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Fast GRNN-Based Method for Distinguishing
Inrush Currents in Power Transformers
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Mohammad Mohammadi , Member, IEEE, Haidar Samet , Member, IEEE,

and Tomislav Dragicevic , Senior Member, IEEE

Abstract—Differential protection, as the key protection
element in the power transformers, has always been threat-
ened with sending false trips subjected to external transient
disturbances. As a result, differential protection needs
an additional block to distinguish between internal faults
and external transient disturbances. The protection sys-
tem should, first, be able to perform based on raw data,
second, be able to learn fully temporal features and sud-
den changes in the transient signals, and, third, impose
no assumption on noise. To address these challenges,
a fast RNN, namely fast gated recurrent neural network
(FGRNN). By removing reset gate in the gated recurrent
unit (GRU), the proposed network is capable of learning
abrupt changes in addition to significantly reducing the
computational time. Furthermore, a loss function based on
an information theory concept is formulated in this article to
enhance the learning ability as well as robustness against
non-Gaussian/Gaussian noises. A generalized form of mu-
tual information is also adopted to form a noise model-
free loss function, then incorporated with the designed
deep network. Simulated and experimental examinations
engaging various external factors, in addition to compari-
son between the proposed FGRNN, GRU, and seven firmly
established methods indicates the faster and more reliable
performance of the proposed algorithm.

Index Terms—Differential protection, deep learning, fast
gated recurrent neural network (FGRNN), inrush current,
internal fault, power transformers.
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I. INTRODUCTION

A. Motivation

POWER transformers are essential devices in the power
system. Therefore, protection of power transformers is

crucial to prevent large energy outages as a catastrophic effect of
faults [1]. Differential protection has been the main protection
scheme in power transformers because of its simple principle
and efficiency. When a power transformer is energized initially
or experiences a sudden change in its terminals, a typically
nonsinusoidal transient current flows in transformer windings,
which abruptly reaches a large value in the first half-cycle [2].
Although differential protection has been widely studied in the
previous investigations, there are several main challenges that
motivated us to present this work, including the following:

1) performance in an extremely short-time period (less than
10 ms);

2) capturing the fully temporal information of the transient
differential current signal without neglecting the transient
changes;

3) being able to perform in the real conditions without
imposing any assumption on measurement noises;

4) can perform accurately considering eternal factors such
as current transformer (CT) saturation, series capacitor
compensation, and fault current limiter (FCL) [3].

B. Brief Literature Review

Distinguishing internal faults from inrush currents have been
widely investigated in research works using various methods.
In term of the basic principles, we can classify them into
the following three categories: signal processing, model based,
and artificial intelligence methods. A popular group is based
on analyzing measurement signals based on spectral analysis
techniques [1]. Model-based methods include establishing and
accurate estimation using least square [4] and extended Kalman
filter [5]. In spite of the fast performance and easy implementa-
tion, these two families have deficiencies such as sensitivity to
noises and threshold values and dependency on different models
in varying conditions.

The original idea of using intelligent classifiers to identify
transformer inrush and faults was published in 1994 [6]. Since
1994, several shallow-based structures have been presented to
distinguish between internal faults and inrush currents. For
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instance, artificial intelligence neural network (ANN) [7], rele-
vance vector machine [8], support vector machine (SVM) [9],
learning vector quantization (LVQ) [10], and k-nearest neighbor
(KNN) [11], are some of the previously presented investigations.
Their shallow structures cannot distinguish internal faults when
data have a complex structure. For instance, they will experience
a decrease in accuracy when the fault data is affected by external
factors such as FCL, which limits the magnitude of fault current
to a value close to the magnitude of inrush current and may
cause problems for differential protection in detecting the fault.
As the effect of external factors is inevitable in practice, we
need more reliable methods. Machine learning methods with
shallow architecture are not able to extract features from raw
data. Therefore, they need to be attached to feature extractors
like WT. Since there are various types of feature extractors, these
methods cannot work with different kinds of datasets generally.

In conclusion, there are serious challenges for a practical
supplementary material in the power transformers protection
that are neglected.

1) Establishing a general tool to distinguish the internal
faults and other disturbances in a half-cycle time period
(less than 10 ms).

2) Capturing the fully temporal information of the transient
differential current signal without neglecting the transient
changes.

3) Being able to perform in the real conditions without
imposing any assumption on measurement noises.

4) General solution to perform accurately as well as fast con-
sidering external factors CT saturation, FCL, and series
capacitor compensation.

