

IntelLight+

Citation for published version (APA):
Mahdian, H. (2021). IntelLight+: Designing and Developing of Context-Aware Lighting Solution. Technische
Universiteit Eindhoven.

Document status and date:
Published: 01/10/2021

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/24c49456-3386-48f7-bf29-06592c8e9022

PDEng SOFTWARE TECHNOLOGY

PDEng THESIS REPORT

IntelLight+: Designing and Developing of
Context-Aware Lighting Solution

Hossein Mahdian
October 2021
Department of Mathematics & Computer Science

IntelLight+: Designing and Developing of Context-Aware Lighting
Solution

Hossein Mahdian

October 2021

Eindhoven University of Technology
Stan Ackermans Institute – Software Technology

PDEng Report: 2021/076

Confidentiality Status: Public

Partners

Signify, Eindhoven Engine Eindhoven University of Technology

Steering
Group

Dr. Tanir Ozcelebi
Dr. Fetze Pijlman
Dr. Bernt Meerbeek PDEng
Dr. Dzmitry Aliakseyeu

Date October 2021

Composition of the Thesis Evaluation Committee:

Chair: Dr. Tanir Ozcelebi

Members: Dr. Fetze Pijlman

BSc Mohamed Elkady

Dr. Bernt Meerbeek PDEng

Dr. Dzmitry Aliakseyeu

Dr. Gijs Dubbelman

The design that is described in this report has been carried out in accordance
with the rules of the TU/e Code of Scientific Conduct.

Contact Address Eindhoven University of Technology

Department of Mathematics and Computer Science
Software Technology
MF 5.080 A
P.O. Box 513
NL-5600 MB
Eindhoven, The Netherlands
+31 402744334

Partnership This project was supported by Eindhoven University of Technology and Eindho-

ven Engine.

Published by Eindhoven University of Technology

Stan Ackermans Institute

PDEng-report 2021/076

Preferred
reference

IntelLight+: Designing and Developing of Context-Aware Lighting Solution. The
Eindhoven University of Technology, PDEng Report PDEng 2021/076, October
2021

Abstract The Intelligent Lighting Institute (ILI), part of Eindhoven University of Technol-

ogy (TU/e), and Signify aim to address future challenges for intelligent lighting
solutions. They aim to set the best light setting for different indoor activities using
machine learning (ML) approaches. The Philips Hue is the product of Signify, an
intelligent lighting pilot in this project. The result of this project enables adding
the new context-aware lighting feature to the Hue system. The IntelLight+ system
provides the infrastructure for developing ML algorithms needed to infer users’
context to set appropriate light settings based on users’ activities, needs, and pref-
erences. IntelLight+ takes care of the ML life cycle for the intelligent lighting
system.

This report elaborates on the context and technical needs for the IntelLight+ sys-
tem by analyzing the problem domain, formulating the requirements, and describ-
ing the intended use cases. It explores the solution domain and proposes an archi-
tecture that emerges from the feasibility study and requirement analysis, followed
by the identification of components and their integration. The project manage-
ment, verification, and validation processes are also described in this document.

Keywords PDEng, Software Technology, TU/e, Context-aware lighting, Activity Detection,

Intelligent Lighting, Machine Learning (ML), ML pipeline, MLOps, IoT

Disclaimer
Endorsement

Reference herein to any specific commercial products, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the Eindhoven Univer-
sity of Technology or Signify. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the Eindhoven University of
Technology or Signify and shall not be used for advertising or product endorse-
ment purposes.

Disclaimer
Liability

While every effort will be made to ensure that the information contained within
this report is accurate and up to date, Eindhoven University of Technology makes
no warranty, representation, or undertaking whether expressed or implied, nor

does it assume any legal liability, whether direct or indirect, or responsibility for
the accuracy, completeness, or usefulness of any information.

Trademarks Product and company names mentioned herein may be trademarks and/or service

marks of their respective owners. We use these names without any particular en-
dorsement or with the intent to infringe the copyright of the respective owners.

Copyright Copyright © 2021. The Eindhoven University of Technology. All rights reserved.
 No part of the material protected by this copyright notice may be reproduced,

modified, or redistributed in any form or by any means, electronic or mechanical,
including photocopying, recording, or by any information storage or retrieval sys-
tem, without the prior written permission of the Eindhoven University of Tech-
nology and Signify.

i

Foreword

In our drive to deliver the best lighting experience to our customers, the role of intelligent lighting is
indisputable. Intelligent lighting simplifies user interactions with the system, and it enables continuous
automatic adjustments to the customer's needs. Classification of activities is an essential ingredient in
the intelligent lighting program, which lead to the birth of the IntelLight+ project.

Classification of activities that take place at home is a challenge as information from sensors is limited,
and the diversity among homes is large. If one is able to solve that challenge, then another question is
how classifications with finite accuracy can be used to deliver the right type of lighting. In order to
address these challenges, there is a need for a platform on which experiments can be run, experiments
that contain Machine Learning algorithms that translate a variety of sensor events into new lighting
scenes. This platform we call a machine learning pipeline.

The assignment of Hossein was to develop this machine learning pipeline for experimentation of various
algorithms. Developing a platform for experimentation of algorithms for use cases is complex when use
cases and algorithms themselves are being developed. A new use case modifies inputs, outputs, and
metrics, and a new algorithm may need to be trained with a different training strategy. Hossein has
helped us in identifying the commonalities, and he has created a pipeline on which experiments are
currently being executed. Results from these experiments will enable us to set the next step in delivering
the best lighting experience.

Fetze Pijlman

September the 29th, 2021

Eindhoven University of Technology

ii

iii

Preface

The Professional Doctorate in Engineering (PDEng) in Software Technology (ST) at the Eindho-
ven University of Technology (TU/e) is a two-year technological designer program to prepare a
candidate for proficiency in high-tech inter-disciplinary projects. At the final stage of the program,
several design projects are proposed by various companies, and candidates are elected to take on
a ten-month-long project based on their interest and fitting criteria.

This report describes the final PDEng project supervised by Dr. Fetze Pijlman on behalf of Signify
and proposed and guided by Dr. Tanir Ozcelebi as the TU/e supervisor. The purpose of the project
is to design a system that can meet the researchers' and data scientists’ needs in having an infra-
structure for building context recognition models for intelligent lighting. This project gives the
researchers a tool for comparing and visualizing the performance of various solutions, deploying
the selected models, monitoring the model's performance, and optimizing the models based on
the received feedback.

The report covers the problem analysis, explores the domain where the problem is formulated,
specifies the requirements of the system of interest, presents the design criteria and solution can-
didates, describes the implemented solution and its evolutionary development process, and sum-
marizes the outcomes of using the implemented system.

Hossein Mahdian

October 2021

Eindhoven University of Technology

iv

v

Acknowledgments

I would like to express my gratitude to everyone who supported and guided me through this project.
Their contributions were essential for successfully completing this project. I want to especially thank
my supervisor Fetze Pijlman who shared his ideas and guided me through this project. Your feedback
regarding the implementation was essential for successfully completing this PDEng graduation project.
Moreover, I absolutely enjoyed our discussions regarding various topics, and it was a pleasure hearing
your thoughts as well as being able to share mine.

I am very thankful to my supervisor Tanir Ozcelebi. As an expert in the intelligent IoT domain, you
have helped me understand the domain concepts and guided me through this unfamiliar terrain. I really
appreciate your feedback and support not just in the technical but also with the non-technical aspects of
the project. Your collaboration was absolutely essential for successfully completing this project.

I would like to express my heartfelt gratitude to my PDEng Software Technology program director,
Yanja Dajsuren. I learned many things from your guidance and feedbacks throughout my PDEng years.
I believe that all your advice will help me further in my career.

I am truly thankful to my other company supervisors Bernt Meerbeek and Dzmitry Aliakseyeu. I abso-
lutely appreciate your critical attitude. You always asked the right questions that were essential to steer
the project in the right direction. I really enjoyed and learned a lot from the discussions we had.

I am thankful to all my colleagues from PDEng program for your feedback and shared experiences
during the last two years. Together we solved many challenges and learned a lot. I would like to espe-
cially thank PDEng ST secretary Desiree van Oorschot for her logistical support throughout the PDEng
program.

Most importantly, I want to express my deepest and most sincere gratitude to my family. Throughout
my PDEng, you remained by my side and provided unconditional support, encouragement, joy, as well
as love. Moreover, I am eternally grateful to my parents and my sisters in Iran for their continuous
support. Your trust, support, and encouragement is the blessing of my life.

Lastly, I like to express my gratitude to all the wonderful teachers who taught me a lesson—the teachers
who brought the light of knowledge and wisdom to human lives. Behind the scenes, many different
aspects of our lives are influenced by human teachers, researchers, explorers, and the ones yet to come.

Eindhoven University of Technology

vi

vii

Executive Summary

Scientists who research perception studies psychology, chronobiology, and lighting design, looking for
the right light setting for different events and activities. In case of knowing the context of the environ-
ment, it is possible to study the appliance of related light settings to specific contexts. With the advances
in data science and ML, it has become feasible to study the possibility of lighting devices that can setups
the light setting based on context recognition. The added ML module to the lighting solution uses the
data from the environment and user to detect the context.

Signify grew from a lighting equipment provider to a solution provider company in the lighting busi-
ness. As a lighting solution provider, Signify delivers software-based solutions as a managed service to
its customers. In this path, intelligent lighting plays an essential role in moving current solutions towards
the next step.

As a step forward in enabling Signify to provide managed services for intelligent lighting, the IntelLight
project co-initiated with TU/e. The focus of the IntelLight project is delivering high-resolution, robust,
flexible, and privacy-preserving algorithms for context recognition. This project, IntelLight+, advances
the IntelLight project by providing infrastructure to explore the ML approaches. IntelLight+ is designed
and implemented to automize the process of ML by considering the extendability and flexibility in
mind. By flexibility, it allows employing a wide range of training algorithms, libraries, and methods for
context recognition. By extendability, it provides an API that can be implemented for adding new algo-
rithms for context detection.

One of the constraints originates from the fact that the model training process is poorly reproducible.
The training is an iterative process, which means data scientists launch several times the same run with
slightly different parameters/data / preprocessing. If they rely on their memory to compare these runs,
they will likely struggle to remember the best one. IntelLight+ visualizes the ML experiments with
different parameters, data, and the code version that has been used to produce the model.

Besides making the experiments reproducible, IntelLight+ allows data scientists to develop models in
local machines and cloud then deploy the models on-premise or cloud by a shared storage. After de-
ployment, it allows applying the received feedback from users. Besides the main parts of the ML pipe-
line, a software component was developed to enable giving feedback regarding the quality of the de-
ployed model.

During the IntelLight+ project, we validated the requirements with discussion with main stakeholders
and the developed system verified by the direct stakeholders and running demos. The IntelLight+ in-
frastructure is ready to be used to help the data scientists manage and visualize the data, hyper-parameter
tuning, and code resources used in experiments. It also covers deployment models in different target
environments in an easy and convenient way.

Eindhoven University of Technology

viii

ix

Glossary

API Application Programming Interface
AWS Amazon Web Services
CI Continuous Integration
CD Continuous Delivery
CT Continuous Training
DevOps Development Operations
DVC Data Version Control
FR Functional Requirement
GCP Google Cloud Platform
IDE Integrated Development Environment
ILI Intelligent Lighting Institute
IoT Internet Of Things
IP Internet Protocol
IRIS Interconnected Resource-aware Intelligent Systems
JSON JavaScript Object Notation
LED Light Emitting Diode
ML Machine Learning
MLOps Machine learning operations
PEP Python Enhancement Proposal
PhD Doctor of Philosophy
PDEng Professional Doctorate in Engineering
PIR Passive infrared
PSG Project Steering Group
QA Quality Attribute
QAS Quality Attribute Scenarios
R&D Research and Development
REST Representational State Transfer
SAI Stan Ackermans Institute
ST Software Technology
TU/e Eindhoven University of Technology
YAML Yet Another Markup Language

Eindhoven University of Technology

x

xi

Table of Contents

Foreword ... i

Preface ... iii

Acknowledgments ... v

Executive Summary .. vii

Glossary .. ix

Table of Contents ... xi

List of Figures .. xv

List of Tables ... xvii

1. Introduction ... 1

1.1 Project Partners ... 1
1.1.1. Signify ... 1
1.1.2. TU/e Intelligent Lighting Institute (ILI) .. 2

1.2 Project Context ... 2

1.3 Objective and Motivation ... 2

1.4 Outline .. 3

2. Problem Analysis ... 4

2.1 Problem Definition ... 4

2.2 Project Goals .. 4

2.3 Product Roadmap ... 5
2.3.1. Philips Hue .. 5
2.3.2. Lighting Evolution ... 6

2.4 Technology Roadmap ... 6
2.4.1. Learning approaches .. 7
2.4.2. ML pipeline ... 8

2.5 Project Scope, Assumptions, and Constraints .. 10

2.6 Stakeholder Analysis .. 11

3. Feasibility Analysis .. 13

3.1 Challenges .. 13

3.2 Risks.. 14

4. Requirements and Use Cases .. 16

4.1 Introduction .. 16

4.2 System requirements ... 16

4.3 Use cases .. 16

Eindhoven University of Technology

xii

4.4 Functional Requirements .. 20
4.4.1. General Functional Requirements ... 20
4.4.2. Software Component Functional Requirements .. 21
4.4.3. ML Pipeline Functional Requirements .. 21

4.5 Non-Functional Requirements .. 22
4.5.1. Quality Attribute Scenarios (QAS) .. 23

4.6 Requirements traceability matrix ... 25

5. System Architecture and Design .. 26

5.1 Design Principles ... 26

5.2 High-level Architecture .. 28
5.2.1. ML Pipeline ... 29
5.2.2. Feedback Component .. 30
5.2.3. Deployment.. 30

5.3 Architectural Views .. 31
5.3.1. Logical View ... 31
5.3.2. Process View ... 34
5.3.3. Development View .. 35
5.3.4. Physical View .. 36

6. Implementation .. 37

6.1 Introduction .. 37

6.2 Technology choices .. 37
6.2.1. Tracking the ML training ... 38
6.2.2. Data Versioning ... 38

6.3 Data gathering ... 39

6.4 Model building ... 41

6.5 Model deployment .. 43

7. Verification & Validation .. 44

7.1 Testing and quality assurance in ML systems .. 44

7.2 Verification ... 44
7.2.1. Unit testing .. 44
7.2.2. Code consistency checking .. 45

7.3 Validation ... 45
7.3.1. Regular Stakeholder Feedback .. 45
7.3.2. Requirements status ... 45
7.3.3. Project Goal Evaluation ... 47

8. Project Management ... 48

8.1 Introduction .. 48

8.2 Way of Working .. 48

8.3 Work-Breakdown Structure (WBS) ... 49

8.4 Project Planning and Scheduling ... 49

8.5 Project Timeline ... 50

8.6 Communication Plan .. 50

xiii

8.6.1. Weekly Update Meetings .. 50
8.6.2. Project Steering Group Meetings ... 51
8.6.3. On-Demand Meetings .. 51
8.6.4. Communication Medium ... 51
8.6.5. Performance Evaluation ... 51

