

Feasibility and prototype of replacing commercial off-the-shelf
pattern recognition solution
Citation for published version (APA):
Sadeghi, R. (2021). Feasibility and prototype of replacing commercial off-the-shelf pattern recognition solution.
Technische Universiteit Eindhoven.

Document status and date:
Published: 29/09/2021

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/8e5ee0c3-1a75-44e0-90d1-2aca658b22cb

PDEng THESIS REPORT

Feasibility and prototype of replacing commercial off-the-shelf

pattern recognition solution

Raha Sadeghi

Feasibility and prototype of replacing

commercial off-the-shelf pattern

recognition solution

Raha Sadeghi

September 2021

Eindhoven University of Technology

Stan Ackermans Institiute – Software Technology

PDEng Report: 2021/062

Confidentiality Status:

Public – Open Access

Partners

ASML Netherlands B.V. Eindhoven University of Technology

Steering Group
(By alphabetical order)

Odysseas Papapetrou

Zhifeng Sheng

Date September 2021

Composition of the Thesis Evaluation Committee:

Chair: Tim Willemse

Members: Louise Gouteux

 Marc Geilen

 Odysseas Papapetrou

 Tim Willemse

 Zhifeng Sheng

The design that is described in this report has been carried out in accordance

with the rules of the TU/e Code of Scientific Conduct.

Contact

Address

Eindhoven University of Technology

Department of Mathematics and Computer Science

MF 5.072, P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

+31 402743908

Partnership This project was supported by Eindhoven University of Technology and ASML.

Published by Eindhoven University of Technology

Stan Ackermans Institiute

PDEng-report 2021/062

Preferred

reference

Feasibility and prototype of replacing commercial off-the-shelf pattern recogni-

tion solution.

Eindhoven University of Technology, PDEng Technical Report 2021/062,

September 2021

Abstract In the ASML holistic lithography, YieldStar is a metrology tool that provides

closed-loop feedback to scanners by measuring on-product errors such as overlay

and focus. YieldStar utilizes image pattern recognition techniques to measure the

position shifts of wafer alignment marks. It uses this position information to build

up a high-order wafer model to guide measure target positioning. YieldStar uses a

Commercial-Off-The-Shelf (COTS) software library, which has expensive license

costs and requires a hardware dongle, complicating machine build-up. In this pro-

ject, a new pattern recognition library (RECOG) was designed and developed as

a replacement for the COTS tool in the context of YieldStar wafer alignment.

RECOG was developed by taking advantage of free open-source libraries, which

could reduce the cost of build in YieldSatr. Additionally, there is no need for any

hardware dongle. A new GUI application based on the RECOG library was devel-

oped to prototype the solution. Finally, RECOG was integrated into the YieldStar

application to facilitate wafer alignment without using any hardware dongles. The

results showed that RECOG could recognize patterns accurately with almost less

than a pixel difference than the commercial library. The performance and flexibil-

ity of RECOG were also tested. According to the results, RECOG is flexible

enough to recognize various patterns even in noisy and low contrast images in

more than 90% of cases. By achieving a roughly 50-millisecond recognition time

per pattern, it can align a wafer only 4 percent slower than the COTS tool, which

is acceptable for the sake of feasibility study.

Keywords Lithography process, wafer alignment, pattern recognition, YieldStar

Disclaimer

Endorsement

Reference herein to any specific commercial products, process, or service by trade

name, trademark, manufacturer, or otherwise, does not necessarily constitute or

imply its endorsement, recommendation, or favoring by the Eindhoven University

of Technology or ASML. The views and opinions of authors expressed herein do

not necessarily state or reflect those of the Eindhoven University of Technology

or ASML, and shall not be used for advertising or product endorsement purposes.

Disclaimer

Liability

While every effort will be made to ensure that the information contained within

this report is accurate and up to date, Eindhoven University of Technology makes

no warranty, representation, or undertaking whether expressed or implied, nor does

it assume any legal liability, whether direct or indirect, or responsibility for the

accuracy, completeness, or usefulness of any information.

Trademarks Product and company names mentioned herein may be trademarks and/or service

marks of their respective owners. We use these names without any particular en-

dorsement or with the intent to infringe the copyright of the respective owners.

Copyright Copyright © 2021. Eindhoven University of Technology. All rights reserved.

 No part of the material protected by this copyright notice may be reproduced, mod-

ified, or redistributed in any form or by any means, electronic or mechanical, in-

cluding photocopying, recording, or by any information storage or retrieval sys-

tem, without the prior written permission of the Eindhoven University of Technol-

ogy and ASML.

Foreword
Within ASML, besides making Lithography systems like Scanner, we also make metrology systems

that allow measurement of on-product overlay and focus using diffraction-based technology and on

specific OV/focus targets. To be able to position/measure the targets accurately, YieldStar, which is the

ASML metrology system, uses image pattern recognition technique to measure position shifts of wafer

alignment marks and use this position information to build up a high order wafer model to guide meas-

ure target positioning. However, YieldStar is using a COTS software library, which has expensive li-

cense costs and requires a hardware dongle which complicates the machine build-up.

Hence, I postpone an OOTI project to explore the possibility to replace the COTS solution with either

an open-source/free software solution or an in-house solution (with the open-source being the prefer-

ence.) The new solution should act as a “drop-in” replacement to the COTS solution in the sense of

pattern recognition precision, flexibility, software interfacing, and performance.

I am very happy to have had Raha as the OOTI trainee to work on this project. She worked hard and

cleverly to find a very good replacement to Cognex, implemented the toolbox in C#, and delivered the

results to our YieldStar code archive. With experiments on the actual machines, she demonstrated the

accuracy, flexibility, and performance of the new algorithm/toolbox. I am very impressed by the result

she delivered and the way she could work independently in this unique period where most of us are

working remotely. I am also very happy that Raha will join ASML soon. I wish her all the best in ASML

and we will work together again soon.

