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Summary

Pipelining data-intensive sensing in control design: trading off
control performance, robustness and processor usage
Data-intensive controllers use compute-intensive signal-processing algorithms to ob-
tain sensing information. Signal-processing algorithms enable sensing features for
which no simple sensor exists. Examples of such data-intensive controllers are found
in Advanced Driver Assistance Systems (ADAS), Flexible Manufacturing Systems
(FMS), or visual-servo control. In ADAS, image-processing algorithms are used to
determine traffic road conditions; in FMS, image-processing algorithms allow to ob-
tain (amongst others) the position of particular objects. Although data-intensive al-
gorithms improve the sensing capabilities of the controller, they also introduce long
time-varying sensing delay in the control loop. Therefore, the control design typically
considers the worst-case of the sensing delay and the sampling period is selected to
be longer than the worst-case delay. Long sensing delays produce long control sam-
pling periods, which degrade the control performance. We define control performance
in terms of time-domain metrics (e.g., settling time, overshoot) because it has an intu-
itive impact on system performance. For example, in FMSs long settling time results
in a longer manufacturing time of each product, which decreases the overall system
throughput. This thesis deals with the long sensing delay in data-intensive controllers,
by exploring the design space of pipelined control systems. Pipelined control exploits
the rise of multi-core architectures to implement parallel instances of the processing
algorithm in a pipelined fashion. This produces extra sensing information that reduces
the controller sampling period (while the sensing delay remains unaltered) potentially
improving the control performance.

In pipelined control, each additional processing core potentially results in a better
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control performance, i.e., a shorter settling time. This opens up a trade-off between
resource usage and control performance. The first contribution of this thesis is a strat-
egy to analyse the resource-performance trade-off in pipelined control when constant
(worst-case) delay is used. To do so, we propose a modelling and a control design
technique. The modelling technique captures the dynamic model of the system to be
controlled together with the number of parallel processing resources. The model can be
used to design a well-known Linear Quadratic Regulator (LQR) controller. LQR has
two tuning matrices that balance control effort and state deviation. However, choosing
such matrices (i.e., LQR tuning) is difficult because the matrix values do not have an
intuitive impact on time-domain controller performance metrics such as settling time.
Additionally, in pipelined control each additional processing resource produces a larger
pipelined model, which exponentially increases the number of parameters in the tuning
matrices of an LQR, making a manual tuning impractical. The proposed control design
technique uses Particle Swarm Optimization (PSO) to tune an LQR while maximizing
the control performance (i.e., minimizing the settling time). Using these modelling
and control design strategies, the trade-off between the number of resources and con-
trol performance can be analysed. This allows to choose a resource configuration that
meaningfully improves the control performance.

In real-life systems, it is common to have continuous-time model uncertainties
which might deteriorate the control performance. In the second contribution of this
thesis, the trade-off analysis of the previous step is extended to include the robustness
of the controller against model uncertainties. The technique first describes a strategy
to discretize model uncertainties with one uncertain element in the input and state ma-
trices. Next, the technique uses Lyapunov theory to quantify the controller robustness
in terms of the maximum uncertainties that the previously designed pipelined control
can tolerate before becoming unstable. The before mentioned trade-off is then extended
with the quantified robustness. A resource configuration is chosen such that it meaning-
fully improves the quality of control while guaranteeing a minimum robustness against
the model uncertainties.

The use of pipelined control requires constant availability of parallel processing
resources to run the processing algorithm. Often, the processing resources are shared
between the processing algorithm and other sporadic applications. The pipelined con-
troller performance may then be further improved dynamically allocating the process-
ing resources of the sporadic applications to the sensing algorithm. The third con-
tribution of this thesis is a Reconfigurable Pipelined Controller (RPC). RPC design
adjusts the hardware configuration (i.e., number of processing resources used for the
sensing algorithm) depending on the number of sporadic applications and control per-
formance requirements. The design of an RPC is divided into modelling and controller
design. The dimension of a pipelined control model changes with the hardware con-
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figuration. RPC requires dynamic models with the same dimension for all hardware
configurations under consideration. The proposed modelling strategy equalizes the
size of the pipelined model for all hardware configurations used. The controller design
requires one controller per hardware configuration. The controllers have to allow ar-
bitrary switching between hardware configurations, so that whenever a new sporadic
task needs to be executed the resources are freed. A controller with optimized per-
formance is designed for the hardware configuration with the largest number of re-
sources, because it produces the best performance among the hardware configurations.
The remaining controllers are designed to provide stability guarantees when arbitrarily
switching between hardware configurations. The resulting RPC performance is anal-
ysed with multiple run-time scenarios to provide design guidelines for the number of
resources to be used.

Signal-processing algorithms typically are subject to variable delay due to
scheduling policies, cache misses, or changes in data content. An application-
and implementation-dependent histogram of delay can be used to identify the worst-
case, the best-case, and one or more intermediate modes of execution time. Typically,
the worst-case delay is unlikely to happen and larger than the delay modes. Modern
processing resources are equipped with built-in timers that can be used to measure the
actual execution-time on-line. The knowledge of the histogram of delay and the on-line
measurability of the delay can be used to further improve the performance of a data-
intensive controller. The fourth contribution of this thesis is an implementation-aware
variable-delay pipelined control. We use the mentioned implementation-dependent
histogram of delay to select sampling periods that potentially improve the control
performance. The controller compensates for the variable delay using delayed sensed
state vectors, employing on-line measurements of the delay and model-based predic-
tions. Model-prediction accuracy highly depends on the model accuracy. Therefore,
the controller performance is evaluated when prediction errors occur due to model
uncertainty. A guideline is proposed to systematically select the control sampling pe-
riod, number of pipes, and desired performance depending on the maximum expected
model uncertainties.

In summary, this thesis proposes pipelined control to cope with the long sensing
delay in data-intensive controllers. The contributions of this thesis explore the design
space of pipelined control systems in terms of resource usage, control performance and
robustness, taking into account delay variability. The techniques provide a designer the
freedom to choose a control design strategy and a resource configuration suitable for
the target application.
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The introduction of technology in day-to-day life has allowed for continuous im-
provements in the quality of life of people by boosting their daily activities in terms of
safety, efficiency, and comfort. Examples of these technologies range from home ap-
pliances such as Personal Computers (PCs) to more complex systems such as airplanes.
Many modern technologies involve close interaction between physical parts (e.g., me-
chanical parts, environment) with cyber parts (e.g., embedded systems, software and
communication). Such technologies are commonly referred to as Cyber-Physical Sys-
tems (CPSs). A CPS can be a home appliance such as washing machines as well as
industrial systems such as flexible manufacturing systems, automotive systems, aero-
space systems, robotic systems, and many others [103103, 7272]. An example of a CPS is
shown in Fig. 1.1Fig. 1.1. Designing a CPS is a complicated task since it requires to consider a
wide range of system specifications such as performance, reliability, safety, flexibility,
and cost-effectiveness. For example, in Flexible Manufacturing Systems the perfor-
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Cyber part

Physical part

Figure 1.1: Example of a CPS. A car has one or more embedded systems (cyber part)
that interact with the car components (physical part) such as motor, transmission, or
navigation. Source of figure [77].

mance can be specified as output products per time unit, the reliability as number of
failures per year, and the cost-effectiveness as the ratio between system productivity
and system cost. To design such CPSs, multiple engineering disciplines are involved
because of the tight interaction between physical and cyber aspects. Some key disci-
plines include electronics, mechanics, embedded systems, control systems, communi-
cations and networking. Designing a CPS requires co-design and integration strategies,
that take into account the interplay across multiple disciplines to satisfy the specifica-
tions of the CPS [7979, 108108]. In this thesis, we focus on the challenges arising from the
co-design of control systems and embedded systems in CPSs.

1.1 Embedded systems
An embedded system is a computational system that regulates the behaviour of a larger
system such as a CPS [5757]. Similar to a PC, an embedded system is composed of
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one (or more) processors(s), a set of memories (e.g., cache, RAM, ROM), and a set
of peripherals (e.g., serial and parallel data interfaces, digital or analogue inputs and
outputs). One of the differences between an embedded system and a PC is that the
former is (commonly) used within a larger system (e.g., a CPS), while the latter is used
by an end user.

The functionality of an embedded system is defined by embedded software. Such
embedded software is designed to meet the CPS specifications such as performance,
reliability, and cost-effectiveness. Therefore, the design of this software must guaran-
tee the desired behaviour of the CPS, as well as timing requirements which are usu-
ally specified in terms of deadlines, throughput, jitter, and periodicity. These timing
requirements are either hard or soft. Hard timing requirements are assigned to applica-
tions whose satisfaction is critical for the CPS specifications (e.g., performance, reli-
ability, safety), while soft timing requirements are assigned to non-critical tasks (e.g.,
user interfaces) [114114, 5959, 146146]. The goal of an embedded-system engineer is to ensure
that such requirements are satisfied within the capabilities of the platform: processing
power, memory capacity, and so on. In this thesis, we deal with a type of applications
with (typically) hard timing requirements called control systems, which are explained
in the next section.

The capabilities of an embedded system have been growing according to Moore’s
Law prediction [9797]. Moore’s Law predicted that the number of transistors in integrated
circuits will double every two years. For decades, this enabled substantial performance
improvement in embedded systems with a single processor unit by including faster and
denser components, such as memories and processors. Nowadays, the performance
improvement of an embedded system with a single processor is limited due to the ex-
cessive heat dissipation and power consumption of the processor [4343, 4949]. The current
trend in the embedded-systems domain is to provide parallel processing (i.e., multipro-
cessing) units to further enhance the processing capabilities of an embedded system
(see for example Fig. 1.2Fig. 1.2). Parallel processing architectures are easier to cool down
because the processors are simpler and use fewer transistors, which results in lower
heat dissipation and power consumption [4343, 1616, 4949]. Examples of embedded systems
with parallel processing capabilities are multi-core processors, FGPAs, and GPUs.

In the scope of this thesis, we consider control systems with hard timing require-
ments implemented in embedded systems with multiprocessing capabilities.

1.2 Control systems
A control system is an interconnection of components (e.g., amplifiers, capacitors, re-
sistors, embedded systems) that drives a physical process (i.e., a plant) towards a de-
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Figure 1.2: Performance comparison of embedded-system architectures. Figure
adapted from [4343].

sired reference [3333, Chapter 1]. A schematic of a control system is shown in Fig. 1.3Fig. 1.3.
The control system is connected to a sensor and an actuator. The sensor converts the
state vector (e.g., the plant outputs) into electrical signals; the actuator influences the
state vector based on the controller input. A control-system engineer deals with the
design of controllers (i.e., control laws) that satisfy a performance metric referred to
as Quality of Control (QoC). Examples of performance metrics are time-domain met-
rics such as settling time, tracking velocity or overshoot (e.g., [7575, 7676, 11]), Quadratic
Costs (e.g., [3535, 99, 126126]), the closed-loop pole locations [127127], or robustness guarantees
(e.g., [4040, 5656]). Time-domain metrics are preferred in real-time applications since they
provide intuitive information of how QoC affects CPS-level design specifications such
as performance and reliability. For example, a common QoC metric is settling time,
which corresponds to the time that the controller takes to drive the plant output from an
initial state to a desired reference. Fig. 1.4Fig. 1.4 compares the settling time of two different
plants. Note that the plant with the shorter settling time arrives to the reference first. A
better QoC (i.e., a shorter settling time) can increase the performance of a CPS since
it implies that the plant is driven faster to the reference, which can be translated into a
higher system productivity. In this thesis, we consider settling time as a performance
metric for computing QoC.

A control system can be implemented in the analogue domain using operational
amplifiers, capacitors, resistors and inductors, or in the embedded domain using an
embedded system. embedded-systems implementations are nowadays preferred be-
cause they provide advantages such as ease of implementation and upgrading complex
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Embedded System

Control System Physical Part

sensing sensor

control
computation actuation actuator plant

Outputr

Figure 1.3: Example of (embedded) control system. r ∈ R is the controller reference.
The actuation, control computation, and sensing blocks represent the tasks execution
in the embedded system.

calculations, capability of storing data, and precision that is not affected by the drift of
components over time [104104, Chapter 1.2]. A control system implemented on an em-
bedded system is referred to as embedded control system, which is the scope of this
thesis.

1.3 Embedded control systems
An embedded control system executes three main tasks: sensing, control computation,
and actuation. Fig. 1.3Fig. 1.3 shows a schematic of an embedded control system. The sensing
task translates the sensor measurements into data that the controller can interpret. For
example the pulses of a quadrature encoder are translated into a shaft position by the
sensing task. The control computation task computes a controller (i.e., a control law)
that drives the plant towards the reference. The actuation task translates the computed
control law into a physically realizable signal for the actuator. For example in a motor
control system, the controller input is translated into a PWM duty cycle by the actuation
task. The implementation of these tasks in an embedded system must guarantee two
timing properties: the sampling intervals and the sensing-to-actuating delay. The sam-
pling intervals represent the time elapsed between two consecutive sampling actions.
The sampling intervals are (commonly) assumed to be equal resulting in periodic sam-
pling; therefore it is referred to as the sampling period. The sensing-to-actuating delay
represents the time elapsed between the start of the sensing task and the end of the
corresponding actuation task. The sensing-to-actuating delay is commonly assumed
negligible compared to the sampling period to simplify the control design. An example
of these timings is shown in Fig. 1.5Fig. 1.5. Note that the sampling period is much larger than
the sensing-to-actuating delay.
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Figure 1.5: Ideal implementation of an embedded control system. With h ∈ R+ the
sampling period and τ ∈R+ the sensing-to-actuating delay. Notice that h >> τ.
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The design of an embedded control system typically employs the principle of sep-
aration of concerns [9999]. This principle states that the control design can be done in-
dependently of the platform where the controller is going to be implemented, e.g., the
sensing-to-actuating delay is negligible compared to the sampling period (see Fig. 1.5Fig. 1.5);
the embedded engineer has to guarantee that the timing requirements of the controller
are satisfied in the embedded platform [9999]. To do so, an option is to use embedded
platforms with sufficiently fast processing capabilities, i.e., over-dimensioned compu-
tational resources. However, over-dimensioning might unnecessarily increase the CPS
cost, which negatively affects the cost-effectiveness of the system. To improve the re-
source usage, an alternative approach is to co-design the controller taking into account
the resulting timing properties on the embedded system, e.g., sampling period, delays,
jitter [122122, 123123]. In such a co-design strategy, the sampling period of the controller
must be chosen equal to or larger than the resulting sensing-to-actuating delay. This
gives enough time for the embedded system to compute the controller tasks before a
new sensing task begins (see Fig. 1.5Fig. 1.5). In this thesis, we consider co-design strategies
for embedded control systems.

In some control applications, the sensing task of the controller requires the compu-
tation of complex algorithms, which enlarges the sensing-to-actuating delay. When the
sensing-to-actuating delay is long, the sampling period of the controller is inevitably
enlarged, which is a known cause of QoC deterioration [110110]. For example, Fig. 1.6aFig. 1.6a
shows an embedded control system where the sensing task takes considerably longer
time to execute than the control computation and actuation tasks, which imposes a long
sampling period. This thesis considers embedded control systems with a long sensing
delay and consequently, a long sampling period. Such controllers are referred to as
Data-Intensive Sensing Control (DISC).

1.4 Data-Intensive Sensing Control (DISC)
DISC is a type of controller where the sensing task runs signal-processing algorithms.
The main advantage of using signal-processing algorithms is the capability of gener-
ating sensing information that is not easily acquired by regular sensors. A common
example of DISC is Image-Based Control (IBC), which is found in Advanced Driver
Assistance Systems (ADAS) [6767, 6868] and visual servo control [2222]. For example, in
ADAS the image-processing algorithm allows to determine traffic signals or road con-
ditions, while in visual servo control it allows to acquire the position of particular
objects.

The use of signal-processing algorithms as a sensing strategy comes at a cost of
additional processing resources and a longer sensing delay (caused by the processing
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(b) Pipelined DISC implementation with two sensing cores. h = τ
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Figure 1.6: Example implementations of DISC. A shorter sampling period h is
achieved by pipelined control. The colours follow those of Fig. 1.5Fig. 1.5.

algorithm) in the control loop. The additional processing resources of a DISC can
have a negative impact on the cost-effectiveness design specification of the CPS. The
long sensing delay enlarges the controller sampling period, which causes control prob-
lems such as QoC degradation, robustness problems, and even control instability [110110].
These problems can negatively influence the CPS specifications such as performance,
reliability, flexibility and safety. For example, in visual servo control a low QoC (i.e.,
long settling time) slows down the movement of a robotic actuator, which can nega-
tively affect the system productivity (i.e., performance); likewise, an unstable controller
in visual servo control forces the robotic actuator to stop, which affects its reliability.
This thesis addresses the design of DISC to cope with the aforementioned challenges.

1.5 State-of-the-art in DISC

The problem of a long sensing delay has been investigated in the literature from both
the embedded-systems and the control-systems viewpoints. Examples of control sys-
tem focused approaches are found in [3737, 6666, 6969, 133133, 132132]. They use estimation tech-
niques based on Kalman filters to interpolate the state vector between sensing instances
[3737, 6666] or multi-rate strategies that allow an actuation period shorter than the sensing
delay [6969, 133133]. In the embedded-systems domain, the approaches focus on reducing
the image-processing delay by creating faster parallel implementations of the algo-
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rithms in specialized embedded platforms such as GPUs [55, 124124] or FPGAs [7171, 142142].
However, these approaches have some limitations. For example, the control-systems
strategies rely on the system model to estimate sensing information. Such estimations
are vulnerable to modelling errors, they are sensitive to unmodelled disturbances, and
their prediction errors increase with longer delays. The embedded-systems approaches
rely on parallelization. Parallelization is not applicable to all real-life algorithms. Ad-
ditionally, it may be time consuming to model the algorithm to identify the scope of
parallelism, while the resulting delay might not be shorter than the desired sampling
period of the plant.

An alternative to cope with long sensing delays is to combine knowledge from
both control-systems and embedded-systems domains to create a co-design strategy
known as pipelined-sensing control. This thesis focuses on the design of such pipelined
controllers.

1.6 Proposed design philosophy: pipelined-sensing
control

Fig. 1.6Fig. 1.6 compares a classical (i.e., serial) implementation with a pipelined implemen-
tation with a 2-core resource configuration (i.e., with two sensing cores). The idea
is that the additional processing resource increases the update frequency of the sens-
ing information while the sensing delay remains the same. These extra updates of the
sensing information can be used by the controller to improve QoC. A pipelined-sensing
controller requires an embedded system with sufficient parallel processing resources to
compute the sensing algorithm in a pipelined fashion instead of a serial fashion. It
also requires that subsequent samples can be independently processed by the sensing
algorithm.

Pipelined-sensing control was introduced by Krautgartner and Vincze in [7575] and
extended in [7676, 2323, 144144]. [7575, 7676] compared a serial and a pipelined sensing in visual
servo-positioning systems using PID controllers. The pipelined sensing is shown to
outperform the serial sensing when comparing steady-state error in a tracking applica-
tion. [2323] compared a PID control, a P controller with a Kalman filter in the sensing,
and a Generalized Predictive Controller (GPC) in a vision-based control application.
The result shows that GPC achieves the best performance in terms of real-time perfor-
mance metrics (e.g., Integral of Absolute Error). [144144] studied pipelined controller in
the context of networked control systems. The authors tested PID controllers showing
that pipelined control outperforms serial control when comparing settling time, over-
shoot, and phase margin. Pipelined control has not been studied in the scope of modern
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embedded systems with multiprocessing capabilities. Control-design strategies are still
to be adapted to pipelined systems such that the resource usage is taken into consider-
ation while QoC improvement and control robustness are achieved. Such requirements
can have an impact on system-level requirements of CPS such as performance, relia-
bility, and cost-effectiveness.

1.7 Scientific challenges

In the design of pipelined-sensing controllers with modern multiprocessing embedded
systems, we have identified the following challenges.

1.7.1 Resource-aware modelling and control-design techniques

In pipelined control, the use of additional sensing resources results in a better QoC
leading to a resource vs QoC trade-off. Analysing such a trade-off allows to mini-
mize the used resources while still improving the QoC. Such an analysis can further
be used to improve the cost-effectiveness of a CPS, as well as its performance. To
analyse such a trade-off, a modelling and a control-design technique are required. The
modelling technique has to capture the interplay between controlled plant dynamics
and processing resources. The control-design technique needs resource-awareness to
provide controllers with improved QoC in terms of time-domain metrics (e.g., settling
time).

1.7.2 Robustness-aware design techniques

In modern CPSs, it is common to have continuous-time models with a known margin
of inaccuracy i.e., the model includes model uncertainties. These uncertainties of the
model cause QoC deterioration, which in turn might affect the resources QoC trade-off
of pipelined controllers, the system performance, the system cost-effectiveness, and
the system reliability. To analyse the impact of such uncertainties in pipelined systems,
a modelling and a robustness-analysis technique are required. The modelling tech-
nique must capture the interplay between system dynamics, the processing resources,
and the uncertainties. The robustness analysis technique must quantify the controller
robustness against the aforementioned model uncertainties.
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1.7.3 Variable processing resources

In CPSs, the processing resources are often shared between the DISC and other appli-
cations. Modern embedded platforms are commonly equipped with operating systems
that dynamically allocate processing resources to different tasks. Dynamically allo-
cating (i.e., reconfiguring) the processing resources to the pipelined controller can be
used to improve QoC (in terms of time-domain metrics), CPS performance, and the
CPS cost-effectiveness. Such reconfigurability requires a dedicated modelling tech-
nique and a control-design technique. The modelling technique needs to capture the
interplay between variable processing resources and controlled plant dynamics. The
control-design technique must cope with the variability in the model, must improve the
QoC, and must provide stability for all the resource configurations.

1.7.4 Variable sensing delay

The implementation of a signal-processing algorithm in modern embedded systems
typically results in a variable delay, due to platform-related variation (e.g., cache
misses) or algorithm-related variation (e.g., number of regions of interest). Such a
variable delay has a worst-case delay which is significantly longer than the more
common delays. State-of-the-art design techniques assume a constant (i.e., worst-case)
sensing delay in the controller design. Considering the most common delays in
the control design (instead of the worst-case delay) can be used to further improve
the QoC, the performance, and the cost-effectiveness. To do so, a variable-delay
control-design strategy for pipelined systems is required. Typical design techniques
for variable-delay control provide robustness guarantees against the variable-delay
while the QoC is not measured in terms of time-domain metrics. Therefore, a design
technique for pipelined systems must not only cope with the variability of the sensing
delay, but also provide QoC improvement (in terms of time-domain metrics) compared
to a worst-case design.

1.8 Thesis objective and contributions

The main objective of this thesis is to provide design techniques for pipelined-sensing
controllers using modern multiprocessing embedded systems. The design techniques
must improve on QoC, guarantee control robustness, and take into account resource
usage. A CPS designer can use these techniques to guarantee system-level specifica-
tions such as performance, cost-effectiveness, and reliability. The contributions of this
thesis are subdivided as follows.
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1.8.1 Resources vs QoC: modelling, QoC optimization and trade-
off analysis (Chapter 22)

The first contribution of this thesis is aligned with Challenge 1.7.11.7.1. We propose a
modelling and QoC optimization technique that allows to analyse the trade-off be-
tween processing resources and QoC in pipelined-sensing control. For a given re-
source configuration, a modelling technique is adapted from the literature such that
the interplay between processing resources and plant dynamics is captured. A control-
design technique based on Particle Swarm Optimization (PSO) is also proposed. The
technique finds the tuning parameters of the well-known Linear Quadratic Regulator
(LQR) which produces a controller with minimum settling time. The modelling and
control-design techniques are applied to all available resource configurations to anal-
yse the resources-QoC trade-off. Guidelines are then provided to choose a resource
configuration that meaningfully improves the QoC.

This chapter is an extended version of [9191].

1.8.2 Resources vs QoC trade-off under model uncertainties
(Chapter 33)

The second contribution of this thesis is aligned with Challenge 1.7.21.7.2. We extend the
trade-off analysis between processing resources and QoC to include robustness under
model uncertainties. Our contribution introduces a method to benchmark discrete-time
model uncertainties based on continuous-time uncertainties with one uncertain element
in the state and input matrices. The discrete-time uncertainties are used to quantify the
robustness of a designed controller, or to design a controller that enhances robustness.
The trade-off analysis mentioned above is then extended including a desired robustness
for the controller. A resource configuration that meaningfully improves the QoC while
guaranteeing a robustness constraint can then be selected.

This chapter is based on publication [9292].

1.8.3 Efficient resource usage via run-time reconfigurable con-
troller (Chapter 44)

The third contribution of this thesis is aligned with Challenge 1.7.31.7.3. We propose a Re-
configurable Pipelined Controller (RPC) that allows a run-time allocation of processing
resources based on the CPS needs. The design of an RPC is divided into a modelling
and a control-design technique. The modelling technique is adapted from the literature
to capture the interplay between variable processing resources and plant dynamics. The
control technique designs a set of controllers for each available resource configuration,
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such that QoC and stability are guaranteed. This control-design strategy allows the
RPC to arbitrarily switch the processing resources at run-time to allocate processing
resources to other tasks running in the system. The CPS can then more efficiently al-
locate extra processing resources to either the RPC or to other tasks depending on the
system needs.

This chapter is based on publication [9090].

1.8.4 Implementation-aware variable-delay pipelined controller
(Chapter 55)

The fourth contribution of this thesis is aligned with Challenge 1.7.41.7.4. We propose an
implementation-aware variable-delay pipelined controller. The controller design uses
the delay modes to select sampling periods that potentially improve the QoC compared
to a worst-case (fixed delay) design. The controller compensates for the variable delay
using on-line measurements of the sensing delay, the delayed pipelined measurements,
and model-based predictions. Such model-based predictions are highly sensitive to
model mismatches. Therefore the QoC is benchmarked using the maximum expected
level of model uncertainties and compared with a QoC produced by a worst-case de-
sign. Guidelines are then provided to select a sampling period that improves the QoC
given the uncertainty levels.

This chapter is based on publication [8888].
Combining the contributions of this thesis allows to design pipelined-sensing con-
trollers that not only improve the QoC but also consider the resource usage and control
robustness. These contributions can be further used to guarantee design specifications
in CPS such as performance, reliability, and cost-effectiveness.



1



2

15

Chapter 2
Resources-QoC trade-off analysis

2.1 Problem formulation2.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1616
2.2 Motivational example: xCPS2.2 Motivational example: xCPS . . . . . . . . . . . . . . . . . . . . . . . . . 1717
2.3 Modelling pipelined controllers2.3 Modelling pipelined controllers . . . . . . . . . . . . . . . . . . . . . . . 1919
2.4 State-of-the-art LQR tuning2.4 State-of-the-art LQR tuning . . . . . . . . . . . . . . . . . . . . . . . . . 2626
2.5 Proposed LQR tuning2.5 Proposed LQR tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3333
2.6 LQR tuning: comparison2.6 LQR tuning: comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 3636
2.7 Trade-off analysis2.7 Trade-off analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3737
2.8 Summary2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4141

To cope with a long sensing delay in a Data-Intensive Sensing Control (DISC),
we use pipelined-sensing control. Pipelined-sensing control uses extra processing re-
sources to compute the sensing algorithm in a pipelined fashion to reduce the sam-
pling period. A shorter sampling period can potentially lead to a better control per-
formance. Therefore, there is a trade-off between processing resources and Quality
of Control (QoC) in pipelined control. In this chapter, we present a method to anal-
yse this trade-off between processing resources and QoC in pipelined-sensing control,
which shows the impact of processing resources in control performance. To do so,
we model the plant taking into account a resource configuration (i.e., the number of
processing resources) to be used. For such a model and resource configuration, we
design a controller with optimized QoC using well-known control-design techniques.
The modelling and control design is repeated across multiple resource configurations
to explore the before mentioned trade-off space. We provide design guidelines based
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on our observations.
This chapter is an extended version of the work published in SAC 2017 [9191].

2.1 Problem formulation
To analyse the resources-performance trade-off a in pipelined-sensing control, a mod-
elling technique and a control-design technique are required for each resource config-
uration to be considered. The modelling technique is required to integrate the interplay
between the plant dynamics and the processing resources, while the control-design
technique is required to find a controller that maximizes control performance (i.e., the
QoC) for a given resource configuration. We propose both modelling and control-
design techniques. Our modelling technique is an adaptation of state-of-the-art models
such as [104104, Chapter 2]. Our control-design technique finds a controller that max-
imizes QoC. The settling time is selected as a performance metric, i.e., QoC = S−1

t
with St the settling time, as explained in Section 1.2Section 1.2. A shorter settling time implies a
better QoC. As a controller, we use the well-known Linear Quadratic Regulator (LQR)
[8080]. Although many other control-design techniques might be applicable here, this
technique suffices to show the impact of processing resources on control performance.
An LQR minimizes a quadratic cost derived from the state vector and the controller
input. The state deviation and the control input are weighted using the positive semi-
definite matrix Q and positive-definite matrix R, respectively. Choosing such matrices
is referred to as LQR tuning. The resulting controller balances the control input and the
state deviation, which does not necessarily imply a shorter settling time. We present a
strategy to tune an LQR such that the settling time is minimized in a pipelined-sensing
control. Next, we use the tuned controller to analyse the aforementioned trade-off.

Most of the strategies for LQR tuning focus on finding the diagonal elements of Q
and R, because a diagonal matrix remains positive (semi) definite if its elements are
greater than or equal to zero. Examples of such methods include trial and error [106106],
Bryson [2020], and evolutionary algorithms [3535, 5555, 100100, 101101, 127127]. Bryson proposed
a relationship between the maximum desired value of the states, the controller input,
and the diagonal elements of the Q and R matrices. The resulting matrices are man-
ually tuned till the desired QoC is met. Among the evolutionary algorithms, Particle
Swarm Optimization (PSO) has shown superior performance capabilities over genetic
algorithms [5555, 100100]. PSO was used to tune the diagonal elements of Q and R using the
classical PSO approach in [3535, 127127] and using modified PSO approaches in [5555, 101101].
In [5252], PSO was used to tune not only the diagonal but also the off-diagonal values of
Q and R. However, the design procedure does not allow to explore the design space,
while respecting the positive (semi) definiteness of the tuning matrices. Exploring all
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the elements of Q and R, while respecting positive (semi) definiteness remains an open
challenge. Our method to analyse the trade-off shows that tuning all the elements of
Q and R using PSO potentially improves the settling time compared to tuning only the
diagonal using the classical PSO approach. Note that the modified PSO can also be
used to compare with our method. However, classical PSO is better benchmarked in
the literature and hence, is used in this work.

Our contributions in this chapter are three fold: (i) we adapt the modelling tech-
nique of [104104, Chapter 2] to capture the interplay between processing resources and
the dynamic system in pipelined systems. (ii) We propose a systematic PSO-based
LQR tuning method for tuning all elements of Q and R matrices respecting the positive
(semi) definiteness of Q and R. The proposed LQR tuning shows improved QoC over
the state-of-the-art tuning methods that consider the diagonal of Q and R. (iii) Using
the LQR tuning, we are able to optimize the QoC for a given processing configuration.
We characterize the relation and trade-off between processing delay, the number of
sensing pipes and the QoC.

2.2 Motivational example: xCPS

The eXplore Cyber-Physical Systems (xCPS) platform is an industrial assembly-line
simulator shown in Fig. 2.1Fig. 2.1, which is used for teaching and research purposes [33, 22].
The machine assembles or disassembles circular complementary pieces (i.e., assembly
pieces) that come in two shapes: lower and upper parts.

We evaluate our approach through simulations considering characteristics and re-
quirements of xCPS. In particular, the assembly section of xCPS is considered in our
simulations. In such an assembly section, conveyor belts move the assembly pieces
through the machine actuators: a turner, multiple stoppers, and a Pick-and-Place unit,
among others. Regulating the speed and positions of the assembly blocks is crucial for
guaranteeing the correctness of the assembly process. To do so, an image-processing
algorithm based on the Hough transform for circles is used to measure the speed and
position of the assembly blocks [145145, 3131, 66]. A DISC uses the output of this algo-
rithm to regulate the assembly process. Note that the QoC of the DISC directly affects
the machine performance: a shorter settling time results in assembly blocks travel-
ling faster which potentially increases the machine throughput. Improving the QoC is
therefore meaningful for xCPS.

Example 2.1. Motivational example: To illustrate the benefits of pipelined control,
consider that in xCPS the image-processing algorithm introduces a sensing-to-
actuating delay of τ= 84 ms, the conveyor belt motor speed has an open-loop settling
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Figure 2.1: xCPS platform [33].
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(b) Pipelined DISC implementation with two sensing cores.

Figure 2.2: Example implementations of the DISC in Example 2.12.1.

time of 2.80 s (i.e., the motor speed stabilizes 2.80 s after applying a change in the
input voltage), and the two resource configurations of Fig. 2.2Fig. 2.2 are used. Fig. 2.3Fig. 2.3 shows
an example of the QoC achieved by Image-Based Controls (IBCs) with both resource
configurations. The pipelined controller shows a settling time significantly shorter
than the serial implementation. Notice that the plant response remains at zero till the
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elapsed time is longer than τ. This is because the image-processing algorithm has
yet not delivered the first sensing information; therefore no sensing information is
available to the controller.
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Figure 2.3: Example of controller response of Example 2.12.1 with and without pipelin-
ing. The round markers denote sampling instants.

2.3 Modelling pipelined controllers

As described in Section 1.6Section 1.6, a pipelined controller uses additional processing resources
to increase the sensing information available to the controller. In the next subsections,
we model such a system.

2.3.1 Plant model

We consider the following single-input single-output linear time-invariant systems of
the form:

ẋ(t ) = Ac x(t )+Bc u(t )

y(t ) =Cc x(t ),
(2.1)

where Ac ∈Rn×n the state, Bc ∈Rn×1 the input, and Cc ∈R1×n are the output matrices.
Further, x(t ) ∈ Rn×1 is the state vector, u(t ) ∈ R is the input, and y(t ) ∈ R is the output
at time t ∈R≥. The plant has n ∈Z+ states, 1 input, and 1 output. In pipelined control,
there is a sensing-to-actuating delay introduced by the latency of the data-intensive
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algorithm. Therefore, the control input depends on old state-vector information, i.e.,

u(t ) = f (x(t −τ))

where τ ∈R+ is the sensing-to-actuating delay.

2.3.2 Sensing-to-actuating delay

Sensing, control computation and actuation operations are executed on an embedded
platform. They take a finite time to execute, which may vary over different execu-
tions. We assume the operations run on a state-of-the-art predictable multi-core plat-
form (such as [4848]) where worst-case execution time is measurable and predictable.
These tasks have worst-case execution time τs ∈ R+, τc ∈ R+ and τs ∈ R+ for sensing,
control computation and actuation operations, respectively. Since the sensing opera-
tion involves computationally intensive image processing, in DISC, τc and τa are short
compared to τs , i.e.:

τs À τc +τa .

This property holds for many real-time systems, where a signal-processing algorithm
is used to acquire sensing data. The sensing-to-actuating delay τ is given by,

τ= τs +τc +τa . (2.2)

Note that a long τs increases τ. A large τ means that pipelining might be beneficial.
Sensing, control computation, and actuation operations are activated in a time-triggered
fashion. The start times of the k th sensing operation t s

k ∈R≥ are defined by

t s
k = kh,

with h ∈R+ the sampling period measured between the start of two consecutive sensing
operations, i.e., h = t s

k+1 − t s
k , and k ∈Z≥ the discrete-time index. The start time of the

k th control computation t c
k ∈R+ and the k th actuation operation t a

k ∈R+ are given by,

t c
k = t s

k +τs

t a
k = t c

k +τc .

The corresponding actuation operations are therefore completed at t = t a
k +τa . Since

τs ,τc , and τa are assumed constant, the sensing-to-actuating delay τ is also constant
with the above time-triggered activation policy.
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2.3.3 Sampling period
The sampling period is the time elapsed between the start of two consecutive sensing
operations. In an ideal case, τ is negligible compared to the plant dynamics. In this
case, the sampling period can be chosen, for example, using the following rule of thumb
[104104, Chapter 2.9]:

hRt ≈
Rt

10
, (2.3)

with hRt ∈ R+ is sampling period based on the rise time and Rt ∈ R+ the plant open-
loop rise time. However in DISC, the sensing task introduces significant sensing-to-
actuating delay τ. Therefore, the sampling period is chosen according to the execution
times of the platform operations. Using the serial implementation of Fig. 2.2aFig. 2.2a, the
sampling period is defined as:

hs = τ, (2.4)

where hs ∈ R+ is the serial sampling period in a DISC. Therefore, the sensing-to-
actuating delay may force a sampling period which is larger than the ideal one com-
puted based on the plant dynamics, i.e., hs > hRt . This potentially limits the controller
performance.

Pipelining the sensing algorithm is a solution for this performance limitation. In
pipelined-sensing control, the sampling period is defined not only by the execution
times of operations, but also by the number of used processing resources:

h = τ

γ
, (2.5)

where γ ∈ Z+ is the number of processing resources. Note that increasing γ pro-
duces a smaller sampling period, which potentially improves the QoC. The duration
τ is divided into γ samples of length h. Given that the sensing operation dominates
the sensing-to-actuating delay, the corresponding control and actuation operations are
typically performed in the last interval of length h. These timings are illustrated in
Fig. 2.2bFig. 2.2b. Recall from Section 1.6Section 1.6 that we assume that subsequent samples can be
processed independently.

