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Extended Abstract

Binary low-density parity-check (LDPC) codes are linear block codes which can be
represented by their (n − k)-by-n parity-check matrix H . Here, k is the length of
the binary information sequence u = (u1, u2, . . . , uk), and n is the length of the binary
codeword c = (c1, c2, . . . , cn). Each codeword c in the code C satisfies cHT = 0, i.e., the
code C is the null space of H . Equivalently, a valid codeword has to satisfy n−k parity-
check equations. In Fig. 1 (left), parity-check matrix of the [n = 7, k = 4, (n− k) = 3]
Hamming code is shown as an example [1, p. 15].

Any linear block code can be represented by a Tanner graph. A Tanner graph is
a bipartite graph that consists of n variable nodes and n − k check nodes. There is
a connection between the ith variable node and the jth check node if Hji = 1. The
Tanner graph that corresponds to the parity-check matrix in Fig. 1 (left) is shown
in Fig. 1 (right). Here, circles represent variable nodes, i.e., coded bits in c, squares
represent check nodes, i.e., parity-check equations.
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Figure 1: The Tanner graph and the corresponding parity-check matrix.

The degree of a node in a Tanner graph is defined as the cardinality of the set of
nodes that it is connected to. Thus, the degree of the ith variable node is given by the
sum of all elements of the ith column of H . As an example, there are three degree-1,
three degree-2, and one degree-3 variable nodes in the Tanner graph in Fig. 1. A coded
bit is a part of several parity-check equations, and this number is given by the degree
of the corresponding variable node.

In bit-interleaved coded modulation (BICM), the n-bit output of a binary forward
error correction (FEC) code is typically mapped to an N -tuple of 2m-ary amplitude-
shift keying (2m-ASK) symbols. This mapping is achieved using a binary labeling
strategy that assigns an m-bit binary label (B1, B2, . . . , Bm) to each symbol, e.g., the
binary reflected Gray code (BRGC) [2, Defn. 2.10]. Here, we assumed that N = mn.

For BICM systems, the error probability is not identical for different bit levels, and
each bit is not “protected” equally against errors. This phenomenon is called unequal
error protection (UEP). As an example, we show in Fig. 2 the bit error rate (BER)



of different bit levels for uniform and shaped 16-ASK with BRGC. Here, shaping is
realized using enumerative sphere shaping [3, 4]. For uniform 16-ASK, the protection is
higher for more significant bit levels. However, for shaped 16-ASK, the most protected
bit level is B2. This is because the ratio Pr{Bi = 0}/Pr{Bi = 1} is the largest for
i = 2, an effect observed earlier in [5, Sec. III-C].
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Figure 2: Pre-FEC, hard-detection BER for uniform (left) and shaped (right) 16-ASK
with 4 and 3.5 bits of entropy, respectively.

UEP observed in Fig. 2 implies that the performance of an LDPC code depends
on how the coded bits, i.e., variable nodes, are “connected” to different bit levels. A
coded bit with a corresponding variable node with a higher degree is a part of a higher
number of parity checks and can be considered to play a more important role during
the decoding procedure. Thus, connecting variable nodes with higher degrees to more
protected bit levels can improve the performance.

In Fig. 3, the performance of uniform BICM and probabilistic amplitude shaping
(PAS) [6] is shown for 16-ASK and the corresponding BRGC. As the FEC code, the
rate-5/6 and 3/4 648-bit systematic LDPC codes from the IEEE 802.11 standard [7]
are used for uniform and shaped signaling, respectively. Both the regular bit-mapping
and the heuristically modified bit-mapping explained above are simulated. In regular
bit-mapping, bits at the output of the FEC encoder are consecutively gathered into
groups of m and mapped to 2m-ASK symbols. In modified bit-mapping, bits at the
output of the FEC encoder are re-ordered before ASK mapping such that the ones that
correspond to higher degree variable nodes are mapped to a more protected bit level
according to Fig. 2. The transmission rates of the uniform and the shaped schemes
are 3.33 and 2.5 bit/1D, respectively. We see that at a BER of 10−5, modified bit
mapping provides 0.2 and 0.1 dB gains over the regular mapping for uniform and
shaped signaling, respectively. We believe the reason why the gain is smaller for shaped
signaling is due to a constraint imposed by PAS: all parity bits should be used as the
sign bit level B1 [6, Fig. 5]. Accordingly, we were only able to change the mapping for
variable nodes that correspond to systematic bits. A future research direction can be
to investigate the effect of this constraint by using less restrictive shaping approaches
as in [8, 9].
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Figure 3: Post-FEC BER for shaped (left) and uniform (right) signaling.
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