Zhifeng Sheng

September 2021

Preface
This document is the final report of the “Feasibility of replacing YieldStar wafer alignment pattern

recognition solution” project, executed by Raha Sadeghi, as the graduation project of the Professional

Doctorate in Engineering (PDEng) program in Software Technology. PDEng is a two-year doctorate-

level program provided by the Eindhoven University of Technology under the banner of 4TU.School

for Technological Design, Stan Ackermans Institute.

The project was carried out in collaboration with ASML to investigate the feasibility of replacing the

YieldStar pattern recognition library using open-source libraries. The project goal was achieved by de-

signing and developing the new pattern recognition library and a new GUI tool for prototyping the

solution.

This report begins with an explanation of the problem that the project targets. It is followed by a review

of the literature and the results of prototyping various techniques to find the potential solution. The

description of the proposed solution is followed by the architecture and design of the solution. Finally,

the system verification and validation are explained, and the results are discussed. The readers who

would like to understand the problem, domain, and requirement can check Chapters 3, 4, and 5 respec-

tively. The ones who are interested in the details of the proposed solution, and the rationale behind the

proposed solution, can review Chapters 6 and 7. Chapter 8 dives into the details of the logical view of

the architecture. Therefore, readers interested in the system's architecture should review Chapters 6, 7,

and 8. Some details on the implementation phase are given in Chapter 9. Those who want to examine

the verification and validation results can read Chapter 10. We suggest reading Chapter 11 to the ones

who would like to know more about the management of the project, the risks identified in the project,

their mitigation strategies. Readers interested in the summary of the achievements in the project and

suggestions for future work or the trainee’s self-reflection on the project could read Chapter 12.

Raha Sadeghi

September 2021

Acknowledgements
I would like to share my appreciation to those who played an important role in the successful completion

of this project.

I am especially indebted to Zhifeng Sheng, my ASML supervisor, who helped and guided me

continuously through the project. This project would not have been a success without your guidance,

patience, and tremendous insight. I have learned a lot from you.

I am very grateful to my supervisor at the Eindhoven University of Technology, Odysseas Papapetrou,

for his guidance during the project. His comments about this thesis and the process during the meeting

were always insightful. I would like to express my sincere gratitude to Yanja Dajsuren (PDEng Software

Technology Program Director) for her guidance, encouragement, and management approach during the

last two years. I would also like to thank all my colleagues from the PDEng Software Technology

program for being there for me during the entire duration of two years of the program.

I would not forget to remember Louise Gouteux, Mustafa Kabak, Julius Chatterjee, Erik Vermij, Kadir

Luzumlar, Gilda Khosravi, Vinay Bansal, and Sjoerd van der Laag for your support throughout the

project. Without your help, it would take much more time for me to get into this new domain. You were

always there for me when I had a question or an issue.

Finally, I would like to offer my deepest gratitude to my family for their significant role in my person-

ality and success. I cannot thank my mother enough for bearing the most challenging days of her life

alone, sacrificing her wishes and needs, to support me in fulfilling my dreams and attaining my goals.

Likewise, my father, who might not be any more physically in this world, but shaped me to be a strong

woman who can stand on her own feet and always persuaded me to follow my dreams by his constant

belief in me. My special thanks and gratitude goes to my brother, who devoted his time to compensate

for the absence of my father and me in our family in the last two years. I would like to say a very big

thank you to my mother and brother for their endless emotional support and the courage they gave me.

Raha Sadeghi

September 2021

Executive Summary
ASML is a leading lithography tool provider in the world. In the context of semiconductors, lithography

is the process of printing highly complex circuit patterns on silicon wafers. YieldStar (YS) is an inte-

grated or standalone metrology system that allows measurement of on-product overlay and focus errors,

using diffraction-based technology on specific Overlay/focus targets. YS systems are usually integrated

into the production line. Therefore, they can provide closed-loop feedback to the lithography system

for real-time corrections to the manufacturing process. YS utilizes pattern recognition techniques to

measure position shifts of wafer alignment marks. It uses this position information to build up a high-

order wafer model to guide measure target positioning. YS is currently using a Commercial-Off-The-

Shelf (COTS) software library. There are some concerns regarding using this library, which is as fol-

lows:

1. It has an expensive license cost, which indirectly impacts the machine cost of the build.

2. It requires a hardware dongle, which complicates the machine build-up.

3. Since it is a third-party solution, it is being used as a black box, and customizing the solution

to address the edge cases is not easy.

Pattern recognition has different applications in YS. This project was conducted to explore the feasibil-

ity of finding a replacement for the COTS pattern recognition tool in the context of wafer alignment.

The replacement should have comparable sub-pixel accuracy, performance, and flexibility with the

COTS tool. The goal was not to improve the COTS tool result but mainly to create an in-house solution

and make the recognition approach transparent and extensible. In order to achieve this objective, this

project was divided into the following phases:

• Phase one: Creating a new pattern recognition library using available open-source computer

vision libraries. This new library should have an interface compatible with the current COTS

interface.

• Phase two: Creating a new alignment recognition tool to prototype the new solution and inves-

tigate its accuracy, performance, and flexibility.

• Phase three: Integrating the solution into the YS application and measuring wafers using the

new library without utilizing COTS software and any hardware dongles.

This report presents the process and approaches taken to accomplish the phases mentioned above.

