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Foreword 
North Star, the innovation department of Rabobank Wholesale and Rural especially focuses on  
connecting: bridging gaps between organizations or between people. Rabobank emerged from small  
agricultural cooperative banks, and the cooperative foundation and the cooperative philosophy have 
remained our guiding principle throughout our history. 
 
Rabobank and the TU Eindhoven are also connected: through Jorge Cordero. Rabobank provided the 
assignment in North Star and various colleagues represented Rabobank during the project. The  
university was responsible for the education of the Jorge, provided supervision to guard the educational 
aspects for him. Both the bank and the university provided expert knowledge on relevant aspects of the 
problem domain.  
 
Jorge worked during his assignment in Credit Connect, one of the North Star solution spaces where we 
aim to connect smallholders and credit providers. A loan provided by the credit provider leads to  
prosperity for the farmer, food for the society and often also focuses on sustainable practices. However, 
assessing a farmers credit worthiness with no financial history, no collateral and in high risk sector is 
very difficult. That’s why Rabobank developed a credit scoring model that works with so-called alter-
native data. 
 
During the assignment Jorge researched an interesting subject: the verification of a credit scoring  
analytic model through a monitoring engine: is the outcome of the model in line with expectations. Or 
in other words: are the input data and the result “connected”. 
 
The analysis and thought process of Jorge was not an easy journey. Especially because of COVID-19, 
most of the work was done remotely. Rabobank is very happy with the results, and we hope that the 
monitoring engine will show its added value in the upcoming time.  
 
 
Rik Bosman 
September 21, 2021 
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Preface 
This report contains results of the ten-month graduation project of the Jorge Alberto Cordero Cruz con-
ducted at Rabobank. Prior to this project, the trainee acquired knowledge and skills about software 
design and architecture as part of the Professional Doctorate in Engineering (PDEng) program in Soft-
ware Technology (ST). The PDEng ST offered by the Eindhoven University of Technology trains T-
shaped professional designers capable of working in high-tech industry. 
 
This project was initiated and funded by Rabobank to enhance their model development process that is 
used for creating and maintaining analytic models for several applications. In particular, in this project 
we focused on analytic models used for generating credit scores using alternative (non-financial) data. 
The results of this project include an architecture design and a prototype for deploying and monitoring 
credit scoring analytic models. During this project, the PDEng trainee was supervised by Rik Bosman 
MSc., Prof. dr. Mark van den Brand, and ir. Harold Weffers PDEng.  
 
This report is useful for both technical and non-technical readers. Anyone interested in the motivation 
behind this project and its requirements can read Section 1, 2, and 4. Technical readers who are inter-
ested in the design and prototype of the proposed monitoring solution can read from Section 3 to Section 
9. Anyone interested in the working process during this project can read Section 2 and Section 10. For 
readers who want a quick understanding of the project, the executive summary and Section 11 are rec-
ommended. The last section of this report, Section 12, provides the author’s self-reflection on the pro-
ject. 
 
 
Jorge Alberto Cordero Cruz 
September 2021 
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Executive summary 
An innovation project at Rabobank aims at building bridges between smallholder farmers without fi-
nancial records and credit providers. To achieve this goal, a credit scoring application leverages alter-
native (non-financial) data, such as historical weather conditions, field characteristics, and yield pro-
duction, to calculate credit scores that credit providers can use for assessing the risk profile of their 
potential clients. These credit scores are predicted by analytic models created based on using a set of 
variables identified by Rabobank data scientists together with scientists from the Wageningen Univer-
sity. 
 
In accordance with Rabobank policies, analytic models must follow a model development process to 
ensure the quality of their predictions and minimize potential risks. Some of these potential risks lead 
to reputation damage and fines due to wrong or biased predictions. In this report, we present a solution 
architecture that contains a monitoring engine designed to identify changes in the input data and pre-
dictions of analytic models that could lead to these risks. 
 
The proposed solution supports monitoring changes in the input data and predicted credit scores in the 
absence of repayment behavior data that can be used as reference to measure the quality of the predic-
tions. In addition, the accuracy of the analytic models can also be monitored when truth values related 
to farmer repayment behavior are available. Furthermore, analytic models can be monitored across dif-
ferent versions.  
 
In addition to monitoring, the solution architecture contains other elements that support the monitoring 
engine: 

• A model deployment pipeline that ensures deployed analytic models pass at least a set of unit 
tests that validate such models can be executed and monitored. 

• A model registry that describes how analytic models should be stored in order to enable track-
ing and monitoring models across different versions. 

 
Based on the solution architecture and its implementation design, we created a prototype to validate 
that analytic models can be deployed, executed, activated and deactivated, as well as monitored. This 
prototype was implemented using a modified version of the credit scoring application. Even though the 
implementation is not production-ready, it shows how the proposed solution architecture can be imple-
mented in the innovation project. 
 
Based on the results of this project, we recommend a gradual implementation of the proposed monitor-
ing engine and its supportive elements. A good starting point is to modify the current structure of the 
analytic models to support versioning. After that, the model deployment pipeline and the model registry 
can be implemented. Finally, the model monitoring engine can be included. In this way, the innovation 
team can ensure that every deployed model can be monitored as soon as the model monitoring engine 
is implemented.  
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1.Introduction 
 

1.1    Context 

1.1.1.  Smallholder farmers situation 
Rabobank is a cooperative bank that started 132 years ago by financing farmers that nobody else wanted 
to finance. In the global market, Rabobank provides financial services for the Food and Agri sector. 
According to their vision and in response to new trends, Rabobank has identified several innovation 
initiatives that will ensure its position as a financial institution in the future. One of these initiatives, 
composed of several projects, aims to help to reduce the number unbanked farmers in emerging coun-
tries. 
 
Nowadays, millions of smallholder farmers, who own farms of size between 2 to 50 acres (approxi-
mately 4,047 square meters), require capital to plant, grow or sell their crops but have limited options 
for requesting loans or using other types of financial services. The main issue is that these farmers do 
not have financial history records. In contrast, financial institutions such as banks, agriculture fintech 
companies, microfinance institutions, and wholesale companies, also known as credit providers, have 
the capital required to finance these farmers. However, these credit providers cannot assess the risk 
profile of the smallholder farmers.  
 
Risk profiles are used to predict which farmers are likely to pay back their loans and how much interest 
to charge for each loan. In the absence of such risk profiles, the credit providers typically deny the loans 
requested by smallholder farmers. Smallholder farmers who cannot obtain loans via credit providers, 
typically obtain them with high interest from unregistered organizations. Such a loan application pro-
cess does not generate financial history records and impact the farmers’ expected revenue, as the repay-
ment interest are higher than with credit providers.  
 
An example of an interaction between smallholder farmers, credit providers, and unregistered organi-
zations is as follows: 

• First, smallholder farmers apply for a loan to a credit provider. 
• Then, the loan application is rejected due to lack of financial history records. 
• Next, smallholder farmers get their loan via unregistered organizations. 
• From this loan the farmers do not generate financial history records while the loan interest 

rate is extremely high. 
• The next time smallholder farmers require a loan, they apply to credit providers because they 

offer lower interest rate and other advantages. 
• Once again, the smallholder farmers are very likely to be rejected and the cycle continues. 

Clearly, from the example shown above, the lack of financial history records works against the small-
holder farmers; it impacts their revenue and interferes with the farmers ability to improve their life 
quality. 
 

1.1.2.  Credit scoring application 
One innovation project from Rabobank, a credit scoring application (CSA), aims to breach the existing 
barrier between smallholder farmers without financial history records and credit providers that have no 
way to assess risk profiles without such a financial history. Leveraging the advances in technology, 
CSA offers a way to compute credit scores using alternative (non-financial) data such as historical 
weather conditions, field characteristics, yield production, and personal information. The resulting 
credit scores can be used by credit providers to evaluate the risk profile of their potential clients.  
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CSA is designed to be a platform that offers credit scoring as a service for credit providers. These credit 
scores are computed using analytic models created based on alternative variables identified by Ra-
bobank data scientists and scientists from the Wageningen university. As these models can impact the 
decisions of credit providers, they are developed and maintained following an analytic model develop-
ment process standardized by Rabobank, which has been designed to minimize the adverse effects that 
could result from using the output of analytic models in financial services. 

1.1.3.  Project focus 
Rabobank’s model development process (Gallo, Heil, & Bosman, Credit Scoring Project Start 
Architecture, 2020), which is based on Rabobank’s MLOps process (Rooijen van, 2021), includes gen-
eral guidelines and requirements for the following tasks (elements): data collection, model develop-
ment, model deployment, and model monitoring. For models being used in a production environment, 
model monitoring is used to corroborate the models generate high quality predictions and to identify 
biased predictions. Due to the type of models used by CSA, many off-the-shelf monitoring techniques, 
such as measuring the precision, recall, and ROC curves of the predictions, cannot be directly used in 
the software of CSA. Using these techniques implies that the truth or expected values are known at the 
moment predictions are generated, which is not the case for CSA models. A predicted credit score can 
only be evaluated after the farmer has paid back or defaulted on his loan. 
 
The focus of this project is on designing a solution for monitoring credit scoring analytic models, using 
CSA as a reference project. This solution must adhere to Rabobank’s existing architecture standards 
and must also aid data scientists and data engineers to perform their work. This solution must ensure 
that biased models can be identified in the production environment in order to improve them or replace 
them as soon as possible. 
 

1.2    Outline of the report 
At the beginning of this project, the scope of the project was unclear because there were several ele-
ments of Rabobank’s model development process that could be adapted for CSA. In addition, on some 
occasions, the requirements of CSA as a whole were updated in respond to changes in the business 
roadmap. Some of these changes impacted the usage of the model development process, which in turn 
affected the scope of this project. 
 
To tackle this uncertainty, this project was executed following an evolutionary process with the follow-
ing lifecycle stages: exploration, design, and implementation. 
 
The results obtained from the exploration stage are presented in Section 2, 3, and 4. Section 2 describe 
the main stakeholders involved in this project and their concerns. In addition, it describes the procedure 
followed to interact with these stakeholders. Section 3 explains the domain analysis performed to un-
derstand the elements of analytic models, how they can be designed, and how they should work in CSA. 
Moreover, this analysis describes how analytic models can change over time and how such changes 
could be tracked. Finally, Section 4 presents the requirements and use cases used to design the solution 
architecture presented in Section 6. These requirements are presented as business requirements, func-
tional requirements, and non-functional requirements. The latter two types are used to enable the busi-
ness requirements. 
 
The outcomes of the design stage are presented in Section 5, 6, and 7. Section 5 presents the main 
challenges considered before the creation of the solution architecture. Additionally, it describes the 
design decisions that influenced the solution architecture and implementation design. Section 6 presents 
the solution architecture created for analytic model monitoring. It also explains supporting elements 
included to ensure model monitoring works according to the requirements. Section 7 contains the im-
plementation design that describes elements of the solution architecture in more detail. Several elements 
of this section are used for the prototype implementation. 
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The implementation stage was performed at the end of the project. During this stage we created the 
prototype described in Section 8. In the next section, we describe the methods used to validate and 
verify the solution architecture and implementation design. 
 
