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Abstract 

 

System theory methods are developed and applied within the two-port modeling approach to the problem of thermo-

acoustic instability in a combustion appliance. An analogy between thermo-acoustics of combustion and small-signal 

operation of microwave amplifier is utilized. Notions of unconditional and conditional stabilities of an (active) two-port, 

representing a burner with flame, are introduced and analyzed. Unconditional stability of two-port means the absence of 

autonomous oscillation at any embedding of the given two-port by any passive network at the system’s upstream (source) 

and downstream (load) sides. It has been shown that for velocity-sensitive compact burner in the limit of zero Mach 

number the condition of unconditional stability cannot be fulfilled. The analysis is performed in the spirit of a known 

criterion in microwave network theory, the so-called Edwards-Sinsky’s criterion. Therefore, two methods have been 

applied to originate the necessary and sufficient conditions of a linear active two-port system to be conditionally stable. 

The first method is a new algebraic technique to prove and derive the conditional and unconditional stability criteria, and 

the second method is based on certain properties of Mobius (bilinear) transformations for combinations of reflection 

coefficients and scattering matrix of (active) two-ports. The developed framework allows formulating design requirements 

for the stabilization of operation of a combustion appliance via purposeful modifications of either the burner properties 

or/and of its acoustic embeddings. 
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Introduction 

Thermo-acoustic combustion instability manifests itself as a 

high level of tonal noise, vibration, and structural damage. 

The ability to eliminate and/or control combustion 

instability at the appliance design phase is one of the main 

goals of combustion-acoustics research. The low-order 

(acoustic network) modeling approach is one of the 

intensively developing tools which has proven its efficiency 

in performing problem analysis, synthesis, and eventually 

the appliances design tasks. 

Various acoustic network models have been developed 

(Åbom, 1992; Lavrentjev m.fl., 1995; Munjal, 1987) that are 

used in analyzing the combustion thermo-acoustic 

instabilities and the design of combustion equipment. This 

modeling allows treating combustion appliance 

components as acoustic two-ports (Keller, 1995; Polifke 

m.fl., 1997; Stow & Dowling, 2001). Accordingly, the 

availability of a purely acoustic characterization of the 

burner with flame is the prerequisite of the model. This is 

achievable within the concept of the transfer matrix (TM) or 

scattering matrix (SM) (Paschereit m.fl., 2002). Then, a 

network model of the combustion system is obtained when 

all two-ports components are combined.  

The methodological similarity of approaches to and the 

network models equivalence of the electrical circuits and 

combustion acoustic systems have been shown in various 

work since 1957 (Merk, 1957). However, the stability 

analysis and design methods of the two-port networks have 

not been developed/applied in the combustion field as 

much as in microwave theory. The linear two-port network 

theory has been an intensively developing research subject 

and the results have been applied ubiquitously in the 

practice of microwave devices’ design. The closest analogy 

can be established between the combustion thermo-

acoustic instability problem and the problem of stability of 

operation of microwave amplifier. Here, the burner with 

flame and the amplifier (e.g. transistor) both represent a so-

called, “dependent source” or active element. Furthermore, 

the acoustics of the burner upstream and downstream parts 

in a combustion appliance are an analogy of the “source” 

and “load” passive network embeddings of the microwave 

amplifier. One of the extremely useful and well-developed 

concepts of the microwave amplifier’s design process is the 

notion of unconditional stability. 
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In microwave theory, this means that there is no passive 

source and passive load combination that can cause the 

circuit with the given amplifier to oscillate. Correspondingly, 

the unconditional stability in a thermo-acoustic context 

means operation stability regardless of the (passive) 

acoustics of upstream and downstream sides of the 

burner/flame. The pioneering work on this subject was 

done by Rollett in 1962 (Rollett, 1962). He introduced a 

quantity (criterion) to characterize the degree of stability. 

Later, it was  shown that the combination of validity of 

certain inequality requested from the Rollett factor 

together with only one other auxiliary condition are 

necessary and sufficient to provide the unconditional 

stability (Ha, 1981; Ku, 1966; Meys, 1990; Owens & Woods, 

1970). 

In 1992, Edwards and Sinsky proposed a single parameter, 

instead of two of Rollett’s conditions, to determine the 

necessary and sufficient active element unconditional 

stability requirements. The arguments and analysis were 

based on a geometrical approach. Various applications and 

design tools based on the Edwards-Sinsky criteria were 

developed and discussed (Balsi m.fl., 2006; Marietti m.fl., 

2006; Olivieri m.fl., 2005). Particularly, Balsi et al. extended 

the geometrical approach and derived the necessary and 

sufficient conditions for a linear active two-port to be 

conditionally stable. A recent work of Lombardi and Neri 

(Lombardi & Neri, 2019) presented the existence of a duality 

mapping between the input and the output of the two-port 

network; then by using certain properties of Mobius 

Transformation (MT), they demonstrated all possible cases 

of mapping between the input and the output of the 

system. MT is the bilinear rational transformation (Kühnau, 

1988) as one of the mathematical concepts named after A.F. 

Mobius. It is well-known that the MT maps a line or circle 

into another line or circle (Özgür, 2009). Çakmak et al. 

derived explicit formulas relating the centres and the 

radiuses of that mapped circles (Çakmak m.fl., 2018). 

