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Abstract

In this work, we introduce the new scene understand-

ing task of Part-aware Panoptic Segmentation (PPS), which

aims to understand a scene at multiple levels of abstrac-

tion, and unifies the tasks of scene parsing and part parsing.

For this novel task, we provide consistent annotations on

two commonly used datasets: Cityscapes and Pascal VOC.

Moreover, we present a single metric to evaluate PPS, called

Part-aware Panoptic Quality (PartPQ). For this new task,

using the metric and annotations, we set multiple baselines

by merging results of existing state-of-the-art methods for

panoptic segmentation and part segmentation. Finally, we

conduct several experiments that evaluate the importance of

the different levels of abstraction in this single task.

1. Introduction

Humans perceive and understand a scene at multiple lev-

els of abstraction. Concretely, when observing a scene, we

do not only see a single semantic label for each visual entity,

such as person or car. We also distinguish the parts of en-

tities, such as person-leg and car-wheel, and we are able to

group together the parts that belong to a single individual en-

tity. Currently, there is no computer vision task that aims at

simultaneously understanding a scene holistically on both of

these levels of abstraction: scene parsing and part parsing.

Instead, most methods focus on solving a task at a single

level of abstraction. On the one hand, scene parsing aims

to recognize and semantically segment all foreground ob-

jects (things) and background classes (stuff ) in an image.

Recently, this task has been formalized as panoptic segmen-

tation [21], for which the goal is to predict 1) a class label

and 2) an instance id for each pixel in an image. This for-

malization has resulted in a boost in research interest that

advanced the state-of-the-art [5, 20, 27, 42, 44, 49]. On the

other hand, part parsing takes over where scene parsing stops,

as it aims to segment an image based on part-level semantics,

i.e., the parts constituting the scene-level classes. For this

level of abstraction, there is a wide range of different task

∗Both authors contributed equally.
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Figure 1. Evolution of scene understanding tasks: from semantic

to panoptic (top to bottom) and from part-agnostic to part-aware

(left to right). Colors indicate scene-level and part-level semantics.

Instance-level boundaries are emphasized with a white contour.

definitions, and resulting methods. Most methods focus on

a single object class and are instance-agnostic, while only

a few are instance-aware [15, 26, 56], or focus on multiple

object classes [41, 57]. A more comprehensive overview of

related work is provided in Section 2.

To come closer to unified perception at multiple levels of

abstraction, this work defines a task that combines scene pars-

ing and part parsing in a single task. This task encompasses

the ability to 1) apply per-pixel scene-level classification, 2)

segment things classes into individual instances, and 3) seg-

ment stuff classes or things instances into their respective

parts. We call this task part-aware panoptic segmentation

(PPS); the conceptual differences with existing tasks are vi-

sualized in Figure 1. Together with this task, we also define

a metric to evaluate it. This metric, part-aware panoptic

quality (PartPQ), extends the panoptic quality metric [21]

to cover part segmentation performance per detected things

instance or stuff class. More details on the task and metric

can be found in Section 3.

To allow for research on the new task of PPS, we intro-
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duce consistent part-aware panoptic annotations for two com-

monly used datasets. For Cityscapes [6], we have labeled

part classes for all 3.5k images of the train and validation

set, which are consistent with the existing panoptic annota-

tions. For Pascal VOC [13], we have combined the existing

datasets for semantic segmentation [43] and instance-aware

part segmentation [4] to generate a consistent annotation set

for PPS. In Section 4, we provide further explanations and

statistics on these datasets.

As there is no existing work on part-aware panoptic seg-

mentation, we establish several benchmarks. We create base-

lines by generating state-of-the-art results on panoptic seg-

mentation and part segmentation, and merging these to the

PPS format using heuristics. As explained in Section 5, there

are several design choices that need to be taken into account,

when combining predictions at multiple levels of abstraction.

Specifically: should we opt for a top-down method, where

we prioritize the scene-level predictions from panoptic seg-

mentation, and complement these with part predictions, or

is it better to use a bottom-up approach, where we com-

bine parts to generate scene-level predictions? To evaluate

this, we conduct experiments to research the benefits of both

types of strategies. Both these experiments and the baselines

provide a direction for future research on multi-task training

of PPS architectures where the different subtasks can benefit

from each other.