9. Conclusions ... 52

9.1 Results .. 52

9.2 Delivered Artifacts.. 52

9.3 Recommendations and future work .. 52

10. Project Retrospective ... 54

10.1 Introduction .. 54

10.2 Technical lessons .. 54

10.3 Organizational lessons ... 55

References .. 56

Appendix A. Installing and Running the IntelLight+ Project. ... 57

Appendix B. IntelLight+ Frontend Pages. ... 58

Appendix C. IntelLight+ Deployment Commands. ... 60

About the Author .. 62

Eindhoven University of Technology

xiv

xv

List of Figures

Figure 2-1: Hue system high-level overview [5] .. 5
Figure 2-2: Intelligent lighting supervised learning framework ... 7
Figure 2-3: Intelligent lighting instance-based learning ... 8
Figure 2-4: Intelligent lighting online learning framework .. 8
Figure 2-5: Software development workflow ... 9
Figure 2-6: Data science workflow ... 9
Figure 2-7: Data science project artifacts[15] ... 10
Figure 4-1: Use case for the homeowner .. 17
Figure 4-2: Use case for the data scientist .. 19
Figure 5-1: Violation of SRP .. 26
Figure 5-2: Refactoring the design following OCP .. 27
Figure 5-3: ML Lifecycle .. 29
Figure 5-4: Management of different sources in ML pipeline .. 29
Figure 5-5: Feedback component design .. 30
Figure 5-6: Deployment options ... 31
Figure 5-7: ML training UML class diagram .. 32
Figure 5-8: Adapter design pattern enables using third party training libraries for pipeline 32
Figure 5-9: Adapter design pattern ... 33
Figure 5-10: Facade pattern for prediction pipeline .. 33
Figure 5-11: UML activity diagram .. 34
Figure 5-12: Data gathering and Notification sequence diagram ... 35
Figure 5-13: Component Diagram .. 35
Figure 5-14: IntelLight+ deployment diagram .. 36
Figure 6-1: Data version control to version large data sets ... 39
Figure 6-2: Context feedback app ... 40
Figure 6-3: Pro-active mode feedback .. 40
Figure 6-4: Feedback by notification .. 40
Figure 6-5: Repository root ... 41
Figure 6-6: Configuration file to build anaconda virtual environment ... 41
Figure 6-7: Anaconda configuration file ... 42
Figure 6-8: Web-based UI to visualize the ML experiments .. 42
Figure 6-9: Resulted artifact for each of the experiments ... 42
Figure 6-10: Model deployment by DVC ... 43
Figure 6-11: deploy models using a shared storage .. 43
Figure 7-1: QA Modifiability revisited in design ... 47
Figure 8-1: The scrum process .. 48
Figure 8-2: Work-breakdown structure of the project .. 49
Figure 8-3: Project roadmap ... 49
Figure 8-4: Project timeline in Microsoft Excel ... 50
Figure B-1: List of experiments for dinner activity .. 58
Figure B-2: Detail of parameters, metrics, and code version of each experiment 58
Figure B-3: Artifacts, model, and environment files saved with each experiment 59

https://tuenl-my.sharepoint.com/personal/h_mahdian_tue_nl/Documents/IntelLight/Final%20Report/Hossein-Mahdian-PDEng-Final-Report.docx#_Toc83893531
https://tuenl-my.sharepoint.com/personal/h_mahdian_tue_nl/Documents/IntelLight/Final%20Report/Hossein-Mahdian-PDEng-Final-Report.docx#_Toc83893532

Eindhoven University of Technology

xvi

xvii

List of Tables

Table 2-1: Lighting solution generations .. 6
Table 2-2: The identified stakeholders for this project ... 11
Table 3-1: Risks analysis .. 14
Table 4-1: Use cases that the homeowner is involved in .. 17
Table 4-2: ML pipeline use cases ... 19
Table 4-3: General functional requirement ... 20
Table 4-4: Feedback component module functional requirements ... 21
Table 4-5: ML pipeline functional requirements .. 21
Table 4-6: Quality Attributes .. 22
Table 4-7: Reproducibility QAS ... 23
Table 4-8: Modifiability QAS ... 24
Table 4-9: Extensibility QAS for the data scientist .. 24
Table 4-10: Extensibility QAS for the homeowner .. 24
Table 4-11: Flexibility QAS ... 24
Table 4-12: User story - requirement relations ... 25
Table 6-1: ML pipeline technologies survey .. 37
Table 7-1: Unit tests for testing the ML pipeline .. 45
Table 7-2: Statuses of functional requirements after implementation .. 46

Eindhoven University of Technology

xviii

1

1. Introduction

Over the past centuries, we created artificially illuminated environments where we live, work, rest, and
refresh. People depend on artificial lighting in their environments to continue such activities. The light-
ing plays an essential role in the effects of an atmosphere on people’s mood, well-being, and on their
behavior. However, we lose natural light and its positive qualities for being exposed to the same light
throughout our lives. Apart from that, light-sensing is related to visual perception, which varies from
person to person.

In order to understand and evaluate how well the lighting system can support its users with varying
interests, needs, and preferences, one needs to focus on specific scenarios. In this project, we focus on
particular lighting scenarios that take place at home space. The lighting system’s users may do different
activities such as work, have dinner with family, refresh, etc., within the home environment.

This chapter presents the general context of this project. Section 1.1 gives a brief description of Signify
and Intelligent Lighting Institute (ILI) of Eindhoven University of Technology (TU/e) as the initiators
of this project. Section 1.2 describes the generic context of the project. In section 1.3, the objective and
the motivation of this assignment are introduced. Finally, section 1.4 presents the overall structure of
the document.

1.1 Project Partners
TU/e and Signify have a long history of collaboration in R&D and technological innovations for a
considerable amount of time. During this time, the collaboration has already led to several transfers of
the outcome of R&D, which successfully transformed into meaningful technological innovations that
subsequently found their ways into new/modified methods for designing, developing, manufacturing
products/services.

The assignment described in this report is part of a ten-month collaboration between TU/e and Signify
under the auspices of the Software Technology design program. This Professional Doctorate in Engi-
neering (PDEng) program is offered by Stan Ackermans Institute 4TU. School for Technological De-
sign. Stan Ackermans Institute (SAI) is a federation of four leading Dutch technical universities: TU
Delft, TU Eindhoven, University of Twente, and Wageningen University. The federation aims at max-
imizing innovation by concentrating the strengths in research, education, and knowledge transfer of all
technical universities in the Netherlands. The SAI manages more than twenty post-graduate technical
designer programs across the four technical universities. Each designer program is intended to teach the
skills needed to design the complex systems needed in the high-tech industry to master’s graduates
starting or taking their careers to the next level.

1.1.1. Signify
Signify [1], previously known as Philips Lighting, is the world leader in lighting for professionals,
consumers, and lighting for the Internet of Things (IoT). Signify manufactures lighting-related products
under various brands, including Philips, Interact, Philips Hue, Color Kinetics, and WiZ. Signify’s port-
folio comprises electric lights, the IoT platform, and connected lighting systems aimed at consumers
and professionals. Signify’s energy-efficient lighting products, systems, and services enable their cus-
tomers to enjoy a superior quality of light and make people’s lives safer and more comfortable, busi-
nesses more productive, and cities more livable.

With a presence in over 70 countries, the company’s purpose is to unlock the extraordinary potential of
light for brighter lives and a better world. Signify achieves this through living its values, innovation,
passion for sustainability, and desire to transform people’s lives.

Eindhoven University of Technology

2

1.1.2. TU/e Intelligent Lighting Institute (ILI)
ILI [2] was founded on April 8, 2010, and is part of TU/e. ILI aims to create a scientific community of
practice dedicated to intelligent lighting solutions with a scientific and application-based approach to-
wards all aspects of light. The key is establishing partnerships with stakeholders in the public-private
field: companies, knowledge institutes, and government bodies. ILI is taking a multi-disciplinary and
multifunctional approach to achieve a breakthrough as the work in this field is concept-driven and evi-
dence-based.

Members of the Interconnected Resource-aware Intelligent Systems (IRIS) research group of TU/e
Computer Science are active contributors to ILI research, and they address challenges in (distributed
embedded) systems performance such as timing behavior, dependability, programmability, reliability,
robustness, scalability, accuracy, energy, and data computation efficiency, and trustworthiness. This
project provides data and structure that is required for IRIS researchers.

1.2 Project Context
Intelligence is the capacity for logic, abstract thought, understanding, self-awareness, communication,
learning, emotional knowledge, memory, planning, creativity, and problem-solving. Over the years,
researchers have been trying to mimic some of these aspects of intelligence using machines to improve
the quality of human life. Intelligent lighting is one such application where the objective is to learn and
provide the most suitable lighting conditions in an environment.

Human-centric lighting should benefit users, but its implementation is no clear-cut process. Light af-
fects human health and well-being in many ways. Among others, it powerfully regulates our internal
circadian rhythm but also drives visual performance, comfort, and experience. Our biological clock
requires very bright light for higher visual performance, although most of us are not consciously aware
of this need; the comfort typically makes people dim the light. Moreover, lighting needs and preferences
differ widely between individuals and within one person, for instance, with the time of day, task, or
company [3]. Furthermore, we are all very much aware of the pressing need to save energy.

The current project builds on the latest insights from new sensors, IoT developments, and machine
learning (ML) approaches. The Intelligent lighting system consists of two projects. The first one is the
research project (IntelLight) that focuses on delivering high-resolution, robust, flexible, and privacy-
preserving algorithms for context recognition technology. This is a four-year project that a Ph.D. student
from the IRIS research group from TU/e works on. The second project, IntelLight+, is a design project
that PDEng trainee performs on that. It provides the infrastructure for developing algorithms needed to
infer, and even predict ahead of time, a user’s context to accommodate appropriate light settings based
on users’ needs and preferences.

The focus of the IntelLight+ project is to automatize the manual works data scientists need to do to
gather data, run experiments, building models, and deploying models for testing in different environ-
ments. The general pipeline and the deployment module of the IntelLight+ system can be used in dif-
ferent projects within the TU/e as Machine Learning Operations (MLOps). Our pilot intelligent lighting
in this project is Philips Hue that contains numerous connected devices (bridge, sensors, and lightbulb)
that communicate with each other. The challenge here is to design and develop a learning system that
learns users’ preferences through contextual data (the values of relevant features) gathered from the
breakout area either implicitly via sensors or explicitly from the users. Later, this knowledge is used to
predict suitable lighting conditions for user activities in the home environment.

1.3 Objective and Motivation
In the ten-month period of the PDEng project, we deliver a pipeline that covers steps in the ML lifecycle
from data collection to inference. IntelLight+ automizes the process of ML that can employ a wide
range of training algorithms from supervised learning to semi-supervised learning and online learning
approaches for context recognition. The objective is to have a flexible system that manages the steps

3

needed in the life cycle of ML systems that are not necessarily part of a training algorithm. The Intel-
Light+ project, together with the IntelLight research project, is going to add the new context detection
feature to the existing Hue lighting system platform.

ML is about manipulating data and developing models. These separate parts together form an ML pro-
ject life cycle, which is the main motivation behind this project. IntelLight+ takes care of the ML life
cycle for the intelligent lighting system. Models are produced in the lifecycle of the ML system that the
training algorithm is a small part of it. The life cycle of an ML project can be represented as a multi-
component flow, where each consecutive step affects the rest of the flow. The nature of the work of
data scientists includes a lot of experiments. Being able to visualize the experiments with the version of
data and configuration that has been used and automizing the deployment of produced models gives
data scientists a real advantage.

1.4 Outline
In the remainder of this document, we first provide an in-depth problem analysis in chapter 2. After
that, chapter 3 addresses the feasibility of the project, chapter 4 describes the use cases and provides an
overview of the requirements. Then, in chapter 5, we describe the architecture and design of IntelLight+.
Following that, we describe the implementation in chapter 6 and how we verified and validated Intel-
Light+ in chapter 7. Then, in chapter 8, we describe the project management process. Next, we provide
a conclusion and directions for possible future work in chapter 9. Lastly, chapter 10 provides a retro-
spective of this project.

Eindhoven University of Technology

4

2. Problem Analysis

This chapter analyzes the problem this project is going to solve. Section 2.1 defines the problem, and
section 2.2 describes the project goal. The project road map and general information about the Hue
system are mentioned in section 2.3. Section 2.4 mentions the general technology roadmap of the pro-
ject, the project scope, assumptions, and constraints follow in section 2.5. The stakeholders’ interests,
needs, and involvement in the project will be discussed at the end.

2.1 Problem Definition
This project builds an intelligent lighting system (IntelLight+) to predict the contexts relevant to the
lighting within the home. The context recognition system can learn the user preferences by collecting
data from multiple sources and offer automatic lighting that fits user needs and make lighting recom-
mendations. An ML pipeline is required in order to recognize the context successfully. ML pipeline
automates the life cycle of intelligent lighting. It focuses on the following questions:

1. How can data scientists use different data sources easily for context-aware lighting?
2. How can data scientists keep track of the code and data used for building the model?
3. How can data scientists try different models and reproduce a model?
4. What are the steps (in the system) for choosing the best parameters for the trained models?

2.2 Project Goals
As the possibilities for digital, connected lighting develop and expand, Signify’s smart lighting infra-
structure becomes the glue that connects the physical world to the users’ well-being and digital realm,
creating a true “Internet of Lights.” In this brave new world of connected intelligence, lighting is an
integral part of our everyday environments.

The integration of the lighting infrastructure with the IoT, including the integration of new functionali-
ties based on the true capabilities of LEDs, will offer new validated user-centric value propositions.
Lighting is the application domains in the physical environments (such as offices, industrial sites,
homes, and smart cities) or industrial cases (such as automotive, horticulture, and healthcare). The chal-
lenge lies ahead in creating highly engaging, bright, and lit environments, which are also thoughtful of
today’s sustainability demands. This project addresses the challenge of new context awareness, enabling
more intelligent light control.

For intelligent lighting control to accommodate user needs and preferences in different contexts, algo-
rithms are needed to infer and predict a user’s context ahead of time. Human activities and contexts
need to be recognized accurately based on information collected by the surrounding sensing infrastruc-
ture and wearables. We aim to provide a system that enables context recognition technology framework
and algorithms needed by home lighting solution providers by solving the issues arising from the typical
lack of labeled training data, data imperfections, diversity of sensor types, models, topology, and user
privacy concerns.

This PDEng software design project is part of the IntelLight+ project funded by the Eindhoven Engine.
It aims to design and implement a system for context recognition, which will facilitate the work of a
Ph.D. candidate in the IntelLight project funded via the TKI-Toeslag subsidy of Stichting TKI-HTSM
(Holland High Tech). The Ph.D. researcher will focus on developing and testing the context recognition
algorithms. The design should be flexible enough to let different types of algorithms be implemented
and then compare the results of different learning approaches. However, the detailed algorithms are
outside of the scope of this PDEng design project. The design project considers the system's life cycle

5

and deployment of different learning algorithms so that in the research project, data scientists (Ph.D.
students) will develop the required algorithms easier.

2.3 Product Roadmap
Modern-day bulbs are not what people have been using traditionally. These light bulbs have gone
through significant changes to get to where they are now.

In 1835, there was the first sign of constant electric light. Forty years later, scientists worked to develop
what today we know as the incandescent light bulb. Then came a filament made of a rare metal called
tungsten. These light bulbs became more luminous, consumed less energy, and lowered the cost of
production.

Light Emitting Diodes (LEDs)[4] use semiconductors (generally Gallium Arsenide) to emit light. Ba-
sically, LEDs are tiny bulbs that emit light in a single direction. Many small bulbs are fit together in a
LED bulb to emit light. Unlike incandescent light bulbs, LEDs don’t have a filament bulb that gets hot
and breaks after a certain amount of time; instead, they illuminate by the movement of semiconductor
electrons.

2.3.1. Philips Hue
In 2012, Signify (previously known as Philips Lighting) launched the Philips Hue system. Hue is a
connected home lighting system of linked bulbs that a smartphone or tablet can control via a ZigBee
bridge that connects to the home router through the Ethernet.

Philips Hue is one of the leading and most installed innovative home / IoT products globally. Philips
Hue enables color-tunable lights to be controlled from smartphones, web services, or other control logic
and devices running in the system. Furthermore, it is an open system, i.e., via standardized or published
interfaces, other suppliers can add smartphone apps, services, light switches, and lamps.

Figure 2-1: Hue system high-level overview [5]

Figure 2-1 shows a high-level overview of the Hue system and its main components. Hue lamps com-
municate via a standardized ZigBee protocol allowing integration with ZigBee-based devices, including
sensors and light switches. The Hue bridge handles the home automation, and via the Hue bridge, the
ZigBee network is connected to the home IP network and the Internet. On the IP network side, there are
smartphones, web browsers, third-party services, and a Hue portal.

Eindhoven University of Technology

6

The Hue API interface allows developers to make use of the functionality of the Philips Hue system.
Using this interface, they can find information about the available devices in their local network, control
them, and do much more. The Hue API is a RESTful JSON interface in which clients interact with
resources in the Philips Hue system. Resources such as devices, groups, and lights in the Philips Hue
system are represented by a unique URI that is interactable.