RECOG, the new pattern recognition solution, exploits traditional computer vision and image pro-

cessing techniques, mainly Template matching and Normalized Cross-Correlation. The library was val-

idated against different patterns and images with different qualities and contrasts. Additionally, the li-

brary was used for aligning the wafer during the wafer measurement, and the results were compared

with the results achieved by the COTS tool. Based on these results, we can conclude that RECOG can

accurately recognize wafer alignment marks with sub-pixel accuracy and almost less than one-pixel

difference than the COTS results. Although RECOG aligned wafers roughly 4% slower than the COTS

solution, the alignment time was below the feasibility threshold set by the company (2 seconds.) Addi-

tionally, the test results showed that RECOG was almost as flexible and reliable as its commercial

counterpart, even in noisy, low-contrast images. The main contribution of this project is the designed

framework that can be extended to support new functionalities or achieve better performance and accu-

racy.

Table of Contents

Foreword .. 7

Preface .. 8

Acknowledgements ... 9

Executive Summary .. 10

Table of Contents .. 11

List of Figures .. 14

List of Tables ... 16

1. Introduction ... 17

 ASML .. 17

 ASML holistic lithography .. 17

 Context .. 18

 Outline .. 19

2. Stakeholder Analysis ... 20

 ASML Netherlands.. 20

 Eindhoven University of Technology .. 21

3. Problem Analysis ... 22

 Context .. 22

 Problem Statement.. 23

4. Domain Analysis .. 24

 Pattern recognition application ... 24
4.1.1. Marks ... 24
4.1.2. Pattern recognition challenges ... 25

 Cognex Vision Pro and APT ... 25

 YieldStar Wafer Alignment Module .. 26
4.3.1. Pattern recognition wrapper ... 27
4.3.2. Alignment Recipe .. 27

 Project Scope .. 27

 Project Constraints ... 29

5. Requirements and Use Cases .. 30

 Requirements Elicitation .. 30
5.1.1. Business Requirements .. 30
5.1.2. Functional Requirements ... 30
5.1.3. Non-Functional Requirements ... 31

5.1.4. Architectural Requirement ... 32
5.1.5. Implementation Requirement .. 32

 Use cases .. 33

 Design Criteria ... 34
5.3.1. Performance ... 34
5.3.2. Realizability ... 34
5.3.3. Extensibility ... 34

6. Related Work and Feasibility Study .. 35

 Modern Computer Vision Techniques .. 35

 Traditional object detection techniques ... 36
6.2.1. Feature-based matching ... 37
6.2.2. Template Matching .. 37
6.2.3. Contour-based matching .. 38

 Techniques for getting sub-pixel accuracy ... 38

 Image contrast adjustment techniques ... 39

 Summary ... 39

7. Pattern Recognition ... 40

 Proposed Algorithm.. 40
7.1.1. Training Phase ... 40
7.1.2. Recognition Phase ... 41

 Rotation .. 44
7.2.1. Finding the pattern offset with rotation ... 45

8. Architecture and Design .. 47

 Logical View ... 47
8.1.1. RECOG .. 47
8.1.2. Alignment Recognition .. 49
8.1.3. ART ... 50
8.1.4. Integrated YieldStar ... 51

 Other Views .. 53

9. Implementation .. 54

 RECOG Library ... 54

 ART ... 55
9.2.1. Configurable recognition recipe .. 56
9.2.2. Training ... 56
9.2.3. Tool Serialization... 57

10. Verification and Validation ... 58

 Test plan .. 58

 Verification ... 58

 Validation ... 59
10.3.1. Test on a local system .. 59
10.3.2. Test on machine ... 62

11. Project Management .. 67

 Work-Breakdown Structure .. 67

 Way of Working .. 67
11.2.1. Project Planning and Scheduling ... 68
11.2.2. Risk Management .. 69

12. Conclusions ... 70

 Results and Remarks ... 70

 Recommendations and future work ... 71

 Self-reflection .. 71

Abbreviations and Glossary ... 73

Bibliography .. 74

References ... 74

Appendix A. Architecture and Design .. 76

Domain model ... 76

Logical View .. 76

Process View ... 78
Recipe Conversion ... 81

Design decision and Technology choices .. 81
Computer Vision Open-Source Library Opportunities .. 81
WPF or Windows Form ... 82
Architectural Framework ... 83
MVVM Framework ... 84

Appendix B. Verification and Validation ... 85

Traceability ... 87

ART Manual Tests ... 90
1.1.1 Tool Conversion .. 90
1.1.2 Test Recognition accuracy .. 93
1.1.3 TEST Parameters .. 95
1.1.4 Test Tool Robustness .. 98
1.1.5 Batch recognition test .. 100
1.1.6 Integration test ... 101