The last elements of the report are general information describing processes, results, and personal views 
of the project. Section 10 presents the project management activities followed during this project. The 
next section contains the conclusions and recommendations of the project. On Section 12, the author 
presents a personal reflection during his work on this project. 
 
Last but not least, the Glossary contains relevant definitions of terms and the Appendix A describe some 
diagrams related to the solution architecture. 
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2.Stakeholder analysis 
 
 
This section describes the main stakeholders with whom the trainee interacted to identify and map their 
needs and concerns into the proposed monitoring solution. These stakeholders belong to three catego-
ries: TU/e stakeholders, Rabobank stakeholders related to the credit scoring application (CSA), and 
credit providers that are users of CSA. In this project, most of the requirements were derived from the 
needs of Rabobank stakeholders related to analytic model monitoring. Concerns related to CSA as a 
product were only considered if they were related to model monitoring.  
 

2.1    Introduction 
This project was performed mostly online due to the Corona regulations placed by the Dutch govern-
ment. Nonetheless, I collaborated with several members of the CSA team and Rabobank during 
standups and weekly meetings. The collaboration with TU/e members was mainly during reviewing 
sessions and monthly Project Steering Group (PSG) meetings, where the trainee supervisors evaluate 
the trainee’s progress. In addition, the trainee collaborated with stakeholders from South American 
credit providers during special meetings where a translator was required. 
 
The stakeholder registry described below was used to keep track of the main stakeholders and to under-
stand their needs. Even though this is a simple procedure, it helped to identify how to interact with them 
in order to identify their needs and concerns.  
 

2.1.1.  Rabobank stakeholders 
These stakeholders were crucial to understand how CSA works and what were the priorities of the CSA 
team in the short, medium, and long term. 
 
Stakeholder role: Business architect and company supervisor 
Concerns: 

• Ensure that the proposed monitoring solution adheres to the business goals determined for 
CSA. 

• Ensure that the proposed monitoring solution stays relevant as CSA grows. 
• Introduce the trainee to Rabobank standards for architecture design. 

Involvement: every week during discussion sessions and during the monthly PSG meetings 
 
Stakeholder role: Solution architect and company co-supervisor 
Concerns: 

• Ensure that the proposed solution helps the team during the development and maintenance of 
CSA. 

• Explore model development approaches that were not initially considered for the develop-
ment of CSA. 

Involvement: every week during discussion sessions 
 
Stakeholder role: Digital project manager 
Concerns: 

• Ensure that the CSA team delivers a useful product. 
• Explore several promising ideas that could result in new functionality added to CSA. 
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Involvement: during daily standups and in some discussion sessions 
 
Stakeholder role: Product owner 
Concerns: 

• Ensure that CSA follows the business roadmap. 
• Onboard new CSA users. 
• Identify the needs of users to improve the functionality provided by CSA. 

Involvement: every week during team meetings and sometimes during the discussion sessions 
 
Stakeholder role: Data scientist 
Concerns: 

• Ensure that the analytic models can be deployed in CSA. 
• Identify the variables required for developing analytic models. 

Involvement: during daily standup sessions, team meetings, and pair programming sessions 
 
Stakeholder role: Data engineer 
Concerns: 

• Ensure that CSA can ingest alternative data required from external sources. 
• Implement a data processing pipeline that fit the needs of the deployed analytic models. 
• Safeguarding the quality of the data ingested by analytic models. 

Involvement: during daily standup sessions, team meetings, and pair programming sessions 
 
 

2.1.2.  TU/e stakeholders 
These stakeholders were mainly consulted to review the scope of the project, evaluate the progress of 
the project, and verify the design decisions made for the solution architecture. 
 
Stakeholder role: University supervisor 
Concerns: 

• Guide the trainee during the PDEng final project. 
• Discuss the designs proposed by the trainee to spot areas of improvement. 
• Ensure that the proposed solution and final report adhere to the PDEng quality standards. 

Involvement: during biweekly discussion meetings and monthly PSG meetings 
 

2.1.3.  Credit provider stakeholders 
These stakeholders were initially not considered. However, interacting with these stakeholders provided 
useful information about the data collection processes used by CSA users, some of their needs related 
to CSA, and their goals related to financing smallholder farmers. 
 
Stakeholder role: Credit provider staff 
Concerns: 

• Ensure that CSA fits the needs of his/her organization. 
• Ensure that CSA analytic models do not unethically discriminate against smallholder farmers. 

with whom they work or want to work. 
• Ensure that Rabobank has a data integrity process in place to keep their data safe. 

Involvement: via email and during meetings when a translator was required 
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3.Domain analysis 
 
 
The previous section describes the most important stakeholders involved in this project and the fre-
quency with which they were consulted. Based on the information collected from these interactions, 
this section focuses on exploring some of the main concepts that drive the design of the solution archi-
tecture described in Section 6. In particular, in this section, the elements of analytic models for credit 
scoring and their use in the credit scoring application (CSA) are explored in detail. 
 

3.1    Context 
As described in Section 1, Rabobank wants to help to reduce the number of smallholder farmers in 
developing countries who have no access to financial services. In particular, Rabobank wants to solve 
the following problem: smallholder farmers without financial history want to obtain loans but credit 
providers require financial history records to perform a risk assessment of the loan applications. If the 
risk assessment could be performed without the need of financial history records, then the smallholder 
farmers could have a chance to obtain loans from credit providers. 
 
Based on this assumption, Rabobank started an innovation project, which for privacy reasons we will 
call credit scoring application (CSA) in this report, that aims to generate credit scores of smallholder 
farmers from alternative data. Using analytic models such as rule-based models and statistical models, 
CSA will generate credit scores related to smallholder famers. Then, these credit scores can be used by 
credit providers to evaluate applicants without financial history. In addition, they could also be used to 
complement the existing credit risk analysis process. A business process model indicating the current 
loan approval process is shown in Figure 1. An alternative process involving CSA during the loan re-
quest evaluation is shown in Figure 2. 
 
In the loan approval process, CSA offers credit scoring as a service to credit providers but is not in-
volved in the loan approval decisions. In addition, CSA is not used by Rabobank to provide loans to 
Rabobank clients. Whether Rabobank will one day use CSA for its own services is a question outside 
the scope of this project. Thus, we cannot answer it.  
 
 At the moment of writing this report, the role of CSA is to provide a credit scores based on alternative 
data that credit providers can use to determine the credit risk of loan applications made by smallholder 
farmers. Therefore, CSA can be considered a credit scoring as a service application. 
 
As an innovation project, CSA’s roadmap involves starting operations with a small number of credit 
providers (CSA’s users) and growing the number of supported credit providers over time. At the mo-
ment of writing this report, CSA is about to go live providing support for a small number of credit 
providers. 
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Figure 1: Business process model describing a simplified version of the current loan application pro-

cess. 

 
 

 
Figure 2: Business process model describing a simplified version of the loan application process in-

cluding CSA. 
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3.2    Analytic models used by the credit scoring application 
 
The credit providers that the CSA team wants to onboard require analytic models that generate credit 
scores that are related to their smallholder farmers. These credit providers serve smallholder farmers 
that live in certain regions and cultivate certain crops. For instance, credit providers in South America 
might work with farmers who grow cocoa, corn, or coffee while credit providers in Asia might work 
with farmers who grow rice and other crops.  
 
Regarding the desired alternative input data, Rabobank data scientists in collaboration with researchers 
from the Wageningen University1 have defined more than 100 variables that can be used to create credit 
scores. These variables can be grouped as follows: 

• Environmental data describing historical weather conditions 
• Field characteristics that can be obtained by analyzing satellite images from a given GPS lo-

cation  
• Crop management information describing the process followed to cultivate crops 
• Historical yield information indicating average yields obtained in the past years on a specific 

farm and a specific region 
• Personal information including details such as age and health 

The actual alternative input data ingested by analytic models depends on the information that can be 
gathered from the farmers associated with each credit provider:  type of crops being cultivated, cultiva-
tion techniques required by the crops, weather conditions of the region, regional crop prices, and per-
sonal information of the farmers. Additionally, sometimes credit providers cannot provide a required 
input variable but can provide similar information.  
 
As we can see, analytic models must be specifically created to process the input data provided by spe-
cific credit providers. Each unique analytic model can contain a combination of alternative data varia-
bles. Additionally, the analytic models should contain elements that allow their monitoring and tracea-
bility.  
 
Figure 3 shows a diagram that models the elements of analytic models for credit scoring and how they 
can be used by CSA. This diagram was created based on CSA’s documentation and the answers ob-
tained from interviewing the stakeholders described in the previous section. In addition, the definition 
of an analytic model provided in Figure 3 was used to perform the feasibility analysis in Section 5 and 
create the solution architecture and its implementation design in Section 6.  
 
The following are some examples of how the diagram in Figure 3 should be read: 

• A credit provider uses CSA. 
• CSA can have one or more analytic models. 
• An analytic model ingests input data and generates predictions. 
• An analytic model is an implementation of an analytic model design. 

 

                                                      
1 https://www.wur.nl/en.htm 
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Figure 3: Domain analysis of analytic models used by CSA. 

 
At the time of writing, the innovation team uses rule-based models, known as expert judgement (EJM) 
models, to compute credit scores due to the lack of enough representative data to train statistical models. 
However, once enough representative input data is available, statistical models will be designed, trained, 
and deployed in CSA. Considering one step further in the roadmap, machine learning models could also 
be explored once statistical models have become the default option for analytic models. 
 
Overall, the EJMs work as follows: 

• First, for a given input data observation, the values of each variable are mapped to a prede-
fined weight set by the data scientists during the creation of the analytic model. 

• Then, both the value of the variables and their corresponding weights are used to compute in-
termediate scores. 

• Next, using the intermediate scores (one for every variable), a final score is computed. 
• Finally, the final score is mapped to a credit score in a valid range. 
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In contrast to rule-based models, the weights of statistical models are not defined by data scientists. 
Instead, these weights are learned from training data. These types of models generate predictions by 
mapping the values of input variables to credit scores using the learned weights and specific computa-
tions associated to the type of model being used (Hastie, Tibshirani, & Friedman, 2001).  
 
At the time of writing, it is still unknown what type of statistical models could be used in CSA. How-
ever, in this project, we based our domain analysis considering that linear regression models could be 
used for predicting credit scores. Therefore, the analytic models described in Figure 3 can be EJMs or 
linear models. 
 

3.3    Evolution of analytic models 
 
Considering the needs of credit providers and the number of users that the innovation team wants to 
onboard, CSA will eventually need to support several analytic models. These models will be created, 
updated, or removed over time. For auditing purposes, the evolution of such models must be traced over 
time.  
 