2.3.2. Lighting Evolution
To better understand the intelligent lighting roadmap, let us briefly look into the history of lighting
control. Table 2-1 shows the evolution of lighting control. Initially, lighting systems could be controlled
only using switches and dimmers. With the rapid development of sensors and semiconductor technolo-
gies, lighting systems could be controlled using sensors without switches. This has made it possible to
emphasize user satisfaction and energy usage optimization by controlling lights’ intensity and illumi-
nation patterns[6]. Revolution of memory devices enabled storing users’ light preferences[7] or sce-
nario-specific light settings[8] on the lighting systems to provide customized/adaptive lighting. The
development of data mining techniques and ML algorithms has made learning possible from the data
or through interactions. Intelligent lighting improves adaptive lighting where a predefined light setting
is not stored for a context but is learned through the system’s interaction with the environment. This
means that a lighting condition need not be preset for a given context, and it may be adapted over a
period based on the responses received from the environment.

Table 2-1: Lighting solution generations

Type of lighting User Intervention Behavior Controlled By
Traditional Maximum User has to control each light

manually separately
On/Off Switch

Autonomous - Users not needed for controlling
lights

Sensor-based rules

Adaptive Minimum User gives his/her preferences to
the system

Personal settings

Intelligent Minimum Lighting system learns user’s
preferences

ML model

2.4 Technology Roadmap
ML is the science of developing systems that can learn from data and act accordingly without program-
ming the behavior of the application or specifying thresholds explicitly. The most widely accepted def-
inition from Mitchell [9] is as follows.

“A computer program is said to learn from experience E with respect to some class of tasks T and
performance measure P, if its performance at tasks in T, as measured by P, improves with experience
E.”

In intelligent lighting, ML is used to determine the relationship between the context and the output
lighting conditions. The input-output relationship is then used to predict suitable lighting conditions for
new inputs. Applying Mitchell’s definition to intelligent lighting, we have,

• Task T: predicting suitable lighting conditions for a given context
• Performance Measure P: quality of the predicted lighting conditions by the user survey
• Experience E: a sequence of observed contexts and the user response

7

2.4.1. Learning approaches
Supervised learning is the ML task of identifying the relationship between input and output from labeled
training data[10]. In supervised learning, a prediction algorithm is trained using a dataset consisting of
training examples. Each sample is a pair consisting of values for input features (context) and the corre-
sponding class (output). During training, the algorithm analyzes the samples in the dataset and generates
hypotheses. A hypothesis represents the relationship between the input and output that can take the form
of functions, rules, or trees[11]. The hypothesis that provides the best prediction performance, h, is then
used to make predictions for future inputs.

Figure 2-2 shows the framework for supervised learning for intelligent lighting. An intelligent lighting
dataset consists of samples, i.e., input-output pairs collected from a pilot implementation. The in-
put/context is a vector of features that may influence users’ preference for particular lighting conditions.
The output is the preferred lighting condition by the user for a given context. A supervised prediction
algorithm is trained on the dataset to generate a hypothesis h, which is used to predict a suitable lighting
condition for new incoming inputs.

Figure 2-2: Intelligent lighting supervised learning framework

Instance-based learning
In this form of learning, the input-output relationship is not deduced when the training samples are
provided, whereas it is deduced when a new input arrives that needs to be predicted. In other words,
instance-based learning algorithms do not generate any valuable representations from the observed in-
puts[12]. The relationship to the already encountered samples is determined to assign a class label for
a new instance. The main advantage of this kind of learning is that the class label is estimated every
time a new instance is predicted rather than estimated at once[9]. This makes instance-based learning
worthwhile when the input-output relationship changes over time. Figure 2-3 gives the framework for
instance-based learning for intelligent lighting. For example, let us consider the popular instance-based
algorithm, K-nearest Neighbor (KNN). In KNN, when a new input arrives, it computes the distance of
the input to all other observed inputs in the intelligent lighting dataset. For a selected value of k, k
samples that are the closest to the input distance are chosen. A lighting condition that appears the max-
imum number of times among the k selected samples is selected for prediction. A user may select a
lighting condition that suits them if the user is not satisfied with the predicted lighting condition. The
selected lighting condition, along with the input, is stored in the dataset so that the predictions can be
improved for new inputs.

Eindhoven University of Technology

8

Figure 2-3: Intelligent lighting instance-based learning

Online learning
Online learning is an ML approach that learns from one sample at a time. In online learning, the input
arrives as a sequence of samples in contrast to supervised learning, where the input is fed as a batch[13].
As an input arrives, the online learning model should predict an output. Immediately after the prediction
is made, the actual output is made available to the model. This information can be used as feedback to
update the prediction hypothesis used by the model. A key advantage of online learning over supervised
learning is that the model adapts itself with every incoming new sample. Unlike instance-based learning,
online learning models are relevant in applications where huge amounts of data need to be stored for
training purposes. Figure 2-4 shows the framework for online learning for intelligent lighting. The input
from a pilot implementation in the form of a feature vector is fed to the online prediction algorithm.
The prediction algorithm predicts a suitable lighting condition for that input. A user may select a light-
ing condition that better suits them if the user is not satisfied with the predicted lighting condition. The
lighting condition preferred by the user (actual output) is then revealed to the prediction algorithm in
the form of feedback. The prediction algorithm uses this feedback to update its hypothesis in case the
predicted lighting condition is not the same as the user preferred lighting condition.

Figure 2-4: Intelligent lighting online learning framework

2.4.2. ML pipeline
When a data science team runs a few ML models, having a manual process for gathering data, prepro-
cessing, training, and deploying is sufficient, especially when these models do not have to be retrained
and reproduced frequently.

As the number of models increases in most organizations, we need to introduce the concept of Contin-
uous Training (CT), which brings automation in the execution of an ML pipeline[14]. This is a vital
capability to keep the models up to date when the world around them changes.

9

The ML pipeline, also called the model training pipeline, is the process that takes data and code as input
and produces a trained ML model as the output. This process usually involves data cleaning and pre-
processing, feature engineering, model and algorithm selection, model optimization, and evaluation.

There are several key differences between the software development process and the data science work-
flow, resulting in different processes and tools for the latter. The software building process delivers an
artifact. The test/ quality assurance process approves the desired functionality, and the artifact is de-
ployed in production. While operating the application, the discovered bugs are fed back to the develop-
ment process, forming the circle of the continuous workflow.

Figure 2-5: Software development workflow

The data science workflow delivers a model through a selection process of combinations of algorithms,
parameters, and metrics (such as accuracy). It is then deployed in production to infer knowledge from
the data. This inference process is prone to the input data. The dynamic relationship between the deliv-
ered model and the data reflects the difference between the software workflow shown in Figure 2-5 and
the data science workflow shown in Figure 2-6.

Figure 2-6: Data science workflow

Building and maintaining a platform to support building and serving ML models requires careful or-
chestration of many components. The fact that data are part of the workflow introduces the need for
Continuous Training (CT), as an addition to Continuous Integration (CI) and Continuous Delivery
(CD). This extra quality contributes to the step from DevOps to DataOps and MLOps.

Eindhoven University of Technology

10

Continuous Delivery is the ability to get changes of all types — including new features, configuration
changes, bug fixes, and experiments — into production, or into the hands of users, safely and quickly
in a sustainable way.

Besides the code, changes to ML models and the data used to train them are another type of change that
needs to be managed and baked into the software delivery process (Figure 2-7).

Figure 2-7: Data science project artifacts[15]

Reproducible Model Training
Once the data is available, we move into the iterative data science workflow of model building. This
usually involves splitting the data into a training set, a validation set, and a test set. Then, trying different
algorithms with tuning their parameters and hyper-parameters. That produces a model that can be eval-
uated against the validation set to assess the quality of its predictions. The step-by-step of this model
training process becomes the ML pipeline.

We structured the ML pipeline for our problem, highlighting the different source code, data, and model
components. The input data, the intermediate training and validation data sets, and the output model
can potentially be large files, which we do not want to store in the source control repository. Also, the
pipeline stages are usually in constant change, which makes it hard to reproduce them outside of the
Data Scientist’s local environment.

Data Versioning
The data versioning ability is a prerequisite to MLOps implementation, the same way that code ver-
sioning is required to practice DevOps. There are two main approaches to implement data versioning:
the git style and the time travel.

DVC is a popular data versioning system using Git to store metadata about data files. It uses a git style
method for versioning data that brings the power of Git and Git branches to try different ideas as an
experiment management system.

2.5 Project Scope, Assumptions, and Constraints
The following section states the primary statements, which address the scope and assumptions for this
project. The main stakeholders of the project agree with these statements:

• This graduation project’s duration is ten months.

11

• The performance of the context detection algorithms is out of the scope of this project.
• The focus of this project is a system that provides an ML pipeline that automates the steps

needed for experimenting with models, generating reports, and consequently deploying and
testing the models.

Some assumptions about the project are as follows:

• For this project (design project), we focused on generating, preparing, and accessing the Hue
data from Hue PIR sensors to make a prototype of a context recognition system. We also veri-
fied the ML pipeline on building a model from publicly available datasets for context recogni-
tion.

• Many of the features that have been used for context recognition in the literature (motion data
and sound) are not available in the Hue system at the moment.

• The kind of data to be used for the pipeline prototype decided to be Hue PIR sensor data and
what is available in public datasets. The public datasets for context detection have features, for
example, smart devices motion sensors including accelerometer and gyroscope, as well as voice
data.

2.6 Stakeholder Analysis
Stakeholder analysis is a valuable tool to identify stakeholders and describe the nature of their stake,
roles, and interests. For the stakeholder analysis represented in this report, the focus is on the primary
stakeholders for the sake of precision. Stakeholders are all individuals or parties who need to be con-
sidered in achieving project goals and whose participation and support are crucial to the project’s suc-
cess. The purpose of stakeholder analysis is to develop a strategic view of the relationships between
different stakeholders and the concerns they care about most.

We conducted a stakeholder analysis to identify stakeholders and to understand their concerns. The
main groups of people involved in the steering process of the project belong to two organizations: Eind-
hoven University of Technology (TU/e) and Signify. Table 2-2 provides an overview of the stakehold-
ers in the project.

Table 2-2: The identified stakeholders for this project

Eindhoven University of Technology
Name Role Interest in
Hossein
Mahdian

PDEng Trainee Successful management of the project process, regular schedule
for meetings with stakeholders and supervisors
Applying technological and soft skills to finish the project
Learning the domain for building a career path
Gaining architectural/design/development knowledge and ex-
perience
Contribution to the proposed problem
Successful graduation

Tanir Ozcelebi TU/e supervisor Successful project delivery, report quality, and IntelLight+ ver-
ification and validation

Yanja Dajsuren PDEng ST manager Quality of project results, relationship with clients, successful
graduation of trainee

Ali Mahmoudi PhD Researcher and In-
telLight+ user

Usability, functionality, and maintainability of the IntelLight+
system

Signify
Name Role Interest in

Eindhoven University of Technology

12

Fetze Pijlman Signify supervisor /
Data scientist and ML
Expert

Usability and extensibility of IntelLight+, and guiding trainee
throughout the project to reach project goals

Bernt
Meerbeek

Group manager The monitoring of the project progress and the giving feedback
to the trainee

Dzmitry
Aliakseyeu

Hue use-case expert Successful integration of the IntelLight context detection sys-
tem with the Hue system

Mohamed
Elkady

Hue System Architect Successful integration of the IntelLight context detection sys-
tem with the Hue system

Ion Iuncu Application Engineer Development of IoT and lighting applications

13

3.Feasibility Analysis

During the first phase of the project, a feasibility analysis was performed that led to defining the pro-
ject’s scope, as well as determining the deliverables, outcomes, and requirements. This chapter covers
the feasibility study that was done for this project.

Since the feasibility study assesses the practicality of a proposed plan for a project, it is best practice to
produce a contingency plan in case of any unforeseeable circumstances or the unfeasibility of the pro-
ject. The primary process was to get feedback about the project and the expected outcomes from the
main stakeholders’ perspectives. This contained asking questions and performing an analysis of the
related information to make sure that the achieved results were reliable.

3.1 Challenges
This project addresses the challenge of lighting with new context awareness, enabling more intelligent
control. Algorithms need to infer and perhaps even predict a user's context to provide customized light-
ing to accommodate house owners’ needs and preferences.

Intelligent lighting is a very challenging application by itself. Besides that, context-awareness adds
common challenges for ML projects such as managing model versions, managing data versions, and
reproducing the models. The ML process is a constantly evolving process – systems and their features
are changing at regular intervals. The machine-learning setup needs to incorporate the frequent changes
in the complex implementation. When it is time to tweak the designs, teams often find that earlier mod-
els, features, and datasets were not documented appropriately.

Some of the challenges of ML implementations are listed here and should be kept in mind while de-
signing the solution[16].

• Selection of the suitable algorithm: There are tens of widely popular algorithms available for
ML implementation. Though algorithms can work in any generic conditions, specific guidelines
are available about which algorithm would work best under which circumstances. Improper
selection of algorithms can produce garbage output after months of effort, leading to massive
loss of the entire effort and further pushing the target timelines.

• Selection of the right set of data: As they say – garbage in will produce garbage out; this is
also applied to select the data set for ML. The quality, amount, preparation, and selection of
data are critical to the success of an ML solution. It is important to avoid selection bias and
select the data that is entirely representative of the cases.

• Data Preprocessing: Historical data is very messy and often consists of missing values, value-
less values, and outliers. Parsing, cleaning, and preprocessing such data can be a tedious job.
Feature properties and value ranges must be studied, and techniques like feature scaling must
be applied to prevent certain features from dominating the entire model.

• Data Labelling: Easy and more appropriate models are the ones used in Supervised ML algo-
rithms. Supervised ML algorithms require data labeling. Data labeling is a manually intensive
task – but at the same time, it cannot be outsourced.

ML is usually used to realize intelligent behavior by learning from data or experience and providing
relevant predictions. Several approaches to ML can be adopted based on factors such as the objectives
to be achieved and the very nature of data. However, selecting an ML model is not straightforward
without experimenting because there is no direct mapping from a specific problem to an ML model.

The IntelLight+ system must allow for the selection of different ML libraries, appropriate performance
metrics, and deployment environments. The main challenge is to make the model training process

Eindhoven University of Technology

14

reproducible and auditable. Because data scientists use different tools, it becomes hard to automate it
end-to-end. There are more artifacts to be managed beyond the code, and versioning them is not straight-
forward. Some of them can be really large, requiring more sophisticated tools to store and retrieve them
efficiently.

The second challenge is accomplishing inference in different environments, from the cloud with more
computing power to more interactive on-premise devices.

3.2 Risks
The risk management process started by identifying an initial set of risks at the beginning of the Intel-
Light (+) project. Each identified risk was assigned an impact and probability score. During the execu-
tion of the project, the initial set of risks were updated by adding newly identified risks and adjusting
previously identified ones when they became obsolete or mitigated, or less relevant. Table 3-1 shows
the list of different categories of risks (organizational, technical, external, and project management)
combined with their potential impact, probabilities, and mitigation strategies.

Table 3-1: Risks analysis

Organizational
Risk
Description Impact

(1-3)
Probability

(1-3) Criticality Mitigation Action

R1.1 Getting used to online
meetings for progress
meetings may lead to bad
performance for the final
on-site presentation

3 3

High

Share your concerns
with stakeholders, if
possible, arrange the fi-
nal presentation online

R1.1 The domain is vast. It is
possible to get lost in the
sea of domain

3 2

Medium

Prioritize the require-
ments and start with re-
quirements that have the
highest priority.

R1.2 Working in isolation
from home due to the co-
rona situation can make
stakeholders less accessi-
ble

3 2

Medium

Signal any impact on the
project, discuss with the
stakeholders for a possi-
ble solution, and set up
more frequent virtual
meetings and collabora-
tions.