RECOG additional accuracy test results .. 103

Machine test preparation .. 104

Appendix C. Algorithm edge cases .. 106

Imaginary Template Pattern Border ... 106

Appendix D. Image Processing .. 108

About the Author .. 113

List of Figures
Figure 1 - ASML holistic lithography... 17
Figure 2. Wafer life cycle ... 22
Figure 3. Wafer alignment concept ... 23
Figure 4. Wafer map of fields ... 24
Figure 5. (a) Wafer field image with recognized pattern, (b) Pattern ... 25
Figure 6. Model-based (left-side image) vs image-based pattern (right-side image) 26
Figure 7. YieldStar wafer alignment procedure .. 26
Figure 8. Pattern recognition wrapper ... 27
Figure 9. System of interest .. 28
Figure 10. Use case diagram ... 33
Figure 11. Feature-based matching technique .. 37
Figure 12. Training phase ... 40
Figure 13. Pattern recognition solution ... 41
Figure 14. Coarse recognition phase ... 42
Figure 15. Score calculation ... 43
Figure 16. Fine recognition phase ... 44
Figure 17. Measuring pattern offset .. 45
Figure 18. Recognition class diagram ... 47
Figure 19. Training class diagram... 48
Figure 20. Serialization class diagram .. 49
Figure 21. Alignment recognition ... 49
Figure 22. (a) ViewModelBase, (b) Messenger class diagram ... 50
Figure 23. ART high-level architecture .. 51
Figure 24. Wafer alignment class diagram ... 52
Figure 25. Deployment diagram ... 53
Figure 26. ART Batch recognition tab .. 55
Figure 27. ART Pattern Trainer tab .. 55
Figure 28. ART Converter tab .. 56
Figure 29. Recognition offset comparison, X axis, Pattern D .. 60
Figure 30. Recognition offset comparison, Y-axis, Pattern D .. 60
Figure 31. Recognition offset comparison, X-axis, Pattern V .. 61
Figure 32. Recognition offset comparison, Y-axis, Pattern V .. 61
Figure 33. Cognex and RECOG offset comparison, X-axis with 180 degree 62
Figure 34. Cognex and RECOG offset comparison, Y-axis with 180 degree 63
Figure 35. RECOG TPO value range in X and Y axes ... 63
Figure 36. OV offset comparison, X-axis ... 64
Figure 37. OV offset comparison, Y-axis ... 64
Figure 38. Differences between OV X and Y offsets calculated by RECOG and Cognex (nm) 64
Figure 39. Project Work Breakdown Structure ... 67
Figure 40. Project Gantt chart ... 68
Figure 41. Wafer alignment domain model .. 76
Figure 42. RECOG class diagram ... 77
Figure 43. ART class diagram .. 78
Figure 44. Training procedure .. 79
Figure 45. Pattern recognition procedure .. 80
Figure 46. Conversion sequence diagram ... 81
Figure 47. MVVM architecture .. 83
Figure 48. Accuracy comparison between Cognex and RECOG result for the pattern P, X-axis 103
Figure 49. Accuracy comparison between Cognex and RECOG result for the pattern P, Y-axis 104
Figure 50. Machine test preparation steps .. 104
Figure 51. Offset comparison with no rotation for task execution, X axis ... 105
Figure 52. Offset comparison with no rotation for task execution, Y axis ... 105

Figure 53. Partial pattern ... 106
Figure 54. Imaginary template pattern border... 107
Figure 55. Sample Image with pattern G .. 108
Figure 56. Gaussian blurring ... 108
Figure 57. Reference image after applying thresholding .. 109
Figure 58. Result of edge detection .. 109
Figure 59. Initial image (left side) and dilated image (right side) .. 110
Figure 60. Pattern G .. 110
Figure 61. Interpolated pattern G .. 111

List of Tables

Table 1. ASML stakeholders .. 20
Table 2. Eindhoven University of Technology stakeholders .. 21
Table 3. Business requirements .. 30
Table 4. Functional requirements.. 30
Table 5. Non-functional requirements .. 31
Table 6. Architectural requirements .. 32
Table 7. Implementation requirements ... 32
Table 8. RECOG TMU result ... 65
Table 9.Cognex TMU result ... 65
Table 10. Matching result ... 65
Table 11. Throughput result .. 65
Table 12. Time overhead comparison between RECOG and Cognex .. 66
Table 13. Risks and their mitigation strategies ... 69
Table 14. Computer vision open-source libraries comparison .. 82
Table 15. Functional requirements in detail .. 85
Table 16. Traceability matrix .. 87
Table 17. TC-001 Tool Conversion .. 90
Table 18. TC-002 Test recognition accuracy .. 93
Table 19. TC-003 Test recognition with different parameters .. 95
Table 20. TC-004 Test RECOG flexibility ... 98
Table 21. TC-005 Test batch recognition .. 100
Table 22. Comparison of traditional and modern CV approaches .. 111
Table 23. Object detection methods .. 112
Table 24. Techniques for getting the sub-pixel position ... 112

1.Introduction
This document contains all theoretical and technical aspects of replacing the commercial off-the-shelf

pattern recognition solution in the context of YieldStar wafer alignment. This chapter states a brief

description of ASML, the initiator of this project. Then Lithography, YieldStar, the application of pat-

tern recognition in YieldStar, and the project goal are briefly discussed. The outline section defines the

roadmap of this report.

 ASML

ASML is an innovation leader in the chip industry. Microchips are also known as integrated circuits,

semiconductor chips, computer chips, or simply chips. These tiny pieces of silicon that are the basis of

the digital world make our smartphones, cars, medical equipment, and so many other now-common

devices possible. The tinier they get, the more advanced technology is needed to realize them in the

everyday world. They may be small, but their impact is tremendous.

Lithography is a technology used by chip manufacturers, consisting of transferring a shrunk geometrical

pattern of circuit lines from a photomask to a wafer by photomask illumination. ASML's lithography

solutions have been making giant leaps on this tiny scale since 1984. ASML provides its customers with

everything they need, including hardware, software, and services, to give them the power to mass pro-

duce patterns on silicon and chips.

ASML enables groundbreaking technology to solve some of society's toughest challenges. Together

with their partners, they provide leading pattern solutions that drive the advancement of microchips.

People at ASML design and manufacture lithography machines essential in chip or Integrated Circuits

(ICs) manufacturing. ASML's customers are companies such as Intel or Samsung, who use its machines

to create microchips that are eventually used in many electronic devices, including smartphones, lap-

tops, and much more.

 ASML holistic lithography

The process of producing ICs consists of many steps. Lithography is the heart of chip manufacturing.

In the context of semiconductors, a lithography process can be defined as the process of exposing light

on the wafer surface to create tiny structures on it. These small structures, in the end, form the ICs.

ASML delivered proven holistic lithography process control solutions to the industry 10 years ago to

maximize patterning process performance and control. ASML holistic lithography involves computa-

tional lithography, metrology, and scanner control as an integrated solution to support the patterning

roadmap. An example of a holistic control loop can be seen in Figure 1.

