

COGENT: Concurrent Generative Engineering Tooling

Citation for published version (APA):
O'Hara, C. (2021). COGENT: Concurrent Generative Engineering Tooling: Enabling Cross-Functional Teams in
Architecture Design for Space Subsystems. Technische Universiteit Eindhoven.

Document status and date:
Published: 28/10/2021

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/2d1b8e64-fe95-4985-bd36-7f71b1974356

PDEng SOFTWARE TECHNOLOGY

PDEng THESIS REPORT

COGENT: Concurrent Generative Engineering Tooling
Enabling Cross-Functional Teams in Architecture Design for Space Subsystems

Christopher A. O'Hara
October 2021
Department of Mathematics & Computer Science

COGENT: Concurrent Generative Engineering Tooling
Enabling Cross-Functional Teams in Architecture Design for Space Subsystems

Christopher A. O’Hara

October 2021

Eindhoven University of Technology
Stan Ackermans Institute – Software Technology

PDEng Report: 2021/074

Confidentiality Status: Public

Partners

Siemens Digital Industries Software Eindhoven University of Technology

Steering
Group

Jonathan Menu

Mark van den Brand

Yanja Dajsuren

Date October 2021

Composition of the Thesis Evaluation Committee:

Chair: Mark van den Brand

Members: Yanja Dajsuren

Yves Lemmens

Johnathan Menu

Tom Verhoeff

The design that is described in this report has been carried out in accordance

with the rules of the TU/e Code of Scientific Conduct.

Date October, 2021

Contact address Eindhoven University of Technology
Department of Mathematics and Computer Science
Software Technology
MF 5.080 A
P.O. Box 513
NL-5600 MB
Eindhoven, The Netherlands
+31 402744334

Published by Eindhoven University of Technology

PDEng Report 2021/074

Abstract System architecture design is a complex and compli-
cated process. Systems, subsystems, and components
must undergo a strict evaluation process detailing trade-
offs, risks, benefits, and feasibility at the fringes of what
is technologically possible. Poor architecture design
leads to poor product performance, wasted resources,
and in worst-case scenarios—fatalities caused by mis-
sion/product failure. Two upcoming domains seek to im-
prove the generation, evaluation, and selection of system
architecture configurations. These domains are genera-
tive engineering and concurrent engineering. Generative
engineering allows for the automatic generation and eval-
uation of thousands of architecture configurations. Con-
current engineering is a methodology of subsystem de-
sign teams working collaboratively and simultaneously
to create and select system architecture configurations.
However, what had yet to be established was the value
of combining the two domains. With Siemens SISW at
the cutting-edge of technology solution development, this
project sought to do precisely that in creating the Con-
current Generative Engineering Tooling (COGENT) plat-
form. COGENT is a plugin solution architecture that en-
ables cross-functional teams in automated system archi-
tecture generation in concurrent design facilities. A con-
ceptual FireSat case study was explored, demonstrating
COGENT capabilities such as enabling concurrent users,
synchronized tool usage, centralized object storage, and
connectivity to third-party software and/or user-defined
features for space systems. COGENT is modular, exten-
sible, and easy to integrate into any system development
lifecycle. With COGENT, system designers can focus on
their primary concerns, goals, and constraints. Using CO-
GENT will allow system engineers, system architects, and
subsystem designers to develop system architecture con-
figurations at a fraction of the time and cost.

Keywords Concurrent Engineering, Generative Engineering, Model-
Based Systems Engineering, Space Systems Engineering,
Systems Architecture, Artificial Intelligence

Preferred reference COGENT, Concurrent Generative Engineering Tooling, En-
abling Cross-Functional Teams in Architecture Design for
Space Subsystems. Eindhoven University of Technology,
PDEng Report 2021/074, October 2021.

Partnership This project was supported by Eindhoven University of Tech-
nology and Siemens Digital Industries Software.

Disclaimer Endorsement Reference herein to any specific commercial products, pro-
cess, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its en-
dorsement, recommendation, or favoring by the Eindhoven
University of Technology and Siemens Digital Industries
Software. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the Eind-
hoven University of Technology and Siemens Digital Indus-
tries Software, and shall not be used for advertising or prod-
uct endorsement purposes.

Disclaimer Liability While every effort will be made to ensure that the informa-
tion contained within this report is accurate and up to date,
Eindhoven University of Technology makes no warranty, rep-
resentation or undertaking whether expressed or implied, nor
does it assume any legal liability, whether direct or indirect, or
responsibility for the accuracy, completeness, or usefulness
of any information.

Trademarks Product and company names mentioned herein may be
trademarks and/or service marks of their respective owners.
We use these names without any particular endorsement or
with the intent to infringe the copyright of the respective own-
ers.

Copyright Copyright © 2021, Eindhoven University of Technology. All
rights reserved. No part of the material protected by this
copyright notice may be reproduced, modified, or redis-
tributed in any form or by any means, electronic or mechani-
cal, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permis-
sion of the Eindhoven University of Technology and Siemens
Digital Industries Software.

Eindhoven University of Technology

Foreword

Siemens Industry Software is a software tool vendor and supplier of engineering services for
companies in the automotive, aerospace, and other advanced machine-building sectors. In
recent years, it has initiated new activities in the domain of generative engineering: the auto-
matic generation and evaluation of new system designs through computational techniques.

One of the challenges faced using generative engineering is accommodating the multidisci-
plinary and multistakeholder nature of large system and system-of-systems design. Indeed,
while generative techniques will allow engineers to define and encode their design problem,
the general evaluation and assessment process for generated system alternatives needs to
be adapted to fit with these techniques. The decision process itself needs to allow design-
ers to collaboratively analyze and score hundreds, thousands, or even millions of alternative
solutions.

In this work, the COGENT project, Christopher O’Hara addresses one of the primary needs
of the collaborative assessment of system designs: enabling designers to bring data objects
together and to access the same objects in tools that allow for managing, tracking, and orga-
nizing them. The many faces data objects and system architectures can have often require
enabling transformations between different data formats. At the same time, the envisioned
solution requires a certain degree of flexibility to changing and new third-party tools.

The nature of this work – enabling to organize data objects – involves many interfaces to
different tooling and process features. Properly scoping this work was one of the more
difficult topics Christopher faced. This scoping required abstracting from front-end aspects
(e.g., how a user interfaces the organization layer), procedural aspects (e.g., in which order
a user prefers to use certain tools), as well as the collaborative decision support itself (e.g.,
decision algorithms). What remained is the essence of COGENT itself: a solution which
Christopher termed “the COGENT plugin manager”.

This final report describes the architecture of the plugin manager, and is the result of Christo-
pher’s relentless enthusiasm to deliver working and satisfying solutions. Even in a context
which involved changing requirements and evolving insights, Christopher was eager to drive
his tooling in an agile way. The result is a self-contained solution, which also provides value
beyond the context of collaborative engineering. The insights on how to connect to versatile
external tools, organized in a structured yet adaptive fashion, will steer further development
activities of generative engineering at Siemens Industry Software.

Dr. Jonathan Menu, Research Engineering Manager

October 4th, 2021

COGENT i

Eindhoven University of Technology

ii COGENT

Eindhoven University of Technology

Preface

This report describes the design, architecture, and proof-of-concept implementation of the
COncurrent Generative Engineering Tooling (COGENT) Platform. COGENT acts as a plugin
manager embedded in Siemens Simcenter Studio, concurrently connecting users to various
software technologies via dynamic plugins.

This report describes the deployment of COGENT for a community-supported conceptual
experiment (FireSat) within the context of the European Space Agency’s (ESA) Concurrent
Design Facility (CDF). FireSat is a complex satellite network system intended to discover
forest fires. COGENT was verified and validated through use cases that demonstrate added
value to concurrent engineering teams using generative engineering. Example Use Cases
(UC) include:

UC1: Storing and analyzing architectural model metadata within graph databases

UC2: Versioning and tracking using experiment tracking software

UC3: Storing and managing data via on-premise cloud solutions

UC4: Analyzing feature co-factor dependence (correlation) and performing sentiment analy-
sis via custom scripts

As a technology solution, COGENT enhances Siemens’ generative engineering capabilities
in the concurrent engineering domain. These enhancements directly translate to value for
Siemens’ clients as optimal solutions can be derived in a fraction of the time and cost by
cross-functional teams. Additionally, COGENT integrates with third-party applications, pro-
viding great flexibility and customization at the user level without placing any dependencies
on the primary software.

Christopher O’Hara conducted this project during a ten-month Professional Doctorate in En-
gineering (PDEng) in Software Technology (ST) graduation project under the direction of
Siemens Digital Industries Software (SISW) and the Eindhoven University of Technology
(TU/e).

The target audience of this report has a background in model-based system engineering
utilizing system-level software solution architectures in the aerospace domain.

Christopher O’Hara

October 2021

COGENT iii

Eindhoven University of Technology

iv COGENT

Eindhoven University of Technology

Acknowledgements

No project is completed in isolation, regardless of a pandemic persisting for the majority of
a two-year professional doctorate program. I am very grateful for the TU/e’s Department
of Software Technology as they have been very supportive throughout the program. I am
highly appreciative of Yanja Dajsuren. She opened the doors for me to an endless number
of possibilities. Before the program, I already knew what I wanted to do, but now I really
know what I want to do and how to get there. I also want to thank the program’s secretariat,
Désirée van Oorschot, for all of her assistance. I could not have managed without either one
of you.

I am also very grateful that Mark van den Brand was able to mentor my project. I know that
he is a very occupied researcher and scientific director, so any time he can spare is a gift. He
was very consistent with his feedback and guidance. I never needed to doubt whether or not
I was on the right track, and if I did begin to deviate, he would steer me right back. It really
is a privilege to work with him, and he is one of, if not the best, mentors for model-driven
software engineering in the Netherlands.

From Siemens SISW, I really enjoyed working with Jonathan Menu. He is always supportive
when providing guidance and direction. I think we have developed a great product together. I
also want to thank Mike Nicolai for clearly specifying which technical questions would be the
most meaningful for me to investigate. Furthermore, I would like to thank Johan Vanhuyse
for always ensuring I had access to everything I needed while working with Simcenter Studio.
SISW gave me every opportunity to have a meaningful and enjoyable project.

I am also appreciative to Tom Verhoeff and Yves Lemmens, external members of my Thesis
Evaluation Committee, for taking the time to read my thesis, evaluate my project work, and
listen to me present my efforts during the defense.

Finally, I would like to thank all of my supportive friends, family, colleagues, and peers over
the years. Completing a doctorate is a struggle for the candidate and the people in their life.
I have been away from home for four years now, yet everyone is still cheering me on. I feel
very touched. Thank you for being a part of my journey, progress, and future. I still have
many things to learn and skills to develop, so please bear with it a little longer.

Christopher O’Hara

October 2021

COGENT v

Eindhoven University of Technology

vi COGENT

Eindhoven University of Technology

Executive Summary

Siemens Digital Industries Software (SISW) is a global leader in industrial automation, lifecy-
cle management, electrical/mechanical design, and digital innovation. Technology-oriented
companies and institutions regularly employ Siemens software within the automotive,
aerospace, and intelligent manufacturing domains. Without exception, Siemens technol-
ogy solutions blur the boundaries between various engineering and technology domains,
allowing for effortless, multidisciplinary product development. Siemens SISW is currently
developing a new technology solution for automatic system architecture generation called
Simcenter Studio (SCS). At the start of this project, SCS was a single-user application. To
enable cross-functional teams to engage in concurrent engineering, a methodology for si-
multaneous product development, SCS needed to be extended to a multi-user application.

We decided to create a plugin architecture to allow users to concurrently interact with mod-
els, access centralized storage solutions, and connect to third-party technologies. A plugin
architecture was chosen since this pattern is modular, extensible, and easy to integrate into
any system development lifecycle. This solution is known as the Concurrent Generative En-
gineering Tooling platform (COGENT). With COGENT, system designers can focus on their
primary concerns, goals, and constraints. Using COGENT will allow system engineers, sys-
tem architects, and subsystem designers to co-develop system architecture configurations at
a fraction of the time and cost. A conceptual FireSat case study was explored, demonstrating
COGENT capabilities such as enabling concurrent users, synchronized tool usage, central-
ized object storage, and connectivity to third-party software and/or user-defined features for
space systems.

As a solution architecture, COGENT extends SCS from a single-user user application to a
multi-user application with simultaneous tool access. Additionally, four use cases utilizing
external or custom software were demonstrated for the FireSat case study, including graph
databases, experiment tracking, centralized cloud storage, and user-defined modules. Fur-
thermore, a centralized cloud solution was used to store objects, assets, metadata, and
models in which end-users have concurrent and synchronous information. COGENT was
designed as a high-level solution that can be extended to Industry 4.0 domains containing
system-of-systems such as aerospace, automotive, industrial robotics, biomedical devices,
and embedded Internet-of-Things.

COGENT vii

Eindhoven University of Technology

viii COGENT

Eindhoven University of Technology

Glossary

ACEL Architecture-Centric Exploration Language
AI Artificial Intelligence
AOCS Attitude & Orbital Control System
AOP Aspect-Oriented Programming
AQL Arango Query Language
CAFCR Customer Objectives, Application, Functional, Conceptual, and Realization
CDF Concurrent Design Facility
CDP4 (RHEA) Concurrent Design Platform 4®

CDS Computational Design Synthesis
CE Concurrent Engineering
CFT Component Fault Tree
CI/CD/CT Continuous Integration, Continuous Development, Continuous Testing
COGENT Concurrent Generative Engineering Tooling
ConOps Concept of Operations
CPS Cyber-Physical System
DevOps Software Development & Information Technology Operations
DoDAF Department of Defense Architecture Framework
DSE Design Space Exploration
DSL Domain Specific Language
DST Domain Specific Tool
ECSS European Cooperation for Space Standardization
EPS Electrical Power System
ESA European Space Agency
ESTEC European Space Research and Technology Centre
ETL Extract, Transform, Load
FoM Figure of Merit
GCD Generative Concurrent Design
GD Generative Design
GDB Graph Database
GE Generative Engineering
HLR High Level Requirement
HTIL Human-in-the-Loop
KPI Key Performance Indicator
LEO Low-Earth Orbit
MBSA Model-Based System Architecting
MBSE Model-Based System Engineering

COGENT ix

Eindhoven University of Technology

MDA Model-Driven Architecture
MDE Model-Driven Engineering
MGMT Management
ML Machine Learning
MOO Multi-Objective Optimization
MVP Minimum Viable Product
NASA National Aeronautics and Space Administration
NoSQL Not-Only SQL
NLP Natural Language Processing
PDEng Professional Doctorate in Engineering
PROP Propulsion System
PSG Project Steering Group
SAT Boolean Satisfiability Problem
SCS (Siemens) Simcenter Studio™
SEIM Space Engineering Information Model
SoI System-of-Interest
SoS System-of-Systems
SISW Siemens Digital Industries Software
SQL Structured Query Language
ST Software Technology
SYS Systems
SysML Systems Modeling Language
TCS Thermal Control System
TDD Test-Driven Development
TRL Technology Readiness Level
TU/e Eindhoven University of Technology
TQ Technical Question
UC Use Case
UI User Interface
US User Story
UML Unified Modeling Language

x COGENT

Eindhoven University of Technology

List of Tables

4.1 A small subset of CDF Positions, Representatives, Concerns, and Parame-
ters. 17

5.1 Primary Functional Requirements. 26

6.1 COGENT-Specific Functional Requirements. 31

7.1 COGENT Non-Functional Requirements. The Priority (P) is shown as High
(H) or Medium (M). The color encoding shows achieved (green) or partially
achieved (yellow). 53

A.1 Primary Project Stakeholders. The concerns are from the perspective of the
Trainee and may inaccurately represent the stakeholder internal concerns. . . 61

B.1 CDF Positions and IDs. 67

C.1 Solution architectures pattern analysis. 81

C.2 Comparison of Graph Database Management Systems (G-DBMS). 82

C.3 Comparison of Experiment Tracking & Management Systems. 82

COGENT xi

Eindhoven University of Technology

xii COGENT

Eindhoven University of Technology

List of Figures

2.1 Cost vs. Development Phase. The figure on the left demonstrates that life-
cycle cost determination increases and cost reduction opportunities decrease
per phase. The figure on the right illustrates how drastically the relative cost
of resolving issues increases ten-fold with each phase. Adapted from [1]. . . 6

3.1 Generic FireSat subsystem architecture example generated with ACEL in SCS. 10

3.2 Concurrent Engineering process compared to Sequential Engineering show-
ing Lead Time Reduction, adapted from [2]. 10

3.3 Interpreted domain model of Concurrent Generative Engineering within the
context of COGENT. 12

3.4 CAFCR, adapted from [3]. 13

3.5 DAARIUS methodology overview, adapted from [4]. 13

4.1 Pre-Phase A CDF and Designer Tasks. Extracted from [5]. 15

4.2 Example CDF Arrangement, based on the ESA/ESTEC Barracks [6]. For the
full description of positions, please see Tab. B.1 16

4.3 FireSat CDF Conceptual Model. An MBSA Model was constructed in DAAR-
IUS. MBSA components colors represent: brown for Configurations, light green
for Aspects, dark green for Results, purple for Stakeholders, and blue for Sys-
tems. 17

4.4 COGENT as a solution to connect users with technologies described in use
cases. 21

5.1 Use Case Diagram. Design teams are the Producer and analysis teams are
the Consumer. The system boundary of COGENT is included. 24

5.2 FireSat Onion diagram, updated from Fig. C.1. Specific subsystem teams
have been added along with external tools the users wish to use. 25

6.1 COGENT Design Alternative (Variant 2). COGENT is embedded in SCS. . . 28

6.2 COGENT Plugin Architecture with Design Pattern Classes for implemented
Plugins. 31

COGENT xiii

Eindhoven University of Technology

6.3 General Systems Functionality Description. The model demonstrates the high-
level flow behavior of the system. 32

6.4 COGENT Plugin Architecture Interface Layers and Functional Blocks. 33

6.5 Resource Event-Trace Description Diagram. This diagram illustrates the gen-
eral flow of tasks in a sequential-like behavior. This model assumes that plu-
gins for GDBs, Experiment Tracking, and User-Defined Features have been
registered. 34

6.6 COGENT High-Level Activity Diagram describing input/output data types and
(conceptual) parameter value ranges. The results of quantitative and qualita-
tive FoM evaluation and scoring results are merged and made available for a
Ranking Activity. 35

6.7 Class Diagram for the Initial Model Transformation Class with the configuration
file inheritance and the centralized AWS S3 storage Classes for the Orchestrator. 37

6.8 Process Flow Timeline with an Orchestrator, Storage, User, and Plugins layer.
The Storage and Plugins layers include example technologies that can be
integrated into the system. 38

6.9 COGENT Conceptual Concurrent Score Merging Activity Diagram. The qual-
itative/architectural attribute scores from multiple Users are merged as an Or-
chestrator’s task. 40

6.10 Functional System Component Diagram with color encoding for Functional-
ities and HITL steps. The left SCS module is the Orchestrator’s Notebook
responsible for the initial model transformation, storage access, and merg-
ing. The right SCS module is the User’s Notebook for scoring and ranking,
along with storage access. The bottom four blocks are implemented plugins
for Neo4J, wandb, and two user-defined scripts. 41

6.11 FireSat Neo4J Graph Database. This figure shows an example of an archi-
tecture (red) with AOCS and EPS subsystems (orange and pink). Subsys-
tem components (yellow) are a function of qualitative/architectural attributes
(green). Users (blue) score the architecture with concerns regarding the as-
cribed attributes. 43

6.12 Neo4J Graph Database Plugin Class Diagram. 44

6.13 Wandb. Five FireSat architecture configurations are compared against quali-
tative, quantitative, and architecture attributes for two Agents. The box on the
left shows metadata associated with the selected model. 45

6.14 FireSat Agent-generated Design Decision Notes. These notes are extracted
with TextBlob and used by NLTK for sentiment analysis. 47

6.15 NLTK Output. The previous three FireSat design decisions for Agent 1 are
scored with NLTK’s sentiment analysis package. The scores of 0.75, 0, and
-0.9 translate to "good," "neutral," and "very poor." 47

6.16 Plugin Activity Diagram. Four different plugin paths occur in parallel, but with
forced timings based on plugin ordering specifications. 48

xiv COGENT

Eindhoven University of Technology

7.1 Simulated Ranking Results. ARCH021 provides the best trade-offs with both
Agent’s having "liked" the architecture configuration. 50

A.1 Stakeholder Power-Interest Matrix Diagram. 62

A.2 Tracking Risk Evolution in a Risk Matrix. The dotted star is the original approxi-
mation of the risk likelihood-severity combination. The dotted arrow shows the
transition of the risk to a solid star where the risk currently is located. 63

A.3 Project Timeline Gantt Chart. 65

B.1 Siemens Discover screen capture. All 64 architecture configurations have
been plotted with Agent likes, quality attributes, and quantitative parameters
values. ARCH021 is selected for having the highest simulated rank. 70

B.2 FireSat Systems Functionality Description. The model demonstrates the high-
level flow and resource interactions of the system with specific tooling. Qual-
ity attribute generation, scoring, and design decision notes are automatically
generated by autonomous agents. 71