2.3.4 Data-intensive sensor
The data-intensive sensor is the device that acquires the data for the sensing operation.
In this work, we consider a camera as a data-intensive sensor. For a controller, it is
important that a sensing operation is started periodically, according to the sampling pe-
riod h. Often, cameras are triggered at a fixed frame rate. We consider a time-triggered
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camera [6464] which allows for acquisition of frames in a time-triggered fashion. For
the controllers designed in this chapter (and Chapters 33 and 55), it suffices that the data-
intensive sensor acquires frames periodically with a period given by:

hac = h, (2.6)

where hac ∈R+ is the period of data acquisition.

2.3.5 Discretization of the pipelined model
2.3.5.1 Model discretization

The discrete-time equivalent of Eq. 2.1Eq. 2.1 has the following form:

xk+1 = Ad xk +Bd uk−γ
yk =Cc xk ,

(2.7)

where Ad ∈ Rn×n and Bd ∈ Rn×1 are the discrete-time state and input matrices respec-
tively, defined as [88]:

Ad = e Ac h

Bd =
∫ h

0
e Ac s Bc d s.

(2.8)

xk ∈ Rn×1 and yk ∈ R are the discrete-time state and output vectors, respectively, and
xk := x(kh) and yk := y(kh) with k ∈ Z≥. uk−γ ∈ R is the discrete-time control input
which is designed in Section 2.4.1Section 2.4.1. The control input is implemented using a Zero-
Order Hold (ZOH) to keep the actuation signal constant between consecutive sampling
instants. This results in u(t ) := uk−γ for all t ∈ [kh, (k + 1)h). The continuous-time
control input is therefore piecewise constant in this interval. Fig. 2.4Fig. 2.4 illustrates the
relationship between different timing components. Note that due to the sensing-to-
actuating delay, the first available sensing information of the model of Eq. 2.7Eq. 2.7 appears
at time t = τs (assuming that the first sensing operation is triggered at t = 0). There-
fore, the control inputs in the time interval [0,τ) have no sensing information. This is
addressed in the control input design presented in Section 2.4.1Section 2.4.1.

In the model of Eq. 2.7Eq. 2.7, uk−γ captures the sensing-to-actuating delay assuming that
the control input is delayed τ= γh time units. Capturing the sensing-to-actuating delay
can also be done by delaying the observation of the state vector, or in other words, by
only using information that is τ = γh time units old. This results in a model closer to
the physical behaviour of the system, as is shown in Section 2.3.6Section 2.3.6. However, the model
of Eq. 2.7Eq. 2.7 reduces the sizes of the model matrices compared to the alternative model of
Section 2.3.6Section 2.3.6, which is why it is the preferred approach in this thesis.
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Figure 2.4: Relationship between the delay τ and the sampling period h. The colour
notations are the same as in Fig. 2.2bFig. 2.2b.

2.3.5.2 Augmented non-delayed model

The model of Eq. 2.7Eq. 2.7 uses a delayed control input uk−γ. We transform this model
into a standard non-delayed canonical form, which can be used to apply a wide range
of analysis and design methods. To do so, the following state-vector augmentation is
proposed:

zk = [
xT

k uk−γ uk−γ+1 · · · uk−2 uk−1
]T

, (2.9)

which results in the following discrete-time model of pipelined systems:

zk+1 =Φd zk +Γd uk

yk =Cd zk ,
(2.10)

with zk ∈ R(n+γ)×1 the discrete-time augmented state vector, uk ∈ R the discrete-time
input, yk ∈ R the discrete-time output with yk = y(kh) and k ∈ Z≥, Φd ∈ R(n+γ)×(n+γ)

and Γd ∈ R(n+γ)×1 the augmented discrete-time state and input matrices, respectively,
and Cd ∈R1×(n+γ) the discrete-time augmented output matrix. Note that the number of
additional states corresponds to γ (i.e., the number of processing resources).

The discrete-time augmented matrices are defined by:

Φd =


Ad Bd 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0


Γd = [

0 0 . . . 0 1
]T

Cd = [
Cc 0 0 . . . 0 0

]
,

(2.11)

where 0 denotes zero matrices of appropriate dimensions. The discrete-time pipelined
model defined in Eq. 2.10Eq. 2.10 is used in the next section to design a controller with opti-
mized QoC.
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Example 2.2. Modelling pipelined system: Consider the motivational example of
Section 2.2Section 2.2. The model of the conveyor belt has two states x(t ) = [

x1(t ) x2(t )
]T , one

input u(t ), one output y(t ) = x1(t ), and the following matrices:

Ac =
[

0 1.7
−9 −2.5

]
,Bc =

[
0

10

]
,Cc = [1 0] .

A camera and an image-processing algorithm are used as a sensor for measuring the
states x1(t ) and x2(t ), which correspond to the block positions and velocity, respec-
tively. The total sensing-to-actuating delay is τ= 84 ms. The open-loop step response
has a rise time of Rt = 337 ms and a settling time of St = 2.80 s. Defining the sam-
pling period using the rule of thumb of Eq. 2.3Eq. 2.3, results in hRt = 33 ms. However, the
sensing-to-actuating delay forces computing the sampling period using Eq. 2.4Eq. 2.4, which
results in hs = 84 ms. Since hs > hRt the control performance is potentially limited.

An embedded platform with two processing resources is therefore used for the
DISC, i.e., γ = 2. Using Eq. 2.5Eq. 2.5, the sampling period is then defined as h = 42 ms.
The augmented state vector defined in Eq. 2.9Eq. 2.9 is given by: zk = [

x1
k x2

k uk−2 uk−1
]T .

Applying the discretization of Eq. 2.8Eq. 2.8 and the model augmentation of Eq. 2.11Eq. 2.11 gives:

Φd =


0.986 0.070 0.015 0
−0.358 0.886 0.397 0

0 0 0 1
0 0 0 0

 ,Γd =


0
0
0
1

 ,Cd =


1
0
0
0


T

.

2.3.6 Alternative discretization of the pipelined model
We present an alternative model discretization, which captures the sensing-to-actuating
delay by delaying the observation of the state vector rather than delaying the control
input.

2.3.6.1 Model discretization

An alternative discretization to the model presented in Eq. 2.1Eq. 2.1 results in:

x A
k+1 = Ad x A

k +Bd u A
k , (2.12)

where Ad and Bd are defined in Eq. 2.8Eq. 2.8, x A
k ∈Rn×1 is the state vector with x A

k = x(kh),
k ∈ Z≥, and u A

k ∈ R is the control input which is kept constant between sampling in-
stants using a ZOH. This results in u(t ) := u A

k for all t ∈ [kh, (k +1)h). To capture the
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sensing-to-actuating delay, the control law may depend only on available (i.e., delayed)
measured state vector:

u A
k = f (x A

k−γ). (2.13)

Controllers with such a feedback impose restrictions on the controllability and design
due to the fact that only an old delayed state vector is available for control computation.
Moreover, common design strategies such as LQR and pole placement are not directly
applicable [5050].

2.3.6.2 Augmented non-delayed model

To obtain a canonical form of Eq. 2.12Eq. 2.12, the following state augmentation that keeps
track of all relevant old state information is proposed:

z A
k =

[
(x A

k )T (x A
k−1)T · · · (x A

k−γ+1)T (x A
k−γ)T

]T
, (2.14)

which results in the alternative discrete-time model of pipelined systems:

z A
k+1 =ΦA

d z A
k +ΓA

d u A
k

y A
k =C A

d z A
k ,

(2.15)

with z A
k ∈ Rnγ the alternative augmented state vector, u A

k ∈ R the alternative input vec-
tor, y A

k ∈R the alternative output vector, ΦA
d ∈R(nγ)×(nγ) and ΓA

d ∈Rnγ×1 the alternative
augmented discrete-time state and input matrices, respectively, and C A

d ∈ R1×(nγ) the
alternative discrete-time augmented output matrix.

The alternative discrete-time augmented matrices are defined as:

ΦA
d =


Ad 0 . . . 0 0
I 0 . . . 0 0
...

...
. . .

... . . .
0 0 . . . 0 0
0 0 . . . I 0


ΓA

d = [
B T

d 0 . . . 0 0
]T

C A
d = [

Cc 0 . . . 0 0
]

,

(2.16)

where I and 0 denote identity and zero matrices of appropriate dimensions, respec-
tively.

Compared to the model of Eq. 2.7Eq. 2.7, the model of Eq. 2.13Eq. 2.13 captures the sensing-to-
actuating delay of a pipelined system by delaying the state-vector measurements rather
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than delaying the control input. Although delaying the state-vector measurements is
a closer representation of how the real DISC works, it adds extra complexity to the
control design due to the dependence of the control input on a delayed state vector.
Moreover, the model of Eq. 2.13Eq. 2.13 stores old state vectors in the augmented state matrix
instead of old controller inputs. This results in larger augmented matrices when the
number of states is larger than one (i.e., n > 1), which is a common scenario in control
systems. Larger augmented matrices result in an even more challenging control design,
because it results in extra parameters for which tuning is required. Consequently, the
modelling approach of Section 2.3.5Section 2.3.5 is preferred over the approach of Section 2.3.6Section 2.3.6.

2.4 State-of-the-art LQR tuning
In this section, we present the basics of LQR control and the state-of-the-art LQR
tuning method based on classical PSO. Recall from Section 2.1Section 2.1 that we want to find a
controller that minimizes the settling time for each resource configuration.

2.4.1 LQR controller
2.4.1.1 Control law

Consider the following control law:

uk = K zk +F r, (2.17)

with K ∈ R1×(n+γ) the feedback control gain, F ∈ R the static feed-forward gain, and
r ∈ R the reference. We apply uk = 0 for k < γ since we need to wait for the first
sample to compute the control input. We consider a set-point regulation problem where
the objective is to make sure yk → r as k →∞.

2.4.1.2 Design objectives

The control law of Eq. 2.17Eq. 2.17 is designed to maximize a QoC metric defined by

QoC = 1

St
,

with St ∈ R+ the controller settling time in seconds. The design objective is therefore
to minimize settling time.

The settling time is determined simulating the response of the continuous-time sys-
tem when the closed-loop discrete-time controller is used. To compute the settling time,



2

2.4 State-of-the-art LQR tuning 27

the 2% criterion is used, i.e., the system needs to reach and remain within a bound of
2% around the reference r . The settling time is therefore computed as the time elapsed
between a reference change and the system reaching (and remaining within) the afore-
mentioned bound.

2.4.1.3 Feedback gain design

An LQR controller finds K minimizing the following cost function:

J =
∞∑

k=0

(
zT

k Qzk +uT
k Ruk

)
, (2.18)

with Q ∈ R(n+γ)×(n+γ) and R ∈ R1×1 the state and input weight matrices, respectively,
which are positive semi-definite and positive definite matrices, respectively, i.e., Q =
QT º 0 and R = RT Â 0. These are the tuning parameters of the LQR [8080, 5858]. Note that
Q º 0 does not guarantee that the resulting controller is always stable because Q = 0
might neglect the effect of the state vector in the cost function. To guarantee stability,
an additional condition requires the pair (Q,Φd ) to be observable (or detectable) [8080].
Taking into account that this thesis deals with single-input single-output systems, R is
a scalar value. Thus, we need that R > 0. We take into account these conditions during
the controller design based on PSO.

The solution of Eq. 2.18Eq. 2.18 yields a non-linear equation known as the Ricatti Equa-
tion. Since there is no closed-form solution for this equation, iterative algorithms are
commonly used to solve it [1111]. To obtain an optimal controller for a time-domain
metric such as settling time, the values of Q and R must be tuned. No analytic method
exists to tune such matrices for time-domain metrics. In common approaches for tun-
ing LQR (except [5252]), Q and R are assumed to be diagonal. Consequently, each state
and input value is weighted by one value in the tuning matrices reducing the design
space. This results in an acceptable QoC and simple design procedure. However, by
tuning all the elements of Q and R, a better QoC can be achieved.

2.4.1.4 Feed-forward gain design

Once K is found, a feed-forward gain F is calculated using Proposition 2.12.1 to achieve
set-point regulation.

Proposition 2.1. [5858] The plant output yk of the system of Eq. 2.10Eq. 2.10 with the control
law of Eq. 2.17Eq. 2.17 converges to a constant reference r if the closed-loop system matrix
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Φcl =Φd +Γd K is stable, the matrix
[
Φd − I Γd

Cd 0

]
is invertible, and F is defined by

F = [
K I

][
Φd − I Γd

Cd 0

]−1 [
0
1

]
, with I and 0 denoting identity and zero matrices of appropriate dimensions, respec-
tively.

Note that the control is designed in two steps i.e., first the feedback gain and then
the feed-forward gain. This allows us to treat stability and performance aspects sepa-
rately. Alternative design strategies such as Linear Quadratic Integrator (LQI) can also
be used to design both gains in one step. In principle, these approaches can be adapted
to our work. However, in the case of switched systems (which we deal with in Chap-
ters 33 and 44), it is hard to find controllers that improve QoC in terms of time-domain
metrics for LQI formulations [9494]. This motivates us to use the current two-step ap-
proach.

Example 2.3. LQR tuning: Consider the IBC of Example 2.22.2. The tuning of Q and
R has the following form:

Q =


Q(1,1) Q(1,2) Q(1,3) Q(1,4)

Q(1,2) Q(2,2) Q(2,3) Q(2,4)

Q(1,3) Q(2,3) Q(3,3) Q(3,4)

Q(1,4) Q(2,4) Q(3,4) Q(4,4)

 ,R = [
R(1,1)] ,

where Q(p,q) ∈ R with p, q ∈ {1,2,3,4} and R(1,1) ∈ R+ are constants to be tuned for the
shortest settling time. Using Eq. 2.18Eq. 2.18, the cost reduces to:

J =
∞∑

k=0

(
x1

kQ(1,1)x1
k +x1

kQ(1,2)x2
k +x1

kQ(1,3)uk−2 +x1
kQ(1,4)uk−1 + . . .

+uk−1Q(4,4)uk−1 +uk R(1,1)uk
)
.

(2.19)

In case only the diagonal elements are tuned, the off-diagonal elements are set to zero
(e.g., Q(1,2) = Q(1,3) = Q(1,4) = 0, etc.). This means that the interaction between the
states in the state vector is not considered in the minimization of the cost function.

We show that considering all the values of Q and R while tuning an LQR provides
a better QoC in pipelined-sensing controllers.
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2.4.2 PSO concepts
PSO is an evolutionary algorithm introduced by Kennedy and Eberhart in [7070]. The
algorithm was inspired by the behaviour of bird flocking and fish schooling, where a
population of individuals collaboratively move using swarm intelligence to achieve a
common goal such as finding the best feeding spot. In PSO, a population of individuals
(particles) searches in parallel a problem design space to find a value that maximizes a
fitness metric.

In PSO, the population is defined according to:

X(l ) = {
X j (l ) | j = 1, . . . ,m

}
,

with X j (l ) ∈ R f ×1 a particle j in the population, m ∈Z+ the population size (i.e., total
number of particles), l ∈ Z+ the iteration number, and f ∈ Z+ the size of the design
space. PSO has two phases: initialization and exploration. During the initialization
phase, the particles in the population X are (commonly) randomly initialized. During
the exploration phase, each individual is updated according to:

X j (l +1) = X j (l )+V j (l ), (2.20)

with V j (l ) ∈ R f ×1 the velocity of the particle j . The particles are updated until a stop
criterion is met. Typical stopping criteria are the lack of progress for a fixed number of
iterations or a maximum number of iterations reached.

The swarm intelligence of the PSO particles is achieved by the definition of the V j .
A common definition is:

V j (l ) = wV j (l −1)+Cp rnd1(l )
(
X j (l )−X pb j (l )

)+
Cg rnd2(l )

(
X j (l )−X g b(l )

)
, (2.21)

with rnd1(l ), rnd2(l ) random uniformly distributed numbers in the range [0,1],
X pb j (l ) ∈ R is the particle j with the historically best fitness over all iterations,
X g b(l ) ∈ R the particle with the historically global best fitness of the whole swarm
and over all iterations, and Cp , Cg , and w tuning parameters. X pb j (l ) and X g b(l ) are
determined using a fitness metric F :

X pb j (l ) = arg max
s=1,...,l

F
(
X j (s)

)
(2.22)

X g b(l ) = arg max
s=1,...,l ,
j=1,...,m

F
(
X j (s)

)
, (2.23)
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with F (X j (s)) ∈ R the fitness of the particle X j (s) at iteration s. The fitness metric
corresponds to the optimization objective of the PSO algorithm.

PSO has four tuning parameters. The population size m ∈ Z+ is chosen according
to the size of the design space [3535]. The personal and global confidence Cp ∈ R+ and
Cg ∈ R+ pull the speed towards X pb j (l ) and X g b(l ), respectively. A small value for
these parameters can limit the movement of the particles (implying they might fall into
a local optimum) while a large value can cause the swarm to diverge. A typical value
for these parameters is in the range of [1,2] [5454, 5252, 3535]. The inertia w ∈ R+ controls
the exploration properties of the algorithm. A larger number yields a more global
exploration while a smaller value results in a more local behaviour [3535]. Typical values
for w range in [0,1] [5454, 5252, 127127]. Note that Eq. 2.21Eq. 2.21 has three elements: one relative
to the inertia that models the tendency of the particle to keep its previous direction, one
relative to the personal element that models the attraction of the particle towards the
best element it has ever found, and one relative to the attraction of the particle towards
the best position ever found in the swarm. The tuning parameters are used to balance
these elements.

PSO has advantages over other evolutionary algorithms such as genetic algorithms
because of the fewer parameters to tune, less computational effort, and the use of swarm
intelligence to evolve (X pb j (l ) and X g b(l )) rather than a competition between parti-
cles (natural selection), which allows for a faster convergence [3030].

2.4.3 Classical LQR tuning using PSO
For benchmarking purposes, the classical LQR-tuning PSO algorithm is presented in
this section. Additionally, we update this algorithm to meet the stability conditions
and the design objectives of Section 2.4.1Section 2.4.1. Recall that PSO has been used in a wide
range of applications including tuning of LQR [3535, 101101, 127127]. Classical approaches for
tuning LQR using PSO assume that only the diagonal elements of Q and R are tuned
(except for [5252]).

2.4.3.1 Fitness metric

The fitness of the PSO corresponds to the desired QoC of the controller. The fitness
selection varies from one application to the other. It can be selected as the cost func-
tion of the LQR [101101], a modified cost function [3535], the closed-loop poles location
[127127], or a time-domain criterion (e.g., settling time, steady-state error, rise time, and
overshoot) [5555]. Cost-related fitnesses are advantageous due to their ease of imple-
mentation because the cost is computed as per Eq. 2.18Eq. 2.18. However, they cannot be
used in our application because when comparing different processing configurations
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the number of states changes (see Eq. 2.9Eq. 2.9). Therefore, the cost is affected by different
states resulting in an unfair comparison. Determining the closed-loop pole locations re-
quires more computational effort, but special properties of the resulting controller can
be guaranteed (e.g., robustness). Robustness is a highly application-dependent QoC
metric; therefore such a fitness is not useful either. Time-domain criteria can shape
the controller response at a cost of extra computational effort caused by the fact that
the plant’s step response needs to be computed for every fitness evaluation. PSO is
applicable to any of these fitness options.

In line with the design objectives of Section 2.4.1Section 2.4.1, the fitness is computed as:

F
(
X j (l )

)=−St , j (l ), (2.24)

where St , j (l ) ∈ R+ is the closed-loop settling time of the continuous-time system with
the controller generated by the particle j at iteration l . The negation is to take into
consideration the minimization problem of settling time.

2.4.3.2 Algorithm flow

A pseudo code of the classical PSO algorithm for tuning an LQR is shown in Algo-
rithm 11. The algorithm starts generating a random population X. Each particle in the
population is defined according to:

X j (l ) =
(
Q(1,1)

j (l ),Q(2,2)
j (l ), . . . ,Q(γ+n,γ+n)

j (l ),R(1,1)
j (l )

)
,

where Q(1,1)
j (l ), . . . ,Q(γ+n,γ+n)

j (l ) and R(1,1) are the (non-negative) diagonal elements of
the Q j and R j matrices of particle j at iteration l . Note that the size of the design space
corresponds to the number of diagonal elements in Q and R, i.e., f = n +γ+1.

For each particle, the algorithm assembles the Q j (l ) and R j (l ) LQR tuning matrices
based on the diagonal elements stored in X j (l ). The observability condition of the pair
(Q j (l ),Φd ) is then checked. In case this condition is met, the controller gains and the
fitness are computed. The fitness requires the computation of the controller settling
time. This is done simulating the continuous-time system response when the discrete-
time controller is used, as described in the design objectives of Section 2.4.1Section 2.4.1. The
particle’s personal best is then updated, if improved by the newly computed fitness. In
case the observability condition is not met, the settling time of the particle is infinite,
resulting in a fitness of minus infinity, corresponding to an unstable controller.

Once the finesses of each particle is computed, the global best of the swarm is
updated, if it is improved by the newly computed fitness.

The algorithm proceeds then to update each particle according to the velocity up-
date. To guarantee Q j (l +1) º 0 and R j (l +1) Â 0, a constraint-violation correction is
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Algorithm 1 Classical PSO algorithm

1: Input: system model, sampling period, PSO tuning parameters
2: Initialize X
3: for l = 1, . . . ,max iterations do
4: for j = 1, . . . ,m do
5: Create diagonal R j (l ) and Q j (l ) from X j (l )
6: if (Q j (l ),Φd ) observable then
7: Compute controller gains K j (l ) and F j (l ) (Eq. 2.18Eq. 2.18 and Proposition 2.12.1)
8: Find fitness F

(
X j (l )

)
(Eq. 2.24Eq. 2.24)

9: Update X pb j (l ) (Eq. 2.22Eq. 2.22)
10: else
11: F (X j (l )) =−∞
12: end if
13: end for
14: Update X g b(l ) (Eq. 2.23Eq. 2.23)
15: for j = 1, . . . ,m do
16: Find V j (l ) (Eq. 2.21Eq. 2.21)
17: Update particle to X j (l +1) (Eq. 2.20Eq. 2.20)
18: Constraint-violation correction (Q j (l +1) º 0,R j (l +1) Â 0)
19: end for
20: if Stop criterion met then
21: Stop algorithm
22: end if
23: end for
24: Output: Q,R, and K from X g b(l )

implemented. Therefore, all the elements in each particle are kept non-negative and
positive for Q j (l + 1) and R j (l + 1), respectively. Recall that a diagonal matrix with
only non-negative entries results in positive semi-definiteness. Therefore, if any of the
elements in the X j (l +1) violates the assumptions, then velocity V j (l ) is successively
halved until the resulting elements in X j (l +1) satisfy the assumptions.

The algorithm finishes when a stopping criterion is met, such as the criterion that
no improvement in the global best is found for a fixed number of iterations or if a
maximum number of iterations is reached.
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2.5 Proposed LQR tuning
In this section, we present our method to tune all elements of Q and R, while guaran-
teeing Q =QT º 0 and R = RT Â 0. In terms of the example presented in Example 2.32.3,
we consider in the cost function all elements of the Q matrix including the off-diagonal
elements.

2.5.1 Population definition

The classical PSO algorithm guarantees Q j (l ) º 0 and Rl ( j ) Â 0 by making these tun-
ing parameters diagonal matrices with only non-negative and positive elements, re-
spectively. In the proposed PSO, this is not directly applicable to Q j (l ) because while
exploring all its elements, negative definiteness can appear even if all the elements of
Q j (l ) are positive. Therefore, we use Proposition 2.22.2 below to define Q j (l ). This propo-
sition allows to create a positive semi-definite matrix Q j (l ) through a random matrix
Q̂ j (l ). The PSO algorithm freely explores all the elements in Q̂ j (l ), which will always
lead to Q j (l ) º 0. Guaranteeing Rl ( j ) Â 0 is trivial for a single-input single-output
system, which is the case for this thesis. However, to make the algorithm applicable
to multiple-input multiple-output systems, one could follow an approach identical to
Q j (l ) for defining R j (l ), taking into account Remark 2.12.1.

Each particle is then defined as the concatenation of all elements of the intermediate
matrices Q̂ j (l ) and R̂ j (l ):

X j (l ) =
(
Q̂(1,1)

j (l ),Q̂(1,2)
j (l ), . . . ,Q̂(1,γ+n)

j (l ),Q̂(2,1)
j (l ),Q̂(2,2)

j (l ), . . . ,Q̂(n+γ,n+γ)
j (l ), R̂(1,1)

j (l )
)

with Q̂(1,1)
j (l ), . . . ,Q̂(n+γ,n+γ)

j (l ) all the elements of the matrix Q̂ j (l ), Q̂ j (l ) ∈R(n+γ)×(n+γ)

an intermediate matrix to compute Q j (l ), R̂(1,1)
j (l ) the element of the matrix R̂ j (l ),

R̂ j (l ) ∈R1×1 and intermediate matrix to compute R j (l ) according to:

R(1,1)
j (l ) = (R̂(1,1)

j (l ))2. (2.25)

In this case, the design space of the PSO covers all the elements in the Q and R matrices,
i.e., the size of the design space is f = (n +γ)2 +1.

Proposition 2.2. Let Q be a symmetric matrix of order i . Q is positive semi-definite if
there exists a matrix Q̂ ∈Ri×i of rank(Q̂) ≤ i , such that Q = Q̂T Q̂.

Proof. [3232, Proposition 2.62].
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Remark 2.1. Note that if in Proposition 2.22.2, rank(Q̂) = i , then Q would be positive
definite.

Example 2.4. PSO particle definition: Continuing with Example 2.32.3, the j th particle
is defined as:

X j (l ) =
(
Q̂(1,1)

j (l ),Q̂(1,2)
j (l ),Q̂(1,3)

j (l ),Q̂(1,4)
j (l ),Q̂(2,1)

j (l ), . . . ,Q̂(4,4)
j (l ), R̂(1,1)

j (l )
)

,

where

Q̂ j (l ) =


Q̂(1,1)

j (l ) Q̂(1,2)
j (l ) Q̂(1,3)

j (l ) Q̂(1,4)
j (l )

Q̂(2,1)
j (l ) Q̂(2,2)

j (l ) Q̂(2,3)
j (l ) Q̂(2,4)

j (l )

Q̂(3,1)
j (l ) Q̂(3,2)

j (l ) Q̂(3,3)
j (l ) Q̂(3,4)

j (l )

Q̂(4,1)
j (l ) Q̂(4,2)

j (l ) Q̂(4,3)
j (l ) Q̂(4,4)

j (l )

 .

2.5.2 LQR tuning for a given number of pipes
Our algorithm is shown in Algorithm 22. The algorithm is divided into two phases:
initialization and exploration. During the initialization phase, the population size is
chosen according to the number of variables to tune. By means of simulations, we
propose the following initial values for the tuning parameters. For the population size
m, we take

2γmu +emcγ, (2.26)

rounded to the nearest natural number, where mu = (n +1)2 +1 is the number of un-
known values that the PSO needs to find (i.e., the total number of elements in Q and R
for the augmented model) with one sensing pipe. mc is a design parameter that depends
on the complexity of the dynamic model. The exponential term increases the swarm
size with the number of pipes. This is necessary because the size of the design space f
also grows with the number of pipes according to f = (n +γ)2 +1. The population can
be initialized with random values in the set of real numbers. During the exploration
phase, a positive semi-definite Q j (l ) and a positive R j (l ) are calculated according to
Proposition 2.22.2 and Eq. 2.25Eq. 2.25, respectively. If the pair (Q j (l ), Φd ) is observable, the
controller gains, the fitness, and the personal and global best are found. Note that the
rank condition from Proposition 2.22.2 is not explicitly checked because the observability
condition suffices to guarantee that the resulting controller is stable. If the pair (Q j (l ),
Φd ) is not observable (because, for example Q j (l ) = 0), then the settling time of the
particle is set to infinite. The iterations are stopped when the global best is unchanged
during a fixed number of iterations or the maximum number of iterations is reached.
With this method, the settling time is minimized for a fixed number of pipes by tuning
all values of Q and R.
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Algorithm 2 Proposed PSO algorithm

1: Input: system model, sampling period, PSO tuning parameters
2: Initialize X
3: for l = 1, . . . , max iterations do
4: for j = 1, . . . ,m do
5: Create Q̂ j (l ), R̂ j (l ) from X j (l )
6: Find R j (l ) (Eq. 2.25Eq. 2.25) and Q j (l ) (Proposition 2.22.2)
7: if (Q j (l ),Φd ) observable then
8: Compute controller gains K j (l ) and F j (l ) (Eq. 2.18Eq. 2.18 and Proposition 2.12.1)
9: Find fitness F

(
X j (l )

)
(Eq. 2.24Eq. 2.24)

10: Update X pb j (l ) (Eq. 2.22Eq. 2.22)
11: else
12: F

(
X j (l )

)=−∞
13: end if
14: end for
15: Update X g b(l ) (Eq. 2.23Eq. 2.23)
16: for j = 1, . . . ,m do
17: Find V j (l ) (Eq. 2.21Eq. 2.21)
18: Update particle X j (l +1) (Eq. 2.20Eq. 2.20)
19: end for
20: if Stop criterion met then
21: Stop algorithm
22: end if
23: end for
24: Output: Q,R,K from X g b(l )

Example 2.5. PSO tuning results: Continuing with Example 2.42.4, the PSO algorithm
is implemented using Matlab. The population size is defined with mc = 0.7, γ= 2, and
mu = 10, which results in a swarm with m = 44 particles. Each particle is initialized
with random numbers in the range [−1,1]. The tuning parameters were experimentally
chosen as:

w = 0.5,Cp = 1.5,Cg = 1.5. (2.27)

As stopping criterion, we used 200 as a maximum number of iterations and 10 for a
fixed number of iterations with no change in the global best. Via numeric experimen-
tation, we established that this number of iterations are upper margins that guarantee
no other global best is found by the optimization algorithm. The controller finds an
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optimal settling time of St = 123.5 ms. The resulting controller gains are:

K = [−30.9 −7.3 −2.7 −1.9
]

,F = 36.1.

2.6 LQR tuning: comparison
The resulting settling time of the tuned LQR controllers for our running example with
different numbers of pipes is shown in Fig. 2.5Fig. 2.5. We compared our method with two
benchmarking strategies for designing controllers: Bryson’s method [2020] and the clas-
sical PSO for tuning the diagonal of Section 2.4.3Section 2.4.3. Bryson’s method results in a stable
controller, although it is not meant to produce minimum settling time. Both bench-
marking strategies are implemented using Matlab.
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Figure 2.5: Comparison of LQR tuned with different strategies on our motivational
example.

With Bryson’s method, the maximum desirable deviation of the states and con-
troller input is used to find an initial value of the diagonal of Q and R. Eq. 2.18Eq. 2.18 is
minimized resulting in a feedback gain that is used to compute the controller step re-
sponse. If the resulting settling time is unsatisfactory, Q and R are manually adjusted
and the process is repeated.

The parameters of the PSO algorithm for tuning the diagonal are the same as for
the PSO tuning the whole matrices, i.e., Eq. 2.21Eq. 2.21 is used to update the swarm, Eq. 2.24Eq. 2.24
is used as fitness, Eq. 2.26Eq. 2.26 is used to select the population size with mc = 0.7, and w ,
Cp , and Cg are as considered in Eq. 2.27Eq. 2.27. Parameter mu is adjusted according to the
number of free variables with one pipe, i.e., mu = 10 for the proposed PSO algorithm
while mu = 4 for the classical PSO algorithm.

The random initialization of the PSO algorithm might produce different results be-
tween equal executions. Hence, each simulation is executed 10 times for each number
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of pipes. We plot the average settling time of such consecutive runs and we include
an error bar which corresponds to the standard deviation in Fig. 2.5Fig. 2.5. A large standard
deviation means that the PSO algorithms are converging to different local optima in
every algorithm repetition. This happens because the population is not large enough
to explore the whole design space and it is solved by enlarging the population. The
number of pipes is increased till the QoC improvement is negligible.

Fig. 2.5Fig. 2.5 shows that the controllers tuned using Bryson’s method initially improve
the settling time with each additional resource added. However, such an improvement
stops with three pipes, because the design space is too large, leading to controllers
being incorrectly tuned. Tuning the diagonal of Q and R using PSO outperforms the
settling time found by the Bryson method because of the more extensive search in
the design space. A trade-off analysis with this method suggests that the QoC of the
controller is improved with every new pipe, except when using five and six pipes.

Tuning the whole matrix performs equal to or better than tuning only the diagonal.
The result of a trade-off analysis with this method differs from the previous cases.
The settling time of the controller is always improved with each newly added pipe.
However, after a certain point adding more pipes generates a minimal improvement
in the settling time at a cost of extra processing resources. Our method is therefore
more suitable to analyse the trade-off to decide in a design phase how many pipes are
meaningful to implement in a DISC, when compared to the benchmarked strategies.
Note that the sensing-to-actuating delay denotes an asymptote for the settling time of
all the controllers, because the settling time cannot be shorter than the delay.

2.7 Trade-off analysis
This section explores the trade-off between processing resources and QoC (i.e. settling
time). We show that the amount of sensing-to-actuating delay is a critical factor in such
a trade-off. The simulations are based on our method described in Section 2.5Section 2.5 and the
motivational example from Example 2.22.2 and following. We apply the proposed LQR
tuning method for different processing configurations. Then we analyse the resulting
settling time and we present some observations.

2.7.1 Processing resources vs settling time
Fig. 2.3Fig. 2.3 shows that the use of more sensing pipes allows to shorten the settling time.
This creates a processing resources - settling time trade-off. To analyse such a trade-off,
an initial resource configuration of one pipe is considered. Our method is used to tune
an LQR with the minimum settling time. The processing resources are increased and
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the process is repeated until the improvement in settling time is negligible. The result
is shown in Fig. 2.6Fig. 2.6. Note that for the case of three pipes a large standard deviation is
observed. This is because the PSO algorithm is converging to different local optima in
every algorithm repetition, which can be solved by increasing the population size.
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Figure 2.6: Trade-off between settling time and processing resources with fixed delay
of τ= 0.084.

2.7.2 Settling time vs delay
The trade-off between processing resources and settling time depends not only on the
model dynamics but also on the amount of sensing-to-actuating delay. This is better
illustrated in Fig. 2.7Fig. 2.7, where a two-core LQR controller is tuned considering two dif-
ferent delays. The settling time (with the delay subtracted) is 0.035 s for τ = 0.042 s
and 0.069 s for τ = 0.084 s (See Fig. 2.7bFig. 2.7b). Note that the sampling period is chosen
according to Eq. 2.5Eq. 2.5, hence different delays give different h. The difference in the
settling time in Fig. 2.7Fig. 2.7 is due to the difference in sampling period.

We illustrate this design consideration by varying the sensing-to-actuating delay
in the motivational example. The effect of the delay on the controller settling time is
shown in Fig. 2.8Fig. 2.8 and Fig. 2.9Fig. 2.9. Fig. 2.8Fig. 2.8 shows the effect of a wide range of delays on
the settling time. Two sensing cores are considered for this simulation. In Fig. 2.9Fig. 2.9 the
settling time of models with two delays is compared over a range of sampling periods.
The processing resources are varied in order to change the sampling period. In both
figures, the delay is subtracted from the settling time for comparison purposes.

2.7.3 Observations
We observed the following from our simulations:
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Figure 2.7: Control responses of motivational example with two sensing cores but
different delays τ.

• Fig. 2.6Fig. 2.6 shows that the settling time gets shorter with each newly added pipe.
However, the improvement does not grow proportionally with the number of
pipes. For example, after four pipes the settling time improvement is reduced to
an order of milliseconds. Therefore, there is little benefit from the extra process-
ing resources. Clearly, for the plant under consideration and the given sensing-
to-actuating delay, a higher number of pipes is (practically) beneficial until four
pipes. Obviously, such region of interest depends on the plant dynamics and the
sensing-to-actuating delay. This should be considered in the design phase of a
pipelined controller in general to achieve a better QoC / resource trade-off.
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Figure 2.8: Impact of sensing-to-actuating delay on the settling time (with delay sub-
tracted for comparison purposes) using two sensing cores as processing resources.
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subtracted for comparison purposes).

• Fig. 2.8Fig. 2.8 shows that the improvement of settling time depends on the sensing-
to-actuating delay. The shortest settling time is achieved with the shortest de-
lay, because the resulting sampling period becomes similar to the value recom-
mended by Eq. 2.3Eq. 2.3. When the resulting sampling period is larger, the settling
time gets longer significantly because the model becomes under-sampled. There-
fore, given a sensing-to-actuating delay, the number of sensing pipes should be
chosen to make sure that the sampling period is equal or smaller to the recom-
mendation of Eq. 2.3Eq. 2.3.
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• Fig. 2.9Fig. 2.9 shows the relationship between sampling period and settling time. The
settling time gets longer proportionally with the sampling period. Note that if
different delays have the same sampling period due to differences in process-
ing resources (e.g., in Eq. 2.5Eq. 2.5 τ = 0.084 s with γ = 2 produces h = 0.042 s
and τ = 0.042 s with γ = 1 produces h = 0.042 s) the resulting settling time is
identical. Therefore, for this example the settling time (with delay subtracted)
achieved with a short delay can also be achieved with a long delay, if sufficient
processing resources are added. This is useful for applications where shorten-
ing the sensing-to-actuating delay is not feasible and subsequent samples can be
processed independently.