The ID parameter described in Figure 3 enables the traceability of analytic models. For instance, con-
sider {model type}-{crop}-{region}-{client(s)}-{version} as the ID format. Then, the analytic model 
EJM-coffee-mexico-bk-v0.2 can be seeing as an update of EJM-coffee-mexico-bk-v0.1. Moreover, 
both analytic models generate credit scores for the same credit provider b1, which serves smallholder 
famers that cultivate coffee in Mexico. Notice that in this example, both analytic models are EJMs. 
 
The previous example describes an analytic model update where only internal elements change from 
one version to another.  This type of model evolution is depicted in Figure 4 in cases (1) and (2). Case 
(1) corresponds to an analytic model whose internal weights have been updated. Here, the type of model 
input and output interface stay the same but the internals of the model change. In contrast, case (2) 
corresponds to an analytic model whose input interface has been modified to include a new input vari-
able. For this model, the input interface and internals weights can be modified but the type of model 
stays the same. 
 

 
Figure 4: Changes in analytic models that must be supported by the solution architecture, part 1. 
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Analytic models can also be updated by changing its type. For instance, an EJM (EJM-coffee-mexico-
bk-v0.2) can be used for a period while enough data is collected to train a corresponding statistical (ST) 
model. In this case, the model ST-coffee-mexico-bk-v0.1 corresponds to the update of EJM-coffee-
mexico-bk-v0.2. This situation is depicted in case (3) of Figure 4. In this case, all the changes in case 
(2) can apply as well. 
 
The last two cases shown in Figure 5, (4) and (5), involve the replacement of analytic models that are 
used to generate credit scores for more than one client on the same type of crop and region. Case (4) 
can happen when one analytic model that is used to serve two different users is split into two new 
models because the alternative data related to the farmers of both users can no longer be analyzed with 
a common model. Here, all changes in case (3) can apply and the resulting models are identified with 
an ID that indicates an initial version for each new analytic model. 
 
In case (5), multiple analytic models could be merged into one because the alternative data related to 
farmers served by different credit providers can be analyzed using a common model. In this case, all 
changes in case (3) apply and the resulting ID indicates the initial version of model used for several 
users. 
 

 
Figure 5: Changes in analytic models that must be supported by the solution architecture, part 2. 

 
Notice that updating a model requires that the number of users served by the model, the type of crop, 
and the region stay constant. In contrast, replacing a model allows the number of users to change but 
the type of crop and region must stay the same. In both cases, the evolution of models for a certain client 
can be traced over time using the ID parameter. 
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4.Requirements elicitation 
 
 
This section adds on the preliminary analysis described in the previous section by describing the re-
quirements of the proposed solution architecture and how these requirements were obtained. 
 

4.1    Requirements elicitation process 
The obtained requirements reflect some of the main concerns of several actors involved in the design, 
development, and usage of the credit scoring application (CSA). In particular, these requirements focus 
on enabling the monitoring of the predictions made by CSA’s analytic models and not on making CSA 
a suitable product for the credit providers. 
 
In this work, three types of requirements were considered: business requirements, functional require-
ments, and non-functional requirements. The business requirements identify the concerns and wishes 
of the model owner, who is the person responsible for the analytic models deployed in production. The 
functional requirements describe the main functions that should be provided by the proposed monitoring 
solution. Furthermore, the non-functional requirements describe main characteristics of the solution that 
enable the business and functional requirements. 
 
The requirements were collected using three main strategies: 

• Interviews: All the stakeholders mentioned in Section 2 (Stakeholder Analysis) were inter-
viewed using questionnaires. Most of the business requirements were obtained from these in-
terviews. 

• Software development: During this project, CSA was still under development. To understand 
better the concerns of the data scientists, data engineers, and the solution architect, the trainee 
participated in some software development activities. This first-hand experience resulted in 
some technical and non-technical requirements. 

• Meetings with CSA users: Some of the CSA users (credit providers) reside in South America 
and speak Spanish. Due to this situation, the trainee helped to translate information during 
meetings and via email. Directly observing the needs of the credit providers helped to im-
prove some technical and non-technical requirements and to obtain a better understanding of 
how CSA is intended to be used by the credit providers.  

 
Upon collection, the requirements were presented to the business architect, the solution architect, mem-
bers of the CSA team, and Rabobank’s data scientists. Their feedback was used to update, remove, or 
include requirements. 
 

4.2    Business requirements 
 
These requirements are composed of an ID, a title, a description, and a rationale explaining the im-
portance of a such requirement. The description is provided in the format of a user story: as a [role], I 
want to [activity] so I can [reason behind the activity]. This format is used by Rabobank architects to 
document business requirements in the architecture documents (Gallo, Heil, & Bosman, Credit Scoring 
Project Start Architecture, 2020). 
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Id: BR1  
Title: Monitor input data distribution 
Description: As a model owner, I want to monitor the distribution of the input data over time so I can 
identify deviations in the expected distributions that could impact the quality of predicted credit scores. 
Rationale: The predictions of analytic models depend on their input data. As soon as the input data 
presents changes in its expected distribution, the predictions generated by analytic models could be 
affected and their accuracy could significantly decrease (Hulten, 2018). In data intensive applications, 
the properties of processed input data tend to change over time (data drift) and eventually such changes 
make existing analytic models obsolete. Therefore, to identify data drift and minimize its impact in 
analytic models, the contents of input data must be constantly monitored.  
 
Id: BR2  
Title: Monitor responsiveness of prediction engine 
Description: As a model owner, I want to monitor the responsiveness of the prediction engine over 
time so I can identify responsiveness issues that could damage the user experience. 
Rationale: In order to provide a good user experience, CSA must react to user actions within a certain 
time. Generating credit scores is the main functionality offered by CSA and it should not be slow. The 
responsiveness of the prediction engine has a high impact on the time required to generate credit scores. 
Therefore, changes in the responsiveness of the prediction engine should be monitored to identify issues 
that can affect the user experience. 
 
Id: BR3 
Title: Monitor accuracy of analytic models 
Description: As a model owner, I want to monitor the accuracy of analytic models to identify when 
models decay in performance and the corresponding cause of this decay. 
Rationale: Deployed analytic models are expected to generate predictions with accuracy above certain 
threshold. If the accuracy of such predictions falls below such a threshold, the corresponding analytic 
models must be properly analyzed to identify the cause of such decay in performance. Once the cause 
is identified, the models can be updated, replaced, or even kept as they are when the cause of decay 
does not merit any change. By constantly monitoring the accuracy of the predictions, underperforming 
models and their respective causes can be identified to be handled properly. 
 
Id: BR4 
Title: Monitor biased analytic models 
Description: As a model owner, I want to monitor the fairness of analytic models’ predictions so I can 
identify models that generate biased predictions. 
Rationale: Even when financial analytic models generate accurate predictions, such predictions can 
benefit certain populations and affect vulnerable populations. Historical data used to train analytic mod-
els can contain bias against unrepresented groups. In order to provide accurate credit scores for all 
smallholder farmers, the predictions generated by analytic models should be unbiased. Therefore, ana-
lytic models must be monitored to identify biased predictions as soon as they appear and take corre-
sponding actions to minimize such biases. 
 
Id: BR5 
Title: Upgrade/downgrade version of an executed analytic model 
Description: As a model owner, I want to be able to replace the version of an analytic model that is 
being used to generate credit scores (active analytic model) so I can select the most appropriate analytic 
models for our users according to their needs. 
Rationale: Sometimes deployed models present critical issues in production and fixing such problem 
requires a significant amount of time. In such cases, a temporary solution to the problem is to (re)deploy 
the previous version of the problematic model while the data scientists fix or create a replacement for 
this analytic model being replaced. In addition, temporary changes in the input data provided by a credit 
provider might require to temporarily use a different version of the current analytic model. In this case, 
the version of the active analytic models should be modified accordingly.  
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Id: BR6 
Title: Ensure testing for deployed analytic models 
Description: As a model owner, I want to be sure that every analytic model deployed in production has 
been properly tested to minimize the risk of having model-related errors in production. 
Rationale: CSA is expected to eventually use many analytic models to support their users. Each of 
these models could be the source of errors in production if they are not properly tested before they are 
deployed. Therefore, there must be a mechanism that ensure that every model that is deployed has been 
properly tested. This mechanism should be automated to avoid human errors that can occur when per-
forming a repeated task several times. 
 
Id: BR7 
Title: Receive alerts 
Description: As a model owner, I want to receive alerts when the analytic models in production present 
critical issues so that I can request an immediate intervention by the team to solve such an issue. 
Rationale: Any software system is susceptible to unexpected errors that can affect their users. When 
these errors occur, immediate action must be taken to fix such a problem as soon as possible. By imple-
menting an alerting system that works based on how the analytic models perform, the CSA team will 
know which model-related issues are critical and require immediate intervention and which ones can 
be considered normal issues. 
 

4.3    Functional requirements 
The following requirements describe the functionality supported by the monitoring solution. These re-
quirements use the MoSCoW prioritization method (Cline, 2015) for indicating their importance: must 
have > should have > could have > will not have. However, the word have is replaced for another verb 
to put an emphasis on actions enabled or disabled by the system. 
 
Id: FR1 
Title: Select period for monitoring 
Description: The system must allow monitoring input data and predictions over specified timeframes. 
Rationale: The users of the monitoring engine will benefit if they can filter the monitoring functions 
by specific time frames (1 week, 1 month, or 1 year). 
 
Id: FR2 
Title: Select input data parameters for monitoring 
Description: The system must allow detecting changes in the distribution of selected input data param-
eters. 
Rationale: Some input data variables are more relevant than others. Therefore, the monitoring engine 
must be able to monitor the distribution of input data parameters specified by its users.  
 
Id: FR3 
Title: Detect biased predictions 
Description: The system must allow the detection of biased predictions based on input data values 
selected by the users. 
Rationale: One way to identify biased prediction is by comparing the predictions resulting from differ-
ent input data values. By allowing the users to select such input data values, the engine can provide 
monitoring results according to the characteristics of each analytic model and its input data. 
 
Id: FR4 
Title: Compare predictions of models 
Description: The system should enable users to compare the predictions of different analytic models. 
Rationale: In some cases, the predictions of different analytic models must be compared to answer 
questions such as: what kind of input data results in good predictions for most of the models and what 
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kind of input data results in biased predictions for most of the models. Thus, the monitoring engine 
should allow this type of comparison as long as the models can process input data with the same prop-
erties. 
 
Id: FR5 
Title: Compute accuracy using historical repayment behavior 
Description: The system must allow users to observe the accuracy of historical predictions using data 
related to repayment behavior. 
Rationale: Data related to repayment behavior indicates whether provided loans were repaid by the 
farmers. Such data is not available at the moment of the predictions, but it will be provided over time 
by the credit providers. Using this data, the accuracy of the models can be computed. 
 
