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Abstract The Intelligent Lighting Institute (ILI), part of Eindhoven University of Technol-

ogy (TU/e), and Signify aim to address future challenges for intelligent lighting 
solutions. They aim to set the best light setting for different indoor activities using 
machine learning (ML) approaches. The Philips Hue is the product of Signify, an 
intelligent lighting pilot in this project. The result of this project enables adding 
the new context-aware lighting feature to the Hue system. The IntelLight+ system 
provides the infrastructure for developing ML algorithms needed to infer users’ 
context to set appropriate light settings based on users’ activities, needs, and pref-
erences. IntelLight+ takes care of the ML life cycle for the intelligent lighting 
system.  
 
This report elaborates on the context and technical needs for the IntelLight+ sys-
tem by analyzing the problem domain, formulating the requirements, and describ-
ing the intended use cases. It explores the solution domain and proposes an archi-
tecture that emerges from the feasibility study and requirement analysis, followed 
by the identification of components and their integration. The project manage-
ment, verification, and validation processes are also described in this document. 
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Foreword 

In our drive to deliver the best lighting experience to our customers, the role of intelligent lighting is 
indisputable. Intelligent lighting simplifies user interactions with the system, and it enables continuous 
automatic adjustments to the customer's needs. Classification of activities is an essential ingredient in 
the intelligent lighting program, which lead to the birth of the IntelLight+ project. 

Classification of activities that take place at home is a challenge as information from sensors is limited, 
and the diversity among homes is large. If one is able to solve that challenge, then another question is 
how classifications with finite accuracy can be used to deliver the right type of lighting. In order to 
address these challenges, there is a need for a platform on which experiments can be run, experiments 
that contain Machine Learning algorithms that translate a variety of sensor events into new lighting 
scenes. This platform we call a machine learning pipeline. 

The assignment of Hossein was to develop this machine learning pipeline for experimentation of various 
algorithms. Developing a platform for experimentation of algorithms for use cases is complex when use 
cases and algorithms themselves are being developed. A new use case modifies inputs, outputs, and 
metrics, and a new algorithm may need to be trained with a different training strategy. Hossein has 
helped us in identifying the commonalities, and he has created a pipeline on which experiments are 
currently being executed. Results from these experiments will enable us to set the next step in delivering 
the best lighting experience. 

Fetze Pijlman 

September the 29th, 2021 
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Preface 

The Professional Doctorate in Engineering (PDEng) in Software Technology (ST) at the Eindho-
ven University of Technology (TU/e) is a two-year technological designer program to prepare a 
candidate for proficiency in high-tech inter-disciplinary projects. At the final stage of the program, 
several design projects are proposed by various companies, and candidates are elected to take on 
a ten-month-long project based on their interest and fitting criteria. 

This report describes the final PDEng project supervised by Dr. Fetze Pijlman on behalf of Signify 
and proposed and guided by Dr. Tanir Ozcelebi as the TU/e supervisor. The purpose of the project 
is to design a system that can meet the researchers' and data scientists’ needs in having an infra-
structure for building context recognition models for intelligent lighting. This project gives the 
researchers a tool for comparing and visualizing the performance of various solutions, deploying 
the selected models, monitoring the model's performance, and optimizing the models based on 
the received feedback. 

The report covers the problem analysis, explores the domain where the problem is formulated, 
specifies the requirements of the system of interest, presents the design criteria and solution can-
didates, describes the implemented solution and its evolutionary development process, and sum-
marizes the outcomes of using the implemented system. 

Hossein Mahdian 

October 2021 
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Executive Summary 
 
 
Scientists who research perception studies psychology, chronobiology, and lighting design, looking for 
the right light setting for different events and activities. In case of knowing the context of the environ-
ment, it is possible to study the appliance of related light settings to specific contexts. With the advances 
in data science and ML, it has become feasible to study the possibility of lighting devices that can setups 
the light setting based on context recognition. The added ML module to the lighting solution uses the 
data from the environment and user to detect the context. 
 
Signify grew from a lighting equipment provider to a solution provider company in the lighting busi-
ness. As a lighting solution provider, Signify delivers software-based solutions as a managed service to 
its customers. In this path, intelligent lighting plays an essential role in moving current solutions towards 
the next step.  
 
As a step forward in enabling Signify to provide managed services for intelligent lighting, the IntelLight 
project co-initiated with TU/e. The focus of the IntelLight project is delivering high-resolution, robust, 
flexible, and privacy-preserving algorithms for context recognition. This project, IntelLight+, advances 
the IntelLight project by providing infrastructure to explore the ML approaches. IntelLight+ is designed 
and implemented to automize the process of ML by considering the extendability and flexibility in 
mind. By flexibility, it allows employing a wide range of training algorithms, libraries, and methods for 
context recognition. By extendability, it provides an API that can be implemented for adding new algo-
rithms for context detection. 
 
One of the constraints originates from the fact that the model training process is poorly reproducible. 
The training is an iterative process, which means data scientists launch several times the same run with 
slightly different parameters/data / preprocessing. If they rely on their memory to compare these runs, 
they will likely struggle to remember the best one. IntelLight+ visualizes the ML experiments with 
different parameters, data, and the code version that has been used to produce the model. 
 
Besides making the experiments reproducible, IntelLight+ allows data scientists to develop models in 
local machines and cloud then deploy the models on-premise or cloud by a shared storage. After de-
ployment, it allows applying the received feedback from users. Besides the main parts of the ML pipe-
line, a software component was developed to enable giving feedback regarding the quality of the de-
ployed model. 
 
During the IntelLight+ project, we validated the requirements with discussion with main stakeholders 
and the developed system verified by the direct stakeholders and running demos. The IntelLight+ in-
frastructure is ready to be used to help the data scientists manage and visualize the data, hyper-parameter 
tuning, and code resources used in experiments. It also covers deployment models in different target 
environments in an easy and convenient way.  
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AWS Amazon Web Services 
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FR Functional Requirement 
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MLOps Machine learning operations 
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PDEng Professional Doctorate in Engineering 
PIR Passive infrared 
PSG Project Steering Group 
QA Quality Attribute 
QAS Quality Attribute Scenarios 
R&D Research and Development 
REST Representational State Transfer 
SAI Stan Ackermans Institute 
ST Software Technology 
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YAML Yet Another Markup Language 
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1. Introduction 
 
Over the past centuries, we created artificially illuminated environments where we live, work, rest, and 
refresh. People depend on artificial lighting in their environments to continue such activities. The light-
ing plays an essential role in the effects of an atmosphere on people’s mood, well-being, and on their 
behavior. However, we lose natural light and its positive qualities for being exposed to the same light 
throughout our lives. Apart from that, light-sensing is related to visual perception, which varies from 
person to person. 
 
In order to understand and evaluate how well the lighting system can support its users with varying 
interests, needs, and preferences, one needs to focus on specific scenarios. In this project, we focus on 
particular lighting scenarios that take place at home space. The lighting system’s users may do different 
activities such as work, have dinner with family, refresh, etc., within the home environment.  
 
This chapter presents the general context of this project. Section 1.1 gives a brief description of Signify 
and Intelligent Lighting Institute (ILI) of Eindhoven University of Technology (TU/e) as the initiators 
of this project. Section 1.2 describes the generic context of the project. In section 1.3, the objective and 
the motivation of this assignment are introduced. Finally, section 1.4 presents the overall structure of 
the document. 
 

1.1    Project Partners 
TU/e and Signify have a long history of collaboration in R&D and technological innovations for a 
considerable amount of time. During this time, the collaboration has already led to several transfers of 
the outcome of R&D, which successfully transformed into meaningful technological innovations that 
subsequently found their ways into new/modified methods for designing, developing, manufacturing 
products/services. 
 
The assignment described in this report is part of a ten-month collaboration between TU/e and Signify 
under the auspices of the Software Technology design program. This Professional Doctorate in Engi-
neering (PDEng) program is offered by Stan Ackermans Institute 4TU. School for Technological De-
sign. Stan Ackermans Institute (SAI) is a federation of four leading Dutch technical universities: TU 
Delft, TU Eindhoven, University of Twente, and Wageningen University. The federation aims at max-
imizing innovation by concentrating the strengths in research, education, and knowledge transfer of all 
technical universities in the Netherlands. The SAI manages more than twenty post-graduate technical 
designer programs across the four technical universities. Each designer program is intended to teach the 
skills needed to design the complex systems needed in the high-tech industry to master’s graduates 
starting or taking their careers to the next level. 

1.1.1.  Signify 
Signify [1], previously known as Philips Lighting, is the world leader in lighting for professionals, 
consumers, and lighting for the Internet of Things (IoT). Signify manufactures lighting-related products 
under various brands, including Philips, Interact, Philips Hue, Color Kinetics, and WiZ. Signify’s port-
folio comprises electric lights, the IoT platform, and connected lighting systems aimed at consumers 
and professionals. Signify’s energy-efficient lighting products, systems, and services enable their cus-
tomers to enjoy a superior quality of light and make people’s lives safer and more comfortable, busi-
nesses more productive, and cities more livable.  
 
With a presence in over 70 countries, the company’s purpose is to unlock the extraordinary potential of 
light for brighter lives and a better world. Signify achieves this through living its values, innovation, 
passion for sustainability, and desire to transform people’s lives. 
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1.1.2.  TU/e Intelligent Lighting Institute (ILI)  
ILI [2] was founded on April 8, 2010, and is part of TU/e. ILI aims to create a scientific community of 
practice dedicated to intelligent lighting solutions with a scientific and application-based approach to-
wards all aspects of light. The key is establishing partnerships with stakeholders in the public-private 
field: companies, knowledge institutes, and government bodies. ILI is taking a multi-disciplinary and 
multifunctional approach to achieve a breakthrough as the work in this field is concept-driven and evi-
dence-based.  
 
Members of the Interconnected Resource-aware Intelligent Systems (IRIS) research group of TU/e 
Computer Science are active contributors to ILI research, and they address challenges in (distributed 
embedded) systems performance such as timing behavior, dependability, programmability, reliability, 
robustness, scalability, accuracy, energy, and data computation efficiency, and trustworthiness. This 
project provides data and structure that is required for IRIS researchers. 

1.2    Project Context 
Intelligence is the capacity for logic, abstract thought, understanding, self-awareness, communication, 
learning, emotional knowledge, memory, planning, creativity, and problem-solving. Over the years, 
researchers have been trying to mimic some of these aspects of intelligence using machines to improve 
the quality of human life. Intelligent lighting is one such application where the objective is to learn and 
provide the most suitable lighting conditions in an environment. 
 
Human-centric lighting should benefit users, but its implementation is no clear-cut process. Light af-
fects human health and well-being in many ways. Among others, it powerfully regulates our internal 
circadian rhythm but also drives visual performance, comfort, and experience. Our biological clock 
requires very bright light for higher visual performance, although most of us are not consciously aware 
of this need; the comfort typically makes people dim the light. Moreover, lighting needs and preferences 
differ widely between individuals and within one person, for instance, with the time of day, task, or 
company [3]. Furthermore, we are all very much aware of the pressing need to save energy. 
 
The current project builds on the latest insights from new sensors, IoT developments, and machine 
learning (ML) approaches. The Intelligent lighting system consists of two projects. The first one is the 
research project (IntelLight) that focuses on delivering high-resolution, robust, flexible, and privacy-
preserving algorithms for context recognition technology. This is a four-year project that a Ph.D. student 
from the IRIS research group from TU/e works on. The second project, IntelLight+, is a design project 
that PDEng trainee performs on that. It provides the infrastructure for developing algorithms needed to 
infer, and even predict ahead of time, a user’s context to accommodate appropriate light settings based 
on users’ needs and preferences. 
 
The focus of the IntelLight+ project is to automatize the manual works data scientists need to do to 
gather data, run experiments, building models, and deploying models for testing in different environ-
ments. The general pipeline and the deployment module of the IntelLight+ system can be used in dif-
ferent projects within the TU/e as Machine Learning Operations (MLOps). Our pilot intelligent lighting 
in this project is Philips Hue that contains numerous connected devices (bridge, sensors, and lightbulb) 
that communicate with each other. The challenge here is to design and develop a learning system that 
learns users’ preferences through contextual data (the values of relevant features) gathered from the 
breakout area either implicitly via sensors or explicitly from the users. Later, this knowledge is used to 
predict suitable lighting conditions for user activities in the home environment. 

1.3    Objective and Motivation 
In the ten-month period of the PDEng project, we deliver a pipeline that covers steps in the ML lifecycle 
from data collection to inference. IntelLight+ automizes the process of ML that can employ a wide 
range of training algorithms from supervised learning to semi-supervised learning and online learning 
approaches for context recognition. The objective is to have a flexible system that manages the steps 
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needed in the life cycle of ML systems that are not necessarily part of a training algorithm. The Intel-
Light+ project, together with the IntelLight research project, is going to add the new context detection 
feature to the existing Hue lighting system platform. 
 
ML is about manipulating data and developing models. These separate parts together form an ML pro-
ject life cycle, which is the main motivation behind this project. IntelLight+ takes care of the ML life 
cycle for the intelligent lighting system. Models are produced in the lifecycle of the ML system that the 
training algorithm is a small part of it. The life cycle of an ML project can be represented as a multi-
component flow, where each consecutive step affects the rest of the flow. The nature of the work of 
data scientists includes a lot of experiments. Being able to visualize the experiments with the version of 
data and configuration that has been used and automizing the deployment of produced models gives 
data scientists a real advantage. 