On the other hand, the beginning of active development of 

the acoustic network modeling approach to the problem of 

combustion instability falls in the period after ~1990. The 

main focus was on formulating thermo-acoustic network 

models, predicting the instability, searching for unstable 

frequencies, calculating/measuring the growth rate, 

searching methods for stabilizing systems, etc. References 

to most of the performed research can be found in the 

review paper (Schuller m.fl., 2020)). 

The conventional methodology for analyzing the stability of 

thermo-acoustic systems consists of measuring/modeling a 

Flame Transfer Function (FTF). Then, a wave-based 1D linear 

two-port network approach is applied to provide the system 

matrix. The eigenfrequencies of the system (zeros of the 

matrix’ determinant) determine the (in)-stability and 

growth/decay rates. Therefore, the common practice is to 

create a system matrix each time. Then, the system is 

altered to check the corresponding effect on the 

eigenfrequencies. This kind of modeling strategy allows 

resolving the dilemma of the (in-)stability of a particular 

system and provides information about the frequencies of 

oscillation. However, it does not provide a guideline for the 

premeditated design. The crux is in the absence of specific 

parameters or criteria to determine the system stability and 

lack of tools (rules) on how to manipulate the system design 

as it is done in microwave theory.  

A new impetus in the development of system-level analysis 

of thermo-acoustic network models was given by the 

discovery of the phenomenon of the burner intrinsic 

thermo-acoustic mode of instability (Emmert m.fl., 2015; 

Hoeijmakers m.fl., 2014). This and further research on the 

subject use system theory. Particularly, the derived system 

instability conditions are based on the gain and phase of TFT 

for only ITA mode (Hoeijmakers m.fl., 2016). A review of 

literature on this subject can be found in the recent 

publication (Yong m.fl., 2021). 

Another research direction was introduced by Kornilov and 

de Goey why showed the analogy between the thermo-

acoustic and linear two-port networks (V. N. Kornilov & de 

Goey, 2015) and use it to investigate two unconditional 

stability criteria, ‘Rollett’ and ‘Edwards-Sinsky’, for the 

purpose of evaluation of a burner/flame figure of merit (V. 

Kornilov & de Goey, 2017). In turn, this work gave the 

inspiration to develop a prospective method to assess 

thermo-acoustic instabilities based on reflection 

coefficients measured only from the upstream side of the 

burner (cold side) by Kojourimanesh et al. (Kojourimanesh, 

Kornilov, Arteaga, m.fl., 2021). In this approach, two 

reflection coefficients, 𝑅𝑢𝑝 and 𝑅𝑖𝑛, at the cold side of the 

flame are measured. As displayed in Fig. 1, 𝑅𝑢𝑝  is the 

reflection coefficient of the upstream side of the burner and 

𝑅𝑖𝑛 is the input reflection coefficient of the burner 

terminated by Rdn. In other words, if we disconnect the 

network in Fig. 1 from the Rup, send in wave f1 and measure 

reflected wave g1, then the corresponding reflection 

coefficient would be: 𝑅𝑖𝑛 ≜ g1/f1. 

 
Fig. 1. Thermo-acoustic model of a combustion system. 

 In this method, the stability of the system can be 

determined by the Nyquist plot of the measured 𝑅𝑢𝑝 times 

𝑅𝑖𝑛 . They showed that the condition applied to the 

magnitude of 𝑅𝑢𝑝𝑅𝑖𝑛(𝑖𝜔)  to be less than 1 for all 

frequencies from 0 to infinity is sufficient (but not 

necessary) to result in thermo-acoustic stability of the 

system.  Accordingly, in another study, they applied the MT 

properties to provide the necessary conditions of 𝑅𝑑𝑛  to 

ensure that the magnitude of  𝑅𝑖𝑛  becomes less than 1 

(Kojourimanesh, Kornilov, Lopez Arteaga, m.fl., 2021a).  

The present paper contributes to the further development 

of the research in the direction of the system-level analysis 

of network modeling of thermo-acoustic instability of 

combustion systems and utilizes the close analogy with the 

theory of microwave networks. 

The following procedure is followed. The particular goal of 

the present contribution is to introduce a new analysis 

methodology which is based on the stability criteria of 
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active two-ports. The criteria will be derived using the 

original approach based on properties of a Mobius 

transformation in combination with some algebraic 

transformations. The more general goal is to illustrate the 

power of the system analysis method in the application to 

the thermo-acoustic network modeling. 

The model of thermo-acoustic system is first written in the 

form of the network of scattering matrix for power waves 

to show the analogy with the microwave theory and derive 

system stability conditions. Then, new algebraic proofs of 

unconditional stability, namely the Edwards-Sinsky 

criterion, and conditional stability are proposed. Besides, an 

alternative approach using MT is introduced to determine 

the stability condition. Next, by combining the outcome of 

the aforementioned methods, conditional stability criteria 

for the thermo-acoustic systems are provided. 

The results obtained and presented below can be in 

principle generalized to the case of an arbitrary burner with 

flame for which the purely acoustic representation in the 

form of a two-port is known and given, e.g. by the burner 

transfer matrix. However, here we limit the consideration 

to one particular type of burner, namely, an acoustic 

velocity-sensitive dependent source of acoustic velocity 

(analogy of current sensitive current source in microwave 

theory).  In this case, we may use some internal symmetries 

of the transfer and scattering matrices. Physically this type 

of thermo-acoustic properties is appropriate to a wide class 

of perfectly premixed gaseous fuel burners operating in the 

limit of low Mach numbers for mean flow when the heat 

release zone is compact with respect to the acoustic 

wavelength under consideration.  

