈ [cs, ce] is ec. For convenience of retrieving, tuples for each
TSR are sorted by cs in ascending order. We provide the following interface to
perform a look-up in ECIs:

• getCoverageTuple(R, t), given a timestamp t and a TSR R, retrieve
the coverage tuple from corresponding ECI such that t ∈ [cs, ce]. Else,
if no such tuple exists, return the first coverage tuple from corresponding
ECI such that cs > t. Otherwise, return ∅.

Example. Figure 5.9 presents the structure of LS-EC and LD-EC, where
the early coverage tuples are categorized in the same way as in LS and LD. Us-
ing getCoverageTuple(R(a, v0, ∗), 1), tuple (0, 5, 0) in LS-EC is returned.
(0, 5, 0) represents that in TSR R(a, v0, ∗), the earliest concurrent of time
t ∈ [0, 5] is 0. In this way, we obtain that eC(1) = 0 in R(a, v0, ∗). Similarly,
using getCoverageTuple(R(b, ∗, v1), 1), (1, 3, 1) in LD-EC is returned.

The construction complexity of ECIs are O(|L|+ |V |2 + |E|+ Θ · log Θ),
where Θ is the number of coverage tuples. Comparing to “storing as prop-
erty”, ECIs store the earliest concurrent in form of early coverage tuples. This
guarantees distinct earliest concurrent value is only stored once in a relation,
which significantly improves the efficiency of storage.

Using ECIs, Algorithm 11 presents our final method to skip backward
edges by computing the optimized starting points for Scancurs. The basic
idea of the algorithm is to find the first collection of coverage tuples θ1 . . . θn
for R1 . . . Rn such that the intersection of [θ1.ec, θ1.ce] . . . [θn.ec, θn.ce] is not
empty. Based on the notion of earliest concurrent, it can be deduced that each

5.5. METHODOLOGY FOLLOWING T&P 121

a

Label Entry

v0

LS-EC index

a

Label Entry LD-EC index

(0,5,0) (6,10,5) (11,12,10) (13,15,13) (18,20,18)

b v0 (1,3,1) (9,12,9) (13,15,13) (17,20,17)

c v0 (3,5,3) (15,16,15)

v6 (2,2,2)

b

c v11 v12v1

(3,5,3) (15,16,15)(2,2,2)

v1 v2 v3

(0,5,0) (5,10,5) (10,12,10)

v4 v5

(13,15,13) (18,20,18)

v1 v2 v3

(1,3,1) (9,12,9) (13,15,13)

v4 v5

(17,20,17) (18,20,18)

Figure 5.9: LS-EC and LD-EC structures of graph G1.

coverage tuple θi reveals that the longest interval in Ri starting at t = θi.ec is
[θi.ec, θi.ce]. In this way, the first non-empty [θ1.ec, θ1.ce]∩· · ·∩[θn.ec, θn.ce]
in fact demonstrates that the first match is going to be produced at the maximal
time among θ1.ec . . . θn.ec. Also, edges in Ri with start time no smaller than
θi.ec can be relevant to partial matches. In this way, Scancur[i] can start from
the θi.ec, instead of very beginning of Ri.

Example. Continue our running example and use Algorithm 11 with
ws = 10. In the first round, the collection of early coverage tuples
(6, 10, 5), (9, 12, 9), (15, 16, 15) for R1, R2, R3 will obtained. Since [5, 10] ∩
[9, 12] ∩ [15, 16] is empty, the algorithm will start the second round with
t = 15, i.e., the maximal ec among the tuples. Then, the collection of tu-
ples (13, 15, 13), (13, 15, 13), (15, 16, 15) forR1, R2, R3 will be obtained. We
note that [13, 15]∩ [13, 15]∩ [15, 16] equals to [15, 15], which implies that the
first match is going to be produced at t = 15. Thus, Scancur[1, 2, 3] can re-
spectively start from e4, e8, e12 instead of e1, e6, e11. In this way, the irrelevant
edges e1, e6, e11, e2, e7, e3 can be skipped.

122 CHAPTER 5. PROCESSING OF TEMPORAL SUBGRAPH QUERY

Algorithm 11: OptimizeStartPoint
Input: r-TSRs R1, . . . , Rn, start time of valid window ws
Output: optimized starting point ts1, . . . , t

s
n

1 t← ws
2 while true do
3 for i ∈ [1, n] do
4 θi ← getCoverageTuple(Ri, t0)
5 if θi = ∅ then
6 return −1, . . .− 1

7 if [θ1.ec, θ1.ce] ∩ . . . ∩ [θn.ec, θn.ce] 6= ∅ then
8 break

9 t← max
i∈[1,n]

θi.ec

10 return θ1.ec, . . . , θn.ec

Algorithm 12: delSkip
Input: active list Active, timestamp t, scanner list Scancur
Output: false if subsequent edges-scanning are non-productive

1 for i ∈ [1, n] do
2 for e ∈ Active[i] do
3 if τ(e).te ≥ t then
4 break

5 Active[i]← Active[i]/{e}
6 if Active[i] = ∅ and Scancur[i] is closed then
7 return false

8 return true

To skip the forward edges, we propose delSkip operation as a replacement
of delActive. Besides removing expired edges from Active, delSkip can ad-
ditionally identify and skip some forward edges. Algorithm 12 presents the
procedure in delSkip. If the operation deletes all edges in an Active[i] and
finds Scancur[i] is closed, it returns false indicating that the following scanned
edges are all forward edges and should be skipped.

Example. Continuing our running example, when e9 starting at t = 17 is
scanned, delSkip is first invoked to remove the expired edges e4, e8, e12 from

5.5. METHODOLOGY FOLLOWING T&P 123

Active. Since Active[3] becomes empty after delSkip and R3 has been closed
when e12 is scanned, delSkip returns false which indicates later edge-scans
are irrelevant and should be stopped. In this way, the scanning on irrelevant
edges e5, e10 can be skipped.

Lazy enumeration. We introduce lazy enumeration to reduce the traversal
cost on Active in partial match production. Given current timestamp t and
scanner Scancur[i], the basic idea of lazy enumeration is not to carry out enu-
meration until all edges with ts = t in Ri have been scanned by Scancur[i]. A
dedicated structure named candidate list (C) is maintained to record the edges
starting at current time. For each edge e scanned by Scancur[i], if τ(e).ts = t,
algorithm adds e into C instead of traversing Active to enumerate partial re-
sults containing e. Otherwise, if τ(e).ts > t or sc is switched to another r-
TSR, algorithm traverses Active, enumerates partial matches containing each
element in C, and finally cleans all elements in C. We define the following
operation to replace enumActive and support lazy enumeration in LFTO.

• enumLazy(Active, C): enumerate all partial matches over the ele-
ments in Active, which contains an occurrence of edge in C if C 6= ∅.

Considering m edges starting at time t, the complexity of enumeration at
time t in Algorithm 10 is O(m ·

∏i−1
j=1 |Active(j)| ·

∏n
j=i+1 |Active(j)|). Us-

ing the lazy enumeration, the complexity is reduced to O(
∏i−1
j=1 |Active(j)| ·∏n

j=i+1 |Active(j)|). In this way, the traversal cost on Active is significantly
reduced.

Optimized LFTO. Using our proposed optimization, Algorithm 13 presents
the procedure of optimized LFTO method. Compared to the original LFTO in
Algorithm 10, the optimized LFTO first invoke OptimizeStartPoint (Algo-
rithm 11) to find the starting points for each TSR (Line 1). If there are no valid
starting points (Line 2), algorithm will be directly stopped since this demon-
strates no valid match can be produced (Line 3). enumLazy is only carried
out when (1) either edges starting at a time point are all collected, or (2) current
scanned TSR is switched (Line 16). Finally, algorithm will also be stopped if
delSkip (Algorithm 12) returns false (Line 21). In this way, the scanning
and enumeration costs in Algorithm 13 are significantly reduced according to
our analysis in this section. In this way, the performance of the TSRJOIN is
improved.

Example. Continuing our running example, the q1 processing procedure in

124 CHAPTER 5. PROCESSING OF TEMPORAL SUBGRAPH QUERY

Algorithm 13: Optimized Leapfrog temporal overlap
Input: bound r-TSRs R1, . . . , Rn, valid time window [ws, we]
Output: Complete matches Result

1 ts[1, . . . , n]← OptimizeStartPoint(R1 . . . Rn, ws)
2 if ts[1] = −1 then
3 return ∅
4 for i ∈ [1, n] do
5 Scancur[i]← Ri.lower(ts[i])
6 Scanend[i]← Ri.edges.upper(we)

7 Active← ∅, Result← ∅, C ← ∅
8 inRange← false, t′ ← 0, i′ ← −1
9 while ∃j ∈ [1, n] s.t. Scancur[j] is not closed do

10 sc← Scancur[i] s.t. min
i∈[1,n]

τ(Scancur[i].e).ts

11 e← sc.e
12 if e.ts < ws then
13 if e.te >= ws then
14 insActive(Active, e, i)

15 else
16 if t′ 6= e.te or i′ 6= i then
17 if inRange = false then
18 Result← Result ∪ enumLazy(Active, ∅)
19 inRange← true

20 else
21 if delSkip(Active, t′, Scancur) = false then
22 break

23 Result← Result ∪ enumLazy(Active, C)
24 C ← ∅

25 insActive(Active, e, i), C ← C ∪ {e}
26 t′ ← e.ts, i

′ ← i
27 sc.next()
28 if Scancur[i] = Scanend[i] then
29 Close Scancur[i] and Scanend[i]

30 return Result

5.6. EXPERIMENTS 125

Table 5.2 can be significantly optimized by using Algorithm 13, as shown in
Table 5.3.

Edge Active Enumerate

e4 [1]:{e4} ∅
e8 [1]:{e4},[2]:{e8} ∅
e12 [1]:{e4},[2]:{e8},[3]:{e12} (e4, e8, e12, [15, 15])

e9 [2] : {e9} ∅

Table 5.3: Example of the optimized LFTO algorithm.

5.6 Experiments

In this section, we present an experimental study of TIME and TSRJOIN. From
the investigation, we would like to understand the performance of TIME and
TSRJOIN compared with the current methods in processing queries with vari-
ous patterns, result size, window lengths, and network cardinality, over a num-
ber of diverse real-world networks.

5.6.1 Setup

Environment. Our experiments were carried out on a server with 192GB
RAM and 2 Intel(R) Xeon(R) CPU X5670 with 6 cores at 2.93GHz running
a Linux operating system. We implemented the in-memory versions of TIME

and TSRJOIN in AVANTGRAPH.1 In all experiments, we used vectorized ex-
ecution and set the tuple output (i.e., the maximal number of tuples produced
in each pull) of each operator to 1024.

Competitors. We use two standard state-of-the-art methods named HYBRID

and BINARY following PT as competitors to TIME and TSRJOIN. These two
competitors are all implemented in AVANTGRAPH. In BINARY, a plan com-
posed of binary joins and selection operators is used for each query’s process-
ing. In HYBRID, however, both binary and TRIEJOIN are used since hybrid
plans are considered to be more efficient in many situations in non-temporal
subgraph query processing [71]. Note that HYBRID is a straightforward ex-
tension of TRIEJOIN which allows to process temporal subgraph queries. In

1AVANTGRAPH is a new-generation graph processing engine developed in the Database
Group at TU Eindhoven. For more information, please refer to http://avantgraph.io.

http://avantgraph.io

126 CHAPTER 5. PROCESSING OF TEMPORAL SUBGRAPH QUERY

(a) 3-star (b) 4-star (c) 5-star (d) 3-chain (e) 4-chain

(f) 5-chain (g) 3-circle (h) 4-circle (i) 5-circle (j) diamond

Figure 5.10: Subgraph patterns used in the experimental evaluation.

both BINARY and HYBRID, label adjacency indexes2 are constructed to fully
cover the access patterns during topological subgraph matching. All imple-
mentations are single-core.

Query generation. Our query generation model requires the following pa-
rameters to be specified: (1) the number of queries N in the workload, (2) the
proportion of the size of the query window in relation to the entire time domain
ω ∈ [0, 1], (3) the pattern type to be queried, (4) the edge label set L, and (5)
the maximal result size M of each query (this is used to avoid extremely long
running queries). Figure 5.10 presents the patterns used in our experimental
evaluation. For each k-sized query, k distinct elements are uniformly drawn
from L as the associated labels of query edges respectively. Then we process
the query and add it to the workload if its result size is in [1,M]. For each
workload, 100 queries are generated in our experiment. The M -parameterized
uniform generating method can produce the workloads with appropriate selec-
tivity in short time.

Types of experiments. We run four experiments to investigate the perfor-
mance of the TIME and TSRJOIN: (1) We investigate the performance of algo-
rithms with respect to query patterns shown in Figure 5.10. (2) We process the
queries with maximum output sizes in [1K,10K,100K,1M,10M] to investigate
the performance of algorithms with respect to query selectivity. (3) We pro-
cess queries with varying query window ω in [10−2,10−1,1,10,20]% to investi-

2Label adjacency index is a B-tree structure where graph edges are sorted in LSD or LDS
order to represent the non-temporal adjacency.

5.6. EXPERIMENTS 127

Name |V | |E| T̂

Yellow 261 20,000,000 89,741
Green 262 30,000,000 1,636,978
Bike 455 20,000,000 1,207,485

Divvy 1,097 20,000,000 3,245,197
Stack 2,465,111 20,000,000 961,820

CAIDA 31,379 714,016 121

Table 5.4: Overview of the real-world networks used in the experiments.

gate the scalability of algorithms in dealing with both long- and short-window
queries. (4) We experiment with real-world networks of different sizes. The
largest network used in our experiment has 100 million edges.

For each algorithm, we use the average execution time (i.e., its processing
cost) and memory consumed by indexes (i.e., its storage cost) to evaluate its
efficiency. Each workload is set to timeout in 105 seconds.