1.4    Outline 
In the remainder of this document, we first provide an in-depth problem analysis in chapter 2. After 
that, chapter 3 addresses the feasibility of the project, chapter 4 describes the use cases and provides an 
overview of the requirements. Then, in chapter 5, we describe the architecture and design of IntelLight+. 
Following that, we describe the implementation in chapter 6 and how we verified and validated Intel-
Light+ in chapter 7. Then, in chapter 8, we describe the project management process. Next, we provide 
a conclusion and directions for possible future work in chapter 9. Lastly, chapter 10 provides a retro-
spective of this project. 
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2. Problem Analysis 
 
This chapter analyzes the problem this project is going to solve. Section 2.1 defines the problem, and 
section 2.2 describes the project goal. The project road map and general information about the Hue 
system are mentioned in section 2.3. Section 2.4 mentions the general technology roadmap of the pro-
ject, the project scope, assumptions, and constraints follow in section 2.5. The stakeholders’ interests, 
needs, and involvement in the project will be discussed at the end. 
 

2.1    Problem Definition 
This project builds an intelligent lighting system (IntelLight+) to predict the contexts relevant to the 
lighting within the home. The context recognition system can learn the user preferences by collecting 
data from multiple sources and offer automatic lighting that fits user needs and make lighting recom-
mendations. An ML pipeline is required in order to recognize the context successfully. ML pipeline 
automates the life cycle of intelligent lighting. It focuses on the following questions: 
 

1. How can data scientists use different data sources easily for context-aware lighting? 
2. How can data scientists keep track of the code and data used for building the model? 
3. How can data scientists try different models and reproduce a model? 
4. What are the steps (in the system) for choosing the best parameters for the trained models? 

 

2.2    Project Goals 
As the possibilities for digital, connected lighting develop and expand, Signify’s smart lighting infra-
structure becomes the glue that connects the physical world to the users’ well-being and digital realm, 
creating a true “Internet of Lights.” In this brave new world of connected intelligence, lighting is an 
integral part of our everyday environments.  
 
The integration of the lighting infrastructure with the IoT, including the integration of new functionali-
ties based on the true capabilities of LEDs, will offer new validated user-centric value propositions. 
Lighting is the application domains in the physical environments (such as offices, industrial sites, 
homes, and smart cities) or industrial cases (such as automotive, horticulture, and healthcare). The chal-
lenge lies ahead in creating highly engaging, bright, and lit environments, which are also thoughtful of 
today’s sustainability demands. This project addresses the challenge of new context awareness, enabling 
more intelligent light control. 
 
For intelligent lighting control to accommodate user needs and preferences in different contexts, algo-
rithms are needed to infer and predict a user’s context ahead of time. Human activities and contexts 
need to be recognized accurately based on information collected by the surrounding sensing infrastruc-
ture and wearables. We aim to provide a system that enables context recognition technology framework 
and algorithms needed by home lighting solution providers by solving the issues arising from the typical 
lack of labeled training data, data imperfections, diversity of sensor types, models, topology, and user 
privacy concerns. 
 
This PDEng software design project is part of the IntelLight+ project funded by the Eindhoven Engine. 
It aims to design and implement a system for context recognition, which will facilitate the work of a 
Ph.D. candidate in the IntelLight project funded via the TKI-Toeslag subsidy of Stichting TKI-HTSM 
(Holland High Tech). The Ph.D. researcher will focus on developing and testing the context recognition 
algorithms. The design should be flexible enough to let different types of algorithms be implemented 
and then compare the results of different learning approaches. However, the detailed algorithms are 
outside of the scope of this PDEng design project. The design project considers the system's life cycle 
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and deployment of different learning algorithms so that in the research project, data scientists (Ph.D. 
students) will develop the required algorithms easier. 
 

2.3    Product Roadmap 
Modern-day bulbs are not what people have been using traditionally. These light bulbs have gone 
through significant changes to get to where they are now.  
 
In 1835, there was the first sign of constant electric light. Forty years later, scientists worked to develop 
what today we know as the incandescent light bulb. Then came a filament made of a rare metal called 
tungsten. These light bulbs became more luminous, consumed less energy, and lowered the cost of 
production.  
 
Light Emitting Diodes (LEDs)[4] use semiconductors (generally Gallium Arsenide) to emit light. Ba-
sically, LEDs are tiny bulbs that emit light in a single direction. Many small bulbs are fit together in a 
LED bulb to emit light. Unlike incandescent light bulbs, LEDs don’t have a filament bulb that gets hot 
and breaks after a certain amount of time; instead, they illuminate by the movement of semiconductor 
electrons. 

2.3.1.  Philips Hue 
In 2012, Signify (previously known as Philips Lighting) launched the Philips Hue system. Hue is a 
connected home lighting system of linked bulbs that a smartphone or tablet can control via a ZigBee 
bridge that connects to the home router through the Ethernet. 
 
Philips Hue is one of the leading and most installed innovative home / IoT products globally. Philips 
Hue enables color-tunable lights to be controlled from smartphones, web services, or other control logic 
and devices running in the system. Furthermore, it is an open system, i.e., via standardized or published 
interfaces, other suppliers can add smartphone apps, services, light switches, and lamps. 
 

 
Figure 2-1: Hue system high-level overview [5] 

Figure 2-1 shows a high-level overview of the Hue system and its main components. Hue lamps com-
municate via a standardized ZigBee protocol allowing integration with ZigBee-based devices, including 
sensors and light switches. The Hue bridge handles the home automation, and via the Hue bridge, the 
ZigBee network is connected to the home IP network and the Internet. On the IP network side, there are 
smartphones, web browsers, third-party services, and a Hue portal.  
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The Hue API interface allows developers to make use of the functionality of the Philips Hue system. 
Using this interface, they can find information about the available devices in their local network, control 
them, and do much more. The Hue API is a RESTful JSON interface in which clients interact with 
resources in the Philips Hue system. Resources such as devices, groups, and lights in the Philips Hue 
system are represented by a unique URI that is interactable. 
 

2.3.2.  Lighting Evolution 
To better understand the intelligent lighting roadmap, let us briefly look into the history of lighting 
control. Table 2-1 shows the evolution of lighting control. Initially, lighting systems could be controlled 
only using switches and dimmers. With the rapid development of sensors and semiconductor technolo-
gies, lighting systems could be controlled using sensors without switches. This has made it possible to 
emphasize user satisfaction and energy usage optimization by controlling lights’ intensity and illumi-
nation patterns[6]. Revolution of memory devices enabled storing users’ light preferences[7] or sce-
nario-specific light settings[8] on the lighting systems to provide customized/adaptive lighting. The 
development of data mining techniques and ML algorithms has made learning possible from the data 
or through interactions. Intelligent lighting improves adaptive lighting where a predefined light setting 
is not stored for a context but is learned through the system’s interaction with the environment. This 
means that a lighting condition need not be preset for a given context, and it may be adapted over a 
period based on the responses received from the environment. 
 

Table 2-1: Lighting solution generations 

Type of lighting User Intervention Behavior Controlled By 
Traditional Maximum User has to control each light 

manually separately  
On/Off Switch 

Autonomous - Users not needed for controlling 
lights 

Sensor-based rules 

Adaptive Minimum User gives his/her preferences to 
the system 

Personal settings 

Intelligent Minimum Lighting system learns user’s 
preferences 

ML model 

 

2.4    Technology Roadmap 
ML is the science of developing systems that can learn from data and act accordingly without program-
ming the behavior of the application or specifying thresholds explicitly. The most widely accepted def-
inition from Mitchell [9] is as follows. 
 
“A computer program is said to learn from experience E with respect to some class of tasks T and 
performance measure P, if its performance at tasks in T, as measured by P, improves with experience 
E.”  
 
In intelligent lighting, ML is used to determine the relationship between the context and the output 
lighting conditions. The input-output relationship is then used to predict suitable lighting conditions for 
new inputs. Applying Mitchell’s definition to intelligent lighting, we have,  
 

• Task T: predicting suitable lighting conditions for a given context  
• Performance Measure P: quality of the predicted lighting conditions by the user survey 
• Experience E: a sequence of observed contexts and the user response  
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2.4.1.  Learning approaches 
Supervised learning is the ML task of identifying the relationship between input and output from labeled 
training data[10]. In supervised learning, a prediction algorithm is trained using a dataset consisting of 
training examples. Each sample is a pair consisting of values for input features (context) and the corre-
sponding class (output). During training, the algorithm analyzes the samples in the dataset and generates 
hypotheses. A hypothesis represents the relationship between the input and output that can take the form 
of functions, rules, or trees[11]. The hypothesis that provides the best prediction performance, h, is then 
used to make predictions for future inputs. 
 
Figure 2-2 shows the framework for supervised learning for intelligent lighting. An intelligent lighting 
dataset consists of samples, i.e., input-output pairs collected from a pilot implementation. The in-
put/context is a vector of features that may influence users’ preference for particular lighting conditions. 
The output is the preferred lighting condition by the user for a given context. A supervised prediction 
algorithm is trained on the dataset to generate a hypothesis h, which is used to predict a suitable lighting 
condition for new incoming inputs. 
 

 
Figure 2-2: Intelligent lighting supervised learning framework 

 

Instance-based learning  
In this form of learning, the input-output relationship is not deduced when the training samples are 
provided, whereas it is deduced when a new input arrives that needs to be predicted. In other words, 
instance-based learning algorithms do not generate any valuable representations from the observed in-
puts[12]. The relationship to the already encountered samples is determined to assign a class label for 
a new instance. The main advantage of this kind of learning is that the class label is estimated every 
time a new instance is predicted rather than estimated at once[9]. This makes instance-based learning 
worthwhile when the input-output relationship changes over time. Figure 2-3 gives the framework for 
instance-based learning for intelligent lighting. For example, let us consider the popular instance-based 
algorithm, K-nearest Neighbor (KNN). In KNN, when a new input arrives, it computes the distance of 
the input to all other observed inputs in the intelligent lighting dataset. For a selected value of k, k 
samples that are the closest to the input distance are chosen. A lighting condition that appears the max-
imum number of times among the k selected samples is selected for prediction. A user may select a 
lighting condition that suits them if the user is not satisfied with the predicted lighting condition. The 
selected lighting condition, along with the input, is stored in the dataset so that the predictions can be 
improved for new inputs. 
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Figure 2-3: Intelligent lighting instance-based learning 

Online learning 
Online learning is an ML approach that learns from one sample at a time. In online learning, the input 
arrives as a sequence of samples in contrast to supervised learning, where the input is fed as a batch[13]. 
As an input arrives, the online learning model should predict an output. Immediately after the prediction 
is made, the actual output is made available to the model. This information can be used as feedback to 
update the prediction hypothesis used by the model. A key advantage of online learning over supervised 
learning is that the model adapts itself with every incoming new sample. Unlike instance-based learning, 
online learning models are relevant in applications where huge amounts of data need to be stored for 
training purposes. Figure 2-4 shows the framework for online learning for intelligent lighting. The input 
from a pilot implementation in the form of a feature vector is fed to the online prediction algorithm. 
The prediction algorithm predicts a suitable lighting condition for that input. A user may select a light-
ing condition that better suits them if the user is not satisfied with the predicted lighting condition. The 
lighting condition preferred by the user (actual output) is then revealed to the prediction algorithm in 
the form of feedback. The prediction algorithm uses this feedback to update its hypothesis in case the 
predicted lighting condition is not the same as the user preferred lighting condition. 

 
Figure 2-4: Intelligent lighting online learning framework 

2.4.2.  ML pipeline 
When a data science team runs a few ML models, having a manual process for gathering data, prepro-
cessing, training, and deploying is sufficient, especially when these models do not have to be retrained 
and reproduced frequently.  
 
As the number of models increases in most organizations, we need to introduce the concept of Contin-
uous Training (CT), which brings automation in the execution of an ML pipeline[14]. This is a vital 
capability to keep the models up to date when the world around them changes. 
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The ML pipeline, also called the model training pipeline, is the process that takes data and code as input 
and produces a trained ML model as the output. This process usually involves data cleaning and pre-
processing, feature engineering, model and algorithm selection, model optimization, and evaluation. 

There are several key differences between the software development process and the data science work-
flow, resulting in different processes and tools for the latter. The software building process delivers an 
artifact. The test/ quality assurance process approves the desired functionality, and the artifact is de-
ployed in production. While operating the application, the discovered bugs are fed back to the develop-
ment process, forming the circle of the continuous workflow. 

Figure 2-5: Software development workflow 

The data science workflow delivers a model through a selection process of combinations of algorithms, 
parameters, and metrics (such as accuracy). It is then deployed in production to infer knowledge from 
the data. This inference process is prone to the input data. The dynamic relationship between the deliv-
ered model and the data reflects the difference between the software workflow shown in Figure 2-5 and 
the data science workflow shown in Figure 2-6. 

Figure 2-6: Data science workflow 

Building and maintaining a platform to support building and serving ML models requires careful or-
chestration of many components. The fact that data are part of the workflow introduces the need for 
Continuous Training (CT), as an addition to Continuous Integration (CI) and Continuous Delivery 
(CD). This extra quality contributes to the step from DevOps to DataOps and MLOps. 
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Continuous Delivery is the ability to get changes of all types — including new features, configuration 
changes, bug fixes, and experiments — into production, or into the hands of users, safely and quickly 
in a sustainable way. 
 
Besides the code, changes to ML models and the data used to train them are another type of change that 
needs to be managed and baked into the software delivery process (Figure 2-7). 
 

 
Figure 2-7: Data science project artifacts[15] 

 

Reproducible Model Training 
Once the data is available, we move into the iterative data science workflow of model building. This 
usually involves splitting the data into a training set, a validation set, and a test set. Then, trying different 
algorithms with tuning their parameters and hyper-parameters. That produces a model that can be eval-
uated against the validation set to assess the quality of its predictions. The step-by-step of this model 
training process becomes the ML pipeline. 
 