Furthermore, we will work in frequency domain, and 

consider only plane longitudinal waves, 1-D acoustics. The 

network model variables will be represented by the forward 

and backward traveling waves f and g and the convention 

for the time dependence is 𝑒𝑠𝑡 where 𝑠  is the complex 

frequency 𝑠 = 𝑖𝜔 + 𝜎 

2. Stability criteria of thermo-acoustic sys. 

It has been shown that the scattering matrix of the thermo-

acoustic two-port can be defined, if one rearranges 

equations of the transfer matrix (𝑇) such that the ingoing 

waves appear as inputs to the matrix, and the outgoing 

waves as outputs. In that case, the scattering matrix (𝑆) of 

the thermo-acoustic system would be (Hoeijmakers, 2014): 

𝑆 =
1

2𝑇11
[

−2𝑇21 4

𝑇11
2 − 𝑇21

2 2𝑇21
],         (1) 

where 𝑇ij  are transfer matrix elements. For the compact 

velocity-sensitive flame in the limit of zero mean Mach 

number 

 𝑇 = 0.5 [
𝜀 + 1 + 𝜃 𝐹𝑇𝐹𝑆 𝜀 − 1 − 𝜃 𝐹𝑇𝐹𝑆
𝜀 − 1 − 𝜃 𝐹𝑇𝐹𝑆 𝜀 + 1 + 𝜃 𝐹𝑇𝐹𝑆

].       (2) 

In this notation, 𝜃 =
𝑇2

𝑇1
− 1  is the temperature ratio; 𝑇1,2 

being the temperature at upstream and downstream sides 

of the flame; 𝜀 =
𝜌1𝑐1

𝜌2𝑐2
 is the jump in specific acoustic 

impedance across the flame; and 𝐹𝑇𝐹𝑠 is the flame transfer 

function in the complex domain which relates the oscillation 

of heat release rate to the oscillation of acoustic velocity 

and scaled to mean values of heat release and gas velocity. 

The scattering matrix expression can be used only for none 

ITA modes (𝑇11 ≠ 0). 

2.1. Unconditional stability in thermo-acoustic 

systems 

Lemma 1. The defined thermo-acoustic system in Eq. (1), 

cannot be unconditionally stable.  

Proof. Rollett stability condition says that the combination 

of Rollett stability factor 𝐾 > 1, Eq. (3), together with any 

one of the following auxiliary conditions given in Eq. (4) are 

necessary and sufficient for unconditional stability 

(Edwards & Sinsky, 1992) of an (active) two-port described 

by the scattering matrix S.  

𝐾 =  
1−|𝑆11|

2−|𝑆22|
2+|Δ|2

2|𝑆12𝑆21|
> 1,         (3) 

{
 
 

 
 
𝐵1 = 1 + |𝑆11|

2 − |𝑆22|
2 − |Δ|2 > 0

𝐵2 = 1 − |𝑆11|
2 + |𝑆22|

2 − |Δ|2 > 0
|Δ| = |𝑆11𝑆22 − 𝑆12𝑆21| < 1

1 − |𝑆11|
2 > |𝑆12𝑆21|

1 − |𝑆22|
2 > |𝑆12𝑆21|

        (4) 

Therefore, one can simplify the Rollett stability factor for 

the thermo-acoustic system as 

𝐾 =  
1−|−

𝑇21
𝑇11

|
2
−|
𝑇21
𝑇11

|
2
+|−1|2

2|
2

𝑇11

𝑇11
2−𝑇21

2

2𝑇11
|

=
1−|

𝑇21
𝑇11

|
2

|1−(
𝑇21
𝑇11

)2|
 .        (5) 

In Appendix A.1, it is made clear that for any complex 

number 𝑧  the function 
1−|𝑧|2

|1−𝑧2|
≤ 1 . Accordingly, based on 

Rollett criteria, the defined thermo-acoustic system cannot 

be unconditionally stable because one of the necessary 

conditions of unconditional stability is not satisfied, namely,  

𝐾 ≯ 1.  

Alternately, it is also possible to prove Lemma 1 via the 

Edwards and Sinsky parameter, 𝜇 . They proved that the 

necessary and sufficient condition to qualify a two-port as 

the unconditionally stable element is 𝜇 > 1 where 

𝜇 =  
1−|𝑆11|

2

|𝑆22−𝑆11̅̅ ̅̅ ̅∆|+|𝑆12𝑆21|
.          (6) 

In this notation, the bar symbol is used to denote 

the conjugate of a complex number. 

By substituting parameters, like in Appendix A.2, one can 

also derive 𝜇 =
1−|𝑧|2

|2𝐼𝑚(𝑧)|+|1−𝑧2|
≤ 1 for the thermo-acoustic 

system which obeys relation (1). Therefore, the thermo-

acoustic two-port (a burner with flame) which transfer 

(scattering) matrix has symmetry as in Eq. (1), cannot be 

unconditionally stable. 