Datasets. Table 5.4 presents the overview of our six real-world temporal
graphs from transportation, social, and networking domains. Yellow [57],
Green [57], Bike [64], Divvy [72] record the trips from source to desti-
nation. Stack [73] records the interactions among users in StackOverflow.
CAIDA [21] records the relationships among autonomous systems. Note that
in original Stack each interaction is only associated with a time-instant repre-
senting its activity time. To make the interactions durable , we associate each
interaction with an interval [t, t + 1000] where t represents its activity time.
The “seting fixed duration” method is commonly used in social networks.

5.6.2 Results

Figure 5.11 presents the processing cost of HYBRID, BINARY, TIME, and
TSRJOIN with respect to queried patterns in various networks. We fix the
length of query window to 10% of the time domain. The maximal result size
of each query is set to 100K tuples. We note that the TSRJOIN outperforms
all of its competitors in all situations since it fully leverages both topological
and temporal selectivities. Also, we note that TSRJOIN becomes less efficient
in Bike and Divvy, in which edge intervals are much smaller than those in Yel-
low and Green. This is because of existence of more shorter intervals which
are more likely to become irrelevant compared to long intervals as we use

128 CHAPTER 5. PROCESSING OF TEMPORAL SUBGRAPH QUERY

3-star 4-star 5-star 3-chain 4-chain 5-chain 3-cir. 4-cir. 5-cir. diam. 4-cliq. 5-cliq.
Pattern type in Yellow (|E|=20M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

Hybrid Binary Time TSRjoin

3-star 4-star 5-star 3-chain 4-chain 5-chain 3-cir. 4-cir. 5-cir. diam. 4-cliq. 5-cliq.
Pattern type in Green (|E|=30M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

3-star 4-star 5-star 3-chain 4-chain 5-chain 3-cir. 4-cir. 5-cir. diam. 4-cliq. 5-cliq.
Pattern type in Bike (|E|=20M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

3-star 4-star 5-star 3-chain 4-chain 5-chain 3-cir. 4-cir. 5-cir. diam. 4-cliq. 5-cliq.
Pattern type in Divvy (|E|=20M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

3-star 4-star 5-star 3-chain 4-chain 5-chain 3-cir. 4-cir. 5-cir. diam. 4-cliq. 5-cliq.
Pattern type in Stack (|E|=20M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

3-star 4-star 5-star 3-chain 4-chain 5-chain 3-cir. 4-cir. 5-cir. diam. 4-cliq. 5-cliq.
Pattern type in CAIDA (|E|=700K)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

Figure 5.11: Performance of algorithms with respect to pattern types.

sweep-plane interval join algorithms. For TIME, we note that it outperforms
two PT methods in the four transportation networks, but loses the advantage
in Stack and CAIDA. This is because the topological predicates are more se-
lective than the temporal predicates in the two datasets. To be more specific,
in Stack, the fixed duration at 1000 gives rise high CSS which increases the
active-list maintenance cost in TIME. In CAIDA, the existence of extreme
long interval which covers the whole domain increases the scanning cost in
TIME. This demonstrates that TIME, which follows TP, can only outperform
the methods following PT when temporal predicates are selective. Finally, we
note that HYBRID performs the slowest processing in most cases, where all of
its instances have timed out. This is expected because HYBRID allows for ef-
ficient processing of the topological part of the query by using TRIEJOIN, but
effectively disallows the injection of temporal predicates into the TRIEJOIN.

5.6. EXPERIMENTS 129

3-star 4-star 5-star 3-chain 4-chain 5-chain 3-cir. 4-cir. 5-cir. diam. 4-cliq. 5-cliq.
Query type in Yellow

105
106
107
108
109

In
te

r.
ca

rd
.

Hybrid Binary Time TSRjoin

Figure 5.12: Intermediate cardinality of various subgraph patterns in Yellow dataset
(|E| = 20M).

To further investigate the findings above, we carry out an additional exper-
iment, in which the total intermediate result cardinality is used to evaluate each
instance. A threshold of 109 tuples is set for produced intermediate cardinality
in each instance, after which an instance would be forcefully stopped. To save
space, Figure 5.12 presents the intermediate cardinality of the additional exper-
iment in Yellow with query output size fixed to 1000, as an example. We first
note that TSRJOIN produces the smallest intermediate cardinality so that it can
outperform its competitors in most situations. We also note the intermediate
cardinality produced in TIME vs. TSRJOIN while their difference in process-
ing cost is more significant. This is due to the scanning of the irrelevant edges
in STI-CP and the significant construction cost of the hash table especially in
selective queries. Finally, we note that at most 2% of workload in HYBRID

has completed which explains the inefficiency of the HYBRID approach in the
previous experiment.

As TSRJOIN has performed its significant advantage over the other meth-
ods, we would primarily concentrate on its performance in the rest of experi-
ments. Figure 5.13 presents the performance of methods with respect to query
selectivity, where only results of 4-star, 4-chain, 4-circle in transportation net-
works are presented as examples. We note that the TSRJOIN outperforms the
other methods in most situations. The only exception is the chain processing
in Yellow network, in which our TSRJOIN becomes less efficient than TIME

as selectivity decreases. This demonstrates that a TSRJOIN-only plan gener-
ated by our proposed planner is not suitable in processing non-selective chain
queries. To illustrate this, consider a variation q′ of our 4-chain query q2 in
which eq1, e

q
2, e

q
4 are far more selective than eq3. Consider a TSRJOIN plan q′ in

which the bottom operator processes the 2-star sub-query centered at vq2 for its
selectivity. The intermediate cardinality produced by the next operator would
be large because partial matches produced by the bottom operator could only
be further extended with eq3 which is regarded as non-selective. This example
demonstrates that the inefficiency in chain processing is due to the low-arity
of chain pattern, which leads to limited choices for TSRJOIN to bypass non-

130 CHAPTER 5. PROCESSING OF TEMPORAL SUBGRAPH QUERY

1K 10K 100K 1M 10M
Output size of 4-star in Yellow (|E|=20M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

Hybrid Binary Time TSRjoin

1K 10K 100K 1M 10M
Output size of 4-star in Green (|E|=30M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

1K 10K 100K 1M 10M
Output size of 4-star in Bike (|E|=20M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

1K 10K 100K 1M 10M
Output size of 4-star in Divvy (|E|=20M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)
1K 10K 100K 1M 10M

Output size of 4-chain in Yellow (|E|=20M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

1K 10K 100K 1M 10M
Output size of 4-chain in Green (|E|=30M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

1K 10K 100K 1M 10M
Output size of 4-chain in Bike (|E|=20M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

1K 10K 100K 1M 10M
Output size of 4-chain in Divvy (|E|=20M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

1K 10K 100K 1M 10M
Output size of 4-circle in Yellow (|E|=20M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

1K 10K 100K 1M 10M
Output size of 4-circle (|E|=30M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

1K 10K 100K 1M 10M
Output size of 4-circle in Bike (|E|=20M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

1K 10K 100K 1M 10M
Output size of 4-circle in Divvy (|E|=20M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

Figure 5.13: Performance of algorithms with respect to query output size.

selective edges. We defer the optimization of such queries to future work.

Figure 5.14 presents the performance of methods with respect to query
length which shows that TSRJOIN scales better than its competitors. Simi-
larly, Figure 5.15 presents the performance of methods with respect to network
size. The networks in this experiment are obtained by selecting subsets of pre-
determined sizes from full networks. The result demonstrates that TSRJOIN

scales better than its competitors with respect to network size.

Finally, Table 5.5 presents the index storage cost of each algorithm in vari-
ous networks. We note that in most networks, TSRJOIN requires at most twice

5.6. EXPERIMENTS 131

0.01% 0.1% 1% 10% 20%
Query length prop. of 4-star in Yellow (|E|=20M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

Hybrid Binary Time TSRjoin

0.01% 0.1% 1% 10% 20%
Query length prop. of 4-star in Green (|E|=30M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

0.01% 0.1% 1% 10% 20%
Query length prop. of 4-star in Bike (|E|=20M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

0.01% 0.1% 1% 10% 20%
Query length prop. of 4-star in Divvy (|E|=20M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)
0.01% 0.1% 1% 10% 20%

Query length prop. of 4-chain in Yellow (|E|=20M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

0.01% 0.1% 1% 10% 20%
Query length prop. of 4-chain in Green (|E|=30M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

0.01% 0.1% 1% 10% 20%
Query length prop. of 4-chain in Bike (|E|=20M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

0.01% 0.1% 1% 10% 20%
Query length prop. of 4-chain in Divvy (|E|=20M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

0.01% 0.1% 1% 10% 20%
Query length prop. of 4-circle in Yellow (|E|=20M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

0.01% 0.1% 1% 10% 20%
Query length prop. of 4-circle (|E|=30M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

0.01% 0.1% 1% 10% 20%
Query length prop. of 4-circle in Bike (|E|=20M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

0.01% 0.1% 1% 10% 20%
Query length prop. of 4-circle in Divvy (|E|=20M)

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

Figure 5.14: Performance of algorithms with respect to the query window.

as much space that its competitors in the worst case. And, in Stack, TSRJOIN

requires higher space consumption. This is expected since TSRJOIN materi-
alizes additional structures to support efficient query processing. Comparing
to BINARY and HYBRID in which label adjacency index is constructed, TSR-
JOIN additionally constructs LS and LD trie structure, a copy of edges, and
ECIs for partial result production. Comparing to TIME in which STI-CP in-
dex is constructed, TSRJOIN stores additionally two copies of edges and the
trie structures. Generally, the storage cost of the three copies is significantly
compressed since the trie structure is used to index the edges sharing labels
and endpoints. Moreover, ECIs significantly reduce the redundancy in the ear-

132 CHAPTER 5. PROCESSING OF TEMPORAL SUBGRAPH QUERY

20M 40M 60M 80M 100M
4-star: Number of edges |E| in Yellow

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

Hybrid Binary Time TSRjoin

6M 12M 18M 24M 30M
4-star: Number of edges |E| in Green

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

20M 40M 60M 80M 100M
4-star: Number of edges |E| in Bike

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

4M 8M 12M 16M 20M
4-star: Number of edges |E| in Divvy

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)
20M 40M 60M 80M 100M
4-chain: Number of edges |E| in Yellow

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

6M 12M 18M 24M 30M
4-chain: Number of edges |E| in Green

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

20M 40M 60M 80M 100M
4-chain: Number of edges |E| in Bike

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

4M 8M 12M 16M 20M
4-chain: Number of edges |E| in Divvy

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

20M 40M 60M 80M 100M
4-circle: Number of edges |E| in Yellow

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

6M 12M 18M 24M 30M
4-circle: Number of edges |E| in Green

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

20M 40M 60M 80M 100M
4-circle: Number of edges |E| in Bike

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

4M 8M 12M 16M 20M
4-circle: Number of edges |E| in Divvy

100
101
102
103
104
105

Pr
oc

. c
os

t (
m

s)

Figure 5.15: Performance of algorithms with respect to network size.

liest concurrent storage, which also improves the efficiency of index storage
in TSRJOIN. However, when the number of vertices become much larger,
more additional storage cost is introduced due to increase in the size of trie
structures. We also present the pre-processing cost on index construction in
Table 5.6, from which the similar conclusion can be drawn. Summarizing, we
consider the time-space trade-off introduced by the TSRJOIN to be very rea-
sonable as processing cost is decreased by several orders of magnitude for a
small index construction and storage overhead.

5.7. CHAPTER SUMMARY 133

Method BINARY HYBRID TIME TSRJOIN

Index label adjacency label adjacency STI-CP TAIs+ECIs

Yellow 4.5 4.5 5.0 7.4
Green 6.4 6.4 7.5 11.8
Bike 4.5 4.5 5.2 9.1

Divvy 4.5 4.5 4.8 9.0
Stack 5.9 5.9 4.5 17.4

CAIDA 0.2 0.2 0.2 0.4

Table 5.5: Storage cost of algorithms in various networks (GB).

Method BINARY HYBRID TIME TSRJOIN

Index label adjacency label adjacency STI-CP TAIs+ECIs

Yellow 60.3 61.2 87.7 118.9
Green 97.5 88.2 125.7 172.0
Bike 86.0 81.0 84.9 145.7

Divvy 86.3 77.2 79.7 133.4
Stack 66.6 67.8 270.0 196.8

CAIDA 1.2 1.2 7.0 4.1

Table 5.6: Pre-processing cost of algorithms in various networks (secs).

5.7 Chapter summary

Since prior works for temporal subgraph query processing primarily follow the
PT pipeline which ignores the leverage of temporal selectivity and can be inef-
ficient in many scenarios, we propose two methods for efficient temporal sub-
graph query processing. We start by proposing TIME which primarily focuses
on the leverage of temporal selectivity. Then we propose TSRJOIN which
fully leverages both topological and temporal selectivities to provide better
efficiency. Empirical experiments demonstrate that our proposed methods out-
perform current methods by a wide margin with a small additional storage cost.
Thus, our TSRJOIN approach can provide efficient temporal subgraph query
processing.

6
Conclusion

6.1 Research summary

Subgraph query processing arises in many application domains (e.g., social
networks, life sciences, smart cities, telecommunications, and others), which
guides a better understanding of graph-structured systems in the real world.
However, existing research have primarily focused on non-temporal subgraph
query processing, ignoring that real-world systems are generally dynamic and
time-related. Though several investigations on temporal subgraph query pro-
cessing have been carried out, the proposed methods primarily focused on the
leverage of topological selectivity. Such methods can be inefficient in many
scenarios, especially when temporal predicates are more selective. Thus, in
this thesis, we present a comprehensive study on temporal subgraph query
processing, intending to improve the efficiency in the state of the art.

Temporal network modeling. In Chapter 3, we outlined our findings for tem-
poral networks and proposed the CDM method for their modeling and gen-
eration. CDM aims to generate the networks constrained by a specific CSS
distribution, with other important characteristics (e.g., degree, IET, duration)
captured meanwhile. To the best of our knowledge, this is the first method for
modeling and generating CSS-constrained networks. Theoretical analysis and
experimental evaluation demonstrated that CDM is a controllable benchmark
that can simulate real network characteristics and efficiently generate various
synthetic networks. Thus, CDM is effective and practical to model the tempo-
ral networks in the real world (Q1).