To overcome these challenges and abovementioned problem
of the previous methods, using deep learning structures can be
a potential solution. Deep Learning is a fairly new established
area of machine learning that can serve in many fields espe-
cially fault diagnosis and fault classification [12]–[15]. Machine
learning methods with deep architecture are capable of capturing
information from raw data by establishing several information
processing layers. Deep learning models might potentially over-
come the mentioned deficiencies by establishing lots of infor-
mation processing layers, which are able to capture information
from data without any preprocessing. It is more powerful and
efficient than shallow architecture neural networks because it
approximates complex problems by learning the deep nonlinear
structure. Generally, there are four type of deep neural networks
including deep autoencoder (DAE), deep Boltzmann machine
(DBM), convolutional neural network (CNN), and recurrent
neural network (RNN) [16]. Although DAE and DBM improve
the capability of learning from raw data through a dimensional
reduction procedure, the main disadvantage of DAE and DBM is
the disability in understanding long sequences. CNN is a widely
used deep structure method in time series analysis. Despite the
great performance in capturing spatial features, CNN is unable to
fully realize the temporal feature, especially in long-tailed time
series associated with abrupt changes. Besides, CNN, DAE, and
DBM cannot detect the transient disturbances in an extremely
short-term period and perform in real-time manner. To this end,
in [17], an accelerated convolutional neural network (ACNN)

has been presented for the differential protection of the power
transformers. In [17], the quantization process has been utilized
to speed up CNN, however, the quantization process is highly
sensitive to noise. In presence of Gaussian/non-Gaussian noises,
ACNN has adverse effects and poor performs. As in the real
applications where noise is an unavoidable phenomenon, the
application of ACNN for realistic power transformers is ques-
tionable. RNNs are a variation of deep neural networks in which
the recurrent connections allow the hidden units to see their own
previous outputs and shape their next output based on them. That
is what gives the RNNs memory [18]. Long short-term memory
(LSTM) neural networks are alternative forms of RNNs, which
use gates. Gates enable the network to add, remove, or send
information through the hidden state layer. This gives LSTM a
long-term memory. Removing one of the three gates in LSTM
structure, forms another structure called gated recurrent unit
(GRU), which is faster and more accurate [19]. GRU generally
consists of two main gates, i.e., update and reset gate.

However, a standard GRU-based method has the following
three major deficiencies to apply in the real-time differential
protection system:

1) performance time of GRU is still high for implementation
in the real-time differential protection system;

2) reset gates can reset the network during the training
process and might neglect a set of sudden changes in
transient phenomena such as inrush current and internal
faults in the power transformers;

3) they are not able to perform efficiently in highly noise
conditions.

C. Contributions and Organization

In order to propose a diagnosis scheme to implement a real-
time differential protection, this article develops a GRU-based
structure. To decrease the computational burden as well as
improving the accuracy and reliability of the differential protec-
tion, in the proposed deep network, namely fast gated recurrent
neural network (FGRNN), the reset gate has been removed.
By removing the reset gate, the computational complexity has
significantly reduced (almost 42% in the diagnosis process).
Furthermore, transient phenomena such as inrush current and
internal faults in the power transformers usually follow a set of
sudden changes that might be neglected in the training process
of the GRU networks by completely resetting the network. In
the designed FGRNN, the sudden changes due to transient be-
havior of internal faults and other transient disturbances are not
neglected. Learning sudden changes in the power transformers
that can be beneficial in the discrimination process, is completely
fulfilled in the designed FGRNN network, as well as learning
fully temporal features.

Noise is an unavoidable and undesirable phenomena in power
systems. Based on [20], the majority of noises during volt-
age and currents in the power systems follow non-Gaussian
noises. As best of authors’ knowledge, previously presented
works on the discrimination between internal faults and other
disturbances neglected the noise impact [21], or only considered
Gaussian noises [5]. Thus, it is the first paper that investigates
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the non-Gaussian noise impact on the differential protection in
the power transformers. This article develops a new probabilistic
loss function in which the proposed network can perform without
any assumption on the noise model. To this end, an information
theory concept based on mutual information (MI) is utilized to
enhance the robustness against noises as well as improving the
learning ability of the designed FGRNN.

Furthermore, the proposed differential protection scheme pre-
serves accuracy in case of CT saturation, series capacitor, and
the presence of superconducting fault current limiter (SFCL).
In the mentioned conditions, discrimination between internal
faults and other transient disturbances is a difficult task due to
decreasing the internal fault magnitude in presence of SFCL, the
error of CT saturation corrector, and higher current magnitude
of external disturbances in presence of series compensators.

Thus, we can summarize the contributions and novelties of
this work, as follows.

1) A GRU-based deep network is designed for the real-time
differential protection. The standard (GRU) is modified
by removing the reset gate that enhances the accuracy
and reliability of the proposed network by learning the
transient abrupt changes. The computational complexity
has been significantly reduced as well.

2) The performance of the proposed deep network is very
accurate and fast using only half-cycle of raw data con-
sidering external factors, e.g., SFCL, CT saturation, and
series compensators.