2.2. Conditional stability in thermo-acoustic 

systems 

When considering the notion of conditional stability of a 

thermo-acoustic system, the upstream and downstream 

acoustic boundary conditions are playing a role. One needs 

to search for the range of 𝑅𝑢𝑝  (or 𝑅𝑑𝑛 ) in the complex 

domain such that the system would be always stable. It is 

worth mentioning that outside of that range, the system 

may be stable or unstable. Accordingly, Lemma 2 with 

criteria for magnitude 𝑅𝑢𝑝 and 𝑅𝑑𝑛 is introduced. 

https://en.wikipedia.org/wiki/Complex_conjugate
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Lemma 2: For the defined thermo-acoustic system in Eq. (1), 

sufficient conditions for the downstream and upstream 

terminations such that the system would be conditionally 

stable is 

|𝑅𝑢𝑝| <
1

|𝑅𝑖𝑛|
,        (7.a) 

or 

|𝑅𝑢𝑝| <
−2|𝑆11−|𝑅𝑑𝑛|

2𝑆22̅̅ ̅̅ ̅𝛥|+2|𝑅𝑑𝑛||𝑆12𝑆21|

2(|𝑅𝑑𝑛|
2|𝛥|2−|𝑆11|

2)
,    (7.b) 

|𝑅𝑑𝑛| <
−2|𝑆22−|𝑅up|

2
𝑆11̅̅ ̅̅ ̅Δ|+2|𝑅up||𝑆12𝑆21|

2(|R𝑢𝑝|
2
|Δ|2−|𝑆22|

2)
.     (7.c) 

Proof. The main idea of the Edwards-Sinsky criterion is that 

a system is unconditionally stable if the unit disk in the 

R𝑑𝑛 plane maps inside the unit disk in the R𝑖𝑛 plane 

(Edwards & Sinsky, 1992). In other words, the system with 

passive upstream and downstream terminations is 

unconditionally stable if and only if |Rin| < 1 . Besides, 

Kojourimanesh et al. have shown that for none ITA modes, 

if |𝑅up𝑅in| < 1  then the system is conditionally stable 

(Kojourimanesh, Kornilov, Arteaga, m.fl., 2021; 

Kojourimanesh, Kornilov, Lopez Arteaga, m.fl., 2021b).  So, 

one can say that for a conditional stable system 

|𝑅up𝑅in|
2
< 1.            (8) 

Considering 𝑅in =
−Δ R𝑑𝑛+𝑆11

−𝑆22R𝑑𝑛+1
 and Δ = −1 , Appendix B.1 

shows how  Eq. (8) can be extended in a form of a quadratic 

inequality as 

𝐴|R𝑑𝑛|
2 + 𝐵|R𝑑𝑛| + 𝐶 < 0,         (9) 

where  𝐴 = |R𝑢𝑝|
2
|Δ|2 − |𝑆22|

2,  

𝐵 = 2(|𝑆22 − |𝑅up|
2
𝑆11̅̅ ̅̅ Δ|), and 𝐶 = |R𝑢𝑝|

2
|𝑆11|

2 − 1. 

As proven in Appendix B.2, the discriminant, 𝐵2 − 4𝐴𝐶, of 

Eq. (9) would be 

𝐵2 − 4𝐴𝐶 = 4|𝑅up|
2
|𝑆12𝑆21|

2.       (10) 

Because of  𝐵2 − 4𝐴𝐶 ≥ 0 , the only way that Eq. (9) 

becomes always negative is  𝐶 < 0 & |R𝑑𝑛| < 𝜆1, where 𝜆1 

is the first root of the quadratic equation, i.e.  

𝜆1 =
−𝐵+√𝐵2−4𝐴𝐶

2𝐴
 .        (11) 

Appendix B.3 shows that by substituting 𝐴, 𝐵, 𝐶 into 𝜆1, the 

right side of Eq. (7.c) would be the same as 𝜆1. Therefore,  

|R𝑑𝑛| < 𝜆1 is the sufficient condition for |𝑅up𝑅in|
2
< 1. 

Equations (7.b) and (7.c) are almost the same as the 

conditions suggested by Balsi et al. Appendix C.1 shows how 

their conditions can be derived from this algebraic method. 

Moreover, Appendix C.2 provides a new proof of the 

Edwards-Sinsky criterion from the mentioned algebraic 

technique. 

2.3 Mobius transformation between 𝑹𝒊𝒏 and 𝑹𝒅𝒏 

Mobius transformation maps a line or a circle into another 

line or circle. The mapped circle of the unit circle via 

𝐻 =
𝑎 𝑍+𝑏

𝑐Z +𝑑
, where 𝑎𝑑 − 𝑏𝑐 = 1 , has a specified centre,  𝑀 , 

and radius, 𝑟(Çakmak m.fl., 2018; Özgür, 2009), 

 𝑀 =
𝑏∙�̅�−𝑎∙𝑐̅

|𝑑|2−|𝑐|2
,         𝑟 =

1

||𝑑|2−|𝑐|2|
 .       (12) 

By looking at the expression for  𝑅𝑖𝑛 =
−𝛥𝑅𝑑𝑛+𝑆11

−𝑆22𝑅𝑑𝑛+1
, it is clear 

that it has the form of MT. However, it needs to be 

normalized first i.e. divided by √𝑎𝑑 − 𝑏𝑐 = √𝑆12𝑆21 . The 

downstream side of the burner/flame is an acoustically 

passive termination, i.e.  | 𝑅𝑑𝑛| ≤ 1 . Consequently, MT 

transforms the unit circle of 𝑅𝑑𝑛 into a circle in the plane of 

𝑅𝑖𝑛 with a centre and radius as (Kojourimanesh, Kornilov, 

Lopez Arteaga, m.fl., 2021a). 