We structured the ML pipeline for our problem, highlighting the different source code, data, and model 
components. The input data, the intermediate training and validation data sets, and the output model 
can potentially be large files, which we do not want to store in the source control repository. Also, the 
pipeline stages are usually in constant change, which makes it hard to reproduce them outside of the 
Data Scientist’s local environment. 
 

Data Versioning 
The data versioning ability is a prerequisite to MLOps implementation, the same way that code ver-
sioning is required to practice DevOps. There are two main approaches to implement data versioning: 
the git style and the time travel. 
 
DVC is a popular data versioning system using Git to store metadata about data files. It uses a git style 
method for versioning data that brings the power of Git and Git branches to try different ideas as an 
experiment management system. 
 

2.5    Project Scope, Assumptions, and Constraints 
The following section states the primary statements, which address the scope and assumptions for this 
project. The main stakeholders of the project agree with these statements: 
 

• This graduation project’s duration is ten months.  
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• The performance of the context detection algorithms is out of the scope of this project.  
• The focus of this project is a system that provides an ML pipeline that automates the steps 

needed for experimenting with models, generating reports, and consequently deploying and 
testing the models. 

 
Some assumptions about the project are as follows: 

• For this project (design project), we focused on generating, preparing, and accessing the Hue 
data from Hue PIR sensors to make a prototype of a context recognition system. We also veri-
fied the ML pipeline on building a model from publicly available datasets for context recogni-
tion.  

• Many of the features that have been used for context recognition in the literature (motion data 
and sound) are not available in the Hue system at the moment. 

• The kind of data to be used for the pipeline prototype decided to be Hue PIR sensor data and 
what is available in public datasets. The public datasets for context detection have features, for 
example, smart devices motion sensors including accelerometer and gyroscope, as well as voice 
data. 
 

2.6    Stakeholder Analysis 
Stakeholder analysis is a valuable tool to identify stakeholders and describe the nature of their stake, 
roles, and interests. For the stakeholder analysis represented in this report, the focus is on the primary 
stakeholders for the sake of precision. Stakeholders are all individuals or parties who need to be con-
sidered in achieving project goals and whose participation and support are crucial to the project’s suc-
cess. The purpose of stakeholder analysis is to develop a strategic view of the relationships between 
different stakeholders and the concerns they care about most. 
 
We conducted a stakeholder analysis to identify stakeholders and to understand their concerns. The 
main groups of people involved in the steering process of the project belong to two organizations: Eind-
hoven University of Technology (TU/e) and Signify. Table 2-2 provides an overview of the stakehold-
ers in the project. 
 

Table 2-2: The identified stakeholders for this project 

Eindhoven University of Technology 
Name  Role Interest in 
Hossein  
Mahdian 

PDEng Trainee Successful management of the project process, regular schedule 
for meetings with stakeholders and supervisors 
Applying technological and soft skills to finish the project 
Learning the domain for building a career path 
Gaining architectural/design/development knowledge and ex-
perience 
Contribution to the proposed problem 
Successful graduation 

Tanir Ozcelebi TU/e supervisor Successful project delivery, report quality, and IntelLight+ ver-
ification and validation 

Yanja Dajsuren PDEng ST manager Quality of project results, relationship with clients, successful 
graduation of trainee 

Ali Mahmoudi PhD Researcher and In-
telLight+ user 

Usability, functionality, and maintainability of the IntelLight+ 
system 

Signify 
Name  Role Interest in 
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Fetze Pijlman  Signify supervisor / 
Data scientist and ML 
Expert 

Usability and extensibility of IntelLight+, and guiding trainee 
throughout the project to reach project goals 

Bernt  
Meerbeek 

Group manager The monitoring of the project progress and the giving feedback 
to the trainee 

Dzmitry  
Aliakseyeu 

Hue use-case expert Successful integration of the IntelLight context detection sys-
tem with the Hue system 

Mohamed  
Elkady 

Hue System Architect Successful integration of the IntelLight context detection sys-
tem with the Hue system 

Ion Iuncu Application Engineer Development of IoT and lighting applications 
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3.Feasibility Analysis 
 
During the first phase of the project, a feasibility analysis was performed that led to defining the pro-
ject’s scope, as well as determining the deliverables, outcomes, and requirements. This chapter covers 
the feasibility study that was done for this project. 
 
Since the feasibility study assesses the practicality of a proposed plan for a project, it is best practice to 
produce a contingency plan in case of any unforeseeable circumstances or the unfeasibility of the pro-
ject. The primary process was to get feedback about the project and the expected outcomes from the 
main stakeholders’ perspectives. This contained asking questions and performing an analysis of the 
related information to make sure that the achieved results were reliable. 
 

3.1    Challenges 
This project addresses the challenge of lighting with new context awareness, enabling more intelligent 
control. Algorithms need to infer and perhaps even predict a user's context to provide customized light-
ing to accommodate house owners’ needs and preferences. 
 
Intelligent lighting is a very challenging application by itself. Besides that, context-awareness adds 
common challenges for ML projects such as managing model versions, managing data versions, and 
reproducing the models. The ML process is a constantly evolving process – systems and their features 
are changing at regular intervals. The machine-learning setup needs to incorporate the frequent changes 
in the complex implementation. When it is time to tweak the designs, teams often find that earlier mod-
els, features, and datasets were not documented appropriately.  
 
Some of the challenges of ML implementations are listed here and should be kept in mind while de-
signing the solution[16]. 
 

• Selection of the suitable algorithm: There are tens of widely popular algorithms available for 
ML implementation. Though algorithms can work in any generic conditions, specific guidelines 
are available about which algorithm would work best under which circumstances. Improper 
selection of algorithms can produce garbage output after months of effort, leading to massive 
loss of the entire effort and further pushing the target timelines. 

• Selection of the right set of data: As they say – garbage in will produce garbage out; this is 
also applied to select the data set for ML. The quality, amount, preparation, and selection of 
data are critical to the success of an ML solution. It is important to avoid selection bias and 
select the data that is entirely representative of the cases. 

• Data Preprocessing: Historical data is very messy and often consists of missing values, value-
less values, and outliers. Parsing, cleaning, and preprocessing such data can be a tedious job. 
Feature properties and value ranges must be studied, and techniques like feature scaling must 
be applied to prevent certain features from dominating the entire model. 

• Data Labelling: Easy and more appropriate models are the ones used in Supervised ML algo-
rithms. Supervised ML algorithms require data labeling. Data labeling is a manually intensive 
task – but at the same time, it cannot be outsourced.  

 
ML is usually used to realize intelligent behavior by learning from data or experience and providing 
relevant predictions. Several approaches to ML can be adopted based on factors such as the objectives 
to be achieved and the very nature of data. However, selecting an ML model is not straightforward 
without experimenting because there is no direct mapping from a specific problem to an ML model.  
 
The IntelLight+ system must allow for the selection of different ML libraries, appropriate performance 
metrics, and deployment environments. The main challenge is to make the model training process 
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reproducible and auditable. Because data scientists use different tools, it becomes hard to automate it 
end-to-end. There are more artifacts to be managed beyond the code, and versioning them is not straight-
forward. Some of them can be really large, requiring more sophisticated tools to store and retrieve them 
efficiently. 
 
The second challenge is accomplishing inference in different environments, from the cloud with more 
computing power to more interactive on-premise devices. 
 

3.2    Risks 
The risk management process started by identifying an initial set of risks at the beginning of the Intel-
Light (+) project. Each identified risk was assigned an impact and probability score. During the execu-
tion of the project, the initial set of risks were updated by adding newly identified risks and adjusting 
previously identified ones when they became obsolete or mitigated, or less relevant. Table 3-1 shows 
the list of different categories of risks (organizational, technical, external, and project management) 
combined with their potential impact, probabilities, and mitigation strategies. 
 

Table 3-1: Risks analysis 

Organizational 
Risk 
# Description Impact 

(1-3) 
Probability 

(1-3) Criticality Mitigation Action 

R1.1 Getting used to online 
meetings for progress 
meetings may lead to bad 
performance for the final 
on-site presentation  

3 3 

High 

Share your concerns 
with stakeholders, if 
possible, arrange the fi-
nal presentation online 

R1.1 The domain is vast. It is 
possible to get lost in the 
sea of domain 

3 2 

Medium 

Prioritize the require-
ments and start with re-
quirements that have the 
highest priority. 

R1.2 Working in isolation 
from home due to the co-
rona situation can make 
stakeholders less accessi-
ble 

3 2 

Medium 

Signal any impact on the 
project, discuss with the 
stakeholders for a possi-
ble solution, and set up 
more frequent virtual 
meetings and collabora-
tions. 

R1.3 Availability and reacha-
bility of direct stakehold-
ers 

3 1 
Low 

Plan all meetings ahead 
of time 

Technical 
# Description Impact 

(1-3) 
Probability 

(1-3) Criticality Mitigation Action 

R2.1 Unable to verify the cor-
rectness of the developed 
system 

3 3 

High 

Communicate with ex-
perts to verify the pro-
cess for the correctness 
of the system 

R2.2 Lack of knowledge in 
certain required technol-
ogies 

3 2 
Medium 

Find online resources, 
ask for expert help if 
possible and needed 

R2.3 The MLOps are very 
new technology, and not 

3 2 
Medium 

Take workshops and 
online opensource meet-
ings related to the 
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yet a solid version is 
available 

needed state of the art 
knowledge and technol-
ogies 

External 
# Description Impact 

(1-3) 
Probability 

(1-3) Criticality Mitigation Action 

R3.1 Trainee finds residency 
problems 

3 3 High Share your situation 
with your supervisors 

R3.2 Trainee becomes ill for a 
long period 

3 2 

Medium 

Keep a buffer time at 
each task and negotiate 
requirements with stake-
holders based on prior-
ity 

R3.3 Psychological effects of 
living in quarantine and 
pandemic situation 

2 2 
Low 

Include physical activi-
ties to stay more healthy 

Project Management 
# Description Impact 

(1-3) 
Probability 

(1-3) Criticality Mitigation Action 

R4.1 
Deliverable not being 
available in time 

3 3 

High 

Make a minimum viable 
product and set a dead-
line to make sure the im-
portant deliverables are  

R4.2 Misunderstanding of the 
project goals that result 
in a delayed, inefficient, 
and incorrect overall de-
velopment process 

3 3 

High 

Frequently communi-
cate with stakeholders 
and confirm important 
decisions with stake-
holders 

R4.3 Not identifying all stake-
holders 

3 2 
Medium 

Ask main stakeholders 
if a potential stakeholder 
is forgotten  

R4.4 Key stakeholders are not 
available for several rea-
sons, such as sickness or 
holiday 

3 2 

Medium 

Be aware of the stake-
holders planned to leave 
and prepare replacement 
if necessary 

R4.5 High priority require-
ments cannot be satis-
fied. 

3 2 

Medium 

Raise the issue as early 
as possible, discuss with 
stakeholders for a possi-
ble workaround, and 
manage the stake-
holder’s expectations 
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4.Requirements and Use Cases 
 
This chapter states the system requirements that the trainee found to be most relevant, such that the 
system complies with the user requirements. The requirements are the specifications that the IntelLight+ 
system needs to fulfill, and they are derived from the stakeholders’ concerns. These requirements spec-
ify what IntelLight+ needs to do. 
 

4.1    Introduction 
IntelLight+ aims to facilitate the real-time context assessment of the homeowners during their daily 
activities. To achieve this goal, we designed the system containing two main sub-modules, the Ml pipe-
line with a deployment part and the software module. The main idea is to make an end-to-end ML 
process enabled so that different algorithms, features, and inference environments can be used for ex-
perimentation. The software sub-module provides a means for more interaction between users and the 
context recognition model that serves them. The software feedback module can be used for annotating 
data. In this way, the users specify when and near which sensors they had a particular context (having 
dinner, cooking, or watching TV). A combination of that feedback and sensor data for the user can be 
used as the data set. 
 
IntelLight+ extracts the features from the Hue motion sensors and uses these features to predict the 
home context. IntelLight+ tracks and visualizes the code, data, metrics, and hyper-parameters used to 
build the models in the ML pipeline module. It enables data scientists to compare and choose between 
different models and then deploy them to different target machines. The software module allows data 
scientists to receive feedback from users and allows for more advanced ML approaches like customi-
zation based on user feedback. This feedback is given via an interface. The integration of the earlier 
mentioned modules in IntelLight+ lets data scientists focus on applying different approaches for context 
prediction. 
 

4.2    System requirements 
An early understanding of the customer requirements and their priorities in software engineering pro-
jects is the biggest challenge. A detailed list of requirements is essential to steer a project in the right 
direction. However, as the customer needs are subject to change, new requirements can emerge, and the 
old ones may need updating during the project lifetime. In this project, initial requirements were elicited 
using the use case analysis and interview techniques. These requirements were revisited and updated 
throughout the duration of the project.  
 
The following sections of this chapter explain the identified use cases, corresponding functional and 
non-functional requirements, as well as the relationships among them. 
 

4.3    Use cases 
A use case is a description of potential interactions between a system and its users. In the context of this 
project, a homeowner who uses Hue lighting and data scientists who want to build and experiment with 
context recognition algorithms are the typical users of the IntelLight+ system. Figure 4-1 shows the 
potential actions that can be performed by the homeowner. 
 



 

17 
 

Homeowner

Light setups adapt based on the 
context of user in home

Give feedback about level of 
satisfaction for detected context

 
Overrule the detected 

context

 

 

 
Figure 4-1: Use case for the homeowner 

 

The MoSCoW method is used to prioritize the use cases and the elicited set of requirements. The word 
MoSCoW is an abbreviation of four words, each of which defines different priority levels. They are: 
• Must: Critical product features that are essential for the current delivery timeline. 
• Should: Important features that provide significant value. 
• Could: Desirable but not necessary needs that can improve usability. 
• Won’t: Least critical and lowest priority needs. 