Id: FR6 
Title: Prevent invalid model upgrades and downgrades 
Description: The model deployment pipeline must prevent users from upgrading or downgrading an-
alytic models in execution with analytic models not supported in the backend. 
Rationale: The input interface of model executed by the prediction engine must be supported by the 
existing feature extractor code. In some cases, deploying a new version of a model will require updating 
the code of the feature extractor code. In this case, analytic models should not be upgraded or down-
graded before the feature extractor code is updated to support such a change in the analytic model 
version. This kind of behavior should be enforced by the model deployment pipeline. 
 
Id: FR7 
Title: Alerting 
Description: The system could alert users when the monitored properties of input data or model pre-
dictions fall below a certain threshold. 
Rationale: This requirement is related to BR7. By having thresholds for the different input data and 
model prediction properties to measure, the system should be able to generate alerts that can inform its 
users about critical or unexpected situations. 

4.4    Non-functional requirements 
The following requirements indicate the main properties the proposed solution should have in order to 
support the implementation of the functional requirements. Such properties are traceability, security, 
data integrity, among others. Here, the MoSCoW prioritization strategy also indicates the relevance of 
these requirements.  
 
Id: NF1 
Title: Deployment of different types of analytic models 
Description: The system must support the monitoring of all deployed analytic models.  
Rationale: Over time, CSA aims to serve several credit providers, which will have specific needs. Each 
of these models must be monitored to ensure they work as expected or identify issues. Thus, the system 
must support the monitoring of every deployed model. 
 
Id: NF2 
Title: Analytic model versioning 
Description: The system must support versioning of analytic models. 
Rationale: Over time, the needs of some users can change, and therefore, the corresponding analytic 
models should be updated. Versioning can help to keep track of the evolution of these analytic models. 
The proposed monitoring solution must be able to use versioning information to enable tracking the 
evolution of models over time. 
 
Id: NF3 
Title: Test analytic models before deployment 



Eindhoven University of Technology 

17 
 

Description: The system must monitor only analytic models that have been properly tested before 
deployment. 
Rationale: In order to prevent deploying malfunctioning analytic models, all deployed models must be 
tested to ensure that at least, their input interface and output interfaces are supported by the monitoring 
and model execution code, they do not make trivial prediction mistakes, and they do not generate trivial 
biased predictions, among others. Users of the monitoring solution must be certain that all monitored 
models have been previously tested, and if this is not the case, they should know that. 
 
Id: NF4 
Title:  Prevent usage of identifiable personal data 
Description: The system must prevent the storage or usage of identifiable personal data for monitoring 
purposes. 
Rationale: Identifiable personal data should not be used by the model for prediction. Moreover, by 
combining several variables it is sometimes possible to relate input data to groups of people or even 
individuals. As the system can combine variables in the input data for monitoring (FR2), the system 
should also ensure that such combinations do not result in identifiable personal data. Otherwise, moni-
toring results could (in theory) be used for unethical purposes. 
 

4.5    Use cases 
Use cases indicate activities that the users of the system should be able to accomplish. Most of these 
use cases are related to a model owner, who is the person responsible for the analytic models once they 
are deployed. The following are use cases derived from the requirements: 

• UC1: a model owner generates a report analyzing input data and model predictions for a spe-
cific model over a period. 

• UC2: a model owner generates a report comparing the analytic model predictions for different 
versions of the same model. 

• UC3: a model owner generates a report containing the accuracy of analytic model predictions 
based on data related to repayment behavior. 

• UC4: a model owner receives an alert when an analytic model has generated biased predic-
tions for a vulnerable population sector during a specified period. 

• UC5: a model owner downgrades a deployed analytic model. 
• UC6: a data scientist submits a new analytic model for deployment. 
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5.Feasibility analysis 
 
 
The domain analysis and requirements described in the previous sections provided the foundation for 
the solution architecture. However, there were several possibilities that needed to be considered for 
creating a solution that fits the needs of the credit scoring application (CSA), and Rabobank. This sec-
tion describes some of the main challenges encountered while considering how to map the requirements 
and use cases into a sound solution architecture. 
 

5.1    Challenges 
The following challenges were considered in detail before the creation of the architecture:  

1. Data that describes the repayment behavior of smallholder farmers will not always be availa-
ble during monitoring activities. How can analytic model predictions be monitored in this 
case? 

2. Analytic models can be manually monitored for a small number of deployed models. How-
ever, how should the monitoring tasks be automated? 

3. The team involved in CSA have their own way of working. How should the proposed solution 
architecture be designed to have a minimum impact and help the team to do their work? 

4. Validation data was not available at the time the solution architecture was created; however, 
this architecture must be evaluated. How should the architecture and its implementation de-
sign be evaluated? 

 
The first challenge focuses on measuring the quality of the credit scores generated by analytic models. 
Commonly, monitoring of analytic models is performed by computing statistics such as precision, re-
call, accuracy and ROC curves (James, Witten, Hastie, & Tibshirani, 2021). Such statistics require a 
source of truth that can be used to evaluate the predictions of analytic models. In the case of CSA, the 
predictions (credit scores) do not have a source of truth immediately after they are generated. Such 
source of truth can be obtained long after (months or perhaps years) the predictions are generated. 
Therefore, monitoring must be performed considering that such a source of truth will not be available 
for a long period. 
 
The second challenge focuses on automating the monitoring of analytic models. It is possible to manu-
ally monitor the input data and predictions of deployed analytic models, but this is a cumbersome and 
error prone task when several analytic models must be frequently monitored.  In order to automate the 
monitoring of analytic models, these models must adhere to a specific interface, such that a monitoring 
software can load them, execute them, and if required explore their internal elements. Therefore, before 
implementing a monitoring solution, an input/output interface must be defined for all the analytic mod-
els that will be monitored. 
 
The third challenge focuses on the tasks performed by different actors such as data engineers, data 
scientists, solution architects, and model owners. Each of these actors can be involved in the creation, 
deployment, and monitoring of analytic models. These actors have a way of working according to their 
expertise and the tasks they must perform. The proposed solution architecture must have a minimum 
impact in these ways of working while enabling model monitoring according to the requirements. 
 
The fourth challenge impacts the decisions taken while tackling the first three challenges. In the absence 
of data to validate the elements of the proposed monitoring solution for CSA analytic models, other 
validation methods must be considered to evaluate the outcomes of the design decisions resulting from 
the first three challenges. 
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5.2    Design decisions 

5.2.1.  Measuring the quality of predicted credit scores 
 
In machine learning, unsupervised methods are used when the data to be analyzed does not have a 
source of truth (labels) that can be used to evaluate the results of the analysis (James, Witten, Hastie, & 
Tibshirani, 2021). Some of these methods focus on anomaly detection (Chandola, Banerjee, & Kumar, 
2009), whose purpose is to identify observations that, based on certain metrics, appear to be outliers 
from the rest of the observations. Anomaly detection can be used for detecting spam, invalid credit card 
payments, among others.  
 
Similar to anomaly detection, by identifying significant changes in the input data or predicted credit 
scores, model owners and data scientists can know when deployed analytic models perform different 
than expected. Table 1 shows some of the methods considered for measuring the quality of predicted 
credit scores (and input data) in the absence of a source of truth.  
 
The main factors for selecting a change detection method were: 

• Given that the distribution of the input data and predictions is unknown (fourth challenge), the 
selected method must not make assumptions in the distribution of the observations under 
analysis. 

• Considering that the CSA team focuses on creating appropriate models for each of their users, 
the selected method must not be more complex than any of the models under development. 

• Methods that are already implemented in well-known public software are preferred over those 
that must be implemented based on their description. 

• Methods that do not require training are preferred. 
 

Table 1:  A sample of methods for identifying changes in observations. These methods are evaluated 
according to four properties. Based on these properties, the KS statistical test is preferred over the 

other methods.  

Method Does not assume 
distribution of  
observations 

Low  
complexity  
level 

Implemented in 
well-known 
public software 

No training 
required 

Quartile based method     
KS statistical test     
Gaussian methods for 
anomaly detection 

    

Deep learning methods 
for anomaly detection 

    

 
Based on the criteria mentioned before, the Kolmogorov-Smirnoff (KS) test (Kolmogorov-Smirnov 
equality-of-distributions test, 2018) was selected. In short, this statistical test computes and compares 
the distributions of two sets of observations. The output of this method is a value that can be used to 
evaluate the similarity of both sets of observations. Based on a threshold value, if both distributions are 
different, then the observations can be considered to be different.  
 
Using the KS test as a method for measuring similarity, subsets of input data and credit scores can be 
compared to detect unexpected changes. Such subsets can be created based on time frames or specific 
values. The usage of the KS test for monitoring is explained in more detail in Section 7.5. 
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5.2.2.  Automating the monitoring of analytic models 
Analytic models deployed to production can be encoded as source code, data files, or a combination of 
both. Analytic models encoded as source code can be included as part of the application software that 
executes them. They allow the easiest integration level because problems in the input/output interfaces 
of the models are detected as soon as they appear due to errors in the overall software. Nonetheless, 
deploying new models require changes to the software that uses them. In this way, their use is not 
advised when new models must be deployed frequently to a software whose functionality rarely 
changes. 
 
On the contrary, analytic models encoded as data files can be used when models must be deployed 
frequently but the software executing such models does not need to change for every newly deployed 
model. However, these data files must be properly tested to ensure that they can be loaded and used by 
the corresponding application software. Otherwise, newly deployed models can lead to unexpected er-
rors in production.  
 
A third encoding approach is to create models as source code and save this code in files that can be 
loaded and executed by the corresponding application software. Once loaded, such files can be con-
verted back into the original code and used by the software. As the source code offers input/output 
interfaces, this strategy facilitates testing analytic models before they are used, and it also offers the 
same advantages as encoding models as data files. However, only trusted models must be executed by 
the application software to avoid loading malicious code that could result in security issues.  
 
Table 2 shows the characteristics used to decide the encoding format for analytic models that facilitates 
analytic model monitoring. 
 

Table 2: Encoding formats for analytic models that should be deployed in production 

Model encoding Simple  
implementation  

Minimum  
integration test-
ing required be-
fore deployment 

Support fre-
quent deploy-
ment 

Allows track-
ing the evolu-
tion of models 

As code     
As data files     
As source code 
stored in data files 

    

 
The most important characteristics for this decision were: supporting of frequent deployment without 
modifying the application software and allowing tracking the evolution of models (i.e., evaluate the 
quality of the predicted credit scores over time for different versions of a model). 
 
Given that the CSA team uses tools that support the development of analytic models as code, source 
code stored in data files was selected as the model encoding approach for the solution architecture. In 
this case, such data files contain the code of analytic models and also metadata that can be used for their 
monitoring. 
 

5.2.3.  Enabling the collaboration between different actors 
 
By working together with the CSA team, we obtained a better understanding of the working process 
followed by data scientists, data engineers, and a DevOps engineer. In short, the data scientists and data 
engineers agree on the format of the input data and the input/output interfaces of the analytic models. 
Then they work on their corresponding tasks while ensuring that the application software works as 
expected after changes are made to the data processing pipeline and prediction engine. The DevOps 
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engineer is responsible for creating and maintaining the deployment pipeline that runs the required tests 
to ensure changes to the application software (and models) can be deployed to production.  
 