2.8 Summary
In this chapter, we have presented a method to analyse the trade-off between processing
resources and settling time in pipelined-sensing control, which shows the impact of
processing resources on control performance. The method uses PSO for finding all
elements in the tuning matrices of an LQR that minimize the settling time. Next, the
settling time is investigated with varying processing resources and sensing-to-actuating
delay.

For a motivational example, the trade-off analysis shows that each newly added
processing resource shortens the settling time. However, after a certain point the im-
provement becomes negligible. We also showed that the improvement in settling time
is affected by the amount of delay: longer delay produces longer sampling periods
which in turn produces a longer settling time. Finally, we showed that the same model
with two different sensing-to-actuating delays can obtain the same settling time, if their
processing resources lead to the same sampling period.

The results presented in this chapter are obtained using one control-design tech-
nique (i.e., LQR), which suffices to show the impact of processing resources in control
performance. The results can be straightforwardly extended to other control-design
techniques. For example, adding an integral action to the LQR can allow the controller
to reject a wider range of disturbances (as is done in Chapter 55). Alternative control-
design strategies (e.g., explicitly considering the sensing-to-actuating delay into the
control design or using multi-rate strategies where sensing-to-actuating delay is longer
than the actuation period) can also be applied to pipelined control. However, to apply
these alternative techniques, additional modelling or control design strategies might be
required. This remains as an interesting research opportunity.

The method presented in this chapter builds the basis of control design in the next
chapter. The method does not consider the presence of the model inaccuracy, which
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might be present in real-life plants. In the next chapter, we extend the trade-off analysis
to take model inaccuracy into account.
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Pipelining the sensing algorithm improves QoC with each newly added process-
ing resource. However, after a certain point the QoC improvement becomes negligible.
This creates a trade-off between resource usage (i.e., cost of implementation) and QoC.
We introduced a method to analyse such a trade-off in Chapter 22, which assumes perfect
knowledge of the plant model. However, when designing control systems it is common
to encounter uncertainties in the model parameters, which may have a negative im-
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pact on the QoC. In pipelined control, the QoC is also deteriorated which may impact
the aforementioned trade-off. In this chapter, we present an analysis framework to
include model uncertainties in the afore-mentioned trade-off (between resource usage
and QoC). We present a technique to approximate discrete-time uncertainties based on
the continuous-time uncertainties for given uncertainty bounds. To approximate such
uncertainty bounds for a real system, we consider uncertainties in one element of the
system matrices. Uncertainties and their impact in the performance-oriented designs
of Chapter 22 are studied. We also provide a robustness-oriented pipelined controller
design that maximizes the tolerable uncertainties in the control loop. Our results show
that in performance-oriented designs, the tolerable uncertainties for a pipelined con-
troller decrease when increasing the number of pipes. In robustness-oriented designs,
the controller robustness is enhanced with each newly added pipe. We show the feasi-
bility of our technique by implementing a realistic example in a Hardware-In-the-Loop
simulation.

The contents of this chapter were published in [9292].

3.1 Problem formulation
Uncertainties in the plant model are a well-known factor of QoC deterioration, which
can lead to control instability [148148, Chapter 8.1]. In pipelined-sensing control, such
a QoC deterioration affects the trade-off between processing resources and QoC. For
example, in the motivational example of Chapter 22, the trade-off analysis indicated that
four pipes was the number of cores that still gives a meaningful improvement in QoC.
However, if there is a maximum uncertainty of 2% in one of the elements of the state
and input matrices (i.e., there is a robustness constraint that the controller continues to
be stable even with up to 2% deviation in one element of these matrices), the controller
with four pipes becomes infeasible (i.e., the stability is no longer guaranteed) whereas
the one with three pipes remains stable for the same uncertainties, while it still gives a
meaningful improvement in QoC.

There is substantial literature dealing with the stability analysis of a controller based
on a discrete-time model with delay and uncertainties (see for example [137137, 4747]).
Time-invariant norm-bounded uncertainties are common in such analyses because in
many physical systems the exact value of the parameters is not known but it is limited
to a range of possible values (see for example [111111, 1818, 7878, 1919]). Analysing the effect
of time-invariant bounded uncertainties has not been done yet for pipelined systems.
Moreover, discrete-time robustness-analysis techniques commonly start from known
discrete-time uncertainties (see for example [3838]). The relation of such discrete-time
uncertainties with real-life continuous-time applications is not obvious. In the trade-off
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analysis of pipelined systems, this relation is particularly relevant because each newly
added pipe produces a different sampling time implying that new discrete-time uncer-
tainties have to be computed. In other words, the same continuous-time uncertainties
have different effects in pipelined-sensing controllers with different resource configu-
rations. This affects the trade-off analysis.

The contributions of this chapter are threefold. (i) We approximate discrete-time
uncertainties based on continuous-time time-invariant norm-bounded uncertainties de-
scribed by matrices with a single non-zero element (i.e., a single uncertain element in
each matrix). The resulting uncertainties are time-invariant and norm-bounded. (ii) We
present a robustness-analysis technique that shows the impact of the approximated un-
certainties in performance-oriented pipelined controllers and in the trade-off between
resource usage and QoC. For that we adapt the technique of [137137, 4747] for pipelined
systems. (iii) We present a robustness-oriented controller design that uses the approx-
imated uncertainties to enhance robustness with each added pipe. Our contributions
capture the interplay between processing resources, control performance, and control
robustness in pipelined systems. We show the feasibility of our approach by imple-
menting a pipelined controller on a platform with parallel processing capabilities using
Hardware-In-the-Loop simulation.

3.2 Related work
Pipelined-sensing control has been used for systems with image-based sensing delay
in [7575, 7676, 2323, 9090, 9191] and for systems with network-based sensing delay in [144144,
135135, 136136]. This literature focuses on comparing pipelined sensing with serial sensing
(e.g., [7575]), using frequency domain information to analyse the phase margin of dif-
ferent pipelined controllers [144144], allocating resources in networked control to achieve
pipeline parallelism e.g., [135135], and introducing modelling (e.g., [9090]) and control-
design strategies (e.g., [9191]). Analysing the QoC of pipelined control with respect to a
model with uncertainties has not been reported before.

The impact of bounded uncertainties on control systems has been widely stud-
ied in the robust control literature for the continuous-time domain [7373, 141141, 140140] and
the discrete-time domain [3838, 3434, 150150]. A pipelined-sensing control corresponds to
a discrete-time controller; therefore we focus on discrete-time techniques. Discrete-
time approaches commonly assume a known set of discrete-time uncertainties. In a
pipelined-sensing control, the uncertainties originate from the dynamic system in the
continuous-time domain, whereas their impact has to be analysed on the discrete-time
pipelined controller. Therefore, a strategy to discretize a model with uncertainties is
required. Strategies to compute discrete-time approximations of the uncertainty ma-
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trices are found in using the Chebyshev quadrature [111111], switched systems [6161] or
first-order forward Euler approximations [7878, 7474, 131131]. However, these strategies cor-
respond to first and second order approximations which might not accurately represent
the continuous-time system. In pipelined control, each resource configuration varies
the sampling period generating different discrete-time uncertainties. The above ap-
proximations might not produce enough difference between resource configurations,
making them not suitable for this application. Taylor series have been used in [1818]
to discretize continuous-time uncertainties using the first i terms of the series. The
resulting model is a homogeneous polynomial of degree i . Increasing i in the series
expansion leads to a higher accuracy in the discretization at the cost of a more com-
plex discrete-time model. This technique might be applicable to pipelined control;
however the resulting homogeneous polynomials are not commonly used in discrete-
time robustness-analysis techniques. We present a technique to approximate bounded
discrete-time uncertainties, that eases the robustness analysis.

The combined effect of delay and discrete-time bounded uncertainties on discrete-
time controllers has been analysed following two approaches: predictor output [4141, 8585,
4747] or static feedback [137137, 4747]. Predictor-output approaches use an estimate of the sys-
tem output after the delay to compute the controller output. Static-feedback approaches
include the delay in the discrete-time model to compute the controller output. The
pipelined controller designed in [9191] corresponds to a static feedback approach. Static-
feedback literature with uncertainties has reported a control-design strategy in the pres-
ence of constant and variable time delay in [137137] and an uncertainty-maximization
technique with variable time-delay for a given controller in [4747]. In this chapter, we
apply the static-feedback technique to pipelined systems which have discretized time-
invariant norm-bounded uncertainties. We analyse the effect of model uncertainties on
the trade-off between processing resources and QoC in a performance-oriented design,
while meeting a robustness constrain. We also develop a robustness-oriented pipelined
controller design.

3.3 Modelling and control design of a nominal system

This section summarizes the pipelined control strategy of Chapter 22. To this end, we
present an overview of the contents of Section 2.3Section 2.3 and Section 2.5Section 2.5 in the following
sections.
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3.3.1 Nominal model in pipelined control
This subsection summarizes the modelling strategy presented in Section 2.3Section 2.3 for
pipelined-sensing systems without uncertainties (i.e., for nominal systems).

Given the continuous-time nominal plant:

ẋ(t ) = Ac x(t )+Bc u(t )

y(t ) =Cc x(t ),
(3.1)

with x(t ) ∈ Rn×1 the state vector, u(t ) ∈ R the control input, y ∈ R the output, and
Ac ∈ Rn×n , Bc ∈ Rn×1 and Cc ∈ R1×n the nominal state, input and output matrices,
respectively. t ∈R≥ is the time and n ∈Z+ corresponds to the number of states.

Considering an embedded system with γ ∈ Z+ processing resources available for
the DISC, the controller sampling period h ∈R+ is defined by:

h = τ

γ
, (3.2)

where τ ∈ R+ is the sensing-to-actuating delay. This leads to a discrete-time pipelined
model of the form (see Eq. 2.10Eq. 2.10):

zk+1 =Φd zk +Γd uk

yk =Cd zk ,
(3.3)

where k ∈ Z≥ is the discrete-time index, zk ∈ R(n+γ)×1 is the augmented state vector
further explained in Eq. 2.9Eq. 2.9, Φd ∈ R(n+γ)×(n+γ), Γd ∈ R(n+γ)×1 and Cd ∈ R1×(n+γ) are
the nominal augmented discrete-time state, input and output matrices, respectively,
and uk ∈R is the control input. The control input is implemented using a ZOH to keep
the actuation signal constant between consecutive sampling periods. This results in
u(t ) := uk−γ for all t ∈ [kh, (k +1)h).

The discrete-time input and state matrices are defined by:

Φd =


Ad Bd 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

 ,Γd =


0
0
...
0
1

 ,Cd =


C T

c
0
...
0
0



T

, (3.4)

with Ad ∈ Rn×n , Bd ∈ Rn×1, and Cd ∈ R1×(n+γ) the discretization of Ac , Bc , and Cc ,
respectively with sampling period h and Eq. 2.8Eq. 2.8.
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The control law is defined by:

uk = K zk +F r, (3.5)

where K ∈ R1×(n+γ) is the feedback gain, F ∈ R is the feed-forward gain, and r ∈ R is
the reference. We apply uk = 0 for k < γ since we need to wait for the first sample to
compute the control input. For the closed-loop representation, we define:

Φcl =Φd +Γd K , (3.6)

with Φcl ∈R(n+γ)×(n+γ) the discrete-time nominal closed-loop matrix, which is used in
the robustness analysis of Section 3.7Section 3.7.

3.3.2 Control design and trade-off analysis
This subsection summarizes the method described in Section 2.5Section 2.5 for tuning a controller
with pipelined sensing.

To analyse the trade-off between resource usage and QoC, a controller with op-
timized performance has to be tuned for each resource configuration. Performance
metrics related to the response of the controller (e.g., tracking velocity, settling time)
are of interest in many real-life applications, e.g., [7575, 7676]. In line with the arguments
of Section 1.2Section 1.2, we consider settling time as a QoC metric. We then define our QoC
performance as:

QoC = 1

St
,

where St ∈R+ is the controller settling time. The feedback gain K defined in Eq. 3.5Eq. 3.5 is
designed using the well-known optimal design strategy LQR. In line with the reasoning
of the previous chapter, LQR is used as a benchmarking strategy because it allows to
extend the results from Chapter 22. However, note that other control strategies can be
applied here. The LQR finds a K that minimizes the quadratic cost:

J =
∞∑

k=0

(
zT

k Qzk +uT
k Ruk

)
, (3.7)

with Q ∈ R(n+γ)×(n+γ) the state weight matrix and R ∈ R1×1 the input weight matrix of
the LQR, which satisfy Q =QT º 0, R = RT Â 0, and with the pair (Q,Φd ) observable
[8080]. The feed-forward gain F of Eq. 3.5Eq. 3.5 can then be designed according to the set-
point regulation equation of Proposition 2.12.1. Finding F can be straightforwardly done
once K is available. However, for finding K note that the cost function of Eq. 3.7Eq. 3.7 gives
a controller which is optimal with respect to J in terms of the tuning parameters Q and
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R; this does not necessarily mean that it has the shortest settling time. We refer to LQR
tuning as the process of finding a Q and an R that minimize the settling time of the
system.

PSO is used to tune an LQR for minimum settling time. A PSO algorithm employs
a swarm of m particles X j with j = 1. . .m, to explore the design space of a problem
in order to minimize a fitness metric. In this case, the design space corresponds to the
values of Q and R for particle j , Q j and R j , and the fitness metric corresponds to the
controller settling time. The challenge arises because Q j has to remain positive semi-
definite while it is explored by the PSO algorithm. To address this, the PSO algorithm
presented in Chapter 22 uses two intermediate matrix variables Q̂ j and R̂ j to define
each particle in the swarm i.e., X j = (Q̂(1,1)

j ,Q̂(1,2)
j , . . . ,Q̂(n+γ,n+γ)

j , R̂(1,1)
j ). The tuning

parameters are then computed using Q̂ j and R̂ j with Proposition 2.22.2 and Eq. 2.25Eq. 2.25,
respectively. Proposition 2.22.2 guarantees that the resulting Q j is positive semi-definite.
PSO can then be used to find the values of Q̂ j and R̂ j that minimize the settling time
for a resource configuration. Further details about the proposed PSO can be found in
Section 2.5Section 2.5.

The method discussed in this subsection is used to explore the trade-off between
processing resources and QoC. However, in some applications, it is common to have
modelling uncertainties, which combined with the pipelined delay potentially affect
the controller stability and the trade-off analysis. It is then necessary to analyse the
robustness of the designed controller. To do so, the design flow of the following section
is proposed.

3.4 Overview of the proposed design flow
To analyse the robustness of a performance-oriented pipelined controller or to design
a robustness-oriented controller, the following design flow is proposed, clarified in
Fig. 3.1Fig. 3.1.

1. Discretize model: Given a continuous-time nominal dynamic model, a sensing-
to-actuating delay, and a set of resource configurations (i.e., the number of sens-
ing cores used), a discrete-time nominal pipelined model is found for each re-
source configuration (as outlined in Section 3.3.1Section 3.3.1).

2. Performance-oriented controller design: Given the discrete-time nominal
pipelined models for each resource configuration, we use PSO to tune a con-
troller with minimum settling time as an optimization objective (as outlined
in Section 3.3.2Section 3.3.2). Note that the controller is designed using the nominal plant.
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Discretize model
In: model Ac , Bc

resource configuration γ
sensing-to-actuating delay τ

Out: for each γ:
zk+1 =Φd zk +Γd uk

Approximation of model with uncertainties
In: model ∆Ac , ∆Bc , amax , bmax

resource configuration γ
sensing-to-actuating delay τ

Out: for each γ:
Uncertainty matrix ∆Φd

Performance-oriented controller design
In: for each zk+1 =Φd zk +Γd uk
Out: for each γ:

controller K ,F
minimum settling time St

Robustness analysis of performance-oriented controller
In: Φd , ∆Φd , K
Out: for each γ:

a maximum α such that
zk+1 = (Φd +∆Φd )zk +Γd uk
is stable

Robustness-oriented controller design
In: Φd ,∆Φd , Γd
Out: for each γ:

a K , F such that α is maximum

Trade-off analysis
In: for each γ:

St , α
Out: a γ such that St is meaningfully

improved while meeting a
requested α

Figure 3.1: Overview of the proposed design flow. Coloured blocks correspond to the
contributions made in this chapter.

We subsequently analyse if the designed controller is robust against given
uncertainties in Step (4).

3. Approximation of model with uncertainties: Given continuous-time uncer-
tainties for the dynamic model, the set of resource configurations, and the
sensing-to-actuating delay, a discrete-time model with uncertainties is found
for each resource configuration. Section 3.5Section 3.5 presents a discrete-time pipelined
model with uncertainties while Section 3.6Section 3.6 describes the discrete-time ap-
proximation of the model with uncertainties. The approximation is the basis
for analysis (Steps (4) and (5)) or design (Step (6)). If a robustness-oriented
pipelined controller is desired, Step (6) is implemented. If the robustness
analysis of a performance-oriented control is desired, Steps (4) and (5) are
applied.

4. Analyse robustness of performance-oriented controller: Given the discrete-
time controller and the model with uncertainties, we analyse the robustness of
each resource configuration. To do so, we parametrize the uncertainties as a
scalar α, which is maximized for guaranteed stability. Section 3.7.1Section 3.7.1 presents
basic control robustness theory while the details of the robustness analysis are
presented in Section 3.7.2Section 3.7.2.

5. Trade-off analysis: Given the settling times and the robustness analysis (i.e.,
an α) for each resource configuration, a resource configuration is chosen such
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that the settling time is still meaningfully improved while a robustness constraint
(i.e., a minimum desired α) is met. Section 3.8Section 3.8 shows a detailed example of this
analysis.

6. Robustness-oriented controller design: Given the discrete-time pipelined
model with uncertainties, a controller is designed with maximum robustness for
each resource configuration. To do so, we find controllers that maximize the
parametrized scalar α. Details are given in Section 3.7.3Section 3.7.3.

3.5 Modelling pipelined systems with uncertainties
To perform a robustness analysis of the discrete-time pipelined controller, the model
with uncertainties has to comply with a particular matrix structure in the discrete-
time domain. Therefore, in this section, we describe the required structure of the
discrete-time uncertainties and their relationship with their continuous-time counter-
parts. An approximation strategy for discretizing the uncertainties is next explained in
Section 3.6Section 3.6.

3.5.1 Continuous-time model with uncertainties
Consider that the continuous-time system described in Eq. 3.1Eq. 3.1 contains uncertainties:

ẋ(t ) = Āc x(t )+ B̄c u(t )

y(t ) =Cc x(t ),
(3.8)

where
Āc = Ac +∆Ac , B̄c = Bc +∆Bc , (3.9)

with Ac , Bc , Cc , x(t ), y(t ), u(t ) as introduced in the model of Eq. 3.1Eq. 3.1. ∆Ac ∈Ac ⊆Rn×n

and ∆Bc ∈Bc ⊆Rn×1 are continuous-time time-invariant matrices with unknown values
representing model uncertainties. Ac and Bc represent the sets of possible values of the
uncertainties.

3.5.2 Discrete-time representation of continuous-time uncertain-
ties

We consider the following structure for the discrete-time representation of Eq. 3.8Eq. 3.8:

xk+1 = (Ad +∆Ad )xk + (Bd +∆Bd )uk−γ
yk =Cc xk ,

(3.10)
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where Ad ∈ Rn×n , Bd ∈ Rn×1, xk ∈ Rn×1, uk−γ ∈ R, and yk ∈ R are defined in Eq. 2.7Eq. 2.7
while ∆Ad ∈Ad ⊆ Rn×n and ∆Bd ∈Bd ⊆Rn×1 are matrices representing discrete-time
time-invariant model uncertainties. Recall from Section 2.3.5Section 2.3.5 that this discretization
uses the delayed control input uk−γ. The uncertainty matrices ∆Ad and ∆Bd capture
the continuous-time uncertainties in the discrete-time domain. We define

Ad = {∆Ad (∆Ac ) |∆Ac ∈Ac } ,

Bd = {∆Bd (∆Ac ,∆Bc ) |∆Ac ∈Ac ∧∆Bc ∈Bc } ,

where ∆Ad and ∆Bd are found using Definitions 3.13.1 and 3.23.2 below, for known values
of ∆Ac and ∆Bc .

Definition 3.1. Computation of ∆Ad for a known ∆Ac : Consider the systems with
uncertainties in Eq. 3.8Eq. 3.8 and Eq. 3.13Eq. 3.13. ∆Ad for a known ∆Ac is computed by:

∆Ad (∆Ac ) = e(Ac+∆Ac )h −e Ac h . (3.11)

Definition 3.2. Computation of ∆Bd for known ∆Ac and ∆Bc : Consider the systems
with uncertainties in Eq. 3.83.8 and Eq. 3.133.13. ∆Bd for a known ∆Ac and ∆Bc is computed
by:

∆Bd (∆Ac ,∆Bc ) =
∫ h

0
e(Ac+∆Ac )s (Bc +∆Bc )d s −

∫ h

0
e Ac s Bc d s. (3.12)

3.5.3 Discrete-time model with worst-case uncertainties
To compute the uncertainties of Eq. 3.10Eq. 3.10 using Definitions 3.13.1 and 3.23.2, a single value of
the continuous-time uncertainties ∆Ac and ∆Bc is needed. However, the exact value of
these matrices is unknown but bounded by the sets Ac and Bc . Therefore, to capture all
possible representations of Eq. 3.10Eq. 3.10 in the discrete-time domain, the following model
is used:

xk+1 = (Ad +∆Ad ,wc )xk + (Bd +∆Bd ,wc )uk−γ
yk =Cc xk ,

(3.13)

where ∆Ad ,wc ∈Ad ⊆Rn×n and ∆Bd ,wc ∈Bd ⊆Rn×1 are the discrete-time uncertainties
with the largest Euclidean norm, i.e., the worst-case uncertainties. These matrices are
defined as:

∆Ad ,wc = argmax ||∆Ad ||,
∆Ad ∈Ad

∆Bd ,wc = argmax ||∆Bd ||.
∆Bd ∈Bd

(3.14)
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The solution of Eq. 3.14Eq. 3.14 must guarantee that continuous-time uncertainties are cap-
tured in the discrete-time domain. However, because of the non-linear nature of the
discretization ∆Ad and ∆Bd , finding ∆Ad ,wc and ∆Bd ,wc that satisfy Eq. 3.14Eq. 3.14 for any
continuous-time uncertainties (i.e., any setAc , Bc ) is a non-trivial task. It might even be
the case that ∆Ad ,wc and ∆Bd ,wc are not uniquely defined. Therefore, an approxima-
tion strategy for solving Eq. 3.14Eq. 3.14 is later explained in Section 3.6Section 3.6, taking into account
a specific case of continuous-time uncertainties.

3.5.4 Augmented non-delayed model of pipelined systems with un-
certainties

To apply the robustness analysis of Section 3.7Section 3.7, a non-delayed transformation of
Eq. 3.13Eq. 3.13 is needed. To do so, we define augmented state vector using Eq. 2.9Eq. 2.9, which
yields the following augmented system:

zk+1 = Φ̄d zk +Γd uk

yk =Cd zk ,
(3.15)

with
Φ̄d =Φd +∆Φd ,

where Φd , Γd and Cd are defined in the model of Eq. 3.4Eq. 3.4. ∆Φd ∈ R(n+γ)×(n+γ) is the
discrete-time augmented uncertainty matrix defined in the next subsections. Note that
Γd is not influenced by the model uncertainties.

3.5.5 Structure of the model uncertainties

To apply the robustness analysis technique of Section 3.7Section 3.7, the model uncertainties of
Eq. 3.15Eq. 3.15 must have the following structure:

∆Φd =αDGE , (3.16)

where D ∈R(n+γ)×n and E ∈Rn×(n+γ) are known constant matrices, and G ∈Rn×n is an
uncertainty matrix bounded by

GT G ¹ I . (3.17)

α ∈R+ is a positive scalar which is used as a scaling factor later in the design. A larger
α implies higher robustness.
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3.5.6 Uncertainty bound
The uncertainty matrix ∆Φd described in Section 3.5.5Section 3.5.5 has an upper bound that can be
derived from the assumption that GT G ¹ I . Notice that this constraint also implies that
the Euclidean norm ||G|| ≤ 1. We derive an upper bound on the uncertainties as

||∆Φd || = ||αDGE || ≤ |α| ||D|| ||G|| ||E || ≤ |α| ||D|| ||E ||. (3.18)

Eq. 3.18Eq. 3.18 provides an upper bound on the maximum norm of the uncertainties that are
tolerated by the analysis and design method presented in the next sections. This upper
bound depends on α, D, and E . α is maximized during the optimization analysis to
obtain the maximum upper bound on the uncertainties. D and E are constant matrices
that need to be computed before the optimization procedure. Note that an incorrect
selection of these matrices (i.e., matrices with smaller norm than the real ones) results
in a larger maximum α during the optimization analysis. Therefore, D and E should
represent the largest possible norm (the worst-case) of the continuous-time uncertain-
ties.

3.5.7 Selection of D and E

The matrices D and E are to be defined based on the worst-case discrete-time uncer-
tainty. Therefore, the following structure for these matrices is proposed:

D =
[

I
0

]
,E = [

∆Ad ,wc ∆Bd ,wc 0
]

. (3.19)

Including the definition of D and E in Eq. 3.16Eq. 3.16, we obtain the uncertainty structure:

∆Φd =αDGE =
[
αG∆Ad ,wc αG∆Bd ,wc 0

0 0 0

]
. (3.20)

The method presented in this section provides a strategy to model discrete-time
norm-bounded uncertainties in pipelined systems. The resulting discrete-time uncer-
tainties are then used to analyse the system robustness in Section 3.7Section 3.7. In the following
section, we present a strategy to approximate the discrete-time uncertainties.

3.6 Model-uncertainty approximation
This section presents an approximation strategy for the uncertainty matrices ∆Ad ,wc

and ∆Bd ,wc . In practice, computation of exact ∆Ad ,wc and ∆Bd ,wc is hard since it
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requires evaluation of all (infinitely many) possible values in the sets Ac and Bc . We
therefore rely on a numeric method for approximating the discrete-time uncertainties,
which is based on a restricted class of continuous-time uncertainties. We consider the
case where only one element of ∆Ac and ∆Bc is non-zero with given minimum and
maximum values.

Let for any matrix X , X (i , j ) represent the matrix element located in the i th row and
j th column. Let ∆Ac (i , j , a) be a matrix with element (i , j ) equal to a, for some a ∈R,
and all other elements equal to 0. That is, ∆Ac (i , j , a)(i , j ) = a and for all k, l ∈N with
1 ≤ k, l ≤ n such that (k, l ) 6= (i , j ), ∆Ac (i , j , a)(k,l ) = 0. This allows us to define the set
Ac introduced in Section 3.5.1Section 3.5.1 as follows, for given indexes i , j ∈ N with 1 ≤ i , j ≤ n
and a maximum uncertainty amax ∈R≥:

Ac =
{
∆Ac (i , j , a)

∣∣ a ∈ [−amax , amax ]
}

.

Similarly, let ∆Bc (o,b) be a matrix with element (o,1) equal to b, for some b ∈ R,
and all other elements equal to 0. That is, ∆Bc (o,b)(o,1) = b and for all p ∈ N with
1 ≤ p ≤ n such that p 6= o, ∆Bc (o,b)(p,1) = 0. The set Bc is defined as follows, for a
given index o ∈N with 1 ≤ o ≤ n and a maximum uncertainty bmax ∈R≥:

Bc =
{
∆Bc (o,b) | b ∈ [−bmax ,bmax ]

}
.

This particular structure of the model uncertainties is used because numerically
we have observed that it is possible to estimate the worst-case discrete-time uncertain-
ties by evaluating the continuous-time uncertainties for the boundaries −amax , amax ,
−bmax , and bmax . To make this precise, we define the auxiliary sets Âd and B̂d as:

Âd = {
∆Ad

(
∆Ac (i , j , a)

) ∣∣ a ∈ {−amax , amax }
}

,

B̂d = {
∆Bd

(
∆Ac (i , j , a),∆Bc (o,b)

) ∣∣ a ∈ {−amax , amax }∧b ∈ {−bmax ,bmax }
}

.

Then, Eq. 3.14Eq. 3.14 is approximated as

∆Ad ,wc ≈ argmax ||∆Ad ||
∆Ad ∈ Âd ,

∆Bd ,wc ≈ argmax ||∆Bd ||.
∆Bd ∈ B̂d .

(3.21)

Numerically, we have also observed that upscaling the discrete-time uncertainties
by a scalar corresponds to upscaled continuous-time uncertainties, if the particular
structure of model uncertainties is used. That is, consider the discrete-time uncer-
tainties ∆Ad ,1(∆Ac,1) and ∆Ad ,2(∆Ac,2) derived from some continuous-time uncer-
tainties ∆Ac,1, ∆Ac,2 ∈ Ac . If ∆Ad ,2 = α∆Ad ,1 and α ≥ 1, then ||∆Ac,2|| ≥ ||∆Ac,1||.
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This upscaling correspondence is of importance because the robustness-analysis tech-
nique finds the largest α that guarantees a stable system. This implies that a con-
troller that can tolerate an α ≥ 1 in the discrete-time domain, can tolerate the orig-
inal set of continuous-time uncertainties (or greater). Note that to verify this up-
scaling correspondence, an approximation of the discrete-time uncertainties in the
continuous-time domain is required. An approximation of ∆Ac can be found from
Ad +∆Ad = e Ac+∆Ac . This requires (among others) the computation of a natural log-
arithm of a matrix. The logarithm can be approximated using a Mercator-series ex-
pansion [6262, Chapter 11]. Likewise to find ∆Bc , we apply a Taylor-series expansion
to the integral term of Bd +∆Bd = ∫ h

0 e Āc s B̄c d s [104104, Chapter 1.2]. ∆Bc can then be
found from the right-hand side of the resulting expansion. It would be interesting to
investigate an analytical argument that would support the observed scaling between the
discrete-time and continuous-time uncertainties.

Example 3.1. Uncertainty approximation: Using Example 2.12.1, we define the uncer-
tainties as:

∆Ac =
[

0 0
0 ∆A(2,2)

c

]
,∆Bc =

[
0

∆B (2,1)
c

]
,

where amax = 0.05 and bmax = 0.2, and thus

−0.05 ≤∆A(2,2)
c ≤ 0.05

−0.2 ≤∆B (2,1)
c ≤ 0.2.

These assumptions correspond to an uncertainty of 2% in one element in the nominal
matrices. Definitions 3.13.1 and 3.23.2 are used to find one ∆Ad and one ∆Bd for each pos-
sible continuous-time uncertainties ∆Ac and ∆Bc . The continuous-time uncertainties
that produce the discrete-time matrices with the largest norm are:

∆Ac =
[

0 0
0 50

]
×10−3,∆Bc =

[
0

200

]
×10−3. (3.22)

The uncertainties with the worst-case norm are then:

∆Ad ,wc ≈
[ −9.3 72.7
−370.8 1879

]
×10−6,∆Bd ,wc ≈

[
312.3

8379.3

]
×10−6.

For the case of two pipes (γ= 2), we then use Eq. 3.19Eq. 3.19 to derive D and E:

E =
[ −9.3 72.7 312.3 0
−370.8 1879 8379.3 0

]
×10−6,D =


1 0
0 1
0 0
0 0

 .
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The method presented in this section provides a strategy to model pipelined systems
with model uncertainties. In the next section, we use such a model to analyse the
robustness of an existing performance-oriented controller or to design a robustness-
oriented controller.

3.7 Robustness of pipelined systems
We use a control law of the form presented in Eq. 3.5Eq. 3.5. The gains K and F need to
be analysed or redesigned for the model with uncertainties described in Eq. 3.15Eq. 3.15 for
guaranteeing closed-loop stability. Note that F does not influence stability but it is
important for performance benchmarking experiments, which are performed for a given
robust feedback gain K . In the following, we focus on analysing and designing a
feedback gain K with respect to the model uncertainties described above to guarantee
closed-loop stability.

Using uk = K zk , the closed-loop model for the system of Eq. 3.15Eq. 3.15 is the following:

zk+1 = Φ̄cl zk , (3.23)

with Φ̄cl ∈R(n+γ)×(n+γ) given by

Φ̄cl =Φcl +∆Φd , (3.24)

where Φcl ∈R(n+γ)×(n+γ) is the nominal closed-loop system further given by

Φcl =Φd +Γd K . (3.25)

In the following, we focus on the following questions:

• Robustness analysis for a performance-oriented controller: given a feed-
back gain K that stabilizes the nominal closed-loop system in Eq. 3.25Eq. 3.25, find the
maximum α for which closed-loop stability of the system with uncertainties in
Eq. 3.23Eq. 3.23 can be guaranteed.

• Robustness-oriented controller design: design a feedback gain K while max-
imizing α such that closed-loop stability of the system with uncertainties in
Eq. 3.23Eq. 3.23 can be guaranteed.

To analyse robustness or redesign a pipelined control system against norm-bounded
time-invariant uncertainties, Lemmas 3.13.1 to 3.33.3 below are used. Then, Theorem 3.13.1
presents a robustness-analysis technique for an already designed controller and The-
orem 3.23.2 presents a control-design technique that maximizes tolerable uncertainties.
These theorems are adapted from [137137, 4747] to pipelined systems.
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3.7.1 Preliminary lemmas

Lemma 3.1. [139139] Given constant matrices Θ,Λ, and Ξ of appropriate dimensions
with Θ=ΘT , and a matrix G such that GT G ¹ I , inequality

Θ+ΛGΞ+ (ΛGΞ)T ≺ 0

holds if and only if there exists a scalar ε ∈R+ such that

Θ+ε−1ΛΛT +εΞTΞ≺ 0.

Lemma 3.2. Schur complement [147147]. Given matrices M , L, and P , with M = M T ,
and a positive-definite matrix P = P T Â 0, the matrix inequality M +LT P−1L ≺ 0 can
be rewritten in the following form: [

M LT

L −P

]
≺ 0. (3.26)

Lemma 3.3. [4444, 2828] The system in Eq. 3.233.23 is globally asymptotically stable if there
exist a matrix O ∈ R(n+γ)×(n+γ) such that O = OT Â 0 (i.e., positive definite), and a
matrix V ∈R(n+γ)×(n+γ) such that[

O Φ̄cl V
(Φ̄cl V )T V T +V −O

]
Â 0. (3.27)

3.7.2 Robustness analysis for performance-oriented controller

The following theorem finds the maximum scalar α that stabilizes the system of
Eq. 3.23Eq. 3.23 with a given feedback gain K . α is therefore used to quantify the controller
robustness for a particular resource configuration. A larger α implies a higher system
robustness.

Theorem 3.1. Robustness analysis (adapted from [137137, 4747]): Consider the closed-
loop system with uncertainties of Eq. 3.23Eq. 3.23, where the nominal closed-loop matrix
Φcl ∈R(n+γ)×(n+γ) is given by Eq. 3.25Eq. 3.25, and the uncertainty matrix ∆Φd ∈R(n+γ)×(n+γ)

is given by Eq. 3.16Eq. 3.16 with known matrices D ∈ R(n+γ)×n and E ∈ Rn×(n+γ), some to-be-
determined α ∈R+, and some uncertainty matrix G ∈Rn×n , such that GT G ¹ I . The sys-
tem in Eq. 3.23Eq. 3.23 is globally asymptotically stable for a previously designed K ∈R1×(n+γ),
if there exist a positive-definite matrix O ∈R(n+γ)×(n+γ), a matrix V ∈R(n+γ)×(n+γ), and
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scalars λ ∈R+ and σ ∈R+ that satisfy

O Â 0, (3.28)
−O λD −Φcl V 0
λDT −σλI 0 0

−(Φcl V )T 0 O −V −V T (EV )T

0 0 (EV ) −λI

≺ 0. (3.29)

The uncertainty matrix ∆Φd is then given by αDE with α = σ−0.5. Moreover, the
maximum uncertainties (i.e., the maximum α) that the system of Eq. 3.23Eq. 3.23 can tolerate
is found by solving the following optimization problem:

minimize σ
subject to Eq. 3.28Eq. 3.28 and Eq. 3.29Eq. 3.29.

Proof. For stability of the system defined in Eq. 3.23Eq. 3.23, we start with using Lemma 3.33.3.
There exist a positive-definite matrix O ∈ R(n+γ)×(n+γ) and a matrix V ∈ R(n+γ)×(n+γ)

such that [
O Φ̄cl V

(Φ̄cl V )T V T +V −O

]
Â 0.

Substituting Φ̄cl in Eq. 3.24Eq. 3.24, using Eq. 3.16Eq. 3.16 and multiplying by −1 yields:[ −O −Φcl V −αDGEV
−(Φcl V )T −α (DGEV )T O −V −V T

]
≺ 0.

This is equivalent to:[ −O −Φcl V
−(Φcl V )T O −V −V T

]
+

[
0 −αDGEV
0 0

]
+

[
0 0

−α (DGEV )T 0

]
≺ 0.

Double transposing the third matrix above yields:[ −O −Φcl V
−(Φcl V )T O −V −V T

]
+

[
0 −αDGEV
0 0

]
+

[
0 −αDGEV
0 0

]T

≺ 0.