 

Table 4-1: Use cases that the homeowner is involved in 

UC # Priority Description 

UC1.1 Must The homeowners want the light scene to change based on what they are doing so 
that it matches their context and new activity. 

UC1.2 Must The homeowners want the system to recognize the predefined contexts for the 
user. 

UC1.2.1 Must The homeowners want the light scene to change to a specific light setting when 
they are doing Office Work. 

UC1.2.2 Must The homeowners want the light scene to change to a specific light setting when 
they are Having Dinner. 
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UC1.2.3 Must The homeowners want the light scene to change to a specific light setting when 
they are Working Out. 

UC1.2.4 Must The homeowners want the light scene to change to a specific light setting when 
they are Cooking. 

UC1.2.5 Must The homeowners want the light scene to change to a specific light setting when 
they are Lounging. 

UC1.3 Must The homeowners can overrule the predicted context when they realize the detected 
context is not matching their context. This will be reported to the backend data 
scientist. 

UC1.3.1 Should The homeowners report via a yes/ no/ not sure question if they had a specific con-
text(having dinner, watching TV, and cooking) at a particular time. 

UC1.4 Could The homeowners want to have the context recognition module working with avail-
able third party data (such as an entertainment API) 

UC1.5 Should The homeowners want when they use different types of sensors that are connected 
to their IntelLight+ system, it leads to the better setting of the light based on their 
context. 

 
As the data scientists are the primary users of the IntelLight+ system, most user stories for the ML 
pipeline are related to them. Figure 4-2 shows the potential actions that the data scientist can perform. 
 



 

19 
 

Supervisor

Data Scientist

Prepare data

Track data, code, 
parameters that been 

used for model training

<<include>>

Visualize and 
compare models

Train new model

Deploy models

Monitor models

 

 

 

 

Set constraints
<<extend>>
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Figure 4-2: Use case for the data scientist 

 

Table 4-2: ML pipeline use cases 
 

UC # Priority Description 

UC2.1 Must Data scientist wants to trace the data, code, and configurations that been used for 
training models. 

UC2.2 Must Data Scientist wants to have a template that helps modularize the development of 
algorithms and separate the different concerns for his project. 

UC2.3 Must Data scientist wants to recreate previously experimented models. 

UC2.4 Must Data scientist wants to visualize and compare the models with different hyper-
parameters. 

UC2.5 Must Data scientist wants to have the option to deploy the model on-premise, remote 
server, or both. 

UC2.6 Must Data Scientist wants to apply different preprocessing steps. 

UC2.7 Must Data Scientist wants to apply different metrics for model evaluation. 
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4.4    Functional Requirements 
The initial requirements are elicited based on the identified use cases. These requirements are analyzed 
further and presented to the major stakeholders for validation. The requirements established through 
this process are the initial set of functional requirements (FR) and the established baseline for the sys-
tem. The non-functional requirements (NFR) are connected to the quality characteristics and constraints 
of the system. The FRs are explained in three different categories. Section 4.4.1 describes the general 
list of requirements, section 4.4.2 describes the requirements related to the feedback software compo-
nent, and section 4.4.3 lists the functional requirements related to the ML pipeline. Next, the NFRs are 
covered in section 4.5. Each requirement is given a unique identification (ID). However, these IDs do 
not imply any priority or order. 
 

4.4.1.  General Functional Requirements 
This section lists descriptions of functional requirements related to IntelLight System alongside their 
priority and related use cases. 

 

Table 4-3: General functional requirement 

Req.# Priority Description UC UID 

FR1.1 Must The system shall support running ML models to classify/ rec-
ognize the contexts of a single person in the home. 

UC1.1, 
UC1.2 

FR1.1.1 Must The system shall support running ML models to recognize the 
contexts of multiple people in the home. 

UC1.1, 
UC1.2 

FR1.2 Could The system shall support running ML models to predict the con-
text based on different features from different sensors (accel-
erometer, gyroscope, and audio sensors) in a single prediction 
model. 

UC1.1, 
UC1.2 

FR1.2.1 Could The system shall support running different ML models to pre-
dict the context based on different prediction models for fea-
tures from each of the sensors (one model for accelerometer, 
one for gyroscope, and one for the audio sensor) and then com-
bine the result. 

UC1.5 

FR1.3 Must The system supports creating the ML model to recognize con-
text when data from Hue PIR sensors are available. 

UC1.5 

FR1.3.1 Must The system supports running the ML model to recognize con-
text when audio data are available 

UC1.5 

FR1.3.2 Must The system supports running the ML model to recognize con-
text when motion and orientation data of Accelerometer, Gy-
roscope, and magnetometers sensors are available 

UC1.5 

FR1.3.3 Could The system supports running the ML model to recognize con-
text when any combination of the sensors mentioned in FR1.3 
is available. 

UC1.4, 
UC1.5 

FR1.3.4 Must The system supports running the ML model to recognize con-
text when only one of the sensors mentioned in FR1.3 is avail-
able.  

UC1.5 
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FR1.4 Must The system shall provide a template that allows the data scien-
tist to add, activate, deactivate, and change orders of prepro-
cessing steps. 

UC2.6 

FR1.5 Must The system shall provide a template that allows the data scien-
tist to add, activate, and deactivate metrics for model evaluation. 

UC2.7 

FR1.7 Must The system allows having a separate model for each of the ac-
tivities. 

UC2.5 

 

4.4.2.  Software Component Functional Requirements 
This section lists descriptions of functional requirements related to the feedback component module 
alongside their priority and related use cases. 
 

Table 4-4: Feedback component module functional requirements 

Req.# Priority Description UC UID 

FR2.1 Must The system shall be able to ask for feedback from the homeowner 
for a specific detected context and report it to the backend data 
scientist. 

UC1.3 

FR2.1.1 Must The system shall allow the homeowner to give feedback actively 
or passively. 

UC1.3 

FR2.2 Must The system shall let the homeowner (test participant) manually 
report the time he had a specific context. 

UC1.3 

FR2.3 Must The system shall allow the homeowner (test participant) to spec-
ify the period he wants to receive notification for each context. 

UC1.3.1 

FR2.4 Must The notifications should have different options allowing the 
homeowners (test participants) to specify if they are doing an ac-
tivity, not doing an activity, or don’t know. 

UC1.3.1 

FR2.5 Should The system should allow usage of the reported feedback for ad-
justing the training model. 

UC1.5 

 

4.4.3.  ML Pipeline Functional Requirements 
This section lists descriptions of functional requirements related to the ML pipeline alongside their 
priority and related use cases. 
 

Table 4-5: ML pipeline functional requirements 

Req.# Priority Description UC UID 

FR3.1 Must The system shall keep track of the version of the code, data, and 
the parameters that have been used for each training experiment of 
the model. 

UC2.1 
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FR3.2 Must The system should provide the template that modularizes the pro-
ject to different meaningful data science components. 

UC2.2 

FR3.3 Must The system shall provide a pipeline that keeps track of all the (Py-
thon) libraries and their versions that have been used for training a 
model. 

UC2.3 

FR3.3.1 Must The system shall provide an ML pipeline that works with different 
ML libraries. 

UC2.3 

FR3.4 Must The system shall visualize the models with a range of different hy-
per-parameters and let data scientists compare them. 

UC2.4 

FR3.5 Must The system shall be able to deploy and test the inference model on-
premise and remote server environments in the same way. 

UC2.5 

FR3.6 Could The system should support providing different models for users 
based on different settings in their homes. 

UC2.5, 
UC2.6 

FR3.7 Could The system should let data scientists deploy and test different mod-
els for users based on the different categories of the settings of the 
users’ homes. 

UC2.5 

 

4.5    Non-Functional Requirements 
 
Non-Functional Requirements (NFRs) define the criteria that are used to evaluate the whole system, but 
not for a specific behavior, and are also called Quality Attributes (QAs). A Non-Functional Requirement 
defines the performance attribute of a software system. Where Functional Requirement is a verb, the 
Non-Functional Requirement is an attribute. 
 
A situation in which the system has the desired combination of quality attributes, for example, interop-
erability and performance or reliability, shows the architecture’s success and the software’s quality. 
When designing to meet any requirements, it is essential to consider the impact on other attributes and 
find compromises between requirements. Along with this, the value or priority of each attribute differs 
from system to system. The covered qualities in this section are essential for designing the IntelLight+ 
system. 
  

Table 4-6: Quality Attributes 

QA# Priority Description QA 

QA1.1 Must The system shall be able to reproduce the environment to run the 
selected training models on other platforms. 

Reproducibility 

QA1.2 Must The system shall allow adding/delete/change the ML algorithm 
functionality, platform, attribute, or capacity 

Modifiability 

QA1.3 Should The system shall be able to be extended for working with new 
sensors and other external systems (like an entertainment API) for 
context detection. 

Extensibility 

QA1.4 Could The system shall be able to use different ML libraries, support 
various versions and adapt when external changes occur. 

Flexibility 
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Reproducibility is a major principle for scientific methods. An ML model is reproducible if the results 
obtained by an experiment or in statistical analysis of the same data set can be achieved again with a 
high degree of reliability when the study is replicated. Only after one or several such successful repli-
cations should a result be recognized as a reliable approach. 
 
Any results of experiments should be documented by making all data and code available so that if the 
reproduced model is executed again, it will achieve identical results. 
 
Modifiability is important from different aspects. From the end-user point of view, users of the system 
need to be able to customize the context recognition component based on their own needs. The data 
scientist should be able to modify the context detection model by changing his code, data, and config-
urations. 
 
The system should allow for using different sensors and data sources for future growth. Extensibility 
is essential for the system to gain data from different types of sensors or even external systems for 
context detection. Extensions can be through the addition of new functionality or through modification 
of existing functionality. Finally, flexibility is the ability of the system to respond to potential internal 
or external changes affecting its value delivery in a timely and cost-effective manner.  
 

4.5.1.  Quality Attribute Scenarios (QAS) 
In this section, specific QAS for each of the quality attributes is specified. The quality attributes are 
expressed as QAS templates (stimulus-response). It consists of six parts. 
• Source: This is an entity (a human, a computer system, or any other actuator) that generated the 

stimulus. 
• Stimulus: The stimulus is a condition that needs to be considered when it arrives at a system. 
• Environment: The stimulus occurs within certain conditions. The system may be overloaded or 

run when the stimulus occurs, or some other condition may be true. 
• Artifact: Some artifact is stimulated. This may be the whole system or some pieces of it. 
• Response: The response is the activity undertaken after the arrival of the stimulus. 
• Response measure: When the response occurs, it should be measurable in some fashion so that the 

requirement can be tested. 
 
The IntelLight+ project covers the QAs in Table 4-6 and enables them with QAS. Table 4-7 shows the 
QAS for reproducibility, Table 4-8 depicts the QAS for modifiability, extensibility QAS is shown in 
Table 4-9, and Table 4-10, the QAS for the flexibility is shown in Table 4-11. 

 

Table 4-7: Reproducibility QAS 

Source Data scientist (algorithm developer) 

Stimulus Wishes to recreate previously experimented model 

Artifact  Context recognition system  

Environment At runtime on cloud/raspberry 

Response Creates the model with same performance; deploys recreated model 

Response Measure Cost in terms of effort, time 
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Table 4-8: Modifiability QAS 

Source Data scientist (algorithm developer) 

Stimulus Wishes to modify/vary the code, data, and parameters for the detection model 
creation 

Artifact  Context recognition system on user’s home  

Environment At design time, at development time, at compile time, at deployment time 

Response Modifies without affecting other functionality; tests modification; deploys mod-
ification 

Response Measure Cost in terms of number of elements affected, effort, time 

 

Table 4-9: Extensibility QAS for the data scientist 

Source Data scientist (algorithm developer) 

Stimulus Wishes to add a new algorithm for context detection 

Artifact  Context recognition system on user’s home  

Environment At design time, at development time, at compile time, at deployment time 

Response The new algorithm is added without affecting other functionality of the system; 
tests added algorithm 

Response Measure Cost in terms of number of elements affected, effort, time 

 

Table 4-10: Extensibility QAS for the homeowner 

Source Homeowner (Hue user) 

Stimulus Wishes to add a new sensor to the context recognition system 

Artifact  Context recognition system on user’s home  

Environment At runtime on cloud/raspberry 

Response The new sensor will be added following the same design without affecting other 
functionality 

Response Measure Cost in terms of number of elements affected, effort, time 

 

Table 4-11: Flexibility QAS 

Source Data scientist (algorithm developer) 

Stimulus Wishes to use various ML libraries 

Artifact  Context recognition system on user’s home  

Environment At design time, at development time, at compile time, at deployment time 
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Response The different ML libraries are used without affecting other functionality 

Response Measure Cost in terms of number of elements affected, effort, time 

 

4.6    Requirements traceability matrix 
This section specifies how user stories are addressed, in other words, which requirements are satisfied 
in order to accomplish a user story. Table 4-12 depicts the requirement numbers that met to consider a 
user story as done. 
 