To summarize, this work contains the following contribu-

tions:

• The introduction of the part-aware panoptic segmenta-

tion (PPS) task, unifying perception at multiple levels

of abstraction.

• The PartPQ metric to evaluate this task.

• Coherent PPS annotations for two commonly used

datasets, which are made available to the public.

• Baselines for the PPS task on two datasets.

• An analysis of the design choices for the new PPS task.

All annotations and the code are available at https://

github.com/tue-mps/panoptic_parts.

2. Related work

Research on visual scene understanding aims to extract

all-encompassing information from images with the long-

term goal to mimic human visual-cognitive capabilities. So

far, research has primarily focused on approaching scene

understanding at a single level of abstraction. In this work,

we propose a single coherent task for multiple levels of

abstraction, which unifies the tasks of scene parsing and part

parsing.

2.1. Scene parsing

We refer to scene parsing as the overall task to semanti-

cally understand an image at the class level, and to distin-

guish between individual things instances. Recently, this task

has been formalized as panoptic segmentation [21], which

is a unification of the typically distinct tasks of semantic

segmentation and instance segmentation. In earlier forms,

this task has been investigated in [47, 53].

Initially, most panoptic segmentation methods applied

a multi-task network that trains and outputs instance seg-

mentation and semantic segmentation in parallel, followed

by a merging operation to generate panoptic segmentation

results [8, 20, 28, 42, 44]. Recently, more methods are in-

troduced that focus on optimizing the process of merging to

panoptic segmentation [23, 36, 49, 52], or try to solve the

task more holistically or efficiently [5, 9, 17, 27, 51].

Although panoptic segmentation allows for more holis-

tic scene understanding than the earlier tasks of semantic

segmentation and instance segmentation, it does not cover

knowledge of part-level semantics of the identified segments.

Such knowledge would provide a more comprehensive un-

derstanding of the scene, and would allow for more detailed

downstream reasoning.

2.2. Part parsing

We refer to part parsing as the umbrella task of segment-

ing images based on part-level semantics. At a high level,

we can distinguish two types of tasks: part segmentation and

pose estimation. Part segmentation requires a pixel-level

prediction for all identified parts, whereas pose estimation

aims at detecting connecting keypoints between the parts for

each object. Pose estimation is inherently instance-aware

and is exhaustively researched, as is clear from the surveys

in [7, 38].

However, dense part-level segmentation remained for a

long time instance-agnostic, as it is usually treated as a

semantic segmentation problem [14, 18, 19, 26, 32, 37, 39,

40, 41, 57]. In the trend of coming to more holistic tasks, a

dense pose task was introduced in [1] and a unification of

pose estimation and part segmentation is provided in [11].

Only recently, to the best of our knowledge, an instance-

aware human part segmentation task was introduced and

studied in [15, 26, 56]. Most research has focused on part

segmentation for humans [12, 15, 22, 24, 25, 31, 30, 34, 46,

50, 56], but other parts have also received attention, e.g.,

facial parts [33], and animal parts [4, 48]. A limited amount

of papers have addressed multi-class part segmentation [41,

57], but so far these methods are not instance-aware. As a

result, instance-aware part segmentation on a more general

dataset, consisting of a wider range of classes and parts,

remains unaddressed.

Moreover, although work has shown that learning on

multiple levels of abstraction can improve the performance

of a part segmentation network [41, 57], part parsing has

not yet been merged with scene parsing into one holistic

task, which can describe the image at multiple levels of

abstraction. In our work, we aim to boost the interest in
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this area by providing a unified task for part-aware panoptic

segmentation, and accompanying metrics and annotations.

2.3. Datasets

In order to train and evaluate on the new PPS task, we

need datasets that 1) have scene-level labels for panoptic

segmentation and 2) have part-level labels for a set of those

scene-level classes. Although a plethora of datasets exist for

object detection and semantic segmentation, only few have

labels compatible with the panoptic segmentation task (e.g.,

[6, 35]). For part-level segmentation, the datasets are even

more scarce. LIP [30], MHP [56] and CIHP [15] provide

instance-aware, part-level annotations, but only for human

parts. To the best of our knowledge, Pascal-Parts is the only

dataset that has part-level annotations for a more general set

of classes [4]. However, these annotations do not contain

any information on classes without parts.