Considering the proposed encoding approach for analytic models, the way of working of the data sci-
entists is the most affected. To help the data scientist in creating (or updating) and deploying analytic 
models, a series of unit tests for analytic models are designed based on the works of (Breck, Cai, 
Nielsen, Salib, & Sculley, 2016) and (Ribeiro, Wu, Guestrin, & Singh, 2020). These unit tests ensure 
that: 

• The input and output interface of analytic models is already supported in the application soft-
ware and monitoring solution. 

• Considering that a testing dataset is available, the analytic models generate credit scores with 
the required accuracy. 

• The analytic model does not generate biased credit scores that target specific groups of peo-
ple. 
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6.Solution architecture 
 
This section presents the solution architecture created for monitoring credit scoring analytic models. 
The elements of this architecture were created following the constraint and ideas discussed in the do-
main analysis, requirements elicitation, and feasibility analysis sections. 
 

6.1    Description 
The Rabobank model development lifecycle (Gallo, Heil, & Bosman, Credit Scoring Project Start 
Architecture, 2020) depicted in Figure 6 is a general guideline used by the credit scoring application 
(CSA) team to create and maintain credit scoring analytic models. This diagram indicates the relation-
ship between activities that belong to the following processes: model data development, model devel-
opment, model implementation, and model monitoring. These processes are composed of activities; for 
instance, model implementation is composed of model deployment and model execution. 
 
The processes and activities in this model development lifecycle are adapted to the needs of the team. 
For instance, due to the type of data required to create credit scoring analytic models, it is unlikely that 
the whole data acquisition activity can be reused for other teams working in similar product. However, 
some of elements of this activity can be reused by other teams. 
  
In this project, we focused on providing a solution architecture for the model monitoring activity that 
fits the needs of the CSA team. Even though this solution architecture was designed for this particular 
team, most of its elements can be reused in other projects that make use of analytic models. In addition 
to the model monitoring activity, this solution architecture covers model deployment and model execu-
tion to ensure that model monitoring can be performed according to the requirements. 
 

 
Figure 6: Rabobank model development lifecycle containing four processes: model data development, 
model development, model implementation, and model monitoring. This diagram shows the activities 
and roles related to each process. The roles shown in this diagram are software engine (SE), data engi-

neer (DE), solution architect (SA), data scientist (DS), and business stakeholder (BS). 
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Figure 7 shows the proposed solution architecture for the monitoring of credit scoring analytic models. 
As shown in Table 3, this diagram contains three types of components: components already existing in 
CSA, components required to support model monitoring, and components for model monitoring. 
 

 
Figure 7: Proposed solution architecture for monitoring credit scoring analytic models. 

 

Table 3: Relationship between the solution architecture components and their role on the monitoring 
of analytic models. 

Component Already exists in 
CSA 

Supports analytic 
model monitoring 

Used for analytic 
model monitoring 

Model development    
Backend    
Model deployment pipeline    
Model registry    
Prediction engine    
Prediction engine logger    
Monitoring engine    
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The proposed solution architecture can be read as follows: 

• The model development component represents the process followed by data scientists to cre-
ate (train) analytic models. 

• The model deployment pipeline uses an instance of the prediction engine to validate trained 
analytic models and models available in the model registry. This pipeline provides candidate 
models. 

• The model registry stores candidate models that were accepted by the model deployment 
pipeline. Its stored models are available to the model deployment pipeline, model deployment 
engine, and monitoring engine. The contents of the model registry can be modified using a 
configuration interface. 

• The backend component uses an instance of the prediction engine to generate predictions. 
These predictions are stored in the prediction engine logger. The interaction between the 
backend and the frontend application has been omitted in this diagram. 

• The prediction engine logger accepts a prediction log composed of input data and predictions. 
It also accepts repayment data that can be provided by a third party. The prediction engine 
logger provides prediction logs that can be composed of input data, predictions, and repay-
ment data. 

• The monitoring engine uses an instance of the prediction engine and passive monitoring and 
active monitoring tasks. This engine monitors the contents of the prediction logs and the mod-
els available in the model registry. 

6.2    Relationship with requirements and use cases 
The relationship between the solution architecture and the requirements described in Section 4 are 
shown in Table 4. Requirements are considered supported (S), not validated (NV), or not supported 
(NS).  
 
Not validated requirements are those that solution architecture supports in theory but could not be val-
idated with our prototype described in Section 8. The two not validated requirements (BR3 and FR5) 
are related to monitoring the accuracy of prediction. They were not validated because we did not have 
truth predictions (labels) to validate that the accuracy of the predictions can be monitored. However, 
the architecture has been designed to support the monitoring of statistical metrics that require truth 
labels. 
 
Only three requirements are not supported by the solution architecture. These requirements are: 

• BR7: Receive alerts 
• FR7: Alerting 
• NF4: Prevent usage of identifiable personal data 

The first two not supported requirements were not included in the solution architecture because the 
focus of the project shifted from generating alerts to ensuring that every deployed analytic model can 
be monitored. Regarding identifiable personal data, we consider that this requirement should be handled 
by the backend itself. Every combination of input data used for prediction should not contain personal 
identifiable information. As this input data should be directly stored in the prediction engine logger, this 
logger should also not contain such type of information. 
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Table 4: Relationship between the solution architecture and the requirements. 

Requirement Components Status 
BR1: Monitoring input data distribution Prediction engine logger 

Monitoring engine 
S 

BR2: Monitor responsiveness of prediction engine Prediction engine logger 
Monitoring engine 

S 

BR3: Monitor accuracy of analytic models Prediction engine logger  
Monitoring engine 

NV 

BR4: Monitor biased analytic models  Prediction engine logger 
Monitoring engine 

S 

BR5: Upgrade/downgrade version of an executed analytic 
model 

Model deployment pipeline 
Model registry 

S 

BR6: Ensure testing for deployed analytic models Model deployment pipeline S 
BR7: Receive alerts  NS 
FR1: Select period for monitoring Monitoring engine S 
FR2: Select input data parameters for monitoring Monitoring engine S 
FR3: Detect biased predictions  Monitoring engine 

Prediction engine logger  
Model registry 

S 

FR4: Compare predictions of models Monitoring engine 
Prediction engine logger  
Model registry 

S 

FR5: Compute accuracy using historical repayment be-
havior 

Prediction engine logger  
Monitoring engine 

NV 

FR6: Prevent invalid model upgrades and downgrades Model deployment pipeline 
Model registry 

S 

FR7: Alerting  NS 
NF1: Deployment of different types of analytic models Model deployment pipeline S 
NF2: Analytic model versioning Model registry S 
NF3: Test analytic models before deployment Model deployment pipeline S 
NF4: Prevent usage of identifiable personal data  NS 

 
 
The proposed solution architecture enables three main activities related to the use cases described in 
Section 4.5: 

1. Deploying analytic models (UC6) 
2. Replacing models being executed by the prediction engine with models stored in the model 

registry (UC5) 
3. Monitoring analytic models (UC1, UC2, and UC3) 

These activities are described in more detail in Appendix A. 
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7.Implementation design 
 
This section describes the implementation design of the solution architecture described in the previous 
section. The focus is on the following components: model deployment pipeline, model registry, predic-
tion engine, prediction engine logger, and monitoring engine. These are the elements that enable mon-
itoring credit scoring analytic models according to the requirements described in Section 4.  

7.1    Prediction engine 
For this component, the focus is on designing an interface implemented by all types of analytic models 
such that these models can be loaded and executed. By implement this interface, the prediction engine 
can be used to: 

• Test candidate models in the model deployment pipeline  
• Execute the models and generate predictions in the backend 
• Monitor the models using active monitoring tasks in the monitoring engine  

The interface of analytic models is depicted in the class diagram shown in Figure 8. According to this 
diagram, each analytic model must implement a method called predict, which takes input data as a 
dictionary and generates credit scores as a float value. In this diagram, only statistical models and expert 
judgement (EJM) models have been modeled. Nonetheless, if required, this diagram can be modified 
to include other types of analytic models as long as they adhere to the methods required by the interface 
AnalyticModel.  
 

 
Figure 8: Class diagram for the prediction engine. A general analytic model interface is defined that 

all types of analytic models must implement such that the prediction engine can use any specific ana-
lytic model implementation. 
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The main difference between statistical models and EJM models is how their weights are set and used 
to compute predictions. The statistical model class (StatisticalModelImp) that implements the statistical 
model interface (StatisticalModel) does not require a class to model its weights. StatisticalModelImp is 
designed this way because it is considered a wrapper around existing statistical model implementations 
from well-known libraries such as TensorFlow2 or scikit-learn3. Such libraries have their own mecha-
nisms for handling model weights.  
 
In contrast, implementations of the EJM model interface (ExpertJudgementModel) require a subclass 
of the BaseScorer class to compute intermediate scores based on their corresponding scoring rules. 
These scoring rules are related to the specific input variables that the EJM models must ingest. The 
logic of these rules is implemented as code and can vary for each instance of the EJM model implemen-
tation class (ExpertJudgementModelImp). The general logic required for all EJM models is handled by 
the BaseScorer while the specific rules are handled by the SpecificScorer. 
 
The PredictionEngine class uses an AnalyticModelFactory class to create instances of the analytic mod-
els that should be executed. Each of these instances is associated with a model ID (ModelIdentifier). 
The annotation provided in the PredictionEngine class shows a piece of pseudocode that describes how 
analytic models can be created and used to generate predictions. 
 
Based on the prediction engine class diagram, we can observe that the prediction engine enables the 
following requirements: deployment of different types of analytic models (NF1) and analytic model 
versioning (NF2).  
 

7.2    Model deployment pipeline 
The model deployment pipeline focuses on testing all deployed analytic models such that models that 
pass the tests can be executed and monitored afterwards. In this project, we identified four types of tests 
that should be implemented in the model deployment pipeline: 

• A test to validate the model input interface 
• A test to validate the model output interface 
• A test to validate the accuracy of the predictions of a model on a testing dataset 
• A test to validate that a deployed model does not perform poorly on sensitive groups of data 

Each of these tests is explained below. 
 
ID: MDPT1 
Name: Validate the model input interface 
Rationale: Ensures that deployed analytic model can ingest input data passed by the backend to the 
prediction engine. Deploying an analytic model with a wrong input interface will lead to errors when 
the prediction engine executes the model to generate predictions.  
Procedure: 

• Generate input data according to specifications from the interface of the analytic model being 
tested. 

• Pass this input data to the model. 
• If the model generates a prediction for every input data observation, this test succeeds. 