Figure 1 - ASML holistic lithography

ASML TWINSCAN machines enable the lithography procedure by exposing lights on the wafer and

creating structures. For achieving massive chip production, these machines should be reliable, accurate,

and have high throughput. Throughput defines the number of wafers that can be processed per time

unit. Moreover, the quality of the produced wafers is paramount. In order to measure the quality of the

produced wafer, there are some quality metrics in the context of lithography, which are as follows:

1. Overlay (OV), defining how well one layer is placed on top of the other layer.

2. Critical dimension (CD), defining how consistently the size of features can be reproduced.

3. Focus (F), defining how well the lines and features are described in the light-sensitive resist

on the wafer.

These quality metrics define how well the lithography process in the TWINSCAN machine is per-

formed. The quality metrics are measured with the help of the metrology tools, which will be discussed

in the next section. The measurement results are passed to the Litho Computing Platform (LCP). ASML

has developed several solutions for calculating required corrections by the scanners that are deployed

on LCP. As Figure 1 shows the corrections should be passed to the TWINSCAN machine to scan wafers

with higher performance and accuracy in the next round. This cycle of measuring wafers and calculating

corrections for the next lithography step is called the holistic control and monitoring loop.

 Context

There are two ways to examine the quality of the printed features on a chip: diffraction-based optical

measurement and e-beam inspection. Diffraction examines how light reflects from the wafer, while e-

beam observes how electrons scatter when they come into contact with the wafer [29].

ASML began developing its own diffraction-based metrology approach. The Diffraction Based Overlay

(DBO) measurement principle uses a target that consists of two sets of gratings (consider gratings as

some periodic parallel lines [32]) placed on top of each other. Depending on how two layers or targets

are aligned on top of each other, the gratings generate a diffraction pattern. The diffraction pattern is

captured by the measurement sensor. This approach makes measurements faster without compromising

accuracy. YieldStar (YS) is the ASML diffraction-based metrology machine that enables measuring

quality metrics such as OV, CD, and Focus [29].

YS systems are usually integrated into the production line to measure the quality of patterns on the

wafer quickly and accurately, looping the data back to the lithography system for real-time corrections

to the manufacturing process. Measuring quality metrics is only possible if YS knows the exact position

of the structures on the wafer surface. Therefore, there are some steps before initiaing the actual meas-

urement. One of the most critical stages is the wafer alignment.

Wafer alignment is based on is based on pattern recognition to find the marks’sposition on the wafer

and measure the marks’ deviation from their expected positions. Based on this data, a wafer model can

be created, which can be used to update the wafer raw stage coordinate. The raw stage coordinates are

the actual positions that define how the stage (the place where the wafer sits on) should move towards

a target.

Computer vision aims to teach computers to process and interpret images or videos in the same way

humans do. Pattern recognition, object detection, and object classification are some of the most im-

portant computer vision concepts. Pattern recognition, which is the functionality required in this work,

is the automated recognition of patterns and regularities in data. It has applications in statistical data

analysis, signal processing, image analysis, information retrieval, bioinformatics, data compression, and

computer graphics.

Computer vision is not a new concept; it was introduced more than twenty years ago. While there are

commercial and industrial-level computer vision tools in the market, some open-source libraries have

also been introduced during these years. Some of these open-source libraries became comprehensive

and mature enough to be used as a replacement for their commercial competitors. Users can take ad-

vantage of the already implemented algorithms of these libraries to create a customized solution ad-

dressing the problem. By using open-source solutions, error troubleshooting and tool extension are more

feasible. Additionally, exploiting open-source libraries instead of the COTS software could help with

cutting the company’s cost. All in all, there is a significant added value in taking advantage of open

source libraries instead of using commercial tools.

YS is currently taking advantage of the Cognex library (a commercial solution) as an image pattern

recognition solution. Therefore, ASML initiated this project to investigate the feasibility of taking ad-

vantage of the currently available open-source libraries to replace Cognex. Raha Sadeghi conducted the

project as her final design project for the Software Technology Professional Doctorate in Engineering

(ST PDEng) program.

Cognex provides various functionalities and has applications in different parts of YS. This project stud-

ies the feasibility of replacing Cognex with an open-source library to address the pattern recognition

issue only in the context of wafer alignment. The required Cognex functionalities that the new solution

should support are discussed in Section 4.4.

 Outline

This report consists of twelve chapters. In the next chapter, the stakeholder analysis is given. Chapter 3

describes the problem analysis. The fourth Chapter gives details about the project environment, relevant

system components, and the project scope. Next, Chapter 5 lists the system requirements and use cases.

Based on the acquired knowledge and the system requirements, we studied the literature and prototyped

different techniques to define the project solution direction, which is discussed in Chapter 6. A pattern

recognition solution is proposed in Chapter 7. More details about the architecture and design of the

system are discussed in Chapter 8. Implementation details are discussed in the 9th chapter. Chapter 10

describes the approaches taken to verify and validate the system and reviews the results. Chapter 11

reviews the project timeline and risks that were identified in the project with their mitigation strategies.

Chapter 12, the last chapter, reviews the bigger picture of this project’s contribution from the company’s

perspective. The suggestions for future work are presented in the same chapter. Finally, the project's

retrospective from the author's point of view is given.

2.Stakeholder Analysis
The individuals who are interested in or have an influence on a project are the stakeholders.

Understanding their concerns and requirements and addressing them in the architecture and design

phase is crucial to the project's success. This chapter discusses the interest, concerns, and involvement

of each stakeholder involved in the project. The main stakeholders of this project are ASML Nether-

lands B.V. and the Eindhoven University of Technology. In the following sections, the names, roles,

and concerns of main stakeholders are described.

 ASML Netherlands

ASML Netherlands B.V. is the industrial party of this project. The outcome of this project could bring

added value to the company. ASML stakeholders are responsible for providing the details and related

domain knowledge of the wafer alignment. Table 1 lists the main ASML stakeholders. Their involve-

ment level was quite different depending on their expertise and interest. Dr. Zhifeng Sheng, the project

supervisor, closely monitored the project progress via weekly meetings. The rest of the stakeholders

were involved in the project through necessary meetings and sprint review sessions.