𝑀 =
𝑆11+𝑆22̅̅ ̅̅ ̅

1−|𝑆22|
2 =

−2𝐼𝑚(𝑆22)

1−|𝑆22|
2 𝑖,      𝑟 =

|𝑆12𝑆21|

|1−|𝑆22|
2|

.       (13) 

Furthermore, the centre of 𝑅𝑑𝑛 unit circle transforms into 

point 𝑂 =
𝑏

𝑑
 in 𝑅𝑖𝑛  plane which indicates to where the 

inside area of the unit circle of 𝑅𝑑𝑛  is mapped. It can be 

either the inside or outside area of the circle in 𝑅𝑖𝑛 plane. 

Figure 2 shows one of the possible cases for this 

transformation between 𝑅𝑑𝑛 and 𝑅𝑖𝑛 planes. 

 
Fig. 2. Mobius transformation of 𝑅𝑑𝑛 unit circle into 𝑅𝑖𝑛. 

For the case | 𝑅𝑢𝑝| ≠ 1, one can apply the same strategy as 

in Eq. (12) but for MT of 

 𝑅𝑢𝑝𝑅in =
(−𝑅𝑢𝑝Δ )R𝑑𝑛+(𝑅𝑢𝑝𝑆11)

−𝑆22R𝑑𝑛+1
.          (14) 

Then, the centre and the radius of the unit circle in 𝑅𝑑𝑛plane 

maps into a circle in 𝑅𝑢𝑝𝑅in plane. Considering the formula 

in Eq. (13), one can easily show that the location of the 

centre, radius and point 𝑂  in 𝑅𝑢𝑝𝑅in  plane would be the 

scaled of them in  𝑅in plane. Equation (15) and Fig. 3 show 

the location of the centre, radius and point 𝑂 of the circle in 

𝑅𝑢𝑝𝑅in plane which is mapped from  𝑅𝑑𝑛 plane.  

𝑀𝑛𝑒𝑤 = 𝑅𝑢𝑝 𝑀  & 𝑂𝑛𝑒𝑤 = 𝑅𝑢𝑝
𝑏

𝑑
  &  𝑟𝑛𝑒𝑤 = |𝑅𝑢𝑝|𝑟.         (15) 

 
Fig. 3. Mobius transformation of 𝑅𝑑𝑛 unit circle into 𝑅𝑢𝑝𝑅𝑖𝑛 

Figure 3 depicts the Mobius transformation of the unit circle 

in 𝑅𝑑𝑛 plane into the  𝑅𝑢𝑝𝑅in plane. Comparing Fig. 2 with 
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Fig. 3 also Eq. (13) and (15), one can conclude that the 

properties of the disk in  𝑅𝑢𝑝𝑅in  plane ,i.e. 

𝑀𝑛𝑒𝑤 , 𝑂𝑛𝑒𝑤 , 𝑎𝑛𝑑 𝑟𝑛𝑒𝑤 , can be created from the properties 

of the disk in 𝑅in  plane, i.e. 𝑀,𝑂, 𝑎𝑛𝑑 𝑟 , by scaling them 

with a factor of  |𝑅𝑢𝑝| and rotating with the phase of 𝑅𝑢𝑝. 

2.4 Comparing algebraic and MT methods’ results 

In this section, we are aiming to search for similarities 

between derived results from the algebraic and MT 

methods. In the aforementioned thermo-acoustic two-port 

system (see Eq. (1)), the symmetry implies that  𝑆11 = −𝑆22 

and therefore Δ = −1 , accordingly 𝑆12𝑆21 = 1 − 𝑆22
2 . As 

explained before for any complex 𝑧  function, 
1−|𝑧|2

|1−𝑧2|
≤ 1 . 

Then one can readily conclude that the radius of MT in 𝑅in 

plane would be always bigger than 1, i.e. 

 𝑟 =
|1−𝑆22

2|

|1−|𝑆22|
2|
≥ 1.         (16) 

In addition, for the case |R𝑢𝑝| = 1 , the expression 
√𝐵2−4𝐴𝐶

2𝐴
=

2|𝑅up||𝑆12𝑆21|

2(|R𝑢𝑝|
2
|Δ|2−|𝑆22|

2)
 would be the same as 𝑟, i.e. 

 𝑟 =  
√ 𝐵2−4𝐴𝐶

2𝐴
. 

The same procedure confirms that 
−𝐵

2𝐴
=

−|𝑆22+𝑆11̅̅ ̅̅ ̅|

1−|𝑆22|
2 . 

By comparing the expression of 
−𝐵

2𝐴
 with 𝑀 =

𝑆11+𝑆22̅̅ ̅̅ ̅

1−|𝑆22|
2   and 

considering 𝑆11 = −𝑆22 and 𝐶 < 0, it is obvious that 

 
𝐵

2𝐴
= |𝑀|.  