From this, we observe that there is no dataset that cov-

ers all the requirements for the PPS task. Therefore, we

present consistent part-aware panoptic annotations on two

datasets. For Cityscapes [6], a commonly used dataset for

panoptic segmentation, we annotate parts for five different

things classes. Moreover, we collect and arrange the dif-

ferent annotation sets for Pascal VOC [13] to generate a

complete and consistent annotation set for 10k Pascal VOC

images.

3. Part-aware Panoptic Segmentation

3.1. Task definition

The task of Part-aware Panoptic Segmentation (PPS) is an

image understanding task that is designed to capture image

understanding at multiple levels of abstraction. Specifically,

it captures 1) scene-level semantics, 2) instance-level infor-

mation, and 3) part-level semantics. To achieve this, we

define PPS as a task that enriches panoptic segmentation

[21] with part-level semantics.

A part-aware panoptic segmentation algorithm describes

every pixel in an image with a set of semantic and instance-

level information. This can be expressed for pixel i in the

form (l, p, z)i, where l represents the scene-level semantic

class, p the part-level semantic class, and z ∈ N the instance

id. The scene- and part-level semantic classes are predefined

and usually correspond to the available semantic granularity

of a dataset’s labels, while the instance id is an unbounded

integer separating, per image, distinct instances of the same

scene-level semantic class.

The scene-level semantic class l is chosen from a pre-

determined set of L := {l1, . . . , lL} classes. For any of

these classes a set of part-level semantic classes Pl =
{pl,1, . . . , pl,Pl

} containing Pl semantic parts may be de-

fined. We denote the superset of all parts as P = ∪lPl, l ∈
L. The set L can be separated into disjoint subsets in two

different ways. Firstly, L = LSt ∪ LTh. The subset LSt

consists of the stuff classes, i.e., uncountable entities with

amorphous shape (e.g., sky, sea), and subset LTh contains

the things classes, which are classes for countable objects

with well-defined shape (e.g., car, person). Secondly, L can

also be separated in a subset of scene-level classes that have

parts (e.g., limbs, car parts), Lparts, and scene-level classes

that do not have parts, Lno-parts. Here, L = Lparts ∪ Lno-parts.

We require that both LSt ∩LTh = ∅ and Lparts ∩Lno-parts = ∅.

The selection of classes belonging to the four subsets LSt,

LTh, Lparts, Lno-parts is a design choice that is typically deter-

mined based on the requirements of the application, or the

purpose of a dataset, as for [21].

A PPS algorithm makes a prediction that adheres to the

following requirements: 1) a scene-level semantic class L
must be assigned to all pixels, 2) a part-level semantic class

must be assigned to – and only to – all pixels that are assigned

a scene-level class from Lparts, and 3) an instance-level id is

provided for – and only for – pixels that are assigned a scene-

level class from LTh. In summary, a pixel can be labeled

with one of following combinations, where “−” denotes that

the specific abstraction level is irrelevant, as a:

• Stuff class: (l,−,−), l ∈ LSt

• Stuff class with parts: (l, p,−), l ∈ LSt ∩ Lparts, p ∈ Pl

• Things class: (l,−, z), l ∈ LTh, z ∈ N

• Things class with parts: (l, p, z), l ∈ LTh ∩Lparts, p ∈ Pl

Finally, the PPS format accepts a special void label for scene-

level and part-level semantics, which represents ambiguous

pixels or concepts not included in any subset L.

Relationship to other tasks. Part-aware panoptic segmen-

tation (PPS) is related to and generalizes various per-pixel

segmentation tasks. Part segmentation is specialized seman-

tic segmentation focusing on segmenting object parts, but

it does not require separating parts according to the object

instance they belong to. In the PPS format it can be de-

scribed as (l, p,−)i, l ∈ Lparts, p ∈ P. Instance-aware part

segmentation, can be described as (l, p, z)i, l ∈ LTh ∩ Lparts,

p ∈ P, and pivots part parsing on an instance level, but treats

any non-things pixel as background, losing environmental

context. Finally, panoptic segmentation, (l,−, z)i, l ∈ L,

includes no notion of part semantics.

3.2. Partaware Panoptic Quality

With the proposed PPS task, that unifies perception at

multiple levels of abstraction, we aim to quantify the per-

formance of the methods for this task using a single unified

metric. Inspired by the previous Panoptic Quality (PQ) met-

ric [21], we propose Part-aware Panoptic Quality (PartPQ).