Temporal-predicate processing. In Chapter 4, we first proposed a general
framework for the temporal k-clique enumeration problem. Based on the
framework, the state of the art in interval join processing (i.e., EBI, gFS, bgFS)

135

136 CHAPTER 6. CONCLUSION

can be adjusted to our investigated problem, which has much lower complex-
ity than the straightforward solution. Then, based on a careful analysis of the
adjusted approaches, we proposed the STI algorithm to provide more efficient
query processing. STI combines the advantages of different adjusted algo-
rithms and addresses almost all of their inefficiencies. We further proposed the
STI-CP algorithm which aims to solve the remaining inefficiency in STI. STI-
CP incorporates the checkpoints to reduce the scanning cost on living history in
STI. We carried out an in-depth discussion on the checkpointing problem with
a limited storage budget. Specifically, we discussed four checkpointing strate-
gies and highlighted their benefits. Experimental evaluation demonstrated sig-
nificant improvements in scalability and performance introduced by STI and
STI-CP. Thus, our proposed methods can provide efficient temporal-predicate
processing (Q2).

Temporal subgraph query processing. In Chapter 5, based on an analysis of
the demerits in existing methods following the PT pipeline, we first proposed
our TIME method, which follows a TP pipeline and focused on the leverage of
temporal selectivity. Then, based on a careful analysis of TIME, we proposed
TSRJOIN, which follows a T&P pipeline and aims to improve the processing
efficiency by leveraging both topological and temporal selectivity. Experimen-
tal evaluation demonstrated that our proposed methods, especially the TSR-
JOIN, outperform current methods by a wide margin with a small additional
storage cost. Thus, our proposed methods can provide efficiently processing
for temporal subgraph queries (Q3)

This thesis and its contributions are foundational in nature and lay the
groundwork for a potentially rich set of future contributions. In the follow-
ing, we will discuss some interesting topics for further investigation.

6.2 Future works

Based on the contributions of this thesis, we are particularly interested in the
following directions:

6.2.1 Temporal network modeling

Theoretical investigation. In Chapter 3, we discussed the importance of CSS
distribution and its impact on network generation. Currently, there are still
many other important characteristics (e.g., temporal closeness and between-

6.2. FUTURE WORKS 137

ness [74], community structure [11]) for understanding temporal networks but
are hardly investigated in the state of the art. In future work, we will investi-
gate the modeling methods to capture these characteristics. The investigation
is expected to help us better understand temporal networks.

Powerful generator. CDM intends to generate networks constrained by var-
ious CSS with several important characteristics (e.g., degree, IET, duration)
captured. In future work, we will investigate more powerful generators for
more various and complex networks. Specifically, we expect that our gener-
ator can generate (1) temporal networks containing various subgraph embed-
dings (e.g.,patterns listed in Figure 5.10); and (2) query workloads that are
meaningful to generated networks. In this way, we will finally develop a more
powerful benchmark which can generate realistic networks with more complex
underlying structures and corresponding query workloads for evaluation.

6.2.2 Temporal-predicate processing

Predicate processing. In Chapter 4, the basic unit of our investigated tempo-
ral predicates is the interval “overlap” predicate, which is first introduced in
Allen’s Algebra [75]. Allen’s Algebra is a defined set of binary relationships
for reasoning about intervals and has been widely used in various applications.
Besides Allen’s Algebra, ISEQL [76] defines a set of parameterized binary re-
lationships. However, the contemporary processing of these general predicates
in database systems can be very inefficient. In future work, we will investigate
the enumeration problem of subsets constrained by other temporal predicates
in Allen’s Algebra and ISEQL. Studying the processing of various temporal
predicates will provide us a more general temporal-predicate processing that
can be used for graph analysis in various applications.

Checkpointing strategies. We presented that checkpoints can be used to im-
prove the processing efficiency in temporal k-clique enumeration. However,
our investigated checkpointing strategies are all heuristic. Though the NP-
completeness of optimal checkpointing problem can be theoretically proved,
it is still interesting to investigate the optimal (or approximate optimal) check-
pointing strategies to further improve enumeration efficiency. Besides, our best
checkpointing strategy query-set assumes the aggregation structure in query
workload. Such an assumption might be too strong in some scenarios. Our fu-
ture work for checkpointing includes the following two sub-tasks: (1) We will
investigate the problem of optimal checkpointing strategy to find a trade-off be-
tween checkpointing and processing. (2) We will investigate the assumption-

138 CHAPTER 6. CONCLUSION

independent checkpointing strategy, which aims to improve the processing ef-
ficiency in more general cases.

6.2.3 Temporal subgraph query processing

Query optimizer. In Chapter 5, experimental evaluation demonstrated that
our novel operator TSRJOIN outperforms existing methods but can still be
less efficient in several scenarios. This is because our optimizer for TSRJOIN

plan generation is too naive. We expect that an improved optimizer can realize
the potential of TSRJOIN and generate a smarter plan for efficient processing.
Our future work for optimizers includes the following two sub-tasks: (1) Given
a temporal subgraph query, we will investigate the cost estimation problem.
The estimation aims to evaluation query costs based on both topological and
temporal selectivities. (2) With proposed cost estimation approaches, we will
investigate the pipeline to generate a smarter plan (e.g., better joining order,
incorporation of bushy structure) for more efficient query processing.

General processing. Compared to queries which might involve a more flexible
definition of topology structure and various temporal predicates, our investi-
gated query is a very specific case since it involves only the conjunctive format
of topology definition and overlap predicates. Further investigation on other
cases is of great interest to provide efficient processing for more general tem-
poral subgraph queries. Our future work of general query processing includes
the following two sub-tasks: (1) We will investigate the efficient processing
of queries with various temporal predicates in Allen’s Algebra and ISEQL in-
volved. To start with, this can be carried out by extending TSRJOIN. Later, we
also need to extend the optimizer with the cost estimation on general tempo-
ral predicates. (2) We will investigate the efficient processing of regular path
queries in a temporal context, which provides a more flexible and navigational
definition of topology structure. Specifically, we will first propose efficient
traversal algorithms on temporal graphs as our query processing foundation.
Then, we will focus on decomposing the path query to further leverage the
query selectivity and improve the processing efficiency.

Bibliography

[1] SQL:2011, https://en.wikipedia.org/wiki/SQL:2011#Temporal_
support (2011).

[2] Neoj4, https://en.wikipedia.org/wiki/Neo4j.

[3] R. Shamir and D. Tsur, Faster subtree isomorphism, Journal of Algorithms (1999).

[4] D. Piatov, S. Helmer, and A. Dignös, An interval join optimized for modern hardware,
in Data Engineering (ICDE), 2016 IEEE 32nd International Conference on (IEEE, 2016)
pp. 1098–1109.

[5] P. Bouros and N. Mamoulis, A forward scan based plane sweep algorithm for parallel
interval joins, PVLDB 10, 1346 (2017).

[6] P. Holme, Epidemiologically optimal static networks from temporal network data, PLoS
Computational Biology 9, e1003142 (2013), doi:10.1371/journal.pcbi.1003142.

[7] L. Speidel, R. Lambiotte, K. Aihara, and N. Masuda, Steady state and mean recurrence
time for random walks on stochastic temporal networks, Physical Review E 91, 012806
(2015), doi:10.1103/physreve.91.012806.

[8] N. Perra, B. Gonçalves, R. Pastor-Satorras, and A. Vespignani, Activity driven modeling
of time varying networks, Scientific Reports 2, 469 (2012), doi:10.1038/srep00469.

[9] L. Alessandretti, K. Sun, A. Baronchelli, and N. Perra, Random walks on
activity-driven networks with attractiveness, Physical Review E 95, 052318 (2017),
doi:10.1103/physreve.95.052318.

[10] E. Ubaldi, A. Vezzani, M. Karsai, N. Perra, and R. Burioni, Burstiness and tie acti-
vation strategies in time-varying social networks, Scientific Reports 7, 46225 (2017),
doi:10.1038/srep46225.

[11] G. Laurent, J. Saramäki, and M. Karsai, From calls to communities: a model
for time-varying social networks, The European Physical Journal B 88, 301 (2015),
doi:10.1140/epjb/e2015-60481-x.

[12] H. Kim, M. Ha, and H. Jeong, Scaling properties in time-varying networks with memory,
The European Physical Journal B 88, 315 (2015), doi:10.1140/epjb/e2015-60662-7.

[13] M. Nadini, K. Sun, E. Ubaldi, M. Starnini, A. Rizzo, and N. Perra, Epidemic spreading in
modular time-varying networks, Scientific Reports 8, 2352 (2018), doi:10.1038/s41598-
018-20908-x.

[14] A. Sunny, B. Kotnis, and J. Kuri, Dynamics of history-dependent epidemics in temporal
networks, Physical Review E 92, 022811 (2015), doi:10.1103/physreve.92.022811.

[15] D. T. Gillespie, A general method for numerically simulating the stochastic time evolu-
tion of coupled chemical reactions, Journal of Computational Physics 22, 403 (1976),
doi:10.1016/0021-9991(76)90041-3.

139

https://en.wikipedia.org/wiki/SQL:2011##Temporal_support
https://en.wikipedia.org/wiki/SQL:2011##Temporal_support
https://en.wikipedia.org/wiki/Neo4j

140 BIBLIOGRAPHY

[16] M. Boguná, L. F. Lafuerza, R. Toral, and M. Á. Serrano, Simulating
non-markovian stochastic processes, Physical Review E 90, 042108 (2014),
doi:10.1103/physreve.90.042108.

[17] N. Masuda and L. E. Rocha, A gillespie algorithm for non-markovian stochastic pro-
cesses, SIAM Review 60, 95 (2018), doi:10.1137/16m1055876.

[18] M. Starnini, A. Baronchelli, and R. Pastor-Satorras, Modeling human dynamics
of face-to-face interaction networks, Physical Review Letters 110, 168701 (2013),
doi:10.1103/physrevlett.110.168701.

[19] Y.-Q. Zhang, X. Li, D. Liang, and J. Cui, Characterizing bursts of aggregate pairs with
individual poissonian activity and preferential mobility, IEEE Communications Letters
19, 1225 (2015), doi:10.1109/lcomm.2015.2437382.

[20] Y.-S. Cho, A. Galstyan, P. J. Brantingham, and G. Tita, Latent self-exciting point process
model for spatial-temporal networks, Discrete and Continuous Dynamical Systems 19,
1335 (2014), doi:10.3934/dcdsb.2014.19.1335.

[21] The caida as relationships dataset, 2004-2007, https://www.caida.org/data/
as-relationships/ ().

[22] CAIDA UCSD anonymized internet traces dataset - [dates used], http://www.
caida.org/data/passive/passive_dataset.xml ().

[23] R. Görke, R. Kluge, A. Schumm, C. Staudt, and D. Wagner, An efficient generator
for clustered dynamic random networks, in Design and Analysis of Algorithms - First
Mediterranean Conference on Algorithms, MedAlg 2012, Kibbutz Ein Gedi, Israel, De-
cember 3-5, 2012. Proceedings, Lecture Notes in Computer Science, Vol. 7659, edited by
G. Even and D. Rawitz (Springer, 2012) pp. 219–233.

[24] W. van Leeuwen, A. Bonifati, G. H. Fletcher, and N. Yakovets, Stability notions in syn-
thetic graph generation: a preliminary study. in Proceeding of the 20th International
Conference on Extending Database Technology (EDBT), Venice, Italy (2017).

[25] S. Purohit, L. B. Holder, and G. Chin, Temporal graph generation based on a distribution
of temporal motifs, in Proceedings of the 14th International Workshop on Mining and
Learning with Graphs, Vol. 7 (2018).

[26] G. Zeno, T. L. Fond, and J. Neville, Dynamic network modeling from motif-activity, in
Companion of The 2020 Web Conference 2020, Taipei, Taiwan, April 20-24, 2020, edited
by A. E. F. Seghrouchni, G. Sukthankar, T. Liu, and M. van Steen (ACM / IW3C2, 2020)
pp. 390–397.

[27] D. Zhou, L. Zheng, J. Han, and J. He, A data-driven graph generative model for tem-
poral interaction networks, in KDD ’20: The 26th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, Virtual Event, CA, USA, August 23-27, 2020, edited by
R. Gupta, Y. Liu, J. Tang, and B. A. Prakash (ACM, 2020) pp. 401–411.

[28] J. R. Ullmann, An algorithm for subgraph isomorphism, J. ACM 23, 31 (1976).

https://www.caida.org/data/as-relationships/
https://www.caida.org/data/as-relationships/
http://www.caida.org/data/passive/passive_dataset.xml
http://www.caida.org/data/passive/passive_dataset.xml
http://dx.doi.org/10.1007/978-3-642-34862-4_16
http://dx.doi.org/10.1007/978-3-642-34862-4_16
http://dx.doi.org/10.1007/978-3-642-34862-4_16
http://dx.doi.org/10.1145/3366424.3383301
https://dl.acm.org/doi/10.1145/3394486.3403082
https://dl.acm.org/doi/10.1145/3394486.3403082
http://dx.doi.org/10.1145/321921.321925

BIBLIOGRAPHY 141

[29] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, A (sub)graph isomorphism algorithm
for matching large graphs, IEEE Trans. Pattern Anal. Mach. Intell. 26, 1367 (2004).

[30] H. Shang, Y. Zhang, X. Lin, and J. X. Yu, Taming verification hardness: an efficient
algorithm for testing subgraph isomorphism, Proc. VLDB Endow. 1, 364 (2008).

[31] W. S. Han, J. Lee, and J. H. Lee, Turboiso: Towards ultrafast and robust subgraph
isomorphism search in large graph databases, in Acm Sigmod International Conference
on Management of Data (2013).

[32] F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang, Efficient subgraph matching by postponing
cartesian products, , 1199 (2016).