R1.3 Availability and reacha-
bility of direct stakehold-
ers

3 1
Low

Plan all meetings ahead
of time

Technical
Description Impact

(1-3)
Probability

(1-3) Criticality Mitigation Action

R2.1 Unable to verify the cor-
rectness of the developed
system

3 3

High

Communicate with ex-
perts to verify the pro-
cess for the correctness
of the system

R2.2 Lack of knowledge in
certain required technol-
ogies

3 2
Medium

Find online resources,
ask for expert help if
possible and needed

R2.3 The MLOps are very
new technology, and not

3 2
Medium

Take workshops and
online opensource meet-
ings related to the

15

yet a solid version is
available

needed state of the art
knowledge and technol-
ogies

External
Description Impact

(1-3)
Probability

(1-3) Criticality Mitigation Action

R3.1 Trainee finds residency
problems

3 3 High Share your situation
with your supervisors

R3.2 Trainee becomes ill for a
long period

3 2

Medium

Keep a buffer time at
each task and negotiate
requirements with stake-
holders based on prior-
ity

R3.3 Psychological effects of
living in quarantine and
pandemic situation

2 2
Low

Include physical activi-
ties to stay more healthy

Project Management
Description Impact

(1-3)
Probability

(1-3) Criticality Mitigation Action

R4.1
Deliverable not being
available in time

3 3

High

Make a minimum viable
product and set a dead-
line to make sure the im-
portant deliverables are

R4.2 Misunderstanding of the
project goals that result
in a delayed, inefficient,
and incorrect overall de-
velopment process

3 3

High

Frequently communi-
cate with stakeholders
and confirm important
decisions with stake-
holders

R4.3 Not identifying all stake-
holders

3 2
Medium

Ask main stakeholders
if a potential stakeholder
is forgotten

R4.4 Key stakeholders are not
available for several rea-
sons, such as sickness or
holiday

3 2

Medium

Be aware of the stake-
holders planned to leave
and prepare replacement
if necessary

R4.5 High priority require-
ments cannot be satis-
fied.

3 2

Medium

Raise the issue as early
as possible, discuss with
stakeholders for a possi-
ble workaround, and
manage the stake-
holder’s expectations

Eindhoven University of Technology

16

4.Requirements and Use Cases

This chapter states the system requirements that the trainee found to be most relevant, such that the
system complies with the user requirements. The requirements are the specifications that the IntelLight+
system needs to fulfill, and they are derived from the stakeholders’ concerns. These requirements spec-
ify what IntelLight+ needs to do.

4.1 Introduction
IntelLight+ aims to facilitate the real-time context assessment of the homeowners during their daily
activities. To achieve this goal, we designed the system containing two main sub-modules, the Ml pipe-
line with a deployment part and the software module. The main idea is to make an end-to-end ML
process enabled so that different algorithms, features, and inference environments can be used for ex-
perimentation. The software sub-module provides a means for more interaction between users and the
context recognition model that serves them. The software feedback module can be used for annotating
data. In this way, the users specify when and near which sensors they had a particular context (having
dinner, cooking, or watching TV). A combination of that feedback and sensor data for the user can be
used as the data set.

IntelLight+ extracts the features from the Hue motion sensors and uses these features to predict the
home context. IntelLight+ tracks and visualizes the code, data, metrics, and hyper-parameters used to
build the models in the ML pipeline module. It enables data scientists to compare and choose between
different models and then deploy them to different target machines. The software module allows data
scientists to receive feedback from users and allows for more advanced ML approaches like customi-
zation based on user feedback. This feedback is given via an interface. The integration of the earlier
mentioned modules in IntelLight+ lets data scientists focus on applying different approaches for context
prediction.

4.2 System requirements
An early understanding of the customer requirements and their priorities in software engineering pro-
jects is the biggest challenge. A detailed list of requirements is essential to steer a project in the right
direction. However, as the customer needs are subject to change, new requirements can emerge, and the
old ones may need updating during the project lifetime. In this project, initial requirements were elicited
using the use case analysis and interview techniques. These requirements were revisited and updated
throughout the duration of the project.

The following sections of this chapter explain the identified use cases, corresponding functional and
non-functional requirements, as well as the relationships among them.

4.3 Use cases
A use case is a description of potential interactions between a system and its users. In the context of this
project, a homeowner who uses Hue lighting and data scientists who want to build and experiment with
context recognition algorithms are the typical users of the IntelLight+ system. Figure 4-1 shows the
potential actions that can be performed by the homeowner.

17

Homeowner

Light setups adapt based on the
context of user in home

Give feedback about level of
satisfaction for detected context

Overrule the detected

context

Figure 4-1: Use case for the homeowner

The MoSCoW method is used to prioritize the use cases and the elicited set of requirements. The word
MoSCoW is an abbreviation of four words, each of which defines different priority levels. They are:
• Must: Critical product features that are essential for the current delivery timeline.
• Should: Important features that provide significant value.
• Could: Desirable but not necessary needs that can improve usability.
• Won’t: Least critical and lowest priority needs.

Table 4-1: Use cases that the homeowner is involved in

UC # Priority Description

UC1.1 Must The homeowners want the light scene to change based on what they are doing so
that it matches their context and new activity.

UC1.2 Must The homeowners want the system to recognize the predefined contexts for the
user.

UC1.2.1 Must The homeowners want the light scene to change to a specific light setting when
they are doing Office Work.

UC1.2.2 Must The homeowners want the light scene to change to a specific light setting when
they are Having Dinner.

Eindhoven University of Technology

18

UC1.2.3 Must The homeowners want the light scene to change to a specific light setting when
they are Working Out.

UC1.2.4 Must The homeowners want the light scene to change to a specific light setting when
they are Cooking.

UC1.2.5 Must The homeowners want the light scene to change to a specific light setting when
they are Lounging.

UC1.3 Must The homeowners can overrule the predicted context when they realize the detected
context is not matching their context. This will be reported to the backend data
scientist.

UC1.3.1 Should The homeowners report via a yes/ no/ not sure question if they had a specific con-
text(having dinner, watching TV, and cooking) at a particular time.

UC1.4 Could The homeowners want to have the context recognition module working with avail-
able third party data (such as an entertainment API)

UC1.5 Should The homeowners want when they use different types of sensors that are connected
to their IntelLight+ system, it leads to the better setting of the light based on their
context.

As the data scientists are the primary users of the IntelLight+ system, most user stories for the ML
pipeline are related to them. Figure 4-2 shows the potential actions that the data scientist can perform.

19

Supervisor

Data Scientist

Prepare data

Track data, code,
parameters that been

used for model training

<<include>>

Visualize and
compare models

Train new model

Deploy models

Monitor models

Set constraints
<<extend>>

<<extend>>

Figure 4-2: Use case for the data scientist

Table 4-2: ML pipeline use cases

UC # Priority Description

UC2.1 Must Data scientist wants to trace the data, code, and configurations that been used for
training models.

UC2.2 Must Data Scientist wants to have a template that helps modularize the development of
algorithms and separate the different concerns for his project.

UC2.3 Must Data scientist wants to recreate previously experimented models.

UC2.4 Must Data scientist wants to visualize and compare the models with different hyper-
parameters.

UC2.5 Must Data scientist wants to have the option to deploy the model on-premise, remote
server, or both.

UC2.6 Must Data Scientist wants to apply different preprocessing steps.

UC2.7 Must Data Scientist wants to apply different metrics for model evaluation.

Eindhoven University of Technology

20

4.4 Functional Requirements
The initial requirements are elicited based on the identified use cases. These requirements are analyzed
further and presented to the major stakeholders for validation. The requirements established through
this process are the initial set of functional requirements (FR) and the established baseline for the sys-
tem. The non-functional requirements (NFR) are connected to the quality characteristics and constraints
of the system. The FRs are explained in three different categories. Section 4.4.1 describes the general
list of requirements, section 4.4.2 describes the requirements related to the feedback software compo-
nent, and section 4.4.3 lists the functional requirements related to the ML pipeline. Next, the NFRs are
covered in section 4.5. Each requirement is given a unique identification (ID). However, these IDs do
not imply any priority or order.

4.4.1. General Functional Requirements
This section lists descriptions of functional requirements related to IntelLight System alongside their
priority and related use cases.

Table 4-3: General functional requirement

Req.# Priority Description UC UID

FR1.1 Must The system shall support running ML models to classify/ rec-
ognize the contexts of a single person in the home.

UC1.1,
UC1.2

FR1.1.1 Must The system shall support running ML models to recognize the
contexts of multiple people in the home.

UC1.1,
UC1.2

FR1.2 Could The system shall support running ML models to predict the con-
text based on different features from different sensors (accel-
erometer, gyroscope, and audio sensors) in a single prediction
model.

UC1.1,
UC1.2

FR1.2.1 Could The system shall support running different ML models to pre-
dict the context based on different prediction models for fea-
tures from each of the sensors (one model for accelerometer,
one for gyroscope, and one for the audio sensor) and then com-
bine the result.

UC1.5

FR1.3 Must The system supports creating the ML model to recognize con-
text when data from Hue PIR sensors are available.

UC1.5

FR1.3.1 Must The system supports running the ML model to recognize con-
text when audio data are available

UC1.5

FR1.3.2 Must The system supports running the ML model to recognize con-
text when motion and orientation data of Accelerometer, Gy-
roscope, and magnetometers sensors are available

UC1.5

FR1.3.3 Could The system supports running the ML model to recognize con-
text when any combination of the sensors mentioned in FR1.3
is available.

UC1.4,
UC1.5

FR1.3.4 Must The system supports running the ML model to recognize con-
text when only one of the sensors mentioned in FR1.3 is avail-
able.

UC1.5

21

FR1.4 Must The system shall provide a template that allows the data scien-
tist to add, activate, deactivate, and change orders of prepro-
cessing steps.

UC2.6

FR1.5 Must The system shall provide a template that allows the data scien-
tist to add, activate, and deactivate metrics for model evaluation.

UC2.7

FR1.7 Must The system allows having a separate model for each of the ac-
tivities.

UC2.5

4.4.2. Software Component Functional Requirements
This section lists descriptions of functional requirements related to the feedback component module
alongside their priority and related use cases.

Table 4-4: Feedback component module functional requirements

Req.# Priority Description UC UID

FR2.1 Must The system shall be able to ask for feedback from the homeowner
for a specific detected context and report it to the backend data
scientist.

UC1.3

FR2.1.1 Must The system shall allow the homeowner to give feedback actively
or passively.

UC1.3

FR2.2 Must The system shall let the homeowner (test participant) manually
report the time he had a specific context.

UC1.3

FR2.3 Must The system shall allow the homeowner (test participant) to spec-
ify the period he wants to receive notification for each context.

UC1.3.1

FR2.4 Must The notifications should have different options allowing the
homeowners (test participants) to specify if they are doing an ac-
tivity, not doing an activity, or don’t know.

UC1.3.1

FR2.5 Should The system should allow usage of the reported feedback for ad-
justing the training model.

UC1.5

4.4.3. ML Pipeline Functional Requirements
This section lists descriptions of functional requirements related to the ML pipeline alongside their
priority and related use cases.

Table 4-5: ML pipeline functional requirements

Req.# Priority Description UC UID

FR3.1 Must The system shall keep track of the version of the code, data, and
the parameters that have been used for each training experiment of
the model.

UC2.1

Eindhoven University of Technology

22

FR3.2 Must The system should provide the template that modularizes the pro-
ject to different meaningful data science components.

UC2.2

FR3.3 Must The system shall provide a pipeline that keeps track of all the (Py-
thon) libraries and their versions that have been used for training a
model.

UC2.3

FR3.3.1 Must The system shall provide an ML pipeline that works with different
ML libraries.

UC2.3

FR3.4 Must The system shall visualize the models with a range of different hy-
per-parameters and let data scientists compare them.

UC2.4

FR3.5 Must The system shall be able to deploy and test the inference model on-
premise and remote server environments in the same way.

UC2.5

FR3.6 Could The system should support providing different models for users
based on different settings in their homes.

UC2.5,
UC2.6

FR3.7 Could The system should let data scientists deploy and test different mod-
els for users based on the different categories of the settings of the
users’ homes.

UC2.5

4.5 Non-Functional Requirements

Non-Functional Requirements (NFRs) define the criteria that are used to evaluate the whole system, but
not for a specific behavior, and are also called Quality Attributes (QAs). A Non-Functional Requirement
defines the performance attribute of a software system. Where Functional Requirement is a verb, the
Non-Functional Requirement is an attribute.

A situation in which the system has the desired combination of quality attributes, for example, interop-
erability and performance or reliability, shows the architecture’s success and the software’s quality.
When designing to meet any requirements, it is essential to consider the impact on other attributes and
find compromises between requirements. Along with this, the value or priority of each attribute differs
from system to system. The covered qualities in this section are essential for designing the IntelLight+
system.

Table 4-6: Quality Attributes

QA# Priority Description QA

QA1.1 Must The system shall be able to reproduce the environment to run the
selected training models on other platforms.

Reproducibility

QA1.2 Must The system shall allow adding/delete/change the ML algorithm
functionality, platform, attribute, or capacity

Modifiability

QA1.3 Should The system shall be able to be extended for working with new
sensors and other external systems (like an entertainment API) for
context detection.

Extensibility

QA1.4 Could The system shall be able to use different ML libraries, support
various versions and adapt when external changes occur.

Flexibility

23

Reproducibility is a major principle for scientific methods. An ML model is reproducible if the results
obtained by an experiment or in statistical analysis of the same data set can be achieved again with a
high degree of reliability when the study is replicated. Only after one or several such successful repli-
cations should a result be recognized as a reliable approach.

Any results of experiments should be documented by making all data and code available so that if the
reproduced model is executed again, it will achieve identical results.

Modifiability is important from different aspects. From the end-user point of view, users of the system
need to be able to customize the context recognition component based on their own needs. The data
scientist should be able to modify the context detection model by changing his code, data, and config-
urations.

The system should allow for using different sensors and data sources for future growth. Extensibility
is essential for the system to gain data from different types of sensors or even external systems for
context detection. Extensions can be through the addition of new functionality or through modification
of existing functionality. Finally, flexibility is the ability of the system to respond to potential internal
or external changes affecting its value delivery in a timely and cost-effective manner.

4.5.1. Quality Attribute Scenarios (QAS)
In this section, specific QAS for each of the quality attributes is specified. The quality attributes are
expressed as QAS templates (stimulus-response). It consists of six parts.
• Source: This is an entity (a human, a computer system, or any other actuator) that generated the

stimulus.
• Stimulus: The stimulus is a condition that needs to be considered when it arrives at a system.
• Environment: The stimulus occurs within certain conditions. The system may be overloaded or

run when the stimulus occurs, or some other condition may be true.
• Artifact: Some artifact is stimulated. This may be the whole system or some pieces of it.
• Response: The response is the activity undertaken after the arrival of the stimulus.
• Response measure: When the response occurs, it should be measurable in some fashion so that the

requirement can be tested.

The IntelLight+ project covers the QAs in Table 4-6 and enables them with QAS. Table 4-7 shows the
QAS for reproducibility, Table 4-8 depicts the QAS for modifiability, extensibility QAS is shown in
Table 4-9, and Table 4-10, the QAS for the flexibility is shown in Table 4-11.

Table 4-7: Reproducibility QAS

Source Data scientist (algorithm developer)

Stimulus Wishes to recreate previously experimented model

Artifact Context recognition system

Environment At runtime on cloud/raspberry

Response Creates the model with same performance; deploys recreated model

Response Measure Cost in terms of effort, time

Eindhoven University of Technology

24

Table 4-8: Modifiability QAS

Source Data scientist (algorithm developer)

Stimulus Wishes to modify/vary the code, data, and parameters for the detection model
creation

Artifact Context recognition system on user’s home

Environment At design time, at development time, at compile time, at deployment time

Response Modifies without affecting other functionality; tests modification; deploys mod-
ification

Response Measure Cost in terms of number of elements affected, effort, time

Table 4-9: Extensibility QAS for the data scientist

Source Data scientist (algorithm developer)

Stimulus Wishes to add a new algorithm for context detection

Artifact Context recognition system on user’s home

Environment At design time, at development time, at compile time, at deployment time

Response The new algorithm is added without affecting other functionality of the system;
tests added algorithm

Response Measure Cost in terms of number of elements affected, effort, time

Table 4-10: Extensibility QAS for the homeowner

Source Homeowner (Hue user)

Stimulus Wishes to add a new sensor to the context recognition system

Artifact Context recognition system on user’s home

Environment At runtime on cloud/raspberry

Response The new sensor will be added following the same design without affecting other
functionality

Response Measure Cost in terms of number of elements affected, effort, time

Table 4-11: Flexibility QAS

Source Data scientist (algorithm developer)

Stimulus Wishes to use various ML libraries

Artifact Context recognition system on user’s home

Environment At design time, at development time, at compile time, at deployment time

25

Response The different ML libraries are used without affecting other functionality

Response Measure Cost in terms of number of elements affected, effort, time

4.6 Requirements traceability matrix
This section specifies how user stories are addressed, in other words, which requirements are satisfied
in order to accomplish a user story. Table 4-12 depicts the requirement numbers that met to consider a
user story as done.