C.1 General CDF Onion Diagram (high level of abstraction). 73

C.2 Imagined Process Flow. 74

C.3 Example performance indicators. Layers are focused on users, domain/subsystem,
and attributes. Additionally, the domains in which GE and CE are needed for
addressing quality attributes is provided. Attributes have intrinsic confounding
and coupling. 75

C.4 COGENT Design Alternative (Variant 1) in which COGENT module is external
from SCS. 76

C.5 Orchestrated Systems Event-Trace Diagram. 77

C.6 Agent Systems Event-Trace Diagram. 77

C.7 Activity diagram demonstrating the sequence in which Users or Agents can
score, like, rank, and add design decisions. 78

C.8 Potential misuse case examples. These occur whenever a single designer or
design team is interacting with generated architectures in parallel with other
designers/teams (but referring to the same architectures). 80

C.9 Primitive Value Types model for the Graph Database implementation. 83

C.10 Normalized Logical Model used for column-based RDBMS and NoSQL database
design [7]. 84

C.11 Graph Database Schema based on Fig. C.10. Derived via RDBMS to GDB
transformation steps in [8]. 85

C.12 Wandb. Six runs of the same architecture configuration are compared with
different parameter values for attributes. 85

C.13 Wandb. Eight runs of the different architecture configurations are compared
against parameter values for attributes. 86

COGENT xv

Eindhoven University of Technology

C.14 Graph Database Interpretation of an Architecture Configuration generated
from an ACEL Model. 86

C.15 Output Correlation Matrix. Values are between 1.0 and -1.0, which represent
positively correlated and negatively correlated, respectively. The correlation
demonstrates co-factor feature importance, e.g., using Xenon fuel has a highly
negative impact on the Reliability. 87

xvi COGENT

Eindhoven University of Technology

Contents

Foreword i

Preface iii

Acknowledgements v

Executive Summary vii

Glossary ix

List of tables xi

List of figures xi

1 Introduction 1

1.1 Project Context . 1

1.1.1 Problem Description . 2

1.1.2 Simcenter Studio . 2

1.2 Scope and High-Level Requirements . 3

1.3 Report Outline . 4

2 Problem Analysis 5

2.1 General & Space Architecture Challenges . 5

2.1.1 Wicked Complexity in Architectural Design 5

2.1.2 Concept Phase Determines Life-Cycle Costs 6

2.2 Siemens-Specific Challenges . 7

2.2.1 Multi-User Extension . 7

2.2.2 Scoring & Ranking . 7

2.2.3 Third-Party Software Integration . 7

2.2.4 Case Study: FireSat . 7

COGENT xvii

Eindhoven University of Technology

3 Domain Analysis 9

3.1 Generative Engineering . 9

3.2 Concurrent Engineering . 9

3.2.1 Space Engineering Information Model 10

3.3 Concurrent Generative Engineering . 11

3.4 Architecting Methodology . 11

3.4.1 CAFCR . 11

3.4.2 Model-Based System Architecting . 12

4 Stakeholder Analysis & Use Cases 15

4.1 Concurrent Design Facility . 15

4.1.1 CDF Stakeholders . 16

4.1.2 Dimensionality Reduction . 16

4.2 Customer Objectives Viewpoint . 17

4.2.1 Use Case 1 – Graph Database . 18

4.2.2 Use Case 2 – Experiment Tracking . 18

4.2.3 Use Case 3 – Data Storage . 19

4.2.4 Use Case 4 – User-Defined Features 20

5 System Requirements 23

5.1 Application Viewpoint . 23

5.1.1 System Usage Life-cycle . 23

5.1.2 COGENT Positioning . 24

5.2 Functional Requirements . 25

6 System Design & Architecture 27

6.1 COGENT Domain Model . 27

6.1.1 Monolithic Versus Modular . 28

6.1.2 Microservice Architecture . 29

6.1.3 Plugin Architecture . 29

6.2 Functional Viewpoint . 29

6.2.1 COGENT Plugin System . 29

6.2.2 COGENT-Specific Functional Requirements 31

6.2.3 COGENT Functional Decomposition 31

6.3 Conceptual Viewpoint . 34

6.3.1 FireSat Evaluation Dataset . 34

xviii COGENT

Eindhoven University of Technology

6.3.2 Initial Model Transformation for COGENT 36

6.3.3 Cross-Cutting Concerns: Data Storage 37

6.3.4 Conceptual Process Flow . 38

6.3.5 Multi-User Model Merging . 39

6.4 Realization Viewpoint . 39

6.4.1 System Components . 40

6.4.2 Developing Plugins . 40

6.4.3 Autonomous Agents . 41

6.4.4 Neo4J Graph Database Plugin . 42

6.4.5 Weights & Biases Experiment Tracking Plugin 44

6.4.6 Analysis in Discover . 45

6.4.7 User-Defined Module Plugins . 45

6.4.8 Plugins Execution & Interaction . 47

7 Verification & Validation 49

7.1 Verification . 49

7.1.1 Functional Requirement Verification 49

7.1.2 System/Software Testing . 50

7.2 Validation . 51

7.2.1 Demonstrations . 52

7.2.2 Cross-Domain Analogies . 52

7.2.3 COGENT Technology Realizations . 52

7.2.4 Non-Functional Requirements . 52

8 Conclusion & Recommendations 55

8.1 Conclusion . 55

8.2 Project Results . 56

8.3 Recommendations . 56

A Appendix I - Project Management 61

A.1 Project Stakeholders . 61

A.2 Project Management Approach . 62

A.3 Project Timeline . 62

A.4 Risk Management . 63

A.5 Project Retrospective . 63

COGENT xix

Eindhoven University of Technology

B Appendix II - Requirements & Risk Register 67

B.1 CDF Positions & IDs . 67

B.2 Software Requirements . 68

C Appendix III - Design & Technology Alternatives 73

C.1 High-Level Process Flow . 73

C.2 Design Alternatives . 76

C.3 System Usage Scenarios . 78

C.3.1 User Scenario 1: Single Producer/Consumer 78

C.3.2 User Scenario 2: Single Producer and Single Consumer 78

C.3.3 User Scenario 3: Single Producer Team 79

C.3.4 User Scenario 5: Single Consumer . 79

C.3.5 User Scenario 6: Consumer Team . 79

C.3.6 Misuse Scenario Overview . 79

C.4 Technology Alternatives . 81

C.4.1 Solution Architecture Analysis . 81

C.4.2 Graph Database Comparison . 82

C.4.3 Experiment Tracking Comparison . 82

C.4.4 Cloud Object Storage Comparison . 83

C.5 RDBMS & GDB Metamodels/Schema . 83

C.6 Additional Technology Output . 85

C.6.1 Weights & Biases Cases . 85

C.6.2 Neo4J Validation GDB . 86

C.6.3 Correlation Matrix . 86

C.7 Supplemental Design Information . 88

C.7.1 Concept of Operations . 88

C.7.2 Limitations in Pareto-optimal Diagrams 88

C.7.3 Deriving FoM Priorities from Mission Requirements 89

C.7.4 Transient Definitions and Statuses in Attributes 89

xx COGENT

Eindhoven University of Technology

COGENT xxi

Eindhoven University of Technology

1 Introduction

This chapter introduces the project context, the current Siemens Simcenter Studio software,
the scope and goals of the project, and the report outline.

1.1 Project Context

Siemens Digital Industries Software (SISW) is a global leader in industrial automation, lifecy-
cle management, electrical/mechanical design, and digital innovation. Technology-oriented
companies and institutions regularly employ Siemens software within the automotive,
aerospace, and intelligent manufacturing domains. Without exception, Siemens technology
solutions blur the boundaries between various engineering and technology domains, allow-
ing for effortless, multidisciplinary product development. These solutions are not only ter-
restrial, as Siemens supports aerospace partners—including the European Space Agency
(ESA)—in space mission planning and design.

Space mission planning and design is a complex topic in the realm of System-of-Systems
(SoS) [9]. Each experiment must go through a strict evaluation process detailing trade-offs,
risks, benefits, and feasibility at the fringes of what is technologically possible. A majority of
this design depends on architectural aspects within and between systems. As such, archi-
tecture generation is a critical component of the design phase. The early mission phases
are considered crucial in many research and development groups, such as ESA’s Concurrent
Design Facility (CDF) [10]. With proper architecture design, potential problems are identified,
mitigated, avoided, and/or resolved early during the design phase. In the CDF, representa-
tives from different domains and subsystem teams co-locate and iteratively design complex
SoS for intricate spacecraft, satellites, and robots. Utilizing Concurrent Engineering (CE) and
iterative design, identifying optimal approaches to mission objectives is possible. Integrating
state-of-the-art tools, techniques, and Model-Based System Engineering (MBSE) principles
promotes mission—and experiment—success.

While CE improves quality, reduces costs, and saves time, it does not ensure the identifi-
cation of an optimal architecture. Subsystem representatives must make numerous design
decisions, trade-offs, and compromises during design sprints when deriving feasible system
architectures. As such, CE needs to combine other methodologies for generating, filtering,
and (down)selecting system architectures. One upcoming methodology is Generative En-
gineering (GE)—a computational design technique that automatically generates all feasible
architectures. Furthermore, GE-created architectures are evaluated with quantitative Figure
of Merit (FoM) values as constraints or goals.

COGENT 1

Eindhoven University of Technology

1.1.1 Problem Description

While GE can impressively generate and evaluate thousands of potential architecture config-
urations for one experiment or product, the subsystem representatives still have finite time.
Historically, the CDF ideates and evaluates between three and five architecture candidates
for an experiment. However, GE alleviates the time spent in the initial architecture structure,
interface verification, and system evaluation. After rapidly generating architecture configura-
tions with GE, more of the designer’s time is available for ranking, scoring, and analysis, with
a confidence that a certain number of system architectures are "optimal" based on the mis-
sion objectives and operational requirements. Combining GE with CE may bring out the best
of both worlds—rapid system architecture generation with collaborative discussions leading
to better system architecture selection while reducing costs and time during the conceptual
phase.

The problem statement is; it has yet to be shown how generative engineering can be ex-
tended towards concurrent engineering for an integrated, multidisciplinary product team.
This project led to the creation of the Concurrent Generative Engineering Tooling (COGENT)
proof-of-concept implementation. COGENT is based on the Concurrent Generative Engi-
neering Activity at Siemens Digital Industries Software (SISW). This project aimed to: iden-
tify the optimal methods for storing data and assets, identify ways to track design decisions,
enable cross-function team collaboration, and connect to user-specific, third-party tooling.
We explored a conceptual FireSat space mission for validating these aspects via COGENT.

1.1.2 Simcenter Studio

Simcenter™ Studio (SCS) is an upcoming GE software application that enables automatic
system architecture generation and evaluation of different system configurations during the
early concept phase. SCS combines system simulation, optimal control methods, and re-
inforcement learning on top of a state-of-the-art machine learning and scientific computing
stack to simulate and evaluate thousands of system architectures automatically. Combined
with artificial intelligence (AI), engineers and data scientists can create user-defined proce-
dures within computational notebooks for generative engineering.

System architecture generation begins with designers expressing their needs and constraints
in an engineering-friendly formal model description. Next, AI guides the generation process
systematically and reproducibly while avoiding typical design fixation challenges. In general,
the early design phase allows designers and AI agents to collect critical design knowledge.
With SCS, all feasible architectures can be identified, including novel solutions that human
designers may not consider.

Computational Notebooks contain an integration of code, models, visualization, narrative
text, and mathematical equations. The same environment contains all workflows, user-
defined procedures, executable models, and documentation. For automatic controller gen-
eration, both a model-free approach (reinforcement learning) or a model-based approach
(optimal control) can be used to create accurate and realistic trade studies. Multi-user,
multi-attribute balancing utilizes these results via an intuitive web-based application called
Discover. Finally, AI cross-filtering and recommender systems suggest, rank, and organize
thousands of architectures based on the balanced attributes. The goal of SCS is to find the

2 COGENT

Eindhoven University of Technology

best architecture configuration solution from the massive design space while tracking design
decisions and enabling cross-functional team communication and discussions.

1.2 Scope and High-Level Requirements

Previously, SCS was used for GE in a single discipline as a single-user application. The
project’s scope is to take the generative engineering implementation of SCS and make it
compatible with concurrent engineering for multiple users in multiple domains. Additionally,
these users should be able to use third-party software within the SCS environment. Given
the scope, four technical questions (TQ) were proposed:

TQ1: How to approach the scoring and ranking of system architecture configuration when
combining generative engineering and concurrent engineering?

TQ2: What is the best way to interface with third-party software, and which third-party soft-
ware is useful?

TQ3: What are the key aspects that can be implemented on a software level to help commu-
nicate, track, and justify design decisions?

TQ4: How should data be stored concerning structure, technology, and layering for a large
number of missions, each containing assets, operational requirements, architectures,
and models?

Based on the scope and TQs, six high-level requirements (HLR) are derived. These HLRs
are provided below and are synonymous with "project goals."

HLR1: Extend SCS from a single-user to a multi-user application with simultaneous tool ac-
cess

HLR2: Develop an end-to-end solution architecture, combining generative engineering with
concurrent engineering

HLR3: Simulate the user ranking and scoring process, including syncing and consistency so-
lutions

HLR4: Demonstrate potential use cases interfacing with external (third-party) software and
tooling

HLR5: Implement methods for tracking, reporting, analysis, and discussing design decisions
in cross-functional teams

HLR6: Develop a storage technology for storing and retrieving desired experiment (meta)data,
objects, (meta)models, and assets

HLR4 derives from a challenge identified by Siemens SISW. The remaining HLRs were de-
rived from the original project proposal or via requirements elicitation.

COGENT 3

Eindhoven University of Technology

1.3 Report Outline

From henceforth, Chapter 2 discusses the problem analysis, Siemens-specific challenges,
and the FireSat case study. Afterward, Chapter 3 describes the domain analysis together
with background information and architecting methodologies. Next, Chapter 4 includes a
product-based stakeholder analysis with use cases. Chapter 5 details the system require-
ments, while Chapter 6 describes the technical architectural designs. Subsequently, Chapter
7 details the system’s verification and validation, with Chapter 8 providing the conclusions
and recommendations. Project management aspects are in Appendix I.

4 COGENT

Eindhoven University of Technology

2 Problem Analysis

This chapter first provides insight into general and space architecture challenges. Second,
the Siemens-specific challenges that COGENT attempts to resolve are defined. Third, the
FireSat mission is defined.

2.1 General & Space Architecture Challenges

This section details a few critical concepts related to general architecture design and space
architecture design.

2.1.1 Wicked Complexity in Architectural Design

Architectural design is typically considered a wicked problem: "a problem that is difficult or
impossible to solve because of incomplete, contradictory, and changing requirements that
are often difficult to recognize" [11]. As systems are becoming more complex, understand-
ing even a single Cyber-Physical System (CPS) is becoming more challenging for a single
human designer [12]. Furthermore, (sub)systems are not designed by a single individual,
as cross-functional teams containing designers and engineers from different domains (e.g.,
mechatronics engineering, electrical engineering) must work together when identifying con-
straints, goals, and interfaces. Without proper communication, an individual’s interpretation
of a component or interface becomes a barrier to an effective and efficient design. In com-
plex CPS, including spacecraft, robots, and autonomous vehicles, multiple subsystem teams
must work together to realize the final product—nearly always with conflicting goals. The
integration of these decomposed CPS subsystems is contained in the SoS domain [9].

It is possible to conduct general architecture design concurrently, which adds another layer of
complexity. Concurrent Engineering often requires computer modeling for Computer-Aided
Design (CAD), Finite Element Analysis (FEA), and model simulation [13]. The results of
these technologies should be exchanged efficiently, something that can be very difficult in
practice. Stacking even another layer on top of this complexity is integrating Generative
Engineering, with the automatic generation of possibly thousands of architecture/model con-
figurations. Finding the best methods of data storage handling, knowledge transfer, ontology
consensus, and cross-functional team communication is no simple feat.

COGENT 5

Eindhoven University of Technology

2.1.2 Concept Phase Determines Life-Cycle Costs

In general, generative and concurrent engineering apply to the concept phase of a product
or experiment. Additionally, CDFs explore the design space for experiments during the con-
cept phase. The concept phase is one of the most crucial phases in a project or product.
Decisions in the concept phase will impact cumulative life-cycle costs, cost reduction oppor-
tunities, and correctional costs [1]. Therefore, it is critical to identify the feasibility of designs
and potential issues as early as possible. Fig. 2.1 illustrates the relationship between devel-
opment phases and cost-related behavior. These aspects do not apply only to the system
engineering domain, as poor initial design in software engineering can also be 1000x more
expensive to fix a deployed product [14].

Figure 2.1: Cost vs. Development Phase. The figure on the left demonstrates that life-cycle
cost determination increases and cost reduction opportunities decrease per phase. The
figure on the right illustrates how drastically the relative cost of resolving issues increases
ten-fold with each phase. Adapted from [1].

A significant motivation for combining GE and CE in the design of experiments and prod-
ucts at a CDF is to have more control and better results. Efficient and cost-effective system
architectures minimize development costs and life-cycle resource usage. For safety-critical
systems, finding the most reliable and safe architecture is a top requirement. For example,
the 1986 Challenger Explosion directly cost NASA $3.2B and cut their funding by nearly half
for the following two decades [15]. This operational failure was a result of poor communica-
tion between engineers and not identifying a suitable system architecture [16]. Space-based
CDFs combining CE and GE, like the concurrent generative engineering activity, can mitigate
issues that led to catastrophic failure by improving communication and system architecture
generation.

6 COGENT

Eindhoven University of Technology

2.2 Siemens-Specific Challenges

This section describes the Siemens-Specific challenges for COGENT to address.

2.2.1 Multi-User Extension

To apply GE in a CE environment, each user should contribute to system design from their
individual workstations. Currently, SCS is a single-user, single-discipline technology. Extend-
ing SCS to a multi-user, multi-discipline implementation will enable CE. This extension is non-
trivial, especially in the context of improving user communication, tracking design decisions,
and handling multi-dimensional goals, constraints, and parameter values. Furthermore, this
extension should demonstrate end-to-end behavior, starting from the model evaluation lead-
ing to a down-selected system architecture configuration.

2.2.2 Scoring & Ranking

Currently, in SCS, users can "like" an architecture configuration or configuration. Conversely,
they are also able to "dislike" an architecture configuration. Liking and disliking architectures
is effectively a filtering method for down-selecting potential architecture candidates. After
the scoring process is complete, users will rank their top system architecture choices. This
process is iterative, with multiple rounds of down-selecting occurring to achieve consensus
between design teams. The COGENT project needs two processes: combining scores/likes
for ranking and automatically generating a scoring/liking process. Additionally, a design chal-
lenge is storing and synchronizing the scores and ranks, along with assets and models. Fi-
nally, the recording and tracking of design decisions taken for each score/rank/like must be
possible (motivation and justification).

2.2.3 Third-Party Software Integration

SCS is not meant to be used in a single domain or solve a single type of engineering chal-
lenge. Instead, SCS solves a variety of engineering challenges in any CPS domain. Software
technologies have become broad in scope, ability, and usefulness. However, determining
which technology is the most beneficial to use heavily depends on use cases. Instead of in-
corporating built-in alternatives to well-established third-party applications, it is more efficient
to provide interfaces that allow users to interact with their preferred software stack. Interfac-
ing with third-party software and which software is appropriate for a case study is part of a
design challenge.

2.2.4 Case Study: FireSat

FireSat was, originally, a theoretical satellite network experiment. FireSat’s concept is to
use many interconnected satellites to identify or predict the occurrence of forest fires. Rapid
identification of forest fires will allow fire response teams to mitigate the overall damage.

COGENT 7

Eindhoven University of Technology

Predicting regions of high-risk (e.g., dry timber and low moisture) allows response teams
to prevent forest fires from occurring by taking preemptive actions. The FireSat mission is
an ubiquitous example applied in the development of space mission planning, design, and
architecture [17]. Siemens has previously explored and expanded the FireSat case study for
the concurrent generative engineering activity in generating system architectures [18]. With
all of the challenges expressed, the next chapter will explore the domains.

8 COGENT

Eindhoven University of Technology

3 Domain Analysis

This chapter details the domain analyses for GE, CE, and concurrent generative engineer-
ing. The domain models—and later metamodels—follow Model-Driven Engineering (MDE)
techniques [19]. The last section introduces the CAFCR and DAARIUS architecting method-
ologies.

3.1 Generative Engineering

Generative Design (GD), also known as Computational Design Synthesis (CDS), is an iter-
ative approach for implementing constraint-based or rule-based computational tools in the
generation of potential design solutions [20]. GD usually occurs during the Design Space
Exploration (DSE) phase of a project. Generative Engineering (GE) is an extension of GD
that incorporates finite element method, topology optimization, and quantitative analysis to
generate multiple versions of a part or architecture. A set of “best fit” designs is extracted
from all possible designs from these generated versions. Using GE with optimization tech-
niques enables designers to automatically generate and compare multiple designs to find
an ideal “best-fit solution” using computational software. The designer can quickly iterate
through thousands of possible optimized designs that meet trade-offs and requirements.