Decomposing the second and third matrices gives:[ −O −Φcl V
−(Φcl V )T O −V −V T

]
+

[−αD
0

]
G

[
0 EV

]+([−αD
0

]
G

[
0 EV

])T

≺ 0.
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Applying Lemma 3.13.1, we obtain:[ −O −Φcl V
−(Φcl V )T O −V −V T

]
+ε−1

[−αD
0

][−αDT 0
]+ε[ 0

(EV )T

][
0 EV

]≺ 0.

Note that in the above condition, the second and third element capture the influence
of the uncertainties on the overall system stability. These terms depend on the free
matrices D, E , and V . Therefore, it is not possible to generalize their negative or pos-
itive definiteness. The first term captures the influence on the stability of the nominal
closed-loop system. Since the closed-loop nominal system is stable, this term must be
negative definite as shown in Lemma 3.33.3. The last expression no longer depends on G .

Further,[ −O −Φcl V
−(Φcl V )T O −V −V T

]
+

[
ε−1α2DDT 0

0 0

]
+

[
0 0
0 ε(EV )T EV

]
≺ 0,

which is equivalent to[−O +ε−1α2DDT −Φcl V
−(Φcl V )T O −V −V T +ε(EV )T EV

]
≺ 0. (3.30)

Applying the Schur complement (Lemma 3.23.2) with respect to the term −O+ε−1α2DDT

gives:  −O ε−1D −Φcl V
ε−1DT −ε−1α−2I 0

−(Φcl V )T 0 O −V −V T +ε(EV )T EV

≺ 0.

Applying the Schur complement on the term O −V −V T +ε(EV )T EV then gives:
−O ε−1D −Φcl V 0

ε−1DT −ε−1α−2I 0 0
−(Φcl V )T 0 O −V −V T (EV )T

0 0 EV −ε−1I

≺ 0.

Defining λ = ε−1 and σ = α−2, the above is equivalent to Eq. 3.29Eq. 3.29 completing the
proof. By finding the minimum σ satisfying the above Linear Matrix Inequality (LMI),
we obtain the maximum α (scaling factor of robustness).

Note that in Theorem 3.13.1 (and also in Theorem 3.23.2 later), minimizing σ maximizes
α, which means that the uncertainties that can be handled are also maximized.



3

3.7 Robustness of pipelined systems 61

Remark 3.1. The conditions shown in Theorem 3.13.1 (and also in Theorem 3.23.2 later)
correspond to a non-linear matrix inequality due to the multiplication of the terms σ
and λ. However, assuming a value of λ > 0, the conditions are simplified to a Linear
Matrix Inequality. Therefore, we assign different values to λ between a small number
(e.g., 100×10−27) and a large number (e.g., 10) that produce a feasible solution. We
solve each of the resulting optimization problems and we then report the largest α. This
strategy does not guarantee that the found α is optimal due to the discretization of the
design space of λ.

Remark 3.2. Applying the Schur complement (Lemma 3.23.2) to one element of a block
matrix (e.g., Eq. 3.30Eq. 3.30) divides one element into four new elements. As a result, a new
row and a new column are created inside the matrix inequality, which are filled by the
newly created elements and zeros. The organization of such elements might differ as
long as they are placed according to the symmetry of the matrix inequality. It is possible
to prove that two matrix inequalities L1 and L2 with elements placed symmetrically
in different positions are equivalent by finding a transformation matrix F such that
F T L1F = L2.

Remark 3.3. Theorem 3.13.1 is applicable to time-invariant (e.g., [149149, 105105]) and time-
variant systems (e.g., [137137, 4747]). However, the method for approximating continuous-
time uncertainties presented in Section 3.6Section 3.6 is only applicable to time-invariant systems.
Therefore, the overall strategy presented in this chapter remains only applicable to
time-invariant systems. An alternative approximation method suited for time-variant
systems remains an interesting research question.

Example 3.2. Robustness analysis of a performance-oriented controller: Consider
the model from Example 2.22.2, the controller from Example 2.52.5, and the uncertainties
from Example 3.13.1:

E =
[ −9.3 72.7 312.3 0
−370.8 1879 8379.3 0

]
×10−6,D =


1 0
0 1
0 0
0 0

 .

Consider that the minimum α required (i.e., a robustness constraint) for this example is
an α≥ 1. This implies that the controller can tolerate uncertainties at least larger than
the product of E and D. The optimization problem of Theorem 3.13.1 is then formulated.
Using Remark 3.13.1, the optimization problem is converted into a set of Linear Matrix
Inequalities. The modelling tool Yalmip [8383] together with the convex optimization
software SDPT3 [118118] are used to solve the optimization problem instances. As a
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result, α = 7.7 is found for γ = 2. Given that α ≥ 1, the robustness constraint of our
problem is met for two pipes.

3.7.3 Robustness-oriented pipelined controller design
The following theorem finds the feedback gain K that maximizes the scalar α, while
guaranteeing the stability of the system of Eq. 3.23Eq. 3.23. Like in the previous case, a larger
α implies a more robust controller.

Theorem 3.2. Robust controller design (adapted from [137137, 4747]): Consider the
closed-loop system with uncertainties of Eq. 3.23Eq. 3.23, where the nominal closed-
loop matrix Φcl ∈ R(n+γ)×(n+γ) is given by Eq. 3.25Eq. 3.25, and the uncertainty matrix
∆Φd ∈ R(n+γ)×(n+γ) is given by Eq. 3.16Eq. 3.16 with known matrices D ∈ R(n+γ)×n and
E ∈ Rn×(n+γ), some to-be-determined α ∈ R+, and some uncertainty matrix G ∈ Rn×n ,
such that GT G ¹ I . The system in Eq. 3.23Eq. 3.23 is globally asymptotically stable, if there ex-
ist a positive-definite matrix O ∈R(n+γ)×(n+γ), matrices K ∈R1×(n+γ), V ∈R(n+γ)×(n+γ),
and VK ∈R1×(n+γ), and scalars λ ∈R+ and σ ∈R+ that satisfy

O Â 0, (3.31)
−O λD −Φd V −Γd VK 0
λDT −σλI 0 0

−(Φd V +Γd VK )T 0 O −V −V T (EV )T

0 0 (EV ) −λI

≺ 0, (3.32)

with VK = K V and K = VK V −1. The uncertainty matrix ∆Φd is then given by αDE
with α= σ−0.5. Moreover, the uncertainties that the system of Eq. 3.23Eq. 3.23 can tolerate is
maximized by solving the following optimization problem:

minimize σ
subject to Eq. 3.31Eq. 3.31 and Eq. 3.32Eq. 3.32.

Proof. The proof follows the steps of the proof of Theorem 3.13.1 using the definition of
Φcl (Eq. 3.25Eq. 3.25) and VK = K V . The details are therefore omitted. The invertibility of V
is implied because from the matrix inequality it can be deduced that V +V T Â O Â 0,
which means that V is full rank and therefore invertible.

3.8 Robustness example of pipelined systems
The robustness-analysis procedure of Section 3.7Section 3.7 quantifies the robustness of a
pipelined controller by means of the scalar α. However, in pipelined control, each
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resource configuration has different uncertainties in the discrete-time model . There-
fore, the robustness analysis of a performance-oriented controller or the design of a
robustness-oriented controller has to be repeated for each resource configuration to
be considered. This procedure allows for the performance-oriented design to select
a resource configuration that improves QoC while meeting a robustness constraint
(i.e., minimum α). For the robustness-oriented control design, it allows to select a
resource configuration that provides a controller with maximized robustness. This is
best explained by means of the following examples.

Example 3.3. Robustness analysis of performance-oriented controllers: Continuing
with Example 3.23.2, the robustness analysis is applied to a range of resource configu-
rations from one to eight pipes i.e., γ = 1, . . . ,8. Fig. 3.2Fig. 3.2 shows the maximum α found
(using Theorem 3.13.1) in each one of the resource configurations. Taking into account
that the robustness requirement is α≥ 1, we observe the following from Fig. 3.2Fig. 3.2:

1 2 3 4 5 6 7 8
0

2

4

6

8

2.5e+02

Number of pipes

α

Robustness analysis with 2% uncertainties

Figure 3.2: Robustness analysis of motivational example.

• From Example 2.52.5, it was concluded that the resource configuration that gives
a meaningful improvement in QoC is four pipes. However, the robustness con-
straint of α≥ 1 is only met in the resource configurations γ ∈ {1, . . . ,3}. Therefore,
the resource configuration that gives a meaningful improvement in settling time
while guaranteeing the robustness constraint is three pipes.

• Each newly added pipe decreases the maximumα that the controller can tolerate,
because increasing the number of pipes produces a more aggressive controller
response, which is more likely to become unstable with model uncertainties.
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Table 3.1: Settling times (ms) of motivational example with different values of uncer-
tainties

Number ∆A(2,2)
c = 0 ∆A(2,2)

c =−0.0025, ∆A(2,2)
c = 0.0025

of pipes ∆B (2,1)
c = 0 ∆B (2,1)

c = 0.010 ∆B (2,1)
c =−0.010

1 222.2 247.5 313.5
2 153.2 165.8 198.7
3 130.5 138.0 161.8
4 119.3

robustness constraint not met, i.e., α< 1
5 111.9
6 107.5
7 104.1
8 101.8

• Already a 2% uncertainty in one of the elements of the model matrices has a
major impact on the overall system robustness. This is because the Bc matrix has
only one non-zero element. An uncertainty in such an element directly affects the
amount of energy that the controller inputs to the dynamic system, affecting the
stability of the system.

• The controller design of Section 3.3.2Section 3.3.2 optimizes QoC for a nominal system. How-
ever, the uncertainties in the system may deteriorate the QoC. Since the exact
value of the uncertainties is not known but only a range is known, the settling
time varies for different values of uncertainties. Table 3.13.1 shows an example
of such performance deterioration. The settling time increases with the model
uncertainties. However, the best performance is still achieved with the high-
est number of pipes. The settling times of the systems with uncertainties and
resource configurations 4. . .8 are not shown because α< 1 (meaning the robust-
ness constraint is not met).

Example 3.4. Robustness-oriented pipelined control design: A controller that maxi-
mizes α is designed using Theorem 3.23.2. Fig. 3.3Fig. 3.3 shows the resulting α when the initial
uncertainties assumed in Example 3.13.1 was increased to 50%. We observe the following
from the graphs:

• The maximum α that the system can tolerate increases with the number of pipes,
which potentially means that the robustness of the pipelined controller increases
with each newly added pipe when designed for maximum robustness. This is
possible due to the higher sampling rate.
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• The new values of α are significantly larger than the values found with The-
orem 3.13.1, which means a more robust controller is obtained. However, the in-
creased robustness comes at the cost of performance deterioration. For example,
in the nominal system with one sensing pipe, the settling time of a controller de-
signed for robustness (using Theorem 3.23.2) is 2 s, while using the PSO algorithm
and not considering the uncertainties in the controller design gives 222 ms.

• The controller resulting from Theorem 3.23.2 is mostly interesting for systems with
large uncertainties, where performance-oriented designs may not be feasible.
For example, in ADAS, uncertainties may originate from changing traffic con-
ditions that are difficult to predict. There, a more robust controller is desired
since it increases vehicle safety. The most robust controller corresponds to the
hardware configuration with the largest number of pipes.

1 2 3 4 5 6 7 80

1

2

3

4

5
·104

Resources γ

α

Robustness analysis with 50% uncertainties

Figure 3.3: Robustness analysis including the controller design.

3.9 Feasibility study

3.9.1 Overview
In this section, we demonstrate the effectiveness of a performance-oriented pipelined
controller using Hardware-In-the-Loop (HIL) simulation. This simulation consists of
emulating the plant behaviour implementing the controller and the model in indepen-
dent embedded hardware, such that there is an exchange of electrical signals between
the plant and the controller (see [6565, 1212],[8484, Chapter 14] and the references therein).
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HIL offers the possibility of studying the behaviour of the pipelined controller in
a realistic scenario, e.g., when multiple processing resources exchange their previous
controller outputs to compute new controller outputs, or when changing the nominal
model of the system to evaluate the impact of model uncertainties in the controller.

We subdivide the remainder of this section in four parts. We introduce an applica-
tion where pipelined systems can be of benefit. We then present our HIL simulation.
Next, we apply the design flow of Section 3.4Section 3.4 considering the available hardware and
the presented example. We finally present some results of our HIL simulation.

3.9.2 Plant description and model

We consider an example of an assembly line like the xCPS system shown in Fig. 2.1Fig. 2.1
[22]. This kind of system mimics the behaviour of complex machines such as assembly
lines or wafer scanners, in which data-intensive algorithms (e.g., image processing) are
used as sensors in control loops.

In xCPS, the speed of assembly objects travelling on the belt has to be regulated
such that the objects move slowly when they have to be processed by one of the ac-
tuators in front of the belts, and fast when they have to travel between actuators. The
conveyor belt rotation speed ω is controlled by a continuous-time PI controller. The
settling time of such a controller is 20 ms. The PI controller does not receive infor-
mation about the object speed moving on top of the conveyor belt, but only about the
belt itself. Ideally, both speeds (i.e., belt and object) should be the same; however, in
practise, due to model uncertainties (e.g., unmodelled friction between the block and
the belt borders) they might differ. Therefore, a camera and an image-processing al-
gorithm are used as a sensor of an additional image-based controller to regulate the
block’s speed. The Hough transform for circles is used to recognize the position of the
block on the belt, which is used to estimate the block speed. A schematic of the system
is shown in Fig. 3.4Fig. 3.4. The plant to be controlled by the image-based control is the PI
controller together with the model of the conveyor belt (i.e., the inner loop). The output
of the image-based controller is then used as reference for the PI controller.

Using the worst-case execution time of the image-processing algorithm, the
control-computation operation, and the actuation operation, a τ = 90 ms latency is
introduced to the image-based control loop, which compared to the 20 ms settling
time of the inner loop, potentially limits the performance of the image-based control
loop. A pipelined performance-oriented design may improve the performance of the
image-based controller and the system performance.

The conveyor belt is moved by a DC motor. The combined model of such a motor
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Figure 3.4: Controller structure of one of the belts in the feasibility study.

Table 3.2: Conveyor belt motor parameters.

Symbol description value units
Km motor electrical constant 1.25 v s/r ad

Jm mechanical inertia 17.44 g m2

Rm motor resistance 10.39 Ω

bm viscous friction coefficient 0.58 N ms
Kp controller proportional gain 4.10
K I motor integral gain 166

and the PI controller (i.e., the inner loop) is given by

[
ẋ1

ẋ2

]
=

[
−K 2

m − bm
Jm

− Kp Km

Rm Jm

Km Ki
Rm Jm

−1 0

][
x1

x2

]
+

[
Kp Km

Rm Jm

1

]
rPI ,

with
[
x1 x2]T = [

ω
∫

(rPI −ω)d t
]T , ω the belt angular speed, and rPI the reference

sent to the PI controller. The model parameters are shown in Table 3.23.2. The resulting
matrices are

Ac =
[−70.36 1.14×103

−1 0

]
,Bc =

[
28.31

1

]
.

The bm presented in Table 3.23.2 corresponds to a nominal value. However, the actual
value is estimated in a range of ∆bm = ±0.04 around the nominal bm . This is caused
because the motor is moving a belt whose friction is unknown but bounded to a range.
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The bounds on bm are used to create the uncertainty matrices

∆Ac =
[
∆A(1,1)

c 0
0 0

]
,∆Bc =

[
0
0

]
,

where amax = ∆bm
Jm

and −2.30 ≤∆A(1,1)
c ≤ 2.30.

3.9.3 HIL simulation
3.9.3.1 Platform requirements

In order to make a HIL simulation for pipelined control, we need a platform with
multi-core capabilities and a global notion of time. Multiple cores are required to
independently run the controller in a pipelined fashion, as well as the plant model.
A global notion of time is required to trigger the sensing and actuation operations in
each core at precise time instants, so that it guarantees the sampling period, sensing-to-
actuating delay and the pipelined parallelism.

Fig. 3.5Fig. 3.5 shows an example of running a three-core pipelined controller in the plant
of Section 3.9.2Section 3.9.2. The HIL simulation needs four cores in total. The global notion
of time allows to trigger a new sensing operation every 30 ms. The total sensing-to-
actuating delay corresponds to τ (90 ms in this case) for all the cores. Note that the
image-processing algorithm delay may be shorter than its worst-case execution time.
Therefore, the global notion of time is used to trigger the actuation operations as close
as possible to τ seconds after the start of the sensing operation, achieving pipelined
parallelism.

3.9.3.2 CompSOC platform

We use CompSOC, a multi-core tile-based architecture [4848] as our implementation
platform. In each core, the hardware resources are allocated according to a Time Di-
vision Multiplexing (TDM) table. The TDM tables are synchronized using a global
clock, i.e., there is a global notion of time.

3.9.3.3 HIL set-up

Our HIL simulation uses the CompSOC platform with one core emulating the inner
control loop of Fig. 3.4Fig. 3.4 and one to three cores running the pipelined controller.

The core emulating the inner loop runs a discrete-time version of the model dis-
cretized at a sampling rate hp = 500 µs. hp satisfies hp << h, implying the plant
appears to be continuous from the controller perspective.
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Figure 3.5: Required platform for a three-resources pipelined controller for the plant
presented in Section 3.9.2Section 3.9.2.

In the cores emulating the pipelined controller, the sensing, control computation,
and actuation operations are assigned to slots in the TDM tables. The operation allo-
cation has to guarantee that the time elapsed between the start of sensing and the end
of actuation slots corresponds to τ. The actuation slot sends the controller input to the
plant at the end of the actuation slot to guarantee τ. The operation allocation across
TDM tables also needs to guarantee pipelined parallelism, i.e., the start of the sensing
operation should be allocated such that pipelined parallelism is achieved. The global
clock is then used to align the TDM tables among the cores.

The image-processing algorithm is not implemented in the HIL because of the lack
of actual images. The delay of the image-processing algorithm is simulated by increas-
ing the number of slots dedicated to the sensing operation. The sensing information is
read in the first sensing slot and delivered to the controller after the last sensing slot.

Table 3.33.3 shows an example of the TDM tables of a HIL simulation running three
sensing pipes for the system of Section 3.9.2Section 3.9.2. The table length corresponds to τ guar-
anteeing the sensing-to-actuating delay. The TDM positions are synchronized among
the three tables using the global clock. The operations are allocated in such a way that
a new sensing operation starts every 30 ms, guaranteeing pipelined parallelism.

3.9.4 Application of the design flow
To find the resource configuration that improves the QoC while guaranteeing a robust-
ness constraint, following Example 3.23.2, we set the robustness constraint to α≥ 1. We
apply the design flow of Section 3.4Section 3.4 for the available cores γ = 1. . .3. We show the
analysis for the case of γ= 3.
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Table 3.3: TDM slots for a three-core implementation on the CompSOC platform.
S j , C j , and A j with j = 1, . . . ,3 correspond to the sensing, control computation, and
actuation operations in core j , respectively.

Table TDM position
position 1 2 3 4 5 6 7 8 9
core 1 S1 S1 S1 S1 S1 S1 S1 C1 A1

core 2 S2 C2 A2 S2 S2 S2 S2 S2 S2

core 3 S3 S3 S3 S3 C3 A3 S3 S3 S3

90 ms
30 ms

Model discretization: Using the procedure explained in Section 3.3.1Section 3.3.1, we find
a sampling period h and a discrete-time augmented model Φd , Γd for each resource
configuration γ. For the resource configuration γ = 3, h = 30 ms and the model is
given by

Φd =


−0.0099 12.1327 0.5648 0 0
−0.0106 0.7349 0.0203 0 0

0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

 ,Γd =


0
0
0
0
1

 .

Performance-oriented controller design: Using the procedure explained in
Section 3.3.2Section 3.3.2, we compute a controller K , F for each resource configuration γ. For
γ= 3, the controller is given by

K = [
11.24 −2.47 −102.26 −188.94 −432.09

]×10−3,

F = 1.803.

The controllers are implemented in Simulink using the nominal plants. For each con-
troller, we measure the settling time produced by a change in the controller reference,
which determines the control performance. The resulting trade-off between control
performance and resource usage is shown in Fig. 3.6Fig. 3.6. In this case, each added core
significantly improves the settling time. Therefore the optimal resource configuration
(without considering the system robustness) is γ= 3.

Model-uncertainty approximation: The procedure explained in Section 3.6Section 3.6 is
applied to the resource configurations. A pair of uncertainty matrices E , D is found for
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Figure 3.6: Comparison of LQR tuned with different strategies on our motivational
example.

each resource configuration. The resulting matrices for γ= 3 are

E =
[

0.0037 0.2779 0 0 0
−0.0002 −0.0042 0 0 0

]
,D =


1 0
0 1
0 0
0 0
0 0

 .

Robustness analysis for performance-oriented control: Applying Theorem 3.13.1
for the three considered resource configurations, an α for each resource configuration
is found. For the case of γ= 3, α= 2.77.

Trade-off analysis: Using the α of each resource configuration, Fig. 3.7Fig. 3.7 is drawn.
Given that all the resource configurations have α ≥ 1, γ = 3 is chosen as the resource
configuration that improves QoC while guaranteeing a robustness constraint.
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Figure 3.7: Robustness analysis in the feasibility study.

3.9.5 HIL simulation results
We first validate our HIL simulation by comparing it with a Simulink-based simula-
tion. Fig. 3.8Fig. 3.8 compares controller responses with three pipes. Both simulations show
the same result implying that our HIL is correct and that pipelined control is feasi-
ble. Fig. 3.8Fig. 3.8 only shows information every h seconds for the HIL simulation while
for the Simulink simulation it shows a continuous line. This is as expected in a real-
istic scenario, because sensing information is only available when a core finishes the
image-processing algorithm, i.e., every h seconds.
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Figure 3.8: Performance comparison three-core pipelined controller.

Fig. 3.9Fig. 3.9 compares the controller performance using the three available resource
configurations. Every newly added pipe improves the QoC of the system. The resource
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configuration with three pipes outperforms the other two, due to its higher sampling
rate.
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Figure 3.9: Comparison of step responses using HIL simulation.
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Figure 3.10: Output of HIL simulation when the system with model uncertainties is
considered.

The robustness of the pipelined controller is also tested using HIL simulation. We
add to the nominal model a constant uncertainty of ∆A(1,1)

c = 1.15. The model is dis-
cretized and implemented in the corresponding tile. The result is shown in Fig. 3.10Fig. 3.10
for γ = 3. The controller is still stable, although the settling time is increased from
St = 118 ms in the nominal case to St = 138 ms in the case with model uncertainties.
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3.10 Summary
In this chapter, we have presented an analysis framework to include model uncer-
tainties in the resource-QoC trade-off in pipelined systems. The framework includes
methods to either analyse the impact of models with uncertainties in performance-
oriented pipelined controllers or to design robustness-oriented pipelined controllers.
Our framework starts with a technique to approximate discrete-time uncertainties based
on continuous-time uncertainties. Such uncertainties are presented in the form of
time-invariant matrices with one uncertain element. Our results show that the robust-
ness of a performance-oriented pipelined controller decreases with each newly added
pipe, because adding sensing resources produces a more aggressive response which
is more susceptible to modelling errors. Therefore, our framework may be used in a
performance-oriented design to select a resource configuration that not only provides
performance improvement but also guarantees that a minimum desired robustness is
met. Likewise, our results show that the robustness of a pipelined controller can be
increased with each newly added pipe in a robustness-oriented design. Therefore, our
framework can be used to select a resource configuration that provides a desired ro-
bustness. We presented a HIL simulation to show the feasibility of pipelined control.
The HIL simulation validates our analysis, results, and observations.

As future work, it would be interesting to confirm our numerical analysis to reason
about the relation between continuous-time and discrete-time uncertainties with an an-
alytical argument and to develop an analysis for a more general class of uncertainties.
Further, analysing existing design methods for pipelined control may provide insight
whether it is possible to design a controller that improves robustness and control per-
formance at the same time.
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Reconfigurable pipelined control
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In pipelined-sensing control, increasing the processing resources shortens the sam-
pling period, which can be used to improve the QoC. However, in Cyber-Physical
Systems (CPSs) the processing resources are commonly shared between the DISC
(e.g., a pipelined-sensing controller) and other applications. For example, in Advanced
Driver Assistance Systems (ADAS), the pipelined controller may share the process-
ing resources with other applications such as the air conditioning, the alarm system or
the GPS system. Such computational applications are sporadic, i.e., their processing
resources are not being continuously used and the processor occasionally runs idle.
Dynamically allocating the processing resources between the pipelined-sensing con-
troller and other sporadic applications can be used to reduce processor idling improv-
ing resource usage and the overall QoC. In this chapter, we show that the QoC of a
pipelined-sensing controller can be further improved by dynamically allocating (i.e.
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reconfiguring) processing resources that are temporarily unused by other applications
to the sensing pipeline. To do so, we present a design strategy for a Reconfigurable
Pipelined Controller (RPC), that allows for run-time reconfiguration of the sensing re-
sources. Based on our results, we provide insights of when it is beneficial to use RPC
over static pipelined control.

The contents of this chapter were published in SIES 2016 [9090]. A concrete instance
of the RPC framework is described in [8989].

4.1 Preliminaries
Control systems: The RPC uses the linear time-invariant plant model presented in
Eq. 2.1Eq. 2.1:

ẋ(t ) = Ac x(t )+Bc u(t )

y(t ) =Cc x(t ),
(4.1)

where the plant is defined by Ac ∈ Rn×n the state, Bc ∈ Rn×1 the input, and Cc ∈ R1×n

the output matrices. x(t ) ∈ Rn×1 is the state vector, u(t ) ∈ R the input, and y(t ) ∈ R the
output at time t ∈R≥. The plant has n ∈Z+ states.
Embedded systems: We consider an embedded system with γES ∈ Z+ processing
resources. γsa ∈ Z+ processing resources are needed for sa ∈ Z+ sporadic applica-
tions. The remaining γ= γES −γsa processing resources can be used to design a static
pipelined controller, as described in Chapter 22. However, an RPC with improved QoC
can also be designed by dynamically allocating the γ processing resources available for
the RPC and any available resources from γsa to the controller. An RPC therefore dy-
namically uses a maximum of γMC ∈Z+ processing resources, with γES ≥ γMC > γ. In
this chapter, we consider a data-intensive sensor with an external trigger. Following the
arguments of Section 2.3.4Section 2.3.4, an external trigger is commonly available in data-intensive
sensors. Such a trigger is required to enable the capturing of image data during the con-
troller reconfiguration. Note that a periodically triggered camera can also be supported,
as described in [8989].

4.2 Problem definition
An RPC on-line changes (i.e. reconfigures) the number of processing resources being
used by the controller. An example of an RPC is shown in Fig. 4.1Fig. 4.1. The embedded
system has three processing resources that execute a pipelined controller and a spo-
radic application. Using the strategy of Chapter 22, a static pipelined controller can be
designed with the two statically available processing resources.
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However, an additional processing resource is available when the sporadic task is
not executing. Therefore, an RPC composed of two controllers can be designed: one
for two and one for three processing resources. The controllers in the RPC may switch
depending on the availability of processing resources. The RPC potentially improves
the QoC compared to the static controller with two processing resources. An RPC
therefore has different resource configurations (e.g., two in Fig. 4.1bFig. 4.1b) depending on the
availability of processing resources. The RPC example in Fig. 4.1bFig. 4.1b runs initially with
two processing resources, leading to a sampling period hr c . The controller reconfigures
at some point to a configuration with three processing resources, leading to a sampling
period hMC . The result is a switched controller.

time (s)

resources γES

0.03 0.06 0.09 0.12 0.15 0.18

1
2
3

sensing
actuation

control computation
sporadic application

h

(a) Static pipelined control. The sampling period h remains constant during the entire operation
of the controller. One processing resource is dedicated exclusively to the sporadic task.

time (s)

resources γES

0.03 0.06 0.08 0.10 0.12 0.14 0.16 0.18

1
2
3

hMChr c

(b) Reconfigurable pipelined control. The processing resources are dynamically allocated be-
tween the controller and the sporadic application. The sampling period changes at run-time
between hr c and hMC .

Figure 4.1: Examples of resources configurations.

To reconfigure the processing resources in pipelined-sensing control, a modelling
and a control-design strategy are required. The modelling strategy needs to capture
the interplay between variable resource configurations and the plant model. Variable
resource configurations produce multiple sampling periods, which change depending
on the resource configuration. Therefore, the control-design strategy needs to guarantee
stability with all the resulting sampling periods while providing QoC improvement
compared to a static pipelined control.

Our contributions in this chapter are two fold: (i) we adapt the modelling strategy of
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[2424] to capture the interplay of varying processing resources with the dynamic system;
(ii) this modelling strategy is used to design reconfigurable controllers that outperform
the static pipelined implementation, while guaranteeing stability.

4.3 Related work
Creating a reconfigurable controller requires a modelling technique that captures the
changes in the plant, and a control-design technique that guarantees stability and QoC
improvement. Reconfigurable control can be found in embedded control applications
(e.g., [122122]) and networked control systems (e.g., [120120]). Common techniques to de-
sign reconfigurable controllers include periodic linear systems, switched linear sys-
tems, and robustness analysis. None of these techniques have been used to reconfigure
the processing resources in a pipelined control.

We consider control-design techniques that potentially allow reconfiguration in a
pipelined-sensing controller. Periodically switched linear systems are commonly used
in embedded control where multiple periodic applications share a processing resource.
This resource sharing creates implementations where the controllers have multiple-
sampling periods and a global hyper-period. Design strategies for periodically switch-
ing controllers include periodic pole placement [2626, 129129, 138138, 8686], periodic Lyapunov
functions [138138, 3636, 8181, 119119], and periodic LQR [1515, Chapter 1.8],[9393, 2727, 6060, 128128, 122122].
These control-design strategies can be used to guarantee QoC improvement in terms of
real-time performance metrics. Therefore, these approaches can be adapted to design
reconfigurable pipelined controllers. However, the resulting RPC would be limited to
applications with periodic sporadic tasks.

For switched linear systems, Common-Quadratic Lyapunov Functions (CQLFs)
can be used to design a set of controllers that allows stable arbitrary switching between
controllers with different sampling periods [8787, 112112, 9595, 122122]. Therefore, in switched
linear systems the switching sequence is not required to be periodic. Following the
ideas of [122122], CQLFs allow to design a controller with optimized QoC while the rest
of the controllers guarantee stability.

Robustness-analysis techniques are commonly used in networked control where
the network induces variable sampling periods, variable delay, and packet losses. This
technique provides controllers with robust stability guarantees on a controller given the
changing network conditions [143143, 2525, 2424, 102102]. This control design can be adapted to
RPC. However, the resulting robust stability guarantees are not easily related to real-
time performance metrics, which is not aligned with the scope of this thesis. Ref. [2424]
also presents a modelling design technique used to analyse the stability of systems
with variable sensing delay. We adapt such a technique for modelling reconfigurable
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controllers to capture the interplay of varying resources with the dynamic system.
In this chapter, we combine the modelling strategy of Chapter 22 with the ideas of

[2424], to include the multiple resource configurations of an RPC. Further, we use the
RPC model to design a set of controllers using CQLFs. The controllers provide QoC
improvement compared to a static pipelined controller design, while allowing stable
arbitrary switching between multiple resource configurations.

4.4 Modelling RPC
The model of an RPC captures the interplay between the plant model of Eq. 4.1Eq. 4.1 and
the allocated processing resources which dynamically change depending on their avail-
ability. To capture this variability, our RPC is composed from multiple resource con-
figurations:

• a Maximal Configuration (MC) denoted by MC with γMC ∈ Z+ processing re-
sources. The MC uses the maximum number of resources designated for the
RPC, i.e., γMC ≤ γES . The MC has a sampling period given by hMC ∈R+.

• a set of Reduced Configurations (RCs) denoted by RC, with |RC| < γMC . Each
RC r c ∈ RC has γr c ∈ Z+ processing resources. The RCs use fewer processing
resources than the MC (i.e., γr c < γMC ) to release processing resources for other
applications. The number of RCs is a design parameter that depends on the
presence of other sporadic applications. Each RC r c has a sampling period given
by hr c ∈R+.

It is assumed that all the possible configurations from the RPC are known at design
time. At run-time, the RPC switches between the resource configurations (i.e., the MC
and the RCs) and their corresponding sampling periods

H= {
hc | c ∈ RC ∪ {MC }

}
.

Due to the variability of sampling periods, the controller sensing instants (i.e., the
moments when a sensing task starts) are unequally spaced. Therefore, to keep a notion
of time in the discrete-time models, the following equation is defined:

t s
k =

k−1∑
i=0

hi , (4.2)

with hi ∈H the sampling period of the RPC at sample i (i ∈Z≥) and t s
k ∈R≥ the start of

the controller sensing instant at the discrete-time index k ∈ Z≥, with t s
0 = 0. Note that

the corresponding actuation operations are completed at time t = t s
k +τ.
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Example 4.1. RPC sensing instants: Consider the resource configuration shown in
Fig. 4.2Fig. 4.2. The sensing, control computation, and actuation operations result in delays
of τs = 0.05 s, τc = 0.005 s, and τa = 0.005 s, respectively. The controller is composed
of an MC with γMC = 3 and hMC = 0.02 s, and an RC with γr c = 2 and hr c = 0.03 s.
The controller switches at run time from the RC to the MC and back to the RC, which
results in unevenly distributed sampling instants, sometimes being 0.02 s apart, some-
times 0.03 s. Applying Eq. 4.2Eq. 4.2, the relationship between the discrete-time index and the
sampling instants is found. The resulting timings are shown in Table 4.14.1.

Unavailable

Unavailable
time (s)

resources γES

0.03 0.06 0.08 0.10 0.12 0.15 0.18 0.21 0.24

1

2

3

hMChr c hr c

Figure 4.2: Sensing instants on an RPC. The controller switches temporarily from an
RC to the MC which causes unevenly distributed sampling instants. The “unavailable”
processing resources are then used by sporadic applications.

Table 4.1: Timings, state vector, and control inputs in Fig. 4.2Fig. 4.2. The state vectors and
control inputs are explained in the following subsections.

k core
sensing control computation

t s
k (s) Eq. 4.2Eq. 4.2 expansion measured state t c

k (s) controller

0 1 0.00 t s
0 xr c

0 0.05 ur c
0

1 2 0.03 t s
1 = hr c xr c

1 0.08 ur c
1

2 1 0.06 t s
2 = t s

1 +hr c xMC
2 0.11 uMC

2

3 3 0.08 t s
3 = t s

2 +hMC xMC
3 0.13 uMC

3

4 2 0.10 t s
4 = t s

3 +hMC xMC
4 0.15 uMC

4

5 1 0.12 t s
5 = t s

4 +hMC xr c
5 0.17 ur c

5

6 3 0.15 t s
6 = t s

5 +hr c xr c
6 0.20 ur c

6

7 1 0.18 t s
7 = t s

6 +hr c xr c
7 0.23 ur c

7

8 3 0.21 t s
8 = t s

7 +hr c xr c
8 0.26 ur c

8
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4.4.1 Modelling the MC

The modelling of an MC follows the modelling of pipelined control of Section 2.3Section 2.3 and
the ideas of [2424]. We summarize the modelling strategy with an updated notation for
RPC.

Consider a DISC with a sensing-to-actuating delay of τ ∈R+ seconds and γMC ∈Z+

processing resources available for computation. The sampling period of the MC hMC

is:
hMC = τ

γMC
. (4.3)

Discretizing Eq. 4.1Eq. 4.1 with the sampling period hMC and sensing-to-actuating delay τ

leads to the following discrete-time representation:

xMC
k+1 = AMC xMC

k +B MC uMC
k−γMC

y MC
k =Cc xMC

k ,
(4.4)

where xMC
k ∈Rn×1 and y MC

k ∈R are the discrete-time state vector and output of the MC,
respectively, with xMC

k := x(t s
k ) and y MC

k := y(t s
k ) when hk−γMC = hMC . uMC

k−γMC ∈ R
is the delayed controller input for the MC, which is implemented using a ZOH to
keep the actuation signal constant between consecutive samples i.e., u(t ) := uMC

k−γMC

for t ∈ [t s
k , t s

k+1). Cc is defined in Eq. 4.1Eq. 4.1 while AMC ∈ Rn×n and B MC ∈ Rn×1 are the
discrete-time state and input matrices defined by [88]:

AMC = e Ac hMC

B MC =
∫ hMC

0
e Ac s Bc d s.

(4.5)

To remove the sensing-to-actuating delay from Eq. 4.4Eq. 4.4, the augmented notation for the
MC is defined as:

zMC
k =

[(
xMC

k

)T
uMC

k−γMC uMC
k−γMC+1

· · · uMC
k−1

]T
. (4.6)

with zMC
k ∈ R(n+γMC )×1 the discrete-time augmented state vector. Reorganizing

Eq. 4.4Eq. 4.4 gives the following augmented system:

zMC
k+1 =ΦMC zMC

k +ΓMC uMC
k

y MC
k =Cd zMC

k ,
(4.7)
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with ΦMC ∈ R(n+γMC )×(n+γMC ), ΓMC ∈ R(n+γMC )×1, and Cd ∈ R1×(n+γ) the augmented
discrete-time state, input and output matrices respectively, further defined by:

ΦMC =


AMC B MC 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0


ΓMC = [

0 0 . . . 0 1
]T

Cd = [
Cc 0 0 . . . 0

]
,

(4.8)

where 0 denotes zero matrices of appropriate dimensions.
In the augmented-state-vector definition of Eq. 4.6Eq. 4.6, the number of states depends

on γMC . Similarly, in a particular RC, the number of states depends on a particular γr c ,
which leads to a discrete-time model with fewer states than the MC. However, in order
to design an RPC, it is necessary that the discrete-time models of both the MC and
each RC have an equal number of states. In the next section, we propose a modelling
strategy for the RCs that addresses this aspect.