3) A probabilistic loss function is formulated based on infor-
mation theory principles to improve the learning ability
as well as robustness without any assumption on noise
model (Gaussian or non-Gaussian).

The remainder of this article is organized as follows. Sec-
tion II represents the principles of inrush current and differential
protection scheme. The FGRNN-based method is described in
Section III. Sections IV and V represent the simulation results
and comparison of methods. Finally, Section VI concludes this
article.

II. FGRNN ARCHITECTURE

Different parts of the structure of the proposed FGRNN
technique in differential protection is presented in this section.

A. Standard GRU

The standard GRU consists of update and reset gate. The reset
gate removes the unnecessary detected features by neglecting
abrupt and sudden changes in a time series. The update gate
makes each of the recurrent units capture dependencies of dif-
ferent time scales and sequences adaptively. In particular, the
standard GRU architecture is defined by the following equations:

u(m,L, t) = f{Wuy(m,L, t) +Ruh(L, t− 1) +Bu} (1)

r(m,L, t) = f{Wry(m,L, t) +Rrh(L, t− 1) +Br} (2)

h(L, t) = [1− u(m,L, t)]� h′(L, t)
+ · · · u(m,L, t).h(L, t− 1)

(3)

h′(L, t) = f{Why(m,L, t)
+ · · ·Rh(h(L, t− 1)ṙ(m,L, t)) +Bh}. (4)

u(m,L, t) represents the update gate for mth output map at the
Lth layer in the t time interval, while h(L, t) and h′(L, t) are
the hidden state and the candidate state, respectively. W and R
show the weight matrices corresponding to the input vectors and
recurrent parameters. Subscript u and h relate to update gate and
hidden state.

The utilized activation function in this article is the rectified
linear unit (ReLU). ReLU is an activation function to resolve
vanishing gradient problems and prevent significant saturations
in pretraining [22], which is presented in [23].

B. Removing Reset Gate

As mentioned before, reset gate is a useful tool in a time series
with discontinuities. In a differential current signal, the abrupt
changes can determine the difference between transient distur-
bances and internal faults. The rest gate might ignore sudden
changes and, therefore, reduce the accuracy and reliability. By
removing the reset gate, the candidate hidden state is reformed
as

h′(L, t) = f{Why(m,L, t) +Rhh(L, t− 1) +Bh}. (5)

Removing reset gate in the typical GRU leads to a sufficient
and compact model in the real-time classifier.

C. Batch Normalization

Distribution of activation function might change during the
training process due to the change in FGRNN parameters known
as the internal covariate shift. Batch normalization is proposed
to resolve this problem [18], [24]. Batch normalization can be
extended to FGRNN parameters and weight matrices. In this
article, batch normalization is used in weight matrixes [18]. The
batch normalization Bn(L) at theLth layer presented in [24] can
be described as

Bn(L) = s� L− μb√
σb

2 + ξ
+ β(L) (6)

where s, μb, σb, ξ, and β(L) represent the scale parameter of
the training, minibatch mean and variance, stability enhance-
ment parameter, and shifting parameters, respectively. Scale
parameter s, and shifting parameters β(L) are used to restore
the network capacity and remove the bias matrices to reduce
computational complexity.

D. Fast Gated Recurrent Neural Network

Consequently, by removing the reset gate and applying the
batch normalization, the proposed FGRNN is described as
follows:

u(m,L, t) = f{Bn[Wuy(m,L, t)] +Ruh(L, t− 1)} (7)

h(L, t) = [1− u(m,L, t)]� h′(L, t)

+ · · ·u(m,L, t).h(L, t− 1) (8)

h′(L, t) = f{Bn[Why(m,L, t) +Rhh(L, t− 1)]}. (9)
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E. Dense Layer

In the last layer of the proposed FGRNN technique, the dense
network is added to connect all hidden states in the FGRNN and
control the dimension of the FGRNN output. The mth output
map at the Lth layer passes through a dense layer to construct
the final output map as

y(m,L) = Wf .f [W.y(m,L)] (10)

where Wf represents the weight matrix of the dense layer.

F. Loss Function

The basis of the proposed loss function is information theory,
where for each random variables R, the Shannon entropy has
defined as

fShan(R) =

R∑
r=1

P [R = r]logP [R = r] (11)

where f (Shan) measures the uncertainty associated with random
variable R. Based on the Shannon entropy, the MI has been
defined, and for two random variables R1 and R2 is

fMI (R1, R2)

=
∑
r1,r2

P [R1 = r1, R2 = r2]log
P [R1 = r1, R2 = r2]

P [R1 = r1]P [R2 = r2]
.

(12)

Property 1: For three different random variables R1, R2, and
R3, where R3 is less informative than R1 and R2, thus

fMI (R3, R2) ≤ fMI (R1, R2) . (13)

Since R2 is the most informative variables for itself

fMI (R1, R2) ≤ fMI (R2, R2)
Δ
= Λ(R2) . (14)

The data-driven network for internal fault detection in
the power transformers, Θ(X) can be constructed based on
fMI[Θ(X), Y ].