Therefore, one can relate the first root of the quadratic 

equation to the MT parameters as 

𝜆1 =
−𝐵

2𝐴
+

√ 𝐵2−4𝐴𝐶

2𝐴
= −|𝑀| + 𝑟.        (17) 

For the case |R𝑢𝑝| = 1 , |R𝑑𝑛| = 1 , Appendix C.2 proves 

that the Edwards-Sinsky factor is indeed 𝜆1. Hence, 

𝜇 = −|𝑀| + 𝑟.         (18) 

The other point is that the centre and radius values depend 

on each other for the system defined in Eq. (1) when 

|R𝑢𝑝| = 1. Due to the 𝐴 = −𝐶, one can write the relation 

between them as 

𝑟 = √ 
𝐵2−4𝐴(−𝐴)

4𝐴2
= √ (

𝐵

2𝐴
)
2

+ 1 = √𝑀2 + 1.      (19) 

Discussions 

Equation (7.a) reveals that for a specific 𝑅in, it is possible to 

design 𝑅𝑢𝑝  such that the system becomes stable, i.e. 

|𝑅up| <
1

|𝑅in|
. However, for high values of |𝑅in|, an upstream 

damper with a low reflection coefficient, for all frequencies, 

is needed which may become problematic to design or to 

produce. This conclusion can be also obtained from the 

Mobius transformation. Equation (15) confirms that by 

decreasing the magnitude of 𝑅𝑢𝑝, the centre of the disk in 

𝑅𝑢𝑝𝑅in  plane and the point 𝑂𝑛𝑒𝑤  would converge to the 

origin and the radius of the disk goes to zero as illustrated 

in Fig. 4. In other words, the whole disk of 𝑅𝑢𝑝𝑅in will be 

inside the unit disk, |𝑅𝑢𝑝𝑅in| < 1 . Therefore, decreasing 

the magnitude of 𝑅𝑢𝑝  causes a high chance of stable 

system. 

 
Fig. 4. MT of 𝑅𝑑𝑛 unit circle into 𝑅𝑢𝑝𝑅𝑖𝑛 for 3 different 𝑅𝑢𝑝.  

On the other hand, the system with a high value of the 

upstream reflection coefficient, |𝑅𝑢𝑝|~1 , cannot be fully 

stabilized. The reason as expressed in Eq. (16) is the radius 

of the mapped disk in 𝑅in  plane is more than one. 

Therefore, some particular values of 𝑅dn can cause |𝑅in| >

1 . In total, it can be concluded that providing a low 

reflecting upstream damper will increase the probability of 

stability for any 𝑅in and/or 𝑅dn. 

Some combustion companies prefer to sell their product 

(like industrial boilers) without the upstream side (for 

instance the blower/fan). In this situation, designers would 

like to optimize their product in terms of thermo-acoustic 

stability for any upstream appliance. Accordingly, Eq. (7.c) 

could help them in designing the downstream part such that 

the system would be thermo-acoustically stable. Besides, 

the inverse of the transformation mentioned in Eq. (13) 

could also provide the region of 𝑅𝑑𝑛  such that |𝑅in| < 1 

because it maps 𝑅in  unit disk to the 𝑅dn  disk i.e. 𝑅𝑑𝑛 =
−𝑅in+𝑆11

−𝑆22 𝑅in+Δ 
. 

Equation (17) reveals the relation between Edwards-Sinsky 

factors, 𝜇 & 𝜇∗, and MT parameters as shown in Fig. 5. As 

can be seen, the Edwards-Sinsky factor, 𝜇 , is the closest 

point of the 𝑅in  disk from the origin which is |−|𝑀| + 𝑟|. 

Moreover, the second root of the quadratic Eq. (9) which is 

the same as the second Edwards-Sinsky factor, 𝜇∗ , is the 

farthest point of the 𝑅in  disk from the origin. Thus, both 

approaches provide the same results regarding the (in)-

stability of the system. 

 
Fig. 5. Relation of Mobius transformation and 𝜇 & 𝜇∗.  

Conclusions 

It is demonstrated that the system-level analysis of a 

network of two-ports is a very fruitful tool to perform 

studying on combustion acoustic instability phenomena. 

Furthermore, it provides promising approaches to the task 

of system design aiming stability of operation. Original 

algebraic proofs of conditional and unconditional stability 
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criteria of linear two-port network systems are proposed. It 

has been shown that thermo-acoustic systems cannot be 

unconditionally stable. Hence, the conditional stability 

criteria have been investigated based on the algebraic 

technique. Also, a complimentary framework of analysis is 

proposed which is based on the application of known 

properties of bilinear Mobius transformation. The 

comparison of different approaches reveals the relations 

between the results of the algebraic derivations, the 

geometrical approach applied in microwave theory, and the 

Mobius transformation technique. Any of these three 

approaches can be applied to analyze the stability of the 

thermo-acoustic system. However, the technique based on 

the Mobius transformation would provide more insightful 

information and better visual and intuitive interpretation of 

results than two other techniques. The elaborated criteria 

of system stability can be applied for purposeful design of 

the upstream and downstream sides of the given burner 

with flame to provide the thermo-acoustic system stability. 