Table 4-12: User story - requirement relations

UC UID REQ ID
UC1.1 FR1.1, FR1.1.1, FR1.2
UC1.2 FR1.1, FR1.1.1, FR1.2
UC1.3 FR2.1, FR2.1.1, FR2.2, FR2.3, FR2.4
UC1.4 FR1.3.3
UC1.5 FR1.2.1, FR1.3, FR1.3.1, FR1.3.2, FR1.3.3, FR1.3.4, FR2.5
UC2.1 FR3.1
UC2.2 FR3.2
UC2.3 FR3.3, FR3.3.1
UC2.4 FR3.4
UC2.5 FR3.5, FR3.6, FR3.7
UC2.6 FR1.4, FR2.6
UC2.7 FR1.7

Eindhoven University of Technology

26

5.System Architecture and Design

This chapter covers the system architecture and design for the project. The purpose of designing an
architecture for a system is to solve a problem statement according to the system requirements. This
chapter decomposes the architecture as well as the design of the envisioned solution into three main
parts. Section 5.1 introduces design principles, which are taken to consideration in this project. The
high-level architecture is covered in section 5.2, and section 5.3 describes the architectural views of the
Intelight+ project.

5.1 Design Principles
In order to guarantee that the design of our system is good, we need to know the symptoms of poor
design. This section demonstrates the smells that often accumulate in a software project and describes
the design principles that can help us avoid them. Software designs often degrade because requirements
change in ways that the initial design did not anticipate. Often, these changes need to be made quickly,
and they may be made by developers who are not familiar with the original design philosophy. Although
the change to the design works, it somehow violates the original design. Bit by bit, as the changes
continue, these violations accumulate, and the design begins to smell.

The software system is rotting when it exhibits any of the following problems[17]:
• Rigidity: The tendency for software to be difficult to change, even in simple ways. A design is rigid

if a single change causes a cascade of subsequent changes in dependent modules. The more modules
that must be changed, the more rigid the design is.

• Fragility: Fragility is the tendency of a program to break in many places when a single change is

made. Often, the new problems are in areas with no conceptual relationship with the area that was
changed; fixing those problems leads to even more problems.

• Immobility: A design is immobile when it contains parts that could be useful in other systems, but

the effort and risk involved with separating those parts from the original system are too great. This
is unfortunate but widespread.

The design principles give practical guidance to software engineers by acting as strong guidelines that
are applicable to any software design project. Here is the list of SOLID software design principles in-
troduced by Robert C. Martin [18] and how they can be applied to an ML system:

Single Responsibility Principle (SRP): A class should have only one reason to change. If a class has
more than one responsibility, then the responsibilities become coupled. Changes to one responsibility
may impair or inhibit the ability of the class to meet the others. This kind of coupling leads to fragile
designs that break in unexpected ways when changed.

Figure 5-1: Violation of SRP

MLClass

+tuning(params)

+metrics()

+feature_extraction()

+fit() : Wrapper

+preprocess()

27

As shown in Figure 5-1 diagram, MLclass is going to change due to many causes. Activities of different
origins like extracting features, preprocessing, defining metrics, fitting method, and tunning all are en-
capsulated in one class. This class reacts to changes in data processing, feature engineering, and model
selection. This class needs to be divided into machine learning sub-components.

Open-Closed Principle (OCP): Software entities (classes, modules, functions, etc.) should be open for
extension but closed for modification. When a single change to a program results in a cascade of changes
to dependent modules, the design smells of Rigidity. The OCP advises us to refactor the system so that
further changes of that kind will not cause more modifications. If the OCP is applied well, then further
changes of that kind are achieved by adding new code, not by changing old code that already works.

Figure 5-2: Refactoring the design following OCP

For example, as shown in Figure 5-2 A, the MLclass started by using the TrainerHiddenMarkovModel
class. However, after a while, in the next version, it needed to use the TrainerSklearn. Due to the tight
coupling, it was not possible to swap in the TrainerSklearn. To support the new TrainerSklearn would
require changing the MLclass class. This is a violation of the open-closed principle: Old code should
not have to change to add functionality.

The solution, as shown in Figure 5-2 B, is to abstract away the Trainer in an interface/abstract class.
Then we make the dependency arrows point towards the abstract components. After the modification,

Eindhoven University of Technology

28

all of the Trainers are interchangeable. MLclass can use either one without knowing the internals of
each approach. Besides, the two Trainers do not need to know about the MLclass. This way, the devel-
oper can test them in isolation. This allows the developer to add a third Trainer (for example, Trainer-
Custom) without any changes to the MLclass or the other sub-classes of Trainer. This is true as long as
the Trainers implement the shared interface.

Liskov Substitution Principle (LSP): Subtypes must be substitutable for their base types. When a
method of a subtype class does something that the client of the base type class does not expect, an
undefined behavior happens. This smell causes debugging of the program and finding the cause of a
problem very hard. This problem is often the result of the wrong inheritance. If LSP follows, when the
base class does something, the subclass should also do it in a way that does not violate the expectations
of the callers.

Interface Segregation Principle (ISP): Clients should not be forced to depend on methods that they
do not use. When clients are forced to depend on methods that they don’t use, then those clients are
subject to changes to those methods. This results in an accidental coupling between all the clients. In
other words, when a client depends on a class that contains methods that the client does not use but that
other clients do use, then that client will be affected by the changes that those other clients force upon
the class. We would like to avoid such couplings where possible, and so we want to separate the inter-
faces.

Dependency Inversion Principle (DIP): Abstractions should not depend on details. Details should
depend on abstractions. When high-level modules depend on low-level modules, it becomes very dif-
ficult to reuse those high-level modules in different contexts. However, when the high-level modules
are independent of the low-level modules, then the high-level modules can be reused quite simply. This
principle is at the very heart of API design.
DIP is also critically important for the construction of code that is resilient to change. Since the abstrac-
tions and details are all isolated from each other, the code is much easier to maintain.

5.2 High-level Architecture
The IntelLight+ project is a design project that designs a system for context recognition. The project’s
primary goal is to facilitate the work of the research project IntelLight (which focuses on the develop-
ment of ML algorithms). This project automates the end-to-end lifecycle of ML in three different di-
mensions (code, data, and model). It allows different types of algorithms to be implemented. Although
the development of ML algorithms is outside of this project’s scope, the pipeline that covers different
ML steps (Model Building, Model Evaluation, Model Deployment, Model Update) is part of this pro-
ject.

The system consists of three main components:

• An ML pipeline that keeps track of data, code, and artifacts used in experiments and
visualizing the results

• A feedback component that provides a means for communication between data scien-
tists and user

• A deployment module that lets the data scientist deploy the model in different environ-
ments

29

Figure 5-3: ML Lifecycle

5.2.1. ML Pipeline
An ML pipeline automates the ML workflow by enabling data to be transformed and correlated into a
model that can then be analyzed to achieve outputs. This type of ML pipeline makes the process of
inputting data into the ML model fully automated. The ML pipeline splits up ML workflows into inde-
pendent, reusable, modular parts that can then be pipelined together to create models.

As shown in Figure 5-4, the ML Pipeline keeps track of data and code versions used in training the
model. It visualizes the models with different parameters and lets the data scientist choose the model
based on metrics. The technologies used to keep track of the data, code, and visualize the experiments
are covered in more detail in section 6.2.

Figure 5-4: Management of different sources in ML pipeline

Eindhoven University of Technology

30

5.2.2. Feedback Component
The feedback component checks if the predicted activity and context were right by asking the users if
they have the same context that the model predicted. The feedback component is also used for generat-
ing the data set. In this way, we can retrieve sensor outputs as features and user feedback as ground
truth for labeling the data.

The initial design for the feedback receiving strategy is that the users can specify the usual time of
activities they often do. If the probability is in a specified interval, the system sends a notification to the
user to see if the user is doing the predicted activity. Suppose the probability of detected activity is more
than a threshold and the current time is not in the interval specified by the user. In that case, the system
can send a notification to the user and ask for his / her feedback.

The way the feedback component works in this project is that raspberry pi is used to read the sensors’
outputs from the Hue bridge and save them in a remote server (amazon s3). Then this sensor data are
used as the input for the initial trained model. The user receives feedback requests for the activities that
are tracked based on mentioned feedback receiving strategy. What the data scientist is going to do with
this feedback to improve the quality of the model is out of the scope of this project.

Figure 5-5: Feedback component design

5.2.3. Deployment
One of the main requirements of the IntelLight+ system is the ability to deploy and infer in a range of
different environments from cloud to on-premise devices. Each approach of either inferring in the cloud
or on-premise has its pros and cons.
As Figure 5-6 shows, when the model is deployed in the cloud environment, it can use more computa-
tional power, whereas, when the model is deployed on-premise, it is more interactive.

31

Figure 5-6: Deployment options

5.3 Architectural Views
In this section, we look at IntelLight+ software architecture. Software architecture is the fundamental
design of an entire software system. It defines what elements are included in the system, what function
each element has, and how each element relates to one another. It is the big picture or overall structure
of the whole system—how everything works together. One important way software architecture is pre-
sented visually is through the UML diagrams. It is necessary to capture the complete behavior and
development of a software system from multiple perspectives. Each of these perspectives is called a
view.

A view is a representation of a set of system elements and relations among them—not all system ele-
ments, but those of a particular type[19]. Different views also expose different quality attributes to
different degrees. Therefore, the quality attributes that are of most concern to the architect and the other
stakeholders in the system’s development will affect the choice of what views to consider. Thus, views
let us divide the multidimensional software architecture entity into a number of interesting and man-
ageable representations of the system.

One consideration is the functionality of the software. Functionality involves what a system does to
satisfy the purpose the client desires. Focusing on this functionality and the needed objects leads to a
perspective called the logical view.

5.3.1. Logical View
The logical view, which focuses on the functional requirements of a system, usually involves the objects
of the system. From these objects, a UML class diagram can be created to illustrate the logical view. A
class diagram establishes the vocabulary of the problem and the resulting system. Defining all of the
classes, their attributes, and their behaviors makes it easy to understand the key abstractions and termi-
nology.
Figure 5-7 defines the classes, their attributes, and their behaviors in the IntelLight+ pipeline.

Eindhoven University of Technology

32

Figure 5-7: ML training UML class diagram

Some of the design practices like SRP, OCP, and DIP mentioned in section 5.1 can be seen in the ML
training class diagram. Furthermore, as shown in Figure 5-8 in more detail, the MLclass class is the part
of the IntelLight+ system that wants to use third-party libraries for training ML models. An adapter
design pattern has been used to facilitates communication between MLclass and ActivityThroughMo-
tionAndHmm by providing a compatible interface.

Figure 5-8: Adapter design pattern enables using third party training libraries for pipeline

MLClass

+tuning(params)

+hyperopt_method()

+optuna_method()

+train() : Wrapper

+main()

<<interface>>
Trainer

+update_probability(new_event_data_sensor, until_utc_time, time_zone): probability

+train(X_all, y_true_all, epochs)

+as_wrapper(): Wrapper

ActivityRecognitionHmmMotion

preprocessor

probability
hold_time_in_minutes

time_length

+update_probability(new_event_data_sensor, until_utc_time, time_zone): probability

+train(X_all, y_true_all, epochs)

+as_wrapper(): Wrapper

ActivityThroughMotionAndHmm

transition_matrix

probability

activity_motion_rates

no_activity_motion_rates

+save()

+load()

+predict_proba(features): probability

+train_list(sensor_values, groundtruth_values, epochs, optimizer, loss_function): probability

33

The adapter design pattern (Figure 5-9) consists of several parts:
Client class: The part of the system that wants to use a third-party library or external system.
Adaptee class: This is the third-party library or external system that is desired to be used.
Adapter class: This class sits between the client and the adaptee. The adapter conforms to what the
client is expecting to see by implementing a target interface. The adapter is a kind of wrapper class.
Target interface: This is used by the client to send a request to the adapter.

Figure 5-9: Adapter design pattern

As systems or parts of systems become larger, they also become more complex. This is not necessarily
a bad thing – if the scope of a problem is large, it may require a complex solution. Client classes function
better with a simpler interaction, however. In the IntelLight+ system, the ML pipeline consists of two
different sub-components for training and building models on the one hand and using the trained model
for prediction in another hand. In order to be able to infer from a trained model, we need to have a
Predict class that can use the trained models without knowing the details about algorithms that are used
in training. Figure 5-10 shows a means to hide the complexity of a subsystem by encapsulating it behind
a unifying wrapper class. This is called the facade design pattern. It removes the need for Predict classes
to manage the trainer submodule on its own, resulting in less coupling between the trainer submodule
and the Predict class.

Figure 5-10: Facade pattern for prediction pipeline

Another consideration in software is how the software executes, dealing with the interaction of subpro-
cesses. These characteristics affect the performance and scalability of the system. Focusing on the pro-
cesses implemented by the objects in the logical view leads to the process view perspective.

Client

Target Interface

Adapter Adaptee

TrainerSklearn

preprocessor

probability

hold_time_in_minutes

time_length

+update_probability(new_event_data_sensor, until_utc_time, time_zone): probability

+train(X_all, y_true_all, epochs)

+as_wrapper(): Wrapper

Wrapper

- model

- preprocessing

- metrics

- columns

+predict()

+load_model()

+get_metrics()

1 <<interface>>
Trainer

+update_probability(new_event_data_sensor, until_utc_time, time_zone): probability

+train(X_all, y_true_all, epochs)

+as_wrapper(): Wrapper

ActivityRecognitionHmmMotion

preprocessor

probability

hold_time_in_minutes

time_length

+update_probability(new_event_data_sensor, until_utc_time, time_zone): probability

+train(X_all, y_true_all, epochs)

+as_wrapper(): Wrapper

Predict

- model

+infer()

Eindhoven University of Technology

34

5.3.2. Process View
The effective UML diagrams related to the process view of a system are the activity diagram and the
sequence diagram. The activity diagram can illustrate the processes or activities for a system. Figure
5-11 presents the control flow of the IntelLight+ system from an activity to another. As you see, the
activity diagram starts with retrieving data from shared storage. The data scientist then extracts features,
preprocessing the data, extracting the ground truth, and running the experiment with parameters and
hyperparameters specified in a configuration file. When the experiments for different algorithms on
different activities are finished, the data scientist visualizes the results by mlflow UI API. If the model
qualifies for inference, data scientist chooses the models for deployment. The selected models will be
deployed to shared storage and then can be used in a virtual machine in the cloud or raspberry pi to
predict the context. Finally, the lights are set based on the context that has been recognized.

Figure 5-11: UML activity diagram

One crucial part of the design of the IntelLight+ system is the feedback component. The feedback com-
ponent lets the homeowner specify if he is satisfied with the light set. It also can ask the users if they
are doing an activity. The data scientist can realize if the trained model is working as expected by getting
users' feedback regarding the predicted context.

The feedback component lets the IntelLight+ system use notifications to communicate with homeown-
ers for annotating the data as well. In this way, the system will send notifications periodically to Hue
users and asks about their current activity. Figure 5-12 shows the interaction between sensors and s3
storage in order to gather the data, as well as how the feedback is communicated to the users by notifi-
cations. In order to give feedback, users should install the context feedback app on their smartphones.
After installing the app, participants log in with the AWS API key, then they use the phone to upload
their feedback in the app to the cloud. Figure 5-12 shows the process of gathering sensor data and user
feedback.