The proposed PartPQ is designed to capture 1) the ability to

identify and classify panoptic segments, i.e., stuff regions

and things instances, and 2) the part segmentation quality

within the identified panoptic segments.
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Dataset
Instance

aware

Panoptic

aware

Parts

aware

Stuff

classes

Things

classes

Parts

classes

#Images

train / val

Average

image size

Average

#inst./img

PASCAL-Context [43] - - - 459 (59) - - 4998 / 5105 387 × 470 -

LIP [30] - - ✓ - 1 20 30.5k / 10k 325 × 240 -

CIHP [15] ✓ - ✓ - 1 20 28.3k / 5k 484 × 578 3.4

MHP v2.0 [56] ✓ - ✓ - 1 59 15.4k / 5k 644 × 718 3

PASCAL-Person-Parts [4] ✓ - ✓ - 1 6 1716 / 1817 387 × 470 2.2

PASCAL-Parts [4] ✓ - ✓ - 20 194 4998 / 5105 387 × 470 2.5

Cityscapes [6] ✓ ✓ - 23 8 - 2975 / 500 1024 × 2048 17.9

This work

PASCAL Panoptic Parts ✓ ✓ ✓ 80 20 194 4998 / 5105 387 × 470 2.5

Cityscapes Panoptic Parts ✓ ✓ ✓ 23 8 23 2975 / 500 1024 × 2048 17.9

Table 1. Dataset statistics for related (part) segmentation datasets and our proposed datasets. PASCAL-Context has 459 semantic classes but

only 59 of them are included in the official split.

The PartPQ per scene-level class l is formalized as

PartPQ =

∑

(p,g)∈TP IOUp(p, g)

|TP|+ 1
2 |FP|+ 1

2 |FN|
. (1)

As in the original PQ, we assess the ability to identify

panoptic segments by counting the amount of true positive,

TP , false positive, FP , and false negative, FN , segments,

based on the Intersection Over Union (IOU) between a pre-

dicted segment p and a ground-truth segment g for a class l.

A prediction is a TP if it has an overlap with a ground-truth

segment with an IOU > 0.5. An FP is a predicted segment

that is not matched with the ground-truth, and an FN is a

ground-truth segment not matched with a prediction.

The part segmentation performance within matched seg-

ments is captured by the IOUp(p, g) term in Equation 1.

To be compatible both with scene-level classes with parts

(Lparts), and without parts (Lno-parts), we define two cases:

IOUp(p, g) =

{

mean IOUpart(p, g), l ∈ Lparts

IOUinst(p, g), l ∈ Lno-parts
(2)

For the classes Lparts, we calculate the mean Intersection

Over Union for all part classes in the two matched panoptic

segments. This is the multi-class mean IOU where the region

outside the two segments is labeled background. When

computing this score, we allow the prediction to contain

pixels with a void part label. In the mean IOU, those pixels

will not be counted as false positives, but will be counted as

false negatives (similar to scene-level void labels in PQ [21]).

For the subset of classes without parts, Lno-parts, the instance-

level IOU is computed as in the original PQ.

In essence, the multi-class mean IOUpart term captures

the quality of both the mask of the panoptic segment, and

the part segmentation within this segment. Both the quality

of the panoptic mask and the part segmentation within the

mask need to be high in order to get a high score.

The overall PartPQ is calculated by averaging over all per-

class PartPQ scores for scene-level classes l ∈ L. In Section

5, we evaluate the performance using PartPQ on two datasets.

We show that this metric exhibits a reliable performance

measure of different approaches, and is consistent with other

metrics commonly used for the subtasks combined in part-

aware panoptic segmentation.

4. Datasets

We accompany the PPS task with two new datasets,

Cityscapes Panoptic Parts (CPP) and PASCAL Panoptic

Parts (PPP), which are based on the established scene un-

derstanding datasets Cityscapes [6] and PASCAL VOC [13],

respectively. The introduced datasets include per-pixel anno-

tations on multiple levels of visual abstraction: scene-level

and part-level semantics, and instance-level information. As

can be seen from Table 1, the existing datasets landscape

is inadequate for PPS since no dataset features all of these

levels of abstraction. If any combination of the existing

datasets is used to achieve multi-level abstraction, conflicts

would arise at the pixel level due to overlapping labels. Our

datasets comprise a consistent set of annotations, which are

free of such conflicts.