In SCS, an architecture is described based on its conceptual artifacts, connections, and
constraints using a Domain Specific Language (DSL) known as the Architecture-Centric Ex-
ploration Language (ACEL). With ACEL, all feasible architectures can be generated as con-
figurations with configurations. SCS implements and solves a Boolean Satisfiability Problem
(SAT) which identifies (and classifies) all unique and duplicate architecture configurations,
which can lead to thousands or even millions of possible architecture configurations de-
pending on the number of components and complexity of the described system (subsystem
example in Fig. 3.1).

3.2 Concurrent Engineering

Concurrent engineering (CE), also called Simultaneous Engineering, is a design methodol-
ogy where teams work in parallel to realize complex systems and products, typically using
design engineering or manufacturing engineering methods. CE consists of two primary prin-
ciples. The first principle is that all product life-cycle phases require detailed consideration
during the early design phases, including functionality, production, assembly, testing, main-

COGENT 9

Eindhoven University of Technology

Figure 3.1: Generic FireSat subsystem architecture example generated with ACEL in SCS.

tenance, environmental impact, disposal, and recycling [13]. The second principle is that
design activities occur simultaneously, i.e., concurrently, which significantly increases pro-
ductivity and product quality during activities [21].

The benefits of CE at ESA/ESTEC for a typical pre-Phase A mission include: "a factor of four
reduction in time, a factor of two reduction in cost, and an increased number of studies, and
two parallel studies [22]."

Figure 3.2: Concurrent Engineering process compared to Sequential Engineering showing
Lead Time Reduction, adapted from [2].

3.2.1 Space Engineering Information Model

The ECSS-E-TM-10-25 - System Engineering - Engineering Design Model Data Exchange
(CDF) is a Technical Memorandum under the E-10 "System engineering" branch in the ECSS
series of standards, handbooks, and technical memoranda (further referred to as 10-25) [23].

10 COGENT

Eindhoven University of Technology

The ontology-style 10-25 specifies standard data definitions in UML and defines the recom-
mendations for model-based data exchange for the early phases of engineering design. The
concurrent generative engineering activity and the COGENT project must comply with the
10-25(A) for creating a Space Engineering Information Model (SEIM) as a constraint.

The SEIM is a centralized model responsible for ensuring a consistent understanding of
definitions and parameters for all designers working on the same space mission project. The
SEIM stands as a "single source of truth" and is similar to an architecture framework. Instead
of having backward traceability to the SEIM, COGENT assumes that any implemented quality
attribute, data type/value, specification, or parameter was formally defined.

3.3 Concurrent Generative Engineering

This report sees concurrent generative engineering from two viewpoints: an independent
domain and an Siemens’ Activity. From the high-level domain view, concurrent generative
engineering combines GE and CE, effectively allowing the generation of all possible archi-
tecture configurations to be made available for CE design teams. As an Siemens’ Activity
(which was the basis of COGENT), it is a Space SoS workflow regarding generating, evaluat-
ing, and discussing viable space architecture configurations. In this activity, Siemens works
with industry partners to combine MBSE tools for architecting complex space systems [18].
Fig. 3.3 shows the interpreted concurrent generative engineering domain model and context
used to formulate later COGENT domain models and metamodels.

3.4 Architecting Methodology

The primarily used frameworks for the project were CAFCR [3] and DAARIUS [4], with a com-
bination of UML, SysML, and DoDAF [24] modeling methods depending on which modeling
method is the most suitable for communicating information. These frameworks were chosen
over Kruchten’s "4+1" approach [25] since Kruchten’s architectural views focus primarily on
software development do not explicitly relate or incorporate parameters. Additionally, CAFCR
and DAARIUS are compatible and designed precisely for creating systems like COGENT.

3.4.1 CAFCR

"CAFCR" is an acronym concatenating five system-architecting viewpoints: Customer Ob-
jectives, Application, Functional, Conceptual, and Realization. The CAFCR model assists
system architects in rapid context switching between viewpoints in order to develop reli-
able, valuable, and usable products [26]. Using the CAFCR model iteratively and recursively
bridges between relevant viewpoints and enhances this context switching throughout the
system lifecycle (HLR2). Since developing COGENT centered around multidisciplinary and
multi-domain teams creating complex CPS and SoS, the CAFCR framework is harmonious
(HLR1) [3]. Fig. 3.4 shows an adapted CAFCR model.

COGENT 11

Eindhoven University of Technology

Figure 3.3: Interpreted domain model of Concurrent Generative Engineering within the con-
text of COGENT.

3.4.2 Model-Based System Architecting

The DAARIUS methodology, formerly called Model-Based System Architecting (MBSA), is
a scalable and structured system design methodology providing consistency and traceabil-
ity for key design decisions in systems engineering for complex SoS and CPS (HLR5) [27].
DAARIUS works best when developing systems/products with limited knowledge, uncertain
information, and lack clarity. Additionally, DAARIUS is based on and extends the CAFCR
framework, focusing on decomposing subsystem team goals, constraints, and parameters
[28]. The DAARIUS methodology guides on selecting which concepts to design when build-
ing an end-to-end system (HLR2), creating a system overview, and down-selecting the two
or three best options (or architectures) [29]. Furthermore, DAARIUS uses relations to visu-
alize trade-offs, assigns parameters and concerns to a specific domain architect/specialist,
and considers quantitative and qualitative aspects across disciplines. Fig. 3.5 illustrates the
DAARIUS methodology below. Since As DAARIUS meets both the needs of the COGENT
project and the FireSat case study, it seems like the optimal methodology combined with
CAFCR. DAARIUS and MBSA were used for requirements elicitation.

With the domain analyses and architecting methods complete, we can consider the stake-
holders and their needs in more detail. The next chapter will describe the Customer Objec-
tives Viewpoint with narrative use cases, user scenarios, and user stories. Additionally, we
briefly describe and motivate the technology solutions for COGENT.

12 COGENT

Eindhoven University of Technology

Figure 3.4: CAFCR, adapted from [3].

Figure 3.5: DAARIUS methodology overview, adapted from [4].

COGENT 13

Eindhoven University of Technology

14 COGENT

Eindhoven University of Technology

4 Stakeholder Analysis & Use Cases

This chapter is responsible for stakeholder analysis from the Product Viewpoint of the CO-
GENT (for Project Viewpoint stakeholders, please see Sec. A.1). Next, Concurrent Design
Facility (CDF) users and tasks are described, along with how COGENT is situated in a mis-
sion/product life cycle. Furthermore, four Use Cases (UC) derived from user scenarios are
translated into user stories. Finally, this chapter includes the technological solutions de-
scription including graph databases, experiment tracking software, cloud storage, and user-
created domain-specific tools.

4.1 Concurrent Design Facility

A Concurrent Design Facility (CDF) is a state-of-the-art facility where several transdisci-
plinary/multidisciplinary expert teams apply the concurrent engineering method in designing
future space missions. CDFs contain a network of computers, multimedia devices, and soft-
ware tools. It facilitates a fast and effective interaction of all disciplines involved, ensuring
consistent and high-quality results in a much shorter time [6]. For ESA, The ESTEC CDF is
the primary assessment center for future ESA space missions, industrial review, and tech-
nology assessment. Space mission design at the CDF complies with the 10-25 for the SEIM
(Sec. 3.2.1).

The CDF is primarily utilized during the concept phase (pre-Phase A [5]). Fig. 4.1 lists the
general CDF-level and Designer-level tasks to be completed for a mission or experiment.

Figure 4.1: Pre-Phase A CDF and Designer Tasks. Extracted from [5].

COGENT 15

Eindhoven University of Technology

4.1.1 CDF Stakeholders

CDFs contain at least one "main" room in which specialists gather. These representatives
hold a "position" identified based on the subsystem they represent. CDFs have a variety
of layouts and often have sub-rooms for conferencing, prototyping, and modeling. Fig. 4.2
shows a previous CDF arrangement at ESA/ESTEC layout and organization of space sub-
system teams gathered for concurrent engineering activities [6]. Note that there are many
additional stakeholders for a CDF, including clients from other industries, institutions, and
universities. These additional stakeholders include project managers, ethics/law commit-
tees, military contractors, politicians, and international relations consultants. For COGENT,
the CDF position representatives will take the primary focus, as including the previously men-
tioned external stakeholders is outside this project’s scope. A high-level CDF Onion diagram
was derived in the Appendix (Fig. C.1.)

Figure 4.2: Example CDF Arrangement, based on the ESA/ESTEC Barracks [6]. For the full
description of positions, please see Tab. B.1

4.1.2 Dimensionality Reduction

Fig. 4.2 contains 19 discrete positions and 9 (physical) subsystem teams in addition to cus-
tomer representatives and ad-hoc experts. However, modeling and analyzing the concerns
of a large number of stakeholders is challenging. The dimensionality of the challenge was
constrained to three subsystem teams and one product management representative to re-
duce complexity. These subsystem positions include the Electric Power System (EPS)1, the
Attitude and Orbital Control System (AOCS), and the Propulsion System (PROP). A Product
Manager model represents concerns at the Systems (SYS) position, and subsystem repre-
sentatives include a simulation engineer, an architect, and a domain specialist. In order to
verify and validate the FireSat case study, we gave these position representatives relative
concerns and parameters (Table 4.1).

1Note that EPS and POW are different names for the same position.

16 COGENT

Eindhoven University of Technology

Table 4.1: A small subset of CDF Positions, Representatives, Concerns, and Parameters.

Position ID Representative Concern Parameter

SYS Product Manager Compliance Cost
AOCS Simulation Engineer Usability Accuracy
PROP Architect Maturity Mass

EPS Domain Expert Synergy Power Consumption

4.2 Customer Objectives Viewpoint

Keeping the aforementioned material from this section in mind, the Customer Objectives
(C) viewpoint from the CAFCR framework identifies "What the Customer wants from the
Product and Why." From HLR1 and HLR3, multiple designers must be able to score and rank
architectures iteratively and concurrently. Before we can architect these processes, we must
imagine how to conduct the process flow to derive a customer-centric product (Fig. C.2). The
general process flow steps are to create initial models, score/rank models, merge multiple
user score/rank results, tune models, filter/down-select, and repeat until there is team-based
consensus in the preferred system architecture configuration.

Next, the process flow model is integrated with the base concurrent generative engineering
domain model (Fig. 3.3) and visualized using MBSA components and relationships in the
DAARIUS tooling (Fig. 4.3). In previous work, FoM could be either qualitative or quantitative
[18]. For COGENT, we differentiate between quantitative, qualitative, and architectural at-
tributes. Since automated architecture generation requires quantitative attributes, qualitative
and architectural attributes require Human-in-the-Loop (HTIL) designers2.

Figure 4.3: FireSat CDF Conceptual Model. An MBSA Model was constructed in DAARIUS.
MBSA components colors represent: brown for Configurations, light green for Aspects, dark
green for Results, purple for Stakeholders, and blue for Systems.

The conceptual model maps the mission and operational requirements as concerns, goals,

2Qualitative and architectural attributes are usually subjective whereas qualitative aspects are always objec-
tive.

COGENT 17

Eindhoven University of Technology

and constraints. Below, four use cases (UC) capture customer objectives based on ESA’s
user requirements definition phase specifications [30]. These UCs are provided in narrative
user scenarios and transformed into user stories. Each entry also briefly introduces the
technological solution described within the UC.

4.2.1 Use Case 1 – Graph Database

UC1 is an implementation of HLR4, HLR5, and HLR6 using Graph Databases. Consider the
following scenario:

“A system architect and data scientist consider using a graph database. The data scientist
wants to understand the impact of changing subsystem components on other components.
The data scientist views components and their relationships as equally important. The sys-
tem architect wants to exploit the graph-like nature of architectures by storing them in a
graphical format.”

This narrative translates into two user stories:

US1: “As a data scientist, I want to use a Graph Database so that I can understand the
impact of changing subsystem components, given that components and relationships
are equally important.”

US2: “As a system architect, I want to use a Graph Database so that I can store architectures
in a graphical format, given the graph-like nature of architectures.”

Graph Database Solutions

A Graph Database (GDB) is a database that consists of nodes, edges, and properties, to rep-
resent and store data in graph structures [31]. The graph relates the data items in the data
store to nodes and edges, where the edges represent relationships between nodes. The re-
lationships allow data in the store to be linked together directly and, in many cases, retrieved
with a single operation (as compared to multiple JOINS in a SQL-like semantic query) [32].
Graph databases consider relationships between data as "first-class citizens" such that the
relationship between different nodes is just as crucial as the node itself. Querying relation-
ships is fast due to being perpetually stored in the database. For heavily interconnected
data, visualizations for relationships are intuitive and intelligible using graph databases3.

4.2.2 Use Case 2 – Experiment Tracking

UC2 is an implementation of HLR4, HLR5, and HLR6 using experiment tracking. Consider
the following scenario:

“A design team uses experiment tracking. A product manager has a requirement that ex-
periments must be verified using experiment tracking reports. A simulation engineer wants

3Fig. C.9 shows a Block Diagram for specifying the general structure of a GDB. GDB options are compared
in Sec. C.4.2. Neo4J was the selected GDB solution for validation [32].

18 COGENT

Eindhoven University of Technology

to compare architectures in two cases: (1) comparing multiple, discrete architecture con-
figurations with varying parameters and (2) comparing a single architecture’s performance
indicators over multiple iterations.”

This narrative translates into three user stories:

US3: “As a product manager, I want to use experiment tracking frameworks to verify experi-
ments in reports, given that all metadata and parameters are tracked and stored.”

US4: “As a simulation engineer, I want to compare multiple architecture configurations, given
that discrete architecture configurations have varying parameters and components.”

US5: “As a simulation engineer, I want to compare multiple “runs” of a single architecture
configuration, given that varying parameters and components can influence perfor-
mance indicators, design decisions, and ranking results.”

Experiment Tracking Solutions

Experiment Tracking is a Machine Learning Operations (MLOps) process in which all ex-
periment meta-information is stored in a single location [33]. Like qualitative scoring pa-
rameters, a single minor deviation in training data, training code, or hyperparameters can
drastically alter a model’s performance. Reproducing previous work requires the prior setup
to match precisely. In the FireSat case study, experiment tracking is helpful in three ways:
(1) tracking changes and comparing between various "runs" of the same architecture/model
with varying parameters, (2) comparing different architecture configurations/models based
on output parameters, and (3) comparing a single architecture with varying modes of usage
(e.g. "solar mode" vs. "eclipse mode")4. As the concurrent generative engineering process
is iterative, reliable and explainable tracking is required since model parameters, and user
ranking/scoring values can easily change over time5.

4.2.3 Use Case 3 – Data Storage

UC3 is an implementation of HLR1, HLR2, HLR4, HLR5, and HLR6 using cloud storage.
Consider the following scenario:

“Users have individual workstations but need to combine their assets in a single location. A
data engineer and a product manager have agreed that a cloud storage solution is preferred.
The product manager requires a single source of truth for data, models, assets, and pa-
rameters for consistent solutions. A data engineer wants users to access integrated version
control and continuous integration/development/testing. ”

This narrative translates into two user stories:

US6: “As a product manager, I want to use a cloud storage solution for data, models, assets,
and parameters, given that data objects are consistent in a single location.”

4We decided that various modes of operation are effectively performance indicators and not separate config-
urations.

5Sec. C.4.3 contains a comparison of considered experiment tracking and management technologies. We
selected Weights and Biases (wandb.ai) for the experiment tracking implementation [34].

COGENT 19

Eindhoven University of Technology

US7: “As a data engineer, I want to use a cloud storage solution, given that some technolo-
gies have integrated version control and continuous integration/development/testing.”

Cloud Data Storage

Having a single object storage location for multiple users is a non-trivial challenge (HLR1,
HLR3). Additionally, the storage solution should have an unwavering read-after-write consis-
tency such that there is no latency (delay) else data freshness between users is lost (HLR3).
In recent years, cloud storage solutions have become ubiquitous for Agile Software Devel-
opment and Information Technology Operations (DevOps) due to Continuous Integration,
Continuous Development, and Continuous Testing (CI/CD/CT) capabilities which enhance
software and data quality, scalability, reliability, manageability, and maintenance. CDF users
must store a massive amount of structured, unstructured, and semi-structured data together
with raw assets, documents, images, and mutating objects with an asynchronous push rate.
For these reasons, a cloud object storage solution was selected instead of a polyglot of
databases (e.g., a combination of relational, NoSQL, time-series, and graph databases)6.

4.2.4 Use Case 4 – User-Defined Features

UC4 is an implementation of HLR4 and HLR5 using (custom) user-defined features. Con-
sider the following scenario:

“A data scientist and a simulation engineer want to identify and analyze various relationships
that exist within and between architectures. The simulation engineer wants to use custom ar-
tificial intelligence scripts to generate a correlation matrix of feature importance for designing
experiments. The data scientist wants to use a natural language processing framework for
keyword identification and sentiment analysis to discover patterns in user design decisions.
These users have already created their custom scripts but would like to integrate them into
the concurrent workflow.”

This narrative translates into two user stories:

US8: “As a data scientist, I want to use user-defined features for natural language process-
ing framework for keyword identification and sentiment analysis, given that there are
patterns in user design decisions.”

US9: “As a simulation engineer, I want to use custom artificial intelligence scripts to generate
correlation matrices, given feature importance guides the design of experiments.”

User-Defined Features and Domain-Specific Tooling

Since SCS natively supports Python, extending SCS to allow users to implement custom
and personal scripts should be relatively straightforward. An integrated Python environment
provides users with access to well-developed libraries7 for machine learning, artificial in-

6Amazon AWS S3 buckets were selected for object/data storage and integrated with Amazon Glue Databrew
ETL for some pre-processing and batch scheduling features. Other storage options are discussed in C.4.4.

7Example AI Python libraries include scikit-learn, TextBlob, and NLTK.

20 COGENT

Eindhoven University of Technology

telligence, statistical analysis, and data visualization. Products that support user-defined
features and custom Domain Specific Tools (DST) provide more "stickiness," keeping users
within the application longer [35]. While DSTs allow for improved reusability and user-
friendliness, any user tools developed must comply with the other requirements of the soft-
ware and with interoperability in mind (via metamodels) [36]. Ultimately, Siemens will gain
value if users can seamlessly import their Python scripts and programs into SCS.

Figure 4.4: COGENT as a solution to connect users with technologies described in use
cases.

With multiple users accessing multiple tools, we start to envision the most straightforward and
most efficient approach for COGENT. Fig. 4.4 provides the starting point of using COGENT
as a solution architecture to unite the various users with their UCs simultaneously. The next
chapter will discuss how the user will use COGENT with the Application Viewpoint and the
system/software requirements.

COGENT 21

Eindhoven University of Technology

22 COGENT

Eindhoven University of Technology

5 System Requirements

This chapter begins with the Application Viewpoint and COGENT positioning. Next, the core
system/software functional requirements are introduced.

5.1 Application Viewpoint

From the CAFCR framework, the Application Viewpoint (A) details "How the Customer will
use the Product and Why." This section first describes a system usage life-cycle scenario to
define how the system is used concurrently with a Producer-Consumer relationship. After-
ward, the context in which COGENT fits as a solution architecture is described.

5.1.1 System Usage Life-cycle

When developing a solution architecture, it is important to consider the life-cycle and context
of the product. Users may misuse the product if the designer fails to consider a broad range
of scenarios of usage (and misusage). The main system usage life-cycle scenario1 includes
the Producer as a design team generating architecture configuration and the Consumer as
an analyst/management team. While not shown, the process is iterative, with the Producer
team requiring multiple iterations of filtering, down-selecting, and annotating before involve-
ment from the Consumer team. A deterring misusage of the system would be these teams
working on the same model, but the model is not synchronized (two discrete instances or
object locations). Three example system usage sub-scenarios are as follows:

Sub-Scenario A: A single design team (Producer) is exploring a potential experiment during
Phase 0. A single analysis team (Consumer) is evaluating different architecture configuration
concerning feasibility.

Sub-Scenario B: Multiple subsystem design teams (Producer) work concurrently to identify
an optimal architecture configuration during pre-Phase A. One or more analysis/management
teams (Consumer) are interpreting the results and prioritizing qualitative attributes via inter-
active dashboards.

Sub-Scenario C: Product Handover. A design team (Producer) transfers a product or do-
main knowledge to another design team (Consumer). The new design team becomes the
Producer.

1Sec. C.3.1 includes additional system usage scenarios. Teams shows in Fig. 5.1 have two users but {2..*}
users are allowed.

COGENT 23

Eindhoven University of Technology

Based on these interactions, the aforementioned UCs, and the HLRs, we can construct the
system usage scenario and draw the COGENT system boundary (Fig 5.1):

Figure 5.1: Use Case Diagram. Design teams are the Producer and analysis teams are the
Consumer. The system boundary of COGENT is included.

5.1.2 COGENT Positioning

This section details how COGENT fits into the solution space. In the onion diagram shown
in Fig. 5.2, the experiment (e.g. FireSat) is situated in the middle as a target viewpoint.
COGENT behaves as a communication tool between concurrent design teams (technical
design) and product/program management. Various teams are located in the CDF layer,
while subsystems (e.g., EPS) are located at a subsystem layer. For roles, some examples
(e.g., Simulation Engineer, Analyst) are located in the Role Layer. For a specific product,
a Product Viewpoint can place an experiment at the center of the diagram (e.g., satellite,
rover, launcher, etc.). The Technical Design side contains technical subsystems (hardware
and software), and technical specialists (engineers). The Product Management side con-
tains communication and analysis aspects of the project/product/experiment. Roles include
managers and analysts (note that these persons are also technical, not to be confused as
non-technical). Architects are situated between the Technical Design side and the Product
Management side. Outside of the diagram are the tools that design teams (users) want to
access.