35

Figure 5-12: Data gathering and Notification sequence diagram

The software architecture can also involve the development view. This perspective focuses on imple-
mentation considerations such as the hierarchical structure of the software. The programming languages
of the system will heavily influence this structure and therefore places constraints upon development.

5.3.3. Development View
The development view describes the hierarchical software structure. This view uses the UML Compo-
nent diagram to describe system components. Figure 5-13 shows the components of the IntelLight+
system. Step 1 depicts the components interacting to build models for context recognition. Then in step
2, the qualified models will be placed in shared storage. Finally, in step 3, models are retrieved in the
target environments and used for the prediction

Figure 5-13: Component Diagram

Upload to cloud

Hue Sensors Hue bridge

sensor data
sensor events

Raspberry Pi AWS S3 Sage MakerUser Phone

Notif ication

Feedback

Events

Eindhoven University of Technology

36

Another perspective of the software can be seen through the physical view. The software will have
physical components that interact and need to be deployed. The interaction between these different
elements and their deployment will affect how the system works.

5.3.4. Physical View
The physical view handles how elements in the logical, process and development views must be mapped
to different nodes or hardware for running the system. The deployment diagram for the IntelLight+
system shown in Figure 5-14 expresses how the pieces of a system are deployed onto hardware, and the
modules in the execution environments interact.

Figure 5-14: IntelLight+ deployment diagram

None of the architectural views are fully independent of each other, with elements of some views con-
nected to others. The 4+1 view model makes the software system more versatile and helps to see a
complex problem from many different perspectives.

37

6.Implementation

This chapter presents the details of the implementation phase. Chapter 5 discussed the high-level design
of the IntelLight+ system, major design challenges, and architectural approaches to overcome them.
The upcoming sections describe technology choices, the data gathering, and the model building pipeline
phase of this project, according to the design in the last chapter.

6.1 Introduction
The IntelLight+ is an intelligent ML system that learns from different sensors and users’ activities in
the home context. The intelLight+ is an ML system containing components for gathering data, the ML
pipeline that builds models, the feedback component for receiving feedback from the user, and the de-
ployment module for deploying the trained model in different environments. For each of these compo-
nents, different technology choices can be made.

In order to decide on the technology stack, it is important to use technologies that satisfy the require-
ments. In the intelLight (+) project, one of the main quality attributes was flexibility, meaning that the
system should allow different ML approaches to be taken by data scientists. The system should also be
modifiable in the sense that the data scientist is able to add or remove algorithms for building models.

6.2 Technology choices
Python was considered the language of choice to develop the IntelLight + system based on the previous
experience of the PDEng trainee and also its popularity in data and ML domains. To choose the right
ML pipeline, we compared the ML task coverage, library coverage, and level of support for a number
of available libraries. We chose the pipeline that is compatible with the Signify platform.

The chosen tool should be flexible to work with different libraries and on different platforms. The main
requirement for the ML pipeline we chose is that it must be cloud-agnostic. As data scientists from the
university and Signify are not training their models using the cloud infrastructure for this project, the
pipeline should not lock us into a single platform. It should be open-source and be supported by a well-
known market player. The three options Kubeflow, MLflow, and DVC, as shown in Table 6-1, are open
source and have the most number of members in their communities. Therefore, we chose to investigate
them more.

Table 6-1: ML pipeline technologies survey

Given these requirements, we can use the MLflow for Model and experiment versioning because it
manages to support a wide range of libraries while still requiring relatively little development effort to
use. As an open-source project, it has a good amount of product support behind it. DVC is a good choice

Eindhoven University of Technology

38

for Data and Pipeline Versioning as it is very lightweight, open-source, and designed explicitly to work
with Git.

Kubeflow is also a well-known pipeline backed by Google. It has a big community, but it requires a
Kubernetes cluster as well as an installation of kubectl to work with, and it is mainly limited to the
Google Cloud Platform (GCP). In this project (based on Signify preference), we do not have access to
GCP, but if they want later to move to GCP, MLflow is integrated and works and scales with GCP.

6.2.1. Tracking the ML training
For tracking the ML training experiments, MLflow is used. The MLflow tracking component lets to log
source properties, parameters, metrics, tags, and artifacts related to training an ML model.

MLflow tracking is based on two concepts: experiments and runs.
- An MLflow experiment is the primary unit of organization and access control for MLflow runs; all

MLflow runs belong to an experiment. Experiments allow to visualize, search for, and compare
runs, as well as download run artifacts and metadata for analysis in other tools.

- An MLflow run corresponds to a single execution of model code. Each run records the following

information:
• Source: Name of the script or notebook that launched the run, the project name, or an entry

point for the run.
• Version: Notebook revision if the run is from a notebook or Git commits hash if the run is from

an MLflow Project.
• Start & end time: Start and end time of the run.
• Parameters: Model parameters saved as key-value pairs. Both keys and values are strings.
• Metrics: Model evaluation metrics saved as key-value pairs. The value is numeric. Each metric

can be updated throughout the course of the run (for example, to track how the model’s loss
function is converging), and MLflow records and allows to visualize the metric’s history.

• Tags: Run metadata saved as key-value pairs. The tags can be updated during and after a run
completes. Both keys and values are strings.

• Artifacts: Output files in any format. For example, it is possible to record images, models (for
example, a pickled scikit-learn model), and data files (for example, a Parquet file) as an artifact.

The MLflow Tracking API is used for logging parameters, metrics, tags, and artifacts from running a
model training experiment. The Tracking API communicates with an MLflow tracking server. The
server can be configured to use a Databricks-hosted tracking server in the cloud to logs the data. The
hosted MLflow tracking server has Python, Java, and R APIs.

6.2.2. Data Versioning
Data Version Control (DVC) is an open-source version control system for ML projects. It is a tool that
lets the users define the pipeline regardless of the language they use.

When a problem in a previous version of the ML model is found, DVC saves time by leveraging data
versioning to reproduce the model in order to identify the root of the problem. DVC can cope with the
versioning and organization of considerable amounts of data and store them in a well-organized, acces-
sible way. It focuses on data and pipeline versioning and management but also has some (limited) ex-
periment tracking functionalities.

DVC keeps metafiles in Git instead of the big data files to describe and version control the data sets.
DVC supports a variety of external storage types as a remote cache for large files. It fetches the complete
data used in any experiment.

39

Figure 6-1: Data version control to version large data sets

6.3 Data gathering
This section explains the steps to installing the software feedback component implemented by Signify
engineers as a part of the IntelLight+ platform. The feedback component is also used for gathering data
for training purposes. The data gathering allows the test participants to either input their current activi-
ties manually (pro-active mode) or on-demand based on a notification. The feedback component is used
for research projects that require user context labeling. In order to participate in gathering data, partici-
pants needed to:

- Set up the motion sensors in the house
- Get the bridge API Key, bridgeId, and bridge IP using the ready clip_debugger code
- Choose the list of sensors for each of the activities

In order to read sensor events, the raspberry reads the events from the bridge and sends them into the
AWS s3 bucket. In order to set up the raspberry to send data to AWS:

- Connect the raspberry to the same wifi router that Hue bridge is connected to
- Open the python script “reading_bridge.py” in an editor and modify:

o URL_bridge (using IP of the Hue bridge)
o USER (using bridge API key)
o BRIDGE_ID (using bridgeid)
o API_KEY (using AWS API Key)

- Run the script (it will upload the sensors’ events to the cloud every 10 minutes)

In order to give feedback, users should install the context feedback app. After installing the app, partic-
ipants log in with the AWS API key so that the app can upload their feedbacks to the cloud. Figure 6-2
shows the app environment.

Eindhoven University of Technology

40

Figure 6-2: Context feedback app

Test participants can either input their current activities manually (pro-active mode) or on-demand
based on a notification. By clicking on each of the listed activities, participants can set the activity
manually, as shown in Figure 6-3. The system also sends notifications to users to check if they are doing
a specific activity. The logic behind notification can be a distribution within the interval that the user-
specified or based on model prediction. Figure 6-4 shows a sample notification that the user receives in
the app.

Figure 6-4: Feedback by notification

Figure 6-3: Pro-active mode
feedback

41

6.4 Model building
This section explains the details of the ML pipeline that builds models keeps track of the experiments
and visualizes the result. The implementation code uses Python 3 for execution. The virtual environment
decouples and isolates versions of Python and associated packages in the project implementation.
Appendix A explains the steps to install and run the IntelLight+ ML pipeline to build models.

Figure 6-5: Repository root

Figure 6-5 shows the files in the root directory of the project’s repository, data.dvc contains data version
information, and requirements.txt includes Python libraries used in the project implementation. Figure
6-6 shows the environment.yml configuration file that helps to build the Anaconda virtual environment.
Notice it uses pip to install python libraries from the requirements.txt file.

Figure 6-6: Configuration file to build anaconda virtual environment

In the root of the project, there are also the following folders:

- .dvc: configuration about data version control remote server
- document:

o how to use git and version control
o code standard and code template

- src: implementation code of project including:
o config: configuration YAML file and configuration manager class
o ml: ML model building code
o train script
o predict script

Eindhoven University of Technology

42

The configuration.yml file includes parameters to choose with which algorithms we want to run the
experiment, hyperparameters, and parameters for creating training models for different activities. The
configuration consists of epochs, time_length, hold_time, as well as initial parameters of models for
each activity. The train.py script loads these parameters in the MlClass and uses them for training and
building models.

Figure 6-7: Anaconda configuration file

The ML codes for building models are in src/model, and the preprocessing code is in src/preprocessing.
While the training experiments for building models are running, the results are logged and can be visu-
alized by the web-based UI. As shown in Figure 6-8 for each activity, algorithm, and each trial in case
it is doing the hyperparameters tuning. More images for the web-based experiment visualizer UI can be
found in Appendix B.

Figure 6-8: Web-based UI to visualize the ML experiments

As Figure 6-9 shows, for each experiment, the model is saved with configuration files that can be used
to create a virtual environment to serve the model that is created during the experiment. The require-
ment.txt and conda.yaml files contain the libraries and their versions that are used to produce the model.
Besides, for each experiment, the Git commit, and how to use the created model for prediction are also
mentioned on the experiment page.

Figure 6-9: Resulted artifact for each of the experiments

43

6.5 Model deployment
In order to deploy the generated models, we use the DVC technology explained in section 6.2.2. DVC
is used to make versions of chosen model experiments, and it creates a small file that will be versioned
by Git, the models themselves can be shared in a remote storage place. Figure 6-10 illustrates how the
git and DVC commands can be used to deploy models. More details on the steps of model deployment
can be found in Appendix C.

Figure 6-10: Model deployment by DVC

Models can be exchanged between any environments that support running git and python. Besides that,
models can be categorized based on the environments that can be used for context recognition or even
based on different interior settings of houses. Figure 6-11 shows how the shared storage is used to
produce and serve models in different environments.

Figure 6-11: deploy models using a shared storage

Eindhoven University of Technology

44

7.Verification & Validation

This chapter aims to indicate the process of validating and verifying the steps taken in this project. The
verification and validation process ensures that the proposed system has met the functional and non-
functional requirements and works well.

7.1 Testing and quality assurance in ML systems
Testing and quality for ML systems are more complex than traditional software systems. Test Pyramid
should be considered separately for each type of artifact (code, data, and model). There are different
types of testing that can be introduced in the ML pipeline. While some aspects are inherently non-
deterministic and hard to automate, many kinds of automated tests can add value and improve the over-
all quality of your ML system:

Validating data: Tests can validate input data against the expected schema or validate our assumptions
about its valid values. For instance, they fall within expected ranges or are not null. For engineered
features, we can write unit tests to check they are calculated correctly. It is possible to check if the
numeric features are scaled or normalized, one-hot encoded vectors contain all zeroes and a single 1, or
missing values are replaced appropriately.

Validating the model quality: While ML model performance is non-deterministic, Data Scientists
usually collect and monitor a number of metrics to evaluate a model's performance, such as error rates,
accuracy, AUC, ROC, confusion matrix, precision, recall, etc. They are also useful during parameter
and hyper-parameter optimization. As a simple quality gate, we can use these metrics to introduce
Threshold Tests in our pipeline to ensure that new models don't degrade against a known performance
baseline.

As the data science process is very research-centric, it is common that data scientists will have multiple
experiments to try, and many of them might not ever make it to be deployed for inference testing.
IntelLight+ supports this governance process; it captures and displays the information that will allow
data scientists and researchers to decide if and which model should be promoted.

7.2 Verification
Verification is the process of evaluating a system or component to determine whether the products of a
development phase satisfy the conditions. It is a continuous process for checking the system that is
being built to ensure it adheres to certain specifications.

During the development phase, the IntelLight + system was verified in two ways: unit testing and code
consistency checking reviews. These processes are elaborated in the following sections.

7.2.1. Unit testing
Unit test is a software testing method that checks if the individual units of the corresponding software
have expected behavior. The developer typically performs these tests by writing additional code that
automatically tests the software. The unit tests are used to test the newly implemented features and
ensure that the existing functionalities are not broken.

For unit testing, different parts of the IntelLight+ ML pipeline, which are explained in sections 5.2.1
and 5.3.1 are covered. These unit tests are listed in table 7.1. The unittest unit testing framework, ini-
tially inspired by JUnit, was used to write the unit tests. It supports test automation, setup and shutdown
code for tests, aggregation of tests into collections, and independence of the tests from the reporting
framework.

45

Table 7-1: Unit tests for testing the ML pipeline

Unit Test Name Endpoint Type Status
test_experiments_for_single_algorithm_tracked Visualizing experiments Passed
test_experiments_for_single_activity_tracked Visualizing experiments Passed
test_experiments_metrics_tracked Visualizing experiments Passed
test_experiments_configuration_params_tracked Visualizing experiments Passed
test_experiments_data_version_tracked Visualizing experiments Passed
test_model_created_for_deployment Model building Passed
test_model_with_conda_env_created_for_experiment Model building Passed
test_grand_truth_is_expanded Data Preparation Passed
test_each_activity_has_related_sensor_for_training Data Preparation Passed
test_loading_configuration_yaml_file Data Preparation Passed

7.2.2. Code consistency checking
As mentioned in section 6.2, the pipeline was developed with Python. The PEP8 style guide for Python
was used to ensure that the coding style was consistent throughout the whole code repository. This style
guide was developed by the creators of the Python language and has been widely accepted. PEP8 com-
pliance options were enabled in the Integrated Development Environment (IDE) used in this project to
check the coding style automatically. This provided basic guidelines (i.e., tabs vs. spaces for indenting,
indent width, line length) for the code and made it easier to read.

7.3 Validation
Validation is the process of evaluating a system or component at the end of the development process to
determine whether it satisfies specified requirements. Two aspects need to be taken into consideration
in the validation process. First, does the built product address the functional requirements? Does it do
what it says in the functional requirements? Second, does the product satisfy the non-functional require-
ments? For the non-functional requirements, the validation addresses the quality attribute scenarios. In
the context of this project, the system under development was validated by the direct stakeholders at
various stages, which are discussed in detail in the following sections.

7.3.1. Regular Stakeholder Feedback
Following the scrum iterative and incremental development approach, the results were continuously
validated by the stakeholders. The product was accessible by direct stakeholders (data scientist and
P.h.D researcher) on the code repository, and a meeting was scheduled with the main stakeholders,
which included a progress report and a demo of the current version of the product. During these meet-
ings, several architectural diagrams were used to explain to the stakeholders how the IntelLight+ infra-
structure would be implemented. Based on these discussions, the stakeholders could identify whether
the development activities were progressing in the right direction or not. The mentioned diagrams are
presented and explained in chapter 5. The feedback was provided on the completeness and correctness
of the product under development mainly by direct stakeholders (the data scientist and Ph.D. re-
searcher).

7.3.2. Requirements status
The final prototype of the IntelLight+ infrastructure implemented all the requirements described in
chapter 4. An overview of the functional requirements is shown in Table 7-2. The prototype was also
demonstrated to the IntelLight+ stakeholders during the final prototype demonstration. The direct stake-
holders accepted that the system met their expectations and satisfied all the elicited requirements. More-
over, several suggestions were provided by the PDEng trainee during the demonstration that indicated

Eindhoven University of Technology

46

the direction in which the stakeholders may further improve the IntelLight+ infrastructure. These feed-
backs are listed in section 9.3.