4.1. Cityscapes Panoptic Parts

Cityscapes Panoptic Parts (CPP) extends with part-level

semantics the popular Cityscapes dataset [6] of urban scenes

recorded in Germany and neighboring countries. We manu-

ally annotated with 23 part-level semantic classes the original

publicly available 2975 training and 500 validation images.

We employed a pipeline that takes advantage of original

annotations to guide and hint annotators.

CPP is fully compatible with the original Cityscapes

panoptic annotations and is, to the best of our knowledge,

the first urban scenes dataset with annotations on scene-level,

part-level and instance-level, on the same set of images.
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Taking into consideration the complexity of scenes and

the variety in number and pose of traffic participants

we selected 5 scene-level semantic classes from the hu-

man and vehicle high-level categories to be annotated

with parts, i.e., Lparts = {person, rider, car, truck, bus}.

The human categories are annotated with Phuman =
{torso, head, arm, leg} and the vehicle categories with

Pvehicle = {chassis,window,wheel, light, license plate}.

Statistics for CPP are presented in Table 1 and in Figure 2.

4.2. PASCAL Panoptic Parts

PASCAL Panoptic Parts (PPP) extends the PASCAL

VOC 2010 benchmark [13] with part-level and scene-level

semantics. The original PASCAL VOC dataset is labeled on

scene-level semantics, and only partly on instance-level. A

large number of subsequent extensions have been proposed

with annotations over different levels of abstraction, leading

to various inconsistencies between them at the pixel level.

We created PPP by carefully merging PASCAL-Context [43]

and PASCAL-Parts [4] to maintain high quality of annota-

tions and solve any conflicts. As the PPP dataset solves con-

flicts between PASCAL-Context [43] and PASCAL-Parts [4],

evaluations on PPP are not consistent with those on the afore-

mentioned datasets.

PPP preserves the original splitting into 4998 training and

5105 validation images. On the scene-level abstraction PPP

contains
∣

∣LTh
∣

∣ = 20 classes with instance-level annotations

and
∣

∣LSt
∣

∣ = 80 classes without instances. On the part-

level abstraction it comprises |P| = 194 parts spanning

|Lparts| = 16 classes, and
∣

∣LTh ∩ Lparts
∣

∣ = 16. For easier

comparison with related methods we provide mappings from

PPP to commonly used subsets: 7 parts for human part

parsing on PASCAL-Person-Parts [4] and 58 parts for the

reduced set used in [41, 57]. More statistics can be found in

Table 1.

For both CPP and PPP, part-level classes are only defined

for scene-level things classes. We anticipate that, in future

work, designers of datasets also opt for assigning part classes

to stuff classes. If so, this is fully compatible with our task

definition and metric, as they already support this.

5. Experimental analysis

With the introduced task definition, annotations and met-

ric, we now establish benchmarks for the part-aware panoptic

segmentation task, and compare the PartPQ metric with ex-

isting metrics. The results are presented and explained in

Section 5.1, and can serve as references for future research.

Secondly, to get insight into the difference in quality

and relative importance of results on the different levels

of abstraction in our unified task, and the design choices

that play a role in this regard, we conduct several ablation

experiments on these baselines in Section 5.2.

Figure 2. Statistics CPP. Absolute number of Cityscapes pixels

(×10
7) that we annotated per scene-level semantic class.

5.1. Benchmarking

Since the part-aware panoptic segmentation task and the

PartPQ metric are new, there are no methods for this task yet,

and hence no results. To fill this gap, we establish baselines

for PPS by merging results of methods for the subtasks of

panoptic and part segmentation. For this process, we select

both state-of-the-art and commonly used methods. The re-

sults for these subtasks are mostly generated using publicly

available code, or provided to us by the authors of the re-

spective methods. Only in select cases, when trained models

are not publicly available, we train an existing network on

the concerned data. If so, we indicate this.

All results are evaluated on the PartPQ metric introduced

in Section 3.2. We also report on the PartPQ separately

for scene-level classes that have parts (Lparts) with PartPQP

and those that do not have parts (Lno-parts) with PartPQNP.