In the appendix, Fig. C.1 acts as a high-level domain metamodel. Various experiments,
subsystems (position), and users (representatives) are easily interchangeable. Fig. 5.2 is an
applied version of this metamodel, tuned for the FireSat case study.

24 COGENT

Eindhoven University of Technology

Figure 5.2: FireSat Onion diagram, updated from Fig. C.1. Specific subsystem teams have
been added along with external tools the users wish to use.

5.2 Functional Requirements

This section contains the derived primary functional requirements for software development.
For conciseness, not all requirements are listed here, and the labels were pruned (please
see Sec. B.2 for a full list of requirements). Each requirement contains an Identification
Number (ID), a Priority (P), and a brief Description. The Siemens SISW specification for
Priority was adopted with ranges from High (H), Medium (M), and Low (L). A Priority value
of H is essentially a "must," a value of M is approximately a "should", and a value of L is
effectively a "could/won’t" (MoSCoW prioritization format). Additionally, the priority values of
Transferred (T) means this requirement was transferred to the conceptual team at Siemens
SISW. The requirement structure is based on the software requirements phase definition
for space systems at ESA [37]. The Priority (P) column is also tagged with a color; green
indicates the requirement was fulfilled for verification, and yellow means the requirement was
partially fulfilled.

COGENT 25

Eindhoven University of Technology

Table 5.1: Primary Functional Requirements.

ID P Description

R1 H The system shall support N concurrent user instances.
R1.1 H The system shall integrate the scoring results from multiple users.
R1.2 T The system shall rank the combined results from user scoring.
R2 H The system shall plot all architecture configuration FoMs with Pareto charts.
R3 H The system shall allow for users to interact with charts and diagrams.
R4 H The system shall allow users to input their design decisions.
R6 H The system shall allow for user-defined algorithms, features, and parameters.
R7 M The system shall differentiate between quantitative, qualitative, and architec-

tural FoMs.
R7.1 M The system shall automatically generate scores for architecture configurations

based on quantitative, qualitative, and architectural FoMs.
R7.2 M The system shall automatically rank architecture configurations based on

quantitative, qualitative, and architectural FoMs scores.
R7.7 M The system shall automatically combine the scores from quantitative, qualita-

tive, and architectural FoMs.
R15.1 H The system shall utilize user-inputted "likes."
R17 H The system shall store all relevant (meta)data.
R17.1 H The system shall support storing metadata at the appropriate level (sys/comp).
R17.2 H The system shall support storage into a Graph Database.
R17.5 H The system shall support storage into a Machine Learning Experiment Track-

ing datastore.

26 COGENT

Eindhoven University of Technology

6 System Design & Architecture

This chapter first describes the COGENT domain model followed by a distinguishment be-
tween monolithic and modular software architecture frameworks. This is continued with de-
scription and comparison of two architectural patterns. Afterward, the Functional viewpoint
(F) from the CAFCR model is addressed for the COGENT Plugin System description, fol-
lowed by the Conceptual and Realization viewpoints (CAFCR). Since model-to-model trans-
formations became a large part of the project, we consulted the Model-Driven Architecture
(MDA) standard. Additionally, since Python was the primary programming language, the
Class diagrams have been adapted to match the Python implementation methods. For in-
stance, functions equate to static methods, data types match the Python description (e.g.,
"None" instead of "void"), and data types include the data structure (e.g., "dict(str)" instead
of "str"). The MDA standard allows for this type of flexibility in modeling.

6.1 COGENT Domain Model

This section contains the COGENT Domain Model (Fig. 6.1. The model is an extension of
the Base Concurrent Generative Engineering Domain Model (Fig. 3.3). In this version (Vari-
ant 2), COGENT exists within the GE Module (within SCS). COGENT contains conceptual
services like (interactive) dashboards, scoring matrices, and FoM weights. Additionally, the
COGENT is where the Plugin Architecture resides. For an alternative design in which the
COGENT is external from SCS, please see Fig. C.4. This decision was made together with
Siemens SISW as end-users should stay within SCS when selecting architecture configura-
tions.

Fig. 6.6 shows a high-level physical view of a process starting from an ACEL Model to storing
FoM scores, dashboard visualization, and storing of metadata (scores). Various data formats
and data types have transitions within the high-level activity.

COGENT 27

Eindhoven University of Technology

Figure 6.1: COGENT Design Alternative (Variant 2). COGENT is embedded in SCS.

6.1.1 Monolithic Versus Modular

Before approaching the requirements, it is critical to consider the environment in which the
software will run. Software engineering typically considers whether an application should
have either a monolithic or a modular framework. Monolith frameworks have tightly coupled
behaviors, where the software natively supports all of the considered technologies required
for use cases. A modular framework is loosely coupled and includes only minimal functional-
ity and structure, requiring a plugin or service to enable additional functionalities. In software
architecture, tightly coupled generally means that software modules are highly cohesive (de-
pendencies) and make assumptions regarding all other software modules. Loosely-coupled
software modules have low cohesion, and independent modules communicate via standard-
ized, neutral interfaces.

Siemens SISW clients have significant variations in use cases. Other than at high levels of
abstraction, use cases between the automotive, aerospace, and medical domains are not
similar or comparable. Even when only considering the aerospace domain, two different
products/projects will require very different technologies for development and analysis. As
monolithic frameworks focus on implementing commonly used features, they are not suitable
for our solution architecture. Modular architecture patterns support strong encapsulation for
hiding implementation details, well-defined interfaces for things that are not hideable, and
explicit dependencies when describing and expressing co-module relationships. We decided

28 COGENT

Eindhoven University of Technology

to implement a modular solution architecture since nearly all use cases are supported, and
the long-term maintainability is less expensive.

The following two subsections introduce the Microservices Architecture and Plugin Architec-
ture patterns.

6.1.2 Microservice Architecture

The Microservice Architecture pattern provides the opposite behavior of the monolithic pat-
tern in that services are small, independently deployable, decentralized, and meant to be
autonomous [38]. Autonomous here means that developers are responsible for making their
own decisions when creating their services. Microservice architectures are primarily useful
in deploying API REST-based topologies in websites and browsers using HTTP. A significant
benefit is that this is a distributed architecture, such that all components are fully decoupled
and accessed through remote access protocols (e.g., REST, SOAP) [39]. Some limitations
for microservices are that modules are intended to be independent of other modules, add
complexity, and require interfacing and communication with the core software platform [40].
This interfacing with the platform or other services can become complex or complicated while
also carrying a risk that the developed microservices can become deadlocks if aspects of
the core software platform (SCS) change.

6.1.3 Plugin Architecture

The Plugin Architecture pattern, formally known as the Microkernel Architecture pattern, sits
between the monolithic and microservice architectural patterns [39]. The Plugin Architec-
ture pattern consists of a centralized monolithic core and microservice-style plugins. Plugins
generally do not know about other plugins, though they can interact via interprocess commu-
nications with the core. Plugins support abstraction, minimize complexity, and force software
components to be modular [41]. This pattern does not specify implementation details, but
rather that plugin modules are required to remain independent from each other [42]. This
architectural pattern is ideal whenever a base software platform (SCS) needs to be extended
or customized for clients.

6.2 Functional Viewpoint

This section initializes the Functional Viewpoint (F) from the CAFCR methodology, specifying
the feature specifications of the solution architecture. The functional viewpoint is meant to
answer the question "what is the final product?" First, a domain model explores the entire
SoS and identifies where our System-of-Interest (SoI) fits in as a solution architecture.

6.2.1 COGENT Plugin System

Based on the analysis in Sec. C.4.1, we selected a plugin-based system. COGENT derives
from a popular PyTest Plugin Manager called Pluggy [43]. In our plugin architecture, a

COGENT 29

Eindhoven University of Technology

Plugin Manager acts as a core program that utilizes hooks to construct/destruct plugins.
The hook specifications (hookspecs) are defined in the Plugin Manager describing how a
plugin can be registered. At the Plugin level, a hook implementation (hookimpl) is defined
and describes what the plugin will do. The Plugin Interface is responsible for communicating
these hookimpls to the hookspec.

Data Format Transformations & Communications

We can see some requirements when evaluating the selected technology data format re-
quirements with the provided evaluation data. Firstly, data models will undergo several
transformations to be compatible with the deployed tooling service. We selected the JSON
format since it is the de facto standard for unstructured data formatting. Additionally, most
of the selected technologies directly support JSON in some way. As such, all architecture
configuration input data (e.g., evaluation data) was converted from CSV to our centralized
JSON format to help mitigate issues during development and provide a consistent, extend-
able/appendable data format. Secondly, the communication over APIs or other interfaces
will be separate from the data transformation to encourage reusability since the same JSON
model is appropriate for different plugins. The goal is to prevent data duplication, additional
transformations, and network access for reading/writing.

Design Patterns

During the initial design, three types of plugins we considered. The Adapter Design Pattern
is utilized for data conversion/transformation (e.g., converting CSV to JSON) [44]. A Polyglot
Design Pattern specifies how to manage multiple data assets moving through the pipeline to
different data storage/database solutions (e.g., GDB, experiment tracking, AWS) [45]. The
Strategy Design Pattern is for custom algorithms (e.g., a weighted ranking/scoring algorithm
using simple statistical methods) [44]. Fig. 6.2 shows the Pattern Classes in a Block Defi-
nition Diagram. Functionally, COGENT acts as data transformation entities since input data
is transformed and used to produce new data, transfer data to storage solutions, or used in
plugins.

Plugin Ordering

Next, we needed to consider the timing of plugin activation since out-of-order executions can
lead to deadlocks, broken pipelines, or inconsistent data/objects. COGENT supports timing
flags, including the self-evident labels of "try first" and "try last." One additional ordering label
is called a "hook wrapper," which is triggered when a plugin module initially executes and
fires before any other timer activation (i.e., before "try first"). The hook wrapper indicates the
calling of a specified function to wrap all other standard hook implementation calls. Besides
these order generator labels, the COGENT system inherited a "Last In, First Out" scheduling
scheme from Pluggy.

30 COGENT

Eindhoven University of Technology

Figure 6.2: COGENT Plugin Architecture with Design Pattern Classes for implemented Plu-
gins.

6.2.2 COGENT-Specific Functional Requirements

With the specification of the COGENT plugin architecture, the plugin-based functional re-
quirements were updated. The following specifications match the description from Sec. 5.2
and provide specific requirements for ensuring the system is developed correctly. The previ-
ously defined non-functional requirements also apply to COGENT as a solution architecture.

Table 6.1: COGENT-Specific Functional Requirements.

ID P Description

R21 H The system shall support plugins.
R21.1 H The system shall support N concurrent plugins.
R21.2 H The system shall support the ordered timing of plugins.
R21.3 H The system shall support custom user plugins.
R21.4 H The system shall support deregistering of plugins.

Next, the functional decomposition of COGENT is addressed.

6.2.3 COGENT Functional Decomposition

Previously, we defined the SoI boundary and the system requirements. Next, we derived
a general systems functionality description model visualizing the functional placement of
COGENT1. The Systems Functionality Description showcases the behavior of the high-level
task workflow, the functional decomposition of systems, and expresses system capabilities.

1The SV-4 Systems Functionality Description and SV-10c Resource Event-Trace Description models are from
DoDAF 2.02.

COGENT 31

Eindhoven University of Technology

Fig. 6.3 below illustrates an overview of the entire SoS. The green, dashed rectangle demon-
strates our COGENT solution architecture as the SoI interfacing with SCS. SCS has both a
Notebook and Discover as visual User Interfaces (UI). Some of the tasks are abstracted
away to avoid additional clutter in the figure. These activities include sending merged mod-
els to Discover, interfacing each subsystem decomposition with the Cloud Data Store, and
the HITL tasks of visualizing GDB/Experiment Tracking results. Other HITL actions like "dis-
cussing trade-offs" (collaborative) are also not shown as activities since these activities are
not responsibilities of the system.

On the other hand, HITL actions like generating quality attributes, scores, likes, and de-
sign decisions are shown since these will be input (and guided) by the COGENT system.
Here, "generate" means the user is creating these knowledge objects. Note that the Scor-
ing/Liking/Ranking activities are completed in Discover, but the front-end aspects were em-
ulated because the functionality had not yet been implemented at this point in the project.

Figure 6.3: General Systems Functionality Description. The model demonstrates the high-
level flow behavior of the system.

Interface Layers & Functional Blocks

For a better understanding of the functions and interfaces in our SoI, we decompose the
entire system into layers and functional blocks. Fig. 6.4 demonstrates the layers and SoS
interfaces for the COGENT implementation with plugins, data format transformers, and con-
nections to other systems through SCS (i.e., Siemens-based interfaces). As such, it is pos-
sible to route information from Siemens Amesim or NX to a specific plugin.

32 COGENT

Eindhoven University of Technology

Figure 6.4: COGENT Plugin Architecture Interface Layers and Functional Blocks.

Defining User Classes

Now, we introduce the concepts of an Orchestrator user and a general User. The Orches-
trator is, in general, the lead system architect/engineer that is guiding the concurrent gener-
ative engineering activity at a CDF. The User is a general subsystem representative that is
following the Orchestrator ’s guidance. This distinction is essential as CDF activities require
organization, and at least one lead representative must be responsible for the orchestration.
The Orchestrator selects which system architecture configuration(s) to discuss, score, rank,
and select for further mission phases.

Next, a resource event-trace description diagram demonstrates the (general) critical-path
sequence of events2. In Fig. 6.5, "Staging" is a Software Development and & Operations
(DevOps) term meaning the data has been loaded into the SCS environment. The Host
lifeline represents a process Orchestrator engaging the Plugin Manager’s automatic tasks
(assuming these plugins are registered). During the Rank/Score lifeline, a single user in-
stance can analyze the models they have pulled (downloaded). The Host merges and trans-
forms the models into other formats (query languages or parameter vector form) for usage in
third-party or user-defined features. Finally, all objects and assets are stored in the specified
centralized database/object storage location.

2Here, critical-path means the path in which all categories of plugins are loaded and each process is con-
ducted exactly once (no iterations).

COGENT 33

Eindhoven University of Technology

Figure 6.5: Resource Event-Trace Description Diagram. This diagram illustrates the gen-
eral flow of tasks in a sequential-like behavior. This model assumes that plugins for GDBs,
Experiment Tracking, and User-Defined Features have been registered.

6.3 Conceptual Viewpoint

The next section will dive into the Conceptual Viewpoint from CAFCR, making the solution
architecture more specific. Before we develop activity diagrams or sequence diagrams with
specific technologies, the evaluation data must be described.

6.3.1 FireSat Evaluation Dataset

For the FireSat case study, a dataset of 64 architectures was generated using ACEL and
quantitatively evaluated with Siemens Amesim. Multiple EPS and AOCS subsystem con-
figurations contain various batteries, solar panels, fuel types, propulsion components, and
actuators. The ACEL model specifies the ownership, multiplicity, component coupling, con-
nection constraints (ports), and interoperability requirements are architectural attributes. For
example, a configuration can have either a magnetorquer or an electric propulsion system.
The EPS owns batteries and solar panels (ownership). Some propulsion systems require
a specific fuel type (tight coupling). A solar panel can have either one or more batteries
in a series, parallel, or series/parallel configuration (multiplicity and interoperability). Addi-
tionally, the component-level quantitative values are also specified in the ACEL files (e.g.,
nickel-cadmium battery power consumption and mass).

34 COGENT

Eindhoven University of Technology

ACEL initially generates all architecture configurations. Next, Amesim runs a computa-
tional simulation to calculate the system-level quantitative values3 (e.g., total consumption
and total mass). The system-level quantitative attributes are used for system architecture
configuration comparison and filtering in SCS Discover. Previously it was imagined that
the Orchestrator and Users primarily down-select architectures configurations based on the
system-level performance and behavior. With COGENT, the Orchestrator and Users analyze
down-selected architecture configurations together or as individuals with additional tooling or
user-defined features.

Amesim stored the 64 initial architectures in a tabular CSV file. Note that all subsystem com-
ponents (e.g., batteries, panels) are stored in a single CSV cell as a concatenated string of
components. Fig. 6.6 provides the conceptual high-level activity diagram integrating these
components with the new scoring/ranking activities and considers users inputting their quan-
titative/qualitative attribute (FoM) scores4. For the COGENT prototype, qualitative scores are
Integers between 1 and 5 (very poor to very good). Quantitative values are from the FireSat
Dataset are Real numbers. Design Decisions are inserted as Strings.

The next step was to transform the CSV file into a JSON format and separate the subsystem
components based on their type (e.g., battery, actuator). This initial model transformation is
described in the next section.

Figure 6.6: COGENT High-Level Activity Diagram describing input/output data types and
(conceptual) parameter value ranges. The results of quantitative and qualitative FoM evalu-
ation and scoring results are merged and made available for a Ranking Activity.

3ACEL maps attributes to parameters as architectural attributes.
4Siemens SISW uses the term Figure of Merit (FoM) for all attributes, including Key Performance Indicators

(KPI).

COGENT 35

Eindhoven University of Technology

6.3.2 Initial Model Transformation for COGENT

A significant limitation of the CSV file format is that tabular data can only be structured.
Semi-structured/unstructured data cannot be used; thus another file format is needed for
NoSQL databases (including GDBs). As previously stated, JSON is preferred as the baseline
data format. The first step is to convert all CSV data into JSON format. Since JSON is
semi-structured, it is also possible to store metadata in layers, i.e., at the subsystem or
component levels. Recall that a battery has its own parameter values and architectural
attributes. We decided to organize the semi-structured data format such that component or
subsystem parameters and user design decision notes can be stored with relationships at
the component or subsystem level.

Relationships impact many aspects of the design space exploration, as changing a single
component influences other system components. As a result, relationships highly influence
design decisions based on qualitative, quantitative, and architectural attributes. The semi-
structured model can store subsystem and component level design decisions directly with
the parameters and components that influenced that design decision. Initially, a metamodel
was developed to describe internal relationships [46] and a normalized logical model for both
column-based Relational Database Management Systems (RDBMS) and NoSQL databases
[7] was constructed (schema) (Fig. C.10). The schema is useful as a metamodel for mapping
relationships, constraints, and parameters to other models for implementation. Additionally,
architecture configurations were assigned IDs to match the schema (e.g., ARCH001), and
components were given a class, e.g., "Pulsed Plasma Thruster" is a member of "Propulsion."

Global & Local Configurations

Next, a distinction between the global/orchestrated configuration class (Config) and the user-
specific configuration class (User) is made. The Orchestrator will update the global configu-
ration file specifying the specific architecture configuration(s) to score and which databases
to use. This global configuration will be sent to users and integrated with their user-specific
configuration file containing parameters and paths when modules or plugins are executed
(e.g., User ID and Local Model Path parameters). The initial model transformer inherits the
global configuration parameters to ensure Users cannot use the wrong database or oper-
ate on the wrong architecture configuration. The Users are not authorized to edit the global
configuration file, as only the Orchestrator is permitted to change critical parameters.

Fig. 6.7 displays a Class diagram for the initial data transformation, the configuration file
inheritance, and the centralized AWS S3 storage classes for the Orchestrator. An S3Upload
class inherits the database and experiment name parameters from a Config class. The
InitDataTransformer class inherits an architecture ID and evaluation dataset path from the
Config class to transform initial CSV files into JSON architecture model files. The S3Upload
class then inherits the S3 access key parameters from a UserConfig file based on a specific
user (the Orchestrator in this case). Amazon AWS S3 inherits the JSON object through an
AWS interface configured in S3Upload.

The next task is for Users to rank and score the configurations, along with analysis with
user-specific features. However, we first need to describe the decision to keep data storage
access independent from the plugin architecture.

36 COGENT

Eindhoven University of Technology

Figure 6.7: Class Diagram for the Initial Model Transformation Class with the configuration
file inheritance and the centralized AWS S3 storage Classes for the Orchestrator.

6.3.3 Cross-Cutting Concerns: Data Storage

Data concurrency, consistency, and read/write access conflicts in multi-user systems are
common challenges when interacting with a single file or asset. For example, if two de-
signers want to save their work simultaneously, they might have access conflicts. A typical
example of data inconsistencies is when a developer reads specific data, and another de-
signer changes (writes) to the same datastore after the first designer has acquired the data.
The "freshness" of the data is lost, and the data has inconsistencies.

Aspect-Oriented Programming (AOP) introduces the concept of cross-cutting concerns as
well as the risk of "tangling" or "scattering" (meta)data during storage [47]. Cross-cutting
concerns are aspects that cannot be completely decomposed from the system. Tangling
is when a single module interleaves or has inter-dependencies with multiple requirements,
whereas scattering is when a single requirement has multiple design or code modules [48].
For this reason, a trade-off has to be made between the system’s autonomy and the user’s
responsibilities related to the initial model transformations and data storage. If integrated
into the plugin manager, tangling and scattering concerns would be problematic for our initial
transformation and data storage access behavior. Please consider the following two cases:

Data Storage Scattering

First, the plugin manager has the behavior that it will execute all registered plugins every time
it is called. If the initial model transformation module is registered, it will continuously convert
the CSV evaluation dataset into JSON models (non-ideal). Data duplication or inconsistent
data (since the models can be overwritten) may occur. However, we do not want to forbid

COGENT 37

Eindhoven University of Technology

this activity completely since a change in the evaluation dataset (new parameters) would
be desired for our models. As such, the initial transformation activity is separated from the
plugin manager.