Table 1. ASML stakeholders

Id Name Role Concerns

1 Zhifeng Sheng ASML Supervisor A. Ensuring the system design satisfies

stakeholders' concerns

B. Helping the PDEng trainee to overcome

a steep learning curve inside ASML

C. Project success

2 Jurgen von Oerthel

ASML Group Leader A. Project success

B. Adherence to the company rules

3 Harald Vos ASML PWD Depart-

ment Manager

A. Project success

B. Adherence to the company rules

4 Vinay Bansal

Erik Vermij

Mustafa Kabak

Jean-Paul Mikkers

Joost Verkooijen

Architects A. Ensuring that the solution architecture

adheres to the current YS software ar-

chitecture

B. Ensuring that the solution meets the re-

quired functionalities

C. Ensuring that the new solution's perfor-

mance and accuracy is comparable with

the existing one

D. Supporting both the new and the avail-

able pattern recognition solution

5 Louise Gouteux

Julius Chatterjee

Amandine Renault

Functional Designer A. High performance (fast) pattern recog-

nition solution

B. Accurate pattern recognition solution

(sub-pixel accuracy)

C. Alignment profile creation

D. Reliable pattern recognition solution

(same result for the same input)

E. Configurable pattern recognition

solution

F. No usage of any hardware dongle

G. Ease of use

H. Flexibility

6 ASML Customers such

as Intel and Samsung

ASML Customers A. Ease of use

B. Fast lithography which implies fast wa-

fer alignment

C. Accurate results

D. Reusability [both for recipes and pat-

terns]

 Eindhoven University of Technology

This section describes the main stakeholders of the Eindhoven University of Technology. They are

mainly responsible for ensuring that the quality of the project deliverables meets the PDEng standards.

The knowledge and experience of these stakeholders regarding the project business logic might be lim-

ited. However, they provide help and support from the academic point of view, if needed. Table 2 lists

the main stakeholders and their concerns. Dr. Papapetrou was primarily involved in the project via PSG

meetings. He got regularly updated either by emails or private meetings. Dr. Dajsuren occasionally

participated in the PSG meetings and urgent situations meetings.

Table 2. Eindhoven University of Technology stakeholders

Id Name Role Concerns

1 Yanja Dajsuren TU/e PDEng ST Program

Director

A. Ensuring that the quality of the project

is following the PDEng program

standards

B. Trainee's graduation

C. Project Success

2 Odysseas

Papapetrou

TU/e Supervisor D. Monitoring the trainee’s progress

E. Helping the trainee to overcome poten-

tial difficulties by giving directions in

case of need

F. Evaluating the project achievements

3 Raha Sadeghi TU/e PDEng Trainee G. On-time graduation

H. Project success

I. Developing project management and

soft skills

J. Developing technical skills, including

designing skills and computer vision

K. Stakeholder expectation management

It is important to note that not all stakeholders have the same influence on and interest in the project. It

is crucially important to figure out how each stakeholder could influence the project and its direction.

During the project, the trainee tried to grab the attention of the stakeholders with less interest but high

impact on the project by providing interesting results to increase their involvement to be able to request

and get more specific information.

3.Problem Analysis

This chapter explains the project context at a very high level, helping identify the problem, followed by

identifying the project goal.

 Context

YieldStar is an integrated or standalone metrology system that performs quality measurements on spe-

cific wafer targets produced by the TWINSCAN machines. These quality measurements are executed

in specific predefined regions, which are at known positions from a predefined basis. Once the wafer is

placed in YS, the location and orientation of the wafer are unknown. As the field of view of the camera

is small, for quality measurement, the wafer position has to be known up to ±0.3𝜇𝑚.

Figure 2 shows the life cycle of a wafer in YS. Once TWINSCAN exposes light on a wafer, it passes

the wafer to the YS machine. Within the Wafer Exchange phase, a robot takes a wafer from the FOUP

(a box of wafers exposed by the scanner) and prepares it for pre-alignment. The first pre-align step

physically aligns the wafer up to ±5𝜇𝑚 based on the position of the wafer notch. In this phase, the

wafer is rotated, and an edge sensor measures the edge of the wafer as it is rotating. From the edge

measurements and notch position, a first wafer grid can be determined. This step is followed by a more

accurate wafer alignment phase that identifies the wafer position with the required precision. After this

step, the stage coordinate system is get updated, making the wafer measurement possible. During the

measurement phase, the stage goes to the overlay targets based on the updated coordinates, and images

can be taken from the targets to measure the quality metrics. As the focus of this project is on the wafer

alignment phase, let’s dive a bit more into the wafer alignment phase.

Figure 2. Wafer life cycle

Generally, wafer alignment includes two steps, namely Coarse alignment and Fine alignment. Depend-

ing on the alignment mode (fast or normal,) either both of them or only the Fine alignment are needed.

While both Fine and Coarse alignments apply pattern recognition techniques to determine the position

and orientation of the wafer, they target different fields on the wafer. The wafer surface consists of a

plethora of structures. The main idea behind using the pattern recognition technique is to define some

of these structures as marks and then try to recognize and precisely localize these marks on the wafer

surface.

During the wafer alignment phase and based on the pattern recognition result, the difference between

the position of the recognized mark on the wafer 𝑃𝑅 (Real Position) and the expected mark position on

the wafer 𝑃𝐸 is measured. YS can build up a high-order wafer model to guide measure target positioning

by extracting the position of enough marks and finding their shift based on their corresponding expected

positions. Figure 3 illustrates the mentioned idea. After wafer alignment, YS can determine the exact

position of structures on the wafer. Hence it can start the measurement phase to measure the mentioned

quality metrics such as OV and provides feedback to TWINSCAN. The detail of how the measurement

is being done in YS is out of this project's scope.