Table 4-12: User story - requirement relations 

UC UID REQ ID 
UC1.1 FR1.1, FR1.1.1, FR1.2 
UC1.2 FR1.1, FR1.1.1, FR1.2 
UC1.3 FR2.1, FR2.1.1, FR2.2, FR2.3, FR2.4 
UC1.4 FR1.3.3 
UC1.5 FR1.2.1, FR1.3, FR1.3.1, FR1.3.2, FR1.3.3, FR1.3.4, FR2.5 
UC2.1 FR3.1 
UC2.2 FR3.2 
UC2.3 FR3.3, FR3.3.1 
UC2.4 FR3.4 
UC2.5 FR3.5, FR3.6, FR3.7 
UC2.6 FR1.4, FR2.6 
UC2.7 FR1.7 
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5.System Architecture and Design 
 
This chapter covers the system architecture and design for the project. The purpose of designing an 
architecture for a system is to solve a problem statement according to the system requirements. This 
chapter decomposes the architecture as well as the design of the envisioned solution into three main 
parts. Section 5.1 introduces design principles, which are taken to consideration in this project. The 
high-level architecture is covered in section 5.2, and section 5.3 describes the architectural views of the 
Intelight+ project. 
  

5.1    Design Principles 
In order to guarantee that the design of our system is good, we need to know the symptoms of poor 
design. This section demonstrates the smells that often accumulate in a software project and describes 
the design principles that can help us avoid them. Software designs often degrade because requirements 
change in ways that the initial design did not anticipate. Often, these changes need to be made quickly, 
and they may be made by developers who are not familiar with the original design philosophy. Although 
the change to the design works, it somehow violates the original design. Bit by bit, as the changes 
continue, these violations accumulate, and the design begins to smell. 
 
The software system is rotting when it exhibits any of the following problems[17]: 
• Rigidity: The tendency for software to be difficult to change, even in simple ways. A design is rigid 

if a single change causes a cascade of subsequent changes in dependent modules. The more modules 
that must be changed, the more rigid the design is. 

 
• Fragility: Fragility is the tendency of a program to break in many places when a single change is 

made. Often, the new problems are in areas with no conceptual relationship with the area that was 
changed; fixing those problems leads to even more problems. 

 
• Immobility: A design is immobile when it contains parts that could be useful in other systems, but 

the effort and risk involved with separating those parts from the original system are too great. This 
is unfortunate but widespread. 

 
The design principles give practical guidance to software engineers by acting as strong guidelines that 
are applicable to any software design project. Here is the list of SOLID software design principles in-
troduced by Robert C. Martin [18] and how they can be applied to an ML system: 
 
Single Responsibility Principle (SRP): A class should have only one reason to change. If a class has 
more than one responsibility, then the responsibilities become coupled. Changes to one responsibility 
may impair or inhibit the ability of the class to meet the others. This kind of coupling leads to fragile 
designs that break in unexpected ways when changed. 
 

 
Figure 5-1: Violation of SRP 

MLClass

+tuning(params)

+metrics()

+feature_extraction()

+fit() : Wrapper

+preprocess()
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As shown in Figure 5-1 diagram, MLclass is going to change due to many causes. Activities of different 
origins like extracting features, preprocessing, defining metrics, fitting method, and tunning all are en-
capsulated in one class. This class reacts to changes in data processing, feature engineering, and model 
selection. This class needs to be divided into machine learning sub-components. 
 
Open-Closed Principle (OCP): Software entities (classes, modules, functions, etc.) should be open for 
extension but closed for modification. When a single change to a program results in a cascade of changes 
to dependent modules, the design smells of Rigidity. The OCP advises us to refactor the system so that 
further changes of that kind will not cause more modifications. If the OCP is applied well, then further 
changes of that kind are achieved by adding new code, not by changing old code that already works. 
 

 
Figure 5-2: Refactoring the design following OCP 

 
For example, as shown in Figure 5-2 A, the MLclass started by using the TrainerHiddenMarkovModel 
class. However, after a while, in the next version, it needed to use the TrainerSklearn. Due to the tight 
coupling, it was not possible to swap in the TrainerSklearn. To support the new TrainerSklearn would 
require changing the MLclass class. This is a violation of the open-closed principle: Old code should 
not have to change to add functionality. 
 
The solution, as shown in Figure 5-2 B, is to abstract away the Trainer in an interface/abstract class. 
Then we make the dependency arrows point towards the abstract components. After the modification, 
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all of the Trainers are interchangeable. MLclass can use either one without knowing the internals of 
each approach. Besides, the two Trainers do not need to know about the MLclass. This way, the devel-
oper can test them in isolation. This allows the developer to add a third Trainer (for example, Trainer-
Custom) without any changes to the MLclass or the other sub-classes of Trainer. This is true as long as 
the Trainers implement the shared interface. 
 
Liskov Substitution Principle (LSP): Subtypes must be substitutable for their base types. When a 
method of a subtype class does something that the client of the base type class does not expect, an 
undefined behavior happens. This smell causes debugging of the program and finding the cause of a 
problem very hard. This problem is often the result of the wrong inheritance. If LSP follows, when the 
base class does something, the subclass should also do it in a way that does not violate the expectations 
of the callers. 
 
Interface Segregation Principle (ISP): Clients should not be forced to depend on methods that they 
do not use. When clients are forced to depend on methods that they don’t use, then those clients are 
subject to changes to those methods. This results in an accidental coupling between all the clients. In 
other words, when a client depends on a class that contains methods that the client does not use but that 
other clients do use, then that client will be affected by the changes that those other clients force upon 
the class. We would like to avoid such couplings where possible, and so we want to separate the inter-
faces. 
 
Dependency Inversion Principle (DIP): Abstractions should not depend on details. Details should 
depend on abstractions. When high-level modules depend on low-level modules, it becomes very dif-
ficult to reuse those high-level modules in different contexts. However, when the high-level modules 
are independent of the low-level modules, then the high-level modules can be reused quite simply. This 
principle is at the very heart of API design. 
DIP is also critically important for the construction of code that is resilient to change. Since the abstrac-
tions and details are all isolated from each other, the code is much easier to maintain. 
 

5.2    High-level Architecture 
The IntelLight+ project is a design project that designs a system for context recognition. The project’s 
primary goal is to facilitate the work of the research project IntelLight (which focuses on the develop-
ment of ML algorithms). This project automates the end-to-end lifecycle of ML in three different di-
mensions (code, data, and model). It allows different types of algorithms to be implemented. Although 
the development of ML algorithms is outside of this project’s scope, the pipeline that covers different 
ML steps (Model Building, Model Evaluation, Model Deployment, Model Update) is part of this pro-
ject. 
 
The system consists of three main components: 

• An ML pipeline that keeps track of data, code, and artifacts used in experiments and 
visualizing the results 

• A feedback component that provides a means for communication between data scien-
tists and user 

• A deployment module that lets the data scientist deploy the model in different environ-
ments 
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Figure 5-3: ML Lifecycle 

 

5.2.1.  ML Pipeline 
An ML pipeline automates the ML workflow by enabling data to be transformed and correlated into a 
model that can then be analyzed to achieve outputs. This type of ML pipeline makes the process of 
inputting data into the ML model fully automated. The ML pipeline splits up ML workflows into inde-
pendent, reusable, modular parts that can then be pipelined together to create models. 
  
As shown in Figure 5-4, the ML Pipeline keeps track of data and code versions used in training the 
model. It visualizes the models with different parameters and lets the data scientist choose the model 
based on metrics. The technologies used to keep track of the data, code, and visualize the experiments 
are covered in more detail in section 6.2. 
 

 
Figure 5-4: Management of different sources in ML pipeline 
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5.2.2.  Feedback Component 
The feedback component checks if the predicted activity and context were right by asking the users if 
they have the same context that the model predicted. The feedback component is also used for generat-
ing the data set. In this way, we can retrieve sensor outputs as features and user feedback as ground 
truth for labeling the data. 
 
The initial design for the feedback receiving strategy is that the users can specify the usual time of 
activities they often do. If the probability is in a specified interval, the system sends a notification to the 
user to see if the user is doing the predicted activity. Suppose the probability of detected activity is more 
than a threshold and the current time is not in the interval specified by the user. In that case, the system 
can send a notification to the user and ask for his / her feedback. 
 
The way the feedback component works in this project is that raspberry pi is used to read the sensors’ 
outputs from the Hue bridge and save them in a remote server (amazon s3). Then this sensor data are 
used as the input for the initial trained model. The user receives feedback requests for the activities that 
are tracked based on mentioned feedback receiving strategy. What the data scientist is going to do with 
this feedback to improve the quality of the model is out of the scope of this project. 
 

 
Figure 5-5: Feedback component design 

 

5.2.3.  Deployment 
One of the main requirements of the IntelLight+ system is the ability to deploy and infer in a range of 
different environments from cloud to on-premise devices. Each approach of either inferring in the cloud 
or on-premise has its pros and cons.  
As Figure 5-6 shows, when the model is deployed in the cloud environment, it can use more computa-
tional power, whereas, when the model is deployed on-premise, it is more interactive. 
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Figure 5-6: Deployment options 

 

5.3    Architectural Views 
In this section, we look at IntelLight+ software architecture. Software architecture is the fundamental 
design of an entire software system. It defines what elements are included in the system, what function 
each element has, and how each element relates to one another. It is the big picture or overall structure 
of the whole system—how everything works together. One important way software architecture is pre-
sented visually is through the UML diagrams. It is necessary to capture the complete behavior and 
development of a software system from multiple perspectives. Each of these perspectives is called a 
view. 
 
A view is a representation of a set of system elements and relations among them—not all system ele-
ments, but those of a particular type[19]. Different views also expose different quality attributes to 
different degrees. Therefore, the quality attributes that are of most concern to the architect and the other 
stakeholders in the system’s development will affect the choice of what views to consider. Thus, views 
let us divide the multidimensional software architecture entity into a number of interesting and man-
ageable representations of the system. 
 
One consideration is the functionality of the software. Functionality involves what a system does to 
satisfy the purpose the client desires. Focusing on this functionality and the needed objects leads to a 
perspective called the logical view. 
 

5.3.1.  Logical View 
The logical view, which focuses on the functional requirements of a system, usually involves the objects 
of the system. From these objects, a UML class diagram can be created to illustrate the logical view. A 
class diagram establishes the vocabulary of the problem and the resulting system. Defining all of the 
classes, their attributes, and their behaviors makes it easy to understand the key abstractions and termi-
nology.  
Figure 5-7 defines the classes, their attributes, and their behaviors in the IntelLight+ pipeline. 
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Figure 5-7: ML training UML class diagram 

 
Some of the design practices like SRP, OCP, and DIP mentioned in section 5.1 can be seen in the ML 
training class diagram. Furthermore, as shown in Figure 5-8 in more detail, the MLclass class is the part 
of the IntelLight+ system that wants to use third-party libraries for training ML models. An adapter 
design pattern has been used to facilitates communication between MLclass and ActivityThroughMo-
tionAndHmm by providing a compatible interface.  
 

 
Figure 5-8: Adapter design pattern enables using third party training libraries for pipeline 
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The adapter design pattern (Figure 5-9) consists of several parts:  
Client class: The part of the system that wants to use a third-party library or external system.  
Adaptee class: This is the third-party library or external system that is desired to be used. 
Adapter class: This class sits between the client and the adaptee. The adapter conforms to what the 
client is expecting to see by implementing a target interface. The adapter is a kind of wrapper class.  
Target interface: This is used by the client to send a request to the adapter. 
 

 
Figure 5-9: Adapter design pattern  

 
As systems or parts of systems become larger, they also become more complex. This is not necessarily 
a bad thing – if the scope of a problem is large, it may require a complex solution. Client classes function 
better with a simpler interaction, however. In the IntelLight+ system, the ML pipeline consists of two 
different sub-components for training and building models on the one hand and using the trained model 
for prediction in another hand. In order to be able to infer from a trained model, we need to have a 
Predict class that can use the trained models without knowing the details about algorithms that are used 
in training. Figure 5-10 shows a means to hide the complexity of a subsystem by encapsulating it behind 
a unifying wrapper class. This is called the facade design pattern. It removes the need for Predict classes 
to manage the trainer submodule on its own, resulting in less coupling between the trainer submodule 
and the Predict class. 
 

 
Figure 5-10: Facade pattern for prediction pipeline 

 
Another consideration in software is how the software executes, dealing with the interaction of subpro-
cesses. These characteristics affect the performance and scalability of the system. Focusing on the pro-
cesses implemented by the objects in the logical view leads to the process view perspective.  
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5.3.2.  Process View 
The effective UML diagrams related to the process view of a system are the activity diagram and the 
sequence diagram. The activity diagram can illustrate the processes or activities for a system. Figure 
5-11 presents the control flow of the IntelLight+ system from an activity to another. As you see, the 
activity diagram starts with retrieving data from shared storage. The data scientist then extracts features, 
preprocessing the data, extracting the ground truth, and running the experiment with parameters and 
hyperparameters specified in a configuration file. When the experiments for different algorithms on 
different activities are finished, the data scientist visualizes the results by mlflow UI API. If the model 
qualifies for inference, data scientist chooses the models for deployment. The selected models will be 
deployed to shared storage and then can be used in a virtual machine in the cloud or raspberry pi to 
predict the context. Finally, the lights are set based on the context that has been recognized. 
 

 
Figure 5-11: UML activity diagram 

 
One crucial part of the design of the IntelLight+ system is the feedback component. The feedback com-
ponent lets the homeowner specify if he is satisfied with the light set. It also can ask the users if they 
are doing an activity. The data scientist can realize if the trained model is working as expected by getting 
users' feedback regarding the predicted context.  
 
The feedback component lets the IntelLight+ system use notifications to communicate with homeown-
ers for annotating the data as well. In this way, the system will send notifications periodically to Hue 
users and asks about their current activity. Figure 5-12 shows the interaction between sensors and s3 
storage in order to gather the data, as well as how the feedback is communicated to the users by notifi-
cations. In order to give feedback, users should install the context feedback app on their smartphones. 
After installing the app, participants log in with the AWS API key, then they use the phone to upload 
their feedback in the app to the cloud. Figure 5-12 shows the process of gathering sensor data and user 
feedback. 