The second case is similar for storing JSON objects and assets in a centralized location.
Data may be overwritten, corrupted, or duplicated if the plugin manager behavior encapsu-
lates the reading or writing aspects. Additionally, the network traffic and object access in-
stances will increase significantly and without merit while using cloud storage solutions—this
traffic leads to an unwanted accumulation of cloud-service costs and resources. Again, we
do not want to forbid the behavior as there may be cases in which a user needs to redownload
an architecture configuration (updated parameters) or reupload an architecture configuration
(change in score metadata or additional design decision notes).

Based on these two cases, we decided to de-couple the initial model transformation process
and all data storage access processes from the plugin architecture. Next, we will visualize
our conceptual process flow.

6.3.4 Conceptual Process Flow

After multiple users score and rank the architectures, the results are merged in a combined
architecture JSON model. Optionally, analysis can occur at this step. Afterward, the com-
bined architecture model is used to generate necessary query languages for GDBs or into
parameter vector form for experiment tracking (depending on registered plugins). Finally,
all relevant objects and assets are stored in the centralized data storage container or ware-
house. Fig. 6.8 provides a visualization of these steps in their respective layers with a se-
quenced timeline including an iteration loop. Example technologies are provided under the
Storage and Plugins layers.

Figure 6.8: Process Flow Timeline with an Orchestrator, Storage, User, and Plugins layer.
The Storage and Plugins layers include example technologies that can be integrated into the
system.

38 COGENT

Eindhoven University of Technology

6.3.5 Multi-User Model Merging

Initially, we considered two different strategies for storing user metadata related to FoM
scores, rankings, and likes. The first method was an orchestrated integration and the second
method was a concurrent integration.

Orchestrated Merging

The first strategy was for each User to download the selected architecture model, complete a
task while appending the new metadata to the model, and then upload the model back to the
centralized storage. In this way, the baseline model would be updated after any user task.
In this way, the model is always merged and/or updated in near real-time. However, users
cannot complete HITL tasks, like scoring and adding design decisions, in near real-time
as they need to think and reflect on single architecture configurations attributes and cross-
model comparisons. Consider the case: User A downloads a model and begins a task.
User B begins and completes a task before User A completes their task. User A and User
B’s models now have conflicting or missing information when merging to the same baseline
model. An additional HITL task is then necessary for handling merge conflicts (Fig. C.5
illustrates this process in Appendix 2).

Concurrent Merging

To avoid inconsistencies, we implemented a different strategy. Each User downloads a base-
line architecture model containing the architectural components and parameter evaluation
values, which is used in the architectural visualization. Whenever the User completes HTIL
tasks, a new version of the model is created and tagged with the User ’s ID. The User then
stores their discrete model in the centralized storage area. The Orchestrator sets a deadline
for the completion of all HITL tasks during the current design sprint. Then, the Orchestrator
will merge the baseline model with all User -created models, appending the metadata to a
merged model. If a User does not complete an HTIL task, then this task’s contribution is
omitted. Fig. 6.9 illustrates the conceptual activity diagram for the subjective parameters
score merging activity (qualitative and architectural attributes).

The next section will describe the realized technologies and provide examples of their imple-
mentation results.

6.4 Realization Viewpoint

The Realization Viewpoint (R) from the CAFCR methodology describes the results of the ac-
tual technologies (plugins, tools) and the actual implementation. This section briefly demon-
strates the results of connecting COGENT in SCS to third-party tools and user-defined
scripts for the FireSat case study. Next, an overview of the system components is described.

COGENT 39

Eindhoven University of Technology

Figure 6.9: COGENT Conceptual Concurrent Score Merging Activity Diagram. The qualita-
tive/architectural attribute scores from multiple Users are merged as an Orchestrator’s task.

6.4.1 System Components

After finishing the description of all core features for the plugin manager and storage mod-
ules, specific plugin implementation details are relevant. Fig. 6.10 illustrates a functional
system component diagram that is color encoded to also show the functionalities for each
block and component. Both the local (on device) and AWS S3 cloud object storage tech-
nologies are shown. The initial firesat.csv evaluation dataset is converted into JSON models
and fed through the pipeline. Registered plugins include Neo4J for the GDB, wandb for ex-
periment tracking, and two examples of user-defined artificial intelligence Python modules
(scripts) using libraries including: scikit-learn, matplotlib, seaborn, NLTK, and TextBlob.

6.4.2 Developing Plugins

As previously described in Sec. 6.1.3, plugins interact with the COGENT plugin manager. In
development, all plugins begin as Python modules with a single task. Two primary tasks must
be completed for this to use the plugin: discoverability and setup file definition. The first task
augmenting the Python modules to be registerable with the plugin manager (hook implemen-
tation) and augmenting the plugin manager’s hook specification file must have knowledge of
the specific plugin.

The second task is to create a setup file to easily build the plugin with all necessary li-

40 COGENT

Eindhoven University of Technology

Figure 6.10: Functional System Component Diagram with color encoding for Functionalities
and HITL steps. The left SCS module is the Orchestrator’s Notebook responsible for the
initial model transformation, storage access, and merging. The right SCS module is the
User’s Notebook for scoring and ranking, along with storage access. The bottom four blocks
are implemented plugins for Neo4J, wandb, and two user-defined scripts.

braries/dependencies and the entry point for the plugin interface to discover. An entry point
is a module (Python program) location where a function or method will trigger the program to
run. The entry point trigger is usually placed where the Class is defined (though this is not
required, and a single module can have more than one entry point trigger if desired). The
entry point is also where the plugin ordering is specified (e.g., try first).

6.4.3 Autonomous Agents

To test that a multi-user system is working correctly as a single developer can be challenging
if only using manual testing procedures. Additionally, gaining access to designers work-
ing in a CDF to evaluate the system is a challenge of its own. Instead, autonomous Agents
were created to emulate the design tasks for CDF representatives. Autonomous Agent tasks
include selecting quality/architectural attributes, scoring attributes, liking or disliking an archi-
tecture configuration, and writing design decisions. At the time of this project, there was no
UI for users to add metadata, parameter values, or design decision strings. However, we as-
sumed that the interaction between the User and SCS would generate and store metadata in
JSON format. Effectively, the Agents need to complete tasks that would generate equivalent

COGENT 41

Eindhoven University of Technology

metadata, parameter values, and design decision notes and store this meta-information in a
JSON format.

All 64 architecture configurations were tested with three simultaneous Agents. A smaller
subset was tested with five simultaneous Agents, but there was no noticeable impact on
the quality of the emulated process (only performance and resource access costs). Agents
were representatives of the EPS, AOCS, and PROP subsystems. First, a dictionary was cre-
ated to include various quality/architectural attributes, and the Agent could randomly select
three. For consistency, the first Agent’s three attributes are used by the other two Agents.
For this report, the attributes of "Usability," "Maturity," and "Synergy" were selected. Usabil-
ity is defined in IEEE Std. 610.12 as enabling the user to meet their specified goals with
effectiveness, efficiency, and satisfaction. Maturity is a risk-based qualitative proxy for the
technological maturity status of a mission, or an instrument [18] (similar to NASA’s Tech-
nology Readiness Level [49]). Synergy is a qualitative (architectural) measure regarding
complementarity asset capabilities, such that overlapping their capabilities exist, then the
asset with a lower relevance causes its architecture configuration to be non-synergistic [18].

Autonomous Agent Tasks

Based on the three selected attributes, the Agents would randomly score each attribute with
a value between one and five, with one being "very poor" and five being "very good." This
means a "Usability" score of "5" is considered "very good." Next, a simple "liking" algorithm
was created such that if the cumulative score of three attribute values was greater than 12
(80%), then the Agent "liked" the architecture configuration. Otherwise, the Agent "disliked"
the architecture configuration. The liked status was represented as either a 1 for like or -1 for
disliked (and a null value indicates the architecture configuration has not been evaluated for
likes) [50]. For design decision notes, a corpus and dictionary were designed with a simple
grammar originally based on the Lorem Ipsum Python library5. A function was created to
parse the attribute values to generate notes. If the values were high, the Agent’s function
extracts a "positive" word to describe the attribute. Conversely, if the value is low, the Agent’s
function extracts a "negative" word to describe the attribute. Each attribute-value pair is
added as a design decision, effectively creating three decisions per agent per architecture
configuration. The scores, like-statues, and design decision notes are then added to a "local
User " file that is merged with the baseline architecture file (as described in Sec. 6.3.5).

6.4.4 Neo4J Graph Database Plugin

Utilizing Neo4J for UC1 requires several steps. Consider that the initial transforming, scoring,
liking, documenting design decisions, and merging user metadata are complete for a single
architecture. Using this merged model (in JSON), a query language used by Neo4J, called
Cypher, is used to create the GDB. A Cypher generation module parses the merged JSON
architecture model for the nodes and relationships (e.g., a User node, an "OWNS" relation-
ship). Nodes have relationships that connect them to other nodes, based on the metamodel
(Fig. C.11). The Cypher generation module uses Cypher specifications, like CREATE, to cre-

5Lorem Ipsum is a random word/sentence generator library; https://pypi.org/project/lorem/

42 COGENT

https://pypi.org/project/lorem/

Eindhoven University of Technology

ate a node or relationship. Parameter values, notes, and metadata are added in Key-Value
pairs that match the layer/level in the JSON architecture model.

The module’s output is saved as a .cypher file, which can be utilized in any Neo4J applica-
tion (e.g., desktop, Sandbox, or Oasis). We used the Python API connection drives with the
neo4j and py2neo Python libraries and the Bolt communication protocol. The Bolt protocol
supports three additional data types: Node, Relationship, and Path (along with core data
types like Boolean, integer, or string). Next, a Cypher sender module calls a Neo4J API con-
nection driver function and sends the Cypher query language to a back-end Neo4J process.
This process reads the CREATE queries containing the node and relationship data types to
build the GDB. Once the GDB is built, queries can return visualizations of the database, its
contents, and what metadata is stored at what level.

Using graph data science, the impact of changing a single FireSat subsystem component can
be evaluated. For example, a lower performance solar panel can be changed for a higher
performance battery which influences a designer’s scoring for qualitative attributes, including
quality or maturity. The component’s physical (architectural) interfaces may change, along
with dependencies to specific types of batteries that have varying current/voltage/power re-
quirements. With enough data and traceability to design decisions, GDBs can paint an image
of why specific attribute scores were given, influencing the like status, ranking, and ultimately
the choice to select an architecture configuration or not. Finally, the GDB and metadata can
be plotted to visualize the contents of the GDB (Fig. 6.11). For explainability, a class diagram
demonstrating the full utilization of the Neo4J Graph Database Plugin system is shown in
Fig. 6.12.

Figure 6.11: FireSat Neo4J Graph Database. This figure shows an example of an archi-
tecture (red) with AOCS and EPS subsystems (orange and pink). Subsystem components
(yellow) are a function of qualitative/architectural attributes (green). Users (blue) score the
architecture with concerns regarding the ascribed attributes.

COGENT 43

Eindhoven University of Technology

Figure 6.12: Neo4J Graph Database Plugin Class Diagram.

6.4.5 Weights & Biases Experiment Tracking Plugin

For UC2, designing the Weights & Biases (wandb) plugins is similar to the Neo4J plugin
construction. The primary difference is that wandb requires data to be sent to its API using
either parameter vector form or via a custom dictionary containing all representable parame-
ters and attributes. This dictionary holds attributes and values in a key-value pair. Attributes
can be tagged with metadata and notes in a non-numerical (str) format but must be differen-
tiated as a categorical value and not a numerical value. Additionally, wandb uses the HTTPS
protocol for communicating through the connect drivers and API. For FireSat, wandb acts
as a metadata and model version control and storage for attributes and (hyper)parameters.
These model configurations are stored in a .yaml file and can be rebuilt or reevaluated when
desired.

Experiment runs (e.g., our architecture configuration models) can be staged either individu-
ally or in batches for wandb. This means that the Orchestrator can either post experimental
data to the wandb storage location as it comes or wait until a number of runs (sprints) have
been completed. Additionally, each run will generate a new "version" of the metadata model,
even if the model contains the same architecture configuration and parameters. For the
FireSat case study, wandb is used in two ways. The first example is comparing multiple
runs of the same architecture configuration except that designers have changed their values
for qualitative/architecture attributes (Fig. C.12). The second example is when designers
want to compare multiple (discrete) architecture configurations and their parameter values

44 COGENT

Eindhoven University of Technology

(Fig. C.13). Fig. 6.13 demonstrates a "sweep" comparing five different architecture configu-
rations and their attribute parameter values for quantitative scores (evaluation dataset) and
qualitative/architectural attributes (scored by Agents).

Figure 6.13: Wandb. Five FireSat architecture configurations are compared against qual-
itative, quantitative, and architecture attributes for two Agents. The box on the left shows
metadata associated with the selected model.

6.4.6 Analysis in Discover

The last end-to-end pipeline task is to visualize all architecture configurations that have
been scored and liked. Combining these models into a single CSV file is the (currently)
required data format for visualizations in Discover, SCS’s front-end analysis platform. First,
all (merged) architecture configuration models are pulled from AWS into a merged models
folder on the Orchestrator ’s workstation. Next, a "fully-combined architectures" module loops
through all architectures stored in the folder and creates a single CSV file. Next, the CSV file
is loaded into Discover so that users can visualize trade-offs, use filters, like, and rank archi-
tectures. This process leads to another iterative run as described throughout this report until
a consensus is made on the preferred architecture configuration candidates to prepare for
Phase A studies. A full image of the Discover dashboard with all 64 completed architecture
configurations is provided in Fig. B.1 (too large to place in-text).

6.4.7 User-Defined Module Plugins

Extending user-defined modules is relatively simple, following the Plugin creation details in
Sec. 6.4.2. In this section, two use-defined modules for UC4 are converted to plugins.

Feature Importance via Correlation

The first example is using correlation matrices to identify feature importance and co-factor
confounding. First, the fully-combined architecture model (Sec 6.4.6) was sent to AWS Glue

COGENT 45

Eindhoven University of Technology

Databrew6 to perform One-Hot Encoding (OHE) [51] on all subsystem components (e.g.,
"NiCa Battery"). OHE provides non-numerical category entries (str) with either a 1 having this
property or 0 for missing this property. Having fully numerical data allows us to use statistical
analysis algorithms for correlation or autoregression during exploratory data analysis.

Next, a function creates a dataframe from the FireSat dataset. Then, a seaborn7 function
computes the correlation matrix. Afterward, matplotlib8 is used to return a plot to the SCS
Notebook. Additionally, the scikit-learn9 Feature Analysis package can be used to identify
latent patterns by decomposing the correlation matrix. Based on our fully-completed FireSat
dataset, we can see that there are strong negative correlations between Reliability and using
Xenon fuel. Additionally, Agent 1 tends to like architecture configurations based on the
Usability quality attribute and Agent 2 tends to like architecture configurations based on the
Synergy architecture attribute (Fig. C.15 in Appendix 2).

Designer Sentiment Analysis

The second example uses design decision note metadata stored in the GDB to find user
sentiment. Sentiment can help identify what designers like about an architecture, identify
how optimistic/pessimistic they score architectures, or predict which future architectures will
be liked/disliked. One assumption is that designers are specific and expressive when writing
design decisions.

Simulating the sentiment process starts with a connection to Neo4J to access a previously
stored GDB containing designer notes. TextBlob10 is used to extract the design decision
notes into the Python environment. Next, the design decision notes are passed through
NLTK11 and sentiment is bounded between -1 and 1 for negative sentiment and positive
sentiment, respectively. For example, a sentiment score of 0.75 means the designer’s lan-
guage indicates a good design. Conversely, a score of -0.90 indicates that the designer is
highly dissatisfied with the design. Additionally, keyword spotting was implemented to return
the primary keywords within design decisions that result in a given sentiment score. Fig. 6.14
shows the input design decision notes and Fig. 6.15 shows the resulting sentiment values
for Agent 1.

6AWS Glue Databrew is a technology for data cleaning and normalization;
https://aws.amazon.com/glue/features/databrew/

7seaborn is a statistical data visualization framework; https://seaborn.pydata.org/index.html
8matplotlib is data visualization plotting tool; https://matplotlib.org/
9scikit-learn is a predictive data analysis library; https://scikit-learn.org/stable/index.html

10TextBlob is an artificial intelligence library for processing textual data; https://textblob.readthedocs.io/en/dev/
11NLTK is the leading Natural Language Toolkit for building Natural Language Processing (NLP) applications;

https://www.nltk.org/

46 COGENT

https://aws.amazon.com/glue/features/databrew/
https://seaborn.pydata.org/index.html
https://matplotlib.org/
https://scikit-learn.org/stable/index.html
https://textblob.readthedocs.io/en/dev/
https://www.nltk.org/

Eindhoven University of Technology

Figure 6.14: FireSat Agent-generated Design Decision Notes. These notes are extracted
with TextBlob and used by NLTK for sentiment analysis.

Figure 6.15: NLTK Output. The previous three FireSat design decisions for Agent 1 are
scored with NLTK’s sentiment analysis package. The scores of 0.75, 0, and -0.9 translate to
"good," "neutral," and "very poor."

6.4.8 Plugins Execution & Interaction

The final architectural task is to describe the sequences in which events occur. Recall that
the plugin manager has three defined order triggers. Fig. 6.16 shows four different parallel
branches of plugins. For the Neo4J path containing Make Cypher, Make GDB, and Plot GDB,
the ordering of plugin modules is essential. Make Cypher must always fire before Make GDB,
or the pipeline can fail. In this case, we force the order using the ordering triggers described
in Sec. 6.2.1. Plugins not assigned a timing module will trigger with a "Last In First Out"
scheduling protocol. Strict plugin behavior can be assigned in the plugin manager, but it
is not desired to remove the abstraction level of the plugin manager and cause potential
tangling of resources. Changing the plugin manager’s core program should occur as little as
possible.

Now, the system architecture and design have been covered. For a final FireSat functionality
description diagram containing all relevant technologies and plugins, please see Fig. B.2.
The following section will cover the verification and validation aspects more specifically.

COGENT 47

Eindhoven University of Technology

Figure 6.16: Plugin Activity Diagram. Four different plugin paths occur in parallel, but with
forced timings based on plugin ordering specifications.

48 COGENT

Eindhoven University of Technology

7 Verification & Validation

This chapter details the verification and validation aspects for COGENT. Additionally, this
chapter contains the testing phases and Agent ranking module. For this report, the IEEE-
STD-610 verification and validation definitions are used.

7.1 Verification

Verification confirms if the requirements/specifications are correctly implemented. For this
report, verification is split into the functional requirement verification and system/software
testing phases.

7.1.1 Functional Requirement Verification

There were 57 formal functional requirements derived for the general software system and
COGENT. A complete list of functional requirements and their results are included in Fig. B.2.
Sec. 5.2 lists the 16 primary functional requirements, with 14 requirements being achieved
and 2 requirements being partially achieved. The two partially achieved requirements, R1.2
- the integration of ranking results from multiple users, was transferred back to SISW as the
Ranking functionality was not implemented in Discover’s front-end at the time of the CO-
GENT project. Similarly for R7.2 - The system shall automatically rank configurations based
on quantitative/qualitative/architectural scores, a weighted ranking ([52], [53]) module was
created but will not match the actual direction SCS/Discover will use for ranking architec-
tures (ranking is purely analytical in Discover).

Ranking Module

Effectively, the partial realization of the Ranking activity (R1.2, R7.2) is a plugin for the au-
tonomous Agents. A weighted ranking function first checks to see if all Agent’s have "liked"
as a parameter value in the liked status, e.g., "A1_like = 1" means Agent 1 likes the architec-
ture based on the process in Sec.6.4.3. Next, dictionaries are constructed with weights for
the quantitative attributes and qualitative/architectural attributes in a key-value format. For
Fig. 7.1, the quantitative dictionary is "’Reliability’: 0.4, ’Total_mass’: 0.1, ’ADCS_power’:
0.2, ’Peak_power’: 0.3", such that weights are normalized to sum to 1 and the weights of the
quantitative attributes indicate the User’s preferences.

COGENT 49

Eindhoven University of Technology

Figure 7.1: Simulated Ranking Results. ARCH021 provides the best trade-offs with both
Agent’s having "liked" the architecture configuration.

With this setup, "ARCH021" has the highest rank with two Agent likes, low total mass, a
good trade-off between AOCS power and peak (system) power. The architecture attribute
value for Synergy is good with overall high qualitative attribute scores and a decent reliability
score. This approach was inspired by design-task-oriented value assignment for MBSE [54]
and multi-attribute trade-space exploration [55].

7.1.2 System/Software Testing

The system was testing iteratively in three phases, including Unit, Integration, and Func-
tional. A Test-Driven Development (TDD) approach was taken [56]. Additionally, common
"best practices" and common Python-specific anti-patterns were followed [57]. TDD de-
scribes developing code around testability and introduces a Model-Conductor-Hardware de-
sign pattern, in which system development is on "mock" hardware (simulated/emulated).
This concept will become more important in a few paragraphs regarding the user simulation
agents.