[33] H. He and A. K. Singh, Graphs-at-a-time: query language and access methods for graph
databases, in Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008, edited by J. T.
Wang (ACM, 2008) pp. 405–418.

[34] P. Zhao and J. Han, On graph query optimization in large networks, Proc. VLDB Endow.
3, 340 (2010).

[35] T. L. Veldhuizen, Leapfrog triejoin: A simple, worst-case optimal join algorithm, arXiv
preprint arXiv:1210.0481 (2012).

[36] H. Q. Ngo, C. Ré, and A. Rudra, Skew strikes back: New developments in the theory of
join algorithms, ACM SIGMOD Record 42, 5 (2014).

[37] D. Nguyen, M. Aref, M. Bravenboer, G. Kollias, H. Q. Ngo, C. Ré, and A. Rudra,
Join processing for graph patterns: An old dog with new tricks, in Proceedings of the
GRADES’15 (2015) pp. 1–8.

[38] T. Plantenga, Inexact subgraph isomorphism in mapreduce, Journal of Parallel and Dis-
tributed Computing 73, 164 (2013).

[39] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li, Efficient subgraph matching on billion
node graphs, arXiv preprint arXiv:1205.6691 (2012).

[40] L. Lai, L. Qin, X. Lin, and L. Chang, Scalable subgraph enumeration in mapreduce,
Proceedings of the VLDB Endowment 8, 974 (2015).

[41] L. Lai, L. Qin, X. Lin, Y. Zhang, L. Chang, and S. Yang, Scalable distributed subgraph
enumeration, Proceedings of the VLDB Endowment 10, 217 (2016).

[42] M. Kaufmann, P. M. Fischer, N. May, C. Ge, A. K. Goel, and D. Kossmann, Bi-temporal
timeline index: A data structure for processing queries on bi-temporal data, in IEEE
International Conference on Data Engineering (2015) pp. 471–482.

[43] J.-Z. Luo, S.-F. Shi, G. Yang, H.-Z. Wang, and J.-Z. Li, O2ijoin: An efficient index-
based algorithm for overlap interval join, Journal of Computer Science and Technology
33, 1023 (2018).

http://dx.doi.org/10.1109/TPAMI.2004.75
http://dx.doi.org/ 10.14778/1453856.1453899
http://dx.doi.org/ 10.1145/1376616.1376660
http://dx.doi.org/ 10.1145/1376616.1376660
http://dx.doi.org/10.14778/1920841.1920887
http://dx.doi.org/10.14778/1920841.1920887

142 BIBLIOGRAPHY

[44] B. Otlu and T. Can, Joa: Joint overlap analysis of multiple genomic interval sets, BMC
bioinformatics 20, 121 (2019).

[45] A. Dignös, M. H. Böhlen, and J. Gamper, Overlap interval partition join, in SIGMOD
(ACM, 2014) pp. 1459–1470.

[46] F. Cafagna and M. H. Böhlen, Disjoint interval partitioning, The VLDB Journal 26, 447
(2017).

[47] M. Franzke, T. Emrich, A. Züfle, and M. Renz, Pattern search in temporal social net-
works, in Proceedings of the 21st International Conference on Extending Database Tech-
nology (2018).

[48] K. Semertzidis and E. Pitoura, Top-k durable graph pattern queries on temporal graphs,
IEEE Transactions on Knowledge and Data Engineering 31, 181 (2018).

[49] Y. Xu, J. Huang, A. Liu, Z. Li, H. Yin, and L. Zhao, Time-constrained graph pattern
matching in a large temporal graph, (2017).

[50] A. Mhedhbi and S. Salihoglu, Optimizing subgraph queries by combining binary and
worst-case optimal joins, arXiv preprint arXiv:1903.02076 (2019).

[51] C. R. Aberger, A. Lamb, S. Tu, A. Nötzli, K. Olukotun, and C. Ré, Emptyheaded: A
relational engine for graph processing, ACM Transactions on Database Systems (TODS)
42, 1 (2017).

[52] M. Karsai, H. H. Jo, and K. Kaski, Bursty human dynamics, 10.1007/978-3-319-68540-3
(2018).

[53] A.-L. Barabási, The origins of bursts and heavy tails in human dynamics, Nature 435, 207
(2005).

[54] Alexei, Vázquez, Joo, Gama, Oliveira, Zoltán, Dezs, Kwang-Il, Goh, and I. and, Model-
ing bursts and heavy tails in human dynamics, Physical Review E 73, 36127 (2006).

[55] R. D. Malmgren, D. B. Stouffer, A. E. Motter, and L. A. N. Amaral, A poisso-
nian explanation for heavy-tails in e-mail communication, CoRR abs/0901.0585 (2009),
arXiv:0901.0585 .

[56] Peng, Wang, Bing-Hong, Wang, Tao, Zhou, Xiao-Pu, and Han, Modeling correlated
human dynamics with temporal preference, Physica, A. Statistical mechanics and its ap-
plications 398, 145 (2014).

[57] NYC TLC Trip Record Data, https://www1.nyc.gov/site/tlc/about/
tlc-trip-record-data.page (2019).

[58] Airline On-Time Performance Data, https://www.transtats.bts.gov/ (2019),
accessed 15 June 2020.

[59] G. Bagan, A. Bonifati, R. Ciucanu, G. H. Fletcher, A. Lemay, and N. Advokaat, gmark:
Schema-driven generation of graphs and queries, IEEE Transactions on Knowledge and
Data Engineering 29, 856 (2016).

http://arxiv.org/abs/0901.0585
http://arxiv.org/abs/0901.0585
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.transtats.bts.gov/

BIBLIOGRAPHY 143

[60] J. Enderle, Joining interval data in relational databases, in ACM SIGMOD International
Conference on Management of Data, Paris, France, June (2004) pp. 683–694.

[61] R. Cheng, S. Singh, S. Prabhakar, R. Shah, J. S. Vitter, and Y. Xia, Efficient join pro-
cessing over uncertain data, in International Conference on Information and Knowledge
Management CIKM (2006) pp. 738–747.

[62] T. Brinkhoff, H.-P. Kriegel, and B. Seeger, Efficient processing of spatial joins using
R-trees, Vol. 22 (ACM, 1993).

[63] L. Chen, Y. Deng, W. Luo, Z. Wang, and S. Zeng, Detection of bursts in neuronal
spike trains by the mean inter-spike interval method, Progress in Natural Science 19, 229
(2009).

[64] NYC Citi Bike, https://www.citibikenyc.com/system-data (2019).

[65] J. Cocatre-Zilgien and F. Delcomyn, Identification of bursts in spike trains, Journal of
neuroscience methods 41, 19 (1992).

[66] A. Bonifati, G. Fletcher, H. Voigt, and N. Yakovets, Querying Graphs (Morgan & Clay-
pool Publishers, 2018).

[67] C. Kankanamge, S. Sahu, A. Mhedbhi, J. Chen, and S. Salihoglu, Graphflow: An active
graph database, in Acm International Conference (2017).

[68] Logicblox, https://developer.logicblox.com/.

[69] Avantgraph, http://avantgraph.io/.

[70] A. Hogan, C. Riveros, C. Rojas, and A. Soto, A worst-case optimal join algorithm for
sparql, in International Semantic Web Conference (Springer, 2019) pp. 258–275.

[71] A. Mhedhbi and S. Salihoglu, Optimizing subgraph queries by combining binary and
worst-case optimal joins, Proceedings of the VLDB Endowment 12.

[72] Divvy System Data, https://www.divvybikes.com/system-data (2019).

[73] J. Leskovec and A. Krevl, SNAP Datasets: Stanford large network dataset collection,
http://snap.stanford.edu/data (2014).

[74] H. Kim and R. Anderson, Temporal node centrality in complex networks, Physical Review
E 85, 026107 (2012).

[75] Allen’s interval algebra, https://en.wikipedia.org/wiki/Allen’s_
interval_algebra.

[76] S. Helmer and F. Persia, Iseql, an interval-based surveillance event query language, In-
ternational Journal of Multimedia Data Engineering and Management (IJMDEM) 7, 1
(2016).

https://www.citibikenyc.com/system-data
 https://developer.logicblox.com/
http://avantgraph.io/
https://www.divvybikes.com/system-data
http://snap.stanford.edu/data
https://en.wikipedia.org/wiki/Allen's_interval_algebra
https://en.wikipedia.org/wiki/Allen's_interval_algebra

List of Figures

1.1 Examples of (a) temporal graph, (b) non-temporal subgraph
query, and (c) temporal subgraph query. Note that the red and
green-colored subgraphs are both matches of (b). However,
only the green-colored subgraph is a match of (c). 2

1.2 Schematic diagram of our research questions. The green-
colored block demonstrates that the question has been primar-
ily investigated in the state of the art. Note that we would not
enter a question until all its preceding questions are investigated. 7

3.1 CSS distribution of several real networks. Left and right col-
umn plots respectively present the daily and weekly CSS dis-
tribution. 34

3.2 Example of an edge generation by the CDM. Dashed line cor-
responds to the C(8) = 3. 39

3.3 CSS distribution of the real-world networks used in the exper-
iments. 44

3.4 IET and duration values used in frequency and fitted configu-
ration. 45

3.5 Relative degree of simulation result. 48
3.6 Closeness distribution of simulation result. 48
3.7 IET distribution of simulation result. 49
3.8 Duration distribution of simulation result. 49
3.9 Stability distribution of simulation result. 50
3.10 Relative degree in various networks. 54
3.11 IET distribution in various networks. 55
3.12 Duration distribution in various networks. 56
3.13 Vertex stability in various networks. 57

4.1 A running example of temporal k-clique enumeration. Tem-
poral relation Rex = {r1 : [0, 2], r2 : [4, 6], r3 : [5, 10], r4 :
[7, 9], r5 : [8, 10], r6 : [4, 4]} and query window [5, 8]. 61

4.2 Our query processing framework via linear scan 63
4.3 Our framework of temporal k-clique enumeration 67
4.4 Example of event-binary checkpointing on Rex, where dash

line represents the selected CPs. For each CP ci, its index i
refers to its order to be selected in procedure. 81

145

146 LIST OF FIGURES

4.5 Example of temporal-binary checkpointing on Rex, where
dash line represents the selected CPs. For each CP ci, its index
i refers to its order to be selected in procedure. 82

4.6 Example of long-link-half checkpointing on Rex with thresh-
old u = 0, where dash line represents the selected CPs. For
each CP ci, its index i refers to its order to be selected in pro-
cedure. 83

4.7 Example of query-set checkpointing on Rex with query work-
load Q = {q1 : [0, 1], q2[6, 7], q3 : [7, 8], q4 : [8, 9]}, where
dash line represents the selected CPs. For each CP ci, its index
i refers to its order to be selected in procedure. 86

4.8 Performance for basic algorithms with respect to the query
window size . 89

4.9 Performance of basic algorithms with respect to the dataset size. 90
4.10 Performance of STI-CPs with respect to the size of the query

window. 91
4.11 Performance of STI-CPs with respect to the dataset size. . . . 92
4.12 Performance for STI-CPs with respect to the budget 92
4.13 Performance for STI-CPs in varying query ratio. 93
4.14 Performance for query-set STI-CP with respect to the size of

the training set . 94

5.1 Example of temporal graphs in this chapter. 98
5.2 Three temporal-clique subgraph queries. 98
5.3 Examples of PT processing pipelines, including (a) binary join

processing for q1; (b) binary join processing for q2; and (c)
WCO join processing for q1; Red vertices highlight the topo-
logical joins. 99

5.4 The examples of TIME processing example for (a) q1 and (b)
q2. Red vertices highlight the topological joins. 101

5.5 Collection of r-TSRs of query edges in q1 under v0. Dash lines
represent the query window. 108

5.6 Example of binding production procedure for four relations
(n = 4). 110

5.7 Examples of TSRJOIN processing for queries q1, q2, and q3. . 112
5.8 LS and LD structures of graphG1. The yellow and green parts

respectively refer to the ordering structure in a trie and TSRs . 114
5.9 LS-EC and LD-EC structures of graph G1. 121
5.10 Subgraph patterns used in the experimental evaluation. 126
5.11 Performance of algorithms with respect to pattern types. . . . 128

LIST OF FIGURES 147

5.12 Intermediate cardinality of various subgraph patterns in Yel-
low dataset (|E| = 20M). 129

5.13 Performance of algorithms with respect to query output size. . 130
5.14 Performance of algorithms with respect to the query window. . 131
5.15 Performance of algorithms with respect to network size. 132

List of Tables

2.1 Common notations and their symbols across the thesis 16

3.1 Overview of the important metrics of the generated networks . 29
3.2 Several recognized network characteristics in existing works. . 30
3.3 Overview of the parameters used in the proposed model 35
3.4 Overview of the real-world networks used in the experiments. 44
3.5 Default configuration for the scalability experiments. 47
3.6 Generation time of simulation result 47
3.7 Generation time in both monotonic (denoted tm) and non-

monotonic (denoted tn) networks with respect to schemas (secs) 51

4.1 Example of CE-EBI processing 69
4.2 Example of CE-gFS processing 73
4.3 Example of STI processing 77

5.1 Aims of TAIs. 113
5.2 Example of processing q1 over G1 using LFTO algorithm. . . 117
5.3 Example of the optimized LFTO algorithm. 125
5.4 Overview of the real-world networks used in the experiments. 127
5.5 Storage cost of algorithms in various networks (GB). 133
5.6 Pre-processing cost of algorithms in various networks (secs). . 133

149

LIST OF TABLES 151

List of Acronyms

ADN Activity-Driven Network
bgFS Forward Scan with grouping and bucket indexing
CDM Competition-Driven Model
CP Check-Point
CS Concurrent Set
CSCW Concurrent Set Construction Window
CSS Concurrent Set Size
EBI Endpoint-Based Index
ECI Earliest concurrent index
gFS Forward Scan with grouping
IET Inter-Event Time
LH Living History
LHW Living History Window
PT toPology then Time
STI Start Time Index
STI-CP Start Time Index with Check-Point
TAI Temporal adjacency index
TSR Temporal Selective Relation
r-TSR Relevant Temporal Selective Relation
WCO Worst-Case Optimal
TP Time then toPology
T&P Time and toPology

Acknowledgments

I still remember it was Feb 23rd, 2018, when I started my Argonautica to
Technische Universiteit Eindhoven (TU/e) in the Netherlands. Honestly, I felt
a little bit sad when I was on the flight as it was my first travel to a new country
which is far from my home. However, when the flight was going to land and
when I could see the houses on the ground, I felt more and more excited since I
knew I would start a new living and get the opportunities to experience numer-
ous life stories which I would appreciate all my life. Eventually, the four-year
story about the Golden Fleece is coming to its end. I appreciate the period of
living and studying in TUe which broadens my horizon and makes me grow
up. More importantly, I would like to express my gratitude to every one I met
during the journey. It is you who contribute to the unique colorful painting of
my 4 years’ time.