ID: MDPT2 
Name: Validate the model output interface 
Rationale: The backend and prediction engine logger expect the generated predictions in a certain for-
mat. A wrong output format will lead to errors when processing and storing the predictions.  
Procedure: 

                                                      
2 https://www.tensorflow.org/ 
3 https://scikit-learn.org/stable/index.html 
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• Select the predictions generated in MDPT1. 
• Compare the format of these outputs to the one the model is expected to generate. 
• If both formats match, this test succeeds. 

ID: MDPT3 
Name: Validate the accuracy of a model on a testing dataset 
Rationale: In case testing data is available, all deployed models should be tested using this data to 
ensure their predictions achieve a certain level of accuracy. Otherwise, we might deploy models from 
the beginning have a low performance. 
Procedure: 

• Selected a proper testing dataset according to the characteristic of the model being tested. 
• Generate predictions using this dataset. 
• Compute the accuracy of using these predictions. 
• Compare this accuracy against a threshold value. 
• The test succeeds if the accuracy is above the threshold value. 

ID: MDP4 
Name: Validate that a model does not perform poorly on sensitive groups of data 
Rationale: Besides having good accuracy on a test dataset, deployed models show provide quality pre-
dictions for all relevant subsets of data. In particular, deployed models should not obtain good testing 
accuracy at the expense of sensitive groups of data. By preventing this situation, we reduce the chance 
of deploying a biased analytic model. 
Procedure: 

• Identify sensitive subsets in the testing data for which the model generates predictions with 
low accuracy. 

• For each subset, generate the corresponding predictions and compute the associated accuracy. 
• The test succeeds only when all the accuracy values are above a required threshold. 

 
The previously describe model deployment tests help us achieve the following requirements: 

• BR6: ensure testing for deployed analytic models 
• NFT3: test analytic models before deployment 

7.3    Model registry 
The model registry focuses on storing analytic models and their metadata such that they can be used by 
the prediction engine, the monitoring engine, and sometimes the model deployment pipeline. 
 
To track and monitor models over time, the model registry requires at least the following information 
items:  

• Model ID 
• Serialized code of the model 
• Description of the model 
• Upload date 
• Status of the model 
• Input interface format 
• Output interface format 

The model registry must store different versions of the same model. Some of these models can be cur-
rently used by the prediction engine while others are waiting to be activated. Also, some stored analytic 
models might no longer used but are kept for traceability and monitoring purposes.  
 
The state machine shown in Figure 9 illustrates a proposal for managing the status of models stored in 
the model registry. This diagram enables the following simple analytic model execution lifecycle: 
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• All analytic models uploaded to the model registry are initially considered candidate models. 
• Candidate models can be deployed in parallel to existing active models that should be re-

placed. 
• When a candidate model generates better predictions, its model status can be updated to ac-

tive, and the prediction engine should use this model for the new predictions being shown to 
the users. 

• Active models replaced by candidate ones should be considered inactive and the prediction 
engine should no longer use them. 

• In case candidate models need to be downgraded, inactive models that can be loaded and exe-
cuted by the prediction engine can be considered candidate models. 

• In the case that a candidate model does not perform better than the currently deployed model 
that it should replace, this model should have a status called inactivate indicating that it 
passed the model deployment pipeline, but it was never used to provide predictions to the 
user. 

 
Figure 9: state machine representing the different status that analytic models can have. 

The model registry enables the following requirements: 
• BR5: Upgrade/downgrade the version of an executed analytic model  
• FR6: Prevent invalid model upgrades and downgrades 

7.4    Prediction engine logger 
The monitoring engine requires historical information about the predictions of analytic models and their 
corresponding input data. At least, the following information elements should be stored in the prediction 
engine logger for each generated credit score: 

• Model id 
• Input data used for prediction 
• Input data schema 
• Prediction value 
• Prediction date 
• Repayment behavior data 
• Date when the repayment behavior data was received 

The first five information items can be stored at the moment the prediction is generated. However, the 
repayment behavior data is provided by the credit provider once they have such data available. Thus, 
this information element will be available after its corresponding prediction is made. That is why this 
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information element has a specific date associated with it, which is different from the date of the pre-
diction. 
 
The model prediction logger enables the following requirements: 

• BR1: monitoring input data distribution 
• BR2: monitor responsiveness of prediction engine 
• BR3: monitor accuracy of analytic models 
• BR4: monitor biased analytic models 
• FR1: select period for monitoring 
• FR2: select input parameters for monitoring 
• FR3: detect biased predictions 
• FR4: compare predictions of models 
• FR5: compute accuracy using historical repayment data 

7.5    Monitoring engine 
For the monitoring engine, the focus is on the monitoring tasks that should be executed by the active 
and passive monitoring components. Active monitoring tasks execute analytic models to perform live 
monitoring while passive monitoring tasks perform analysis using only input data and their correspond-
ing predictions.  
 
In the proposed monitoring solution, active monitoring is mainly used to identify biased predictions 
using a sensitivity analysis. This analysis, shown in Figure 10,  works as follows: 

1. Select a set of input data observations over a specific period. 
2. Create a copy of this input dataset and modify the values of a variable in the copied dataset. 
3. Generate predictions for both the original and modified input data. 
4. Compare the distributions of both sets of predictions. 
5. Decide whether the predictions are sensitive (not similar enough), or not. 

 
Figure 10: Sensitivity analysis applied to analytic models for credit scoring. 

This type of analysis can be used to identify when a model is sensitive to an input variable, i.e., when 
the model generates biased predictions based on the values of an input variable. For example, for an 
analytic model that uses age as one of its input variables, one could modify the age value of the obser-
vations of an input dataset. If certain ranges of age (10-20, 20-30, or 70) are preferred by the analytic 
model, the sensitivity analysis would indicate whether a specific range of age has a significant impact 
in the predictions. 
 
Passive monitoring tasks are used to identify changes in the distribution of predictions and the input 
data over a specified period. In addition, they are also used to compute the accuracy of historical 
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predictions using true labels that can be computed from repayment behavior data provided by credit 
providers.  
 
Figure 11 shows a diagram that describes how to identify changes in the distribution of observations 
(input data or predictions) over time: 

• First, observations are selected over a period. 
• Then, the selected observations are split into two subsets based on their associated prediction 

time. 
• Next, the similarity distribution of both subsets is compared using a statistical similarity test 

(in our case, the KS test described in Section 5.2.1). 
• Finally, the resulting similarity value is compared against a similarity threshold to identify 

significant changes. 

 
Figure 11: Identifying changes in the distributions of observations over a specific period. 

 
The computation of accuracy for historical predictions is described in Figure 12. This monitoring task 
works as follows: 

• First, reference credit scores should be obtained from data containing repayment behavior. 
• Then, the predicted credit scores corresponding to the expected input scores should be se-

lected from the prediction engine logger. 
• Next, using both scores, the accuracy of the predictions is computed. 
• Finally, the resulting accuracy value can then be compared against a specified threshold to de-

termine whether the predictions correspond to a good or bad performance. 

 
Figure 12: Computing the accuracy of predicted credit scores based on repayment behavior. 

 
The elements of the monitoring engine enable the same requirements that are enabled by the prediction 
engine logger.
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8.Implementation 
 
 
In this section, we describe the implementation of a prototype that demonstrates the main activities 
supported by the solution architecture, which are described in Section 6.1. 
 

8.1    Introduction 
The prototype was created to provide an example of how the solution architecture can be implemented 
for the credit scoring application (CSA). For its implementation, two options were considered: 

• A standalone implementation that strictly follows the solution architecture but does not use 
CSA codebase  

• An implementation included in CSA that uses simplified versions of some components of the 
solution architecture 

The first option would demonstrate how the solution architecture has been designed to work when CSA 
handles several credit providers. In this case, automation of model deployment, model execution, and 
model monitoring tasks can help to create new models and maintain existing ones. Despite the ad-
vantages of such an implementation, the current CSA implementation will not benefit much from it. In 
fact, many changes must be performed to the application codebase while obtaining minimum improve-
ments in the short term. 
 
In contrast, the simplified prototype implemented as part of CSA shows the benefits of automatic model 
deployment, model execution, and model monitoring while keeping the changes in the codebase to the 
minimum required. In this case, the prototype can serve as an example to explore the elements that can 
be implemented in the current code of CSA so that the solution architecture can be implemented in an 
agile way. 
 
At the moment the prototype was created, the team was building the main functionality of CSA to 
release their minimum viable product (MVP) to the market. This MVP consisted of a small number of 
analytic models that can be manually deployed and monitored as well as functionality related to user 
account management and data ingestion. At this stage, modifications to the code to implement the whole 
solution architecture could have delay significantly the release of the MVP. Therefore, a prototype of 
the full solution architecture would likely not be considered until after the MVP was released. 
 
On the contrary, the elements in the simplified prototype could be ported to the credit scoring codebase 
without significant impact in the schedule of the MVP. Thus, we decided to create the simplified pro-
totype in one of the branches of CSA. Using this implementation, we aim to communicate our solution 
architecture and implementation design to the team in such a way that they can easily understand their 
benefits and how to implement its more relevant elements. 
 

8.2    Prototype 
 
The prototype was implemented as a web application that interacted with a backend service. The 
backend service provided the functionality for the model monitoring engine, model deployment pipe-
line, and prediction engine. The web application, shown in Figure 13, allowed its users to interact and 
display the results of the monitoring engine as well as activate candidate models deployed using the 
model deployment pipeline.  
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Figure 13: Webapp tab that shows the model monitoring engine functionality of the prototype. The 
name of the active model being monitored is hidden behind a gray rectangle due to privacy policies. 

 
The monitoring tab of the web application shown in Figure 13 is composed of two elements: user input 
form and visualization of results. The user input form indicates:  

• The active model whose predictions should be monitored 
• A variable from the input data that should be monitored 
• An integer value used to modify the original values of the monitored input variable in order to 

perform sensitivity analysis 
• The number of records (observations) required for monitoring  
• The similarity threshold required by the active and passive monitoring tasks 

Notice that based on the number of records (n), two sets of observations are created: the first one cor-
responding to the latest n observations and the other one corresponding to the previous n observations. 
 
The visualization of results element shows the monitoring results for predictions, input data variables, 
and a sensitivity test based on the monitored input variable. This functionality corresponds to the third 
function enabled by the solution architecture: monitoring of analytic models. In our prototype, we only 
monitor one variable at a time instead of all the variables in the input data. However, this implementa-
tion can be easily modified to monitor all input variables at once. 
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In the two graphs shown in Figure 13 we can see that the most recent records are shown as blue circles 
while the previous records are shown as red circles. We also notice two trend lines that represent the 21 
moving average values for both subsets of observations. This means that the first value of the trend lines 
is the average of the first 21 observations, the second value of the trend lines is the average of subset 
starting at the second observation up to the 22nd observation, and so on. 
 
The trend lines help to make sense of the monitoring results shown in the text above each graph. For 
instance, the trend lines of the predictions look similar, and the monitoring result indicates they are 
similar. Similarly, the monitoring result for the input variable age indicates a change in the distribution 
of the newest subset of records, which is confirmed by the trend lines. 
 