To show the performance of the subtask methods before

merging, we also report the performance on the Panoptic

Quality (PQ) for panoptic segmentation [21] (which we also

split in PQP and PQNP), Average Precision (AP) for instance

segmentation, and mean Intersection Over Union (mIOU)

for semantic segmentation and part segmentation.

5.1.1 Merging procedure

To get predictions that adhere to the PPS task defined in

Section 3, we need to merge the results on the subtasks of

panoptic segmentation and part segmentation. To achieve

this, we maintain a straightforward top-down, rule-based

merging approach. First, for scene-level semantic classes

that do not have part classes (l ∈ Lno-parts), no additional pre-

diction is required, so we copy the predictions from panoptic

segmentation. Secondly, for each segment in the panoptic

segmentation prediction that does require an additional part

label (l ∈ Lparts), we identify and extract the part predictions

for the pixels corresponding to this segment. If a part pre-

diction contains a part class that does not correspond to the

scene-level class (e.g., a head pixel in a bus segment), we
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Before merging After merging

mIOU AP PQ mIOU PartPQ

Panoptic seg. method Part seg. method SemS mask All P NP PartS All P NP

Cityscapes Panoptic Parts val

UPSNet [49] DeepLabv3+ [3] 75.2 33.3 59.1 57.3 59.7 75.6 55.1 42.3 59.7

DeepLabv3+ & Mask R-CNN* [3, 16] DeepLabv3+ [3] 78.8 36.5 61.0 58.7 61.9 75.6 56.9 43.0 61.9

EfficientPS [42] BSANet [57] 80.3 39.7 65.0 64.2 65.2 76.0 60.2 46.1 65.2

HRNet-OCR & PolyTransform* [54, 29] BSANet [57] 81.6 44.6 66.2 64.2 67.0 76.0 61.4 45.8 67.0

Pascal Panoptic Parts validation

DeepLabv3+ & Mask R-CNN [3, 16] DeepLabv3+ [3] 47.1 38.5 35.0 61.5 26.0 53.9 31.4 47.2 26.0

DLv3-ResNeSt269 & DetectoRS [2, 55, 45] BSANet [57] 55.1 44.8 42.0 66.0 33.8 58.6 38.3 51.6 33.8

Table 2. Baselines. Part-aware panoptic segmentation results for the baselines on the Cityscapes Panoptic Parts (CPP) and Pascal Panoptic

Parts (PPP) datasets, generated using results from commonly used (top), and state-of-the-art methods (bottom) for semantic segmentation,

instance segmentation, panoptic segmentation and part segmentation. For the results on CPP, mIOUPartS indicates the mean IOU for part

segmentation on grouped parts (see Section 5.2.2). Metrics split into P and NP are evaluated on scene-level classes with and without parts,

respectively (see Section 5.1). * Indicates pretraining on the COCO dataset [35].

set the part prediction for this pixel to the void label.

In Section 5.2.1, we show that this top-down merging

strategy works better than a strategy that requires the predic-

tions for both part segmentation and panoptic segmentation

to agree. It is likely that there is a better, more complex way

to construct or possibly learn this merging strategy, but we

leave this for future work to address.

5.1.2 Cityscapes Panoptic Parts

Methods. For the baselines on Cityscapes [6], we generate

part-aware panoptic segmentation results using both single

network methods for panoptic segmentation [49, 42], and

panoptic segmentation results generated from methods on

semantic segmentation [3, 54] and instance segmentation [16,

29]. In the latter case, the panoptic segmentation results are

created using the heuristic merging process described in

[21]. For part segmentation, we trained two networks [3, 57]

ourselves, since we are the first to introduce part labels on

Cityscapes.

For all baselines, in order to have fair and consistent re-

sults, we use methods that are only trained on the Cityscapes

train set without using the coarse labels, with pre-training

only on ImageNet [10]. The only exceptions are the instance

segmentation methods [16, 29], which are pre-trained on

COCO [35], as has become common practice.

Results. With the aforementioned state-of-the-art methods

and merging strategy, we set state-of-the-art baselines for

part-level panoptic segmentation. The results for Cityscapes

Panoptic Parts are reported in Table 2, and qualitative ex-

amples are shown in Figure 3. The results show that the

scores on PartPQ are lower than the regular PQ, which is ex-

pectable, as we add complexity to the problem with part-level

segmentation of segments, and the per-instance IOU of PQ

is replaced with the part-level IOU in PartPQ. As expected,

the scores for PartPQNP are identical to PQNP, as the results

and metric for Lno-parts are unchanged. When comparing the

PartPQ to other metrics, we see that a difference in scores

between methods is comparable to the existing metrics on

the subtasks. This indicates that the metric captures the as-

pects covered by those metrics, while being a single metric

for the unified task of part-aware panoptic segmentation.