I would like to thank my supervisors, prof. George Fletcher and dr. Niko-
lay Yakovets. Thank you for your guidance and support in the four years. I
still remember the day when I first have my interview with George on Skype,
from which I got the opportunity to live and study here. At the beginning of
my PhD, I was really a freshman as I was concentrating on doing more engi-
neering job than researches in my past years. However, George and Nikolay
are always patient with my questions (even though some of them are naive)
and generous to give their suggestions about my research. I remember that
when I was writing my SSTD paper in 2019, Nikolay spent his weekend time
in revising the paper and teaching me the techinques to improve my writing
ability. When I felt frustrated about a paragraph of analysis in my ICDE paper,
Nikolay spent his time discussing it with me for hours until we finally drew a
plausible conclusion. Besides, they encourage me to think independently and
concentrate on true value of research itself. I remember there was a time I
was frustrated about publishing a paper in my first year, George told me that “
What really matters is not the publication of paper but to complete some chal-
lenging tasks, since we want to change the world.” This quote accompanies all
my following time in TU/e and encourages me to investigate truly interesting
work and improve myself.

I would like to thank the committee members for this PhD defense, for
carefully reviewing this thesis and insightful feedbacks: prof.dr. Boudewijn

153

van Dongen from TU/e, prof.dr. James Cheng from Chinese University Hong
Kong, prof.dr. Toon Calders from Antwerp University, prof.dr. Hamamache
Kheddouci from Lyon 1 University. Also, I would like to thank Roger Olesen
and Yulong Pei for their kind advice. Your insightful and detailed feedbacks
helped me to make this dissertation more complete.

I would like to express my special thanks for Jianpeng Zhang and Odysseas
Papapetrou for their precious help in my first year. I would like to thank Jian-
peng as he took me to walk around, visit every office, and introduce me to
every one, when I first arrived in the 7th floor in MetaForum. This helps me
to acquaint with the living and studying environment. I would like to thank
Odysseas for his straightforward and valuable suggestions on my research in
the first year when I was doing a bad job. It is his opinions that make me begin
to realize the fact that I was far from being a qualified researcher and try to to
get rid of my demerits in order to make progress.

I would like to thank Simon van der Zon and dr. Wouter Duivesteijn for
their organization of various entertaining social activities. Thanks Simon for
your organizing the lake camping in Summer 2018. Thanks Wouter for orga-
nizing every lunch talk, Poker night, and movie night. I appreciate my experi-
ence of participating these activities in which I could relax myself , communi-
cate with other people, and make new friends. Besides, I’m sorry for pouring
beer and polluting your poker table from time to time!:)

I would like to thank all my friends including Guangming Li, Cong Liu,
Yulong Pei, Xin Du, Xuming Meng, Shiwei Liu, Tianjin Huang, Yuhao Wang,
and Zhaohuan Wang for the organization of various activities and their gen-
erous help towards me. I appreciate the moments when we organize the
dumpling night, the roof BBQ, and movie nights. Specially, I would like to
thank Yulong and Tianjin for helping me back home from central station on
June 10th, 2019, the day when I hurt my feet in Cochem. Also, thanks Shiwei
for taking care of my bike when I was stuck in China because of COVID-19.

I would like to thank Ricky Maulana Fajri, Pieter Gijsbers, and Anil Yaman
for your warm welcome when I stepped into my first office. I appreciate the
memories we were working together in the first year. I would also like to
thank Yulong Pei, Xuming Meng, Wilco van Leeuwen for sharing the same
office with me in the following three years, during which period the office is
always full of various discussion and joy.

I would like to thank Jose, Ine and Riet for your kind services which make
our working environment more convenient. Specially, thanks Jose for your
concern and contact during my period stuck in China because of the COVID-

154

19. Because of this, I could feel the warmth of my European home, even
though I was thousands of kilometers away from that.

I would like to thank other colleagues from database group including
Daniele Bonetta, Hamid Shahrivari Joghan, Larissa Capobianco Shimomura,
Daphne E. Miedema, Thomas Mulder, Stanley Clark, Bram van de Wall, and
Akrati Saxena. I appreciate the moments when we were participating DB-
DBDs, helping organizing SIGMOD, having online stand-ups, and my oppor-
tunity to witness the growing of our warm family in the four years, with every
one’s participation. I would also like to thank other colleagues from data min-
ing group including prof. dr. Mykola Pechenizkiy, Decebal Mocanu, Sibylle
Hess, Loek Tonnaer and Bilge Celik. It is really a pleasure for me to know all
of you with whom I used to talk during lunch and coffee break.

I would like to thank prof. Paul De Bra as he sent my e-mail for research
offer to George, when he was going to retired. Without your help, I could
never obtain the opprtunites to experience all these stories. Honestly, I have
always been desiring to show my gratitude every time I met you in academic
conference, but all result in silence for various reasons. Anyway, I’m glad that
I can show my gratitude here.

I would like to thank Roger Olesen for his concerning and guidance of my
four-year life in Europe. I always enjoy our chat about culture, history, litera-
ture, and politics. Your patience and enlightening opinions always encourage
me to open my mind and eyes to observe my life more carefully.

Last but not least, I would like to thank all my family members in China for
their support in the four years. I would like to thank Di Chen, my girl friend,
fiancee, and wife. Thank you for your durable awaiting and thank you for your
accompany and encourage from cell phone when I was upset. I would like
to thank my parents as they brought me up in my past years life and always
encouraged me to face new challenges and pursuit my dreams. I would like
to parents-in-law for their concern on me every time I departed from China to
Netherlands. It is you, all my family members, who provide me resourceful
power and energy to fight and pursuit.

Kaijie Zhu

Eindhoven, November, 2021

155

Curriculum Vitæ
Kaijie Zhu was born on 28-01-1991 in Zhuzhou, China. He received bach-

elor’s degree from information engineering university in 2013. Then he re-
ceived his master‘s degree in Compute Science and Engineering from Na-
tional Digital Switching System Engineering & Technology Research Center
(NDSC) in 2016. From 2018 he started a PhD project in the Department of
Mathematics and Computer Science at Eindhoven University of Technology
under the supervision of prof.dr. George Fletcher and dr. Nikolay Yakovets at
Eindhoven, the Netherlands, of which the results are presented in this thesis.

157

Publications

Publications

5. Kaijie Zhu, George Fletcher, and Nikolay Yakovets. Competition-driven modeling of
temporal networks. EPJ Data Science. 2021, 10(1): 30.

4. Kaijie Zhu, George Fletcher, Nikolay Yakovets, Odysseas Papapetrou, and Yuqing Wu.
Scalable temporal clique enumeration. In proceedings of the 16th International Sympo-
sium on Spatial and Temporal Databases (SSTD). 2019: 120-129.

3. Kaijie Zhu, George Fletcher, and Nikolay Yakovets. Leveraging temporal and topolog-
ical selectivities in temporal-clique subgraph query processing. In proceedings of the
IEEE International Conference on Data Engineering (ICDE). 2021: 672-683.

2. Jianpeng Zhang, Kaijie Zhu, Yulong Pei, George Fletcher, Mykola Pechenizkiy. Clus-
tering Affiliation Inference from Graph Samples. In proceedings of the 14th international
workshop on mining and learning with graphs (MLG) at KDD. 2018.

1. Jianpeng Zhang, Kaijie Zhu, Yulong Pei, George Fletcher, and Mykola Pechenizkiy.

Cluster-preserving Sampling from Fully-dynamic Streaming Graph. Information Sci-

ences, 2019, 482: 279-300.

159

SIKS Dissertations

2011 01 Botond Cseke (RUN), Variational Algorithms for Bayesian Infer-
ence in Latent Gaussian Models

02 Nick Tinnemeier (UU), Organizing Agent Organizations. Syn-
tax and Operational Semantics of an Organization-Oriented Pro-
gramming Language

03 Jan Martijn van der Werf (TUE), Compositional Design and Ver-
ification of Component-Based Information Systems

04 Hado van Hasselt (UU), Insights in Reinforcement Learning; For-
mal analysis and empirical evaluation of temporal-difference

05 Bas van der Raadt (VU), Enterprise Architecture Coming of Age
- Increasing the Performance of an Emerging Discipline.

06 Yiwen Wang (TUE), Semantically-Enhanced Recommendations
in Cultural Heritage

07 Yujia Cao (UT), Multimodal Information Presentation for High
Load Human Computer Interaction

08 Nieske Vergunst (UU), BDI-based Generation of Robust Task-
Oriented Dialogues

09 Tim de Jong (OU), Contextualised Mobile Media for Learning
10 Bart Bogaert (UvT), Cloud Content Contention
11 Dhaval Vyas (UT), Designing for Awareness: An Experience-

focused HCI Perspective
12 Carmen Bratosin (TUE), Grid Architecture for Distributed Pro-

cess Mining
13 Xiaoyu Mao (UvT), Airport under Control. Multiagent Schedul-

ing for Airport Ground Handling
14 Milan Lovric (EUR), Behavioral Finance and Agent-Based Arti-

ficial Markets
15 Marijn Koolen (UvA), The Meaning of Structure: the Value of

Link Evidence for Information Retrieval
16 Maarten Schadd (UM), Selective Search in Games of Different

Complexity
17 Jiyin He (UVA), Exploring Topic Structure: Coherence, Diversity

and Relatedness
18 Mark Ponsen (UM), Strategic Decision-Making in complex

games
19 Ellen Rusman (OU), The Mind’s Eye on Personal Profiles

161

20 Qing Gu (VU), Guiding service-oriented software engineering -
A view-based approach

21 Linda Terlouw (TUD), Modularization and Specification of
Service-Oriented Systems

22 Junte Zhang (UVA), System Evaluation of Archival Description
and Access

23 Wouter Weerkamp (UVA), Finding People and their Utterances
in Social Media

24 Herwin van Welbergen (UT), Behavior Generation for Interper-
sonal Coordination with Virtual Humans On Specifying, Schedul-
ing and Realizing Multimodal Virtual Human Behavior

25 Syed Waqar ul Qounain Jaffry (VU), Analysis and Validation of
Models for Trust Dynamics

26 Matthijs Aart Pontier (VU), Virtual Agents for Human Commu-
nication - Emotion Regulation and Involvement-Distance Trade-
Offs in Embodied Conversational Agents and Robots

27 Aniel Bhulai (VU), Dynamic website optimization through au-
tonomous management of design patterns

28 Rianne Kaptein (UVA), Effective Focused Retrieval by Exploit-
ing Query Context and Document Structure

29 Faisal Kamiran (TUE), Discrimination-aware Classification
30 Egon van den Broek (UT), Affective Signal Processing (ASP):

Unraveling the mystery of emotions
31 Ludo Waltman (EUR), Computational and Game-Theoretic Ap-

proaches for Modeling Bounded Rationality
32 Nees-Jan van Eck (EUR), Methodological Advances in Biblio-

metric Mapping of Science
33 Tom van der Weide (UU), Arguing to Motivate Decisions
34 Paolo Turrini (UU), Strategic Reasoning in Interdependence:

Logical and Game-theoretical Investigations
35 Maaike Harbers (UU), Explaining Agent Behavior in Virtual

Training
36 Erik van der Spek (UU), Experiments in serious game design: a

cognitive approach
37 Adriana Burlutiu (RUN), Machine Learning for Pairwise Data,

Applications for Preference Learning and Supervised Network
Inference

38 Nyree Lemmens (UM), Bee-inspired Distributed Optimization
39 Joost Westra (UU), Organizing Adaptation using Agents in Seri-

ous Games

162

40 Viktor Clerc (VU), Architectural Knowledge Management in
Global Software Development

41 Luan Ibraimi (UT), Cryptographically Enforced Distributed Data
Access Control

42 Michal Sindlar (UU), Explaining Behavior through Mental State
Attribution

43 Henk van der Schuur (UU), Process Improvement through Soft-
ware Operation Knowledge

44 Boris Reuderink (UT), Robust Brain-Computer Interfaces
45 Herman Stehouwer (UvT), Statistical Language Models for Al-

ternative Sequence Selection
46 Beibei Hu (TUD), Towards Contextualized Information Delivery:

A Rule-based Architecture for the Domain of Mobile Police Work
47 Azizi Bin Ab Aziz (VU), Exploring Computational Models for

Intelligent Support of Persons with Depression
48 Mark Ter Maat (UT), Response Selection and Turn-taking for a

Sensitive Artificial Listening Agent
49 Andreea Niculescu (UT), Conversational interfaces for task-

oriented spoken dialogues: design aspects influencing interaction
quality

2012 01 Terry Kakeeto (UvT), Relationship Marketing for SMEs in
Uganda

02 Muhammad Umair (VU), Adaptivity, emotion, and Rationality in
Human and Ambient Agent Models

03 Adam Vanya (VU), Supporting Architecture Evolution by Mining
Software Repositories

04 Jurriaan Souer (UU), Development of Content Management
System-based Web Applications

05 Marijn Plomp (UU), Maturing Interorganisational Information
Systems

06 Wolfgang Reinhardt (OU), Awareness Support for Knowledge
Workers in Research Networks

07 Rianne van Lambalgen (VU), When the Going Gets Tough: Ex-
ploring Agent-based Models of Human Performance under De-
manding Conditions

08 Gerben de Vries (UVA), Kernel Methods for Vessel Trajectories
09 Ricardo Neisse (UT), Trust and Privacy Management Support for

Context-Aware Service Platforms

163

10 David Smits (TUE), Towards a Generic Distributed Adaptive Hy-
permedia Environment

11 J.C.B. Rantham Prabhakara (TUE), Process Mining in the Large:
Preprocessing, Discovery, and Diagnostics

12 Kees van der Sluijs (TUE), Model Driven Design and Data Inte-
gration in Semantic Web Information Systems

13 Suleman Shahid (UvT), Fun and Face: Exploring non-verbal ex-
pressions of emotion during playful interactions

14 Evgeny Knutov (TUE), Generic Adaptation Framework for Uni-
fying Adaptive Web-based Systems

15 Natalie van der Wal (VU), Social Agents. Agent-Based Mod-
elling of Integrated Internal and Social Dynamics of Cognitive
and Affective Processes.