Example 4.2. MC modelling: Consider the dynamic system presented in Section 2.2Section 2.2:

Ac =
[

0 1.7
−9 −2.5

]
,Bc =

[
0

10

]
,Cc = [1 0] .

A camera and an image-processing algorithm are used as a sensor for measuring the
plant states x1 and x2. The total sensing-to-actuating delay is τ= 0.084 s. An embed-
ded platform with two processing resources is available for the DISC and one sporadic
application. Therefore, we select γES = γMC = 2.

Using Eq. 4.3Eq. 4.3, the sampling period is defined as hMC = 42 ms. Using Eq. 4.5Eq. 4.5, the
discretized model is given by:

AMC =
[

0.98 0.07
−0.35 0.88

]
,B MC =

[
0.01
0.39

]
.

The model augmentation of Eqs. 4.64.6 and 4.84.8 gives:

zMC
k =


xMC ,1

k

xMC ,2
k

uMC
k−2

uMC
k−1

 ,ΦMC =


0.98 0.07 0.01 0

−0.35 0.88 0.39 0

0 0 0 1

0 0 0 0

 ,ΓMC =


0

0

0

1

 . (4.9)
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4.4.2 Modelling the RCs
Consider a resource configuration r c ∈ RC . The sampling period of such a configura-
tion is defined by:

hr c = τ

γr c . (4.10)

Discretizing Eq. 4.1Eq. 4.1 with the sampling period hr c and sensing-to-actuating delay τ
leads to the following discrete-time representation:

xr c
k+1 = Ar c xr c

k +B r c ur c
k−γr c

y r c
k =Cc xr c

k ,
(4.11)

where xr c
k ∈ Rn×1 and y r c

k ∈ R are the discrete-time state vector and output of the RC,
respectively, with xr c

k := x(t s
k ) and y r c

k := y(t s
k ) and hk−γr c = hr c . ur c

k−γr c ∈ R is the
controller input for the RC, which is implemented using a ZOH to keep the actuation
signal constant between consecutive samples i.e., u(t ) := ur c

k−γr c for t ∈ [t s
k , t s

k+1). Cc

is defined in Eq. 4.1Eq. 4.1 while Ar c ∈ Rn×n and B r c ∈ Rn×1 are the discrete-time state and
input matrices, further defined by:

Ar c = e Ac hr c
,

B r c =
∫ hr c

0
e Ac s Bc d s.

(4.12)

To remove the actuation delay from Eq. 4.11Eq. 4.11, a strategy similar to the MC case could
be used:

z̃r c
k =

[(
xr c

k

)T ur c
k−γr c ur c

k−γr c+1 · · · ur c
k−2 ur c

k−1

]T
, (4.13)

with z̃r c
k ∈R(n+γr c )×1. However, since γr c < γMC , the augmented state vector in Eq. 4.6Eq. 4.6

has a larger dimension than the augmented state vector in Eq. 4.13Eq. 4.13. We make the
augmented state-vector dimension in all the configurations identical to ease the sta-
bility analysis of the overall system. In order to equalize the number of states in all
configurations, Eq. 4.13Eq. 4.13 is augmented by introducing old controller inputs ur c

k in the
augmented state-vector definition, so that the length of zr c

k is the same as zMC
k :

zr c
k =

[(
xr c

k

)T ur c
k−γMC ur c

k−γMC+1
· · · ur c

k−γr c · · · ur c
k−1

]T
(4.14)

with zr c
k ∈R(n+γMC )×1 the discrete-time augmented state vector. The discrete-time aug-

mented model of the RC is then defined by:

zr c
k+1 =Φr c zr c

k +Γr c ur c
k

y r c
k =Cd zr c

k ,
(4.15)
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where Cd is defined in Eq. 4.8Eq. 4.8, and Φr c ∈ R(n+γMC )×(n+γMC ) and Γr c ∈ R(n+γMC )×1 are
the discrete-time state and input matrices of the r c, respectively, defined by:

Φr c =



Ar c 0 . . . B r c 0 . . . 0
0 0 . . . 0 0 . . . 0

0 0
. . . 0 0 . . . 0

...
... . . .

...
...

. . .
...

0 0 . . . 1 0 . . . 0
0 0 . . . 0 1 . . . 0
...

...
. . .

...
. . .

...
0 0 . . . 0 0 . . . 1
0 0 . . . 0 0 . . . 0



,Γr c =



0
0
0
...
0
0
...
0
1


.

γMC

γr c

(4.16)

Note that there are added columns and rows of zeros in these matrices (e.g., between
Ar c and B r c in Φr c ). These zeros cancel the effect of some controller inputs in the
plant dynamics. The cancelled controller inputs correspond to the ones added in the
augmented state definition of Eq. 4.14Eq. 4.14.

Example 4.3. RC modelling: Continuing with Example 4.24.2, we select to have one
reduced configuration with γr c1 = 1. Using Eq. 4.10Eq. 4.10, the sampling period is given by:

hr c1 = 0.084 s.

Replacing hr c1 in Eq. 4.12Eq. 4.12 gives the discrete-time model:

Ar c1 =
[

0.95 0.12
−0.66 0.76

]
,B r c1 =

[
0.05
0.74

]
.

The discrete-time augmented vector is defined using Eq. 4.14Eq. 4.14 as:

zr c1
k =

[
xr c1,1

k xr c1,2
k ur c1

k−2 ur c1
k−1

]T
.

The augmented state and input matrices are given by:

Φr c1 =


0.95 0.12 0 0.05
−0.66 0.76 0 0.74

0 0 0 1
0 0 0 0

 ,Γr c1 =


0
0
0
1

 .
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The models of the MC (Eqs. 4.64.6-4.84.8) and of the RC (Eqs. 4.144.14-4.164.16) are used to
design an RPC in the next section.

4.5 Control design in RPC
Depending on the number of available processing resources, the active configuration in
the RPC switches between the MC and one or more RCs. Such a switching strategy can
potentially lead to an unstable closed-loop behaviour [117117]. The control-design strat-
egy has to cope with this problem. Additionally, since the MC has the largest number
of processing resources, it can achieve a higher QoC. The RPC is then designed to oper-
ate most of the time in the MC, while it might occasionally switch to an RC to release
processing resources for sporadic applications. Therefore, the control-design strat-
egy guarantees QoC while running in the maximal configuration, and stability while
switching and running in an RC. The purpose of this section is

• to present a set of requirements for the embedded system (e.g., activation and
de-activation policies) and the control system (state initialization) that enable the
switching mechanism;

• to design feedback gains K MC and K r c (for each r c) that allow performance
improvement and stable switching, respectively, as is shown in Fig. 4.3Fig. 4.3;

• to design feed-forward gains F MC and F r c (for each r c) such that the output
vector y converges to the input step reference r , when one of the configurations
is active for a sufficiently long time.

The last point is called set-point regulation. Although set-point regulation in a switched
system is challenging when the active system changes fast, it is feasible in RPC because
the controller is expected to stay primarily in only one configuration (i.e., the MC) [2929].
In line with the arguments of Section 2.4.1.4Section 2.4.1.4, the controllers are designed in two steps
i.e., first the feedback gains and then the feed-forward gains. This allows us to treat
stability and performance aspects separately. Alternative design strategies such as LQI
can also be used to design both gains in one step. In principle, these approaches can
be adapted to our work. However, for a switched-system design, it is hard to find
controllers that improve QoC in terms of time-domain metrics for LQI formulations
[9494]. This motivates us to use the current two-step approach.

The control law has the following forms:

uMC
k = K MC zMC

k +F MC
k r (4.17)
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Sensing cores: γr c

hr c = τ
γr c

Model: Φr c , γr c

Gains: K r c , F r c

Method: Section 4.5.3Section 4.5.3

Sensing cores: γMC

hMC = τ
γMC

Model: ΦMC , ΓMC

Gains: K MC , F MC

Method: Section 4.5.2Section 4.5.2

MC r c

QoC
enhancement

Stability
guarantee

# of active sporadic
applications> 0

# of active sporadic
applications= 0

# of active sporadic
applications> 0

Figure 4.3: Operation modes of an RPC. One of the RCs becomes active when one or
multiple sporadic applications are triggered. Otherwise the MC becomes active.

ur c
k = K r c zr c

k +F r c
k r, (4.18)

where K MC ∈ R1×(n+γMC ), K r c ∈ R1×(n+γMC ) and F MC ∈ R, F r c ∈ R are the feedback
and feed-forward gains, respectively. Note that when the controller starts with the MC,
we apply uMC

k = 0 for k < 0 since we need to wait for the first sample to compute the
control input. Likewise, when the controller starts with an RC, ur c

k = 0 for k < 0.
In the following subsection, the requirements of the switching mechanism are elab-

orated. Then, a controller design strategy is first provided for the MC in Section 4.5.2Section 4.5.2,
where controller performance is enhanced, and then for the RC in Section 4.5.3Section 4.5.3, where
the stability is guaranteed while switching occurs.

4.5.1 Switching mechanism
Switching between multiple resource configurations requires the definition of a run-
time switching mechanism in the embedded system and in the control system. This
guarantees that smooth transitions are achieved between the changing resource config-
urations. The switching mechanism covers the following items, with related require-
ments:

• The (delayed) activation and deactivation policies of the processing resources
used for running control operations, considering possible unavailability of the
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processing resources. For example, consider the RPC of Fig. 4.2Fig. 4.2. A new sens-
ing operation starts (i.e., activation policy) at processing resource three at time
t = 0.08 s, while the next sensing operation is delayed (i.e., delayed activation
policy) on processing resource two from t = 0.09 s to t = 0.10 s. These policies
ensure a smooth transition in the sampling periods. Later during the execution,
processing resource two becomes unavailable because it is needed for the spo-
radic task. The activation policies need to take this into account.

• Augmented state-vector initialization during the switching. This state initial-
ization ensures that the control laws from Eqs. 4.174.17 and 4.184.18 can be computed
during the switching. For example, in the RPC of Fig. 4.2Fig. 4.2, to compute the con-
trol law uMC

2 at t = 0.11 s (see Table 4.14.1), the augmented state vector zMC
2 is

required. This augmented state vector is composed of xMC
2 and the old control

inputs of the MC uMC
1 , uMC

0 , and uMC
−1 (see Eq. 4.6Eq. 4.6). xMC

2 was measured by
the sensing operation started at t = 0.06 s. However, the old controller inputs
were never computed because the active configuration at t ≤ 0.06 s was an RC.
Therefore, zMC

2 needs to be initialized.

In the following subsections, we introduce some general rules and definitions for
the reconfiguration mechanism. Then, since the transition from the MC to an RC re-
sults in other (de-)activation policies and state initialization than the transition from an
RC to the MC, we analyse these transitions in independent subsections. Notice that
in RPC, also RC-to-RC reconfigurations are possible. A reconfiguration to less pro-
cessing resources follows the mechanism of the MC to an RC transition. Likewise, a
reconfiguration to more processing resources follows the mechanism of an RC to the
MC transition. Therefore, we do not discuss those RC-to-RC reconfigurations sepa-
rately.

4.5.1.1 General rules and definitions for the switching mechanism

We consider the following key terms and definitions for the reconfiguration mechanism.

1. One of the processing resources in the RPC is referred to as the base process-
ing resource during the reconfiguration. This processing resource controls the
reconfiguration to ensure smooth timings during the controller reconfiguration.
The activation of the base processing resource is not adjusted during the switch-
ing. When the sensing operation starts in the base processing resource, then the
new sampling period of the RPC becomes active. For example in Fig. 4.2Fig. 4.2, core
one corresponds to the base processing resource during both reconfigurations.
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Notice that the sampling periods always change on the activation of this process-
ing resource. The RPC needs to be implemented in such a way that any of the
allocated processing resources can act as base processing resource.

2. The rest of the processing resources are referred to as non-base processing re-
sources during the reconfiguration. These processing resources are at run-time
reconfigured between the RPC and any of the sporadic tasks. The non-base pro-
cessing resources are programmed to run either the RPC or the sporadic tasks.
For example in Fig. 4.2Fig. 4.2, core two and three correspond to non-base processing
resources during both reconfigurations.

3. Each sporadic task is enabled to run on any of the processing resources. This
is required because during reconfigurations, the RPC might release other pro-
cessing resources than the originally available ones (see for example in Fig. 4.2Fig. 4.2,
where the processing resource tagged as “unavailable” changes from three to two
after two reconfigurations).

4. The switching occurs between two time instants: a switching initiation t s
ksw

∈
R+ (with ksw ∈ Z≥ the discrete-time index at the switching initiation) and a
switching completion. The switching initiation starts when the sampling pe-
riod changes between configurations. The switching completion occurs τ time
units after the switching initiation, i.e., at time t s

ksw
+τ. For example in Fig. 4.2Fig. 4.2,

the first reconfiguration starts at t s
2 = 0.06 s, with ksw1 = 2, and completes at

t = 0.12 s; the second reconfiguration then immediately starts at t s
5 = 0.12 s, with

ksw2 = 5, and completes at t = 0.18 s.

5. Processing resources can only be assigned to sporadic tasks from a switching
completion onwards. Therefore, the start time of a sporadic task needs to be
communicated to the RPC τ seconds before the desired switching competition.
For example in Fig. 4.2Fig. 4.2, processing resource two is made unavailable to the RPC
(i.e., there is a desired switching completion) from time t = 0.18 s onwards.
That implies that the RPC is aware of such unavailability from t < 0.12 s, which
allows it to orchestrate the reconfiguration from t s

5 = 0.12 s.

6. New processing resources can only be assigned to the RPC from a switching
initiation onwards. Therefore, to keep the processing resources with the highest
utilization, the completion time of a sporadic task needs to be communicated to
the RPC before the desired switching initiation. For example in Fig. 4.2Fig. 4.2, process-
ing resource three is made available to the RPC at t = 0.06 s. That implies that
the RPC is aware of such a completion at some t < 0.06 s, such that t s

2 is used as
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a switching initiation. Note that in case the completion time is not communicated
to the RPC, then the controller can only start to orchestrate the reconfiguration
when it notices that the processing resource is available (e.g., from t > 0.06 s),
leading to a lower resource utilization.

4.5.1.2 Switching mechanism: from the MC to an RC

Consider the example shown in Fig. 4.4Fig. 4.4. The processing resources are numbered from
1 to γMC . The switching initiation starts when the sampling period switches from hMC

to the period hr c of an RC. That is, hksw−1 = hMC and hksw = hr c . t s
ksw

is then formally
defined as the time instant resulting from substituting ksw for k in Eq. 4.2Eq. 4.2. We define
activation (or deactivation) policies and state-initialization policies around this time
instant.

∆1

∆2

Unavailable

hMC hr c

time (s)

Processing resource
number

1

2

3

4

τSwitching initiation
t s
ksw

switching completion

base processing resource

non-base
processing resources

Figure 4.4: Example of switching from an MC with γMC = 4 to an RC with γr c = 3,
where ∆1 =∆r c

1 = hr c −hMC and ∆2 =∆r c
2 = 2(hr c −hMC ).

1. Delayed activation and deactivation policies in MC-to-RC transition: A
smooth transition from hMC to hr c is achieved by delaying the activation or de-
activation of the processing resources at precise time instants. Fig. 4.4Fig. 4.4 shows an
example of the switching mechanism between the MC and an RC. We establish
the following transition requirements.

(a) γMC −γr c non-base processing resources are made unavailable to the RPC
(i.e., they are deactivated). The processing resources originally scheduled
to start a sensing operation at time

t s,MC
k, j = t s

ksw
+τ− j hMC ,



4

90 Reconfigurable pipelined control

with j = {1, . . . ,γMC −γr c }, are deactivated for the RPC. These process-
ing resources are deactivated as soon as they finish their ongoing sensing,
control computation, and actuation operations. These processing resources
are then made available to run any of the sporadic tasks from the switch-
ing completion onwards. For example in Fig. 4.2Fig. 4.2, processing resource two
was originally scheduled to start a sensing operation at time t s,MC

5,1 = 0.16 s.
However, due the reconfiguration, this processing resource is made unavail-
able to the RPC.

(b) The start time of the sensing task of the remaining non-base processing
resources is delayed from:

t s,MC
k,i = t s

ksw
+ i hMC (4.19)

to
t s,r c

k,i = t s
ksw

+ i hMC +∆r c
i , (4.20)

with i = {1, ...,γr c − 1}. ∆r c
i = i (hr c −hMC ) is a delay on the activation

time. This activation delay guarantees a smooth transition in the sampling
periods. For example in Fig. 4.2Fig. 4.2, the start time of the sensing task in pro-
cessing resource three is delayed from t s,MC

5,1 = 0.14 s to t s,r c
5,1 = 0.15 s, with

∆r c
1 = 0.01 s.

(c) Switching from any configuration γMC > 1 to γr c = 1 does not need any
adjustment in the activation mechanism, because only the base processing
resource remains running after the switch.

(d) Due to the sensing delay, the change in the sampling period is only re-
flected on the actuation side (i.e., the actuation period) τ time units after
the switching initiation. Consequently, the controller actuation period still
follows hMC between the switching initiation and the last sample before
the switching completion, i.e., during the time frame [t s

ksw
, t s

ksw
+τ). This

implies that the control law of the RC is only applied from the switching
completion onwards. For example in Fig. 4.2Fig. 4.2, the sampling period changes
to hr c at t = 0.12 s. However, uMC

k is still computed at t = {0.13,0.15} s.
The new control law ur c

k is computed from t = 0.17 s onwards.

2. Augmented-state-vector initialization in MC-to-RC transition: The control-
computation operation at tc = t s

ksw
+τs (just before the switching completion) is

prepared to compute ur c
ksw

using Eq. 4.18Eq. 4.18. To do so, the augmented state vector
zr c

ksw
has to be available. Recall the augmented state definition of an RC:

zr c
k =

[(
xr c

k

)T ur c
k−γMC ur c

k−γMC+1
· · · ur c

k−γr c · · · ur c
k−1

]T
. (4.21)
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zr c
ksw

is then composed of xr c
ksw

and several old control inputs ur c
ksw−i . The states

xr c
ksw

were just measured by the base processing resource. However, the old
control inputs ur c

ksw−i are not available because the RC was inactive. Moreover,
these old control inputs cannot be computed using Eq. 4.18Eq. 4.18, because they require
state vectors that were not measured due to the RC being inactive. These states
need to be estimated from the available information and signals. We assume that
the old states are stored and available for the control-computation operation. We
determine the old control inputs of zr c

ksw
from the available old control inputs of

zMC
ksw

. To do so, recall the augmented state-vector definition of the MC:

zMC
k =

[(
xMC

k

)T
uMC

k−γMC uMC
k−γMC+1

· · · uMC
k−1

]T
. (4.22)

Note that the control inputs correspond to variables stored in the embedded sys-
tem rather than physical states being measured (unlike xk ). Therefore, the old
control inputs in the RC are initialized as:

ur c
ksw−i = uMC

ksw−i , (4.23)

with i = 1, . . . ,γr c , . . . ,γMC . This initialization is a design choice that ensures that
no intermediate state vectors appear during the switching. Other initializations
are also possible since these are not measured states.

Note that at the switching initiation, the measured state xr c
ksw

would have been
labelled as xMC

ksw
if no reconfiguration was triggered i.e., xr c

ksw
= xMC

ksw
. Therefore,

the augmented state-vector initialization can be summarized as:

zr c
ksw

= zMC
ksw

. (4.24)

This initialization facilitates the control design that is presented in Section 4.5.3Section 4.5.3,
because no intermediate state vectors appear during the switching. The state ini-
tialization technique guarantees that zr c

ksw
is available at t = t s

ksw
+τs . Switching

the control law from Eq. 4.17Eq. 4.17 to Eq. 4.18Eq. 4.18 is therefore realisable.

Example 4.4. Augmented-state-vector initialization in MC-to-RC transition:
Consider the example in Fig. 4.2Fig. 4.2. The control computation ur c

5 of t c
5 = 0.17 s

requires the state xr c
5 and the old control inputs ur c

4 , ur c
3 , and ur c

2 , theoretically
computed at times 0.14, 0.11, and 0.08 s, respectively. From Table 4.14.1, it is clear
that xr c

5 was measured while the old control inputs are not available because the
RC was not active.
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To attempt to compute the old control inputs using the control law of Eq. 4.18Eq. 4.18,
consider ur c

4 which should have been computed at time t c
4 = 0.14 s. This control

input depends on the physical state xr c
4 , which should have been measured at

time t s
4 = 0.09 s (i.e., t s

4 = t c
4 −τs). From Table 4.14.1, it is clear that no state was

measured at that time. The old control inputs are therefore not computable.

Initializing the old control inputs using Eq. 4.23Eq. 4.23 yields ur c
4 = uMC

4 , ur c
3 = uMC

3
and ur c

2 = uMC
2 . Table 4.14.1 shows that these control inputs of the MC were all

previously computed. The state initialization is therefore realizable.

4.5.1.3 Switching mechanism: from an RC to the MC

Fig. 4.5Fig. 4.5 shows an example of the switching mechanism from an RC to the MC. The
switching initiation starts when the sampling period switches from hr c to hMC . That is,
hksw−1 = hr c and hksw = hMC . The switching initiation t s

ksw
is then formally defined as

the time instant resulting from substituting ksw for k in the notation of Eq. 4.2Eq. 4.2. We de-
fine activation policies and state-initialization policies around the switching initiation.

∆1

∆2

hr c hMC

time (s)

Processing resource
number

1

2

3

4

τSwitching initiation
t s
ksw

switching completion

base processing resource

non-base
processing resources

Figure 4.5: Example of switching from an RC with γr c = 3 to the MC with γMC = 4,
where ∆1 =∆MC

1 = 2hMC −hr c , and ∆2 =∆MC
2 = 3hMC −2hr c .

1. Delayed activation and activation policy in RC-to-MC transition: A smooth
transition from hr c to hMC is achieved by proper activation of the processing
resources at precise time instants. Fig. 4.54.5 illustrates the switching mechanism
from an RC to the MC. Processing resources are denoted by processing resource
1 to processing resource γMC . In this case, (γMC - γr c ) new processing resources
are activated. We establish the following transition requirements.
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(a) γMC−γr c non-base processing resources are made available (i.e., activated)
to the RPC between the switching initiation and completion. These new
processing resources are activated at time

t s,MC
k, j = t s

ksw
+ j hMC , (4.25)

with j = {1, . . .γMC −γr c }. For example in Fig. 4.2Fig. 4.2, processing resource
three is activated at time t s,MC

3,1 = 0.06+0.02 = 0.08 s.

(b) The activation of the non-base processing resources is delayed from:

t s,r c
k,l = t s

ksw
+ l hr c (4.26)

to:
t s,MC

k,l = t s
ksw

+ l hr c +∆MC
l , (4.27)

with l = 1, . . . ,γr c −1 and ∆MC
l = (γMC −γr c )hMC + lhMC − lhr c a delay

in the activation time. This delayed activation time can be intuitively ex-
plained by substituting ∆MC

l in Eq. 4.27Eq. 4.27:

t s,MC
k,l = t s

ksw
+ (γMC −γr c )hMC + lhMC .

This delayed-activation equation represents an offset produced by γMC −
γr c new pipes, followed by γr c delayed already active pipes activated hMC

time units apart. For example in Fig. 4.2Fig. 4.2, the activation of processing re-
source two was delayed from t s,r c

4,1 = 0.09 s to t s,MC
4,1 = 0.10 s with ∆MC

1 =
0.01 s.

(c) Switching from γr c = 1 to γMC > 1 only needs activation of new processing
resources, because only the base processing resource was active before the
switching initiation.

(d) Due to the sensing delay, the change in the sampling period is only re-
flected on the actuation side (i.e., the actuation period) τ time units after
the switching initiation. Consequently, the controller actuation period still
follows hr c between the switching initiation and one sample before the
switching completion, i.e., t = [t s

ksw
, t s

ksw
+τ). This implies that the con-

trol law of the MC is only applied from the switching completion onwards.
For example in Fig. 4.2Fig. 4.2, the sampling period changes to hMC at t = 0.06 s.
However, ur c

k is still computed at t = 0.08 s. The new control law uMC
k is

computed from t = 0.11 s onwards.
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2. Augmented-state-vector initialization in RC-to-MC transition: The control-
computation operation at tc = t s

ksw
+τs (just before the switching completion) is

prepared to compute uMC
ksw

using Eq. 4.17Eq. 4.17, which further requires the augmented
state vector zMC

ksw
. Recall that zMC

ksw
is composed of xMC

ksw
and several uMC

ksw−i . The
states xMC

ksw
were just measured by the base processing resource. However, the

states uMC
ksw−i are not available because they depend on the MC, which was in-

active. Moreover these old control inputs cannot be computed using Eq. 4.17Eq. 4.17,
because they require augmented state vectors of which the plant states were not
measured in the RC. Therefore, these states need to be estimated from the avail-
able information and signals. We determine the elements of the augmented state
vector zMC

ksw
from the augmented state vector zr c

ksw
. We assume that the old states

are stored and available for the control-computation operation.

To estimate the old control inputs, we apply the same strategy as in the previous
transition. Consider the state definitions presented in Eqs. 4.214.21 and 4.224.22. Note
that the control inputs correspond to variables stored in the embedded system
rather than physical states being measured (unlike xk ). Therefore, the old control
inputs are initialized as:

uMC
ksw−i = ur c

ksw−i , (4.28)

with i = 1, . . . ,γMC . Like in the previous transition, the augmented state-vector
initialization is summarized as:

zMC
ksw

= zr c
ksw

. (4.29)

This initialization facilitates the control design that is presented in Section 4.5.3Section 4.5.3
because no intermediate state vectors appear during the switching.

Example 4.5. Augmented-state-vector initialization in RC-to-MC transition: Con-
sider the RPC of Fig. 4.2Fig. 4.2. the control computation uMC

2 of t c
2 = 0.11 s requires the

state xMC
2 and the old control inputs uMC

1 , uMC
0 , and uMC

−1 computed at times 0.09,
0.07, and 0.05 s, respectively. From Table 4.14.1, it is clear that xMC

2 was measured while
the old control inputs are not available because the MC was not active. Therefore,
these states need to be estimated from the available information and signals.

To attempt to compute the old control inputs using the control law of Eq. 4.17Eq. 4.17,
consider uMC

1 which should have been computed at time t c
1 = 0.09 s. Such an old

control input depends on the physical state xMC
1 , which should have been measured at

time t s
1 = 0.04 s (i.e., t s

1 = t c
1−τs). From Table 4.14.1, it is clear that no state was measured

at that time.
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Initializing the old control inputs using Eq. 4.28Eq. 4.28 yields uMC
1 = ur c

1 , uMC
0 = ur c

0 and
uMC
−1 = ur c

−1. Table 4.14.1 shows that these control inputs of the reduced configuration
were all previously computed, except for ur c

−1, which is assumed to be zero during the
initialization. The state initialization is therefore realizable.

4.5.2 Control design in the MC
As already explained in Section 4.4Section 4.4, the MC has the largest number of processing re-
sources in the RPC γMC . Therefore, the MC has the shortest sampling period in the
RPC (see Eq. 4.3Eq. 4.3). Consequently, the best QoC can be achieved by the MC. The RPC
is therefore expected to operate in the MC most of the time to achieve performance im-
provement, while occasionally it may temporarily run under an RC to release process-
ing resources. To this end, the feedback gain K MC in Eq. 4.17Eq. 4.17 is designed to enhance
QoC using the design strategy presented in Section 2.2Section 2.2. Such strategy uses PSO to find
an LQR controller with minimum settling times (i.e., maximum QoC). Likewise, the
feed-forward gain F MC is computed using Proposition 4.14.1 below, which is equal to
Proposition 2.12.1 with updated notation of the MC.

The control law of the MC enhances the QoC as long as the RPC is running under
the MC. However, due to the triggering of one or multiple sporadic applications, the
system switches to an RC as illustrated in Fig. 4.3Fig. 4.3.

Proposition 4.1. (copied from Proposition 2.12.1) The plant output yk of the sys-
tem of Eq. 4.7Eq. 4.7 with the control law of Eq. 4.17Eq. 4.17 converges to a constant reference
r if the closed-loop system matrix ΦMC

cl = ΦMC + ΓMC K MC is stable, the matrix[
ΦMC − I ΓMC

Cd 0

]
is invertible, and F MC is defined by

F MC = [
K MC I

][
ΦMC − I ΓMC

Cd 0

]−1 [
0
1

]
,

with I and 0 denoting identity and zero matrices of appropriate dimensions, respec-
tively.

Example 4.6. MC controller design: Continuing with Example 4.24.2, an LQR is tuned
with the PSO algorithm of Section 2.2Section 2.2. The resulting feedback gain is:

K MC = [−32.56 −7.39 −2.75 −1.98
]

.

Applying Proposition 4.14.1, the feed-forward gain is:

F MC = 37.72.

The controller reaches the reference within (i.e., has a settling time of) St = 153 ms.
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4.5.3 Control design in RC

The controllers for the RCs are designed to guarantee stability if arbitrary switching
occurs between the MC and an RC, or between RCs. To do so, consider the control
law of Eq. 4.18Eq. 4.18. The feed-forward gains F r c are individually found for each RC using
Proposition 4.24.2, which is equal to Proposition 2.12.1 with updated notation of an RC. The
feedback gains K r c are simultaneously found solving the LMIs in Theorem 4.14.1 below,
including all possible RCs and the already-computed feedback gain of the MC K MC .
The theorem is based on Lemmas 4.14.1 to 4.34.3.

Proposition 4.2. (copied from Proposition 2.12.1) The plant output yk of the system of
Eq. 4.15Eq. 4.15 with the control law of Eq. 4.18Eq. 4.18 converges to a constant reference r if the

closed-loop system matrix Φr c
cl =Φr c +Γr c K r c is stable, the matrix

[
Φr c − I Γr c

Cd 0

]
is

invertible, and F r c is defined by

F r c = [
K r c I

][
Φr c − I Γr c

Cd 0

]−1 [
0
1

]
,

with I and 0 denoting identity and zero matrices of appropriate dimensions, respec-
tively.

Lemma 4.1. Closed-loop representation: the discrete-time models from Eqs. 4.74.7
and 4.154.15 with control laws uMC

k = K MC zMC
k and ur c

k = K r c zr c
k , respectively, have

closed-loop representations given by:

zMC
k+1 =

(
ΦMC +ΓMC K MC )

zMC
k

zr c
k+1 =

(
Φr c +Γr c K r c)zr c

k .
(4.30)

Lemma 4.2. Discrete-time Lyapunov stability of a plant: A closed-loop representa-
tion given by ΦMC +ΓMC K MC is globally asymptotically stable if and only if there exist
matrices P ∈R(n+γMC )×(n+γMC ) and S ∈R(n+γMC )×(n+γMC ) that are positive definite (i.e.,
P Â 0 and S Â 0) that satisfy the following Discrete-Time Lyapunov Equation (DTLE)
[107107, Chapter 23]:

P − (ΦMC +ΓMC K MC )T P
(
ΦMC +ΓMC K MC )Â S.

Lemma 4.3. Stability under arbitrarily-switching plants: Given a set of closed-loop
representations of the form ΦMC +ΓMC K MC and Φr c +Γr c K r c , Vk = (zk )T P zk is a
CQLF if there exist positive-definite matrices P Â 0, SMC Â 0, and Sr c Â 0 such that P
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is the simultaneous solution of the DTLEs for all resource configurations:

P − (ΦMC +ΓMC K MC )T P
(
ΦMC +ΓMC K MC )Â SMC

P − (Φr c +Γr c K r c )T P
(
Φr c +Γr c K r c)Â Sr c . (4.31)

The existence of a CQLF is a sufficient condition for stable arbitrary switching between
the set of closed-loop representations [8787].

Theorem 4.1. Common quadratic Lyapunov Function [1717, 8181]: Consider the switch-
ing subsystems given by Eq. 4.30Eq. 4.30. If there exist positive-definite matrices O Â 0, SMC Â
0, and Sr c Â 0, and matrices Y MC and Y r c of appropriate dimensions such that the
following LMIs holds: O (ΦMC O +ΓMC K MC O)T O

(ΦMC O +ΓMC K MC O) O 0
O 0 (SMC )−1

Â 0 (4.32)

 O (Φr cO +Γr c Y r c )T O
(Φr cO +Γr c Y r c ) O 0

O 0 (Sr c )−1

Â 0, (4.33)

then the closed-loop systems in Eq. 4.30Eq. 4.30 have a CQLF with a feedback gain K r c =
Y r cO−1. The existence of a CQLF guarantees the stability of the switched system under
arbitrary switching.

Proof. Applying the Schur complement on Eq. 4.33Eq. 4.33 yields

O − (Φr cO +Γr c Y r c )T O−1 (
Φr cO +Γr c Y r c)−OSr cO Â 0.

Defining O = P−1 and Y r c = K r c P−1 gives

P−1 − (Φr c P−1 +Γr c K r c P−1)T P (Φr c P−1 +Γr c K r c P−1)−P−1Sr c P−1 Â 0.

Pre- and post-multiplying by P gives

PP−1P −P (Φr c P−1 +Γr c K r c P−1)T P (Φr c P−1 +Γr c K r c P−1)P −PP−1Sr c P−1P Â 0,

which is equivalent to

P − (Φr c +Γr c K r c )T P
(
Φr c +Γr c K r c)Â Sr c . (4.34)

An identical procedure is applied to the LMI in Eq. 4.32Eq. 4.32:

P − (ΦMC +ΓMC K MC )T P
(
ΦMC +ΓMC K MC )Â SMC . (4.35)

From Eqs. 4.344.34 and 4.354.35, it is clear that the systems defined by Eq. 4.30Eq. 4.30 have a CQLF
defined in Lemma 4.34.3. This completes the proof.
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Remark 4.1. The application of Lemma 4.34.3 in the systems described by Lemma 4.14.1
is conditioned to having identical augmented state vectors when random switching
is triggered. This condition is guaranteed by the switching mechanism described in
Section 4.5.1Section 4.5.1, specifically by Eqs. 4.244.24 and 4.294.29.

Example 4.7. RC controller design: Continuing with Example 4.24.2, Example 4.34.3, and
Example 4.64.6, the two LMIs from Theorem 4.14.1 are simultaneously solved to design a
controller for the RC. The resulting feedback gain is:

K r c1 = [−43.08 −9.75 −3.46 −2.99
]

.

Applying Proposition 4.24.2, the feed-forward gain is given by:

F r c1 = 49.79.

This section presented a control-design strategy for an RPC. This controller en-
hances QoC if the MC is used and provides stability if an RC is used. The next section
provides an overview of the design flow of an RPC.

4.6 Summary of the design flow
The design of an RPC is summarized in the following steps. Given a sensing-to-
actuating delay τ, a continuous-time plant as in Eq. 4.1Eq. 4.1, and γES processing resources
running sa sporadic applications, an RPC with a maximum of γMC sensing units is
designed following these design steps:

1. Modelling MC. Find the sampling period hMC using Eq. 4.3Eq. 4.3. Discretize the
continuous-time model with Eq. 4.5Eq. 4.5. Construct the discrete-time model using
Eqs. 4.64.6-4.84.8.

2. Modelling RC. Based on the sa sporadic applications, decide how many RCs
are required; this is a design parameter. For each RC, determine the available
processing resources γr c ; find the sampling period hr c with Eq. 4.10Eq. 4.10; discretize
the continuous-time model with Eq. 4.5Eq. 4.5. Construct the discrete-time models us-
ing Eqs. 4.144.14-4.164.16.

3. Controller design MC. Find a feedback gain K MC such that the QoC is opti-
mized. To do so, we use the PSO algorithm presented in Section 2.5Section 2.5. Find the
feed-forward gain F MC using Proposition 4.14.1.
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4. Controller design RC. Find the set of feedback gains K r c solving the LMIs
stated in Theorem 4.14.1 for all RCs. Design a feed-forward gain F r c for each RC
using Proposition 4.24.2.

Following these design steps, an RPC is designed. Such a controller is capable of
stable switching between an MC and one or more RCs. In the next sections, a complete
example of an RPC implementation is shown.

4.7 Case study: xCPS
We evaluate our approach through simulations based on the experimental platform
xCPS described in Section 2.2Section 2.2 [33, 22]. An Image-Based Control (IBC) and multiple
sporadic applications share a multi-core embedded system in xCPS. The applications
are sporadically triggered allowing their cores to be temporarily reused by the con-
troller in order to enhance QoC. The xCPS platform is an industrial assembly line
simulator which is used for teaching and research purposes. The machine assembles or
disassembles circular complementary pieces that come in two shapes: lower and upper
parts. The assembly section of xCPS (Fig. 4.6aFig. 4.6a) is considered in this case study. The
following subsections describe the xCPS assembly process.