5.1.3 Pascal Panoptic Parts

Methods. Due to a lack of existing work on panoptic seg-

mentation for the Pascal VOC dataset [13], we generate

panoptic segmentation results by fusing semantic segmenta-

tion [2, 55] and instance segmentation [16, 45] results, fol-

lowing [21]. Specifically, the semantic segmentation meth-

ods are generated using existing models trained on 59 classes

of the Pascal-Context dataset [43], and we train the instance

segmentation models on the 20 things classes of our Pascal

Panoptic Parts dataset. For part segmentation, we generate

state-of-the-art results using an existing model [57] trained

on a dataset that includes 58 part classes from the Pascal-

Parts dataset [4], and we train another commonly used model

[3] on that same dataset. Despite the different annotations

used for training, all models are trained on the same 4998

images in the Pascal VOC 2010 training split.

Results. The results for the baselines on the PPP dataset

are reported in Table 2. From the table, it is clear that, again,

scores for PartPQ increase proportionally to the existing

metrics for the subtasks, and that PartPQNP remains identical

to PQNP. Qualitative examples are displayed in Figure 4.

5.2. Ablation experiments

5.2.1 Merging panoptic and part segmentation

Experiment. For the aforementioned baselines, we use a

top-down merging strategy that effectively prioritizes panop-

tic segmentation over part segmentation, by taking the scene-

level semantic label from the panoptic output. It is also

possible to take a more conservative approach that also con-
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Figure 3. Examples Cityscapes Panoptic Parts. Top: input; middle: ground truth; bottom: predictions highest-scoring PPS baseline.

Figure 4. Examples Pascal Panoptic Parts. Top: input; middle: ground truth; bottom: predictions highest-scoring PPS baseline.

Before merging After merging

Merging str. PQ mIOUPartS PartPQ PartPQP

State-of-the-art results on Cityscapes Panoptic Parts

original 66.2 67.2 60.9 44.0

alternative 66.2 67.2 60.2 41.3

State-of-the-art results on Pascal Panoptic Parts

original 42.0 58.6 38.3 51.6

alternative 42.0 58.6 37.5 50.6

Table 3. The results of different merging procedures, on the val

split of CPP and the validation split of PPP. The original

merging strategy prioritizes panoptic segmentation; the alternative

strategy requires both predictions to agree on the scene-level label.

siders bottom-up information, by requiring panoptic and part

segmentation predictions to agree on the scene-level seman-

tic label. For this alternative approach, a panoptic segment

is compared with the part predictions at the corresponding

pixels, and for each pixel, the panoptic prediction is only

kept if the part prediction is possible for the scene-level la-

bel of that panoptic segment (e.g., truck-wheel for a truck

instance). Otherwise, the pixel is removed from the segment,

and both the scene-level and the part-level predictions are set

to void. This merging approach would lead to better results

Grouping PQ mIOU mIOUgrouped PartPQ PartPQP

Commonly used methods for panoptic seg. and part seg.

- 61.0 54.3 74.5 55.8 38.8

X 61.0 n/a 75.6 56.9 43.0

State-of-the-art methods for panoptic seg. and part seg.

- 66.2 67.2 75.3 60.9 44.0

X 66.2 n/a 76.0 61.4 45.8

Table 4. Grouping parts. Trained on the Cityscapes Panoptic Parts

set using grouped parts: 1) car, bus and truck parts, and 2) person

and rider parts. Reported mIOU scores are for part-level semantics.

than the original, if the panoptic segmentation method fre-

quently makes mistakes that the part segmentation method

does not make, and if part segmentation predictions are not

incorrect where panoptic segmentation is correct.