Property 2: Considering measurement and process noise
in power systems, Θ(X) should construct a set of
Ŷ (fault/nonfault) based on the noisy outputs Ỹ and
X̃ inputs (measured data by CTs and process noises
in the power transformers). There is a possibility that
∀Θ,Θ′, if fMI[Θ(X), Y ] > fMI[Θ′(X), Y ], might not lead to
fMI[Θ(X), Ŷ ] > fMI[Θ′(X), Ŷ ], hence, the general form of MI
cannot directly implement in the differential protection of the
power transformers.

To tackle this problem, a generalized form of MI has been
adopted from [25]. The general MI (GMI) is defined for two
different random variables, R1 and R2:

fGMI (R1, R2) = |det (Jr1,r2)| (15)

where Jr1,r2 shows the joint distribution of R1 and R2 in the
matrix form.

Property 3: GMI represents nonnegative and symmetric out-
puts, where for three different random variables, R1, R2, and

R3 (R3 is less informative than R2), then

fGMI (R2, R3)

= fGMI (R2, R1)

∣∣∣∣det
[
P

(
R3 = r3|
R1 = R1

)]∣∣∣∣
. (16)

Thus, GMI can be generalized for classification issues,
because

fGMI [Θ(X), Y ] > fGMI [Θ′(X), Y ]

⇔ fGMI
[
Θ(X), Ŷ

]
> fGMI

[
Θ′(X), Ŷ

]
.

(17)

To this end, an informatics-theory based loss function is
defined as

f loss
{
P J

[
h(X), Ŷ

]}
= −log

{
fGMI

[
h(X), Ŷ

]}

= − log
[∣∣∣det(P J

[
h(X), Ŷ

]) ∣∣∣] .
(18)

The joint distribution function is shown byP J(•), whose size
depends on the class, if each class (fault/nonfault) is shown by
the c, the size of P J(•) is c× c. To resolve the scaling problem
due to the matrix form of P J(•), the log function has been used.
In each iteration of the training process, raw data obtained by the
CTs have been sampled associated with noisy labels, (Xk, Ŷk)
∀k = 1, . . . , N , where k is the number of the samples and N
shows the total number of samples in one record that is dependent
on the sampling frequency of the CTs. Let be denote to the output
of the FGRNN classifier, f out(•), the output of the FGRNN is
the distribution probability based on the proposed probabilistic
loss function. By taking noisy labels a value between zero and
one, showing by Mn with the size of 1×N and defined as

Mn
i = C [yi = ĉ] (19)

where C[yi = ĉ] is one, when yi replaces in class ĉ; otherwise
is a zero.

The output of the proposed FGRNN based on the probabilistic
loss function is defined as

f out (c, ĉ) = P
1

N

N∑
j=1

f out
FGRNNM

n
j

=
1

N

N∑
j=1

Θ(Xi)C [yi = ĉ].

(20)

The proposed loss function is robust against non-
Gaussian/Gaussian noises due to the following.

Proof: For classifier Θ with proposed loss function

argmin
c∈Θ

fGMI [Θ (X ′′) , Y ′′] = argmin
c∈Θ

fGMI [Θ(X), Y ] (21)

where X ′′ and Y ′′ are the noisy input and output, respectively.
Therefore, in the training process

fGMI [Θ (X ′′) , Y ′′] = fGMI [Θ(X), Y ] + κ (22)

where κ is the constant. Accordingly, the proposed loss function
cannot be influenced by the noises, regardless of whether the
noise is Gaussian or not.
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Fig. 1. Structure of the proposed FGRNN for differential protection
scheme.

G. Training Process

To find the optimal learning weight of the designed FGRNN
network based on the proposed loss function, an iterative-based
process has been conducted the following:

1) determining the epoch number, learning rate, and batch
size;

2) pretrain the FGRNN based on the generated dataset and
cross-entropy loss function;

3) randomly select a set of the batch normalized sample from
the training dataset;

4) evaluate the samples based on the proposed probabilistic
loss function based GMI;

5) Update the learning weights;
6) Check the batch numbers, if all of them has been evaluated

go to step 7; otherwise back to step 3;
7) Sort the learning weights based on the proposed loss

function and select the minimum values.

H. Overall Structure

As shown in Fig. 1, the proposed structure of FGRNN is
composed of different layers. The differential current sample
dataset are revealed in different layers of the proposed FGRNN.
Different outputs are constructed for each layer. Differential
current sample is converted to s× 56 (number of samples in

a half-cycle). Then, in terms of arranging samples vectors are
shaped to 4-D tensors. Three FGRNN layers are used to extract
the temporal dependency in s× 64 vector. The s× 64 vector
passes through a dense layer with ReLU activation function.
Consequently, internal fault is identified in the dense layer based
on the zero or one outputs of sigmoid activation function. A one
means that the event is diagnosed as fault by the network.