4.7.1 Assembly applications and resources

A schematic of the assembly hardware is depicted in Fig. 4.6bFig. 4.6b. Four sporadic tasks are
involved in the assembly process: a Supervisory Control Application (SCA), a Turner
Application (TA), an Indexing Table Application (ITA), and an IBC. The assembly
process is controlled by the SCA, which is activated whenever a new assembly piece
enters conveyor belt 1. The SCA also generates set-points for the controllers, activates
the system actuators (such as switches, the stopper and the pick and place unit), and
distributes the available resources among the assembly applications, i.e., it regulates
the activation policies of the sensing cores. The TA corrects the orientation of the
assembly pieces in case it is necessary, by manipulating the turner actuator. The ITA
consists of a local controller that aligns an indexing table either with switch 2 or with
a pick and place actuator. The IBC regulates the speeds of the assembly pieces on the
conveyor belts using DC motors. A camera and an image-processing algorithm are
used as sensor to measure the speed of the assembly pieces on the belts. The speed is
kept low when a piece is going through the actuators (e.g., turner, switch 2, and pick
and place) and high otherwise. Therefore, the highest controller performance is needed
when the speed of the conveyor belt is to be reduced or increased. The SCA is triggered
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Figure 4.6: Assembly section of xCPS.

sporadically based on the arrival of a new piece. The activation time of ITA and TA is
defined by the SCA. The controller always remains active.

A five core multiprocessor system (γES = 5) is considered to simulate the assem-
bly applications. The three aforementioned sporadic applications (sa = 3) and the
controller are executed on these five cores. Each application runs on a separate core
(γsa = 3) in case they need to be executed at the same time.

4.7.2 Assembly process

The assembly process begins when a piece is fed onto conveyor belt 1 and it is blocked
by a stopper. The SCA is immediately triggered to generate controller references,
activation policies of the cores, and activation times of the actuators that guarantee
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the correct assembly of the piece. The SCA retracts the stopper and the piece moves
through a turner activating the TA. Lower pieces go to an indexing table using switch
2 and trigger the ITA, whereas upper pieces go to conveyor belt 2. A pick and place
actuator grabs the upper pieces from conveyor belt 2 and pushes them onto the lower
parts on the indexing table. Assembled pieces are moved by switch 3 onto conveyor
belt 3. The system also rejects assembly pieces using conveyor belt 4 and switch 1.

Since the conveyor belt speeds are regulated by the IBC, the time elapsed between
a piece leaving the stopper and reaching the turner or the indexing table is known.
Therefore, the activation time of the ITA and TA can be predicted. This implies that
the switching initiation time is known in advance, which allows to properly initialize
the switching. However, the SCA is triggered by the arrival of a new piece; therefore
its activation time cannot be predicted. This is particularly important for the design
of the RPC in the next section. The throughput of the machine is directly affected by
the settling times of the controller: a shorter settling times means that the blocks reach
each stage of the assembly process faster, which increases the number of assembled
blocks per time unit. Therefore, optimizing the QoC potentially increases the system
throughput [1313].

4.8 Simulation results
In this section, four different sensing configurations of the IBC are studied. Their QoC
is then evaluated using the model of xCPS. The settling time of the controller is used
as QoC metric since it has a potential impact on xCPS throughput. Note that although
the example of Section 2.2Section 2.2 is used as motivation, a different set of parameters is used
in the setup and results below.

4.8.1 IBC design
The IBC manipulates the speed of the assembly pieces on the conveyor belts by adjust-
ing the input voltage to the DC motors. The parameters of the motor model are:

Ac =−49.50,Bc = 0.01,Cc = 1.

The reference r is the desired speed of the DC motor. The controller is designed to
reach such a reference as fast as possible (i.e., the shortest settling time) using the
algorithm from Section 2.5Section 2.5. The sensing-to-actuating delay is τ= 0.125 s. The system
shows a rise-time of Rt = 44 ms. In absence of delay, the sampling period could be
defined with the rule of thumb of Eq. 2.3Eq. 2.3, which results in hRt = 4.4 ms. However, due
to the sensing-to-actuating delay, the shortest sampling period that can be obtained with
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a single processing resource for the controller (serial configuration) is given by hs =
0.125 s. Since hs >> hRt , a pipelined controller can improve the control performance.

Given the sporadic applications (SCA, TA, ITA with sa = 3) and the multi-core
platform (γES = 5), multiple IBCs are designed with different processing resources: a
serial configuration, a pipelined configuration, a four-core RPC, and a five-core RPC.
The serial configuration is used as a comparison benchmark; the pipelined configura-
tion is designed to show the benefits of applying the method of Chapter 22; the four-
core RPC is designed to show the benefits of dynamically allocating the processing
resources of the tasks whose activation time can be predicted to the RPC; the five-core
RPC is designed to show the benefits and risks of dynamically allocating the process-
ing resource of a sporadic task whose activation time cannot be predicted (i.e., SCA) to
the RPC. In the following paragraphs, we explain each of the resource configurations
designed.

4.8.1.1 Serial configuration SC

A serial configuration (denoted by SC ) uses one core for executing the controller as
shown in Fig. 4.7aFig. 4.7a. The sensing-to-actuating delay τ = 0.125 s implies a sampling
period hSC = τ = 0.125 s. Since the sampling period is known, Eq. 4.5Eq. 4.5 is used to
discretize the continuous-time model. The augmented state vectors are redefined using
Eqs. 4.64.6 and 4.84.8 to include the delay in the state-space notation. An IBC with minimum
settling time is designed by using the PSO algorithm from Section 2.5Section 2.5. The resulting
feedback gain is:

K SC = [−0.22 −210
]×10−4.

Proposition 4.14.1 is used to find the feed-forward gain F SC = 0.51.

4.8.1.2 Pipelined configuration PC

Using the two statically available processing resources in the embedded system, a
pipelined controller with γ = 2 (denoted PC ) is designed, as illustrated in Fig. 4.7bFig. 4.7b.
Since the number of available processing resources for sensing is constant, the con-
troller is designed using the guidelines of Chapter 22, considering that γ = 2. The re-
sulting sampling period is h = 62.5×10−3 s. As for the SC , the PSO algorithm from
Section 2.5Section 2.5 is used to find the feedback gain with minimum settling time:

K PC = [
0.23 9.94 −78.76

]×10−3.

The feed-forward gain is given by F PC = 0.53.
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4.8.1.3 Four-core RPC (RPC4)

Fig. 4.7bFig. 4.7b shows that the ITA and TA are applications with a low frequency of appear-
ance. Such applications are triggered by the SCA, making it possible to schedule them
in such a way that their processing resources are temporarily reused by an RPC. This
scenario is shown in Fig. 4.7cFig. 4.7c. For this example, the reconfiguration mechanism is
constantly used such that the MC is only used when the best control performance is
required i.e., when the reference speed is changed. For the rest of the operation, an
RC is used. This reduces the usage of processing resources of the RPC, which makes
further room for the execution of the other applications in the system. For example,
in Fig. 4.7cFig. 4.7c processing resource three is temporarily activated to complete an actuation
operation at time 281.3 ms. This results in the actuation period of the MC being active
in the range [250,312.5) ms. For the next actuation, the controller switches back to
an RC with two resources. As a result, the fourth resource in the MC is never acti-
vated. The figure shows several other of such short activations of the MC, leading to
temporary activations of the third core, but never to the activation of the fourth core.

The procedure presented in Section 4.6Section 4.6 is used to design an RPC denoted by RPC4.
RPC4 is composed of two sensing configurations: an MC with four processing re-
sources (γMC = 4) and an RC r c1 with two processing resources (γr c1 = 2). The MC
has a sampling period hMC = 31.25×10−3 s. Using the same procedure described for
the previous controllers, the feedback gain with minimum settling time is given by:

K MC = [−0.33 −2.48 −18.45 −47.89 −226.07
]×10−3.

The feed-forward gain is F MC = 0.64.
The sampling period of the RC is hr c1 = 62.5×10−3 s. The LMIs from Theorem 4.14.1

are solved with the optimization toolbox Yalmip [8383] and a semi-definite quadratic
solver SDPT3 [121121]. The resulting feedback gain is

K r c1 = [
0.52 3.89 28.18 68.49 336.07

]×10−3.

The feed-forward gain is F r c1 = 0.28. The camera has to support an acquisition time of
31.25 ms ≤ hac ≤ 62.5 ms and an external trigger.

4.8.1.4 Five-core RPC (RPC5)

In order to reuse all resources of the sporadic applications, the procedure from
Section 4.6Section 4.6 is used for designing an RPC (denoted by RPC5) that uses up to five pro-
cessing resources. Since the activation time of the SCA is not predictable, two cases
are considered: when no interruption occurs in the sensing pipeline (e.g., SCA triggers
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(c) RPC4 with γMC = 4.
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(d) RPC5 with γMC = 5, no interruption from SCA.
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(e) RPC5 with γMC = 5 with interruption from SCA. No sensing information is delivered at time
0.275 s (see red dotted square).

Figure 4.7: Resource allocation in xCPS when a new lower-part piece arrives to con-
veyor belt 1. It is assumed that all the controllers were already running when xCPS
starts.
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when its sensing core is available as shown in Fig. 4.7dFig. 4.7d) and when interruptions do
occur (e.g., SCA preempts the sensing operation as shown in Fig. 4.7eFig. 4.7e). Like in the
previous case, the MC is only used when the control performance needs to be enhanced
(when the reference changes) while an RC is used otherwise. For example in Fig. 4.7dFig. 4.7d,
processing resources are temporarily scheduled such that the MC completes actuation
operations at times 250, 275, and 300 ms. For the next completion of an actuation
operation (at time 350 ms) an RC is then used again. As for RPC4, this results in core
five never being active for the RPC.

RPC5 is composed of three sensing configurations: an MC with five pipes (γMC =
5), and two RCs: r c1 and r c2. r c1 uses two pipes (γr c1 = 2), while r c2 uses three pipes
(γr c2 = 3). For the MC, the parameters are hMC = 25×10−3s, F MC = 0.71, and

K MC = [
0.28 1.40 −7.02 −17.46 −99.57 −314.11

]×10−3.

For r c1, the parameters are hr c1 = 62.5×10−3s, F r c1 = 0.34, and

K r c1 = [
0.11 0.05 4.26 12.17 67.13 22.85

]×10−3.

For r c2, the parameters are hr c2 = 50×10−3 s, F r c2 = 0.34, and

K r c2 = [−0.01 0.04 4.39 12.38 68.66 227.11
]×10−3.

The camera has to support an acquisition time of 25 ms ≤ hac ≤ 62.5 ms and an exter-
nal trigger.

4.8.2 Controller simulations
The controllers designed in the previous subsection are simulated when a new lower-
part piece arrives to conveyor belt 1. For simplicity, only the speed of the first conveyor
belt is illustrated in the figures. The reference is initially kept low while the piece
passes through the turner. When the TA is finished, the speed is temporarily increased
to reach the next stage of the assembly process. The piece then moves to the indexing
table activating the ITA. The distribution of applications on the embedded system is
shown in Fig. 4.7Fig. 4.7 for the different sensing configurations. The activation policy of the
cores guarantees that the MC is active whenever the reference speed is changed, so that
the block reaches the desired position faster. In absence of disturbances, sensing errors,
and modelling errors, zero steady-state error is achieved in these cases.

4.8.2.1 SC vs PC

The model output and the controller input are plotted in Fig. 4.8Fig. 4.8. It is clear that the con-
troller with pipelined sensing (red dashed line) outperforms the serial controller (purple
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dash-dotted line). The controller in SC actuates once every sensing-to-actuating delay
τ, whereas the controller in PC actuates twice in the same period. As a consequence,
a more aggressive controller input is achieved by the PC controller. At time 0.25 s,
the controller input of the PC controller is initially higher than the SC controller but
after some samples they both converge to the same value. The PC controller achieves
a settling time 30% shorter than the one achieved by the SC controller. Fig. 4.8Fig. 4.8 also
shows that a change in the controller input is not immediately seen in the motor speed
because of the delay introduced by the sensing operation.

Table 4.2: QoC comparison of sensing configurations.

Sensing configuration settling
time ms

settling time
enhancement %

SC 78 0
PC 54 30

RPC4 with γMC = 4 30 44
RPC5 with γMC = 5 24 20
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Figure 4.8: Comparison: SC , PC , and RPC with γMC = 4 (RPC4). Markers denote the
actuation instants.

4.8.2.2 PC vs four-core RPC

The model output and controller input are plotted in Fig. 4.8Fig. 4.8. The QoC of the RPC
is enhanced using MC when the plant is away from the reference. The RC is used
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when the plant is on the reference. As a result, RPC actuates more frequently when the
reference changes. The RPC controller outperforms the PC controller by reaching the
reference 44% faster in all set-point changes. This result is summarized in Table 4.24.2.

4.8.2.3 Four core RPC vs five core RPC

If the arrival time of a new block is known in advance, the SCA can be scheduled in
such a way that the RPC with γMC = 5 uses the MC when there is a deviation from
the reference and the RCs are used when the plant is on the reference. The simulation
results in Fig. 4.9Fig. 4.9 show such a scenario. RPC5 with γMC = 5 (red dashed line) reaches
the reference 20% faster than RPC4 (blue continuous line). This result is summarized
in Table 4.24.2 again. However, if an unexpected block enters the plant, the SCA is trig-
gered potentially causing sensing information to be dropped, an actuation operation to
be omitted, and a forced switch to a resource configuration with fewer cores. Addition-
ally, the omitted actuation forces the controller to use the previously applied actuation
for longer than designed. This can cause intermediate actuation periods to appear in
the controller, which might have a negative affect on the control stability. In Fig. 4.9Fig. 4.9,
RPC5 (purple dash-dotted line) is forced to switch from the MC to an RC processing
resources because of an unexpected activation of SCA at time 0.2 s. Since an RC was
activated, no intermediate sampling periods appeared. However, the QoC is severely
affected.
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Figure 4.9: Comparison between RPC4 and RPC5 (red dashed line). RPC5 also is
simulated when an RC is used while the QoC needs be to enhanced (purple dash-dotted
line).



4

108 Reconfigurable pipelined control

4.8.3 Discussion
From the simulations described in this section, the following insights are deduced.
First, pipelined control outperforms serial control due to the higher sampling rate, at the
cost of more resources used. Second, an RPC enhances QoC if the MC is active while
reference changes occur. If another resource configuration is active, the controller is
still stable with a lower QoC. Third, an RPC improves QoC if the arrival times of
the sporadic applications are known, which allows to properly initialize the switching
mechanism. In case one or multiple sporadic applications are not predictable, it is
recommended to not include such processing resources in the RPC because it might
result in QoC deterioration rather than improvement, or even control instability.

4.9 Summary
This chapter presented reconfigurable pipelined control for DISC. A pipelined con-
troller reduces the sampling period of a DISC using additional sensing resources in a
pipelined fashion, while a reconfigurable pipelined controller reduces the sampling pe-
riod further by temporarily reusing the resources from other applications running on the
same platform. We have introduced a state-based modelling strategy and a controller-
design strategy for reconfigurable pipelined control. Simulation results show that a
reconfigurable pipelined controller has better QoC than a static pipelined controller.
This is valid if the maximal configuration is used when the QoC needs to be enhanced,
more resources are available to the RPC than to the pipelined controller, and the recon-
figuration mechanism is timely initialized. Otherwise, an RPC is still stable, at the cost
of certain QoC degradation.

The method presented in this chapter uses the worst-case execution time of the
sensing algorithm to design pipelined-sensing controllers. In the next chapter, we con-
sider variable sensing delays in the design of pipelined controllers, which can be used
to further improve QoC.



5

109

Chapter 5
Implementation-aware
variable-delay pipelined control

5.1 Problem formulation5.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110110
5.2 Related work5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112112
5.3 Variable-delay predictor controller5.3 Variable-delay predictor controller . . . . . . . . . . . . . . . . . . . . . . 113113
5.4 Variable-delay control design5.4 Variable-delay control design . . . . . . . . . . . . . . . . . . . . . . . . . 120120
5.5 Case study: xCPS5.5 Case study: xCPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125125
5.6 Simulation results5.6 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127127
5.7 Summary5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131131

The design strategies of DISC (commonly) consider that the signal-processing al-
gorithm used for obtaining the sensing information has a constant delay. However, in
practice, the sensing delay of an algorithm varies depending on the state of the platform
(e.g., cache misses, data availability, scheduling policies) and the data being processed
(e.g., varying number of regions of interest, noise). Therefore, these control-design
strategies consider the constant worst-case execution time of the processing algorithm
(see Fig. 5.1Fig. 5.1). Such a worst-case execution time is unlikely to happen and consider-
ably larger than the most common delays, which leaves room for further improvement
of QoC. Moreover, modern embedded platforms allow to characterize the sensing de-
lay at design time obtaining a delay histogram, and at run-time measuring its precise
value. In this chapter, we exploit this knowledge to design variable-delay pipelined
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(b) Pipelined configuration with two sensing cores.

Figure 5.1: Examples of resource configurations of DISC. The worst-case execution
time delay τ of the signal-processing algorithm keeps the sampling period h constant.

controllers. Unlike the previous chapters, the model of the variable-delay pipelined
control is not based on the worst-case execution time of the processing algorithm.
Therefore, a different modelling strategy is used in this chapter. Additionally, since the
control performance strongly depends on the model quality, we present a simulation
benchmark that uses the model uncertainties and the delay histogram to obtain bounds
on control performance. Our benchmark is used to select a variable-delay controller
and a resource configuration that outperform a constant worst-case-delay controller.

The contents of this chapter were published in [8888].

5.1 Problem formulation

The design of a variable-delay controller requires extended knowledge about the vari-
ability of the delay (e.g., worst case, best case, modes) and a control strategy capable
of coping with such a variation.

The variability of the sensing algorithm can be captured with an implementation-
dependent histogram of delays. An example of such a histogram is shown in Fig. 5.2Fig. 5.2.
The sensing delay was referred to with τs in Chapter 22, but for simplicity of notation,
we omit the subscript s in this chapter. The delay shows an upper bound τ (worst case),
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Figure 5.2: Example histogram of variable sensing delay in an experiment with 10000
executions of an image-processing algorithm.

a lower bound τ (best case), and one or more most-likely cases (modes) [4545]. A DISC
is normally designed using the upper bound of the delay to guarantee a constant sensing
delay for the controller (worst-case design [7575, 144144]). However, as shown in Fig. 5.2Fig. 5.2,
the worst-case execution may be unlikely to happen, which makes a design based on
this delay conservative.

Control-design strategies for variable-delay controllers have been widely studied in
the literature (e.g., [3939, 4040, 4646]). These approaches are mainly focused on analysing
the robustness of a controller under the assumptions that the delay varies in a bounded
range (i.e., there is a worst-case and a best-case delay) and it cannot be measured
on-line (i.e., the delay value is not available before the controller is computed, e.g.,
because of a transfer of sensed data over a wireless network). Although these are valid
assumptions in many applications, in DISC, the delay can be commonly characterized
off-line with an implementation-dependent delay histogram. This information can be
used at design time to create an implementation-dependent controller. Additionally,
once the signal-processing algorithm has finished its execution, existing timing mech-
anisms (e.g., built-in timers) can be used to on-line measure the execution-time of the
algorithm at micro-second-level accuracy (e.g., [1010]). This information can be made
available to the controller at run-time to compensate for the variability of the delay,
which may improve its QoC.

Our contribution is an implementation-aware variable-delay pipelined control de-
sign. The novelty of the design lies in the combination of implementation-dependent
information (i.e., histogram of delays, measured delay, and resource configurations)
with model-based predictions to compensate for the variable delay while improving
QoC. We also provide a simulation benchmark that uses the model uncertainties and
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the delay histogram to select a controller and a resource configuration that improves
QoC.

5.2 Related work
Designing implementation-aware variable-delay controllers requires knowledge about
the histogram of the delay values. Strategies for obtaining such histograms have been
reported in [5353, 44] for single-mode histograms, and in [4545] for multi-mode histograms.
Single-mode histograms consider that the variations in sensing delay of a target appli-
cation result from variation in platform aspects such as scheduling policies and cache
misses. No explicit data-dependent loops are included in the tests. Multi-mode his-
tograms are obtained in multimedia applications, where the decoding tasks have a
workload that is significantly affected by the data being decoded. The delay of signal-
processing algorithms may also be influenced by the data being processed (e.g., pos-
sible changes in the number of objects being detected). Therefore, we consider delay
histograms with one or multiple peaks.

Variable-delay control has been widely studied in the discrete-time domain using
robust static feedback control [3939, 4040, 5151], robust predictor-based control [8585, 4141, 4646],
and event-driven control approaches [8282, 9696, 125125]. Robustness approaches provide
stability guarantees for a controller given a variable range of delay variation. Event-
driven control computes the controller input as soon as the data arrives to the controller.
These approaches are motivated by networked control, where a network introduces
sensing and actuation delay into the control loop. Although the sensing delay may be
measured before the control action is computed, the actuation delay is unavailable at the
moment of computing the control action and/or the clocks of devices in a network may
not be synchronized. Therefore, these strategies assume that the delay is unmeasurable
but bounded to a range. Additionally, these approaches provide QoC improvements in
terms of quadratic cost or asymptotic stability, which are not intuitively related to real-
time metrics such as settling time, overshoot or rise time. While these strategies are
applicable to variable-delay DISC, they provide conservative design solutions in terms
of QoC as we show later. Exploiting the on-line measurability of the delay on today’s
multiprocessing embedded systems can be used to improve QoC in terms of real-time
metrics such as settling time.

Strategies to compensate for a measurable variable delay using model-based pre-
dictions use Smith Predictors [130130], Model Predictive Control (MPC) [113113], and Smith
Predictors with MPC [6363]. The Smith-Predictor scheme compensates for the variable
delay using the system model and on-line measurements of the delay. Therefore, this
strategy may be suitable for the pipelined control case. MPC solves an optimization
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problem every sampling period. MPC may be applied to data-intensive control, taking
into account the additional delay required to solve the optimization algorithm on-line.
An implementation-aware variable-delay controller was presented in [4242]. The authors
use a single-mode probability distribution of the sensing delay to compute the proba-
bility of a deadline miss. Real-time QoC metrics are used to quantify the QoC with
deadline misses. However, no on-line delay measurements are used to compensate for
the delay. To the best of our knowledge, no other implementation-aware approaches
for measurable delays were reported in the literature at the time of first publishing this
work.

We propose an alternative to the existing variable-delay control-design strategies.
Our approach designs a set of controllers based on implementation-dependent his-
tograms of delays, and on-line measurements of the delay. To do so, we consider
the delay-free case of the system (i.e., without sensing delay) to design controllers with
actuation periods smaller than the worst-case execution time of the sensing delay. We
then compensate for the variable delay with a modification of the predictor approach
proposed in [4646]. This predictor estimates the state vector using model-based predic-
tions with a constant delay. The proposed predictor in this work estimates the state
vector using a variable-delay estimator. Ideally, our estimator cancels the effect of the
delay resulting in a QoC similar to the delay-free case. However, in practice prediction
errors occur due to model uncertainties. Therefore, we introduce a simulation bench-
mark that obtains QoC bounds based on model uncertainties. The benchmark is used
to select a resource configuration and one controller such that the QoC is improved
compared to a constant worst-case design.

5.3 Variable-delay predictor controller

A variable-delay predictor controller has the structure presented in Fig. 5.3Fig. 5.3. The sens-
ing operation delay shows a time-varying behaviour with one or several modes, as the
example in Fig. 5.2Fig. 5.2. The variable delay is compensated by the prediction block, which
estimates the state vector to create a delay-free estimation. This cancels the effect of
the variable delay from the control perspective. The controller uses this estimation to
compute a new control input. Since no delay is seen from the controller perspective,
the controller sampling period is no longer limited by the worst-case execution time
of the sensing delay (in contrast to the previous chapters). We subdivide the explana-
tion of the controller in six subsections: run-time behaviour, modelling, control block,
predictor block, prediction length, and prediction quality.
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Figure 5.3: Variable-delay predictor controller.

5.3.1 Run-time behaviour

An example of the resource usage of a predictor controller is shown in Fig. 5.4aFig. 5.4a for a
serial case and in Fig. 5.4bFig. 5.4b for a pipelined case with two processing units. The delays of
consecutive sensing operations are denoted by τ1, τ2, etc. The controller is composed
of a sensing operation (i.e., a signal-processing algorithm), a prediction operation (see
Proposition 5.15.1), a control-computation operation (i.e., Eq. 5.13Eq. 5.13), and an actuation op-
eration. The actuation period hp ∈ R+ denotes the interval between two consecutive
controller updates by the data-intensive controller. Note that an actuation period is
used in this chapter (instead of a sampling period) because the sensing operation can
start at irregular time intervals. The data acquisition, prediction, control computation,
and actuation are periodic operations with period hp . This timing is assumed strictly
constant. Note that not all data acquired by the data-intensive controller is used by
the sensing operations due to the unavailability of processing resources. In case the
sensing operation is still running when the periodic operations need to start (e.g., near
the end of time instant k = 1 in the example of Fig. 5.4Fig. 5.4), the sensing operation is tem-
porarily pre-empted. The duration of such pre-emptions is assumed to be included in
the sensing delay τi . The execution times of the sensing operations τi fall within the
bounds of the sensing delay

[
τ,τ

]
. A new sensing operation on any of the allocated

processing resources starts its execution when the previous sensing operation on that
resource is finished, at the next multiple of hp (i.e., khp for some natural number k).
The sensing operation is therefore non-periodic.

The use of pipelined sensing control creates communication overhead when sharing
information between processing resources. For example, in Fig. 5.4bFig. 5.4b, the upper pipe
sends the output of the image-processing algorithm to the lower pipe that computes the
periodic operations. Typically the size of this information is limited to a few floating-
point numbers (e.g., one floating-point number per measured output in our case study).
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(b) Pipelined variable-delay control with two sensing cores.

Figure 5.4: Variable-delay control. Every hp seconds, data is acquired by the data-
intensive control. Each vertical red arrow represents a data frame that is being pro-
cessed by the sensing operation in the controller. Note that some acquired data is not
used by the sensing operations. Blue blocks with a crossed pattern represent the pre-
diction, control computation, and actuation operations. The sensing delay varies with
the sequence τ1,τ2,τ3,τ4, .... The prediction length τd ,k denotes the age (in samples)
of the data acquired by τi . It is therefore continuously updated from the completion of
τ1 (i.e., τd ,4 = 4) until the completion of τ2 (i.e., τd ,6 = 4 in the pipelined case while
τd ,8 = 4 in the serial case).

Therefore, this overhead is commonly negligible compared to the image-processing
delay. Additionally, note that at time k = 10 in the pipelined case of Fig. 5.4bFig. 5.4b, both
processors finish their computation in the same time slot. The prediction then uses
the output based on the most recent image, which in this case comes form the lower
processor.

5.3.2 Plant modelling
We consider the following continuous-time system:

ẋ(t ) = Ac x(t )+Bc u(t )

y(t ) =Cc x(t ),
(5.1)
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with x(t ) ∈Rn×1 the state vector, u(t ) ∈R the control input, and y(t ) ∈R the plant out-
put, Ac ∈Rn×n , Bc ∈Rn×1, Cc ∈R1×n the state, input, and output matrices, respectively,
and t ∈ R≥ the time. n ∈ Z+ is the number of states. We also consider that Ac is a
Hurwitz matrix (i.e., a stable matrix). The discrete-time version of Eq. 5.1Eq. 5.1 is given by:

xk+1 = Ad xk +Bd uk

yk =Cc xk ,
(5.2)

where xk ∈Rn×1 and yk ∈R are the discrete-time state and output vectors, respectively,
xk := x(khp ) and yk := y(khp ) with k ∈ Z≥. uk ∈ R is the control input which is
implemented with a ZOH resulting in u(t ) := u(khp ) for t ∈ [khp , (k + 1)hp ). Ad ∈
Rn×n and Bd ∈ Rn×1 are the discrete-time state and input matrices, further defined by
[104104, Chapter 2]:

Ad = e Ac hp ,Bd =
∫ hp

0
e Ac s Bc d s. (5.3)

hp ∈R+ is the actuation period of the controller, which is a design parameter chosen as
described in Section 5.4.2Section 5.4.2.

5.3.3 Controller block
Following the arguments of Section 1.2Section 1.2, the QoC in our application is defined as

QoC = S−1
t ,

where St ∈ R+ is the controller settling time. The controller is then designed to max-
imize the QoC . Note that, in the proposed design, the current state vector xk is not
available due the sensing delay. The controller is designed based on the assumption
that the predictor block produces a predicted state x̂k ∈Rn×1, which is considered equal
to the current state vector. From the control perspective the sensing delay is therefore
cancelled by the predictor. The controller (see Fig. 5.3Fig. 5.3) is then designed for the plant
of Eq. 5.2Eq. 5.2 without taking into account the effect of the sensing delay.

In this chapter, we consider control robustness as the capacity of the controller to
reach a desired reference within a 2% margin in the presence of model uncertainties.
Control robustness is later considered during the design of the variable-delay controller.

5.3.4 Predictor block
The model of Eq. 5.2Eq. 5.2 is used by the predictor block (see Fig. 5.3Fig. 5.3) to estimate the state
vector at time k. The predictor operation uses Proposition 5.15.1 below to estimate the
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state vector. The predictions are based on the available information: a prediction length
τd ,k ∈Z+, the latest state-vector measurement xk−τd ,k

, past controller inputs uk−τd ,k+ j

(with 0 < j ≤ τd ,k ), and the discrete-time model of Eq. 5.2Eq. 5.2. The prediction length de-
scribes in samples the age of the measured data used for the k th control operation.
τd ,k is explained in detail in Section 5.3.5Section 5.3.5. Our predictor is inspired by the one pre-
sented in [4646], which considers τd ,k constant (and not measurable) in the predictions.
A robustness-analysis technique is then applied to the controller to guarantee its stabil-
ity provided the bounds on variation of the delay τ and τ. Our predictor uses on-line
measurements of the delay to compensate for the variable delay, which creates a pre-
diction with a variable number of actuation periods (i.e., in Proposition 5.15.1 below, τd ,k

is updated every time a prediction is needed). This (ideally) cancels the effect of the
sensing delay, guaranteeing the stability of the controller.

Proposition 5.1. Predictor with variable prediction length: Given the discrete-time
plant of Eq. 5.2Eq. 5.2 with sensing data measured τd ,k actuation periods ago, the state vector
at time k are estimated using:

x̂k = (Ad )τd ,k xk−τd ,k
+
τd ,k−1∑

j=0
(Ad )τd ,k−1− j Bd uk−τd ,k+ j .

Proof. The state vector of Eq. 5.2Eq. 5.2 is shifted into past states, until a dependence with
the measured state vector xk−τd ,k

is found:

x̂k = Ad x̂k−1 +Bd uk−1

x̂k−1 = Ad x̂k−2 +Bd uk−2

...
x̂k−τd ,k+2 = Ad x̂k−τd ,k+1 +Bd uk−τd ,k+1 (5.4)

x̂k−τd ,k+1 = Ad xk−τd ,k
+Bd uk−τd ,k

. (5.5)

A backward substitution, i.e., Eq. 5.5Eq. 5.5 into Eq. 5.4Eq. 5.4, yields:

x̂k−τd ,k+2 = Ad

(
Ad xk−τd ,k

+Bd uk−τd ,k

)
+Bd uk−τd ,k+1,

which is equivalent to

x̂k−τd ,k+2 = (Ad )2xk−τd ,k
+ Ad Bd uk−τd ,k

+Bd uk−τd ,k+1.

This backward substitution strategy is repeated until τd ,k steps are achieved:

x̂k−τd ,k+τd ,k
= (Ad )τd ,k xk−τd ,k

+ (Ad )τd ,k−1Bd uk−τd ,k

+(Ad )τd ,k−2Bd uk−τd ,k+1 +·· ·+ (Ad )0Bd uk−1.
(5.6)
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Organizing Eq. 5.6Eq. 5.6 gives Proposition 5.15.1, completing the proof.

5.3.5 Prediction length
The prediction length τd ,k is the age of the measured data. The prediction length is on-
line measured using built-in timers in the processing resources. Because the sensing
delay is typically larger than the actuation period, there are cases when the predictor
block does not have new sensing information to predict the state vector. Therefore, the
same sensing information can be used to estimate the state vector more than once if
the prediction length is updated. For example, in the serial case of Fig. 5.4aFig. 5.4a, the first
discrete-time delay corresponds to four actuation periods, which means that a sensing
operation is completed before time k = 4. The sensed information corresponds to a
sample captured at time k = 0. Therefore the prediction length is τd ,4 = 4 actuation
periods. In the next time step, k = 5, no new sensing information is available. Therefore
the prediction length is updated to τd ,5 = 5 actuation periods. The variation of τd ,k at
run-time for the running example is summarized in Table 5.15.1. The prediction length
varies from 2 to 7 actuation periods in the serial case while in the pipelined case it
ranges from 2 to 5 actuation periods. The bounds of the prediction length for a lower
bound τ and an upper bound τ on the sensing delay are defined as:

τd =
⌈
τ

hp

⌉
(5.7)

τd =
⌈
τ

hp

⌉
+

⌈⌈ τ

hp

⌉ 1

γ

⌉
−1, (5.8)

with τd ∈Z+ the discrete-time lower bound of the prediction length, τd ∈Z+ the upper
bound of the prediction length, and γ ∈Z+ the number of processing resources. Eqs. 5.75.7
and 5.85.8 show that adding more sensing resources (i.e., increasing γ) only affects τd .

Further, to compare the upper bound of the prediction length of controllers with
different actuation periods, we use

τc = τd ∗hp , (5.9)

with τc ∈R+ the upper bound of the prediction length in seconds.

5.3.6 Impact of prediction quality on QoC and control robustness
In an ideal case, the model-based predictions perfectly estimate the state vector af-
ter the variable delay. However, in practice it is common to have a margin of er-
ror in the plant model (i.e., to have model uncertainties), which affects the quality
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Table 5.1: Prediction length in terms of actuation periods in the configurations of
Fig. 5.4Fig. 5.4

current
time k

last sensed
information time

prediction
length τd ,k

serial pipelined serial pipelined
1 X X X X
2 X X X X
3 X X X X
4 0 0 4 4
5 0 0 5 5
6 0 2 6 4
7 0 2 7 5
8 4 4 4 4
9 4 4 5 5

10 8 6,8 2 2
11 8 6,8 3 3
12 10 10 2 2
13 10 11 3 2

of the predictions. Since the predictions are used by the controller to compute the
control input, low-quality predictions have a negative impact on the controller QoC
and ultimately its robustness. The prediction length plays also a role in the predic-
tion quality: long predictions rely more on the model and control inputs than on the
measurements. Proposition 5.15.1 shows that with a long prediction (i.e., τd ,k →∞) the
measurement term (Ad )τd ,k xk−τd ,k

→ 0 because the spectral radius of Ad is less than
1, while the second term has always several larger terms given by the sum of elements
(Ad )τd ,k−1− j Bd uk−τd ,k+ j . Model uncertainties have therefore a strong negative impact
in long predictions, much stronger than in short predictions. Since this strong negative
impact in turn affects the QoC and control robustness, a limitation on the prediction
length needs to be established.
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5.3.7 QoC benchmarking
For the QoC benchmarking of the variable-delay controller, we include model uncer-
tainties in the dynamic model:

ẋ(t ) = (Ac +∆Ac )x(t )+ (Bc +∆Bc )u(t ), (5.10)

with ∆Ac ∈ Ac ⊆ Rn×n and ∆Bc ∈ Bc ⊆ Rn×1 the uncertainties of the state and input
matrices, respectively. The uncertainties can be obtained from the tolerance of each
element of the matrices Ac and Bc .

Remark 5.1. Chapter 33 required to have a particular structure in the uncertainties
of Eq. 5.10Eq. 5.10, because of the discretization procedure applied in a later stage. In this
chapter, such a discretization is not necessary. Therefore the particular structure on
the uncertainties is no longer necessary.

5.4 Variable-delay control design
The procedure for designing a variable-delay controller is divided into the following
four subsections: histogram characterization, selection of candidate actuation periods,
control design, and QoC benchmarking.

5.4.1 Histogram characterization
We select a set of actuation periods that potentially improve QoC. An actuation period
similar to the worst-case delay, i.e., hp → τ produces a QoC similar to a worst-case de-
sign. The benefit of using a variable-delay control materializes when the actuation pe-
riod is chosen significantly smaller than the worst-case delay. Ideally, a short actuation
period hp → 0 is preferred because the resulting QoC is similar to the continuous-time
controller with no delay. However, a small actuation period causes a long τd ,k , which
is strongly affected by model uncertainties (see Section 5.3.6Section 5.3.6). The controller actua-
tion periods are therefore chosen taking into account the most common delays shown
in the implementation-dependent delay histogram. To do so, we follow the following
procedure:

1. Identification of the modes in the delay histogram: Using the delay histogram,
we define a set M with the most commonly occurring delays (i.e., delay modes)
in the histogram:

M= {τ1,τ2, . . . ,τM } ,
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with τ1, . . . ,τM the delay modes. We only consider modes that are significantly
shorter than the worst-case delay because an actuation period selected based on a
mode near the worst case potentially produces little or no improvement in control
performance.

Example 5.1. Histogram-mode identification: Consider the delay histogram
presented in Fig. 5.2Fig. 5.2. The set with the histogram modes is given byM= {51,102}.
All times are given in ms.