Results. The results, reported in Table 3, clearly show

that the original merging method performs better. For the

alternative approach, the PartPQ for classes with parts is

consistently lower. This occurs as pixels are incorrectly

removed from segments. These results clearly indicate that

it is better to prioritize the scene-level label from panoptic

segmentation over that from part segmentation.
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Panoptic seg. Part seg. Semantic information gain

mPA mIOU mPA mIOU mSIGpan→part mSIGpart→pan

91.6 85.9 88.6 82.5 54.1 39.4

Table 5. Comparing performance on scene-level semantics be-

tween state-of-the-art methods for panoptic segmentation and part

segmentation, on Cityscapes Panoptic Parts val.

5.2.2 Grouping semantically similar parts

Experiment. The results from Section 5.2.1 suggest that

methods trained on panoptic segmentation are better able to

predict scene-level semantics than part segmentation meth-

ods, favoring a top-down approach to PPS. To further explore

the potential benefits of a top-down approach, we conduct

experiments where we train a part segmentation method on

parts that are grouped by semantic similarity (e.g., bus-wheel

and car-wheel are grouped as wheel). This is likely to work

because 1) there is more data per part class and 2) there is

less ambiguity between the part classes. This favors a top-

down approach because it means that, to get a prediction in

the PPS format, the scene-level label needs to be extracted

from panoptic segmentation, and that part segmentation is

used to learn the specific parts only.

Results. We train part segmentation networks for which the

parts for 1) car, bus, and truck, and 2) person and rider, are

grouped, effectively reducing the amount of parts from 23 to

9. The results for this experiment are shown in Table 4, and

they show that the PartPQ for classes with parts, PartPQP,

increases with up to 4.2 points when parts are grouped. This

supports our hypothesis.

5.2.3 Comparing levels of abstraction

In the previous experiments, we have seen results that in-

dicate that it is sensible to approach PPS in a top-down

manner, i.e., to first predict the scene-level semantic label,

and then look for parts within those regions. To further

substantiate this hypothesis, and to assess what the main

information source should be for scene-level semantics, we

conduct an additional experiment that compares the scene-

level performance of methods trained on panoptic and part

segmentation.

Metrics. To assess the extent to which correct scene-level

information is available in one method, but not in another,

we introduce the Semantic Information Gain (SIG) metric,

which quantifies the extent to which errors made by a given

method B can be compensated for by the correct predictions

of a method A. We define the the SIG of method A with

respect to method B, SIGA→B , as

SIGA→B =
1

|XFPB
|

∑

x∈XFPB

TPA,x × 100%, (3)

where XFPB
is the set of pixels incorrectly predicted by

method B, and TPA,x = 1 if method A is correct at pixel x

and TPA,x = 0 otherwise. We evaluate the SIG per class in

the ground truth, and report the mean SIG (mSIG) over all

scene-level classes with parts, Lparts. We also report on mean

Pixel Accuracy (mPA) and mean Intersection Over Union

(mIOU).

Results. When looking at the results in Table 5, it is clear

that the panoptic segmentation method is considerably more

accurate on the concerning five scene-level classes than part

segmentation. Moreover, panoptic segmentation predictions

can resolve, on average, 54.1% of the errors made by part

segmentation. Specifically, these errors seem to occur for

classes that have parts that could be confused with each

other (e.g., bus and truck). This supports the aforementioned

hypothesis about a top-down approach being a good way to

approach part-aware panoptic segmentation.

This does not mean, however, that the bottom-up alterna-

tive has no potential at all. Table 5 shows that, to a lesser

degree, part segmentation can also solve errors made by the

panoptic segmentation method. Therefore, it is likely that a

future top-down method for PPS could be improved when

enriched with specific bottom-up features.

6. Conclusion

In this work, we presented the novel task of part-aware

panoptic segmentation (PPS), which takes the next step in

holistic scene understanding by unifying scene parsing and

part parsing. With the accompanying metric and datasets,

we have generated state-of-the-art results for this task, con-

structed from state-of-the-art results on the underlying sub-

tasks. We hope that this work will spark new innovations in

the area of scene understanding, for which our results can

serve as baselines.

Specifically, we hope to see innovations in single-network

PPS methods that learn the levels of abstraction – i.e., part-

level and scene-level – jointly, to leverage the interaction

between these levels during training. An important design

choice is the way in which information from these levels of

abstraction is combined. From the experiments conducted

in this work, we observe that results suggest that it is best to

maintain a top-down approach, where panoptic predictions

are extended with part-level predictions.

To provide a foundation for future research, the code and

data used to realize this work are shared with the research

community.
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