Appendix 

A.1) Rollett factor for Unconditional stability of TA 
Suppose 𝑧 = 𝑥 + 𝑖𝑦 then |𝑧|2 = 𝑧𝑧̅ = 𝑥2 + 𝑦2, 

 |𝑧| = √𝑥2 + 𝑦2 , and 𝑧2 = (𝑥2 − 𝑦2) + 2𝑥𝑦𝑖. 

Rollett factor in thermo-acoustic systems is 

𝐾 =
1−|𝑧|2

|1−𝑧2|
 where 𝑧 =

𝑇21

𝑇11
. 

Hence, 𝐾 =
1−|𝑧|2

|1−𝑧2|
=

1−(𝑥2+𝑦2)

|(1−𝑥2+𝑦2)−2𝑥𝑦𝑖 |
 so, 

𝐾 =
1−𝑥2+𝑦2−2𝑦2

√(1−𝑥2+𝑦2)2+(−2𝑥𝑦)2
. 

Also, it is clear that 
1−𝑥2+𝑦2

√(1−𝑥2+𝑦2)2+(−2𝑥𝑦)2
≤ 1 and 

 
−2𝑦2

√(1−𝑥2+𝑦2)2+(−2𝑥𝑦)2
≤ 0. Therefore 𝐾 ≤ 1. 

A.2) Edwards-Sinsky factor for Thermo-Acoustic 

𝜇 =  
1−|𝑆11|

2

|𝑆22−𝑆11
∗∆|+|𝑆12𝑆21|

 =
1−|−

𝑇21
𝑇11

|
2

|
𝑇21
𝑇11

+
𝑇21
𝑇11

∗
(−1)|+|1−(

𝑇21
𝑇11

)2|
. → 

𝜇 =  
1−|−

𝑇21
𝑇11

|
2

|2𝐼𝑚(
𝑇21
𝑇11

)|+|1−(
𝑇21
𝑇11

)2|
.   

As mentioned before 
1−|𝑧|2

|1−𝑧2|
≤ 1 so, 

1−|𝑧|2

|2𝐼𝑚(𝑧)|+|1−𝑧2|
≤ 1as 

well. 

B.1) Quadratic equation for Thermo-Acoustic 

systems 

We know  𝑅in =
𝑆11−ΔR2

1−𝑆22R2
,     |𝑅up𝑅in|

2
 < 1, 

 2𝑅𝑒(𝑧) = 𝑧 + 𝑧̅,     𝑅𝑒(𝑧1𝑧2) ≤ |𝑧1||𝑧2|, 

and |𝑧1 − 𝑧2|
2 = |𝑧1|

2 + |𝑧2|
2 − 2 𝑅𝑒(𝑧1𝑧2̅). So, 

|𝑅up𝑅in|
2
 < 1 → |𝑅up(𝑆11 − ΔR𝑑𝑛)|

2
< |1 − 𝑆22R𝑑𝑛|

2. 

Expanding the power results in 

|𝑅up|
2
(|𝑆11|

2 + |ΔR𝑑𝑛|
2 − 2 𝑅𝑒(𝑆11ΔR𝑑𝑛̅̅ ̅̅ ̅̅ ̅)) <  1 +

|𝑆22|
2|R𝑑𝑛|

2 − 2 𝑅𝑒(𝑆22R𝑑𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅). 

Applying 2𝑅𝑒(𝑧) = 𝑧 + 𝑧̅ , one writes 

|R𝑢𝑝|
2
|𝑆11|

2 + |R𝑢𝑝|
2
|Δ|2|R𝑑𝑛|

2 − [|𝑅up|
2
𝑆11ΔR𝑑𝑛̅̅ ̅̅ ̅̅ ̅ −

|𝑅up|
2
𝑆11̅̅ ̅̅ ΔR𝑑𝑛] − 1 − |𝑆22|

2|R𝑑𝑛|
2 + [𝑆22R𝑑𝑛 +

𝑆22R𝑑𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅] < 0. 

Factorizing|R𝑑𝑛|
2, R𝑑𝑛, and R𝑑𝑛̅̅ ̅̅ ̅ concludes 

(|R𝑢𝑝|
2
|Δ|2 − |𝑆22|

2) |R𝑑𝑛|
2 + [R𝑑𝑛 (𝑆22 − |𝑅up|

2
𝑆11̅̅ ̅̅ Δ)

+ R𝑑𝑛̅̅ ̅̅ ̅ (𝑆22̅̅ ̅̅ − |𝑅up|
2
𝑆11Δ̅)]

+ |R𝑢𝑝|
2
|𝑆11|

2 − 1 < 0. 

Employing 𝑧 + 𝑧̅ = 2𝑅𝑒(𝑧), one finds 

(|R𝑢𝑝|
2
|Δ|2 − |𝑆22|

2) |R𝑑𝑛|
2

+ 2 𝑅𝑒(R𝑑𝑛 [𝑆22 − |𝑅up|
2
𝑆11̅̅ ̅̅ Δ])

+ |R𝑢𝑝|
2
|𝑆11|

2 − 1 < 0. 

Generally speaking, if  𝐴|R𝑑𝑛|
2 + 2|𝑧1||𝑧2| + 𝐶  is smaller 

than zero then for sure 𝐴|R𝑑𝑛|
2 + 2𝑅𝑒(𝑧1𝑧2) + 𝐶 would be 

less than zero because of  𝑅𝑒(𝑧1𝑧2) ≤ |𝑧1||𝑧2|. Therefore, 

one allows to consider below inequality instead of the last 

inequality. 