Unit Testing

First, each software module had unit tests constructed in PyTest1. Unit tests focused on in-
valid data types and asserting null or out-of-range values in function arguments. Testing for
null values was critical since the design process allows users to add data models in cycles
and out of order. The methods/functions compiling query languages, dictionaries, or merging
files were extended with Python’s standard exception handling to detect missing/null values
and tell the program to continue building the model with the proper format ("try, except"). Fur-
thermore, the plugin setup files contain an option to flag unit tests for continuous/automatic
testing with PyTest. In parallel, we used PyCharm’s2 built-in code inspections for static anal-
ysis on the completed module. A JSON validation package was used to validate architecture
configuration models against required metamodel structure specifications [58].

1PyTest is the core unit testing framework for Python; https://www.pytest.org
2PyCharm is a popular Integrated Development Environment for Python; https://www.jetbrains.com/pycharm/

50 COGENT

https://www.pytest.org
https://www.jetbrains.com/pycharm/

Eindhoven University of Technology

Integration Testing

Unit-tested software modules with shared interfaces require integration testing. Data/content
is input into the first module and checked as output for the second module. Using PyCharm to
"step-through" the code, variable values and data types can be viewed after each process,
transformation, or algorithm. Integration testing was performed in "chains" by adding the
subsequent (unit-tested) software testing pipeline. End-to-end integration thoroughly applied
to 64 system architecture configurations with a minimum of five times each. End-to-end
integration starts from the initial JSON model generation to the final third-party visualization
tooling manual inspection, with AWS communications in between.

Functional Testing

For this project, functional testing acts from a "super-integration" perspective. After the end-
to-end integration was error-free, we integrated and tested each module into the plugin man-
ager (individually). One challenge with plugins is that they may have asynchronous firing,
which breaks the system pipeline. Debugging is more challenging using a plugin architec-
ture, as a plugin might be invoked with a deadlock whenever the plugin manager commu-
nicates with programs outside of the closed-loop environment. As such, functional testing
required substantially more time than unit or integration testing. From within the COGENT
system, objects stored over APIs were queried to ensure objects had correctness and were
not empty (e.g., SQL for AWS S3).

Multi-Environment Testing

To simulate the collaborative and iterative design process, an Orchestrator environment ran
in parallel with User mock environments. SCS is built based on Jupyter Lab3, and other
types of Notebooks, including Google Colab4 are interoperable with SCS. COGENT and all
plugins work in SCS, Jupyter Lab, and Colab (when using a Python 3 kernel). A majority of
the multi-environment COGENT testing had the Orchestrator’s environment in SCS on one
machine and the Users’ environments in Colab on another machine. This setup ensured
that cross-machine communication and plugin behavior was correct, as Notebooks store
global data and module output data in a local cache. The entire multi-environment pipeline
was tested for all 64 architecture configurations simultaneously with one Orchestrator, three
User’s, and 19 concurrent plugins (no data collisions).

7.2 Validation

Validation confirms if the product fulfills the intended use and goals of the stakeholders.
Validation was approached with demonstrations, regular feedback, cross-domain analogies,
technological realizations, and non-functional requirements.

3Jupyter Lab is a browser version of the most popular Computation Notebook; https://jupyter.org/
4Google Colab is a Google-based Computation Notebook environment for sharing and co-developing Note-

books; https://colab.research.google.com/

COGENT 51

https://jupyter.org/
https://colab.research.google.com/

Eindhoven University of Technology

7.2.1 Demonstrations

Early in the project, SISW confirmed that tangible results and examples were the most critical
aspect of the COGENT project. Feature and technology demonstrations were given every
two weeks to guide the validation process and ensure the right product was developed. The
end-user was the priority throughout the product, and we tried to identify how to provide
them with the best solutions and most straightforward implementation. Weekly meetings
discussed feature and architectural possibilities.

7.2.2 Cross-Domain Analogies

Siemens SISW already has experience in applying generative engineering in the automotive
domain. One critical step was applying the COGENT framework to previous work. For exam-
ple, we created a GDB in Neo4J based on an architecture configuration previously created
using SCS/Amesim (Fig. C.14). This step was taken to ensure models with proper relation-
ships could be created for GDBs. At a high level, many CPSs are a SoI with subsystems,
components, parameters, and relationship classes. With a high-level domain metamodel,
these specific classes swap identifies and discrete values (e.g., "a vehicle HAS a power
subsystem" is similar to "a satellite HAS an EPS subsystem").

7.2.3 COGENT Technology Realizations

As described with CAFCR’s Realization Viewpoint (Sec. 6.4), specific technology solutions
we developed for the FireSat case study. Each of these demonstrations was built using the
COGENT plugin system. Users were simulated as Agents. Naturally, simulations do not
provide a full perspective into how an end-user will really interact with the system. We have
shown that end-users can use their preferred technology or import the current (Python) mod-
ules with ease. Plugins can be developed for other programming languages and integrated
with Python wrappers, but this was outside the project’s scope. Each UC and plugin example
was created with CDF end-users in mind, trying to understand how and why COGENT could
improve the concurrent engineering design process and communication for cross-functional
teams.

7.2.4 Non-Functional Requirements

Throughout the project, several quality attributes (non-functional requirements) were pursued
to provide a complete and robust solution. Of 13 quality attributes, 9 were identified as
important for either end-users or Siemens SISW (medium and high priority). A complete list
of non-functional requirements is contained in Sec. B.1. Four categories based on ISO/IEC
25010:2011 are provided below: Usability, Security, Modularity, Explainability, Functional
Suitability, and Portability. Table 7.1 shows nine mid/high priority non-functional requirements
and their achieved statuses.

52 COGENT

Eindhoven University of Technology

Table 7.1: COGENT Non-Functional Requirements. The Priority (P) is shown as High (H) or
Medium (M). The color encoding shows achieved (green) or partially achieved (yellow).

ID Concern P Description

NFR1 Usability M The system shall support conflict resolution in decision-
making sessions (align discussion).

NFR2 Usability H The system shall support the balancing of multi-user expec-
tations/needs.

NFR3 Usability H The system shall be as autonomous as possible.
NFR4 Modularity H The system shall be developed in an independent manner,

not imposing dependencies on SCS.
NFR5 Usability H The system shall be developed based on approved licenses

(e.g., open source)
NFR6 Explainability H The system shall be provided with a thorough ConOps and

complete documentation.
NFR7 Usability M The system shall address the major individual "pain" for

subsystem teams.
NFR9 Portability H The system shall be easy to install
NFR10 Suitability M The system shall differentiate between quantitative, qualita-

tive, and architectural FoMs.

Usability

Of the nine mid/high priority NFRs, five of these requirements fall under Usability. NFR1 and
NFR2 were only partially achieved as while the COGENT system was designed to support
conflict resolution and balance multi-user expectations, we do not have any quantitative or
qualitative results to verify this. Similarly, NFR7 is responsible for addressing the major "pain"
of a subsystem team, yet this was achieved by having specific quantitative, qualitative, and
architectural attributes addressed during every process of the pipeline. NFR5 requires all
code and software to be built in a way that does not reduce the accessibility of end-users or
SISW since licensing can become a significant financial or legal dilemma. NFR3 is related
to automatability and will be discussed more next.

Automatability

The architecture and data models were developed with a high level of abstraction to enable
system components to be automatable. Some fixed relationships exist between the general
system architecture, the user, the subsystems, and the components. For example, a user
always scores an architecture, and an architecture configuration always contains subsystems
and components. Using this knowledge to develop schema, the created data model files and
interfaces do not need to be changed to connect with different databases of a similar type
(i.e., creating Cypher and AQL queries in Neo4J and ArangoDB uses the selfsame base
model file) [8]. The same is true for the automatic sharing of configuration files such that the
system automatically assigns the User with the architecture configuration ID selected by the

COGENT 53

Eindhoven University of Technology

Orchestrator. This process ensures that designers will never score an architecture that does
not exist and can only score attributes/FoM that exist (Keys; compliance to SEIM).

Furthermore, each plugin will automatically run whenever it has been registered with the
plugin manager. During testing, a set of Agent’s could complete an entire "design sprint"
in less than 10 minutes, from the initial model transformation to storing models in a GDB
and visualizing the result. While Users will undoubtedly require more time, a majority of
"thought-less," mundane tasks in the design process have been bypassed. Furthermore,
this will result in fewer errors overall and allow Users to focus on the essential tasks without
system-based interruptions.

Modularity

The description of NFR4 describes how COGENT should be independent and not impose
dependencies on SCS. Independence was a major motivation for using a plugin architecture
pattern. Users install COGENT directly into their SCS environment without COGENT affect-
ing any other installed package or service. The COGENT plugin manager is executable from
Notebook cells or the command line. Plugins can be deregistered simply by removing the
entry point. In general, the example plugins were designed to be independent and even ag-
nostic of each other. However, co-interactions are possible if the User desires as described
in Sec. 6.4.7.

Portability

Installing the COGENT system was designed to be easy (NFR9). The User simply needs
to add the COGENT plugin manager and any pre-defined plugins to their SCS environment
by either loading a folder or cloning a Git repository. The plugin setup files were designed to
install any Python libraries/dependencies automatically and automatically use PyTest for unit
tests (given that test cases are provided). Additionally, specific versions of software pack-
ages/libraries are declared in the plugin setup file, ensuring the modules work as intended.

Explainability & Functional Suitability

Developing documentation is an important aspect of product hand-over and usage (NFR6).
We provided an installation guide, a user guide, and code comments following the PEP-8
Style Guide for this project. Furthermore, video guides demonstrate tasks such as installing
COGENT, installing plugins, and creating plugins. Furthermore, a Concept of Operations
(ConOps) was a required deliverable for SISW. The ConOps specifies the system’s environ-
ment, usage examples, and stakeholder needs on a high-level [14]. Please see Sec. C.7.1
for more details on the ConOps. Finally, a functional suitability requirement (NFR10) was
formally defined to ensure that the system differentiates between qualitative, quantitative,
and architectural attributes.

The next chapter provides the conclusion and recommendations.

54 COGENT

Eindhoven University of Technology

8 Conclusion & Recommendations

This chapter briefly summarizes the results of the project and report with recommendations
for future work.

8.1 Conclusion

This report details the path to develop a solution architecture and proof-of-concept imple-
mentation applying generative engineering in the concurrent engineering domain. System
architecture selection is a challenging and wickedly complex task. Subsystem designers
have conflicting goals and requirements that impact technological capabilities and system
performance. Having the most powerful subsystem/component is going to have immediate
trade-offs with costs, mass, life expectancy, and interfacing with other components (inter-
operability). Furthermore, selecting an inferior architecture configuration is detrimental to
system performance, costs, and life-cycle, with the additional risk of mission/experiment fail-
ure. Both concurrent and generative engineering methodologies significantly improve system
architecture design during the exploratory and concept design phases. However, a union of
the two methodologies had yet to be realized with demonstrable and tangible technologies.

The decision was to create a plugin architecture capable of transforming data/models, stor-
ing models, assets, and metadata in desired storage locations, while also developing plugins
to demonstrate technology capabilities. A conceptual FireSat case study was followed where
cross-functional teams in a CDF attempt to select an optimal system architecture configura-
tion. It was shown that metadata is a critical component in the design decision process, and
how/where the metadata is stored is important. Additionally, end-users now have access to
third-party technologies and their own user-defined modules within Siemens SCS. We think
this will encourage users to utilize SCS for concurrent generative engineer and design in the
aerospace, automotive, and robotics domains. The project and report focus on providing
understanding end-users needs and demonstrating useful technologies as a solution.

Furthermore, the importance of differentiating quantitative, qualitative, and architectural at-
tributes emerged. Each attribute type has varying parameters and implications for the design
process. Quantitative attributes are easier to handle since parameters are objective (based
solely on numerical criteria). For qualitative and architectural attributes, any two designers
may have drastically different perspectives based on their primary concerns, experience, and
goals. Users can definitively represent such concerns in our metamodel structure and tech-
nology demonstrations. We hope COGENT will improve cross-functional team communica-
tion, explainability and traceability of design decisions, and a more rapid system architecture
configuration selection with higher performance indicator results.

COGENT 55

Eindhoven University of Technology

8.2 Project Results

In the introduction, we described six high-level requirements. All six high-level requirements
were achieved with the following details:

HLR1: SCS was extended from a single-user user application to a multi-user application with
simultaneous tool access

HLR2: An end-to-end plugin architecture was demonstrated combining concurrent and gener-
ative engineering domains

HLR3: The user scoring and ranking activities were thoroughly simulated and had consistent,
synchronized results

HLR4: Four use cases utilizing external or custom software were demonstrated for the FireSat
case study, including graph databases, experiment tracking, centralized cloud storage,
and user-defined modules

HLR5: Metadata was used for tracking, reporting, analysis, and discussing design decisions at
the system, subsystem, and component-level with both internal and external software
demonstrating the significance of metadata

HLR6: A centralized AWS Cloud solution was used to store objects, assets, metadata, and
models; with the possibility to easily switch the storage solution by changing the API

8.3 Recommendations

The most significant limitation of this study and project is the lack of evaluation by human
designers in a real case study. We recommend that COGENT is demonstrated and im-
plemented in an actual concurrent engineering case study in a concurrent engineering en-
vironment. Intuitively, an aerospace/astronautic example would be the easiest to evaluate
since COGENT was designed for an analogous FireSat case study. However, any SoS CPS
domain with subsystems, components, attributes/parameters, and users can be used.

Additional functionalities and plugins could be developed as part of a "core COGENT" dis-
tribution. Siemens already creates tools for finite element analysis, computational fluid dy-
namics, life-cycle management, and computer-aided engineering. Secondary technologies
might include the generation of domain specific languages, automated machine learning
(AutoML), synthetic data generation, or digital twin environments. Each of these topics are
up-and-coming in the space domain, as well as other Industry 4.0 domains. Ideally, running
a plugin that communicates to these technologies could return simulation results. Future
COGENT developments may consider interfaces and wrappers to communicate with such
technologies.

56 COGENT

Eindhoven University of Technology

Bibliography

[1] Daniel Hastings and H. Mcmanus. Space system architecture: Final report of ssparc:
the space systems, policy, and architecture research consortium (thrust i and ii). 01
2005.

[2] Warschat, J. and Bullinger, H.J. Forschungs- und Entwicklungsmanagement, Simul-
taneous Engineering, Projektmanagement, Produktplanung, Rapid Product Develop-
ment. 1997. doi:10.1007/978-3-663-05946-2.

[3] G. Muller. CAFCR: A Multi-view Method for Embedded Systems Architecting. Balancing
Genericity and Specificity. 06 2004.

[4] Daarius user manual. Technical report, TNO-ESI, 2021.

[5] M. Bandecchi, B. Melton, and F. Ongaro. Concurrent Engineering Applied to Space
Mission Assessment and Design . Technical report, European Space Agency, 1999.

[6] European Space Agency. What is the CDF?, Accessed: April, 2020.
http://www.esa.int/Space_Engineering_Technology/CDF/What_is_the_CDF.

[7] O. Alotaibi and E Pardede. Transformation of Schema from Relational Database (RDB)
to NoSQL Databases, volume 4. 11 2019. 10.3390/data4040148.

[8] Hunger, M. and Boyd, R. and Lyon, W. The Definitive Guide to Graph Databases for the
RDBMS Developer. 2021.

[9] M.W. Maier. Architecting principles for systems-of-systems. Systems Engineering,
1(4):267–284, 1998.

[10] M. Bandecchi, B. Melton, and B. Gardini. The esa/estec concurrent design facility. 01
2000.

[11] Churchman, C.W. "Wicked Problems". Management Science. 14 (4): B-141–B-146.
December 1967. doi:10.1287/mnsc.14.4.B141.

[12] J. Fitzgerald, P. Larsen, and M. Verhoef. Collaborative Design for Embedded Systems
– Co-modelling and Co-simulation. 05 2014.

[13] A. Kusiak. Concurrent Engineering: Automation, Tools, and Techniques. A Wiley-
Interscience Publication. Wiley, 1992.

[14] NASA Systems Engineering Handbook, NASA SP-2016-6105 Rev2. October 2017.
https://www.nasa.gov/connect/ebooks/nasa-systems-engineering-handbook/.

COGENT 57

http://www.esa.int/Enabling_Support/Space_Engineering_Technology/CDF/What_is_the_CDF
https://www.nasa.gov/connect/ebooks/nasa-systems-engineering-handbook/

Eindhoven University of Technology

[15] J. Hall. Columbia and challenger: Organizational failure at nasa. Space Policy, 37:127–
133, 08 2016.

[16] W. Robison, R. Boisjoly, D. Hoeker, and S. Young. Representation and misrepresenta-
tion: Tufte and the morton thiokol engineers on the challenger. Science and engineering
ethics, 8:59–81, 02 2002.

[17] W.J. Larson, J.R Wertz, and B. D’Souza. Space Mission Analysis and Design. 09 1999.

[18] A. Mincolla, S. Gerené, A. Vorobiev, K. Wojnowski, N. Smiechowski, M. Nicolai, J. Menu,
S. Jahnke, R. Benvenuto, and G. Tibert. Space systems of systems generative design
using concurrent mbse: An application of ecss-e-tm-10-25 and the gcd tool to coperni-
cus next generation. pages 1–6, 2020.

[19] A. Silva. Model-driven engineering: A survey supported by a unified conceptual model.
Computer Languages, Systems & Structures, 20, 06 2015.

[20] J. Menu, M. Nicolai, and M. Zeller. Designing fail-safe architectures for aircraft electrical
power systems. In 2018 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS),
pages 1–14, 2018.

[21] W. Quan and H. Jianmin. A study on collaborative mechanism for product design in
distributed concurrent engineering. In 2006 7th International Conference on Computer-
Aided Industrial Design and Conceptual Design, pages 1–5, 2006.

[22] European Space Agency. ESA Concurrent Design Facility CDF Infopak, Accessed:
August, 2020.
https://esamultimedia.esa.int/docs/cdf/ESA_CDF_Infopack_2019_16x9_rev1.pdf.

[23] ECSS-E-TM-10-25 - System Engineering - Engineering Design Model Data Exchange
(CDF). Technical report, European Cooperation for Space Standardization, Oc-
tober 2010. https://ecss.nl/hbstms/ecss-e-tm-10-25a-engineering-design-model-data-
exchange-cdf-20-october-2010/.

[24] DoDAF V2.02, Volume II: Architectural Data and Models, Architect’s Guide . Technical
report, Department of Defense, January 2015.

[25] P. Kruchten. Architectural blueprints—the “4+1” view model of software architecture.
IEEE Software 12, 6:42–50, 11 1995.

[26] G. Muller. Systems Architecting: A Business Perspective, volume 21. 06 2011.

[27] DAARIUS for Transparent Team-based System Design. 11 2019.

[28] T. Bijlsma, W.T. Suermondt, and R. Doornbos. A Knowledge Domain Struc-
ture to Enable System Wide Reasoning and Decision Making. apr 2019.
10.1016/j.procs.2019.05.081.

[29] T. Bijlsma, B.v.d. Sanden, Y. Li, R. Janssen, and R. Tinsel. Decision support method-
ology for evolutionary embedded system design. In 2019 International Symposium on
Systems Engineering (ISSE), pages 1–8, 2019.

58 COGENT

https://esamultimedia.esa.int/docs/cdf/ESA_CDF_Infopack_2019_16x9_rev1.pdf
https://ecss.nl/hbstms/ecss-e-tm-10-25a-engineering-design-model-data-exchange-cdf-20-october-2010/
https://ecss.nl/hbstms/ecss-e-tm-10-25a-engineering-design-model-data-exchange-cdf-20-october-2010/

Eindhoven University of Technology

[30] ESA PSS-05-02 Guide to the user requirements definition phase. March 1995.
http://microelectronics.esa.int/vhdl/pss/PSS-05-02.pdf.

[31] Robinson, I. and Webber, J. and Eifrem, E. "Graph Databases". 2nd Edition. June 2015.
ISBN: 9781491930892.

[32] L. Lazarevic. Identifying graph shaped problems, 2020. Access Online:
https://go.neo4j.com/identifying-graph-shaped-problems.

[33] Experiment tracking, Accessed: 20.10.2021. https://neptune.ai/experiment-tracking.

[34] L. Biewald. Experiment tracking with weights and biases, 2020. Software available
from: www.wandb.com.

[35] N. Franke, P. Keinz, and C. Steger. Testing the value of customization: When do cus-
tomers really prefer products tailored to their preferences? Journal of Marketing Amer-
ican Marketing Association ISSN, 73:103–121, 10 2009.

[36] A. Achilleos, N. Georgalas, and K. Yang. An open source domain-specific tools frame-
work to support model driven development of oss. volume 4530, pages 1–16, 06 2007.

[37] ESA PSS-05-03 Guide to the software requirements definition phase. March 1995.
http://microelectronics.esa.int/vhdl/pss/PSS-05-03.pdf.

[38] Nadareishvili, I. and Mitra, R. and McLarty, M. and Amundsen, M. Microservice Archi-
tecture. August 2016. ISBN: 9781491956250.

[39] M. Richards. Software Architecture Patterns. February 2015. ISBN: 9781491924242.