 

35 
 

 
Figure 5-12: Data gathering and Notification sequence diagram 

 
The software architecture can also involve the development view. This perspective focuses on imple-
mentation considerations such as the hierarchical structure of the software. The programming languages 
of the system will heavily influence this structure and therefore places constraints upon development. 

5.3.3.  Development View 
The development view describes the hierarchical software structure. This view uses the UML Compo-
nent diagram to describe system components. Figure 5-13 shows the components of the IntelLight+ 
system. Step 1 depicts the components interacting to build models for context recognition. Then in step 
2, the qualified models will be placed in shared storage. Finally, in step 3, models are retrieved in the 
target environments and used for the prediction 
 

 
Figure 5-13: Component Diagram 
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Another perspective of the software can be seen through the physical view. The software will have 
physical components that interact and need to be deployed. The interaction between these different 
elements and their deployment will affect how the system works.  

5.3.4.  Physical View 
The physical view handles how elements in the logical, process and development views must be mapped 
to different nodes or hardware for running the system. The deployment diagram for the IntelLight+ 
system shown in Figure 5-14 expresses how the pieces of a system are deployed onto hardware, and the 
modules in the execution environments interact. 
 

 
Figure 5-14: IntelLight+ deployment diagram 

 
None of the architectural views are fully independent of each other, with elements of some views con-
nected to others. The 4+1 view model makes the software system more versatile and helps to see a 
complex problem from many different perspectives.  
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6.Implementation 
 
This chapter presents the details of the implementation phase. Chapter 5 discussed the high-level design 
of the IntelLight+ system, major design challenges, and architectural approaches to overcome them. 
The upcoming sections describe technology choices, the data gathering, and the model building pipeline 
phase of this project, according to the design in the last chapter. 
 

6.1    Introduction 
The IntelLight+ is an intelligent ML system that learns from different sensors and users’ activities in 
the home context. The intelLight+ is an ML system containing components for gathering data, the ML 
pipeline that builds models, the feedback component for receiving feedback from the user, and the de-
ployment module for deploying the trained model in different environments. For each of these compo-
nents, different technology choices can be made. 
 
In order to decide on the technology stack, it is important to use technologies that satisfy the require-
ments. In the intelLight (+) project, one of the main quality attributes was flexibility, meaning that the 
system should allow different ML approaches to be taken by data scientists. The system should also be 
modifiable in the sense that the data scientist is able to add or remove algorithms for building models. 

6.2    Technology choices 
Python was considered the language of choice to develop the IntelLight + system based on the previous 
experience of the PDEng trainee and also its popularity in data and ML domains. To choose the right 
ML pipeline, we compared the ML task coverage, library coverage, and level of support for a number 
of available libraries. We chose the pipeline that is compatible with the Signify platform. 
 
The chosen tool should be flexible to work with different libraries and on different platforms. The main 
requirement for the ML pipeline we chose is that it must be cloud-agnostic. As data scientists from the 
university and Signify are not training their models using the cloud infrastructure for this project, the 
pipeline should not lock us into a single platform. It should be open-source and be supported by a well-
known market player. The three options Kubeflow, MLflow, and DVC, as shown in Table 6-1, are open 
source and have the most number of members in their communities. Therefore, we chose to investigate 
them more. 

Table 6-1: ML pipeline technologies survey 

 
 
Given these requirements, we can use the MLflow for Model and experiment versioning because it 
manages to support a wide range of libraries while still requiring relatively little development effort to 
use. As an open-source project, it has a good amount of product support behind it. DVC is a good choice 
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for Data and Pipeline Versioning as it is very lightweight, open-source, and designed explicitly to work 
with Git.  
 
Kubeflow is also a well-known pipeline backed by Google. It has a big community, but it requires a 
Kubernetes cluster as well as an installation of kubectl to work with, and it is mainly limited to the 
Google Cloud Platform (GCP). In this project (based on Signify preference), we do not have access to 
GCP, but if they want later to move to GCP, MLflow is integrated and works and scales with GCP. 

6.2.1.  Tracking the ML training  
For tracking the ML training experiments, MLflow is used. The MLflow tracking component lets to log 
source properties, parameters, metrics, tags, and artifacts related to training an ML model. 
 
MLflow tracking is based on two concepts: experiments and runs. 
- An MLflow experiment is the primary unit of organization and access control for MLflow runs; all 

MLflow runs belong to an experiment. Experiments allow to visualize, search for, and compare 
runs, as well as download run artifacts and metadata for analysis in other tools. 

 
- An MLflow run corresponds to a single execution of model code. Each run records the following 

information: 
• Source: Name of the script or notebook that launched the run, the project name, or an entry 

point for the run. 
• Version: Notebook revision if the run is from a notebook or Git commits hash if the run is from 

an MLflow Project. 
• Start & end time: Start and end time of the run. 
• Parameters: Model parameters saved as key-value pairs. Both keys and values are strings. 
• Metrics: Model evaluation metrics saved as key-value pairs. The value is numeric. Each metric 

can be updated throughout the course of the run (for example, to track how the model’s loss 
function is converging), and MLflow records and allows to visualize the metric’s history. 

• Tags: Run metadata saved as key-value pairs. The tags can be updated during and after a run 
completes. Both keys and values are strings. 

• Artifacts: Output files in any format. For example, it is possible to record images, models (for 
example, a pickled scikit-learn model), and data files (for example, a Parquet file) as an artifact. 

 
The MLflow Tracking API is used for logging parameters, metrics, tags, and artifacts from running a 
model training experiment. The Tracking API communicates with an MLflow tracking server. The 
server can be configured to use a Databricks-hosted tracking server in the cloud to logs the data. The 
hosted MLflow tracking server has Python, Java, and R APIs. 

6.2.2.  Data Versioning 
Data Version Control (DVC) is an open-source version control system for ML projects. It is a tool that 
lets the users define the pipeline regardless of the language they use. 
 
When a problem in a previous version of the ML model is found, DVC saves time by leveraging data 
versioning to reproduce the model in order to identify the root of the problem. DVC can cope with the 
versioning and organization of considerable amounts of data and store them in a well-organized, acces-
sible way. It focuses on data and pipeline versioning and management but also has some (limited) ex-
periment tracking functionalities. 
 
DVC keeps metafiles in Git instead of the big data files to describe and version control the data sets. 
DVC supports a variety of external storage types as a remote cache for large files. It fetches the complete 
data used in any experiment. 
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Figure 6-1: Data version control to version large data sets 

 

6.3    Data gathering 
This section explains the steps to installing the software feedback component implemented by Signify 
engineers as a part of the IntelLight+ platform. The feedback component is also used for gathering data 
for training purposes. The data gathering allows the test participants to either input their current activi-
ties manually (pro-active mode) or on-demand based on a notification. The feedback component is used 
for research projects that require user context labeling. In order to participate in gathering data, partici-
pants needed to: 

- Set up the motion sensors in the house 
- Get the bridge API Key, bridgeId, and bridge IP using the ready clip_debugger code 
- Choose the list of sensors for each of the activities 

 
In order to read sensor events, the raspberry reads the events from the bridge and sends them into the 
AWS s3 bucket. In order to set up the raspberry to send data to AWS: 

- Connect the raspberry to the same wifi router that Hue bridge is connected to  
- Open the python script “reading_bridge.py” in an editor and modify: 

o URL_bridge (using IP of the Hue bridge) 
o USER (using bridge API key) 
o BRIDGE_ID (using bridgeid) 
o API_KEY (using AWS API Key) 

- Run the script (it will upload the sensors’ events to the cloud every 10 minutes) 
 
In order to give feedback, users should install the context feedback app. After installing the app, partic-
ipants log in with the AWS API key so that the app can upload their feedbacks to the cloud. Figure 6-2 
shows the app environment.  
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Figure 6-2: Context feedback app 

Test participants can either input their current activities manually (pro-active mode) or on-demand 
based on a notification. By clicking on each of the listed activities, participants can set the activity 
manually, as shown in Figure 6-3. The system also sends notifications to users to check if they are doing 
a specific activity. The logic behind notification can be a distribution within the interval that the user-
specified or based on model prediction. Figure 6-4 shows a sample notification that the user receives in 
the app. 
 

                                        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6-4: Feedback by notification 

Figure 6-3: Pro-active mode 
feedback 
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6.4    Model building 
This section explains the details of the ML pipeline that builds models keeps track of the experiments 
and visualizes the result. The implementation code uses Python 3 for execution. The virtual environment 
decouples and isolates versions of Python and associated packages in the project implementation. 
Appendix A explains the steps to install and run the IntelLight+ ML pipeline to build models. 
 

 
Figure 6-5: Repository root 

 
Figure 6-5 shows the files in the root directory of the project’s repository, data.dvc contains data version 
information, and requirements.txt includes Python libraries used in the project implementation. Figure 
6-6 shows the environment.yml configuration file that helps to build the Anaconda virtual environment. 
Notice it uses pip to install python libraries from the requirements.txt file. 
 

 
Figure 6-6: Configuration file to build anaconda virtual environment 

 
In the root of the project, there are also the following folders: 

- .dvc: configuration about data version control remote server 
- document:  

o how to use git and version control 
o code standard and code template 

- src: implementation code of project including: 
o config: configuration YAML file and configuration manager class 
o ml: ML model building code 
o train script 
o predict script 
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The configuration.yml file includes parameters to choose with which algorithms we want to run the 
experiment, hyperparameters, and parameters for creating training models for different activities. The 
configuration consists of epochs, time_length, hold_time, as well as initial parameters of models for 
each activity. The train.py script loads these parameters in the MlClass and uses them for training and 
building models. 
 

 
Figure 6-7: Anaconda configuration file 

 
The ML codes for building models are in src/model, and the preprocessing code is in src/preprocessing. 
While the training experiments for building models are running, the results are logged and can be visu-
alized by the web-based UI. As shown in Figure 6-8 for each activity, algorithm, and each trial in case 
it is doing the hyperparameters tuning. More images for the web-based experiment visualizer UI can be 
found in Appendix B. 
 

 
Figure 6-8: Web-based UI to visualize the ML experiments 

 
As Figure 6-9 shows, for each experiment, the model is saved with configuration files that can be used 
to create a virtual environment to serve the model that is created during the experiment. The require-
ment.txt and conda.yaml files contain the libraries and their versions that are used to produce the model. 
Besides, for each experiment, the Git commit, and how to use the created model for prediction are also 
mentioned on the experiment page. 
 

 
Figure 6-9: Resulted artifact for each of the experiments 
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6.5    Model deployment 
In order to deploy the generated models, we use the DVC technology explained in section 6.2.2. DVC 
is used to make versions of chosen model experiments, and it creates a small file that will be versioned 
by Git, the models themselves can be shared in a remote storage place. Figure 6-10 illustrates how the 
git and DVC commands can be used to deploy models. More details on the steps of model deployment 
can be found in Appendix C. 
 

 
Figure 6-10: Model deployment by DVC 

 
Models can be exchanged between any environments that support running git and python. Besides that, 
models can be categorized based on the environments that can be used for context recognition or even 
based on different interior settings of houses. Figure 6-11 shows how the shared storage is used to 
produce and serve models in different environments. 
 

 
Figure 6-11: deploy models using a shared storage 
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7.Verification & Validation 
 
This chapter aims to indicate the process of validating and verifying the steps taken in  this project. The 
verification and validation process ensures that the proposed system has met the functional and non-
functional requirements and works well.  
 

7.1    Testing and quality assurance in ML systems 
Testing and quality for ML systems are more complex than traditional software systems. Test Pyramid 
should be considered separately for each type of artifact (code, data, and model). There are different 
types of testing that can be introduced in the ML pipeline. While some aspects are inherently non-
deterministic and hard to automate, many kinds of automated tests can add value and improve the over-
all quality of your ML system: 
 
Validating data: Tests can validate input data against the expected schema or validate our assumptions 
about its valid values. For instance, they fall within expected ranges or are not null. For engineered 
features, we can write unit tests to check they are calculated correctly. It is possible to check if the 
numeric features are scaled or normalized, one-hot encoded vectors contain all zeroes and a single 1, or 
missing values are replaced appropriately. 
 
Validating the model quality: While ML model performance is non-deterministic, Data Scientists 
usually collect and monitor a number of metrics to evaluate a model's performance, such as error rates, 
accuracy, AUC, ROC, confusion matrix, precision, recall, etc. They are also useful during parameter 
and hyper-parameter optimization. As a simple quality gate, we can use these metrics to introduce 
Threshold Tests in our pipeline to ensure that new models don't degrade against a known performance 
baseline. 
 
As the data science process is very research-centric, it is common that data scientists will have multiple 
experiments to try, and many of them might not ever make it to be deployed for inference testing. 
IntelLight+ supports this governance process; it captures and displays the information that will allow 
data scientists and researchers to decide if and which model should be promoted.  
 

7.2    Verification 
Verification is the process of evaluating a system or component to determine whether the products of a 
development phase satisfy the conditions. It is a continuous process for checking the system that is 
being built to ensure it adheres to certain specifications.  
 
During the development phase, the IntelLight + system was verified in two ways: unit testing and code 
consistency checking reviews. These processes are elaborated in the following sections. 

7.2.1.  Unit testing 
Unit test is a software testing method that checks if the individual units of the corresponding software 
have expected behavior. The developer typically performs these tests by writing additional code that 
automatically tests the software. The unit tests are used to test the newly implemented features and 
ensure that the existing functionalities are not broken. 
 