Figure 3. Wafer alignment concept

 Problem Statement

ASML uses a commercial off-the-shelf library, called Cognex Vision Pro, for pattern recognition. Alt-

hough Cognex works quite well, the main problem with using Cognex is that it is licensed, and it is not

working without using a hardware dongle. Dongle cost is around 3,5k euro, which makes it expensive.

Additionally, using the hardware dongle makes the configuration more complex. Using a hardware

dongle also makes the development more challenging, as each developer or tester also needs to have a

dongle. Different versions require different hardware dongles. Therefore, finding a replacement for

Cognex, which is not licensed and does not require a hardware dongle, could be highly beneficial.

ASML Clients use a wide variety of shapes as patterns (markers) captured under various conditions.

Cognex seems to deal well in recognizing these patterns in most cases, but sometimes it generates un-

expected results, leading to false positives and false negatives. Incorrect results could lead to a non-

optimal determination of the wafer coordinate system since wrong results are used for finding 𝑃𝑅. Note

that inaccurate results mean that the wafer cannot be aligned correctly. Therefore, the overlay target

cannot be located within the camera spot to be measured, which in turn could cause wafer measurement

failure. Another practical case is that in a few cases, Cognex cannot recognize the patterns (mostly with

very low contrast images or in case of patterns with shadows in the borders,) which is not desired with-

out determining the reason. It is almost impossible to design and develop a solution that never produces

a false positive or can always recognize all sorts of patterns. However, because Cognex is a third-party

library and the algorithms being used within this library are patented and used as a black box, it is not

easy to determine the source root of this behavior or customize the solution.

This project explores the possibility of finding a pattern recognition solution using open-source com-

puter vision libraries as a replacement for Cognex in the context of the wafer alignment within YS. In

this project, the main goal is to propose a new in-house and transparent solution that could make further

improvements possible. Although the new solution should be comparable with Cognex in terms of ac-

curacy and performance, some extent of deviation is acceptable, as generating the framework and in-

vestigating the feasibility of the replacement is the primary goal.

A prototype is required to test the accuracy and performance of the proposed approach. The new library

should have an interface compatible with the current pattern recognition interface, such that it could be

integrated within the YS application. Finally, the new library should be integrated into the YS solution

such that YS can measure wafers without the Cognex dongle to evaluate the performance and accuracy

of the new solution.

4.Domain Analysis
Once the wafer is located on the stage, it is prone to some extent of rotation, scale, or transformation.

Therefore, YS expects a few micrometer differences between the expected pose of the targets and their

actual positions. The process of finding the exact position of structures on the wafer and updating the

stage coordinate system is called wafer alignment, which is the prerequisite of the wafer measurement.

Pattern recognition is the heart of YS wafer alignment. This chapter discusses the domain model in

more detail, and it is concluded by defining the project scope and constraints.

 Pattern recognition application

Each wafer consists of multiple layers. Each wafer follows a complex manufacturing process with sev-

eral steps per layer. Different photo-sensitive materials can be used to make it ready for exposure/li-

thography. During the exposure step, the circuit structure/pattern is printed on the wafer by exposing

wafer to the light. Depending on the photoresist material being used, the appearance of the printed

structure could look slightly different.

Figure 4. Wafer map of fields

Each silicon wafer has a round shape with a diameter of around 300 millimeters. One can consider a

Wafer Coordinate System (WCS) for describing the positions on the wafer. The wafer surface can be

divided into many fields (squares in Figure 4.) Based on the WCS, the center of the wafer is (0,0). X

values increase to the right of the wafer surface, and Y values increase to the top of the wafer surface.

Therefore, according to the WCS, a field located at the center of the wafer is at the position (0,0). The

fields located at the center (the blue field) are called center/coarse fields. They are targets of the Coarse

wafer alignment. The fields at the corners, such as the green ones, are called edge/fine fields, and they

are targets of the Fine wafer alignment, which aligns the wafer more accurately.

4.1.1. Marks

Figure 5a represents a closer look at the content of a wafer field. Generally, the same set of structures

is printed in all fields. The field structures can be simple shapes like regular rectangles or more compli-

cated structures. There should be at least one unique structure or pattern among these structures, which

we may call a mark or pattern. Figure 5b shows a unique structure (mark/pattern) that exists in the field

image. These marks are the basis of pattern recognition in wafer alignment. Pattern recognition aims to

define a mark to be recognized in the image and find its precise location.

Figure 5. (a) Wafer field image with recognized pattern, (b) Pattern

4.1.2. Pattern recognition challenges

As mentioned in the previous section, different photo-sensitive materials used in the lithography proce-

dure could cause the same pattern to look slightly distinctive in different layers, especially regarding

their color intensity. Although they might have the same shape, the color of the mark shapes might be

different. Hence, the proposed pattern recognition should not be dependent on the image's light inten-

sity. Additionally, although the users try to find unique structures in the field as a pattern, still different

structures in each field might share quite similar features, which could make the recognition challeng-

ing.

Images taken from the wafer fields are further processed for corrections and enhancements. However,

images could have entirely different qualities or contrasts depending on the field location and other

factors, such as various lenses, dust, or hardware imperfections. Additionally, images are subject to

distortions such as rotations or translations due to the camera alignment. Noise can also exist, which

makes recognition more challenging. Therefore, the solution should be flexible to recognize patterns

despite all these difficulties. It is worth mentioning that the goal is not to recognize the pattern but to

localize it. It means that the precise location of the origin of the mark should be reported.