[40] D. Namiot and M. sneps sneppe. On micro-services architecture. Interenational Journal
of Open Information Technologies, 2:24–27, 09 2014.

[41] J. Mayer, I. Melzer, and F. Schweiggert. Lightweight plug-in-based application develop-
ment. 09 2002.

[42] Richards, M. and Ford, N. Fundamentals of Software Architecture. January 2020. ISBN:
9781492043454.

[43] Pluggy: The PyTest Plugin System, 2020. Software available from:
https://pypi.org/project/pluggy/.

[44] Gamma, E. and Helm, R, and Johnson, R. and Vlissides, J. Design Patterns: Elements
of Reusable Object-Oriented Software. October 1994. ISBN: 0201633612.

[45] Raj, P. and Raman, A. and Subramanian, H. Architectural Patterns. December 2019.
ISBN: 9781787287495.

[46] J. Bézivin. Model driven engineering: An emerging technical space. volume 4143,
pages 36–64, 01 2005.

[47] D. Kaul, A. Gokhale, L. Dawson, A. Tackett, and K. Mccauley. Applying aspect oriented
programming to distributed storage metadata management. 211, 03 2007.

COGENT 59

https://go.neo4j.com/identifying-graph-shaped-problems-lp.html?utm_source=webinars&utm_content=keZURbOo4-M
https://neptune.ai/experiment-tracking
www.wandb.com
https://pypi.org/project/pluggy/

Eindhoven University of Technology

[48] P. Tarr, H. Osccher, W. Harrison, and S. M. Sutton Jr. N degrees of separation: Multi-
dimensional separation of concerns. ICSE ’99: Proceedings of the 21st international
conference on Software engineering, page 107–119, 05 1999.

[49] M. Héder. From nasa to eu: the evolution of the trl scale in public sector innovation.
Innovation Journal, 22:1, 08 2017.

[50] S. Damer and M. Gini. Cooperation without exploitation between self-interested agents.
Advances in Intelligent Systems and Computing, 194:553–562, 01 2013.

[51] Harris, D. and Harris, S. Digital Design and Computer Architecture, 2nd Edition. August
2012. ISBN: 9780123978165.

[52] W.Y. Chiu, S.H. Manoharan, and T.Y. Huang. Weight induced norm approach to group
decision making for multiobjective optimization problems in systems engineering. IEEE
Systems Journal, 14(2):1580–1591, 2020.

[53] D. Urbig. Weight-based negotiation mechanisms: Balancing personal utilities. Fundam.
Inform., 67:271–285, 01 2005.

[54] W. Xiaofei, W. Liao, Y. Guo, D. Liu, and W. Qian. A design-task-oriented model assign-
ment method in model-based system engineering. Mathematical Problems in Engineer-
ing, 2020:1–15, 08 2020.

[55] Jian Guo. Incorporating multidisciplinary design optimization into spacecraft systems
engineering. 01 2010.

[56] M. Karlesky, W. Bereza, and C.B. Erickson. Effective test driven development for em-
bedded software. pages 382–387, 05 2006.

[57] A. Dewes and C. Neumann. The little book of python anti-patterns, Accessed:
17.09.2021. Available from http://docs.quantifiedcode.com/python-anti-patterns/.

[58] JSON Format Validation, Accessed: 19.09.2021. Available from
https://jschon.readthedocs.io/en/latest/examples/format_validation.html.

[59] J. Raiturkar. Hands-On Software Architecture with Golang. December 2018. ISBN:
9781788622592.

60 COGENT

http://docs.quantifiedcode.com/python-anti-patterns/
https://jschon.readthedocs.io/en/latest/examples/format_validation.html

Eindhoven University of Technology

A Appendix I - Project Management

This section briefly details the project management aspects of the project. This includes the
project stakeholders, project management approach, project timeline, risk management, and
a brief retrospective.

A.1 Project Stakeholders

This section describes the stakeholders relevant to the Project Viewpoint. For Product View-
point stakeholders, please refer to Sec. 4.

This project was an industry collaboration between the Eindhoven University of Technology
(TU/e) and Siemens Digital Industries Software (SISW). Each entity has different concerns
based on its primary position and goals. Table A.1 lists the persons, positions, and concerns
based on the primary locale. The trainee is at the intersection of both the TU/e and SISW
but is primarily a member of the TU/e.

Table A.1: Primary Project Stakeholders. The concerns are from the perspective of the
Trainee and may inaccurately represent the stakeholder internal concerns.

Locale Name Position Concerns

TU/e C. O’Hara ST Design Trainee Knowledge, skill acquisition,
MBSE/MBSA experience

M.v.d. Brand ST Scientific Director Scientific value, industry val-
orization, program quality

Y. Dajsuren ST Program Director Program/project quality, industry
valorization, trainee growth

SISW J. Menu Research Engr. Manager Project quality, product utility,
stakeholder valorization

M. Nikolai Sr. Product Line Manager Product usefulness, product rel-
evance, concept clarity

J. Vanhuyse Product Manager Product development, product
usefulness, product testing

COGENT 61

Eindhoven University of Technology

Figure A.1: Stakeholder Power-Interest Matrix Diagram.

A.2 Project Management Approach

Project phases, risk management, phases, and work breakdown structures were derived
from ECSS-M-ST-10C, Space Project Management, Rev.1:2009. This project management
standard follows the V-Model for the system development lifecycle. For software develop-
ment, the Agile methodology was followed with software features developed and accessed
in weekly sprints. Testing, verification, and validation occurred throughout the project and
not in a single phase. A work breakdown structure organized work packages based on the
phase and type.

A.3 Project Timeline

The project includes three milestones: the SW Design Freeze, the SYS Design Freeze,
and the Project Defense (which assumed the project was complete, tested, verified, and
validated). In reality, the dates provided for the Gantt chart in Fig. A.3 were mere approx-
imations as the conceptual and innovative origin of the project required more flexibility in
deadlines.

62 COGENT

Eindhoven University of Technology

A.4 Risk Management

A risk matrix was derived based on ECSS-M-ST-10C which plots likelihood and severity com-
binations with color encoding with green, yellow, and red for "good," "caution," and "warning,"
respectively. Additionally, the gradient of red indicates how potentially disruptive the risk will
be on the success of the project. Furthermore, the evolution of risks were tracked through-
out the project. Risk management is not something that should simply be completed at the
beginning of a project or emerging/evolving risks may not be identified. Fig. A.2 provides the
adapted risk management matrix with an example of risk tracking.

Figure A.2: Tracking Risk Evolution in a Risk Matrix. The dotted star is the original approx-
imation of the risk likelihood-severity combination. The dotted arrow shows the transition of
the risk to a solid star where the risk currently is located.

A number of risk management strategies were employed including monitoring, accepting,
transferring, avoiding, and mitigating. Please see the risk register in A.5 for more details.

A.5 Project Retrospective

The COGENT project was both challenging and rewarding. I feel like I really developed my
model-based system engineering/architecting skills to create a meaningful product. Both of
my project supervisors allowed me to be creative and exploratory with the design and fea-
tures. I have been interested in developing system/software solutions for the space domain
since I was a child. Additionally, I have been interested in working at Siemens for more than
ten years. I feel incredibly fortunate that I could explore all of my interests in my preferred
domain at my preferred company.

That being said, the project was still very challenging. Cutting-edge innovations often have
many uncertainties, unclear directions, and rapidly changing and/or conflicting requirements.

COGENT 63

Eindhoven University of Technology

At the start of the project, the development platform (SCS) had not been announced or re-
leased to the public. Therefore, many things were being updated or added regularly. Ad-
ditionally, we needed to frequently dive into low-level details and then bounce back up to
a high-level overview of how this provides value to the end-user. Zooming in and zooming
out was more challenging than I anticipated. Furthermore, there were times when I knew
how a feature or design alternative could benefit the end-user, but I had trouble explaining
this clearly. I feel that I became a domain expert on combining generative and concurrent
engineering for space system architectures. Thank you.

64 COGENT

Eindhoven University of Technology

Figure A.3: Project Timeline Gantt Chart.

COGENT 65

No. Risk Scenario Severity₁ Likelihood₁ Strategy Actions Severity₂ Likelihood₂

S1 COVID-19 Logistics 3 E Accept,
Monitor

The pandemic impacts the logistics of the project (e.g., company laptop). Currently, AWS
instances are being used to work remotely. However, not all software can be ran through
proxy/kernals. Relocation will occur if necessary.

1 C

S2 COVID-19
Communications

2 D Accept,
Monitor

Colocation communication, including "coffee break" discussions are lost. Currently, adhoc
communication is regularly persued. Supervisors might not be available at a critical
moment (design decision/alternative) which can lead to delays in development.

1 C

S3 Administrative Delays 4 D Transfer,
Monitor

Administrative challenges, e.g., contract agreements, lead to delays since
company/university IP are limited. The current strategy is to approach the project from a
conceptual level and address the high-level and key issues abstractly. Regular
communication regarding the contract is maintained.

2 D

S4 Insufficient Domain
Knowledge

5 C Mitigate,
Monitor

COGENT emcompasses several complex domains including generative engineering,
concurrent engineering, space engineering, system engineering, and software
engineering. The project is at the intersection of these domains. Currently, regular
communication with company and university supervisors is maintained to ensure proper
scoping and domain understanding.

4 A

S5 Insufficient Technical
Skills

5 C Mitigate,
Avoid,
Monitor

COGENT will potentially be comprised of a complex software implementation as multiple
users and stakeholders should be able to interact concurrently. To mitigate insufficient
technical skills, prototyping is being completed early (along with training). As a
contengency, certain libraries/approaches will be avoided if they introduce unnecessary
complexity. Knowledge of DSLs (ACEL), concurrency in Python, data science
dashboards, and artificial intelligence is required.

4 A

S6 Security: SW
Communication

4 C Transfer,
Monitor

Within the scope of COGENT is to extend a notebook implementation (SCS) to a multi-
user setup. However, this will introduce the requirement to communicate over various
channels. While SCS requires a key, deployments using Heroku (or equivalent) may
allow users to access the notebooks/data without logging into SCS and depending on the
deployment environment. The risk here is two part: implementing an insecure
environment versus additional resources in developing a secure channel. Currently,
Heroku is planned for prototyping and the risk will be transfered later when a production-
level implementation is pursued. Since COGENT is a prototype, this risk has a lower
severity. The likelihood of an issue is also reduced as security issues will be transfered
when COGENT is made at the production level.

2 B

S7 Security: Database 4 C Transfer,
Monitor

Similar to S6, data needs to be securely stored. For prototyping, MongoDB may be used
to store data. However, there are limitations to how much data can be stored securely
and at no cost. Siemens has an internal database solution though it is not readily
accessible. Therefore, this is a risk that will need to be handled with care in the future.
The ideal solution to solve S6 and S7 is to use a private server within Siemens that SCS
can interface with. As this is not readily available, there is considerable risk that the
implementation (prototype) will need to be modified greatly to acheive production-level in
the future. Since COGENT is a prototype, this risk has a lower severity. The likelihood of
an issue is also reduced as security issues will be transfered when COGENT is made at
the production level.

2 B

S8 System Integration 4 C Mitigate,
Monitor

The COGENT project will be developed within (extends) the Siemens Simcenter Studio
(SCS) tool. Furthermore, the COGENT application will act as an intermediate step within
SCS. As such, the developed features/implementation will have dependencies on SCS
and the output will need to conform with SCS. Ideally, the feature additions (e.g.,
interactive dashboard, scoring/ranking modules) will easily integrate due to the Jupyter
Lab aspects of SCS. However, the COGENT implementation may have external
calls/functionality that cannot trivially/initially be accessible within SCS. Planned actions
include making the COGENT application independent/nondependent on the SCS tool
while prototyping. Additionally, SCS results/output should be fed into the stand-alone
COGENT application, and the output of COGENT should be compatible/usable by SCS.
Since COGENT is a prototype, this risk has a lower severity.

4 A

S9 Software Deployment 3 E Accept,
Mitigate,
Monitor

Related to S6, the COGENT application will need to be deployed in a manner that various
users can interact with it. This will bring various software requirements (libraries, license
for SCS, IPython/Conda), hardware (physical device, virtualization), operating systems
(Windows, Ubuntu), and user interfaces (web-based browser, emulated notebook).
Finding the best design will require additional effort/time, and thus, this is being listed as a
risk. The risk is that additional resources to plan/manage these will cause delays in
development.

1 C

S10 Plugin Misfiring 5 E Mitigate,
Avoid,
Monitor

One challenge for developing a plugin manager with many plugins is they might have
sequencing dependies. For example, a sequence might include data loading,
transformation, usage, storage, and visualization (from storage). If these plugins fire out-
of-order, the pipeline will fail.

5 A

S11 Evolving Third-Party
Software

3 B Accept,
Mitigate,
Monitor

A common issue with third-party interfaces and libraries is that they may change. Already,
two of the third-party APIs have changed their format since the beginning of the project.
This results in code updates/changes to address communication inconsistencies over the
API. To minimize this, software has been developed with metamodals, object-orientation,
and versioning so that only small changes to the interface or API call need to made.

3 B

Project: COGENT Initial ManagedRisk Approach

Eindhoven University of Technology

Risk Register

66 COGENT

Eindhoven University of Technology

B Appendix II - Requirements & Risk Register

B.1 CDF Positions & IDs

Table B.1: CDF Positions and IDs.

Position ID

Documentation DOC
Systems SYS

Configuration CNFG
Structure STRUCT

Simulation SIM
Attitude & Orbital Control System AOCS

Propulsion PROP
Mission Control MISS

Communications COMM
Ground Systems & Operations GS & OPS

Data Handling System DHS
Electric Power System EPS/POW

Thermal Control System TCS
Instruments INST
Mechanisms MECH

Programmatics PROG
Risk Assessment RISK

Cost Analysis COST
Team Leader TL

COGENT 67

No. Name CrossConcern P Description Notes
R1 Users.Concurrent Usability H The system shall support N concurrent user instances (multiple

notebooks).
Tested: 4 simultaneous users in SCS and
Google Colab

R1.1 Multi-User.Scoring Efficiency H The system shall integrate the scoring results from multiple users. Plugin

R1.2 Multi-User.Ranking Efficiency T The system shall rank the combined results from user scoring. Script: Ranking; Successfully ranked
results from multiple users but not
developed for COGENT. Transferred
responsibility to SISW.

R2 Visualize.Pareto Usability H The system shall plot all architecture variant FoMs with Pareto
charts.

via SCS Discover, wandb

R3 Users.Interactive Usability H The system shall allow for users to interact with charts and
diagrams.

via Discover, wandb, Neo4J

R4 Doc.Design.Dec. Explainability H The system shall allow users to input their design decisions. Simulated via autonomous agents, data
files

R4.3 Filter.Constraint Flexibility M The system shall filter results based on user constraints. via Discover, wandb
R5 Traceability.SEIM Compliance H The system shall comply with the SEIM (e.g. as defined in CDP4

or ConOps).
via model definition

R6 User-Defined.Feat. Extensibility H The system shall allow for user-defined rules, constraints,
algorithms, features, and parameters.

via model definition, python scripts

R6.1 User-Created.Funct. Extensibility H The system shall allow for user-created functionalities for scoring
(e.g., addition vs multiplication in weights)

Plugin via python scripts, notebooks

R6.2 User-Defined.Filters Extensibility H The system shall allow for user-defined filters (visualization and
omiting/removing solutions).

via python scripts, Discover, wandb

R7.1 Multi-Quant.Scoring Performance M The system shall automatically generate scores for architecture
variants based on quantitative FoMs.

Simulated via autonomous agents, data
files

R7.2 Multi-Quant.Ranking Performance T The system shall automatically rank architecture variants based
on quantitative FoM scores.

Script: Ranking; Transferred responsibility
to SISW

R7.3 Multi-Qual.Scoring Usability M The system shall allow designers to input their scores for
qualitative attributes.

Simulated via autonomous agents, data
files

R7.4 Multi-Qual.Ranking Performance T The system shall automatically rank architecture variants based
on qualitative FoM scores.

Script: Ranking; Transferred responsibility
to SISW

R7.5 Multi-Arch.Scoring Usability M The system shall allow designers to input their scores for
architectural attributes.

Simulated via autonomous agents, data
files

R7.6 Multi-Arch.Ranking Performance T The system shall automatically rank architecture variants based
on architectural FoM scores.

Script: Ranking; Transferred responsibility
to SISW

R7.7 Multi-FoM.Scoring Performance M The system shall automatically combine the scores from
qualitative, quantitative, and architectural FoMs.

Simulated via autonomous agents, data
files

R7.8 Multi-FoM.Ranking Performance T The system shall automatically rank architecture variants based
on quantiative, qualitative, and architectural FoM scores.

Script: Ranking; Transferred responsibility
to SISW

R15.1 SYS.Likes Funct. Req. H The system shall utilize user-inputted "likes." Simulated via autonomous agents, data
files

R15.2 SYS.Likes.Common Explainability L The system shall identify commonalities in "likes." Implicit, HITL
R15.3 SYS.Likes.Predict Extensibility L The system shall predict which architectures will be "liked." Plugin via sentiment analysis
R15.4 Multi-Obj.Optim. Performance L The system shall utilize current methods for multi-objective

optimization when generating scores.
Not relevant during the Design Space
Exploration phase.

R16.2 Weights.Variable Flexibility L The system shall allow for varying weights for subsystem KPIs. Script: weighted_ranking; Successfully
utilized adjustable weights for FoM but
not developed for COGENT.

R17 Data.Store Maintainability H The system shall be able to store all relevant (meta)data. Plugins: AWS S3, Neo4J, ArangoDB,
wandb

R17.1 Data.Store.Central Reliability H The system shall be able to store all data in a centralized
location.

Plugin: AWS S3

R17.2 Data.Store.Cloud Portability H The system shall be able to store all data via cloud solutions. Plugins: AWS S3, Neo4J, ArangoDB,
wandb

R17.3 Data.Store.Local Supportability H The system shall be able to store relevant data locally. Storage via local machine, local terminal,
discrete SCS instance.

R17.4 Data.Store.Level Performance H The system shall be able to store metadata at the appropriate
level.

Plugins: AWS S3 (JSON), Neo4J,
ArangoDB

R17.5 Data.Store.GDB Maintainability H The system shall support storage into a Graph Database. Neo4J and ArangoDB were both
implementated and available in COGENT.

R17.6 Data.Store.NoSQL Maintainability L The system shall support storage into a NoSQL Database. Amazon DynamoDB and MongoDB were
successfully utilized but are not
developed for the final implementation

R17.7 Data.Store.RDBMS Maintainability L The system shall support storage into an RDBMS. Amazon RedShift was successfully
utilized but is not developed in the final
implementation

R17.8 Data.Store.ExpTrack Maintainability H The system shall support storage into a Machine Learning
Experiment Tracking datastore.

Plugin

R17.9 Data.Store.ETL Maintainability L The system shall support storage via an Extract, Transform, Load
process.

Amazon Databrew Glue ETL was used
for preprocessing and batching but not a
core module

R17.10 Data.Store.Assets Maintainability H The system shall support the storage of other assets (images,
models, diagrams)

Scripts: s3_upload, s3_download

Functional Requirements

Eindhoven University of Technology

B.2 Software Requirements

68 COGENT

R18.1 Data.Format.CSV Usability H The system shall support data in CSV format. Plugin: CSV
R18.2 Data.Format.JSON Usability H The system shall support data in JSON format. Script: model_initialization
R18.3 Data.Format.ACEL Usability L The system shall support data in ACEL format. Environment: SCS
R18.4 Data.Format.CYPHER Usability M The system shall support data in CYPHER format. Plugin: Neo4J
R18.5 Data.Format.AQL Usability L The system shall support data in AQL format. Plugin: ArangoDB
R18.6 Data.Format.HDF5 Usability M The system shall support data in HDF5 format. Plugin: HDF5
R19.1 Data.Xform.Vec Performance H The system shall transform models in the JSON format into

parameter vector form (structured).
Plugin (HDF5)

R19.2 Data.Xform.CSV Performance H The system shall transform files in the JSON format to the CSV
format.

Plugin: CSV-Discover

R19.3 Data.Xform.JSON Performance H The system shall transform files in the CSV format to the JSON
format.

Script: model_initialization

R19.4 Data.Xform.CYPHER Performance H The system shall transform models in the JSON format to the
CYPHER query language.

Plugin: Make-Cypher

R19.5 Data.Xform.AQL Performance M The system shall transform models in the JSON format to the
AQL query language.

Plugin: Make-AQL

R19.6 Data.Xform.ACEL Performance L The system shall transform files in the ACEL DSL format to the
JSON format.

SISW: "nice-to-have"

R20 Data.Merge Usability H The system shall merge user-generated data and models. Plugin: Merge-Models
R21 Plugin.Manager Usability H The system shall support plugins. Core: Host
R21.1 Plugin.Concurrent Extensibility H The system shall support N concurrent plugins. Tested: 20 simultaneous plugins
R21.2 Plugin.Timing Reliability H The system shall support the ordered timing of plugins. via Pluggy schedulers
R21.3 Plugin.User Usability H The system shall support custom user plugins. Plugin: Make-Correlation, Make-

Sentiment
R21.4 Plugin.Deregister Usability H The system shall support deregistering of plugins. Cell: delete entry_points
R22.1 Single-Quant.Ranking Performance H The system shall automatically rank architecture variants for a

single user based on quantitative FoM scores.
Plugin: Weighted-Ranking

R22.2 Single-Qual.Ranking Performance H The system shall automatically rank architecture variants for a
single user based on qualitative FoM scores.