Table 7-2: Statuses of functional requirements after implementation

ML pipeline
Req.# Priority Description Verification Status

FR3.1 Must The system shall keep track of the ver-
sion of the code, data, and the parame-
ters that have been used for each train-
ing experiment of the model.

The MLflow Tracking API visual-
izes parameters, code version, met-
rics, and output files when running
the machine learning code.

Satisfied

FR3.2 Must The system should provide the template
that modularizes the project to different
meaningful data science components.

The code template separates differ-
ent concerns: data and source code
and result models. The ml codes are
in different packages like prepro-
cessing, data source, model. Data is
also separated at the highest level
based on activities.

Satisfied

FR3.3 Must The system shall provide a pipeline that
keeps track of all the (python) libraries
and their versions that have been used
for training a model.

A requirement.txt file keeps all li-
braries that are used in the project.

Satisfied

FR3.3.1 Must The system shall provide an ml pipeline
that works with different ml libraries.

Currently, sklearn and tensorflow
are used.

Satisfied

FR3.4 Must The system shall visualize the models
with a range of different hyper-parame-
ters and let data scientists compare
them.

The Mlflow UI shows the parame-
ters for the optimal model used for
training each algorithm.

Satisfied

FR3.4.1 Must The system shall provide the same API
for training different models

Same API used for training models
of different libraries.

Satisfied

Deployment
Req.# Priority Description Verification Status
FR3.5 Must The system shall be able to deploy and

test the inference model on-premise and
remote server environments in the same
way.

IntelLight+ uses python, git, shared
storage, and DVC to deploy models
on different environments.

Satisfied

FR3.6 Could The system should support providing
different models for users based on dif-
ferent settings in their homes.

Using a combination of git tag and
DVC make it possible to make cus-
tomized categories of deployment

Satisfied

FR3.7 Could The system should let data scientists de-
ploy and test different models for users
based on the different categories of the
settings of the users’ homes.

Using a combination of git tag and
DVC make it possible to make cus-
tomized categories of deployment

Satisfied

Besides functional requirements, QAs also revisited, and the design of IntelLight+ took into consider-
ation the QAS mentioned in section 4.5.1. Figure 7-1 shows how the designed system is modifiable to
add new algorithms for making models with the lowest cost.

47

Figure 7-1: QA Modifiability revisited in design

7.3.3. Project Goal Evaluation
To validate the product, the initial questions in problem definition 2.1 are revisited to see if the system
satisfies the main requirements recognized by this project. The system is validated if it has an apparent
response to these questions that address the customers’ actual needs.

How can data scientists use different data sources easily for context-aware lighting? In order to
achieve a good result for detecting the context, the first step after collecting the data is to explore which
data is useful for building models. In IntelLight+, with DVC, data scientists can tag different data
sources for exploration. For this project, we used data from hue motion sensors to gather the needed
features. The other data sources to experiment with are audio and motion sensors from smartphones or
smartwatches. The feedback component helps to annotate the collected data from these sources.

How can data scientists keep track of the code and data used for building the model? This is one
of the main requirements for the pipeline. In order to satisfy this need, we use DVC for versioning the
data so that we know which data is used for building the model. We also use MLflow to keep track of
the data version and git commit id. Mlflow also saves the configuration file used for setting the training
parameters and other parameters needed.

How can data scientists try different models and reproduce a model? In the pipeline, we always
use a virtual environment, and every time the train code is executed, the libraries that have been used
for training are kept tracked and saved as an artifact. If a new ML library is going to be used, it can be
easily added to the requirement.txt file in the repository’s root that keeps a list of all the libraries used
in the project. Besides, the code and data version for each experiment are logged by MLflow. In this
way, models can be easily reproduced as each experiment’s environment, code, and data are saved.

What are the steps (in the system) for choosing the best parameters for the trained models? In the
training script, the train algorithms are called by a hyperparameter tuning method. Different algorithms
work better with different hyperparameter optimization methods. To be able to choose a set of optimal
hyperparameters for learning algorithms, two tunning methods hyperopt, and optuna are implemented.
The hyperparameter-tuning method can be set in the configuration.yml file.

Eindhoven University of Technology

48

8.Project Management

The project management activities started from the very beginning of this PDEng project. This chapter
elaborates on the management process of this project. It starts by describing the method deployed in
this project. Then the project work breakdown is explained with the work breakdown structure. Next,
project planning and scheduling are introduced.

8.1 Introduction
As described in chapter 1, the IntelLight (+) project was one of two separate joint projects of the Intel-
ligent Lighting Institute ILI from TU/e and the Signify. Being part of a collaborative project, IntelLight
had stakeholders from different organizations and with diverse backgrounds. This contributed greatly
to the complexity of this project. Therefore, proper project management became one of the key activities
to steer this project in the right direction.

8.2 Way of Working
The time duration of the project was ten months. This constraint limited the number of features or user
stories that could be implemented. The requirement analysis process explained in chapter 4 made sure
that these features or user stories were elicited as early as possible. However, in the case of real-life
multi-disciplinary projects like this one, requirements can be rather dynamic in nature, and the used
project management process should be able to deal with these uncertainties. To be able to do that, a
hybrid approach was used. This approach bought some ideas from the Waterfall methodology [1] to
deal with the time constraint and, to some extent, a fixed set of deliverables. Several concepts from the
Agile methodology were also used to deal with the dynamic nature of the project.

In the whole period of the project, as is mentioned in section 8.6, we had weekly meetings. The system
was designed and developed using Scrum methodology. Scrum [20] is a lightweight process framework
that is a subset of the agile methodology. Scrum defines a set of roles, meetings, and fixed-length iter-
ations known as sprints. Each sprint can have a duration of one to four weeks.

Figure 8-1 depicts the key activities and roles of a Scrum process. A product backlog is a prioritized list
of work for the development team that is derived from the roadmap and its requirements. The most
important items are shown at the top of the product backlog, so the team knows what to deliver first.
Sprint planning aims to define what can be delivered in the sprint and how that work will be achieved.
The sprint backlog is a list of tasks identified by the Scrum team to be completed during the Scrum
sprint.

Figure 8-1: The scrum process

49

8.3 Work-Breakdown Structure (WBS)
In this section, the Work-Breakdown Structure of the project is discussed. The project is divided up into
four major categories: Planning and Management, Analysis, Design & Implementation, and Documen-
tation. Figure 8-2 shows the detailed activities conducted in each category.

Figure 8-2: Work-breakdown structure of the project

8.4 Project Planning and Scheduling
In the whole period of the project, we had weekly meetings. The system was designed and developed
using scrum methodology. Figure 8-3 shows the roadmap of the IntelLight + project with different
phases.

Figure 8-3: Project roadmap

Context aware lighting system - IntelLight (+)

Planning and
Management

Project plan

Risk management

Schedule meetings

Analysis

Problem Analysis

Stakeholder
Analysis

Domain Analysis

Requirement
Analysis

Design and
Implementation

Technology
selection

Design ML
Pipeline

Design Feedback
component

Implement ML
Pipeline

Verification and
validation

Documentation

Thesis report

Final presentation

Eindhoven University of Technology

50

8.5 Project Timeline
The project timeline helped not only to evaluate project progress but also to visualize the impact of one
activity on others. The project timeline made sure that the domain analysis and requirement elicitation
phases were scheduled before any implementation-related activity.

The project plan was tracked using Microsoft Excel and was modified iteratively. The final timeline is
shown in Figure 8-4. It is divided into four primary activities: Define, Design, Develop, and Deliver.

Figure 8-4: Project timeline in Microsoft Excel

8.6 Communication Plan
In order to monitor and regulate the project progress and direction, it is important to set up a clear and
regular communication channel to avoid any misunderstanding and encourage early feedback. Most of
the meetings that took place during the execution of this project can be divided into three different
categories: weekly update meetings, monthly update meetings, and other meetings that were organized
on demand.

8.6.1. Weekly Update Meetings
These meetings were scheduled at the very beginning of the IntelLight (+) project to occur every week
on Friday until the end of the project. The usual participants were the company supervisors, the TU/e
supervisor, and the PDEng trainee. The purpose of these meetings was to demonstrate incremental and
small updates to the major stakeholders. These updates included the tasks that had been completed in
the previous week, any blocking issues, and plans for the upcoming week. The weekly meetings made
sure that the project was running in the right direction and provided the option to spot any misunder-
standing as early as possible. These meetings played the role of the sprint review in the define and the
delivery phase of the project. A demonstration was provided during the weekly meeting for the weekly
task. Feedback was reviewed, evaluated, confirmed, and implemented when feasible.

51

8.6.2. Project Steering Group Meetings
The Project Steering Group (PSG) group consisted of major project stakeholders, including the PDEng
trainee. During the project, the PSG had monthly meetings, typically on the last Friday of the respective
month. The main purpose of these meetings was to encourage feedback from the stakeholders. Typi-
cally, these meetings started with a demonstration where the trainee explained the major features that
were implemented since the previous PSG meeting. This was followed by a high-level discussion about
the design and the architecture of the system, requirements as well as risks identified by the PDEng
trainee. A high-level plan for the coming month was also discussed towards the end of these meetings.

8.6.3. On-Demand Meetings
Besides the regular weekly and monthly meetings, several other meetings took place during the execu-
tion of the IntelLight (+) project. Although these meetings were not regular and mostly scheduled on-
demand, they played a key role in communicating with the key stakeholders and in understanding and
implementing the project context.

8.6.4. Communication Medium
Due to the COVID-19 pandemic, everyone was advised to work from home if possible, and all academic
activities were moved online. Microsoft Teams was chosen for all meetings as well as discussions re-
motely. The confluence was set as the preferred way for exchanging digital media (e.g., documents,
images). The Jira was set for tracking the progress of user stories.

8.6.5. Performance Evaluation
The performance of the trainee was evaluated based on various criteria by the project supervisors, and
feedback was provided. The feedback helped the trainee to identify improvement points and steer the
project in the right direction.

Eindhoven University of Technology

52

9. Conclusions

This chapter elaborates on the results achieved, delivered artifacts, and recommendations for future
work.

9.1 Results
The scope of this project included the automation of the parts of the ML lifecycle. The goal was to
automate the process of producing models, getting feedback from users, and deploying the qualified
models to target environments. During this project, an ML pipeline was developed where provided
researchers and data scientists an infrastructure to build the models, investigate them visually on web-
based UI, and use a shared repository to share the qualified ones to be deployed in different environ-
ments.

IntelLight+ provides a web-based UI for analyzing the result of experiments for different activities. It
allows data scientists to use different algorithms with different sets of parameters and hyperparameters.
For each of the activities, the web-based UI will list the best model of each algorithm based on hyperpa-
rameter tuning. Then the researcher can choose the models for each activity and deploy them based on
the guidelines to the target environment(cloud, raspberry).

The major goal of this project was to develop a standardized platform that would allow data scientists
to develop ML algorithms, compare them and test them in the target environments without the need to
hassle all the works not related to developing the ML models manually.

9.2 Delivered Artifacts
The following artifacts are delivered to the stakeholders after successfully completing this PDEng grad-
uation project. Artifacts are delivered to the clients digitally via the git repository, the confluence, and
email attachments.

• IntelLight infrastructure source code: This refers to all the source codes produced during the
PDEng project by the trainee and representatives from Signify. The codes can be found in the
Bitbucket repository https://www.code.dtf.lighting.com/projects/INTLT/repos/activityrecogni-
tion/browse

• Deployment instructions: The instruction to deploy models on the different environments
alongside a guideline for the repository, data versioning, code merge request process, and pro-
ject code style are gathered in the documents directory of the project repository.

• Video demonstration and presentation slides: A video was produced and delivered to the
customer for demonstration purposes. This video can be found on the SharePoint of the project
on university servers. This screen recording shows how a data scientist would use the Intel-
Light+ infrastructure to experiment on the algorithms and set the parameters and hyperparam-
eters for the training. The web-based visualization and deployment will also be covered. Be-
sides the video, presentation slides for the final presentation and progress meeting are also in-
cluded in the confluence and Sharepoint.

• Project report: It refers to this PDEng graduation report. This report not only explains the
activities and designs involved in the development of the IntelLight+ system but also recom-
mendations for improving and extending it.

9.3 Recommendations and future work
One of the main features of the IntelLight+ system is automating the ML pipeline by keeping track of
the steps in the lifecycle of the ML process. In section 4.5 we saw that one of the important QAs of the
IntelLight+ system is flexibility. This allows adding new features to the ML pipeline easily. Currently,
the pipeline uses the mlflow library to keep track of the experiments in the local machines that are

https://www.code.dtf.lighting.com/projects/INTLT/repos/activityrecognition/browse
https://www.code.dtf.lighting.com/projects/INTLT/repos/activityrecognition/browse

53

running the ML pipeline. This can easily be configured to save the experiments in a shared cloud envi-
ronment in case a team of data scientists is going to work on the project. The pipeline itself can also be
integrated into all major cloud providers as the mlflow library is backed by Databricks. Databricks is
fully integrated and supported in AWS, Azure, and GCP.

One other feature that can be added to the current pipeline is to deploy each of the created models with
their specific virtual environment that contains all the libraries required to run that model for prediction.
Currently, when running the training experiments for each of the trained models, a configuration file
that includes the libraries that have been used for building the model is also created. The next improve-
ment can be making a virtual environment for the model from the configuration file and deploy each
model to an independent endpoint with its specific environment. This feature is especially useful for
context recognition in the cloud.

Finally, IntelLight+ is an MLOps project that helps simplify the management, logistics, and deployment
of machine learning models for machine learning researchers. In order to reach the desired outcome, it
is necessary to use data pipelines to identify the data sources needed to solve a business problem. A
data pipeline is needed to make that data ready for analytics, the analytics step(s), and the delivery of
results to the ML scientists or apps that will use them. This means incorporating big data analytics tools
like Spark and Hadoop.

Eindhoven University of Technology

54

10. Project Retrospective

This chapter discusses my gained experience during the period of the IntelLight+ project. This is a
reflection on my technical and organizational lessons from the PDEng graduation project.

10.1 Introduction
This graduation project assignment was a very challenging and fulfilling experience for me. During the
past ten months, my technical and non-technical skills improved. This project also provided me the
perfect opportunity to practice the skills that we gained through various workshops, courses, and train-
ing projects during the first year of my PDEng.

This project gave me an opportunity to broaden my horizon with technical skills in the data domain.
The IntelLight+ project deals with data as input and generates the ML models and their measurements.
Also, other skills that are related to software development were exercised, such as managing and plan-
ning a project, communicating with stakeholders, and analyzing results effectively.

10.2 Technical lessons
Working in the lighting domain was a completely new experience for me. Therefore, understanding the
domain was the first major challenge to deal with. Tips and feedback from my TU/e as well as company
supervisors were crucial for me to be able to navigate through this unfamiliar landscape. To identify
misconceptions and knowledge gaps, I used various diagrams to communicate my ideas. This way, I
was able to gather enough information to move forward with the technical design and implementation.

At the beginning of implementing the project, I investigated some of the domain technologies to see
how they could address the project needs. During that time, It became confusing as, on the one hand,
there was a lot of tutorials that claimed to teach what we were looking for, such as ML pipeline, tracking
experiments, and deployment with a short tutorial, and on the other hand, we could hear a lot that ML
pipeline, model deployment is very complicated. In my idea, people often use the same terms while
they mean different concepts or implementing different levels of features of a single idea.

Therefore, specifying the requirements and validating them based on the use cases was important to
realize what technologies are really needed when we are talking about a concept. Based on meetings
with stakeholders, the perception of actual requirements for the project and the required technology
stack evolved gradually. One important lesson I learned is not to make assumptions about the infra-
structure that will be available. First, talk to stakeholders to clarify the aim of a requirement. Then use
the main requirements to choose your technology options.