16 Fiemke Both (VU), Helping people by understanding them - Am-
bient Agents supporting task execution and depression treatment

17 Amal Elgammal (UvT), Towards a Comprehensive Framework
for Business Process Compliance

18 Eltjo Poort (VU), Improving Solution Architecting Practices
19 Helen Schonenberg (TUE), What’s Next? Operational Support

for Business Process Execution
20 Ali Bahramisharif (RUN), Covert Visual Spatial Attention, a Ro-

bust Paradigm for Brain-Computer Interfacing
21 Roberto Cornacchia (TUD), Querying Sparse Matrices for Infor-

mation Retrieval
22 Thijs Vis (UvT), Intelligence, politie en veiligheidsdienst:

verenigbare grootheden?
23 Christian Muehl (UT), Toward Affective Brain-Computer Inter-

faces: Exploring the Neurophysiology of Affect during Human
Media Interaction

24 Laurens van der Werff (UT), Evaluation of Noisy Transcripts for
Spoken Document Retrieval

25 Silja Eckartz (UT), Managing the Business Case Development in
Inter-Organizational IT Projects: A Methodology and its Appli-
cation

26 Emile de Maat (UVA), Making Sense of Legal Text
27 Hayrettin Gurkok (UT), Mind the Sheep! User Experience Eval-

uation & Brain-Computer Interface Games
28 Nancy Pascall (UvT), Engendering Technology Empowering

Women

164

29 Almer Tigelaar (UT), Peer-to-Peer Information Retrieval
30 Alina Pommeranz (TUD), Designing Human-Centered Systems

for Reflective Decision Making
31 Emily Bagarukayo (RUN), A Learning by Construction Ap-

proach for Higher Order Cognitive Skills Improvement, Building
Capacity and Infrastructure

32 Wietske Visser (TUD), Qualitative multi-criteria preference rep-
resentation and reasoning

33 Rory Sie (OUN), Coalitions in Cooperation Networks (CO-
COON)

34 Pavol Jancura (RUN), Evolutionary analysis in PPI networks and
applications

35 Evert Haasdijk (VU), Never Too Old To Learn – On-line Evolu-
tion of Controllers in Swarm- and Modular Robotics

36 Denis Ssebugwawo (RUN), Analysis and Evaluation of Collabo-
rative Modeling Processes

37 Agnes Nakakawa (RUN), A Collaboration Process for Enterprise
Architecture Creation

38 Selmar Smit (VU), Parameter Tuning and Scientific Testing in
Evolutionary Algorithms

39 Hassan Fatemi (UT), Risk-aware design of value and coordina-
tion networks

40 Agus Gunawan (UvT), Information Access for SMEs in Indone-
sia

41 Sebastian Kelle (OU), Game Design Patterns for Learning
42 Dominique Verpoorten (OU), Reflection Amplifiers in self-

regulated Learning
43 Withdrawn
44 Anna Tordai (VU), On Combining Alignment Techniques
45 Benedikt Kratz (UvT), A Model and Language for Business-

aware Transactions
46 Simon Carter (UVA), Exploration and Exploitation of Multilin-

gual Data for Statistical Machine Translation
47 Manos Tsagkias (UVA), Mining Social Media: Tracking Content

and Predicting Behavior
48 Jorn Bakker (TUE), Handling Abrupt Changes in Evolving Time-

series Data
49 Michael Kaisers (UM), Learning against Learning - Evolutionary

dynamics of reinforcement learning algorithms in strategic inter-
actions

165

50 Steven van Kervel (TUD), Ontologogy driven Enterprise Infor-
mation Systems Engineering

51 Jeroen de Jong (TUD), Heuristics in Dynamic Sceduling; a prac-
tical framework with a case study in elevator dispatching

2013 01 Viorel Milea (EUR), News Analytics for Financial Decision Sup-
port

02 Erietta Liarou (CWI), MonetDB/DataCell: Leveraging the
Column-store Database Technology for Efficient and Scalable
Stream Processing

03 Szymon Klarman (VU), Reasoning with Contexts in Description
Logics

04 Chetan Yadati (TUD), Coordinating autonomous planning and
scheduling

05 Dulce Pumareja (UT), Groupware Requirements Evolutions Pat-
terns

06 Romulo Goncalves (CWI), The Data Cyclotron: Juggling Data
and Queries for a Data Warehouse Audience

07 Giel van Lankveld (UvT), Quantifying Individual Player Differ-
ences

08 Robbert-Jan Merk (VU), Making enemies: cognitive modeling
for opponent agents in fighter pilot simulators

09 Fabio Gori (RUN), Metagenomic Data Analysis: Computational
Methods and Applications

10 Jeewanie Jayasinghe Arachchige (UvT), A Unified Modeling
Framework for Service Design.

11 Evangelos Pournaras (TUD), Multi-level Reconfigurable Self-
organization in Overlay Services

12 Marian Razavian (VU), Knowledge-driven Migration to Services
13 Mohammad Safiri (UT), Service Tailoring: User-centric creation

of integrated IT-based homecare services to support independent
living of elderly

14 Jafar Tanha (UVA), Ensemble Approaches to Semi-Supervised
Learning Learning

15 Daniel Hennes (UM), Multiagent Learning - Dynamic Games and
Applications

16 Eric Kok (UU), Exploring the practical benefits of argumentation
in multi-agent deliberation

17 Koen Kok (VU), The PowerMatcher: Smart Coordination for the
Smart Electricity Grid

166

18 Jeroen Janssens (UvT), Outlier Selection and One-Class Classifi-
cation

19 Renze Steenhuizen (TUD), Coordinated Multi-Agent Planning
and Scheduling

20 Katja Hofmann (UvA), Fast and Reliable Online Learning to
Rank for Information Retrieval

21 Sander Wubben (UvT), Text-to-text generation by monolingual
machine translation

22 Tom Claassen (RUN), Causal Discovery and Logic
23 Patricio de Alencar Silva (UvT), Value Activity Monitoring
24 Haitham Bou Ammar (UM), Automated Transfer in Reinforce-

ment Learning
25 Agnieszka Anna Latoszek-Berendsen (UM), Intention-based De-

cision Support. A new way of representing and implementing
clinical guidelines in a Decision Support System

26 Alireza Zarghami (UT), Architectural Support for Dynamic
Homecare Service Provisioning

27 Mohammad Huq (UT), Inference-based Framework Managing
Data Provenance

28 Frans van der Sluis (UT), When Complexity becomes Interesting:
An Inquiry into the Information eXperience

29 Iwan de Kok (UT), Listening Heads
30 Joyce Nakatumba (TUE), Resource-Aware Business Process

Management: Analysis and Support
31 Dinh Khoa Nguyen (UvT), Blueprint Model and Language for

Engineering Cloud Applications
32 Kamakshi Rajagopal (OUN), Networking For Learning; The role

of Networking in a Lifelong Learner’s Professional Development
33 Qi Gao (TUD), User Modeling and Personalization in the Mi-

croblogging Sphere
34 Kien Tjin-Kam-Jet (UT), Distributed Deep Web Search
35 Abdallah El Ali (UvA), Minimal Mobile Human Computer Inter-

action
36 Than Lam Hoang (TUe), Pattern Mining in Data Streams
37 Dirk Börner (OUN), Ambient Learning Displays
38 Eelco den Heijer (VU), Autonomous Evolutionary Art
39 Joop de Jong (TUD), A Method for Enterprise Ontology based

Design of Enterprise Information Systems
40 Pim Nijssen (UM), Monte-Carlo Tree Search for Multi-Player

Games

167

41 Jochem Liem (UVA), Supporting the Conceptual Modelling of
Dynamic Systems: A Knowledge Engineering Perspective on
Qualitative Reasoning

42 Léon Planken (TUD), Algorithms for Simple Temporal Reason-
ing

43 Marc Bron (UVA), Exploration and Contextualization through In-
teraction and Concepts

2014 01 Nicola Barile (UU), Studies in Learning Monotone Models from
Data

02 Fiona Tuliyano (RUN), Combining System Dynamics with a Do-
main Modeling Method

03 Sergio Raul Duarte Torres (UT), Information Retrieval for Chil-
dren: Search Behavior and Solutions

04 Hanna Jochmann-Mannak (UT), Websites for children: search
strategies and interface design - Three studies on children’s search
performance and evaluation

05 Jurriaan van Reijsen (UU), Knowledge Perspectives on Advanc-
ing Dynamic Capability

06 Damian Tamburri (VU), Supporting Networked Software Devel-
opment

07 Arya Adriansyah (TUE), Aligning Observed and Modeled Be-
havior

08 Samur Araujo (TUD), Data Integration over Distributed and Het-
erogeneous Data Endpoints

09 Philip Jackson (UvT), Toward Human-Level Artificial Intelli-
gence: Representation and Computation of Meaning in Natural
Language

10 Ivan Salvador Razo Zapata (VU), Service Value Networks
11 Janneke van der Zwaan (TUD), An Empathic Virtual Buddy for

Social Support
12 Willem van Willigen (VU), Look Ma, No Hands: Aspects of Au-

tonomous Vehicle Control
13 Arlette van Wissen (VU), Agent-Based Support for Behavior

Change: Models and Applications in Health and Safety Domains
14 Yangyang Shi (TUD), Language Models With Meta-information
15 Natalya Mogles (VU), Agent-Based Analysis and Support of Hu-

man Functioning in Complex Socio-Technical Systems: Applica-
tions in Safety and Healthcare

168

16 Krystyna Milian (VU), Supporting trial recruitment and design
by automatically interpreting eligibility criteria

17 Kathrin Dentler (VU), Computing healthcare quality indicators
automatically: Secondary Use of Patient Data and Semantic In-
teroperability

18 Mattijs Ghijsen (UVA), Methods and Models for the Design and
Study of Dynamic Agent Organizations

19 Vinicius Ramos (TUE), Adaptive Hypermedia Courses: Qualita-
tive and Quantitative Evaluation and Tool Support

20 Mena Habib (UT), Named Entity Extraction and Disambiguation
for Informal Text: The Missing Link

21 Kassidy Clark (TUD), Negotiation and Monitoring in Open En-
vironments

22 Marieke Peeters (UU), Personalized Educational Games - Devel-
oping agent-supported scenario-based training

23 Eleftherios Sidirourgos (UvA/CWI), Space Efficient Indexes for
the Big Data Era

24 Davide Ceolin (VU), Trusting Semi-structured Web Data
25 Martijn Lappenschaar (RUN), New network models for the anal-

ysis of disease interaction
26 Tim Baarslag (TUD), What to Bid and When to Stop
27 Rui Jorge Almeida (EUR), Conditional Density Models Integrat-

ing Fuzzy and Probabilistic Representations of Uncertainty
28 Anna Chmielowiec (VU), Decentralized k-Clique Matching
29 Jaap Kabbedijk (UU), Variability in Multi-Tenant Enterprise

Software
30 Peter de Cock (UvT), Anticipating Criminal Behaviour
31 Leo van Moergestel (UU), Agent Technology in Agile Multipar-

allel Manufacturing and Product Support
32 Naser Ayat (UvA), On Entity Resolution in Probabilistic Data
33 Tesfa Tegegne (RUN), Service Discovery in eHealth
34 Christina Manteli (VU), The Effect of Governance in Global Soft-

ware Development: Analyzing Transactive Memory Systems.
35 Joost van Ooijen (UU), Cognitive Agents in Virtual Worlds: A

Middleware Design Approach
36 Joos Buijs (TUE), Flexible Evolutionary Algorithms for Mining

Structured Process Models
37 Maral Dadvar (UT), Experts and Machines United Against Cy-

berbullying

169

38 Danny Plass-Oude Bos (UT), Making brain-computer interfaces
better: improving usability through post-processing.

39 Jasmina Maric (UvT), Web Communities, Immigration, and So-
cial Capital

40 Walter Omona (RUN), A Framework for Knowledge Manage-
ment Using ICT in Higher Education

41 Frederic Hogenboom (EUR), Automated Detection of Financial
Events in News Text

42 Carsten Eijckhof (CWI/TUD), Contextual Multidimensional Rel-
evance Models

43 Kevin Vlaanderen (UU), Supporting Process Improvement using
Method Increments

44 Paulien Meesters (UvT), Intelligent Blauw. Met als ondertitel:
Intelligence-gestuurde politiezorg in gebiedsgebonden eenheden.