Plugin: Weighted-Ranking

R22.3 Single-Arch.Ranking Performance H The system shall automatically rank architecture variants for a
single user based on architectural FoM scores.

Plugin: Weighted-Ranking

R22.4 Single-FoM.Ranking Performance H The system shall automatically rank architecture variants for a
single user based on quantiative, qualitative, and architectural
FoM scores.

Plugin: Weighted-Ranking

No. Name Concern P Description Notes
NFR1 SYS.Conflict Usability M The system shall support conflict resolution in decision-making

sessions (align discussion).
Implicit, HITL

NFR2 Users.Expectations Usability H The system shall support the balancing of multi-user
expectations/needs.

Implicit, HITL, setting FoM in
weighted_rank script

NFR3 SYS.Autonomy Usability M The system shall be as autonomous as possible. Plugin Manager
NFR4 SYS.Dependency Modularity H The system shall be developed in an independent manner, not

imposing dependencies on SCS.
Plugin Manager

NFR5 SYS/SW.License Security H The system shall be developed based on approved licenses (e.g.,
open source)

GNU/MIT License

NFR6 Documentation Explainability H The system shall be provided with a thorough ConOps and
complete documentation.

SISW Project requirement

NFR7 "Pain" Input Usability M The system shall address the major individual "pain" for
subsystem teams.

HITL via quality attribute selection

NFR8 User.Errors Usability L The system shall prevent user-based errors. SISW: "nice-to-have"
NFR9 System.Install Portability M The system shall be easy to install Not all users are SW developers
NFR10 Multi-FoM.Classify Explainability M The system shall differentiate between quantitative, qualitative,

and architectural FoMs.
via (meta)model definition

NFR11 Security.Network Security L The system shall meet the network security software
requirements of Siemens SISW.

SISW: "nice-to-have"

NFR12 Security.Data Security L The system shall securely store data. AWS authentication
NFR13 Security.Database Security L The system shall use Siemens SISW-based databases and

database solutions.
SISW: "nice-to-have"

Quality Attributes (Non-Functional Requirements)

Eindhoven University of Technology

Software Requirements Continued

COGENT 69

Eindhoven University of Technology

Figure B.1: Siemens Discover screen capture. All 64 architecture configurations have been
plotted with Agent likes, quality attributes, and quantitative parameters values. ARCH021 is
selected for having the highest simulated rank.

70 COGENT

Eindhoven University of Technology

Fig. B.2 updates the previous Systems Functionality Description with explicit technologies
used in the FireSat case study. Note that some modules were omitted to prevent cluttering.

Figure B.2: FireSat Systems Functionality Description. The model demonstrates the high-
level flow and resource interactions of the system with specific tooling. Quality attribute
generation, scoring, and design decision notes are automatically generated by autonomous
agents.

COGENT 71

Eindhoven University of Technology

72 COGENT

Eindhoven University of Technology

C Appendix III - Design & Technology Alternatives

C.1 High-Level Process Flow

Figure C.1: General CDF Onion Diagram (high level of abstraction).

COGENT 73

Eindhoven University of Technology

Figure C.2: Imagined Process Flow.

74 COGENT

Eindhoven University of Technology

Figure C.3: Example performance indicators. Layers are focused on users, do-
main/subsystem, and attributes. Additionally, the domains in which GE and CE are needed
for addressing quality attributes is provided. Attributes have intrinsic confounding and cou-
pling.

COGENT 75

Eindhoven University of Technology

C.2 Design Alternatives

An design alternative with COGENT external from SCS was considered. This would lead to a
lower coupling and ability to use COGENT without SCS but at the cost of more interfaces and
system resources. We decided against this alternative since SCS is meant to be a single-
page application, keeping the User within the environment for completing tasks if possible.

Figure C.4: COGENT Design Alternative (Variant 1) in which COGENT module is external
from SCS.

Orchestrated Systems Event-Trace Diagram. Fig. C.5 demonstrates the interactions be-
tween the Orchestrator Actor and a number of User Actors. The Actors operated sequentially,
with the architecture model merged after each Actor successfully completed their tasks. This
model was abandoned for the concurrent, out-of-order operations model seen in Fig. C.6.

76 COGENT

Eindhoven University of Technology

Figure C.5: Orchestrated Systems Event-Trace Diagram.

Figure C.6: Agent Systems Event-Trace Diagram.

Fig. C.6 demonstrates the interactions between the Orchestrator Actor and a number of
autonomous Agents. The Agents are permitted to conduct some operations non-sequentially
such as generating design decision, ranking, or saving the model to the Cloud after a single
operation.

COGENT 77

Eindhoven University of Technology

Figure C.7: Activity diagram demonstrating the sequence in which Users or Agents can
score, like, rank, and add design decisions.

C.3 System Usage Scenarios

This section details six primary system usage scenarios and briefly describes scenarios
for each use case. Additionally, an example of a misuse case is included describing the
behavior that should be avoided. These scenarios are based on using COGENT in a CDF
environment (extended from Fig. C.1, include Technical Design and Product Management
sides). The data format is not fixed in the scenarios diagrams as assets may have different
inputs and outputs. The conceptual position of COGENT is provided in the boxed-in area.
The Architecture System level is a Conceptual Viewpoint. The Simcenter Studio level is a
Logical Viewpoint. The Actors for Producer and Consumer are example Actors, as other
Actors (e.g., Engineer, Manager) can easily replace the specified Actor type examples.

C.3.1 User Scenario 1: Single Producer/Consumer

In Scenario 1, a single designer is responsible for both the generation (creation) and anal-
ysis of architecture configurations. As a producer, this designer creates, edits, and stores
architectures, architecture configurations, and models. The Producer-Actor should be from
the Technical Design side.

Scenario: A single designer wants to independently generate and analyze an experimental
concept.

C.3.2 User Scenario 2: Single Producer and Single Consumer

In Scenario 2, a single designer is responsible for the generation (creation) of architecture
configurations. A single consumer (analyst) can analyze or view the architecture configura-

78 COGENT

Eindhoven University of Technology

tions. The Producer-Actor should be from the Technical Design side. The Consumer-Actor
should be from the Product Management side.

Scenario: A single designer wants to generate conceptual architectures together with a sin-
gle analyst in collaboration.

C.3.3 User Scenario 3: Single Producer Team

In Scenario 3, the Producer-Consumer is from the Technical Design side. The Actors are
(mostly) from the Technical Design side. While not shown, the process is iterative with the
Producer team requiring multiple iterations of analysis, filtering, down-selecting, annotating,
etc.

Scenario A: A single design team is exploring a potential experiment during Phase 0 (inter-
nally).

Scenario B: Multiple subsystem design teams are working concurrently to identify an optimal
architecture configuration during Phase 0 (internally).

C.3.4 User Scenario 5: Single Consumer

In Scenario 5, there are no Producers (the project has been completed). However, a single
consumer can analyze/interact with previous mission/experiment data.

Scenario: An analyst (e.g., Intern) is analyzing decision decisions from a data archive per-
spective on historical data.

C.3.5 User Scenario 6: Consumer Team

In Scenario 6, there are no Producers (the project has been completed). However, a Con-
sumer (Analysis Team) can analyze/interact with previous mission/experiment data.

Scenario: An management team (e.g., Safety and Compliance) is analyzing decision deci-
sions from a data archive perspective on historical data. In the event of a mission failure,
the management team can potentially trace the cause of errors to the architecture (faulty
components, improper interfacing, specific design decision, etc.).

C.3.6 Misuse Scenario Overview

Additionally, an example of a potential misuse scenario overview is shown in Fig. C.8. The
issue shown is when two different teams are working independently on the same (set of)
architectures.

Issues arise with:

• Data and/or models are not being constructed concurrently, coherently, or consistently

• Conflicting data locations, difficult to utilize results, conflict of access, conflict of data
freshness, data might be invalid/inconsistent

COGENT 79

Eindhoven University of Technology

Figure C.8: Potential misuse case examples. These occur whenever a single designer or
design team is interacting with generated architectures in parallel with other designers/teams
(but referring to the same architectures).

80 COGENT

Eindhoven University of Technology

C.4 Technology Alternatives

This section describes technology alternatives for architecture patterns, GDBs, experiment
tracking, and data/object storage solutions.

C.4.1 Solution Architecture Analysis

In this section, a comparative analysis between between monolithic, microservice, and plugin
(microkernel) architecture is detailed. The following aspects were considered:

• Agility: the ability to rapidly respond to a persistently changing environment

• Deployment: the ease of which the system is deployable

• Testability: the extent to which an objective and feasible test can be designed to deter-
mine whether a requirement is met

• Performance: the degree to which a system or component accomplishes its designated
functions within given constraints, such as speed, accuracy, or memory usage

• Scalability: the ability of the system to handle load increases without decreasing per-
formance or increasing the load rapidly

• Development: the ease of which the system or components can be developed

• Customization: the ability for vendors and clients to create or include custom tech-
nologies and/or software modules, including databases, Python scripts, programming
languages/wrappers, and third-party services

• Shareability: the permittable allowance of inter-user sharing of data, files, and models,
in this case, especially configuration files. Note that sharing configuration files is not
supported (as a practice) for microservice architectures.

Table C.1: Solution architectures pattern analysis.

Monolithic Microservice Plugin

Agility - + +
Testability + + +

Performance - - +
Scalability - + -

Development + + -
Customization - - +

Shareability - - +

COGENT 81

Eindhoven University of Technology

C.4.2 Graph Database Comparison

This section compares three GDBs considered for implementation. Initially, several other
GDB solutions were considered, but they were pruned. The three GDB below all allow
for programming in Python, are ACID compliant [59], and strongly support concurrency
and durability. Neo4J was selected for implementation for having the most advantages for
COGENT’s software development since Neo4J has the largest graph data community, the
easiest to utilize APIs, extensive libraries, and direct support for graph data science and
user-centric data analysis. Additionally, a Neo4J GDB is easily extendable and updateable,
whereas ArangoDB requires unique key-value pairs for every relationship, node, and col-
lection. In production, this means that the automatic generation of GDB in ArangoDB is
infeasible unless the previously-stored GDB is deleted each time the user wants to add,
remove, or change metadata in the stored GDB.

Table C.2: Comparison of Graph Database Management Systems (G-DBMS).

Neo4J Amazon Neptune ArangoDB

DBMS Model GDB GDB/RDF GDB/Doc/K-V
License Open-Source Commercial Open-Source

Cloud Only No Yes No
Server-side scripts Yes No Yes

Schema Schema-free & Optional Schema-free Schema-free
Sec. Indexes Yes No Yes
API Access Bolt/RESTful HTTP RDF/TinkerPop HTTP/Gremlin

Query Language Cypher/GraphQL SPARQL AQL/GraphQL

C.4.3 Experiment Tracking Comparison

Table C.3: Comparison of Experiment Tracking & Management Systems.

wandb neptune.ai MLFlow

Open Source No No Yes
Lightweight Yes Yes Yes

Data Versioning Yes Limited No
Notebook Versioning Yes Yes No

Model Versioning Yes Limited Limited
Environment Versioning Limited Limited Limited

Logging Artifacts Yes Yes Yes
Run Grouping Yes Yes Limited
View Sharing Yes Yes Limited

Fetch Exp via API Yes Yes Yes
Scale to 1M+ Runs Yes Yes No

82 COGENT

Eindhoven University of Technology

C.4.4 Cloud Object Storage Comparison

We considered four technologies for cloud-based object storage solutions, including Ama-
zon AWS S3, IBM Cloud Object Storage, Azure Blob Storage, and Git. The AWS, IBM, and
Azure solutions have similar specifications and performance values for durability, scalability,
availability, data recovery, authorization (security), and costs. Of these, AWS is the easiest
to integrate into a Notebook or Python environment with well-defined libraries, SDKs, and
APIs. Comparing AWS and Git shows that both technologies have strong versioning capa-
bilities. We decided to use AWS in our proof-of-concept implementation since it is the easiest
to implement, extend, access, and monitor. Furthermore, AWS has compatible data ware-
housing, data transformation, and analytical technologies, whereas Git is simply a storage
methodology.

C.5 RDBMS & GDB Metamodels/Schema

Figure C.9: Primitive Value Types model for the Graph Database implementation.

COGENT 83

Eindhoven University of Technology

Figure C.10: Normalized Logical Model used for column-based RDBMS and NoSQL
database design [7].

84 COGENT

Eindhoven University of Technology

Figure C.11: Graph Database Schema based on Fig. C.10. Derived via RDBMS to GDB
transformation steps in [8].

C.6 Additional Technology Output

C.6.1 Weights & Biases Cases

Figure C.12: Wandb. Six runs of the same architecture configuration are compared with
different parameter values for attributes.

COGENT 85

Eindhoven University of Technology

Figure C.13: Wandb. Eight runs of the different architecture configurations are compared
against parameter values for attributes.

C.6.2 Neo4J Validation GDB

Figure C.14: Graph Database Interpretation of an Architecture Configuration generated from
an ACEL Model.

C.6.3 Correlation Matrix

86 COGENT

Eindhoven University of Technology

Figure C.15: Output Correlation Matrix. Values are between 1.0 and -1.0, which represent
positively correlated and negatively correlated, respectively. The correlation demonstrates
co-factor feature importance, e.g., using Xenon fuel has a highly negative impact on the
Reliability.

COGENT 87

Eindhoven University of Technology

C.7 Supplemental Design Information

This section contains supplemental design information and considerations when developing
COGENT.

C.7.1 Concept of Operations

A Concept of Operations (ConOps) is a required deliverable to Siemens SISW and a major
aspect of the project. A brief definition is provided below:

"Developed early in Pre-Phase A by the technical team, describes the overall high-level con-
cept of how the system will be used to meet stakeholder expectations, usually in a time-
sequenced manner. It describes the system from an operational perspective and helps
facilitate an understanding of the system’s goals. It stimulates the development of the re-
quirements and architecture related to the user elements of the system. It serves as the
basis for subsequent definition documents and provides the foundation for the long-range
operational planning activities [14]." (NASA SE Handbook 2017)

C.7.2 Limitations in Pareto-optimal Diagrams

Pareto-optimal results are often displayed in two-dimensional diagrams. These diagrams are
typically ideal for comparing two values when making trade-off decisions. A challenge arises
whenever multiple (>2) subsystem teams have different views on what the most important
comparable values are. Consider a satellite project containing four teams: the EPS team
may be the most concerned with energy consumption, the AOCS team might be concerned
with downlink time, the TCS team is concerned with heat dissipation, whereas management
is concerned with cost. Plotting two of the values simultaneously is trivial but more than three
becomes increasingly difficult (to the point of impossible).

Equally important is that the best architecture may not lie on the Pareto-optimal chart, since
the "best" architecture may contain a balance of attributes that are non-optimal in any single
FoM (but instead, a trade-off or balance between FoMs). Due to the limited amount of time
designers can spend during DSE, the best architectures to meet mission objectives may
never be selected. Since GE can derive (more than) thousands of architectures, how can we
be sure that designers are able to identify truly suitable architectures within a finite time?

Multi-Objective Optimization (MOO) scoring techniques (Swarm algorithms, Linear Program-
ming) are a possible alternative for ensuring that the best architecture is available for design-
ers to rank/score. Furthermore, hard and soft constraints can be used as a filtering technique
(e.g., the cost must never exceed X, or fuel consumption must never exceed Y). Addition-
ally, machine learning can be implemented to derive the feature importance using Logistic
Regression or Random Forests. This approach only works whenever a sufficient amount of
(meta)data is available but would reduce the required designer ranking/scoring responsibili-
ties.

88 COGENT

Eindhoven University of Technology

C.7.3 Deriving FoM Priorities from Mission Requirements

The priority or importance of an FoM depends on the mission objectives and requirements.
Mission requirements can vary greatly depending on mission objectives, environment, and
constraints. For example, a communications satellite being developed to operate in LEO may
have a priority in cost (deployment, operational) over robustness (life-cycle). In contrast, a
satellite designed for deep-space exploration or orbiting another planet may prioritize life-
cycle over cost, as the increased distance from Earth and increase life-cycle may justify
neglecting the maximum cost.

C.7.4 Transient Definitions and Statuses in Attributes

In typical data analysis and analytics, attributes can be divided into qualitative and quanti-
tative categories. Additionally, attributes can be classified as subjective or objective. The
general assumption is that quantitative values like cost are objective, as the value does not
change depending on a designer’s perspective; the value is fixed. Similarly, qualitative at-
tributes such as usability are considered subjective, as the quality of the qualitative scoring
highly depends on the individual designer’s perspective, experience, or biases.

From an architectural perspective, there are qualitative attributes that can be assigned as
objective, such that a subjective attribute can transition into an objective attribute. For exam-
ple, a component can be prescribed as reusable, i.e., the component has been developed
in a manner that reusable. Initially, this assignment is subjective as it is possible that the
component has reusable features (physically reusable, reusable software design patterns,
etc.). If this same component has actually been reused in several architectures, then this
becomes an objective assignment as there is evidence that the component is reusable. This
distinction is nuanced but important when considering how qualitative attributes and their
scoring impact both design decisions and interpretation of ontology/nomenclature.

Furthermore, a quality attribute or FoM may contain discrepancies in its definition that should
be handled carefully. The quality attribute "sustainable" may have different meanings be-
tween subsystem groups or departments working on the same product. Does sustainability
always mean that the product or architecture promotes ecological aspects, or, does sus-
tainability mean that the product is able to support itself throughout its life-cycle? These
definitions must be handled carefully and without ambiguity, with a formal definition of both
what is and what is not contained in the keyword referenced (in the ontology).

COGENT 89

PDEng SOFTWARE TECHNOLOGY

PO Box 513
5600 MB Eindhoven
The Netherlands
tue.nl

	Foreword
	Preface
	Acknowledgements
	Executive Summary
	Glossary
	List of tables
	List of figures
	Introduction
	Project Context
	Problem Description
	Simcenter Studio

	Scope and High-Level Requirements
	Report Outline

	Problem Analysis
	General & Space Architecture Challenges
	Wicked Complexity in Architectural Design
	Concept Phase Determines Life-Cycle Costs

	Siemens-Specific Challenges
	Multi-User Extension
	Scoring & Ranking
	Third-Party Software Integration
	Case Study: FireSat

	Domain Analysis
	Generative Engineering
	Concurrent Engineering
	Space Engineering Information Model

	Concurrent Generative Engineering
	Architecting Methodology
	CAFCR
	Model-Based System Architecting

	Stakeholder Analysis & Use Cases
	Concurrent Design Facility
	CDF Stakeholders
	Dimensionality Reduction

	Customer Objectives Viewpoint
	Use Case 1 – Graph Database
	Use Case 2 – Experiment Tracking
	Use Case 3 – Data Storage
	Use Case 4 – User-Defined Features

	System Requirements
	Application Viewpoint
	System Usage Life-cycle
	COGENT Positioning

	Functional Requirements

	System Design & Architecture
	COGENT Domain Model
	Monolithic Versus Modular
	Microservice Architecture
	Plugin Architecture

	Functional Viewpoint
	COGENT Plugin System
	COGENT-Specific Functional Requirements
	COGENT Functional Decomposition

	Conceptual Viewpoint
	FireSat Evaluation Dataset
	Initial Model Transformation for COGENT
	Cross-Cutting Concerns: Data Storage
	Conceptual Process Flow
	Multi-User Model Merging

	Realization Viewpoint
	System Components
	Developing Plugins
	Autonomous Agents
	Neo4J Graph Database Plugin
	Weights & Biases Experiment Tracking Plugin
	Analysis in Discover
	User-Defined Module Plugins
	Plugins Execution & Interaction

	Verification & Validation
	Verification
	Functional Requirement Verification
	System/Software Testing

	Validation
	Demonstrations
	Cross-Domain Analogies
	COGENT Technology Realizations
	Non-Functional Requirements

	Conclusion & Recommendations
	Conclusion
	Project Results
	Recommendations

	Appendix I - Project Management
	Project Stakeholders
	Project Management Approach
	Project Timeline
	Risk Management
	Project Retrospective

	Appendix II - Requirements & Risk Register
	CDF Positions & IDs
	Software Requirements

	Appendix III - Design & Technology Alternatives
	High-Level Process Flow
	Design Alternatives
	System Usage Scenarios
	User Scenario 1: Single Producer/Consumer
	User Scenario 2: Single Producer and Single Consumer
	User Scenario 3: Single Producer Team
	User Scenario 5: Single Consumer
	User Scenario 6: Consumer Team
	Misuse Scenario Overview

	Technology Alternatives
	Solution Architecture Analysis
	Graph Database Comparison
	Experiment Tracking Comparison
	Cloud Object Storage Comparison

	RDBMS & GDB Metamodels/Schema
	Additional Technology Output
	Weights & Biases Cases
	Neo4J Validation GDB
	Correlation Matrix

	Supplemental Design Information
	Concept of Operations
	Limitations in Pareto-optimal Diagrams
	Deriving FoM Priorities from Mission Requirements
	Transient Definitions and Statuses in Attributes