My work was to design and implement a machine learning pipeline for building different models. On
the other hand, It was needed to deploy these models in different environments. The technologies in
this domain are still evolving radically, and I was/am inexperienced with many of them. In many in-
stances, I spent a long time trying to figure out a simple thing that should have taken no time. I realized
that I could do two things to encounter this: Ask my colleagues or learn myself. Both are valid, but as
the domain is not yet very mature, it might be more efficient to search first and then look for options
and then ask colleagues' opinions. I tried to survey the technologies we can use to build the ML Pipeline
and then look up the pros and cons of available choices. I gathered the options together, and I called
upon stakeholders from Signify who had more experience. Finally, based on the requirements of the
project, we agreed on a technology.

My takeaway from this experience is when working within a new domain and encountering a problem
that my experience is limited in, do the following in order:

55

- Gain basic knowledge in the domain.
- When encountering a problem, look up and use the documentation and forums to figure things out
yourself.
- If this takes a long time, ask your local expert. This should not be limited to your team or group.
Anyone with expertise can have an excellent benefit for a small amount of their time.

10.3 Organizational lessons
IntelLight+ project was my first experience in a system architect and designer role. In addition, it was
also my first project in a large international company. When the project started, we had our first meeting
three weeks after the project's start date due to restructuring in Signify. After the first meeting, my
observation was that there was a gap between our understanding of the project's domain with Signify
stakeholders. In the beginning, this was quite challenging because my position in this organization was
not yet clear. Luckily, after some time, my relevant stakeholder became clear. I communicated with
main stakeholders from Signify to make it clear that the PDEng design project is a separate project from
the research project. In addition, my takeaway was that one could significantly benefit from the con-
nections of colleagues. For example, I had to get in touch with privacy/security officers and IoT soft-
ware engineers. Instead of going around looking for them myself, I asked my supervisor, who already
knew whom to contact.

After knowing the main stakeholders, the project phases were defined to plan the progress of the project
period. These phases included define, design, develop, and deliver. The first phase was more about
reading the project proposal and talking with different stakeholders to realize their expectations and
more details about the project's domain.

This project was a combination of the software design problem and intelligence system in practice. At
first, like many other projects, which are a combination of research and industrial case, my contribution
was uncertain and lacked domain expertise. I knew artificial intelligence before the start of this project.
This project started with a research project. It was unclear that this project could answer the which of
customer needs and which of them can be answered by the research project. Hence, formulating the
requirements was not an easy process. The main point of reflection for me is that better preparation for
the scope of each project was needed. Having a better view of the goal of the projects and how they
complete each other is not only important but necessary. Of course, you can never predict all things, so
a healthy open-minded attitude towards this fact is also necessary. On the other hand, persuading the
stakeholders that in order to apply ML algorithms, an Ml pipeline can guide through a valuable result
was challenging. It was also engaging in the sense that It challenged me to prove the expected results
as soon as possible to be sure about the validity of the envisioned roadmap.

Being part of the scientists’ team was an honor and challenging at the same time. During various team
meetings and presentations, my role required me to find a common way of communicating that should
work for everyone. Throughout the execution of the project, I shared my design ideas with the stake-
holders and received their feedback. In other words, by mentioning the challenges and difficulties, my
aim was to update them for the roadmap and plan and get feedback from them. In my opinion, this
experience will help me become a better engineer and team player.

One organizational decision in this project was to use a combination of scrum sprints. We made a scrum
team of me and direct stakeholders (data scientist and researcher). During the design and development
phase, other engineers from Signify were occasionally added to the scrum team. In the last phase, we
turned back to traditional software methodology as we were mainly focused on wrapping up the project
and deliver the product rather than adding new features. My gained lesson learned from this experience
is not to become biased to a specific software methodology. Instead, see which methodology serves you
and your team better in your project.

Eindhoven University of Technology

56

References

[1] E. Rondolat, “Philips Lighting is now Signify,” Signify. p. Press releases/2018, 2018, [Online].

Available: https://www.signify.com/en-nz/our-company/news/press-releases/2018/20180516-
philips-lighting-is-now-signify.

[2] I. Heynderickx, “Intelligent Lighting Institute,” 2010. https://www.tue.nl/en/research/research-
institutes/top-research-groups/intelligent-lighting-institute/about-ili/.

[3] A. K. Gopalakrishna, T. Özçelebi, A. Liotta, and J. J. Lukkien, “Exploiting machine learning for
intelligent room lighting applications,” in 2012 6th IEEE International Conference Intelligent
Systems, 2012, pp. 406–411, doi: 10.1109/IS.2012.6335169.

[4] F. Wang, X. K. Liu, and F. Gao, “Fundamentals of solar cells and light-emitting diodes,” in
Advanced Nanomaterials for Solar Cells and Light Emitting Diodes, Elsevier, 2019, pp. 1–35.

[5] P. Samadi Khah, “Eventing in the Hue system,” Technische Universiteit Eindhoven, 2018.
[6] V. Singhvi, A. Krause, C. Guestrin, J. H. Garrett, and H. Scott Matthews, “Intelligent light

control using sensor networks,” in SenSys 2005 - Proceedings of the 3rd International
Conference on Embedded Networked Sensor Systems, 2005, pp. 218–229, doi:
10.1145/1098918.1098942.

[7] A. Krioukov, S. Dawson-Haggerty, L. Lee, O. Rehmane, and D. Culler, “A living laboratory
study in personalized automated lighting controls,” in Proceedings of the third ACM workshop
on embedded sensing systems for energy-efficiency in buildings, 2011, pp. 1–6.

[8] R. Magielse, P. Ross, S. Rao, T. Özçelebi, P. Jaramillo Garcia, and O. Amft, An Interdisciplinary
Approach to Designing Adaptive Lighting Environments. 2011.

[9] T. Mitchell, “Machine Learning,” McGraw Hill, 1997, pp. 239–258.
[10] P. Cunningham, M. Cord, and S. J. Delany, “Supervised Learning BT - Machine Learning

Techniques for Multimedia: Case Studies on Organization and Retrieval,” M. Cord and P.
Cunningham, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 21–49.

[11] I. H. Witten, E. Frank, M. A. Hall, C. J. Pal, and M. DATA, “Practical machine learning tools
and techniques,” in DATA MINING, 2005, vol. 2, p. 4.

[12] D. W. Aha, D. Kibler, and M. K. Albert, “Instance-based learning algorithms,” Mach. Learn.,
vol. 6, no. 1, pp. 37–66, 1991.

[13] A. K. Gopalakrishna, T. Ozcelebi, J. J. Lukkien, and A. Liotta, “Evaluating machine learning
algorithms for applications with humans in the loop,” in 2017 IEEE 14th International
Conference on Networking, Sensing and Control (ICNSC), 2017, pp. 459–464.

[14] V. Lakshmanan, S. Robinson, and M. Munn, “Machine learning design patterns,” O’Reilly
Media, 2020, pp. 282–294.

[15] D. Sato, A. Wider, and C. Windheuser, “Continuous Delivery for Machine Learning,” Martin
Fowler, 2019. https://martinfowler.com/articles/cd4ml.html.

[16] Anil Gupta, “Machine Learning Challenges in the implementation of Industrial Internet of
Things,” 2017. https://www.iiot-world.com/artificial-intelligence-ml/artificial-
intelligence/machine-learning-challenges-in-the-implementation-of-industrial-internet-of-
things/.

[17] R. C. Martin, J. Newkirk, and R. S. Koss, Agile software development: principles, patterns, and
practices, vol. 2. Prentice Hall Upper Saddle River, NJ, 2003.

[18] R. C. Martin, Clean Architecture: A Craftsman’s Guide to Software Structure and Design.
Boston, MA: Prentice Hall, 2017.

[19] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 3rd ed. Addison-
Wesley Professional, 2012.

[20] M. Huo, J. Verner, L. Zhu, and M. Ali Babar, “Software Quality and Agile Methods,” Comput.
Softw. Appl. Conf. Annu. Int., vol. 1, pp. 520–525, Oct. 2004, doi:
10.1109/CMPSAC.2004.1342889.

57

Appendix A. Installing and Running the IntelLight+
Project.

In order to install the ML pipeline, after getting the code by git clone
https://www.code.dtf.lighting.com/scm/intlt/activityrecognition.git
from Signify’ Bitbucket server, it is needed to do the following steps.

Installation
1. Create & activate the conda environment using the environment.yml file at the root of the project.
This takes quite some time to install all required libraries in conda environment. (you need first to
install the anaconda)

conda env create -f environment.yml

activate mlflow-env
Or
conda activate mlflow-env

mlflow-env is the name of the virtual environment in the environment.yml file: name:
mlflow-env

2. You can set the conda virtual environment as the default running environment in your IDE.

Pycharm: Go to files > settings, search for project interpreter, open it, click on the gear
button and choose the conda environment you created.

Spyder: *) open command tool and activate virtual environment *) install spyder-kernel: 'pip install
spyder-kernels==1.9.1' *) in spyder: Tools -> Preferences -> Python interpreter: select
the python.exe that is present in venv (you can find the path by entering in command prompt: which
python

3. Make importing files work together. In the root directory, run:
pip install -e .

After running this command *.eff-info folder will be built. intellight_project.egg-info

Show experiments
First, train models by running the train.py file, which is inside the src directory.

python src/train.py

The models and metrics are already logged via MLflow in train.py and will be saved in mlruns
folder.

After that, a mlflow experiment is created. To visualize the experiment in mlflow web-based UI, run
the following command:
mlflow ui

The web-based application will go up on 127.0.0.1:5000.

https://www.code.dtf.lighting.com/scm/intlt/activityrecognition.git

Eindhoven University of Technology

58

Appendix B. IntelLight+ Frontend Pages.

Figure B-1: List of experiments for dinner activity

Figure B-2: Detail of parameters, metrics, and code version of each experiment

59

Figure 0-3: Artifacts, model, and environment files saved with each experiment

Eindhoven University of Technology

60

Appendix C. IntelLight+ Deployment Commands.

To deploy the models from the development environment to the inference environment, we need to do
the following initial steps in both environments:

- Clone the project from the bitbucket repository:
 git clone https://www.code.dtf.lighting.com/scm/intlt/activi-
tyrecognition.git

- Install Python3.7+
- Install and configure aws cli. (we are using aws s3 as shared storage.)

Make a model placeholder and put chosen models Remote Storage
1. Run the training experiments. This will generate new models in the models/ directory.

2. Use mlflow ui command to see the result of experiments and keep the models that you want to

deploy in the models/ directory

3. Track the changes in the models/ directory in the project, using:

dvc add models

DVC stores information about the added model files (or a directory) in a special .dvc file named mod-
els.dvc, a small text file with a human-readable format. This file can be easily versioned like source
code with Git as a placeholder for the worth to deploy models (which will be added to.gitignore).

4. Create a placeholder of models with git tag:

git add models.dvc
git commit -m "New models are created"
git tag -a V1.3-ml -m "explain the models change"
git push origin V1.3-ml

5. Send the models to shared storage in aws cli (the shared storage is configurable and can be any

storage place):

dvc push models

You can check the files that will be pushed before executing dvc push models and after run-
ning dvc add models by the following command:

dvc status -c

Retrieving and switching between models versions in the target environment

1. Check the available versions of models:

git tag -l "*-ml"

2. The regular workflow is to use git checkout first to switch the .dvc file, and then run dvc

fetch and dvc checkout to sync data:

https://www.code.dtf.lighting.com/scm/intlt/activityrecognition.git
https://www.code.dtf.lighting.com/scm/intlt/activityrecognition.git

61

git checkout tags/V1.7-ml models.dvc
dvc fetch
dvc checkout

3. In case your dvc cache is updated, you can directly download the models in the project's

root:

dvc pull models.dvc

*Raspberry Pi: you need to make a virtual environment and install the packages from pi_require-
ments.txt in order to deploy the models

pip3 install -r pi_requirements.txt

Eindhoven University of Technology

62

About the Author

Hossein Mahdian received his Bachelor’s degree in
Information Technology from Payam Noor University,
Iran (2011) and a Master's degree in Information Tech-
nology Engineering from Mazandaran University of
Science and Technology, Iran (2014). In his master’s
thesis, Hossein worked on a classification problem and
proposed a machine learning algorithm for disease de-
tection. After graduation, Hossein started his profes-
sional career by working as a software developer on an
enterprise project. Then, he worked as a software en-
gineer in financial software companies in the banking
industry and capital market. His interests include soft-
ware architecture, design, distributed systems, intelli-
gent systems, IoT, and machine learning.

Hossein joined the Technical University of Eindhoven
in October 2019 as a Professional Doctorate in Engi-
neering (PDEng) trainee in the Software Technology
program offered by the Stan Ackermans Institute. Dur-
ing his traineeship, he participated in the development
of several data-intensive and software-intensive prod-
ucts in collaboration with global players like Bosch Se-
curity and the European Space Agency. In January
2021, he started working on his ten-month PDEng
graduation project to design and develop the machine
learning pipeline for intelligent lighting systems for
Signify, the leading light solution provider company.

PDEng SOFTWARE TECHNOLOGY

PO Box 513
5600 MB Eindhoven
The Netherlands
tue.nl

	IntelLight+
	Foreword
	Preface
	Acknowledgments
	Executive Summary
	Glossary
	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	1.1 Project Partners
	1.1.1. Signify
	1.1.2. TU/e Intelligent Lighting Institute (ILI)

	1.2 Project Context
	1.3 Objective and Motivation
	1.4 Outline

	2. Problem Analysis
	2.1 Problem Definition
	2.2 Project Goals
	2.3 Product Roadmap
	2.3.1. Philips Hue
	2.3.2. Lighting Evolution

	2.4 Technology Roadmap
	2.4.1. Learning approaches
	Instance-based learning
	Online learning

	2.4.2. ML pipeline
	Reproducible Model Training
	Data Versioning

	2.5 Project Scope, Assumptions, and Constraints
	2.6 Stakeholder Analysis

	3. Feasibility Analysis
	3.1 Challenges
	3.2 Risks

	4. Requirements and Use Cases
	4.1 Introduction
	4.2 System requirements
	4.3 Use cases
	4.4 Functional Requirements
	4.4.1. General Functional Requirements
	4.4.2. Software Component Functional Requirements
	4.4.3. ML Pipeline Functional Requirements

	4.5 Non-Functional Requirements
	4.5.1. Quality Attribute Scenarios (QAS)

	4.6 Requirements traceability matrix

	5. System Architecture and Design
	5.1 Design Principles
	5.2 High-level Architecture
	5.2.1. ML Pipeline
	5.2.2. Feedback Component
	5.2.3. Deployment

	5.3 Architectural Views
	5.3.1. Logical View
	5.3.2. Process View
	5.3.3. Development View
	5.3.4. Physical View

	6. Implementation
	6.1 Introduction
	6.2 Technology choices
	6.2.1. Tracking the ML training
	6.2.2. Data Versioning

	6.3 Data gathering
	6.4 Model building
	6.5 Model deployment

	7. Verification & Validation
	7.1 Testing and quality assurance in ML systems
	7.2 Verification
	7.2.1. Unit testing
	7.2.2. Code consistency checking

	7.3 Validation
	7.3.1. Regular Stakeholder Feedback
	7.3.2. Requirements status
	7.3.3. Project Goal Evaluation

	8. Project Management
	8.1 Introduction
	8.2 Way of Working
	8.3 Work-Breakdown Structure (WBS)
	8.4 Project Planning and Scheduling
	8.5 Project Timeline
	8.6 Communication Plan
	8.6.1. Weekly Update Meetings
	8.6.2. Project Steering Group Meetings
	8.6.3. On-Demand Meetings
	8.6.4. Communication Medium
	8.6.5. Performance Evaluation

	9. Conclusions
	9.1 Results
	9.2 Delivered Artifacts
	9.3 Recommendations and future work

	10. Project Retrospective
	10.1 Introduction
	10.2 Technical lessons
	10.3 Organizational lessons

	References
	Appendix A. Installing and Running the IntelLight+ Project.
	Installation
	Show experiments

	Appendix B. IntelLight+ Frontend Pages.
	Appendix C. IntelLight+ Deployment Commands.
	Make a model placeholder and put chosen models Remote Storage
	Retrieving and switching between models versions in the target environment

	About the Author