2. Selection of representative delays: Using the histogram modes of the set M,
we define a set D with representative delays as:

D= {d1,d2, . . . ,dd } ,

with d1, . . . ,dd the representative delays. Each representative delay covers (i.e.,
it is larger than) at least one mode. If two modes are close to each other, they can
be covered by one representative delay.

Example 5.2. Representative-delay selection: Continuing with Example 5.15.1,
the set of representative delays is chosen to be D= {60,120}. Note that we inten-
tionally choose delays that are slightly larger than the modes, so that the delays
cover the full body of the peaks occurring around the modes.

These two steps can be done manually with limited effort. They can also be automated
using the scenario-identification technique presented in [4545].

5.4.2 Selection of candidate actuation periods and resource config-
uration

Using the representative delays D, we define a set H with candidate actuation periods
as:

H= {
hp1,hp2, . . . ,hph

}
,

with hp1, . . . ,hph the actuation periods. The elements of the set H and the resource
configuration γ are defined to guarantee a desired QoC and robustness. We follow
these steps:

1. Actuation-period selection: We select the actuation periods to guarantee per-
formance improvement when the representative delays occur in the platform.
Rearranging Eq. 5.7Eq. 5.7 and replacing τ with all values of D, the actuation periods
are defined as

H= {
di /τd

∣∣ di ∈D
}

,
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with τd the desired minimum prediction length. τd is a design parameter chosen
based on the desired QoC and the model reliability (i.e., the amount of uncer-
tainties in the model). For example, a large τd strongly enhances the QoC when
a highly reliable model (i.e., a model with low uncertainties) is available; a small
τd can still enhance the control performance when a less reliable model is avail-
able. More than one value of τd can be considered for each actuation period in
the design exploration. The elements of the set D are used because these are the
most common delays appearing in the platform.

Example 5.3. Actuation-period selection: Continuing with Example 5.25.2, we
consider 10% uncertainties in Ac . Since there is a relatively high uncertainties,
we choose τd ∈ {1,2}, which results in actuation periods {60,120} and {30,60},
respectively. Therefore, we take H= {30,60,120}.

2. Resource-configuration selection: We select the resource configuration to
guarantee control robustness. As described in Section 5.3.6Section 5.3.6, long prediction
lengths have a strong negative impact on prediction quality and control robust-
ness. Therefore, to guarantee control robustness we, limit the prediction length
in time τc to a desired value. To do so, for each actuation period in the set H
we use Eqs. 5.85.8 and 5.95.9 with τ equal to the maximal delay dd in D to select a
γ such that τc stays within a desired bound. dd replaces τ in Eq. 5.8Eq. 5.8 since it
is the largest among the selected delays, which gives the longest τc , while τ is
considered unlikely to happen. τc is used because it allows to compare multiple
actuation periods. If the resulting τc is longer than desired and not enough
processing resources are available, the designer has to select a shorter τd in the
previous step (i.e., one has to accept a lower performance).

Example 5.4. Resource-configuration selection: Continuing with Example 5.35.3,
with hp = 30 ms and d2 = 120 ms, we aim to have τc ≤ 250 ms. Using γ= 1 in
Eqs. 5.85.8 and 5.95.9 gives τd = 7 and τc = 210 ms, meeting the design requirement.

5.4.3 Control design

Using the set of candidate actuation periods H, one controller is designed per actuation
period. Because the uncertainties on the model might produce steady-state errors, a
controller with integral action is preferred. Compared with the control-design strate-
gies of Chapters 33 and 44, no switching behaviour is required in the control design.
Therefore, a single step LQI design is used to improve QoC in terms of time-domain
metrics.
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To include the integral action in the controller, the continuous-time model of Eq. 5.1Eq. 5.1
is discretized using Eq. 5.3Eq. 5.3. Then, the discrete-time model is augmented as follows:

ẑi ,k+1 = Ai ẑi ,k +Bi uk , (5.11)

with ẑi ,k ∈ R(n+1)×1 the augmented integral state vector, Ai ∈ R(n+1)×(n+1) and Bi ∈
R(n+1)×1 the augmented integral state and input matrices, respectively. These matrices
and vector are further defined by

ẑi ,k =
[

x̂k

x̂i ,k

]
, Ai =

[
Ad 0
Cc 1

]
,Bi =

[
Bd

0

]
.

x̂i ,k ∈R is the augmented state for the integral action computed from

x̂i ,k+1 =Cc x̂k + x̂i ,k − r, (5.12)

with r ∈ R the reference. The integral action (i.e., the convergence of the output to a
constant reference) is straightforwardly demonstrated finding the steady-state value of
yk [1414].

The control law with integral action is then defined as:

uk = K x̂k +Ki x̂i ,k , (5.13)

where K ∈R1×n is the feedback gain and Ki ∈R is the integral gain. The control law is
re-written in a matrix notation as:

uk = Kaug ẑi ,k (5.14)

with Kaug = [
K Ki

]
.

To design Kaug , we use the well-known LQR controller that includes integral action
[2121]. Such a controller trades off control effort with state deviation by minimizing the
following cost function:

J =
∞∑

k=0

(
ẑT

i ,kQi ẑi ,k +uT
k Ri uk

)
, (5.15)

where Qi ∈ R(n+1)×(n+1) and Ri ∈ R1×1 are the state and input weight matrices of the
LQR, which are tuning parameters. To find the values of Qi and Ri that produce a con-
troller with minimum settling time, we use the PSO algorithm detailed in Section 2.5Section 2.5
with updated control law (i.e., Eq. 5.14Eq. 5.14) and updated plant model (Eq. 5.11Eq. 5.11). The re-
sulting controller Kaug contains the feedback gain K and the integral gain Ki that are
used by the variable-delay controller.
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Example 5.5. Controller design: Consider the dynamic model presented in
Section 2.2Section 2.2:

Ac =
[

0 1.7
−9 −2.5

]
,Bc =

[
0

10

]
,Cc = [1 0] , x =

[
x1

x2

]
.

For the purpose of this example, we only use one of the actuation periods in H, namely
the one that ultimately gives the best performance in terms of QoC. However, notice
that in a full design exploration, one controller per element in H needs to be designed.
Using the actuation period of Example 5.45.4, hp = 30 ms, the discrete-time model is
found using Eq. 5.3Eq. 5.3:

Ad =
[

0.99 0.04
−0.25 0.92

]
,Bd =

[
0.75

28.84

]
×10−2.

The augmented model is then defined by:

ẑi =
x̂1

x̂2

x̂i

 , Ai =
 0.99 0.04 0
−0.25 0.92 0

1 0 1

 ,Bi =
 0.75

28.84
0

×10−2.

with x̂i ,k+1 =Cc x̂k + x̂i ,k − r . Applying the control-design strategy of Chapter 22, gives
an augmented gain:

Kaug = [−177.04 −5.85 −72.38
]

.

The gains of the controller law are then defined as K = [−177.04 −5.85
]

and Ki =
−72.38.

5.4.4 QoC benchmarking to select the best controller
As part of the design process, simulations are used to benchmark the QoC of the de-
signed controllers. Each candidate controller is tested using the continuous-time model
with uncertainties of Eq. 5.10Eq. 5.10. One simulation is run with each delay of the set D. The
delay is kept constant during the entire simulation. This procedure gives bounds on
the performance of the controller: the best-case performance is expected with d1 (i.e.,
the smallest element in D) while the worst-case performance is expected with dd (i.e.,
the largest element in D). The average performance is influenced by the probability of
occurrence of each delay in practice. In a run-time simulation, the QoC typically varies
between the QoC obtained with benchmarked delays, because those are chosen to cover
(i.e., are slightly larger than) the most commonly-occurring delays in the platform.

To compare if there is any performance gain in using the set of variable-delay con-
trollers, a controller with a constant worst-case delay is designed using the procedure
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Figure 5.5: Controller structure of one of the belts in the case study.

of Chapter 22. The worst-case controller is also tested with the model with uncertain-
ties shown in Eq. 5.10Eq. 5.10. The QoC of both control strategies is compared. We select
the actuation periods which show potential QoC improvement compared to the worst-
case design. If no improvement is achieved with the selected actuation periods or the
resulting controllers are potentially unstable, the procedure of Section 5.4.2Section 5.4.2 has to be
repeated with a smaller τd or with a larger γ. A complete example of QoC benchmark-
ing is provided in Section 5.6Section 5.6.

5.5 Case study: xCPS
We have introduced the design of a variable-delay controller based on a delay his-
togram. We now present a motivational set-up that shows the benefit of a variable-delay
control over a worst-case-based control. We use the assembly line xCPS introduced in
Section 2.2Section 2.2. We summarize the operation of xCPS and the need for a DISC.

xCPS is an assembly line that puts together circular complementary blocks [22].
xCPS is equipped with conveyor belts that transport the blocks through multiple ac-
tuators to complete the assembly process. The block speed needs to be regulated in
the assembly process. A camera and an image-processing algorithm are used as sensor
to detect block speed. An IBC can then regulate the block speed by changing the in-
put to the belts. A better QoC (i.e., shorter settling time) means that the blocks move
faster between actuators. Consequently, they are assembled faster, which potentially
improves the productivity of xCPS.

A schematic of the controller regulating the conveyor belts is shown in Fig. 5.5Fig. 5.5. A
continuous-time controller regulates the speed of rotation of the electric motors that
drive the conveyor belts. The continuous-time controller does not have information
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about the speed or location of the block travelling on the belt. Ideally the motor speed
and the block speed should be the same. However due to non-modelled effects (e.g.,
block friction with the borders of the belt) they may differ. A camera and an image-
based processing algorithm are used as sensor to detect the positions and speeds of the
blocks travelling on the conveyor belt. A DISC (i.e., an IBC) can regulate the speed
of the assembly blocks on the belts by changing the input to the continuous-time PI
controller. The plant to be controlled by the IBC is composed of the continuous-time
controller and the DC motor model.

5.5.1 Plant model
The (nominal) model of the continuous-time controller and the DC motor is given by

Ac =
[−41.59 27.62

−1 0

]
,Bc =

[
0.69

1

]
,

where the states are
[
x1(t ) x2(t )

]T = [
ω(t )

∫
(rPI (t )−ω(t ))d t

]T , ω(t ) is the block
angular speed, and rPI (t ) is the reference sent to the continuous-time controller. The
camera and the image-processing algorithm are used to measure ω(t ) from the assem-
bly blocks.

We consider that the values on the state matrix can vary up to 15% of their nominal
value. No uncertainties are considered in the input matrix. Therefore, the maximum
uncertainty matrices of Eq. 5.10Eq. 5.10 are given by

∆Ac =
[−6.23 4.14
−0.15 0

]
,∆Bc =

[
0
0

]
.

5.5.2 Image-processing algorithm
The image-processing algorithm on xCPS uses the Hough transform for circles to
detect the block positions and speeds. We consider the delay histogram shown in
Fig. 5.2Fig. 5.2 for the image-processing algorithm. In the histogram, there are two domi-
nant modes produced by the number of blocks being detected in the image: the first
mode corresponds to one block, while the second mode corresponds to two blocks.
The best-case and worst-case execution times of the image-processing algorithm are
given by τ= 45 ms and τ= 160 ms, respectively. The worst-case delay is significantly
larger than the histogram modes. The worst-case delay is produced by a combination
of algorithm-related variations (e.g., amount of features to process in the image) and
hardware-related variations (e.g., cache misses). A variable-delay controller potentially
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improves the performance compared to a worst-case design. Two processing resources
are available for executing the image-processing algorithm and the IBC.

5.6 Simulation results
We use the procedure of Section 5.4Section 5.4 to design a variable-delay controller with multiple
resource configurations.

5.6.1 Histogram characterization
Using the procedure of Section 5.4.1Section 5.4.1 and Fig. 5.2Fig. 5.2, we identify the histogram modes as
T = {51,102}. Next, we select the representative delays as M = {60,120} to cover the
histogram modes.

5.6.2 Selection of actuation periods and resource configuration
Using the procedure of Section 5.4.2Section 5.4.2 and the 15% expected uncertainties described in
Section 5.5.1Section 5.5.1, we choose to have lower bounds on the prediction length of τd = {1,2,4},
resulting in actuation periods {60,120}, {30,60}, and {15,30}, respectively. We then take

H= {15,30,60,120} .

These actuation periods potentially improve the control QoC because they are smaller
than a worst-case based sampling period h = 160 ms.

To select the resource configuration, the maximum prediction length is set as τc ≤
180 ms. Considering γ = 1, Eqs. 5.85.8 and 5.95.9 result in τc = {225,210,180,120} per
element of H. Only the actuation periods H1 = {60,120} meet the prediction con-
straint. Considering γ= 2, τc = {165,150,120} for H2 = {15,30,60}; hp = 120 ms is not
considered because that actuation period is larger than a worst-case actuation period
h = 80 ms with γ= 2. In this case all actuation periods meet the minimum prediction-
length constraint. Clearly, γ = 2 is then the preferred resource configuration, because
this will result in the best QoC. However, we evaluate both configurations with all the
actuation periods for demonstration purposes.

5.6.3 Control design
Using the control-design strategy of Section 5.4.3Section 5.4.3, the PSO algorithm is used to design
one controller for each actuation period of the set H. Likewise, to compare whether
there is any performance gain, a constant worst-case control is also designed using the
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PSO of Chapter 22. For the worst-case implementation the actuation period is chosen as
h = 160 ms and h = 80 ms for γ= 1 and γ= 2, respectively (See Eq. 2.5Eq. 2.5).

For example using hp = 15 ms, the model from Section 5.5.1Section 5.5.1 is discretized as

Ai =
 0.53 0.30 0
−0.01 0.99 0

1 0 1

 ,Bi =
0.01

0.01
0

 . (5.16)

The augmented state vector is then ẑi ,k = [
ωk

(∫
(rPI (t )−ω(t ))d t

)
k x̂i ,k

]T . Note
that the state

(∫
(rPI (t )−ω(t ))d t

)
k represents the k th sample of the continuous-time

integral state. x̂i ,k is derived using Eq. 5.12Eq. 5.12:

x̂i ,k+1 = ω̂k + x̂i ,k − r.

The PSO algorithm of Chapter 22 is used to find the controller gains:

Kaug = [−147.28 −30.35 −95.63
]

.

The gains for the control law are then extracted as

K = [−147.28 −30.35
]

,Ki =−95.63.

5.6.4 QoC benchmarking
Using the procedure of Section 5.4.4Section 5.4.4, the QoC of the afore-designed controllers is
benchmarked. For demonstration purposes, we also included τ (worst-case delay) in
the benchmarked delays of the set D. To find the QoC, the settling time is measured
when the reference is changed. If the system output does not stabilize within a 2%
margin, the QoC is set to zero (i.e., the system output keeps oscillating around the
reference).

The benchmark is shown in Fig. 5.6aFig. 5.6a for γ = 1 and in Fig. 5.6bFig. 5.6b for γ = 2. In both
configurations, the best performance is always achieved with the shortest representative
delay d1 = 60 ms, because it gives the shortest prediction length. Increasing the delay
deteriorates the QoC for all actuation periods. The evaluated controllers do not settle
when τ is evaluated. However, Fig. 5.2Fig. 5.2 shows that the worst-case delay is unlikely
to continuously occur. Therefore, the line drawn by d2 in Fig. 5.6Fig. 5.6 can be considered
as an average lower bound on QoC. In practice, the sensing delay will take any value
between τ and τ. However, the average QoC will be bounded between the QoC values
for d1 and d2.

With γ = 1, the QoC with the actuation periods 15, 30, and 60 ms is zero when
d2 = 0.12 s is considered. Note that the actuation periods 15 and 30 ms do not meet
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Figure 5.6: QoC benchmarking of variable-delay controllers (VDC) and the worst-case
control design (WCC) using constant delays d1, d2, and τ.

the prediction-length constraint established in Section 5.6.2Section 5.6.2, while hp = 60 ms barely
does. This implies that the controller cannot tolerate the uncertainties. These actuation
periods are therefore not desirable in a final implementation. hp = 120 ms meets the
prediction-length constraint and shows a QoC improvement with d2 compared to a
worst-case design. hp = 120 ms is preferable in a final implementation. Note that with
hp = 120 ms, the performance with d1 = 60 ms and d2 = 120 ms is the same. Since
both these delays are at most the sampling period of 120 ms, they require a prediction
length of one sample, which in turn yields the same controller performance.

With γ = 2, the same actuation periods produce a better QoC than in a serial im-
plementation. Additionally, in the pipelined case, all the actuation periods show im-
provement compared to a worst-case design. The best performing controller is the
variable-delay controller with a representative delay d1 = 60 ms. The recommended
actuation period for this pipelined controller is hp = 15 ms because it shows the best
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(b) Pipelined variable-delay control.

Figure 5.7: Performance with 100 different delay sequences. The lines connect the
median performance. The lines of the variable delay with 0% to 10% uncertainties are
overlapping. A box plot is drawn for the largest uncertainties.

QoC improvement.

To evaluate the feasibility of the approach, the variable-delay controllers are also
simulated on a realistic scenario with model uncertainties and varying-delay sequences.
Figs. 5.7a5.7a and 5.7b5.7b show an average QoC of 100 simulations using the candidate sam-
pling periods of Section 5.6.2Section 5.6.2, the worst-case design, multiple uncertainties in the Ac

matrix, and variable-delay sequences generated according to Fig. 5.2Fig. 5.2. For the plot with
15% uncertainties, we use a box plot. The boxes correspond to 25 and 75 percentiles.
The whiskers extend to the most extreme data points not considered as outliers, and the
outliers are plotted individually using a red dot. Both graphs also show the effect of
lower uncertainties between 0% and 10% on the QoC. For simplicity, only the median
of the 100 simulations is plotted with these uncertainties. For uncertainties between
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0% and 10%, the QoC deterioration is almost negligible, which means that the smallest
element of the set H can be used.

Fig. 5.7aFig. 5.7a shows that for γ = 1, the resulting median QoC with 15% uncertainties
is better than a worst-case design only with hp = 120 ms. The median QoC with
hp ∈ {15,30,60} ms is close to zero, which makes them undesirable in a final imple-
mentation.

Fig. 5.7bFig. 5.7b shows that for γ= 2, the best QoC is achieved with the smallest actuation
period and the smallest representative delay, outperforming a worst-case design. The
median QoC is also between the bounds presented in Fig. 5.6bFig. 5.6b. Note that the lower
whisker extends to a QoC which is below the worst-case design. This occurs because
some delay sequences contained values close to τ which extends the settling time of
the controller.

We tried to compare the QoC of our controllers with the predictor approach of [4646].
This approach considers τd ,k constant in the predictor of Section 5.3.3Section 5.3.3 (i.e., τd ,k = τL

where τL ∈ R+ is a constant prediction horizon). Using LMIs, the stability is verified
against prediction-length errors (i.e. when τL 6= τd ,k ) in Theorem 1 as well as against
prediction-length errors combined with model uncertainties in Theorem 2 [4646]. In our
approach, prediction-length errors are not present since τd ,k is on-line measured and
updated at every prediction; the stability against model uncertainties is addressed using
the benchmark presented in Section 5.4.4Section 5.4.4. To compare QoC of both approaches, we
attempted to solve the LMI of Theorem 1 of [4646] for our case study (i.e. our controllers,
delay range, and multiple values of τL). For the considered range of delays, Theorem
1 does not yield any feasible stable solution for the controller. This is mainly because
of the conservative nature of the analysis for dealing with lack of information on the
delay behaviour.

5.7 Summary
In this chapter, we have presented an implementation-aware variable-delay pipelined-
control design strategy for DISC. Our controller compensates for the variable nature
of the delay using a predictor, which estimates the state vector using a system model,
the delayed state-vector measurement, and on-line measurements of the sensing delay.
We presented a simulation benchmark that uses the implementation-dependent delay
histograms and model uncertainties to select a resource configuration and a controller
that improves performance compared to a constant worst-case design.

Our simulation results show that in a system without uncertainties, the shortest
actuation period yields the best control performance and robustness. However, un-
certainties have a strong negative impact on quality of the predictions, much stronger
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with a longer prediction length, which in turn affects the control performance. The
prediction length can be decreased by increasing the actuation period or adding pro-
cessing resources in a pipelined fashion. Extra sensing resources improve the control
performance and the controller robustness.
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Cyber-Physical Systems (CPSs) are becoming common in various domains in-
cluding flexible manufacturing systems, automotive systems, aero-space systems,
robotic systems, and many others. Common design specifications for CPSs are ex-
pressed in terms of performance, reliability, and cost-effectiveness. Designing a CPS
involves a close interaction between multiple engineering disciplines. For example,
the embedded-systems and the control-systems domains are combined to co-design
embedded control systems. Embedded control systems are integrated into CPSs to
regulate the physical behaviour of components in the system. The growing capabilities
of embedded systems enabled a new generation of embedded control systems: the
Data-Intensive Sensing Controllers (DISCs). DISCs use signal-processing algorithms
to obtain sensing information for which no simple sensor exists. This sensing strategy
extends the range of applications that can be regulated by embedded control systems.
However, signal-processing algorithms require additional processing resources (for
the signal-processing) which can negatively impact the cost-effectiveness of the CPS.
Likewise, signal-processing algorithms introduce sensing delay into the control loop,
which translates to limitations in the controller such as low performance (i.e., low
Quality of Control (QoC)), robustness problems, and even control instability. Such
limitations can have a direct impact on CPS specifications such as performance and
reliability. This thesis contributes to the development of DISCs taking into account
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CPS-level specifications.
Strategies to design DISCs are found in the embedded-systems domain as well as

in the control-systems domain. Embedded-systems approaches profit from embedded
systems with parallel processing (i.e., multiprocessing) capabilities to implement the
sensing algorithm in a parallel manner. As a result, the sensing delay is shortened
which is used to design controllers with an improved QoC. However, parallelizing an
algorithm is time consuming and it is not applicable to all algorithms. Control-systems
approaches use model-based predictions to generate extra sensing information to im-
prove the QoC. However, model-based predictions are strongly affected by model mis-
matches and unmodelled disturbances. As an alternative to these embedded-systems
and control-systems approaches, in this thesis, we used pipelined-sensing control.

Pipelined-sensing control consists of using embedded systems with sufficient mul-
tiprocessing capabilities to compute the sensing information in a pipelined fashion. As
a result, additional sensing information is produced (compared to single-core imple-
mentations), which is used to design controllers with a better QoC. Pipelined control
is easier to implement than embedded-systems-oriented approaches, since it does not
require a profound analysis of the sensing algorithm to achieve parallelization. Fur-
ther, pipelined control relies less on the model-based predictions of control-systems
approaches because the extra sensing information is generated by actual sensing oper-
ations rather than by a model.

This thesis is the first to contribute to the design of pipelined-sensing control us-
ing modern embedded systems with multiprocessing capabilities. The thesis develops
model-based design techniques to address the control limitations (i.e., low QoC and ro-
bustness problems) resulting from the sensing delay. The proposed strategies trade off
processing resources with QoC and robustness, which can be used to guarantee the de-
sign specifications of CPSs in terms of performance, reliability, and cost-effectiveness.

6.1 Conclusions
This thesis presented a set of design techniques for pipelined control systems that can
be used to guarantee CPS specifications such as performance, reliability, and cost-
effectiveness. We identify two development stages of the CPS: the design stage (Chap-
ters 22 and 33) and the running stage (Chapters 44 and 55). The design stage refers to
the phase when the DISC is being designed (or redesigned) and substantial changes to
the number of processing resources are acceptable; the running stage refers to when
the DISC is already operational, but its specifications must be improved with minimum
changes in the number of processing resources. Note that the techniques of the running
stage can also be applied at the design stage, as we elaborate in the paragraphs below.
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For DISCs that are in the design stage, we presented several techniques to de-
sign pipelined control systems. These techniques can be classified according to the
existence of model uncertainties. In case the model contains only negligible uncer-
tainties, the design technique of Chapter 22 or the techniques of the running stage can
be considered. The technique from Chapter 22 analyses the resources-QoC trade-off in
pipelined-sensing control. We introduced this technique because in pipelined control
the use of more processing resources results in a better QoC, creating the aforemen-
tioned trade-off. The result of this analysis allows to select a resource configuration
that meaningfully improves the QoC. The selected resource configuration guarantees
the cost-effectiveness of a CPS, while the improved QoC can be used to improve the
CPS performance. In case the trade-off analysis suggests more processing resources
than what is available for the controller, the techniques presented for the running stage
can be considered. However, notice that the techniques of the running stage require
additional knowledge of the embedded system, such as knowledge of the sporadic ap-
plications in the technique of Chapter 44 or knowledge of the histogram of delays in the
technique of Chapter 55. These techniques are discussed in the paragraphs below.

In case the model contains significant uncertainties, the design technique of Chap-
ter 33 (or the running stage technique of Chapter 55) can be applied. The technique of
Chapter 33 extends the trade-off analysis of Chapter 22 to include model uncertainties.
We introduced this technique because model uncertainties have a negative impact on
QoC, which may affect system-level specifications. Such a technique helps to select
a resource configuration that meaningfully improves the QoC while guaranteeing that
the controller is robust against model uncertainties. As in the previous case, the se-
lected resource configuration guarantees the cost-effectiveness of the CPS, the better
QoC can be used to improve the CPS performance, and the guaranteed controller ro-
bustness can be used to satisfy CPS reliability. In case the model uncertainties are not
significant (i.e., they do not produce a visible negative impact on the QoC), the method
of Chapter 22 should be applied instead of the method of Chapter 33. This is suggested
because the robustness analysis of Chapter 33 might (unnecessarily) constrain the QoC
to guarantee stability in any situation, while adding complexity to the trade-off analy-
sis. Note that the design technique of the running stage proposed in Chapter 55 can also
be applied when the system contains significant uncertainties. A comparison between
the applicability of these techniques is discussed below.

For DISCs that are in the running stage, we consider (like for the previous stage)
two cases depending on the existence of model uncertainties. When the model has
only negligible uncertainties, the technique of Chapter 44 can be used. The technique
proposes a Reconfigurable Pipelined Controller (RPC), which allows to on-line change
(i.e., reconfigure) idle processing resources from other operations to compute addi-
tional instances of the signal-processing algorithm. The extra sensing information is
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used to further improve the QoC. The use of this technique is therefore conditioned to
the temporal availability of extra processing resources from other applications. RPC
can also be used as an additional step of the trade-off analysis of Chapter 22 in case
the suggested resource configuration is not statically available in the embedded sys-
tem. From the system-level perspective, a better QoC can be used to improve the CPS
performance. Additionally, the system cost-effectiveness is also improved because no
additional processing resources are needed while the only new requirement is that the
data-intensive sensor can cope with the changing sampling period of the RPC.

When the model contains uncertainties, the design technique of Chapter 55 can be
used. This technique requires extra information about the signal-processing algorithm
delay: the delay has to be characterized with the histograms of delays, and the delay
has to be measured on-line after each sensing operation is finished. Using this extra
information, a variable-delay pipelined control is designed to further improve the QoC.
However, the QoC improvement depends on the model quality, e.g., a model with
large uncertainties performs significantly worse than a model with small uncertainties.
Therefore, the applicability of this technique is conditioned to the model quality and
to the availability of the extra information about the delay. From the system-level
viewpoint, the QoC improvement can be used to enhance the performance of the CPS.
Since the processing resources are not increased, the CPS becomes more cost-effective.
Likewise, since the control design takes into account model uncertainties, the CPS
reliability can also be guaranteed with this strategy. Note that this technique can also
be applied after the design stage provided that the model quality meets the assumption
and that histograms of delays are available. However, this technique does not provide
a trade-off analysis between processing resources and QoC, which might affect the
cost-effectiveness of the CPS.

Finally, a comparison of the techniques of Chapter 55 with those of Chapter 33 shows
that the former relies on model simulations to give the stability bounds of the controller,
while the latter relies on a mathematical analysis to provide such stability bounds.
Simulations (generally) provide less conservative stability bounds than a mathematical
analysis. However, a mathematical analysis can be adapted faster to a wider range of
applications. Therefore, the use of these techniques depends on the particular require-
ments of the CPS.

This thesis contributed in the design of pipelined-sensing controllers using multi-
processing embedded systems. The design strategies proposed in this thesis allow to
design controllers that trade off processing resources with QoC and control robustness.
These strategies can therefore be used in the design of CPS to improve on performance,
reliability, and cost-effectiveness.
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6.2 Future work

While this thesis has contributed substantially to the design of pipelined-sensing con-
trollers using multiprocessing embedded systems for CPSs, our work can be further
extended in the following directions:

• Parallel-pipelined-sensing control: Current pipelined-sensing control con-
siders multiple serial signal-processing-algorithm instances implemented in
a pipelined fashion, as Fig. 6.1Fig. 6.1a shows. However, in case parallelization is
possible in the signal-processing algorithm, the algorithm can be implemented
in a parallel pipelined fashion, which reduces the sensing delay and can be used
to further improve the QoC. Fig. 6.1Fig. 6.1b shows an example of parallel pipelined
control.
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Figure 6.1: Comparison of pipelined controller strategies. The signal-processing algo-
rithm executes sub-tasks A, B , C , and D. Some sub-tasks can be executed concurrently.
Using a parallel-pipelined sensing control the sensing delay τ is reduced compared to
a pipelined implementation. Notice that the sampling period h remains the same.
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Parallel pipelined control involves design challenges from the embedded-
systems domain and from the control-systems domain. In the embedded-systems
domain, algorithm parallelization is application-specific and time consuming.
Such a parallelization requires an algorithm model to explore the parallel com-
ponents of the algorithm, data dependencies, communication overheads, shared
memory policies, load balancing, among others. Likewise, strategies to allocate
the processing resources among the parallel components of the algorithm are
necessary, such that the timing requirements of the control design are met (e.g.,
keeping a sampling period constant or bounded to a range). Existing algorithm-
modelling techniques based on data-flow analysis can potentially be used to
cope with these algorithm related challenges [115115, 116116]. However, combining
such algorithm-modelling techniques with parallel pipelined control remains an
open challenge.

In the control-systems domain, modelling techniques are required such that the
interplay between the parallel-pipelined sensing and the plant model is cap-
tured. Likewise, control-design strategies are also required such that the QoC
is optimized while trading off processing resources and control robustness. The
control-design strategies presented in this thesis are a potential alternative to cope
with these control challenges. However, adaptation to the new sensing strategy is
still required as well as coping with the information provided by the algorithm-
modelling technique.

• State-observer pipelined-sensing control: The current pipelined strategy
assumes that the complete state vector is measured via the signal-processing
algorithm. Although this is a valid assumption in many applications, there are
some cases where part of the state vector is unavailable or are measured via
sensors with no delay. Adapting the current strategy can increase the span of
CPSs that can benefit from pipelined-sensing control. To do so, it is necessary
to consider control-design strategies that compensate for the missing parts of
the state vector while still optimizing the QoC. A potential solution is to use
controllers with state observers or Linear Quadratic Gaussian (LQG) controllers
(e.g., [7777, 134134]). However, these control-design strategies are strongly depen-
dent on the plant model, which makes them vulnerable to model uncertainties.
Additionally, these strategies commonly use QoC metrics related to control
robustness or quadratic cost. Therefore, to apply these strategies in pipelined
control, the effect of model uncertainties has to be further analysed while the
QoC has to be measured in terms of real-time metrics.
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• Extension of robustness-analysis technique for pipelined-sensing control:
The robustness-analysis technique of Chapter 33 requires that the model uncer-
tainties have a particular structure to perform the benchmarking of the discrete-
time uncertainties. A strategy to analyse the robustness with no restriction in
the uncertainties can increase the range of CPSs where the robustness-analysis
technique for pipelined systems can be applied. However, the discretization of
an uncertain matrix is a fundamental problem in control systems because of the
non-linear nature of the discretization [131131]. A potential solution for this chal-
lenge is to perform the robustness analysis in continuous time instead of discrete
time. To do so, the modelling strategy of impulsive sampled-data systems (e.g.,
[9898, 109109] can be used to convert discrete-time components of the robustness anal-
ysis (i.e., the controller and the sensing delay) into continuous-time components.
Next, a continuous-time robustness analysis technique can be applied using the
original continuous-time uncertainties. This possibility remains to be explored
for the pipelined-sensing control case.





BIBLIOGRAPHY 141

Bibliography

[1] W. H. Aangenent, W. Heemels, M. van de Molengraft, D. Henrion, and M. Stein-
buch, “Linear control of time-domain constrained systems,” Automatica, vol. 48,
no. 5, pp. 736–746, 2012.

[2] S. Adyanthaya, H. Alizadeh, J. Bastos, A. Behrouzian, R. Medina, J. van Pinx-
ten, B. van der Sanden, U. Waqas, T. Basten, H. Corporaal, R. Frijns, M. Geilen,
D. Goswami, M. Hendriks, S. Stuijk, M. Reniers, and J. Voeten, “xCPS: A Tool
to Explore Cyber Physical Systems,” SIGBED Rev., vol. 14, no. 1, pp. 81–95,
2017.

[3] S. Adyanthaya, H. Alizadeh, J. Bastos, A. Behrouzian, R. Medina, J. van Pinx-
ten, B. van der Sanden, U. Waqas, T. Basten, H. Corporaal, R. Frijns, M. Geilen,
D. Goswami, S. Stuijk, M. Reniers, and J. Voeten, “xCPS: A Tool to eXplore
Cyber Physical Systems,” in Proceedings of the WESE: Workshop on Embedded
and Cyber-Physical Systems Education. ACM, 2015, pp. 3:1–3:8.

[4] S. Adyanthaya, Z. Zhang, M. Geilen, J. Voeten, T. Basten, and R. Schiffelers,
“Robustness analysis of multiprocessor schedules,” in Embedded Computer Sys-
tems: Architectures, Modeling and Simulation. IC-SAMOS 2014. International
Conference on, 2014, pp. 9–17.

[5] R. Agrawal, S. Gupta, J. Mukherjee, and R. K. Layek, “A GPU based Real-Time
CUDA implementation for obtaining Visual Saliency,” in Proceedings of the
2014 Indian Conference on Computer Vision Graphics and Image Processing.
ACM, 2014.



142 BIBLIOGRAPHY

[6] P. Ajay, “Scenario-based switching of data-intensive controllers in Cyber-
Physical System,” MSc thesis, Eindhoven University of Technology, 2016.

[7] S. Akaike, “On top of the world,” Ansys advantage magazine, vol. 9, no. 2, pp.
10–12, 2015.

[8] A. M. Annaswamy, D. Soudbakhsh, R. Schneider, D. Goswami, and
S. Chakraborty, “Arbitrated network control systems: A co-design of control
and platform for cyber-physical systems,” in Control of Cyber-Physical Systems.
Springer, 2013, pp. 339–356.

[9] D. Antunes and W. P. M. H. Heemels, “Rollout event-triggered control: Be-
yond periodic control performance,” IEEE Transactions on Automatic Control,
vol. 59, no. 12, pp. 3296–3311, 2014.

[10] ARM, “ARM Cortex-R7 MPCore Technical Reference Manual,” ARM, Tech.
Rep., 2014.

[11] W. F. Arnold and A. J. Laub, “Generalized eigenproblem algorithms and soft-
ware for algebraic riccati equations,” Proceedings of the IEEE, vol. 72, no. 12,
pp. 1746–1754, 1984.

[12] M. Bacic, “On hardware-in-the-loop simulation,” in Proceedings of the 44th
IEEE Conference on Decision and Control, 2005, pp. 3194–3198.

[13] T. Basten, J. Bastos, R. Medina, B. van der Sanden, M. C. W. Geilen,
D. Goswami, M. A. Reniers, S. Stuijk, and J. P. M. Voeten, “Scenarios in the
design of flexible manufacturing systems,” in System-Scenario-based Design
Principles and Applications. Springer International Publishing, 2020, ch. 9,
pp. 181–224.

[14] A. Bemporad, “Lecture notes in integral action in state feedback controls,”
February 2010.

[15] S. Bittanti and P. Colaneri, Periodic systems: filtering and control. Springer
Science & Business Media, 2008.

[16] S. Borkar, “Thousand core chips: A technology perspective,” in Proceedings of
the 44th Annual Design Automation Conference, 2007, pp. 746–749.

[17] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix inequalities
in system and control theory. SIAM, 1994, vol. 15.



BIBLIOGRAPHY 143

[18] M. F. Braga, C. F. Morais, E. S. Tognetti, R. C. L. F. Oliveira, and P. L. D.
Peres, “A new procedure for discretization and state feedback control of uncer-
tain linear systems,” in Decision and Control (CDC), 2013 IEEE 52nd Annual
Conference on. IEEE, 2013, pp. 6397–6402.

[19] M. F. Braga, C. F. Morais, L. A. Maccari, E. S. Tognetti, V. F. Montagner, R. C.
L. F. Oliveira, and P. L. D. Peres, “Robust stability analysis of grid-connected
converters based on parameter-dependent lyapunov functions,” Journal of Con-
trol, Automation and Electrical Systems, vol. 28, no. 2, pp. 159–170, 2017.

[20] A. E. Bryson, Applied optimal control: optimization, estimation and control.
CRC Press, 1975.

[21] S. Carrière, S. Caux, and M. Fadel, “Optimal LQI Synthesis for Speed Con-
trol of Synchronous Actuator under Load Inertia Variations,” IFAC Proceedings
Volumes, vol. 41, no. 2, pp. 5831–5836, 2008.