I. Proposed Differential Protection Scheme

The proposed differential protection scheme of the power
transformers have shown in Fig 1. To implement the proposed
differential protection scheme, the following steps should be
conducted.

Step1: A half-cycle of current signal is measured by CTs (112
samples per cycle [4]).

Step 2: The measured current by the CTs are checked for
saturation. If the CT saturation is detected, the discorded current
are corrected by the presented method [17].

Step 3: Differential current is computed based on (3) to detect
the abnormality. If the abnormal condition recognize, then the
input data should send to the designed robust FGRNN block;
otherwise the next half-cycle back to Step 1.

Step 4: The robust FGRNN block detects internal fault rom
other transient disturbance; if the internal fault is diagnosed, then
a trip signal send; otherwise the next half-cycle have considered
and back to Step 1.

III. NUMERICAL RESULTS

In this section, five case studies are discussed to investigate
the superiority of the proposed differential protection technique.
The case studies are briefly as follows.

1) A simple case without external factors.
2) Differential protection in the presence of CT saturation.
3) Series capacitor compensation.
4) Transformer with SFCL on the neutral point.
5) Experimental prototype.

The following reliability metrics are defined to evaluate the
performance of the proposed protection technique [26]

ACC =
TP + TN

TP + TN + FP + FN
% (23)

DEP =
TN

TN + FP
% (24)

SEC =
TP

FN + TP
% (25)

SAF =
TP

TP + FP
% (26)

where TP, TN, FP, and FN show true positive, true negative,
false positive, and false negative, respectively. ACC, DEP, SEC,
and SAF stand for accuracy, dependability, security, and safety,
which illustrate the correct detection percentage, diversity of the
proposed classifier, false trip ratio, and reliability of the correct
decisions in the proposed protection technique, respectively.
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Fig. 2. Single line diagram of a modified part of the 230 kV Iranian power network.

Different fault types, fault locations, switching angles, trans-
former winding types, and source impedances are used to gen-
erate datasets for the mentioned case studies. The datasets are
generated in PSCAD/EMTDC software package by simulating
a 230 kV network, as shown in Fig. 2. Sampling frequency is
112 samples per second. The generated datasets are processed in
Keras package [27] on a computer with a 3.4 GHz processor, 32
GB memory, and a GeForce GTX 1080 TI graphical processing
unit. Based on the procedure presented in [28], the samples are
divided into random training and testing sets with 70% to 30%
ratio to train the network sufficiently, avoid fitting problems, and
yet have enough data samples to evaluate the performance of the
trained network.

To evaluate the performance of FGRNN-based protection
scheme, a half-cycle from each sample are extracted and nor-
malized as follows:

ID-norm =
IP − IS

max(|IP − IS |) (27)

where ID-norm is the normalized differential current, which is
considered as the input of the FGRNN method. The time dura-
tion for one cycle is 20 ms (nominal frequency is 50 Hz) and
sampling frequency is 112 samples per cycle.

The number of samples in cases 1, 3, 4, and 5 is 4488 samples.
In case 2, overall, 2064 samples are generated. The samples
are divided into random training and testing sets with 70% to
30% ratio. The time duration for one cycle is 20 ms (nominal
frequency is 50 Hz) and sampling frequency is 112 samples per
cycle. To train and test the proposed method and other method,
a half-cycle from each sample are extracted with size, therefore,
each sample length is 56. Similar to each multiclass classification
problem, the output labels are binary labels. In cases 1, 3, 4,
and 5, line to ground (LG) fault, line to line (LL) fault, three
phase (LLL) fault, primary to secondary (P–S) fault, inrush
phenomena, and external faults are assigned by [0 0 1], [0 1
0], [0 1 1], [1 0 0], [1 0 1], [0 0 0], and [1 1 0], respectively.
In case 2, the output labels are zero and one. Table I shows the
parameters and labeling of the designed robust FGRNN.

TABLE I
PARAMETER OF THE DESIGNED ROBUST FGRNN

The comprehensive evaluation of each case is presented in
this section. To this end, the overall results obtained from the
simulation and experiments are presented in several metrics,
which are discussed individually in the following sections.

A. Case 1

In the first case, the dataset contains 4488 samples for fault
current, inrush current, and external fault excluding any external
factors. Fault currents are generated considering different fault
types (LG, LL, LLL, and P–S), winding connections, source
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TABLE II
PERFORMANCE OF PROPOSED FGRNN METHOD IN CASE 1

impedances, fault inception angles, and fault locations. differ-
ent residual fluxes, winding connections, source impedances,
switching instant fault inception angles, and loads are involved in
fault simulation. External fault dataset contains eight fault types,
12 fault inception angles, four impedance values, and six fault
locations. The information on fault locations are represented
as the distance from the corresponding transformer in form of
percentage of corresponding line. The distances are 5%, 25%,
45%, 65%, 75%, and 90%.