For unit testing, different parts of the IntelLight+ ML pipeline, which are explained in sections 5.2.1  
and 5.3.1 are covered. These unit tests are listed in table 7.1. The unittest unit testing framework, ini-
tially inspired by JUnit, was used to write the unit tests. It supports test automation, setup and shutdown 
code for tests, aggregation of tests into collections, and independence of the tests from the reporting 
framework. 
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Table 7-1: Unit tests for testing the ML pipeline 

Unit Test Name  Endpoint Type  Status 
test_experiments_for_single_algorithm_tracked Visualizing experiments Passed 
test_experiments_for_single_activity_tracked Visualizing experiments Passed 
test_experiments_metrics_tracked Visualizing experiments Passed 
test_experiments_configuration_params_tracked Visualizing experiments Passed 
test_experiments_data_version_tracked Visualizing experiments Passed 
test_model_created_for_deployment Model building Passed 
test_model_with_conda_env_created_for_experiment Model building Passed 
test_grand_truth_is_expanded Data Preparation Passed 
test_each_activity_has_related_sensor_for_training Data Preparation Passed 
test_loading_configuration_yaml_file Data Preparation Passed 

 

7.2.2.  Code consistency checking 
As mentioned in section 6.2, the pipeline was developed with Python. The PEP8 style guide for Python 
was used to ensure that the coding style was consistent throughout the whole code repository. This style 
guide was developed by the creators of the Python language and has been widely accepted. PEP8 com-
pliance options were enabled in the Integrated Development Environment (IDE) used in this project to 
check the coding style automatically. This provided basic guidelines (i.e., tabs vs. spaces for indenting, 
indent width, line length) for the code and made it easier to read. 
  

7.3    Validation 
Validation is the process of evaluating a system or component at the end of the development process to 
determine whether it satisfies specified requirements. Two aspects need to be taken into consideration 
in the validation process. First, does the built product address the functional requirements? Does it do 
what it says in the functional requirements? Second, does the product satisfy the non-functional require-
ments? For the non-functional requirements, the validation addresses the quality attribute scenarios. In 
the context of this project, the system under development was validated by the direct stakeholders at 
various stages, which are discussed in detail in the following sections. 
 

7.3.1.  Regular Stakeholder Feedback 
Following the scrum iterative and incremental development approach, the results were continuously 
validated by the stakeholders. The product was accessible by direct stakeholders (data scientist and 
P.h.D researcher) on the code repository, and a meeting was scheduled with the main stakeholders, 
which included a progress report and a demo of the current version of the product. During these meet-
ings, several architectural diagrams were used to explain to the stakeholders how the IntelLight+ infra-
structure would be implemented. Based on these discussions, the stakeholders could identify whether 
the development activities were progressing in the right direction or not. The mentioned diagrams are 
presented and explained in chapter 5. The feedback was provided on the completeness and correctness 
of the product under development mainly by direct stakeholders (the data scientist and Ph.D. re-
searcher). 
 

7.3.2.  Requirements status 
The final prototype of the IntelLight+ infrastructure implemented all the requirements described in 
chapter 4. An overview of the functional requirements is shown in Table 7-2. The prototype was also 
demonstrated to the IntelLight+ stakeholders during the final prototype demonstration. The direct stake-
holders accepted that the system met their expectations and satisfied all the elicited requirements. More-
over, several suggestions were provided by the PDEng trainee during the demonstration that indicated 
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the direction in which the stakeholders may further improve the IntelLight+ infrastructure. These feed-
backs are listed in section 9.3. 
 

Table 7-2: Statuses of functional requirements after implementation 

ML pipeline 
Req.# Priority Description Verification Status 

FR3.1 Must The system shall keep track of the ver-
sion of the code, data, and the parame-
ters that have been used for each train-
ing experiment of the model. 

The MLflow Tracking API visual-
izes parameters, code version, met-
rics, and output files when running 
the machine learning code. 

Satisfied 

FR3.2 Must The system should provide the template 
that modularizes the project to different 
meaningful data science components. 

The code template separates differ-
ent concerns: data and source code 
and result models. The ml codes are 
in different packages like prepro-
cessing, data source, model. Data is 
also separated at the highest level 
based on activities. 

Satisfied 

FR3.3 Must The system shall provide a pipeline that 
keeps track of all the (python) libraries 
and their versions that have been used 
for training a model. 

A requirement.txt file keeps all li-
braries that are used in the project. 

Satisfied 

FR3.3.1 Must The system shall provide an ml pipeline 
that works with different ml libraries. 

Currently, sklearn and tensorflow 
are used. 

Satisfied 

FR3.4 Must The system shall visualize the models 
with a range of different hyper-parame-
ters and let data scientists compare 
them. 

The Mlflow UI shows the parame-
ters for the optimal model used for 
training each algorithm. 

Satisfied 

FR3.4.1 Must The system shall provide the same API 
for training different models 

Same API used for training models 
of different libraries. 

Satisfied 

Deployment 
Req.# Priority Description Verification Status 
FR3.5 Must The system shall be able to deploy and 

test the inference model on-premise and 
remote server environments in the same 
way. 

IntelLight+ uses python, git, shared 
storage, and DVC to deploy models 
on different environments. 

Satisfied 

FR3.6 Could The system should support providing 
different models for users based on dif-
ferent settings in their homes. 

Using a combination of git tag and 
DVC make it possible to make cus-
tomized categories of deployment 

Satisfied 

FR3.7 Could The system should let data scientists de-
ploy and test different models for users 
based on the different categories of the 
settings of the users’ homes. 

Using a combination of git tag and 
DVC make it possible to make cus-
tomized categories of deployment 

Satisfied 

 
Besides functional requirements, QAs also revisited, and the design of IntelLight+ took into consider-
ation the QAS mentioned in section 4.5.1. Figure 7-1 shows how the designed system is modifiable to 
add new algorithms for making models with the lowest cost. 
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Figure 7-1: QA Modifiability revisited in design 

7.3.3.  Project Goal Evaluation 
To validate the product, the initial questions in problem definition 2.1 are revisited to see if the system 
satisfies the main requirements recognized by this project. The system is validated if it has an apparent 
response to these questions that address the customers’ actual needs. 
 
How can data scientists use different data sources easily for context-aware lighting? In order to 
achieve a good result for detecting the context, the first step after collecting the data is to explore which 
data is useful for building models. In IntelLight+, with DVC, data scientists can tag different data 
sources for exploration. For this project, we used data from hue motion sensors to gather the needed 
features. The other data sources to experiment with are audio and motion sensors from smartphones or 
smartwatches. The feedback component helps to annotate the collected data from these sources. 
 
How can data scientists keep track of the code and data used for building the model? This is one 
of the main requirements for the pipeline. In order to satisfy this need, we use DVC for versioning the 
data so that we know which data is used for building the model. We also use MLflow to keep track of 
the data version and git commit id. Mlflow also saves the configuration file used for setting the training 
parameters and other parameters needed. 
 
How can data scientists try different models and reproduce a model? In the pipeline, we always 
use a virtual environment, and every time the train code is executed, the libraries that have been used 
for training are kept tracked and saved as an artifact. If a new ML library is going to be used, it can be 
easily added to the requirement.txt file in the repository’s root that keeps a list of all the libraries used 
in the project. Besides, the code and data version for each experiment are logged by MLflow. In this 
way, models can be easily reproduced as each experiment’s environment, code, and data are saved.  
 
What are the steps (in the system) for choosing the best parameters for the trained models? In the 
training script, the train algorithms are called by a hyperparameter tuning method. Different algorithms 
work better with different hyperparameter optimization methods. To be able to choose a set of optimal 
hyperparameters for learning algorithms, two tunning methods hyperopt, and optuna are implemented. 
The hyperparameter-tuning method can be set in the configuration.yml file.  
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8.Project Management 
 
The project management activities started from the very beginning of this PDEng project. This chapter 
elaborates on the management process of this project. It starts by describing the method deployed in 
this project. Then the project work breakdown is explained with the work breakdown structure. Next, 
project planning and scheduling are introduced.  
 

8.1    Introduction 
As described in chapter 1, the IntelLight (+) project was one of two separate joint projects of the Intel-
ligent Lighting Institute ILI from TU/e and the Signify. Being part of a collaborative project, IntelLight 
had stakeholders from different organizations and with diverse backgrounds. This contributed greatly 
to the complexity of this project. Therefore, proper project management became one of the key activities 
to steer this project in the right direction. 
 

8.2    Way of Working 
The time duration of the project was ten months. This constraint limited the number of features or user 
stories that could be implemented. The requirement analysis process explained in chapter 4 made sure 
that these features or user stories were elicited as early as possible. However, in the case of real-life 
multi-disciplinary projects like this one, requirements can be rather dynamic in nature, and the used 
project management process should be able to deal with these uncertainties. To be able to do that, a 
hybrid approach was used. This approach bought some ideas from the Waterfall methodology [1] to 
deal with the time constraint and, to some extent, a fixed set of deliverables. Several concepts from the 
Agile methodology were also used to deal with the dynamic nature of the project. 
 
In the whole period of the project, as is mentioned in section 8.6, we had weekly meetings. The system 
was designed and developed using Scrum methodology. Scrum [20] is a lightweight process framework 
that is a subset of the agile methodology. Scrum defines a set of roles, meetings, and fixed-length iter-
ations known as sprints. Each sprint can have a duration of one to four weeks.  
 
Figure 8-1 depicts the key activities and roles of a Scrum process. A product backlog is a prioritized list 
of work for the development team that is derived from the roadmap and its requirements. The most 
important items are shown at the top of the product backlog, so the team knows what to deliver first. 
Sprint planning aims to define what can be delivered in the sprint and how that work will be achieved. 
The sprint backlog is a list of tasks identified by the Scrum team to be completed during the Scrum 
sprint.  

 
Figure 8-1: The scrum process 
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8.3    Work-Breakdown Structure (WBS) 
In this section, the Work-Breakdown Structure of the project is discussed. The project is divided up into 
four major categories: Planning and Management, Analysis, Design & Implementation, and Documen-
tation. Figure 8-2 shows the detailed activities conducted in each category. 
 

 
Figure 8-2: Work-breakdown structure of the project 

 

8.4    Project Planning and Scheduling  
In the whole period of the project, we had weekly meetings. The system was designed and developed 
using scrum methodology. Figure 8-3 shows the roadmap of the IntelLight + project with different 
phases. 

 
Figure 8-3: Project roadmap 
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8.5    Project Timeline 
The project timeline helped not only to evaluate project progress but also to visualize the impact of one 
activity on others. The project timeline made sure that the domain analysis and requirement elicitation 
phases were scheduled before any implementation-related activity.  
 
The project plan was tracked using Microsoft Excel and was modified iteratively. The final timeline is 
shown in Figure 8-4. It is divided into four primary activities: Define, Design, Develop, and Deliver. 
 
 

 
Figure 8-4: Project timeline in Microsoft Excel 

8.6    Communication Plan 
In order to monitor and regulate the project progress and direction, it is important to set up a clear and 
regular communication channel to avoid any misunderstanding and encourage early feedback. Most of 
the meetings that took place during the execution of this project can be divided into three different 
categories: weekly update meetings, monthly update meetings, and other meetings that were organized 
on demand. 

8.6.1.  Weekly Update Meetings 
These meetings were scheduled at the very beginning of the IntelLight (+) project to occur every week 
on Friday until the end of the project. The usual participants were the company supervisors, the TU/e 
supervisor, and the PDEng trainee. The purpose of these meetings was to demonstrate incremental and 
small updates to the major stakeholders. These updates included the tasks that had been completed in 
the previous week, any blocking issues, and plans for the upcoming week. The weekly meetings made 
sure that the project was running in the right direction and provided the option to spot any misunder-
standing as early as possible. These meetings played the role of the sprint review in the define and the 
delivery phase of the project. A demonstration was provided during the weekly meeting for the weekly 
task. Feedback was reviewed, evaluated, confirmed, and implemented when feasible. 
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8.6.2.  Project Steering Group Meetings 
The Project Steering Group (PSG) group consisted of major project stakeholders, including the PDEng 
trainee. During the project, the PSG had monthly meetings, typically on the last Friday of the respective 
month. The main purpose of these meetings was to encourage feedback from the stakeholders. Typi-
cally, these meetings started with a demonstration where the trainee explained the major features that 
were implemented since the previous PSG meeting. This was followed by a high-level discussion about 
the design and the architecture of the system, requirements as well as risks identified by the PDEng 
trainee. A high-level plan for the coming month was also discussed towards the end of these meetings. 

8.6.3.  On-Demand Meetings 
Besides the regular weekly and monthly meetings, several other meetings took place during the execu-
tion of the IntelLight (+) project. Although these meetings were not regular and mostly scheduled on-
demand, they played a key role in communicating with the key stakeholders and in understanding and 
implementing the project context. 

8.6.4.  Communication Medium 
Due to the COVID-19 pandemic, everyone was advised to work from home if possible, and all academic 
activities were moved online. Microsoft Teams was chosen for all meetings as well as discussions re-
motely. The confluence was set as the preferred way for exchanging digital media (e.g., documents, 
images). The Jira was set for tracking the progress of user stories. 

8.6.5.  Performance Evaluation 
The performance of the trainee was evaluated based on various criteria by the project supervisors, and 
feedback was provided. The feedback helped the trainee to identify improvement points and steer the 
project in the right direction. 
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9. Conclusions 
 
This chapter elaborates on the results achieved, delivered artifacts, and recommendations for future 
work. 
 

9.1    Results 
The scope of this project included the automation of the parts of the ML lifecycle. The goal was to 
automate the process of producing models, getting feedback from users, and deploying the qualified 
models to target environments. During this project, an ML pipeline was developed where provided 
researchers and data scientists an infrastructure to build the models, investigate them visually on web-
based UI, and use a shared repository to share the qualified ones to be deployed in different environ-
ments.  
 