[22] F. Chaumette and S. Hutchinson, “Visual servo control. I. Basic approaches,”
IEEE Robotics and Automation Magazine, vol. 13, pp. 82–90, 2006.

[23] S. Chroust, M. Vincze, R. Traxl, and P. Krautgartner, “Evaluation of processing
architecture and control law on the performance of vision-based control sys-
tems,” in Proceedings of the international workshop in Advanced Motion Con-
trol (AMC). IEEE, 2000, pp. 19–24.

[24] M. B. G. Cloosterman, N. van de Wouw, W. P. M. H. Heemels, and H. Nijmeijer,
“Stability of networked control systems with large delays,” in 2007 46th IEEE
Conference on Decision and Control, 2007, pp. 5017–5022.

[25] M. Cloosterman, “Robust stability of networked control systems with time-
varying network-induced delays,” Decision and Control, 2006 45th IEEE Con-
ference on, pp. 4980–4985, 2006.

[26] P. Colaneri, “Output stabilization via pole placement of discrete-time linear pe-
riodic systems,” IEEE Transactions on Automatic Control, vol. 36, no. 6, 1991.

[27] G. Da Prato and A. Ichikawa, “Quadratic control for linear periodic systems,”
Applied Mathematics and Optimization, vol. 18, no. 1, pp. 39–66, 1988.

[28] J. Daafouz, P. Riedinger, and C. Iung, “Stability analysis and control synthesis
for switched systems: a switched lyapunov function approach,” IEEE transac-
tions on automatic control, vol. 47, no. 11, pp. 1883–1887, 2002.



144 BIBLIOGRAPHY

[29] M. Dehghan and M. H. Ang, “Stability of switched linear systems under dwell
time switching with piece wise quadratic functions,” in 2014 13th International
Conference on Control Automation Robotics Vision (ICARCV), 2014, pp. 1257–
1260.

[30] Y. Del Valle, G. K. Venayagamoorthy, S. Mohagheghi, J.-C. Hernandez, and
R. G. Harley, “Particle swarm optimization: basic concepts, variants and ap-
plications in power systems,” Evolutionary Computation, IEEE Transctions on,
vol. 12, no. 2, pp. 171–195, 2008.

[31] L. Denissen, “Image-based control and throughput analysis forflexible manufac-
turing systems,” MSc thesis, Eindhoven University of Technology, 2016.

[32] P. J. Dhrymes, Mathematics for econometrics, 4th ed. Springer, 1978.

[33] R. C. Dorf and R. H. Bishop, Modern control systems. Pearson, 2011.

[34] D. Du, B. Jiang, and S. Zhou, “Delay-dependent robust stabilisation of uncer-
tain discrete-time switched systems with time-varying state delay,” International
Journal of Systems Science, vol. 39, no. 3, pp. 305–313, 2008.

[35] H. Duan and C. Sun, “Pendulum-like oscillation controller for micro aerial ve-
hicle with ducted fan based on LQR and PSO,” Science China Technological
Sciences, vol. 56, no. 2, pp. 423–429, 2013.

[36] Q. Fu, G. Xie, and L. Wang, “Stability Analysis and Stabilization Synthesis
for Periodically Switched Linear Systems with Uncertainties,” 2005 American
Control Conference, pp. 30–35, 2005.

[37] H. Fujimoto, “Visual Servoing of 6 DOF Manipulator by Multirate Control with
Depth Identification,” in 42nd IEEE International Conference on Decision and
Control, vol. 5. IEEE, 2003, pp. 5408–5413.

[38] H. Gao and T. Chen, “New results on stability of discrete-time systems with
time-varying state delay,” IEEE Transctions on Automatic Control, vol. 52, no. 2,
pp. 328–334, 2007.

[39] H. Gao, J. Lam, C. Wang, and Y. Wang, “Delay-dependent output-feedback
stabilisation of discrete-time systems with time-varying state delay,” IEE
Proceedings-Control Theory and Applications, vol. 151, no. 6, pp. 691–698,
2004.



BIBLIOGRAPHY 145

[40] H. Gao and T. Chen, “New results on stability of discrete-time systems with
time-varying state delay,” IEEE Transactions on Automatic Control, vol. 52,
no. 2, pp. 328–334, 2007.

[41] P. Garcia, P. Castillo, R. Lozano, and P. Albertos, “Robustness with respect to
delay uncertainties of a predictor-observer based discrete-time controller,” in
Decision and Control, 2006 45th IEEE Conference on. IEEE, 2006, pp. 199–
204.

[42] W. Geelen, D. Antunes, J. Voeten, R. Schiffelers, and M. Heemels, “The im-
pact of deadline misses on the control performance of high-end motion control
systems,” IEEE Transctions on Industrial Electronics, vol. 63, no. 2, pp. 1218–
1229, 2016.

[43] D. Geer, “Chip makers turn to multicore processors,” Computer, vol. 38, no. 5,
pp. 11–13, 2005.

[44] J. C. Geromel, M. C. d. Oliveira, and J. Bernussou, “Robust Filtering of
Discrete-Time Linear Systems with Parameter Dependent Lyapunov Functions,”
SIAM Journal on Control and Optimization, vol. 41, no. 3, pp. 700–711, 2002.

[45] S. V. Gheorghita, T. Basten, and H. Corporaal, “Profiling driven scenario detec-
tion and prediction for multimedia applications,” in Embedded Computer Sys-
tems: Architectures, Modeling and Simulation. IC-SAMOS 2006. International
Conference on, 2006, pp. 63–70.

[46] A. Gonzalez, P. Garcia, P. Albertos, P. Castillo, and R. Lozano, “Robustness of
a discrete-time predictor-based controller for time-varying measurement delay,”
Control Engineering Practice, vol. 20, no. 2, pp. 102 – 110, 2012.

[47] A. Gonzalez, A. Sala, P. Garcia, and P. Albertos, “Robustness analysis of dis-
crete predictor-based controllers for input-delay systems,” International Journal
of Systems Science, vol. 44, no. 2, pp. 232–239, 2013.

[48] K. Goossens, M. Koedam, A. Nelson, S. Sinha, S. Goossens, Y. Li, G. Brea-
ban, J. van Kampenhout, R. Tavakoli Najafabadi, J. Valencia, H. Ahmadi Balef,
B. Akesson, S. Stuijk, M. Geilen, D. Goswami, and M. Nabi Najafabadi, “NoC-
Based Multiprocessor Architecture for Mixed-Time-Criticality Applications,”
Handbook of Hardware/Software Codesign, pp. 491–530, 2017.

[49] P. F. Gorder, “Multicore processors for science and engineering,” Computing in
Science Engineering, vol. 9, no. 2, pp. 3–7, 2007.



146 BIBLIOGRAPHY

[50] D. Goswami, R. Schneider, and S. Chakraborty, “Relaxing signal delay con-
straints in distributed embedded controllers,” IEEE Transactions on Control Sys-
tems Technology, vol. 22, no. 6, pp. 2337–2345, 2014.

[51] J. K. Hale and S. M. V. Lunel, Introduction to functional differential equations.
Springer Science & Business Media, 2013, vol. 99.

[52] J. Hamidi, “Control system design using particle swarm optimization (PSO),”
International Journal of Soft Computing and Engineering, vol. 1, no. 6, pp.
116–119, 2012.

[53] J. Hansen, S. A. Hissam, and G. A. Moreno, “Statistical-based WCET estima-
tion and validation,” in Proceedings of the 9th Intl. Workshop on Worst-Case
Execution Time (WCET) Analysis, 2009.

[54] R. Hassan, B. Cohanim, O. De Weck, and G. Venter, “A comparison of particle
swarm optimization and the genetic algorithm,” in Proceedings of the 1st AIAA
multidisciplinary design optimization specialist conference, 2005, pp. 18–21.

[55] K. Hassani and W.-S. Lee, “Optimal tuning of linear quadratic regulators us-
ing quantum particle swarm optimization,” in Procedings of the International
Conference of Control, Dynamics and Robotics, 2014, pp. 1–8.

[56] Y. He, M. Wu, G.-P. Liu, and J.-H. She, “Output feedback stabilization for a
discrete-time system with a time-varying delay,” IEEE Transactions on Auto-
matic Control, vol. 53, no. 10, pp. 2372–2377, 2008.

[57] S. Heath, “1 - what is an embedded system?” in Embedded Systems Design
(Second Edition), S. Heath, Ed. Newnes, 2002, pp. 1 – 14.

[58] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback control of
computing systems. John Wiley & Sons, 2004.

[59] T. A. Henzinger and J. Sifakis, “The embedded systems design challenge,”
in Proceedings of the 14th International Conference on Formal Methods.
Springer-Verlag, 2006, pp. 1–15.

[60] V. Hernandez and L. Jodar, “Boundary problems and periodic Riccati equa-
tions,” Automatic Control, IEEE Transactions on, vol. 30, no. 11, pp. 1131–
1133, 1985.



BIBLIOGRAPHY 147

[61] L. Hetel, J. Daafouz, and C. Iung, “LMI control design for a class of exponential
uncertain systems with application to network controlled switched systems,” in
American control conference, 2007, pp. 1401–1406.

[62] N. J. Higham, Functions of Matrices: Theory and Computation (Other Titles in
Applied Mathematics). USA: Society for Industrial and Applied Mathematics,
2008.

[63] R. Hodrea, C. Ionescu, and R. De Keyser, “Predictive control strategy with on-
line time delay estimation applied in general anaesthesia,” IFAC Proceedings
Volumes, vol. 43, no. 2, pp. 253–258, 2010.

[64] Industrial Cameras: 23/33/Z12/Z30 Series - Trigger and I/O, The Imaging
Source Europe GmbH, March 2017.

[65] R. Isermann, J. Schaffnit, and S. Sinsel, “Hardware-in-the-loop simulation for
the design and testing of engine-control systems,” Control Engineering Practice,
vol. 7, no. 5, pp. 643 – 653, 1999.

[66] K. Ito, B. M. Nguyen, Y. Wang, M. Odai, H. Ogawa, E. Takano, T. Inoue,
M. Koyama, H. Fujimoto, and Y. Hori, “Fast and accurate vision-based po-
sitioning control employing multi-rate kalman filter,” in Industrial Electronics
Society, IECON 2013-39th Annual Conference of the IEEE. IEEE, 2013, pp.
6466–6471.

[67] K. Jo, J. Kim, D. Kim, C. Jang, and M. Sunwoo, “Development of autonomous
car—part I: Distributed system architecture and development process,” Indus-
trial Electronics, IEEE Transctions on, vol. 61, no. 12, pp. 7131–7140, 2014.

[68] ——, “Development of autonomous car—part II: A case study on the implemen-
tation of an autonomous driving system based on distributed architecture,” In-
dustrial Electronics, IEEE Transctions on, vol. 62, no. 8, pp. 5119–5132, 2015.

[69] A. Kawamura, K. Tahara, R. Kurazume, and T. Hasegawa, “Robust visual ser-
voing for piece manipulation with large time-delays of visual information,” in
Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Confer-
ence on. IEEE, 2012, pp. 4797–4803.

[70] J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” in Neural Net-
works, 1995. Proceedings ., IEEE International Conference on, vol. 4, 1995,
pp. 1942–1948 vol.4.



148 BIBLIOGRAPHY

[71] S. Kestur, M. S. Park, J. Sabarad, D. Dantara, V. Narayanan, Y. Chen, and
D. Khosla, “Emulating mammalian vision on reconfigurable hardware,” in
Field-Programmable Custom Computing Machines (FCCM), 2012 IEEE 20th
Annual International Symposium on. IEEE, 2012, pp. 141–148.

[72] S. K. Khaitan and J. D. McCalley, “Design techniques and applications of cyber-
physical systems: A survey,” IEEE Systems Journal, vol. 9, no. 2, pp. 350–365,
2015.

[73] P. P. Khargonekar, I. R. Petersen, and K. Zhou, “Robust stabilization of un-
certain linear systems: quadratic stabilizability and h ∞ control theory,” IEEE
Transctions on Automatic Control, vol. 35, no. 3, pp. 356–361, 1990.

[74] M. V. Kothare, V. Balakrishnan, and M. Morari, “Robust constrained model
predictive control using linear matrix inequalities,” Automatica, vol. 32, no. 10,
pp. 1361 – 1379, 1996.

[75] P. Krautgartner and M. Vincze, “Performance evaluation of vision-based control
tasks,” in Robotics and Automation, 1998. Proceedings. 1998 IEEE Interna-
tional Conference on, vol. 3. IEEE, 1998, pp. 2315–2320.

[76] ——, “Optimal image processing architecture for active vision systems,” in
Computer Vision Systems, ser. Lecture Notes in Computer Science. Springer,
1999, vol. 1542, pp. 331–347.

[77] E. Lavretsky, “Adaptive output feedback design using asymptotic properties of
LQG/LTR controllers,” IEEE Transactions on Automatic Control, vol. 57, no. 6,
pp. 1587–1591, 2012.

[78] M. A. C. Leandro, J. R. C. Júnior, and K. H. Kienitz, “Robust D-stability via
discrete controllers for continuous time uncertain systems using LMIs with a
scalar parameter,” in Control and Automation (MED), 2015 23th Mediterranean
Conference on. IEEE, 2015, pp. 644–649.

[79] E. A. Lee, “Cyber physical systems: Design challenges,” in 2008 11th IEEE
International Symposium on Object and Component-Oriented Real-Time Dis-
tributed Computing (ISORC), 2008, pp. 363–369.

[80] F. L. Lewis and V. L. Syrmos, Optimal control. John Wiley & Sons, 1995.

[81] H. Lin and P. Antsaklis, “Stability and Stabilizability of Switched Linear Sys-
tems: A Survey of Recent Results,” IEEE Transactions on Automatic Control,
vol. 54, no. 2, pp. 308–322, 2009.



BIBLIOGRAPHY 149

[82] B. Lincoln and B. Bernhardsson, “Optimal control over networks with long ran-
dom delays,” in Proceedings CD of the Fourteenth International Symposium on
Mathematical Theory of Networks and Systems. Laboratoire de Théorie des
Systèmes (LTS), University of Perpignan, 2000.

[83] J. Löfberg, “Yalmip : A Toolbox for Modeling and Optimization in Matlab,”
in 2004 IEEE International Conference on Robotics and Automation, Taipei,
Taiwan, 2004.

[84] M. L. Loper, Modeling and simulation in the systems engineering life cycle:
core concepts and accompanying lectures. Springer, 2015.

[85] R. Lozano, P. Castillo, P. Garcia, and A. Dzul, “Robust prediction-based control
for unstable delay systems: Application to the yaw control of a mini-helicopter,”
Automatica, vol. 40, no. 4, pp. 603 – 612, 2004.

[86] L. Lv, G. Duan, and B. Zhou, “Parametric pole assignment and robust pole as-
signment for discrete-time linear periodic systems,” SIAM Journal on Control
and Optimization, vol. 48, no. 6, pp. 3975–3996, 2010.

[87] O. Mason and R. N. Shorten, “On common quadratic Lyapunov functions for
stable discrete time LTI systems,” IMA Journal of Applied Mathematics, vol. 69,
pp. 271–283, 2002.

[88] R. Medina, S. Stuijk, D. Goswami, and T. Basten, “Implementation-aware de-
sign of image-based control with on-line measurable variable-delay,” in 2019
Design, Automation Test in Europe Conference Exhibition (DATE), 2019, pp.
240–245.

[89] R. Medina, S. Tabatabaei Nikkhah, D. Goswami, W. P. M. H. Heemels, S. Stuijk,
and T. Basten, “Reconfigurable pipelined control systems,” IEEE Design and
Test, pp. 1–1, 2020.

[90] R. Medina, S. Stuijk, D. Goswami, and T. Basten, “Reconfigurable pipelined
sensing for image-based control,” in Industrial Embedded Systems (SIES), 2016
11th IEEE Symposium on. IEEE, 2016.

[91] ——, “Exploring the trade-off between processing resources and settling time
in image-based control through LQR tuning,” in Proceedings of the Symposium
on Applied Computing. ACM, 2017.



150 BIBLIOGRAPHY

[92] R. Medina, J. Valencia, S. Stuijk, D. Goswami, and T. Basten, “Designing a
controller with image-based pipelined sensing and additive uncertainties,” ACM
Trans. Cyber-Phys. Syst., vol. 3, no. 3, pp. 33:1–33:26, 2019.

[93] R. Meyer and C. Burrus, “A unified analysis of multirate and periodically time-
varying digital filters,” Circuits and Systems, IEEE Transactions on, vol. 22,
no. 3, pp. 162–168, 1975.

[94] S. Mohamed, D. Goswami, V. Nathan, R. Rajappa, and T. Basten, “A scenario-
and platform-aware design flow for image-based control systems,” Microproces-
sors and Microsystems, vol. 75, p. 103037, 2020.

[95] M. M. Moldovan and M. S. Gowda, “On Common Linear/Quadratic Lyapunov
Functions for Switched Linear Systems,” in Nonlinear Analysis and Variational
Problems: In Honor of George Isac. Springer New York, 2010, pp. 415–429.

[96] L. A. Montestruque and P. Antsaklis, “Stability of model-based networked con-
trol systems with time-varying transmission times,” IEEE Transctions on Auto-
matic Control, vol. 49, no. 9, pp. 1562–1572, 2004.

[97] G. E. Moore, “Cramming more components onto integrated circuits,” Proceed-
ings of the IEEE, vol. 86, no. 1, pp. 82–85, 1998.

[98] P. Naghshtabrizi, J. Hespanha, and A. R. Teel, “Exponential stability of impul-
sive systems with application to uncertain sampled-data systems,” Systems and
Control Letters, vol. 57, no. 5, pp. 378 – 385, 2008.

[99] K.-E. Örzén and A. Cervin, “Control and embedded computing: Survey of re-
search directions,” IFAC Proceedings Volumes, vol. 38, no. 1, pp. 191 – 202,
2005.

[100] S. Panda and N. P. Padhy, “Comparison of particle swarm optimization and
genetic algorithm for facts-based controller design,” Applied Soft Computing,
vol. 8, pp. 1418 – 1427, 2008.

[101] A. Priyadi, N. Yorino, and Y. Zoka, “Design optimal feedback control using evo-
lutionary particle swarm optimization in multi-machine power system,” Electri-
cal Equipment Society National Japanesse Conference, vol. 25, pp. 529–534,
2007.

[102] J. Qiu, G. Feng, and J. Y. J. Yang, “Delay-dependent robust H∞ output feedback
control for uncertain discrete-time switched systems with interval time-varying
delay,” 2008 American Control Conference, pp. 3975–3980, 2008.



BIBLIOGRAPHY 151

[103] R. R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-physical systems: The
next computing revolution,” in Proceedings of the 47th Design Automation Con-
ference. ACM, 2010, pp. 731–736.

[104] K. J. Åström and B. Wittenmark, Computer-controlled Systems (3rd Ed.).
Prentice-Hall, Inc., 1997.

[105] J. Ren and Q. Zhang, “Robust h∞ control for uncertain descriptor systems
by proportional–derivative state feedback,” International Journal of Control,
vol. 83, no. 1, pp. 89–96, 2010.

[106] I. Robandi, K. Nishimori, R. Nishimura, and N. Ishihara, “Optimal feedback
control design using genetic algorithm in multimachine power system,” Inter-
national Journal of Electrical Power & Energy Systems, vol. 23, pp. 263 – 271,
2001.

[107] W. J. Rugh, Linear system theory. Prentice hall Upper Saddle River, NJ, 1996,
vol. 2.

[108] T. Sanislav and L. Miclea, “Cyber-physical systems-concept, challenges and re-
search areas,” Journal of Control Engineering and Applied Informatics, vol. 14,
no. 2, pp. 28–33, 2012.

[109] A. Seuret and C. Briat, “Stability analysis of uncertain sampled-data systems
with incremental delay using looped-functionals,” Automatica, vol. 55, pp. 274
– 278, 2015.

[110] P. Sharkey and D. Murray, “Delays versus performance of visually guided sys-
tems,” Control Theory and Applications, IEE Proceedings, vol. 143, no. 5, pp.
436–447, 1996.

[111] L. S. Shieh, W. Wang, and G. Chen, “Discretization of cascaded continuous-
time controllers and uncertain systems,” Circuits, Systems and Signal Process-
ing, vol. 17, no. 5, pp. 591–611, 1998.

[112] R. Shorten, K. S. Narendra, and O. Mason, “A result on common quadratic
Lyapunov functions,” IEEE Transactions on Automatic Control, vol. 48, no. 1,
pp. 110–113, Jan 2003.

[113] D. Srinivasagupta, H. Schättler, and B. Joseph, “Time-stamped model predictive
control: an algorithm for control of processes with random delays,” Computers
& Chemical Engineering, vol. 28, no. 8, pp. 1337 – 1346, 2004.



152 BIBLIOGRAPHY

[114] J. A. Stankovic and K. Ramamritham, “What is predictability for real-time sys-
tems?” Real-Time Systems, vol. 2, no. 4, pp. 247–254, 1990.

[115] S. Stuijk, M. Geilen, and T. Basten, “SDF 3: SDF for free,” in Application of
Concurrency to System Design, 2006. ACSD 2006. Sixth International Confer-
ence on. IEEE, 2006, pp. 276–278.

[116] S. Stuijk, M. Geilen, B. Theelen, and T. Basten, “Scenario-aware dataflow:
Modeling, analysis and implementation of dynamic applications,” in Embed-
ded Computer Systems (SAMOS), 2011 International Conference on. IEEE,
2011, pp. 404–411.

[117] Z. Sun and S. S. Ge, Stability theory of switched dynamical systems. Springer,
2011.

[118] K. C. Toh, M. J. Todd, and R. H. Tütüncü, “SDPT3 - A Matlab software package
for semidefinite programming, Version 1.3,” Optimization Methods and Soft-
ware, vol. 11, no. 1-4, pp. 545–581, 1999.

[119] C. Trofino and A. De Souza, “An LMI approach to stabilization of linear
discrete-time periodic systems,” Systems & Control Letters, vol. 45, no. 5, pp.
371–385, 2000.

[120] D. Q. Truong and K. K. Ahn, “Robust variable sampling period control for net-
worked control systems,” IEEE Transactions on Industrial Electronics, vol. 62,
no. 9, 2015.

[121] R. H. Tütüncü, K. C. Toh, and M. J. Todd, “Solving semidefinite-quadratic-
linear programs using SDPT3,” Mathematical programming, vol. 95, pp. 189–
217, 2003.

[122] J. Valencia, D. Goswami, and K. Goossens, “Composable platform-aware em-
bedded control systems on a multi-core architecture,” in 2015 Euromicro Con-
ference on Digital System Design, 2015, pp. 502–509.

[123] J. Valencia, E. P. van Horssen, D. Goswami, W. P. M. H. Heemels, and
K. Goossens, “Resource utilization and quality-of-control trade-off for a com-
posable platform,” in 2016 Design, Automation Test in Europe Conference Ex-
hibition (DATE), 2016, pp. 654–659.

[124] G.-J. van den Braak, C. Nugteren, B. Mesman, and H. Corporaal, “Fast Hough
Transform on GPUs: Exploration of Algorithm Trade-Offs,” in Advanced Con-
cepts for Intelligent Vision Systems. Springer, 2011, vol. 6915, pp. 611–622.



BIBLIOGRAPHY 153

[125] E. P. van Horssen, S. Prakash, D. Antunes, and W. P. M. H. Heemels, “Event-
driven control with deadline optimization for linear systems with stochastic de-
lays,” IEEE Transctions on Control of Network Systems, pp. 1–1, 2017.

[126] E. van Horssen, D. Antunes, and W. Heemels, “Switching data-processing meth-
ods in a control loop: Trade-off between delay and probability of data acquisi-
tion,” IFAC-PapersOnLine, vol. 49, no. 22, pp. 274 – 279, 2016.

[127] P. H. Vardhana, B. K. Kumar, and M. Kumar, “A robust controller for dstatcom,”
in Power Engineering, Energy and Electrical Drives, 2009. POWERENG ’09.
International Conference on, 2009, pp. 546–551.

[128] A. Varga, “On solving periodic Riccati equations,” Numerical Linear Algebra
with Applications, vol. 15, no. 9, pp. 809–835, 2008.

[129] ——, “Robust and minimum norm pole assignment with periodic state feed-
back,” IEEE Transactions on Automatic Control, vol. 45, no. 5, pp. 1017–1022,
1998.

[130] N. Vatanski, J.-P. Georges, C. Aubrun, E. Rondeau, and S.-L. Jämsä-Jounela,
“Networked control with delay measurement and estimation,” Control Engineer-
ing Practice, vol. 17, no. 2, pp. 231 – 244, 2009.

[131] N. Wada, K. Saito, and M. Saeki, “Model predictive control for linear parameter
varying systems using parameter dependent Lyapunov function,” in Circuits and
Systems, 2004. MWSCAS’04. The 2004 47th Midwest Symposium on, vol. 3,
2004, pp. iii–133–6 vol.3.

[132] C. Wang, C.-Y. Lin, and M. Tomizuka, “Statistical learning algorithms to com-
pensate slow visual feedback for industrial robots,” Journal of Dynamic Systems,
Measurement, and Control, vol. 137, no. 3, 2015.

[133] Y. Wang, B. M. Nguyen, H. Fujimoto, and Y. Hori, “Multirate estimation and
control of body slip angle for electric vehicles based on onboard vision system.”
IEEE Trans. Industrial Electronics, vol. 61, no. 2, pp. 1133–1143, 2014.

[134] Z. Wang, B. Huang, and H. Unbehauen, “Robust H∞ observer design of lin-
ear state delayed systems with parametric uncertainty: The discrete-time case,”
Automatica, vol. 35, no. 6, 1999.

[135] F. Xia, Z. Wang, and Y. Sun, “Allocating iec function blocks for parallel real-
time distributed control system,” in Control Applications, 2004. Proceedings of
the 2004 IEEE International Conference on, vol. 1. IEEE, 2004, pp. 254–259.



154 BIBLIOGRAPHY

[136] ——, “Design and evaluation of event-driven networked real-time control sys-
tems with iec function blocks,” in Systems, Man and Cybernetics, 2004 IEEE
International Conference on, vol. 6. IEEE, 2004, pp. 5148–5153 vol.6.

[137] Y. Xia, G. P. Liu, P. Shi, D. Rees, and E. J. C. Thomas, “New stability and
stabilization conditions for systems with time-delay,” International Journal of
System Sciencie, vol. 38, no. 1, pp. 17–24, 2007.

[138] G. Xie and L. Wang, “Controllability and stabilization of discrete-time switched
linear systems,” Conference Proceedings - IEEE International Conference on
Systems, Man and Cybernetics, vol. 6, pp. 5338–5343, 2004.

[139] L. Xie, M. Fu, and C. E. de Souza, “H ∞ control and quadratic stabilization of
systems with parameter uncertainty via output feedback,” IEEE Transctions on
Automatic Control, vol. 37, no. 8, pp. 1253–1256, 1992.

[140] L. Xie, “Output feedback H∞ control of systems with parameter uncertainty,”
International Journal of control, vol. 63, no. 4, pp. 741–750, 1996.

[141] L. Xie, M. Fu, and C. E. de Souza, “H ∞ control and quadratic stabilization of
systems with parameter uncertainty via output feedback,” IEEE Transctions on
Automatic Control, vol. 37, no. 8, pp. 1253–1256, 1992.

[142] L. Yao, H. Feng, Y. Zhu, Z. Jiang, D. Zhao, and W. Feng, “An architecture
of optimised SIFT feature detection for an FPGA implementation of an image
matcher,” in Field-Programmable Technology, 2009. FPT 2009. International
Conference on. IEEE, 2009, pp. 30–37.

[143] M. Yu, L. Wang, T. Chu, and F. Hao, “An LMI approach to networked control
systems with data packet dropout and transmission delays,” in Decision and
Control, 2004 43th IEEE Conference on, vol. 4, 2004, pp. 3545–3550.

[144] M.-Z. Yuan, Z. Wang, X. Ren, H.-B. Yu, and Y. Zhou, “Function block-based
pipelined controller,” in Industrial Electronics Society, IECON 2003-Annual
Conference of the IEEE. IEEE, 2003, pp. 1956–1961.

[145] H. Yuen, J. Princen, J. Illingworth, and J. Kittler, “Comparative study of hough
transform methods for circle finding,” Image and vision computing, vol. 8, no. 1,
pp. 71–77, 1990.

[146] F. Zhang, Analysis for EDF scheduled real-time systems. Department for Com-
puter Science, University of York, 2009.



BIBLIOGRAPHY 155

[147] ——, The Schur complement and its applications. Springer Science & Business
Media, 2006, vol. 4.

[148] K. Zhou and J. C. Doyle, Essentials of robust control. Prentice hall Upper
Saddle River, 1998.

[149] S. Zhou and J. Lam, “Robust stabilization of delayed singular systems with lin-
ear fractional parametric uncertainties,” Circuits, Systems and Signal Process-
ing, vol. 22, no. 6, pp. 579–588, 2003.

[150] G. Zong, L. Hou, and H. Yang, “Further results concerning delay-dependent
control for uncertain discrete-time systems with time-varying delay,” Mathe-
matical Problems in Engineering, vol. 2009, 2009.





Modelling and control design with pipelined sensing 157

List of Symbols

Modelling and control design with pipelined sensing

Ac ∈Rn×n continuous-time state matrix 19, 47, 76, 116
Ad ∈Rn×n discrete-time state matrix 22, 47, 52, 116
Bc ∈Rn×1 continuous-time input matrix 19, 47, 76, 116
Bd ∈Rn×1 discrete-time input matrix 22, 47, 52, 116
Cc ∈R1×n output matrix 19, 47, 76, 116
Cd ∈R1×(n+γ) discrete-time augmented output matrix 23, 47, 82
F ∈R feed-forward gain 26, 48
Γd ∈R(n+γ)×1 discrete-time augmented input matrix 23, 47
γ ∈Z+ number of sensing resources 21, 47, 118
h ∈R+ sampling period 6, 20, 47
hac ∈R+ sampling period of data-intensive sensor 22
hRt ∈R+ sampling period based on rise time 21
hs ∈R+ sampling period based on serial implementation 21
K ∈R1×(n+γ) feedback gain 26, 48, 58, 62
k ∈Z≥ discrete-time index 20, 22–24, 47, 79, 116
n ∈Z+ number of continuous-time states in the plant 19, 47, 76, 116



158 PSO algorithm

Φd ∈R(n+γ)×(n+γ) discrete-time augmented state matrix 23, 47
Q ∈R(n+γ)×(n+γ) state weight matrix of LQR 27, 48
R ∈R1×1 input weight matrix of LQR 27, 48
r ∈R reference 5, 26, 48, 123
St ∈R+ settling time 26, 48, 116
St , j (l ) ∈R+ settling time of the particle j in the iteration l 31
t ∈R≥ time 19, 47, 76, 116
t a

k ∈R+ start time of actuation operation 20
τ ∈R+ sensing-to-actuating delay 6, 20, 47, 81
τs ∈R+ worst-case execution time of actuation operation 20
τc ∈R+ worst-case execution time of control-computation operation 20
τs ∈R+ worst-case execution time of sensing operation 20
t c

k ∈R+ start time of control operation 20
t s

k ∈R≥ start time of sensing operation 20
u(t ) ∈R continuous-time input 19, 47, 76, 116
uk ∈R discrete-time input 23, 47, 116
uk−γ ∈R discrete-time controller with delayed input 22, 52
x(t ) ∈Rn×1 continuous-time state vector 19, 47, 76, 116
xk ∈Rn×1 discrete-time state vector 22, 52, 116
y ∈R discrete-time output 47
yk ∈R discrete-time output 22, 23, 52, 116
y(t ) ∈R continuous-time output 19, 76, 116
zk ∈R(n+γ)×1 discrete-time augmented state vector 23, 47

PSO algorithm

Cg ∈R+ global confidence 30
Cp ∈R+ personal confidence 30
F (X j (s)) ∈R fitness of the particle X j at iteration s 30
f ∈Z+ size of the design space 29



Robustness analysis 159

Q̂ j (l ) ∈R(n+γ)×(n+γ) intermediate variable to compute Q j (l ) 33
R̂ j (l ) ∈R1×1 intermediate scalar to compute R j (l ) 33
m ∈Z+ population size 29, 30
V j (l ) ∈R f ×1 a particle’s velocity 29
w ∈R+ inertia 30
X j (l ) ∈R f ×1 a particle in position j , iteration l 29
X g b(l ) ∈R particle with the historical best fitness in the whole swarm 29
X pb j (l ) ∈R particle with the historical best fitness in the position j 29

Robustness analysis

α ∈R+ positive scalar to be optimized 53, 58, 62
Φ̄cl ∈R(n+γ)×(n+γ) discrete-time closed-loop matrix 57
D ∈R(n+γ)×n constant matrix to define ∆Φd 53, 58, 62
∆Ac ∈Ac ⊆Rn×n continuous-time uncertainty state matrix 51, 120
∆Ad ∈Ad ⊆Rn×n discrete-time uncertainty state matrix 52
∆Ad ,wc ∈Ad ⊆Rn×n worst-case of the discrete-time uncertainty state matrix 52
∆Bc ∈Bc ⊆Rn×1 continuous-time uncertainty input matrix 51, 120
∆Bd ∈Bd ⊆Rn×1 discrete-time uncertainty input matrix 52
∆Bd ,wc ∈Bd ⊆Rn×1 worst-case of the discrete-time uncertainty input matrix 52
∆Φd ∈R(n+γ)×(n+γ) uncertainty state matrix 53, 58, 62
E ∈Rn×(n+γ) constant matrix containing the uncertainties of ∆Φd 53, 58, 62
G ∈Rn×n uncertainty matrix bounded by GT G ¹ I 53, 58, 62
λ ∈R+ positive scalar defined by λ= ε−1 59, 62
O ∈R(n+γ)×(n+γ) positive-definite matrix defined by O = P−1 58, 59, 62
Φcl ∈R(n+γ)×(n+γ) discrete-time nominal closed-loop matrix 48, 57, 58, 62
σ ∈R+ positive scalar defined by σ=α−2 59, 62
VK ∈R1×(n+γ) free weight matrix 62
V ∈R(n+γ)×(n+γ) free weight matrix 58, 59, 62



160 Reconfigurable pipelined control

Reconfigurable pipelined control

AMC ∈Rn×n discrete-time state matrix of the MC 81
Ar c ∈Rn×n discrete-time state matrix of the RC 83
B MC ∈Rn×1 discrete-time input matrix of the MC 81
B r c ∈Rn×1 discrete-time input matrix of the RC 83
F MC ∈R feed-forward gain of controller MC 86
F r c ∈R feed-forward gain of controller RC 86
γES ∈Z+ processing resources in the embedded system 76
ΓMC ∈R(n+γMC )×1 discrete-time augmented input matrix in the MC 82
γMC ∈Z+ processing resources used in the MC 76, 79, 81
Γr c ∈R(n+γMC )×1 discrete-time augmented input matrix in the RC 84
γr c ∈Z+ processing resources used in the RC 79
γsa ∈Z+ processing resources used by sporadic applications 76
hMC ∈R+ sampling period in MC 79
hr c ∈R+ sampling period in RC 79
K MC ∈R1×(n+γMC ) feedback gain of controller MC 86
K r c ∈R1×(n+γMC ) feedback gain of controller RC 86
ksw ∈Z≥ discrete-time index at the switching initiation 88
P ∈R(n+γMC )×(n+γMC ) positive-definite matrix i.e., P Â 0 96
ΦMC ∈R(n+γMC )×(n+γMC ) discrete-time augmented state matrix for MC 82
Φr c ∈R(n+γMC )×(n+γMC ) discrete-time augmented state matrix for RC 84
S ∈R(n+γMC )×(n+γMC ) positive-definite matrix i.e., S Â 0 96
sa ∈Z+ number of sporadic applications 76
t s

k ∈R≥ start time of sensing operation at index k 79
t s

ksw
∈R+ switching initiation 88

uMC
k−γMC ∈R discrete-time controller with delayed input for the MC 81



Variable-delay control 161

ur c
k−γr c ∈R discrete-time controller with delayed input for the RC 83

xMC
k ∈Rn×1 discrete-time state vector of the MC 81

xr c
k ∈Rn×1 discrete-time state vector of the RC 83

y MC
k ∈R discrete-time output of the MC 81

y r c
k ∈R discrete-time output of an RC 83

zMC
k ∈R(n+γMC )×1 discrete-time augmented state vector for MC 81

zr c
k ∈R(n+γMC )×1 discrete-time augmented state vector for RC 83

Variable-delay control

Ai ∈R(n+1)×(n+1) augmented integral state matrix 123
Bi ∈R(n+1)×1 augmented integral input matrix 123
D set containing the representative delays of the modes 121
hp ∈R+ actuation period 114, 116
H set containing the actuation periods 121
Ki ∈R integral gain 123
K ∈R1×n feedback gain 123
M set containing the modes of the histogram 120
Qi ∈R(n+1)×(n+1) state weight matrix of LQR with integral action 123
Ri ∈R1×1 input weight constant of LQR with integral action 123
τd ,k ∈Z+ Prediction length in samples 117
τd ∈Z+ upper bound of the prediction length in samples 118
τc ∈R+ upper bound of the prediction length in seconds 118
τd ∈Z+ lower bound of the prediction length in samples 118
x̂i ,k ∈R integral state vector 123
x̂k ∈Rn×1 discrete-time predicted state vector 116
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