The numerical results of detecting four internal faults, inrush
current, and external faults using the proposed method is repre-
sented in Table II. The results indicate the precision in detecting
LG faults, inrush current and, and external faults, while for other
internal faults the performance metrics are at least 98.47%. As
this case is a simple benchmark, the other cases are designated
for further evaluation of the proposed protection scheme. The
proposed protection algorithm represent the 100% performance
in case of external faults, which shows it is immune against
cross-country faults.

B. Case 2

When short-circuit fault or inrush phenomena occur, the
measured currents experience a considerable distortion caused
by CT saturation. The protection systems operate based on the
secondary side current of CTs. Therefore, it makes it difficult for
differential protection system to detect the internal fault current
or distinguish it from inrush current [29]. The effect of CT satu-
ration is simulated in this case to take the large dc component of
inrush current and decay dc component of short-circuit fault [30]
into account. A reliable differential protection should be able
to compensate the saturation effect to minimize measurement
errors. Therefore, a CT saturation compensation stage is required
prior to the abnormal condition detection. The CT saturation
compensation method used in our article is a least square based
wave shape-independent method comprised of two filters based
on [30]. The first filter reproduces the deformed saturated CT
output while the second one compensate dc offset.

The Jiles–Atherton model for CT [31] is used to simulate
short-circuit fault and inrush current occurrence in Transformer
2. The effect of inrush current on CT saturation is survayed
in previous studies very rarely. A total of 1200 fault current
CT saturation samples are generated in different conditions
containing four different CT burdens, five fault types, 12 fault
inception angles, and five different fault resistances including
0, 2, 4, 8, and 10 ohm fault resistances. A total of 864 samples
are generated for inrush current CT saturation considering 12
switching inception angles, four CT burdens, three different load

TABLE III
PERFORMANCE OF PROPOSED FGRNN METHOD IN CASE 2

TABLE IV
PERFORMANCE OF PROPOSED FGRNN METHOD IN CASE 3

levels, two winding types, and three different source impedance
values.

Table III illustrates the impacts of CT saturation compensa-
tion method on FGRNN-based protection scheme. Despite the
inevitable error in saturation compensation, the method operates
with 99.19% accuracy in these two conditions. Compared to
Case 1, CT saturation does not have a significant effect on
the FGRNN-based protection scheme performance. DEP values
are higher than 99.17% which proves that the FGRNN-based
method is highly capable of isolating the internal fault in con-
ditions such as CT saturation by inrush current or internal fault.
The results show that the proposed protection algorithm is able
to cover the errors of saturation compensation errors to prevent
any malfunction in the differential protection system. Again,
in this case, it has been observed that the proposed algorithm
performs fairly well in presence of cross-country faults.

C. Case 3

Series capacitor compensation is a common way to improve
power transferring capacity, voltage regulation, stability, and
loss. Therefore, this case examined the differential protection
scheme in presence of series capacitor. Series capacitor com-
pensation can cause sudden changes in angle and sequence
of three phase currents and lead to an increase in the fault
current. The simulation results for transformer 4 and protection
system 4 are presented for this case. The datasets for inrush
current and external faults are similar to Case 1 and for internal
faults four different distances to Transformer 4, three different
compensation rates, 12 fault inception angels, three different
impedances, and five fault types are taken into account.

Table IV shows the performance of the proposed FGRNN
method in presence of series capacitor compensation. The results
prove the reliable performance of the proposed method. As can
be seen, the lowest performance metric is 98.66%, which shows
the great performance of the FGRNN method. The minimum and
maximum values of SAF are 100% and 99.71%, respectively.
These values show the ability of the FGRNN-based method
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TABLE V
PERFORMANCE OF PROPOSED FGRNN METHOD IN CASE 4

Fig. 3. Experimental prototype.

in isolating hazardous short-circuit faults in presence of series
capacitor compensation.

D. Case 4

A high impedance in neutral point of the power transformer
added by SFCL can limit fault current for less than a half-cycle.
Accordingly, the differential relay cannot detect the fault to send
the trip signal. Therefore, in this case, a variable resistance is
used to fix the problem. This problem can happen during an
inrush current, too. The SFCL model is added to Transformer
3 in Fig. 2. Parameters of SFCL are set based on the procedure
presented in [21].