IntelLight+ provides a web-based UI for analyzing the result of experiments for different activities. It 
allows data scientists to use different algorithms with different sets of parameters and hyperparameters. 
For each of the activities, the web-based UI will list the best model of each algorithm based on hyperpa-
rameter tuning. Then the researcher can choose the models for each activity and deploy them based on 
the guidelines to the target environment(cloud, raspberry). 
 
The major goal of this project was to develop a standardized platform that would allow data scientists 
to develop ML algorithms, compare them and test them in the target environments without the need to 
hassle all the works not related to developing the ML models manually. 

9.2    Delivered Artifacts 
The following artifacts are delivered to the stakeholders after successfully completing this PDEng grad-
uation project. Artifacts are delivered to the clients digitally via the git repository, the confluence, and 
email attachments. 

• IntelLight infrastructure source code: This refers to all the source codes produced during the 
PDEng project by the trainee and representatives from Signify. The codes can be found in the 
Bitbucket repository https://www.code.dtf.lighting.com/projects/INTLT/repos/activityrecogni-
tion/browse 

• Deployment instructions: The instruction to deploy models on the different environments 
alongside a guideline for the repository, data versioning, code merge request process, and pro-
ject code style are gathered in the documents directory of the project repository. 

• Video demonstration and presentation slides: A video was produced and delivered to the 
customer for demonstration purposes. This video can be found on the SharePoint of the project 
on university servers. This screen recording shows how a data scientist would use the Intel-
Light+ infrastructure to experiment on the algorithms and set the parameters and hyperparam-
eters for the training. The web-based visualization and deployment will also be covered. Be-
sides the video, presentation slides for the final presentation and progress meeting are also in-
cluded in the confluence and Sharepoint. 

• Project report: It refers to this PDEng graduation report. This report not only explains the 
activities and designs involved in the development of the IntelLight+ system but also recom-
mendations for improving and extending it. 

 

9.3    Recommendations and future work 
One of the main features of the IntelLight+ system is automating the ML pipeline by keeping track of 
the steps in the lifecycle of the ML process. In section 4.5 we saw that one of the important QAs of the 
IntelLight+ system is flexibility. This allows adding new features to the ML pipeline easily. Currently, 
the pipeline uses the mlflow library to keep track of the experiments in the local machines that are 

https://www.code.dtf.lighting.com/projects/INTLT/repos/activityrecognition/browse
https://www.code.dtf.lighting.com/projects/INTLT/repos/activityrecognition/browse
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running the ML pipeline. This can easily be configured to save the experiments in a shared cloud envi-
ronment in case a team of data scientists is going to work on the project. The pipeline itself can also be 
integrated into all major cloud providers as the mlflow library is backed by Databricks. Databricks is 
fully integrated and supported in AWS, Azure, and GCP. 
 
One other feature that can be added to the current pipeline is to deploy each of the created models with 
their specific virtual environment that contains all the libraries required to run that model for prediction. 
Currently, when running the training experiments for each of the trained models, a configuration file 
that includes the libraries that have been used for building the model is also created. The next improve-
ment can be making a virtual environment for the model from the configuration file and deploy each 
model to an independent endpoint with its specific environment. This feature is especially useful for 
context recognition in the cloud. 
 
Finally, IntelLight+ is an MLOps project that helps simplify the management, logistics, and deployment 
of machine learning models for machine learning researchers. In order to reach the desired outcome, it 
is necessary to use data pipelines to identify the data sources needed to solve a business problem. A 
data pipeline is needed to make that data ready for analytics, the analytics step(s), and the delivery of 
results to the ML scientists or apps that will use them. This means incorporating big data analytics tools 
like Spark and Hadoop. 
  



Eindhoven University of Technology 
 

54 
 

10. Project Retrospective 
 
This chapter discusses my gained experience during the period of the IntelLight+ project. This is a 
reflection on my technical and organizational lessons from the PDEng graduation project. 
 

10.1    Introduction 
This graduation project assignment was a very challenging and fulfilling experience for me. During the 
past ten months, my technical and non-technical skills improved. This project also provided me the 
perfect opportunity to practice the skills that we gained through various workshops, courses, and train-
ing projects during the first year of my PDEng. 
 
This project gave me an opportunity to broaden my horizon with technical skills in the data domain. 
The IntelLight+ project deals with data as input and generates the ML models and their measurements. 
Also, other skills that are related to software development were exercised, such as managing and plan-
ning a project, communicating with stakeholders, and analyzing results effectively. 
 

10.2    Technical lessons 
Working in the lighting domain was a completely new experience for me. Therefore, understanding the 
domain was the first major challenge to deal with. Tips and feedback from my TU/e as well as company 
supervisors were crucial for me to be able to navigate through this unfamiliar landscape. To identify 
misconceptions and knowledge gaps, I used various diagrams to communicate my ideas. This way, I 
was able to gather enough information to move forward with the technical design and implementation. 
 
At the beginning of implementing the project, I investigated some of the domain technologies to see 
how they could address the project needs. During that time, It became confusing as, on the one hand, 
there was a lot of tutorials that claimed to teach what we were looking for, such as ML pipeline, tracking 
experiments, and deployment with a short tutorial, and on the other hand, we could hear a lot that ML 
pipeline, model deployment is very complicated. In my idea, people often use the same terms while 
they mean different concepts or implementing different levels of features of a single idea. 
 
Therefore, specifying the requirements and validating them based on the use cases was important to 
realize what technologies are really needed when we are talking about a concept. Based on meetings 
with stakeholders, the perception of actual requirements for the project and the required technology 
stack evolved gradually. One important lesson I learned is not to make assumptions about the infra-
structure that will be available. First, talk to stakeholders to clarify the aim of a requirement. Then use 
the main requirements to choose your technology options. 
 
My work was to design and implement a machine learning pipeline for building different models. On 
the other hand, It was needed to deploy these models in different environments. The technologies in 
this domain are still evolving radically, and I was/am inexperienced with many of them. In many in-
stances, I spent a long time trying to figure out a simple thing that should have taken no time. I realized 
that I could do two things to encounter this: Ask my colleagues or learn myself. Both are valid, but as 
the domain is not yet very mature, it might be more efficient to search first and then look for options 
and then ask colleagues' opinions. I tried to survey the technologies we can use to build the ML Pipeline 
and then look up the pros and cons of available choices. I gathered the options together, and I called 
upon stakeholders from Signify who had more experience. Finally, based on the requirements of the 
project, we agreed on a technology.  
 
My takeaway from this experience is when working within a new domain and encountering a problem 
that my experience is limited in, do the following in order: 
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- Gain basic knowledge in the domain. 
- When encountering a problem, look up and use the documentation and forums to figure things out 
yourself. 
- If this takes a long time, ask your local expert. This should not be limited to your team or group. 
Anyone with expertise can have an excellent benefit for a small amount of their time. 
 

10.3    Organizational lessons 
IntelLight+ project was my first experience in a system architect and designer role. In addition, it was 
also my first project in a large international company. When the project started, we had our first meeting 
three weeks after the project's start date due to restructuring in Signify. After the first meeting, my 
observation was that there was a gap between our understanding of the project's domain with Signify 
stakeholders. In the beginning, this was quite challenging because my position in this organization was 
not yet clear. Luckily, after some time, my relevant stakeholder became clear. I communicated with 
main stakeholders from Signify to make it clear that the PDEng design project is a separate project from 
the research project. In addition, my takeaway was that one could significantly benefit from the con-
nections of colleagues. For example, I had to get in touch with privacy/security officers and IoT soft-
ware engineers. Instead of going around looking for them myself, I asked my supervisor, who already 
knew whom to contact. 
 
After knowing the main stakeholders, the project phases were defined to plan the progress of the project 
period. These phases included define, design, develop, and deliver. The first phase was more about 
reading the project proposal and talking with different stakeholders to realize their expectations and 
more details about the project's domain.  
 
This project was a combination of the software design problem and intelligence system in practice. At 
first, like many other projects, which are a combination of research and industrial case, my contribution 
was uncertain and lacked domain expertise. I knew artificial intelligence before the start of this project. 
This project started with a research project. It was unclear that this project could answer the which of 
customer needs and which of them can be answered by the research project. Hence, formulating the 
requirements was not an easy process. The main point of reflection for me is that better preparation for 
the scope of each project was needed. Having a better view of the goal of the projects and how they 
complete each other is not only important but necessary. Of course, you can never predict all things, so 
a healthy open-minded attitude towards this fact is also necessary. On the other hand, persuading the 
stakeholders that in order to apply ML algorithms, an Ml pipeline can guide through a valuable result 
was challenging. It was also engaging in the sense that It challenged me to prove the expected results 
as soon as possible to be sure about the validity of the envisioned roadmap. 
 
Being part of the scientists’ team was an honor and challenging at the same time. During various team 
meetings and presentations, my role required me to find a common way of communicating that should 
work for everyone. Throughout the execution of the project, I shared my design ideas with the stake-
holders and received their feedback. In other words, by mentioning the challenges and difficulties, my 
aim was to update them for the roadmap and plan and get feedback from them. In my opinion, this 
experience will help me become a better engineer and team player. 
 
One organizational decision in this project was to use a combination of scrum sprints. We made a scrum 
team of me and direct stakeholders (data scientist and researcher). During the design and development 
phase, other engineers from Signify were occasionally added to the scrum team. In the last phase, we 
turned back to traditional software methodology as we were mainly focused on wrapping up the project 
and deliver the product rather than adding new features. My gained lesson learned from this experience 
is not to become biased to a specific software methodology. Instead, see which methodology serves you 
and your team better in your project. 
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Appendix A.  Installing and Running the IntelLight+ 
Project. 

  
 
In order to install the ML pipeline, after getting the code by git clone 
https://www.code.dtf.lighting.com/scm/intlt/activityrecognition.git 
from Signify’ Bitbucket server, it is needed to do the following steps. 

Installation 
1. Create & activate the conda environment using the environment.yml file at the root of the project. 
This takes quite some time to install all required libraries in conda environment. (you need first to 
install the anaconda) 
 
conda env create -f environment.yml  
 
activate mlflow-env  
Or 
conda activate mlflow-env  
 
mlflow-env is the name of the virtual environment in the environment.yml file: name: 
mlflow-env 
 
2. You can set the conda virtual environment as the default running environment in your IDE. 
 
Pycharm: Go to files > settings, search for project interpreter, open it, click on the gear 
button and choose the conda environment you created. 
 
Spyder: *) open command tool and activate virtual environment *) install spyder-kernel: 'pip install 
spyder-kernels==1.9.1' *) in spyder: Tools -> Preferences -> Python interpreter: select 
the python.exe that is present in venv (you can find the path by entering in command prompt: which 
python 
 
3. Make importing files work together. In the root directory, run: 
pip install -e .  
 
After running this command *.eff-info folder will be built. intellight_project.egg-info 

Show experiments 
First, train models by running the train.py file, which is inside the src directory. 
 
python src/train.py  
 
The models and metrics are already logged via MLflow in train.py and will be saved in mlruns 
folder. 
 
After that, a mlflow experiment is created. To visualize the experiment in mlflow web-based UI, run 
the following command: 
mlflow ui  
 
The web-based application will go up on 127.0.0.1:5000.  

https://www.code.dtf.lighting.com/scm/intlt/activityrecognition.git
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Appendix B.  IntelLight+ Frontend Pages.  
 
 
 
 

 
Figure B-1: List of experiments for dinner activity 

 
 
 
 
 
 

 
Figure B-2: Detail of parameters, metrics, and code version of each experiment  
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Figure 0-3: Artifacts, model, and environment files saved with each experiment 
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Appendix C.  IntelLight+ Deployment Commands.  
 
 
To deploy the models from the development environment to the inference environment, we need to do 
the following initial steps in both environments: 

- Clone the project from the bitbucket repository: 
 git clone https://www.code.dtf.lighting.com/scm/intlt/activi-
tyrecognition.git 

- Install Python3.7+ 
- Install and configure aws cli. (we are using aws s3 as shared storage.) 

 

Make a model placeholder and put chosen models Remote Storage 
1. Run the training experiments. This will generate new models in the models/ directory. 
 
2.  Use mlflow ui command to see the result of experiments and keep the models that you want to 

deploy in the models/ directory 
 
3.  Track the changes in the models/ directory in the project, using: 
 
dvc add models 
 
DVC stores information about the added model files (or a directory) in a special .dvc file named mod-
els.dvc, a small text file with a human-readable format. This file can be easily versioned like source 
code with Git as a placeholder for the worth to deploy models (which will be added to.gitignore). 
 
4. Create a placeholder of models with git tag: 
 
git add models.dvc  
git commit -m "New models are created" 
git tag -a V1.3-ml -m "explain the models change" 
git push origin V1.3-ml 
 
5. Send the models to shared storage in aws cli (the shared storage is configurable and can be any 

storage place): 
 

dvc push models 
 
You can check the files that will be pushed before executing dvc push models and after run-
ning dvc add models by the following command: 
 
dvc status -c 
 

Retrieving and switching between models versions in the target environment 
 
1. Check the available versions of models: 
 
git tag -l "*-ml" 
 
2. The regular workflow is to use git checkout first to switch the .dvc file, and then run dvc 

fetch and dvc checkout to sync data: 

https://www.code.dtf.lighting.com/scm/intlt/activityrecognition.git
https://www.code.dtf.lighting.com/scm/intlt/activityrecognition.git
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git checkout tags/V1.7-ml models.dvc 
dvc fetch 
dvc checkout 
 
3. In case your dvc cache is updated, you can directly download the models in the project's 

root: 
 
dvc pull models.dvc  
 
 
 
*Raspberry Pi: you need to make a virtual environment and install the packages from pi_require-
ments.txt in order to deploy the models 
 
pip3 install -r pi_requirements.txt 
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