The results of the sensitivity test are shown in a graph similar to the one created for the input variable. 
An example of sensitivity results is shown in Section 9.2.3. 
 
The second activity enabled by the solution architecture, replacing an active model for a candidate 
model stored in the model registry, is shown in Figure 14.  In this tab, the user can replace an active 
version of a model for a candidate model. If this operation succeeds, the prediction engine updates the 
analytic models used for prediction. 
 

 
Figure 14: Webapp tab that shows the model activation functionality of the prototype. 

The remaining activity enabled by the solution architecture, deploying analytic models, can be per-
formed using the script model_deployment_script.py contained in CSA (backend) code shown in Figure 
15. Notice how this backend code resembles the solution architecture and the elements of the prediction 
engine class diagram shown in Section 6.2. 
 
The model deployment process in our prototype works as follows: 

• First, analytic models that are ready to be deployed must be included inside the trained_mod-
els directory in the CSA code. 

• Then, the script model_deployment_script.py must be executed. 
• After that, the trained models are moved into the model_deployment_pipeline/mod-

els_to_validte directory. 
• Once there, the tests defined in model_tests.py are executed using the datasets available in 

model_deployment_pipeline/datasets. 
• If the models under validation pass all the tests, they are moved into the prediction_en-

gine/available_models directory. 
• Finally, the new available models can be activated using the candidate model activation tab of 

web application, shown in Figure 14. 

Every time the status of the models inside the prediction_engine/available_models is changed, the pre-
diction engine updates its pool of analytic models used for predicting credit scores. Notice that in our 
prototype, the model registry is part of the prediction engine. However, in a real implementation the 
model registry should be separated from the prediction engine as described in the solution architecture. 
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Figure 15: CSA (credit_scoring_app) code containing the implementation of the solution architecture 
prototype.   Notice how some of the elements of the solution architecture are mapped directly in the 

modules of the credit_scoring_app code.
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9.Verification & validation 
 
 
This section describes how the solution architecture and implementation design were verified and vali-
dated. In this section, we consider that a software architecture is verified to ensure that it fulfills its 
requirements and there are no incompatibilities in its design. In contrast, the validation of the software 
architecture can be used to identify issues in the implementation of its design. 
 

9.1    Verification 
Our solution architecture was verified to ensure the requirements described in Section 4 were supported. 
The verification of the solution architecture was performed in collaboration with architects, data scien-
tists, data engineers, and a digital project manager. The process was as follows: 

• After each major modification, we presented the solution architecture to one or more review-
ers. 

• Based on their observations, we improved the solution architecture. 

Following this simple procedure, the architecture had two major updates. In the first update, we intro-
duced the model deployment pipeline and model registry to ensure that every deployed model can be 
monitored. For the second update, we modified the model monitoring engine to support active moni-
toring tasks such as sensitive analysis.  
 
Based on the latest reviews of the solution architecture and implementation design, we observe that this 
architecture fulfills most of the requirements described in Section 4. The only requirements not sup-
ported were the ones related with alerting (BR7 and FR7). Additionally, requirements related to moni-
toring the accuracy of predictions (BR3 and FR5) are supported but were not verified or validated.  
 
The details of which requirements are fulfilled by the solution architecture (and by extend the imple-
mentation design) are available in Section 6. 
 

9.2    Validation 
The validation of the solution architecture was performed using the prototype described in Section 8. 
Using this prototype, we validated that the three main activities enabled by the solution architecture can 
be performed:  

• Deploying analytic models 
• Replacing models being executed by the prediction engine with models stored in the model 

registry  
• Monitoring analytic models 

 

9.2.1.  Deploying analytic models 
To validate the first operation, we created several analytic models according to the class diagram pre-
sented in Section 7 (Figure 8). These models were EJM models with four following input variables. 
One of these variables corresponds to age values, and the other three are variables related to weather 
information. The output of these models corresponds to a credit score between 0 and 1000, where 0 
indicates a high risk and 1000 indicates a low risk. 
 
The created analytic models were deployed following the instructions provided in Section 8.2. 
During the deployment procedure, these models were tested using the following tests: 
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• MDPT1: validate the model input interface 
• MDPT2: validate the model output interface (DPT2) 
• MDPT4: validate that a model does not perform poorly on sensitive groups of data 

For these tests, we created synthetic datasets containing uniformly distributed values for each of the 
model’s input variables. In addition, for MDPT4, some of these datasets were modified to have values 
that are representative of vulnerable groups. For example, in the case of the variable age, some datasets 
contain only age values above 50, while the remaining datasets contain age values among the expected 
age range. 
 
Notice that MDPT3 (validate the accuracy of a model on a testing dataset) was not used for validating 
the created models. The reason is that because we could not obtain historical predictions of the credit 
scores obtained from alternative data, we could not identify their statistical properties. Hence, we were 
not able to generate synthetic truth credit scores to compute accuracy values. Nonetheless, once such 
truth data is available or can be simulated, these tests could be implemented in a similar way to the other 
tests. 
 
The results of the model deployment tests indicate that the prototype works as expected regarding the 
model deployment pipeline. Models with input and output interfaces different than expected are re-
jected. The same happens for models that are prone to generate biased predictions against input data 
related to vulnerable groups. 

9.2.2.  Replacing an active analytic model 
The replacement of active analytic models with other models stored in the model registry was tested 
using the model activation web form shown in section 8.2, Figure 14. This web form requires the id of 
the candidate model to activate and the id of the active model to be replaced. Once these parameters are 
filled, clicking on the activate button results in the deactivation of the active model and activation of 
the candidate model. 
 
The results of this manual operation validated the second operation of the solution architecture, replac-
ing an active model for a candidate model stored in the model registry. 
 

9.2.3.  Monitoring deployed analytic models 
To validate the third operation supported by the solution architecture, we used the web form shown in 
Figure 13. In addition, we created an input data generator to provide the prediction engine with input 
data having two types of input variables: 

• Input variables with uniformly random generated values 
• Input variables with random values that increment slowly over time 

Using the input data generator, different models, and the prototype, we manually tested that the moni-
toring engine can: 

1. Monitor predictions based on randomly uniform generated values 
2. Monitor predictions based on values that slowly incrementing over time 
3. Monitor whether predictions are sensitive (biased) towards certain input variables 

From the first two tests we observed that changes that happen over time in input variables can be de-
tected. However, as shown in Figure 16, these changes do not necessarily affect the distributions of the 
predictions. This result is in line with our expectations because not all input variables have the same 
effect in the predictions of a model. Thus, it is possible to have large variations in an input variable that 
have a small effect in the predictions. 
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Figure 16: Monitoring the distribution of predictions of an analytic model and the distribution of input 

variable age. The monitoring is performed using a window size of 100 observations. 

 
The third tests allowed us to validate that we can identify biased models using input data collected over 
time. In other words, this test validates that our sensitivity analysis explained in Section 7.5 works. 
Figure 17, shows the predictions generated by an analytic model that was designed to have a small 
weight for the input variable age. For this model, changes in the age value result in small deviations in 
the predictions. Therefore, the predictions related to the original age values and the ones related to the 
modified age values have a similar distribution.  
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Figure 17: Monitoring the effects that the modification of the value of an input variable have in the 
predictions of an analytic model. 
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10. Project management 
 
 
In the first stage of this project, a simple project management plan was created to describe working 
approach. This PMP helped to track monthly progress and intermediate deliverables while agile meth-
ods were used for weekly activities. The most relevant elements of this plan are the scope definition 
and schedule.  
 

10.1    Scope definition 
The scope was defined in the first two months of the project and revisited several times during the 
project. As the project progressed, the trainee obtained a better understanding of the credit scoring ap-
plication (CSA), the stakeholder needs, and CSA users’ needs.  
 
Usually, once a scope is stablished, it should not have many changes because the main goals have 
already been stablished. However, CSA is an innovation project that was being developed at the same 
time this project was conducted. Thus, a significant amount of new information was obtained on a 
weekly basis during the first six months of the project.  
 
Sometimes, this information improved or contradicted previous goals and assumptions, and such cases, 
the scope definition was revisited. This situation resulted in three versions of the scope definition. The 
first version was mostly focused on monitoring the input data and predictions of analytic models without 
truth labels. In the architecture described in Section 6, this functionality is provided by the passive 
monitoring element of the monitoring engine, shown in Figure 7 (Section 6.1). Additionally, this func-
tionality corresponds to the following requirements: BR1, BR2, BR4, FR1, FR2, and FR3.  
 
The second version of the scope included monitoring the accuracy of analytic models considering that 
repayment behavior data would eventually be available. This functionality corresponds to the active 
monitoring element of the monitoring engine in Figure 7. The requirements included in this revision 
correspond to: BR3 and FR5. 
 
The third version of the scope included monitoring the evolution of analytic models over time. In this 
scope, downgrading analytic models and computing accuracy of different versions of a model should 
be possible. This new functionality is enabled by the model deployment engine, the model registry, and 
the prediction engine history shown in Figure 7. The requirements corresponding to this update are: 
BR5, BR6, FR4, FR5, FR6, NF1, NF2, NF3, NF4. 
 

10.2    Schedule 
Initially, the project working schedule was created solely based on the deliverables and deadliness re-
quired by TU/e. However, this approach did not work because the working schedule of the main stake-
holders was not aligned with the first version of the project schedule. Keeping track of two different 
schedules proved to be an ineffective strategy.  
 
This problem was solved by adapting the project schedule to the working schedule of the CSA team 
and other main stakeholders. This new schedule considered both main deliverables and intermediate 
ones. The deliverables shown in Figure 18 were divided into activities that could be completed during 
a two-week sprint. Each of these activities corresponds to one of the following phases: exploration, 
design, and implementation. 
 
During the exploration phase, the goals of this project, main stakeholders, and requirements were iden-
tified. This phase lasted around three months; however, during the remaining months some parts of the 
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project scope and requirements were updated to include new findings discovered during the design 
phase. 
 
The design phase, which is the longest phase, lasted almost four months. During this phase, several 
approaches for analytic model monitoring and deployment were explored during the feasibility analysis. 
The decisions taken during this analysis influenced the solution architecture and implementation design.  
 
After the solution architecture and design were in place, the main focus shifted to implement a prototype 
to demonstrate the most important elements that are considered the most difficult to realize. This pro-
totype was validated as described in Section 9. Additionally, this report was created while the prototype 
was finished. 
 

 
Figure 18: Main elements of the work-breakdown structure used during the project. 
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11.  Conclusions 
 
 

11.1    Results 
This project resulted in a solution architecture for monitoring credit scoring analytic models. In addition, 
a prototype was created to demonstrate how certain elements of the architecture and its implementation 
design can be implemented in the code of the credit scoring application (CSA). 

11.1.1.  Solution architecture 
We can identify four major benefits that the solution architecture provides to the current implementation 
of CSA. 
 