Similar dataset to Case 1 is used to evaluate the performance
of the proposed FGRNN-based classifier. As can be seen in
Table V, the lowest value of the accuracy is 99.04, which shows
the effectiveness and robustness of FGRNN in presence of
SFCL. The main concern about the implementation of SFCL
in differential protection is the false trip for nonfault conditions.
In this case, the fault current has the least difference with inrush
current. This makes the SEC an important factor in evaluating the
protection scheme. SEC is between 98.97 and 99.98, which in-
dicates the great performance of the proposed protection method
in presence of SFCL.

E. Case 5

In this case, the proposed method is evaluated by an experi-
mental prototype. The experimental data are gathered using a 1
kVA, 50 Hz, and 380/380 V three-phase transformer shown in
Fig. 3. Several points inside the windings are accessible through
terminals, which are used to create internal faults. Here, 0.6–
3 kV, 2.5VA CTs are used for current measurement 4488 case
studies were implemented and measurements were recorded by
a digital storage oscilloscope with 112 samples per second rate.
The proposed approach uses normalized data, so we can compare

TABLE VI
PERFORMANCE OF PROPOSED FGRNN METHOD IN CASE 5

the simulated and experimental results without concerning about
the difference between rated values of simulated and experimen-
tal prototype.

Table VI shows the performance of the proposed method
using experimental results. As we can see, the proposed method
performs well using experimental data. For all disturbances the
reliability indices are at least 97.16%, which show the applicabil-
ity of the FGRNN-based protection scheme. The experimental
tests represent a great performance in skipping the external
faults, which shows the immunity of proposed algorithm against
cross-country faults.

IV. COMPARATIVE STUDY

To evaluate the proposed FGRNN method, the results ob-
tained in each case are compared with eight other widely used
methods which are briefly described as follows.

1) GRU: ReLU activation function, 256 epochs, and 128
hidden states.

2) ACNN: ACNN is utilized with 20 feature maps, 128
filter, 256 epochs, and maximum pooling size of three,
with sigmoid activation function [17].

3) CNN: A total of 20 feature maps, 128 hidden states,
256 epochs, maximum pooling size of 3, and sigmoid
activation function.

4) LSTM: ReLU activation function, 256 epochs, and 128
hidden states.

5) SVM: Radial basis function kernel and cross validation.
6) KNN: 1 nearest neighbor based on Euclidean distance

and Baye’s discussion rule.
7) LVQ: Based on Euclidean distance, with 6 input and 6

hidden layers with corresponding rate of 1 and 2 neurons
in output layer.

8) ANN: A total of 86 neurons in input layer, two parallel
hidden layers with 25 and 13 neurons, and 1 neuron in
the output layer.

9) Restricted second harmonic: based on [32];
10) Gradient-vector method: based on [33].

For the sake of the comparison, and also to show the robust-
ness of the proposed method in noisy conditions, three different
types of noise are added to the raw data. Then, the proposed
method and other methods were tested on the noisy dataset.
As we mentioned before, a large share of noises in the power
system do not obey Gaussian probability distribution. Therefore,
the following three types of noises are considered in this section.

1) Gaussian noise with SNR =20.
2) Gaussian mixture noise consists of three Gaussian noises,

each of them with SNR = 30.
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TABLE VII
COMPARISON BETWEEN RELIABILITY INDICES OF FGRNN AND SHALLOW AND DEEP STRUCTURE CLASSIFIERS

Fig. 4. Raw signal, three type of noise, and noisy signals.

3) Laplace probability distribution noise follows chi-square
distribution with degree of freedom 4.

As an example, Fig. 4 shows the raw signal, three types of
noises, and the noisy signals.

The difference between the performances of shallow archi-
tecture (SVM, KNN, LVQ, and ANN) methods and deep ones
(GRU, ACNN, CNN, and LSTM) can easily be noticed in
Table VI where the performances of the five deep architecture
methods are better. Among the shallow architecture methods,
ANN has the least reliable performance, while KNN, LVQ, and
SVM provide better performances. According to the numbers
presented in Table VII, the proposed FGRNN is significantly
more reliable than a restricted second harmonic and gradient
vector. In particular, in case 4 where the signals are distorted
by SFCL as an external factor, the restricted second harmonic
method experiences a severe decrease in reliability. In this
case, the reliability indexes are between 47.21% and 58.31%
in presence of non-Gaussian/Gaussian noises. It is important to
notice that the restricted second harmonic method is used in
most of the real differential relays in power transformers. The
proposed robust FGRNN has a significantly better performance
than the GRU in all cases. Furthermore, the noise impact on

other methods is significant in terms of accuracy and reliability,
the obtained metrics proposed method is at least 98.31%, while
the obtained metrics by the GRU, ACNN, CNN, and LSTM are
at least 92.56%, 89.71%, 89.53%, and 88.46%, respectively. It
is also can be noted that the performance of the ACNN is highly
influenced by the noises, in particular, non-Gaussian noises,
which is inferior to other deep networks in terms of accuracy
and reliability.