45 Birgit Schmitz (OUN), Mobile Games for Learning: A Pattern-
Based Approach

46 Ke Tao (TUD), Social Web Data Analytics: Relevance, Redun-
dancy, Diversity

47 Shangsong Liang (UVA), Fusion and Diversification in Informa-
tion Retrieval

2015 01 Niels Netten (UvA), Machine Learning for Relevance of Infor-
mation in Crisis Response

02 Faiza Bukhsh (UvT), Smart auditing: Innovative Compliance
Checking in Customs Controls

03 Twan van Laarhoven (RUN), Machine learning for network data
04 Howard Spoelstra (OUN), Collaborations in Open Learning En-

vironments
05 Christoph Bösch (UT), Cryptographically Enforced Search Pat-

tern Hiding
06 Farideh Heidari (TUD), Business Process Quality Computation

- Computing Non-Functional Requirements to Improve Business
Processes

07 Maria-Hendrike Peetz (UvA), Time-Aware Online Reputation
Analysis

08 Jie Jiang (TUD), Organizational Compliance: An agent-based
model for designing and evaluating organizational interactions

09 Randy Klaassen (UT), HCI Perspectives on Behavior Change
Support Systems

170

10 Henry Hermans (OUN), OpenU: design of an integrated system
to support lifelong learning

11 Yongming Luo (TUE), Designing algorithms for big graph
datasets: A study of computing bisimulation and joins

12 Julie M. Birkholz (VU), Modi Operandi of Social Network Dy-
namics: The Effect of Context on Scientific Collaboration Net-
works

13 Giuseppe Procaccianti (VU), Energy-Efficient Software
14 Bart van Straalen (UT), A cognitive approach to modeling bad

news conversations
15 Klaas Andries de Graaf (VU), Ontology-based Software Archi-

tecture Documentation
16 Changyun Wei (UT), Cognitive Coordination for Cooperative

Multi-Robot Teamwork
17 André van Cleeff (UT), Physical and Digital Security Mecha-

nisms: Properties, Combinations and Trade-offs
18 Holger Pirk (CWI), Waste Not, Want Not! - Managing Relational

Data in Asymmetric Memories
19 Bernardo Tabuenca (OUN), Ubiquitous Technology for Lifelong

Learners
20 Lois Vanhée (UU), Using Culture and Values to Support Flexible

Coordination
21 Sibren Fetter (OUN), Using Peer-Support to Expand and Stabilize

Online Learning
22 Zhemin Zhu (UT), Co-occurrence Rate Networks
23 Luit Gazendam (VU), Cataloguer Support in Cultural Heritage
24 Richard Berendsen (UVA), Finding People, Papers, and Posts:

Vertical Search Algorithms and Evaluation
25 Steven Woudenberg (UU), Bayesian Tools for Early Disease De-

tection
26 Alexander Hogenboom (EUR), Sentiment Analysis of Text

Guided by Semantics and Structure
27 Sándor Héman (CWI), Updating compressed colomn stores
28 Janet Bagorogoza (TiU), Knowledge Management and High Per-

formance; The Uganda Financial Institutions Model for HPO
29 Hendrik Baier (UM), Monte-Carlo Tree Search Enhancements for

One-Player and Two-Player Domains
30 Kiavash Bahreini (OU), Real-time Multimodal Emotion Recog-

nition in E-Learning

171

31 Yakup Koç (TUD), On the robustness of Power Grids
32 Jerome Gard (UL), Corporate Venture Management in SMEs
33 Frederik Schadd (TUD), Ontology Mapping with Auxiliary Re-

sources
34 Victor de Graaf (UT), Gesocial Recommender Systems
35 Jungxao Xu (TUD), Affective Body Language of Humanoid

Robots: Perception and Effects in Human Robot Interaction

2016 01 Syed Saiden Abbas (RUN), Recognition of Shapes by Humans
and Machines

02 Michiel Christiaan Meulendijk (UU), Optimizing medication re-
views through decision support: prescribing a better pill to swal-
low

03 Maya Sappelli (RUN), Knowledge Work in Context: User Cen-
tered Knowledge Worker Support

04 Laurens Rietveld (VU), Publishing and Consuming Linked Data
05 Evgeny Sherkhonov (UVA), Expanded Acyclic Queries: Con-

tainment and an Application in Explaining Missing Answers
06 Michel Wilson (TUD), Robust scheduling in an uncertain envi-

ronment
07 Jeroen de Man (VU), Measuring and modeling negative emotions

for virtual training
08 Matje van de Camp (TiU), A Link to the Past: Constructing His-

torical Social Networks from Unstructured Data
09 Archana Nottamkandath (VU), Trusting Crowdsourced Informa-

tion on Cultural Artefacts
10 George Karafotias (VUA), Parameter Control for Evolutionary

Algorithms
11 Anne Schuth (UVA), Search Engines that Learn from Their Users
12 Max Knobbout (UU), Logics for Modelling and Verifying Nor-

mative Multi-Agent Systems
13 Nana Baah Gyan (VU), The Web, Speech Technologies and Rural

Development in West Africa - An ICT4D Approach
14 Ravi Khadka (UU), Revisiting Legacy Software System Modern-

ization
15 Steffen Michels (RUN), Hybrid Probabilistic Logics - Theoretical

Aspects, Algorithms and Experiments
16 Guangliang Li (UVA), Socially Intelligent Autonomous Agents

that Learn from Human Reward

172

17 Berend Weel (VU), Towards Embodied Evolution of Robot Or-
ganisms

18 Albert Meroño Peñuela (VU), Refining Statistical Data on the
Web

19 Julia Efremova (Tu/e), Mining Social Structures from Genealog-
ical Data

20 Daan Odijk (UVA), Context & Semantics in News & Web Search
21 Alejandro Moreno Célleri (UT), From Traditional to Interactive

Playspaces: Automatic Analysis of Player Behavior in the Inter-
active Tag Playground

22 Grace Lewis (VU), Software Architecture Strategies for Cyber-
Foraging Systems

23 Fei Cai (UVA), Query Auto Completion in Information Retrieval
24 Brend Wanders (UT), Repurposing and Probabilistic Integration

of Data; An Iterative and data model independent approach
25 Julia Kiseleva (TU/e), Using Contextual Information to Under-

stand Searching and Browsing Behavior
26 Dilhan Thilakarathne (VU), In or Out of Control: Exploring

Computational Models to Study the Role of Human Awareness
and Control in Behavioural Choices, with Applications in Avia-
tion and Energy Management Domains

27 Wen Li (TUD), Understanding Geo-spatial Information on Social
Media

28 Mingxin Zhang (TUD), Large-scale Agent-based Social Simula-
tion - A study on epidemic prediction and control

29 Nicolas Höning (TUD), Peak reduction in decentralised electric-
ity systems - Markets and prices for flexible planning

30 Ruud Mattheij (UvT), The Eyes Have It
31 Mohammad Khelghati (UT), Deep web content monitoring
32 Eelco Vriezekolk (UT), Assessing Telecommunication Service

Availability Risks for Crisis Organisations
33 Peter Bloem (UVA), Single Sample Statistics, exercises in learn-

ing from just one example
34 Dennis Schunselaar (TUE), Configurable Process Trees: Elicita-

tion, Analysis, and Enactment
35 Zhaochun Ren (UVA), Monitoring Social Media: Summariza-

tion, Classification and Recommendation
36 Daphne Karreman (UT), Beyond R2D2: The design of nonverbal

interaction behavior optimized for robot-specific morphologies

173

37 Giovanni Sileno (UvA), Aligning Law and Action - a conceptual
and computational inquiry

38 Andrea Minuto (UT), Materials that Matter - Smart Materials
meet Art & Interaction Design

39 Merijn Bruijnes (UT), Believable Suspect Agents; Response and
Interpersonal Style Selection for an Artificial Suspect

40 Christian Detweiler (TUD), Accounting for Values in Design
41 Thomas King (TUD), Governing Governance: A Formal Frame-

work for Analysing Institutional Design and Enactment Gover-
nance

42 Spyros Martzoukos (UVA), Combinatorial and Compositional
Aspects of Bilingual Aligned Corpora

43 Saskia Koldijk (RUN), Context-Aware Support for Stress Self-
Management: From Theory to Practice

44 Thibault Sellam (UVA), Automatic Assistants for Database Ex-
ploration

45 Bram van de Laar (UT), Experiencing Brain-Computer Interface
Control

46 Jorge Gallego Perez (UT), Robots to Make you Happy
47 Christina Weber (UL), Real-time foresight - Preparedness for dy-

namic innovation networks
48 Tanja Buttler (TUD), Collecting Lessons Learned
49 Gleb Polevoy (TUD), Participation and Interaction in Projects. A

Game-Theoretic Analysis
50 Yan Wang (UVT), The Bridge of Dreams: Towards a Method for

Operational Performance Alignment in IT-enabled Service Sup-
ply Chains

2017 01 Jan-Jaap Oerlemans (UL), Investigating Cybercrime
02 Sjoerd Timmer (UU), Designing and Understanding Forensic

Bayesian Networks using Argumentation
03 Daniël Harold Telgen (UU), Grid Manufacturing; A Cyber-

Physical Approach with Autonomous Products and Reconfig-
urable Manufacturing Machines

04 Mrunal Gawade (CWI), Multi-core Parallelism in a Column-store
05 Mahdieh Shadi (UVA), Collaboration Behavior
06 Damir Vandic (EUR), Intelligent Information Systems for Web

Product Search
07 Roel Bertens (UU), Insight in Information: from Abstract to

Anomaly

174

08 Rob Konijn (VU) , Detecting Interesting Differences:Data Min-
ing in Health Insurance Data using Outlier Detection and Sub-
group Discovery

09 Dong Nguyen (UT), Text as Social and Cultural Data: A Compu-
tational Perspective on Variation in Text

10 Robby van Delden (UT), (Steering) Interactive Play Behavior
11 Florian Kunneman (RUN), Modelling patterns of time and emo-

tion in Twitter #anticipointment
12 Sander Leemans (TUE), Robust Process Mining with Guarantees
13 Gijs Huisman (UT), Social Touch Technology - Extending the

reach of social touch through haptic technology
14 Shoshannah Tekofsky (UvT), You Are Who You Play You Are:

Modelling Player Traits from Video Game Behavior
15 Peter Berck (RUN), Memory-Based Text Correction
16 Aleksandr Chuklin (UVA), Understanding and Modeling Users

of Modern Search Engines
17 Daniel Dimov (UL), Crowdsourced Online Dispute Resolution
18 Ridho Reinanda (UVA), Entity Associations for Search
19 Jeroen Vuurens (UT), Proximity of Terms, Texts and Semantic

Vectors in Information Retrieval
20 Mohammadbashir Sedighi (TUD), Fostering Engagement in

Knowledge Sharing: The Role of Perceived Benefits, Costs and
Visibility

21 Jeroen Linssen (UT), Meta Matters in Interactive Storytelling and
Serious Gaming (A Play on Worlds)

22 Sara Magliacane (VU), Logics for causal inference under uncer-
tainty

23 David Graus (UVA), Entities of Interest — Discovery in Digital
Traces

24 Chang Wang (TUD), Use of Affordances for Efficient Robot
Learning

25 Veruska Zamborlini (VU), Knowledge Representation for Clini-
cal Guidelines, with applications to Multimorbidity Analysis and
Literature Search

26 Merel Jung (UT), Socially intelligent robots that understand and
respond to human touch

27 Michiel Joosse (UT), Investigating Positioning and Gaze Behav-
iors of Social Robots: People’s Preferences, Perceptions and Be-
haviors

175

28 John Klein (VU), Architecture Practices for Complex Contexts
29 Adel Alhuraibi (UvT), From IT-BusinessStrategic Alignment to

Performance: A Moderated Mediation Model of Social Innova-
tion, and Enterprise Governance of IT”

30 Wilma Latuny (UvT), The Power of Facial Expressions
31 Ben Ruijl (UL), Advances in computational methods for QFT cal-

culations
32 Thaer Samar (RUN), Access to and Retrievability of Content in

Web Archives
33 Brigit van Loggem (OU), Towards a Design Rationale for Soft-

ware Documentation: A Model of Computer-Mediated Activity
34 Maren Scheffel (OU), The Evaluation Framework for Learning

Analytics
35 Martine de Vos (VU), Interpreting natural science spreadsheets
36 Yuanhao Guo (UL), Shape Analysis for Phenotype Characterisa-

tion from High-throughput Imaging
37 Alejandro Montes Garcia (TUE), WiBAF: A Within Browser

Adaptation Framework that Enables Control over Privacy
38 Alex Kayal (TUD), Normative Social Applications
39 Sara Ahmadi (RUN), Exploiting properties of the human audi-

tory system and compressive sensing methods to increase noise
robustness in ASR

40 Altaf Hussain Abro (VUA), Steer your Mind: Computational Ex-
ploration of Human Control in Relation to Emotions, Desires and
Social Support For applications in human-aware support systems

41 Adnan Manzoor (VUA), Minding a Healthy Lifestyle: An Explo-
ration of Mental Processes and a Smart Environment to Provide
Support for a Healthy Lifestyle

42 Elena Sokolova (RUN), Causal discovery from mixed and miss-
ing data with applications on ADHD datasets

43 Maaike de Boer (RUN), Semantic Mapping in Video Retrieval
44 Garm Lucassen (UU), Understanding User Stories - Computa-

tional Linguistics in Agile Requirements Engineering
45 Bas Testerink (UU), Decentralized Runtime Norm Enforcement
46 Jan Schneider (OU), Sensor-based Learning Support
47 Jie Yang (TUD), Crowd Knowledge Creation Acceleration
48 Angel Suarez (OU), Collaborative inquiry-based learning

2018 01 Han van der Aa (VUA), Comparing and Aligning Process Repre-
sentations

176

02 Felix Mannhardt (TUE), Multi-perspective Process Mining
03 Steven Bosems (UT), Causal Models For Well-Being: Knowl-

edge Modeling, Model-Driven Development of Context-Aware
Applications, and Behavior Prediction