(|R𝑢𝑝|
2
|Δ|2 − |𝑆22|

2) |R𝑑𝑛|
2 + 2|R𝑑𝑛|  |𝑆22 − |𝑅up|

2
𝑆11̅̅ ̅̅ Δ|

+ |R𝑢𝑝|
2
|𝑆11|

2 − 1 < 0. 

So, if 

𝐴|R𝑑𝑛|
2 + 𝐵|R𝑑𝑛| + 𝐶 < 0 

where 𝐴 = (|R𝑢𝑝|
2
|Δ|2 − |𝑆22|

2) ;  

 𝐵 =  2 |𝑆22 − |𝑅up|
2
𝑆11̅̅ ̅̅ Δ| ; 𝐶 = |R𝑢𝑝|

2
|𝑆11|

2 − 1 

then for sure |𝑅up𝑅in|
2
 < 1. 

B.2)  

𝐵2 − 4𝐴𝐶 = 4 |𝑆22 − |𝑅up|
2
𝑆11̅̅ ̅̅ Δ|

2

− 4(|R𝑢𝑝|
2
|Δ|2 −

|𝑆22|
2)(|R𝑢𝑝|

2
|𝑆11|

2 − 1). 

Expanding the equation and applying 2𝑅𝑒(𝑧) = 𝑧 + 𝑧̅ , one 

writes 

4[|𝑆22|
2 + |𝑅up|

4
|𝑆11̅̅ ̅̅ Δ|

2 − 𝑆22|𝑅up|
2
𝑆11Δ̅ −

𝑆22̅̅ ̅̅ |𝑅up|
2
𝑆11̅̅ ̅̅ Δ- 

|R𝑢𝑝|
4
|Δ|2|𝑆11|

2 − |R𝑢𝑝|
2
|Δ|2 − |𝑆22|

2|R𝑢𝑝|
2
|𝑆11|

2 −

|𝑆22|
2]. 

Simplifying the equation leads to 

𝐵2 − 4𝐴𝐶 = 4|𝑅up|
2
|𝑆11𝑆22 − Δ|

2 → 

𝐵2 − 4𝐴𝐶 = 4|𝑅up|
2
|𝑆12𝑆21|

2 ≥ 0.  

B.3)  

𝜆1 =
−𝐵 + √𝐵2 − 4𝐴𝐶

2𝐴
 

Substituting 𝐴, 𝐵, 𝐶 defined in Appendix B.1 leads to 

𝜆1 =
−2 |𝑆22 − |𝑅up|

2
𝑆11̅̅ ̅̅ Δ| + 2|𝑅up||𝑆12𝑆21|

2 (|R𝑢𝑝|
2
|Δ|2 − |𝑆22|

2)
. 

Also, the same procedure can be used to prove Eq. (7.b) 

from |𝑅dn𝑅out|
2 < 1. 
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C.1) A new proof of Balsi et al. criterion 

Balsi et al. showed that necessary and sufficient conditions 

for conditional stability can be ascertained by means of a 

single parameter. Their theorem was, 

‘Provided that the S-parameters defined for at least one pair 

of positive constant reference impedances have no RHP 

poles, the necessary and sufficient condition for a linear 

active two-port to be stable is 
1−|𝑆11|

2𝑅up
2

|𝑆22−𝑆11̅̅ ̅̅ ̅Δ𝑅up
2|R𝑑𝑛+|𝑆12𝑆21|R𝑢𝑝R𝑑𝑛

> 1. 

Proof. As shown in Edwards-Sinsky paper, one can readily 

show that (Edwards & Sinsky, 1992) 

|𝑆22|
2 − |R𝑢𝑝|

2
|Δ|2 =

|𝑆22−|𝑅up|
2
𝑆11̅̅ ̅̅ ̅Δ|

2
−|𝑅up|

2
|𝑆11𝑆22−Δ|

2

1−|𝑅up|
2
|𝑆11|

2
 . 

By substituting the term into the denominator of Eq. (7.c) 

and simplify it, one can derive 

|R𝑑𝑛| <
1−|𝑅up|

2
|𝑆11|

2

|𝑆22−|𝑅up|
2
𝑆11̅̅ ̅̅ ̅Δ|+|R𝑢𝑝||𝑆12𝑆21|

.       

By moving |R𝑑𝑛| to the right side of the earlier equation, the 

conditional stability criterion, provided by Balsi et al., is 

derived. 

C.2) A new proof of Edwards-Sinsky criterion 

Substituting  |R𝑢𝑝| = 1  and |R𝑑𝑛| = 1   into the 

aforementioned equation (last equation in C.1), it is easy to 

realize that the right-hand side of the equation is indeed the 

Edwards-Sinsky criterion. 

1 <
1−|𝑆11|

2

|𝑆22−𝑆11̅̅ ̅̅ ̅Δ|+|𝑆12𝑆21|
= 𝜇 .      

Also, one can show the second Edwards-Sinsky 

parameter,  𝜇∗ , is the same as the second root of the 

quadratic equation, 𝜆2 =
−𝐵−√𝐵2−4𝐴𝐶

2𝐴
= 𝜇∗. 
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