A. Computation Time

Table VIII compares the average performance time of all
data-driven methods with deep and shallow structures. As can
be seen in Table VIII, the methods with shallow architecture
provide faster performance than the proposed method. However,
the proposed FGRNN method is more reliable and performs
significantly better in terms of accuracy, which verifies that its
computational complexity is perfectly fit for real-time applica-
tion. The ACNN method is slightly faster than the proposed
FGRNN; however, the FGRNN performs much more robustly
in noisy conditions, while ACNN is sensitive to noise.

Considering some conditions can help to verify the gener-
ality of the proposed. For instance, power electronic devices
by frequently changing of switching angles can strength the
amplitude of harmonics. Thus, considering different switching
angles in data generation shows that the proposed differential
protection scheme can also perform properly in presence of
power electronic infrastructure.

B. Role of Hyperparameters

To investigate the hyperparameter setting on the performance
of the designed network, the following four different conditions
have been considered:

1) the proposed network with three dense layers, where a
dense layer is added between the first and second dense
layer in the proposed network and has the same parame-
ters as the first dense layer (C1);

2) the proposed network with two FGRNN layers, where
the second FGRNN has the same parameters as the first
FGRNN layer (C2);

3) the proposed network without dropout technique (C3);
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TABLE VIII
COMPARISON OF AVERAGE PERFORMANCE TIME OF THE DEEP AND SHALLOW-BASED METHODS

TABLE IX
PERFORMANCE OF PROPOSED ROBUST FGRNN METHOD WITH DIFFERENT

STRUCTURE BASED ON EXPERIMENTAL CASE (CASE5)

TABLE X
PERFORMANCE OF PROPOSED ROBUST FGRNN METHOD WITH DIFFERENT

LOSS FUNCTIONS IN THE EXPERIMENTAL CASE (CASE5)

TABLE XI
PERFORMANCE OF PROPOSED METHOD WITH RESET GATE AND

WITHOUT RESET GATE

4) the proposed network by using sigmoid activation func-
tion instead of ReLU activation function (C4).

The results are discussed considering data generated in case 5.
The results are given in Table IX. As can be seen, the proposed
method is slightly better in comparison with other conditions
(C1-4).

C. Role of the Proposed Loss Function

In order to show the role of the proposed loss function, the
proposed method is compared with the following two different
conditions: 1) cross-entropy loss function, and 2) the robust loss
function presented in [34], where they are formulated for the
noises with Gaussian distribution function. The comparison in
Table X verify the role of the proposed loss function in robustness
against noise and learning ability improvement of the deigned
robust deep network. The major reason for the superiority of the
proposed method is its robustness in noisy conditions without
any assumption on noise model and improving the training
process based on the formulated informative loss function.

D. Role of Removing Reset Gate

To address the role of the removing the reset gate, two com-
parison results should be shown: 1) with reset gate; 2) without
reset gate. In both conditions, the proposed loss function is
integrated with the deep networks. The comparison in Table XI
demonstrates the superiority of the proposed network FGRNN

with GRU network with same loss function, batch normalization,
and activation function.

V. CONCLUSION

Conventional machine learning methods have deficiencies
such as computational burden, sensitivity to noises, and de-
pendency on a model. These deficiencies decrease the relia-
bility of these methods in the differential protection scheme
of power transformers to discriminate between inrush current
and internal faults. Using the GRU method which is a deep
architecture method is a proper solution to overcome these
deficiencies. Furthermore, we proposed a robust and fast GRU
to speed up the performance as well as improve the accuracy
and robustness against non-Gaussian/Gaussian noises of the
differential protection scheme. To this end, the update gate in
the conventional GRU has been removed to enhance the com-
putational efficiency and capture sudden changes in transient
disturbances such as inrush current and internal fault in the power
transformers. Besides, an informatics theory-based loss function
is developed in this article to handle non-Gaussian/Gaussian
noises. The proposed method was applied to a real system in
both simulated and experimental cases. External factors, i.e.,
series capacitor compensation, SFCL, and CT saturation were
taken into account to evaluate the proposed method as a practical
solution. The results of the robust FGRNN method shows that
the proposed method has an average computational time less
than 6.5 ms. The results of the robust FGRNN method were
compared to 10 other methods. The comparisons proved that
the FGRNN method improved the diagnosis accuracy by at least
3.34% compared with the deep networks and 10.72% compared
with shallow networks. Thus, the comparisons proved that the
FGRNN method makes a differential protection scheme more
reliable and faster.

The investigations on the proposed FGRNN-based differential
protection reveal that it would be worthwhile to evaluate the
FGRNN-based differential protection method using real-time
digital simulator or embed the proposed scheme in a hardware
for a real power transformers. We can also involve different
factors and events such as sympathetic and inrush condition to
generalize it to real systems.
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