First, the solution architecture introduces a model deployment pipeline to ensure that every deployed 
model can be executed by the prediction engine. According to the solution architecture diagram, the 
model deployment pipeline uses an instance of the prediction engine to executes its model deployment 
tests. For generating predictions, the backend uses an instance of the same prediction engine. Thus, if 
an analytic model is accepted by the model deployment pipeline, this model will also be executed. Here, 
we assume that changes in the prediction engine will be handled such that all the relevant deployed 
models are supported. 
 
The second benefit provided by the solution architecture is the usage of a model registry to keep track 
of all the deployed models. Active models, candidate models, and models no longer in use can be stored 
in this registry. Having this registry allows for tracking the evolution of analytic models over time. At 
any point in time, these models can be monitored. 
 
The third benefit involves creating an engine whose sole purpose is to manage the analytic models that 
are used for prediction. Having this engine in place allows for updates in the backend without affecting 
the functionality related to generating credit scoring predictions. More importantly, this prediction en-
gine allows for deploying and activating analytic models without having to modify elements from the 
backend, unless it is required. Last but not least, this prediction engine can be used in other elements 
that support the functionality of CSA, such as the model deployment engine and monitoring engine.  
 
The last and main benefit of the proposed solution architecture involves the monitoring engine. This 
engine was designed to support monitoring tasks that only require the historical input data processed by 
analytic models and their corresponding predictions. In addition, this engine supports the usage of mod-
els from the model registry to perform live monitoring. For instance, we can perform sensitivity analysis 
to identify whether any of the active models are biased towards changes in input values associated with 
a specific variable. Supporting these two types of monitoring tasks allow the data scientists to design 
new monitoring tasks that were not considered during this project but could be eventually required. 
 

11.1.2.  Implementation design 
From the implementation design, we can identify two major contributions. First, the design of a class 
diagram that shows a way to create a common interface for analytic models. This interface ensures that 
all the implementation of analytic models can be tested, executed, and monitored. Having such an in-
terface can help to simplify the maintenance of deployed models. 
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The second contribution consists in the design of active and passive monitoring tasks that can be used 
to monitor relevant properties of the models and their input data. In this report we use input data, pre-
dictions, and repayment to illustrate how the proposed monitoring tasks can be used. However, minor 
modifications to the building blocks of these tasks can result in new monitoring tasks. For instance, 
replacing historical input data with measurements of the time it takes to generate predictions we could 
monitor the responsiveness of the prediction engine. 

11.1.3.  Prototype 
Even though the prototype is not a production-ready implementation, it was implemented in a branch 
of the source code of CSA. Thus, it shows how model deployment, model execution, and model moni-
toring can be applied to similar versions of CSA. Moreover, this prototype is another way to communi-
cate our proposed solution. Together with the solution architecture and implementation design, we com-
municate our solution at different levels of abstraction so architects, engineers, data scientists, and pro-
ject managers are able to understand how our proposed solution works and its benefits.  
 
The results of the validation use cases show that monitoring tasks are able to identify trends in the input 
data as well as sensitivity of predictions towards an input variable. In production environments the 
monitoring parameters should be fine tunned according to the input data being processed by the analytic 
models. Hence, the monitoring parameters used in our validation procedure should only be considered 
as part of the demonstration of monitoring tasks. 
 

11.2    Recommendations and future work 
At the moment of writing, CSA uses a small number of analytic models to serve credit providers. Such 
a limited number of models is relatively easy to create, deploy, and monitor using the current codebase. 
However, as more credit providers start using the application, and more analytic models are created, the 
deployment and execution of models can become difficult and automatic model monitoring will be 
required.  
 
We recommend preparing the codebase to support model monitoring in three steps: 

• First, implement a common interface for all the models to be able to support model deploy-
ment, execution, and monitoring tasks. This recommendation is aimed at tackling technical 
dept before such a constraint starts hurting the development of new functionality. 

• Then, implement versioning for the analytic models such that their evolution can be traced 
over time. 

• Finally, implement a prediction engine to separate the code that executes the analytic models 
from the backend. Having such separation of concerns allows for updating the backend code 
without having to update the code that generates predictions.  

The proposed updates can be implemented without big changes in the existing codebase of CSA and 
should not affect its current functionality.  
 
Once the previous recommendations are applied, then the model deployment pipeline, model registry, 
and model monitoring can be implemented. These elements could have a significant impact in the func-
tionality of the application, but the previous modifications would help to reduce such an impact because 
the codebase have been prepared for such major changes.   
 
In this project, we describe the use of sensitivity tests for performing active monitoring tasks. This type 
of test was designed to identify deviations from one guideline related to the ethical usage of analytical 
models: models should not generate biased predictions. As the development of CSA continues, more 
guidelines or rules related to ethical usage of models and other topics could be required. The design of 
the model monitoring engine supports the creation of new active and passive monitoring tasks related 
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to rules and guidelines. Hence, we suggest the team to identify what other types of guidelines or rules 
the analytic models should follow and create the corresponding monitoring tasks. 
 
Additionally, we propose a simple model execution lifecycle management to handle the status of ana-
lytic models to control the versions that are being executed. This lifecycle assumes that analytic models 
can only have four status. Based on the prototype, this lifecycle seems to be enough for the needs of 
CSA. However, recommend the team to identify which deployment and execution strategies they plan 
to use for the analytic models and update the proposed model lifecycle management accordingly. 
 
Finally, in this project we explored the strategies that can be used for model deployment, execution, and 
monitoring, but not the technology that can be used for these activities. Thus, we suggest the team to 
research what kind of technology can better fit the needs of CSA. Should they use databases for storing 
models, or git repositories? This, among others, is one of the questions the team will face when imple-
menting our proposed solution. Thus, they should already plan for this activity. 
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12. Project retrospective 
 
In this section, I describe some of the insights I gained during this project at Rabobank. The content of 
this section contains the personal views of the author and by no means reflect the views and opinions 
of my colleagues, Rabobank and TU/e. The circumstances of this project, my skills and preferred way 
of working resulted in the experiences shared below. 
 

12.1    Self-reflection 
I choose to conduct my project at Rabobank for two main reasons: I had no experience working for a 
financial institution and I had never worked in an innovation project for a large institution. In addition, 
I decided to learn as much I as could about project management process during this project. Right from 
the beginning, my goal was to learn as much as possible during this project. 
 
At the start of the project, I tried to plan and execute every action and decision following some of the 
project management techniques that I learned during the first year at the PDEng. During the first 
months, trying to deliver results using strict process in an innovation environment resulted in scarce 
results. Eventually, I realized that the project I worked on is better suited for an agile way of working. 
When I decided to focus less on the processes and more on the results, I started to produce better deliv-
erables, to understand the project better, and to communicate better with my colleagues and supervisors. 
 
In retrospective, I tackled my graduation project using an approach that was not suitable for the task at 
hand. I learned a lot from the experience. However, I should have aim to incrementally learn new pro-
cesses and skills along the whole project, instead of doing it right from the start.  
 
With respect to the innovation project, now, I can see how challenging is to develop a product aimed to 
help improving the life of people living in developing countries. The type of technology and processes 
we use in The Netherlands makes it easier to create opportunities for everyone. In contrast, the technol-
ogy and processes that people use in some developing countries makes it challenging to create oppor-
tunities for them.  
 
Considering all the challenges that the innovation team has faced so far to develop their product, I am 
extremely proud to be able to provide a small contribution to this innovation project. I believe they have 
what it takes to achieve their vision. The moment their product starts being used by several credit pro-
viders, the results of my project will help the team to scale it. 
 
Regarding future endeavors, I want to work on projects that aim to improve people’s lives. This time, I 
will focus on my best skills and slowly improve my weakest points. I believe technology should be used 
to improve peoples’ lives and I think I can contribute to that end. 
 
Overall, I am extremely grateful for the opportunity I had to work on this final project. I learned a lot 
about innovation projects, how to communicate with colleagues, and how to prioritize my work. I am 
looking forward to more challenging experiences like this one.  
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Glossary 
Some of the words used in the report and their meaning are shown below. 
 
Model owner In Rabobank, a model owner is the person responsible for the analytic 

models deployed to the production environment. 
Production environment A production environment contains the applications that provide a service 

to users and other applications.  
CSA CSA is the abbreviation of credit scoring application. 
KS-test KS-test is the abbreviation of Kolmogorov-Smirnov test, a statistical test 

used to compare the similarity of the distributions of two datasets. 
Alternative data Alternative data is considered non-financial data such as historical weather 

conditions, field characteristics, and yield production. 
Credit providers Credit providers are financial institutions such as banks, agriculture 

fintech companies, microfinance institutions, and wholesale companies. 
MLOps MLOps is the abbreviation of machine learning operations. 
PSG The Project Steering Group (PSG) are the university and company super-

visors that evaluated the trainee progress. 
Analytic model A rule-based model, statistical learning model, or machine learning model 

used to generate predictions based on input data. 
MoSCoW  The MoSCoW method is used to prioritize requirements based on four 

categories: must have, should have, could have, and would have. 
Passive monitoring task A passive monitoring task only uses the input and outputs of an analytic 

model for analysis. 
Active monitoring task An active monitoring task uses analytic models, input data, and predic-

tions to perform real-time analysis. 
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Appendix A.    
 
The sequence diagrams shown in Figure 19, 20 and 21, describe the three main functions enabled by 
the solution architecture described in Section 6, Solution architecture. 
 
Figure 19 shows a sequence diagram describing specific sequence of actions performed during model 
monitoring. This diagram can be read as follows: 

• At any point, analytic models can be stored in the model registry. 
• While the monitoring engine is no interrupted by a notification, it will perform monitoring of 

the input data and predictions as well as sensitivity analysis. 
• When the model owner activates a new model, the monitoring engine requests the new active 

model for monitoring. Using this new active model, the monitoring engine will continue to 
perform its tasks. 

• At any point in time, new input data and predictions can be stored in the prediction engine 
logger. Additionally, repayment behavior data can be stored in the prediction engine logger. 

 

 
Figure 19: Monitoring of analytic models enabled by the solution architecture. 

 
 
Figure 20 shows a sequence diagram describing the process of deploying an analytic model. This pro-
cess works as follows: 

• First, a data scientist submits a new trained model to the model deployment pipeline. 
• Then, the model deployment pipeline runs a series of tests on the submitted model. 
• If the analytic model passes the tests, then it is stored in the model registry. 
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Figure 20: Deploy a new model to the model registry 

 
Figure 21 shows a sequence diagram describing how active models being executed by the prediction 
engine can be replaced for different versions of the same model. This process works as follows: 

• First, the model owner selects the model that will replace the current version of an active 
model. 

• Then, this analytic model is submitted to the model deployment pipeline to ensure it is still a 
valid model. 

• If the tests are passed, the analytic model is activated in the model registry and the active ana-
lytic model is deactivate. Additionally, the prediction engine is notified about the changes. 

 
Figure 21: Replace a deployed analytic model for a different version stored in the model registry 
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