04 Jordan Janeiro (TUD), Flexible Coordination Support for Diag-
nosis Teams in Data-Centric Engineering Tasks

05 Hugo Huurdeman (UVA), Supporting the Complex Dynamics of
the Information Seeking Process

06 Dan Ionita (UT), Model-Driven Information Security Risk As-
sessment of Socio-Technical Systems

07 Jieting Luo (UU), A formal account of opportunism in multi-
agent systems

08 Rick Smetsers (RUN), Advances in Model Learning for Software
Systems

09 Xu Xie (TUD), Data Assimilation in Discrete Event Simulations
10 Julienka Mollee (VUA), Moving forward: supporting physical

activity behavior change through intelligent technology
11 Mahdi Sargolzaei (UVA), Enabling Framework for Service-

oriented Collaborative Networks
12 Xixi Lu (TUE), Using behavioral context in process mining
13 Seyed Amin Tabatabaei (VUA), Computing a Sustainable Future
14 Bart Joosten (UVT), Detecting Social Signals with Spatiotempo-

ral Gabor Filters
15 Naser Davarzani (UM), Biomarker discovery in heart failure
16 Jaebok Kim (UT), Automatic recognition of engagement and

emotion in a group of children
17 Jianpeng Zhang (TUE), On Graph Sample Clustering
18 Henriette Nakad (UL), De Notaris en Private Rechtspraak
19 Minh Duc Pham (VUA), Emergent relational schemas for RDF
20 Manxia Liu (RUN), Time and Bayesian Networks
21 Aad Slootmaker (OUN), EMERGO: a generic platform for au-

thoring and playing scenario-based serious games
22 Eric Fernandes de Mello Araujo (VUA), Contagious: Modeling

the Spread of Behaviours, Perceptions and Emotions in Social
Networks

23 Kim Schouten (EUR), Semantics-driven Aspect-Based Sentiment
Analysis

24 Jered Vroon (UT), Responsive Social Positioning Behaviour for
Semi-Autonomous Telepresence Robots

177

25 Riste Gligorov (VUA), Serious Games in Audio-Visual Collec-
tions

26 Roelof Anne Jelle de Vries (UT),Theory-Based and Tailor-Made:
Motivational Messages for Behavior Change Technology

27 Maikel Leemans (TUE), Hierarchical Process Mining for Scal-
able Software Analysis

28 Christian Willemse (UT), Social Touch Technologies: How they
feel and how they make you feel

29 Yu Gu (UVT), Emotion Recognition from Mandarin Speech
30 Wouter Beek, The ”K” in ”semantic web” stands for ”knowl-

edge”: scaling semantics to the web

2019 01 Rob van Eijk (UL),Web privacy measurement in real-time bid-
ding systems. A graph-based approach to RTB system classifica-
tion

02 Emmanuelle Beauxis Aussalet (CWI, UU), Statistics and Visual-
izations for Assessing Class Size Uncertainty

03 Eduardo Gonzalez Lopez de Murillas (TUE), Process Mining on
Databases: Extracting Event Data from Real Life Data Sources

04 Ridho Rahmadi (RUN), Finding stable causal structures from
clinical data

05 Sebastiaan van Zelst (TUE), Process Mining with Streaming Data
06 Chris Dijkshoorn (VU), Nichesourcing for Improving Access to

Linked Cultural Heritage Datasets
07 Soude Fazeli (TUD), Recommender Systems in Social Learning

Platforms
08 Frits de Nijs (TUD), Resource-constrained Multi-agent Markov

Decision Processes
09 Fahimeh Alizadeh Moghaddam (UVA), Self-adaptation for en-

ergy efficiency in software systems
10 Qing Chuan Ye (EUR), Multi-objective Optimization Methods

for Allocation and Prediction
11 Yue Zhao (TUD), Learning Analytics Technology to Understand

Learner Behavioral Engagement in MOOCs
12 Jacqueline Heinerman (VU), Better Together
13 Guanliang Chen (TUD), MOOC Analytics: Learner Modeling

and Content Generation
14 Daniel Davis (TUD), Large-Scale Learning Analytics: Modeling

Learner Behavior & Improving Learning Outcomes in Massive
Open Online Courses

178

15 Erwin Walraven (TUD), Planning under Uncertainty in Con-
strained and Partially Observable Environments

16 Guangming Li (TUE), Process Mining based on Object-Centric
Behavioral Constraint (OCBC) Models

17 Ali Hurriyetoglu (RUN),Extracting actionable information from
microtexts

18 Gerard Wagenaar (UU), Artefacts in Agile Team Communication
19 Vincent Koeman (TUD), Tools for Developing Cognitive Agents
20 Chide Groenouwe (UU), Fostering technically augmented human

collective intelligence
21 Cong Liu (TUE), Software Data Analytics: Architectural Model

Discovery and Design Pattern Detection
22 Martin van den Berg (VU),Improving IT Decisions with Enter-

prise Architecture
23 Qin Liu (TUD), Intelligent Control Systems: Learning, Interpret-

ing, Verification
24 Anca Dumitrache (VU), Truth in Disagreement - Crowdsourcing

Labeled Data for Natural Language Processing
25 Emiel van Miltenburg (VU), Pragmatic factors in (automatic) im-

age description
26 Prince Singh (UT), An Integration Platform for Synchromodal

Transport
27 Alessandra Antonaci (OUN), The Gamification Design Process

applied to (Massive) Open Online Courses
28 Esther Kuindersma (UL), Cleared for take-off: Game-based

learning to prepare airline pilots for critical situations
29 Daniel Formolo (VU), Using virtual agents for simulation and

training of social skills in safety-critical circumstances
30 Vahid Yazdanpanah (UT), Multiagent Industrial Symbiosis Sys-

tems
31 Milan Jelisavcic (VU), Alive and Kicking: Baby Steps in

Robotics
32 Chiara Sironi (UM), Monte-Carlo Tree Search for Artificial Gen-

eral Intelligence in Games
33 Anil Yaman (TUE), Evolution of Biologically Inspired Learning

in Artificial Neural Networks
34 Negar Ahmadi (TUE), EEG Microstate and Functional Brain Net-

work Features for Classification of Epilepsy and PNES
35 Lisa Facey-Shaw (OUN), Gamification with digital badges in

learning programming

179

36 Kevin Ackermans (OUN), Designing Video-Enhanced Rubrics to
Master Complex Skills

37 Jian Fang (TUD), Database Acceleration on FPGAs
38 Akos Kadar (OUN), Learning visually grounded and multilingual

representations

2020 01 Armon Toubman (UL), Calculated Moves: Generating Air Com-
bat Behaviour

02 Marcos de Paula Bueno (UL), Unraveling Temporal Processes us-
ing Probabilistic Graphical Models

03 Mostafa Deghani (UvA), Learning with Imperfect Supervision
for Language Understanding

04 Maarten van Gompel (RUN), Context as Linguistic Bridges
05 Yulong Pei (TUE), On local and global structure mining
06 Preethu Rose Anish (UT), Stimulation Architectural Thinking

during Requirements Elicitation - An Approach and Tool Support
07 Wim van der Vegt (OUN), Towards a software architecture for

reusable game components
08 Ali Mirsoleimani (UL),Structured Parallel Programming for

Monte Carlo Tree Search
09 Myriam Traub (UU), Measuring Tool Bias and Improving Data

Quality for Digital Humanities Research
10 Alifah Syamsiyah (TUE), In-database Preprocessing for Process

Mining
11 Sepideh Mesbah (TUD), Semantic-Enhanced Training Data Aug-

mentationMethods for Long-Tail Entity Recognition Models
12 Ward van Breda (VU), Predictive Modeling in E-Mental Health:

Exploring Applicability in Personalised Depression Treatment
13 Marco Virgolin (CWI), Design and Application of Gene-pool Op-

timal Mixing Evolutionary Algorithms for Genetic Programming
14 Mark Raasveldt (CWI/UL), Integrating Analytics with Relational

Databases
15 Konstantinos Georgiadis (OUN), Smart CAT: Machine Learning

for Configurable Assessments in Serious Games
16 Ilona Wilmont (RUN), Cognitive Aspects of Conceptual Mod-

elling
17 Daniele Di Mitri (OUN), The Multimodal Tutor: Adaptive Feed-

back from Multimodal Experiences

180

18 Georgios Methenitis (TUD), Agent Interactions & Mechanisms
in Markets with Uncertainties: Electricity Markets in Renewable
Energy Systems

19 Guido van Capelleveen (UT), Industrial Symbiosis Recom-
mender Systems

20 Albert Hankel (VU), Embedding Green ICT Maturity in Organi-
sations

21 Karine da Silva Miras de Araujo (VU), Where is the robot?: Life
as it could be

22 Maryam Masoud Khamis (RUN), Understanding complex sys-
tems implementation through a modeling approach: the case of
e-government in Zanzibar

23 Rianne Conijn (UT), The Keys to Writing: A writing analytics
approach to studying writing processes using keystroke logging

24 Lenin da Nobrega Medeiros (VUA/RUN), How are you feeling,
human? Towards emotionally supportive chatbots

25 Xin Du (TUE), The Uncertainty in Exceptional Model Mining
26 Krzysztof Leszek Sadowski (UU), GAMBIT: Genetic Algorithm

for Model-Based mixed-Integer opTimization
27 Ekaterina Muravyeva (TUD), Personal data and informed consent

in an educational context
28 Bibeg Limbu (TUD), Multimodal interaction for deliberate prac-

tice: Training complex skills with augmented reality
29 Ioan Gabriel Bucur (RUN), Being Bayesian about Causal Infer-

ence
30 Bob Zadok Blok (UL), Creatief, Creatieve, Creatiefst
31 Gongjin Lan (VU), Learning better – From Baby to Better
32 Jason Rhuggenaath (TUE), Revenue management in online mar-

kets: pricing and online advertising
33 Rick Gilsing (TUE), Supporting service-dominant business

model evaluation in the context of business model innovation
34 Anna Bon (MU), Intervention or Collaboration? Redesigning In-

formation and Communication Technologies for Development
35 Siamak Farshidi (UU), Multi-Criteria Decision-Making in Soft-

ware Production

2021 01 Francisco Xavier Dos Santos Fonseca (TUD),Location-based
Games for Social Interaction in Public Space

02 Rijk Mercuur (TUD), Simulating Human Routines:Integrating
Social Practice Theory in Agent-Based Models

181

03 Seyyed Hadi Hashemi (UVA), Modeling Users Interacting with
Smart Devices

04 Ioana Jivet (OU), The Dashboard That Loved Me: Designing
adaptive learning analytics for self-regulated learning

05 Davide Dell’Anna (UU), Data-Driven Supervision of Au-
tonomous Systems

06 Daniel Davison (UT), ”Hey robot, what do you think?” How chil-
dren learn with a social robot

07 Armel Lefebvre (UU), Research data management for open sci-
ence

08 Nardie Fanchamps (OU), The Influence of Sense-Reason-Act
Programming on Computational Thinking

09 Cristina Zaga (UT), The Design of Robothings. Non-
Anthropomorphic and Non-Verbal Robots to Promote Childrens
Collaboration Through Play

10 Quinten Meertens (UvA), Misclassification Bias in Statistical
Learning

11 Anne van Rossum (UL), Nonparametric Bayesian Methods in
Robotic Vision

12 Lei Pi (UL), External Knowledge Absorption in Chinese SMEs
13 Bob R. Schadenberg (UT), Robots for Autistic Children: Under-

standing and Facilitating Predictability for Engagement in Learn-
ing

14 Negin Samaeemofrad (UL), Business Incubators: The Impact of
Their Support

15 Onat Ege Adali (TU/e), Transformation of Value Propositions
into Resource Re-Configurations through the Business Services
Paradigm

16 Esam A. H. Ghaleb (UM), BIMODAL EMOTION RECOGNI-
TION FROM AUDIO-VISUAL CUES

17 Dario Dotti (UM), Human Behavior Understanding from motion
and bodily cues using deep neural networks

18 Remi Wieten (UU), Bridging the Gap Between Informal Sense-
Making Tools and Formal Systems - Facilitating the Construction
of Bayesian Networks and Argumentation Frameworks

19 Roberto Verdecchia (VU), Architectural Technical Debt: Identi-
fication and Management

20 Masoud Mansoury (TU/e), Understanding and Mitigating Multi-
Sided Exposure Bias in Recommender Systems

182

21 Pedro Thiago Timb Holanda (CWI), Progressive Indexes
22 Sihang Qiu (TUD), Conversational Crowdsourcing
23 Hugo Manuel Proena (LIACS), Robust rules for prediction and

description
24 Kaijie Zhu (TU/e), On Efficient Temporal Subgraph Query

Processing

183

	Summary
	Introduction
	For expressiveness: temporal subgraph query
	For efficient processing: query selectivity
	Research questions
	Contributions
	Thesis overview and organization

	Background
	Common notations
	Data model
	Query model

	Network modeling
	Benchmark resources
	Real-world datasets
	Synthetic generator

	Query processing
	Topological predicates
	Temporal predicates
	Temporal subgraph query

	Modeling of temporal networks
	Motivation
	Problem statement
	Contributions
	Characteristics in real-world networks
	Characteristics of topological structure
	Characteristics of temporal structure
	Our observation for CSS

	Proposed method: competition-driven model
	Theoretical analysis
	Cardinality
	Relative degree

	Experiments
	Setup
	Results and Analysis

	Chapter summary

	Processing of temporal predicates
	Motivation
	Problem statement
	Contributions
	Baseline: EBI and FS algorithms
	Methodology
	Framework on query processing
	Proposed method I: CE-EBI
	Proposed method II: CE-gFS and CE-bgFS
	Challenge
	Proposed method III: STI algorithm

	Optimization: checkpointing
	Problem statement
	Data-aware strategies
	Workload-aware strategies

	Experiments
	Setup
	Results and Analysis

	Chapter summary

	Processing of temporal subgraph query
	Motivation
	Problem statement
	Contributions
	Methodology following TP
	Proposed method: Time algorithm
	Optimization
	Challenge

	Methodology following T&P
	Local notations
	Baseline: Leapfrog triejoin
	Proposed method: Leapfrog TSRJoin
	Optimization

	Experiments
	Setup
	Results

	Chapter summary

	Conclusion
	Research summary
	Future works
	Temporal network modeling
	Temporal-predicate processing
	Temporal subgraph query processing

	Bibliography
	List of Figures
	List of Tables
	List of Acronyms
	Acknowledgments
	Curriculum Vitæ
	Publications
	SIKS Dissertations