Achieving high performance and accuracy is essential and, at the same time, challenging. Since pattern

recognition is the heart of the YS alignment, any latency in this phase could lead to latency and overhead

in the metrology procedure. Similarly, if the recognition cannot find the accurate position, it leads to

inaccurate measurement and thus inaccurate feedback to TWINSCAN.

 Cognex Vision Pro and APT

In the Problem Analysis chapter, Cognex was introduced. Cognex is a commercial tool that supports a

variety of computer vision functionalities at an industrial level. It has a pattern recognition library called

Cognex Vision Pro. Different versions of Cognex are being supported in the YS application.

Alignment Pattern Tool (APT) is an ASML-built tool that acts as a wrapper around some Cognex com-

ponents. It also provides a graphical tool to facilitates pattern recognition. The tool supports various

functionalities, from pattern creation to pattern recognition. It is a sandbox tool that allows users to play

around with mark recognition, training the pattern, and fine-tuning the recognition parameters. As soon

as one comes up with a set of settings (the best training and run-time parameters) that works accurately,

it is possible to dump the tool’s settings and data and create an alignment profile. The alignment profile

can further be used for creating an alignment recipe. The recipe definition is discussed in the next sec-

tion in more detail.

Once the pattern is defined, training and localization can be done using patented algorithms such as

PatMax and PatQuick. Cognex supports two different pattern types, an image-based pattern, and a

model-based pattern.

In an image-based pattern, the user can grab a region of interest of the input image. Therefore, the

existence of the wafer image is necessary for image-based pattern creation. On the other hand, for cre-

ating model-based patterns, users should know the exact geometric shapes of the model and lines’ length

in micrometer scale, but there is no need for any input image.

Figure 6 depicts a model-based and an image-based pattern representing the same structure. As it shows,

the edges in the model-based one are sharper and more accurate. Using image-based patterns, edges

should be detected automatically, which could be error-prone depending on the image quality. However,

creating an image-based pattern is easier and does not require expert knowledge. Notably, the results

gained by utilizing model-based patterns are more accurate, mainly because the train origin (usually it's

center) can be defined more accurately, and the exact shape of the pattern is defined precisely. Hence,

model-based patterns are used more widely.

Figure 6. Model-based (left-side image) vs image-based pattern (right-side image)

Cognex can find patterns in an image of size 1000 by 1000 pixels in less than 30 milliseconds with sub-

pixel accuracy. It finds a set of coarse and fine features during the training phase. During the execution

phase, it finds the area in the image that has the highest similarity with the pattern, based on extracted

features in the training phase.

 YieldStar Wafer Alignment Module

After clarifying the application of pattern recognition, this section describes the general YS wafer align-

ment procedure, depicted in Figure 7.

Figure 7. YieldStar wafer alignment procedure

The first step is to define the proper dose and color. The dose is the intensity level of light that shines

on the wafer for the wafer alignment purpose. This step aims to find the best dose that could facilitate

pattern recognition. Once the proper dose is identified, the machine can initiate the Coarse wafer align-

ment. Based on the result of this stage, the stage is aligned. The only reason to do Coarse alignment is

to be accurate enough to find the fine marks. The Fine alignment starts only with successful pattern

recognition in the Coarse phase, unless in the fast alignment mode which the Coarse alignment is not

needed. Please refer to Appendix. A to find a summary of the wafer alignment domain model in one

figure.

4.3.1. Pattern recognition wrapper

The application of pattern recognition in YS is not limited to the wafer alignment, but also it has appli-

cation in the target alignment and other YS modules. A pattern recognition wrapper was introduced to

increase the YS code modularity and decouple the pattern recognition solution from other modules.

While the wrapper's implementation could vary depending on the pattern recognition library, all other

modules and clients consuming the wrapper interfaces are decoupled from the library.

Figure 8. Pattern recognition wrapper

Figure 8 demonstrates the mentioned idea. So far, three different versions of the Cognex Vision Pro

have been released, which are supported in YS. There is a separate wrapper implementation for each

version. As discussed earlier, Cognex is licensed, and it can be used only if the hardware dongle is

present. Since not everyone can have a hardware dongle (as it is costly), a simulation module was in-

troduced that in the same way implements the wrapper interfaces. During the runtime, the proper wrap-

per implementation is used based on the installed version of the library.

4.3.2. Alignment Recipe

As mentioned earlier, all wafer fields contain the same set of structures. Also, despite of different photo-

sensitive materials that can be used in different layers, patterns look almost identical in all layers with

only slight differences. Additionally, customers produce a plethora of similar wafers. Therefore, the YS

machines must create a recipe that can be repetitively used in massive production and across different

wafer layers. Recipes define the instructions required for measuring a wafer.

There are various recipe types. Recipes contain different information, such as the selected wafer fields,

the mark or target position, and the alignment profiles. Alignment profiles (.align files) contain the

pattern description, train, run parameters, and other information such as the alignment mode. They can

be created using APT.

Recipes can be image-based, model-based, or library-based. Image-based recipes are based on image-

based patterns, and they can be created from scratch from the YS wafer alignment menu. Model-based

recipes contain model-based patterns. Library-based recipes are recipes that contain more than one pat-

tern. These patterns can be either model-based or image-based, all representing the same structure.

 Project Scope

As mentioned earlier, this project targets only pattern recognition in the context of YS wafer alignment.

APT and its usage in the YS wafer alignment were discussed in the previous sections. Since a tool,

similar to APT, is a prerequisite for the wafer alignment and can be used to test the proposed pattern

recognition solution, one of the initial goals of this project was to design and implement such a tool.

While APT supports both image-based and model-based pattern recognition, the target of this project

was only model-based pattern recognition. The reasons behind this decision were as follows:

1. Supporting both types of pattern recognition within the limited time of the project was not fea-

sible.

2. Model-based pattern recognition is being used more widely, and its result is more reliable than

image-based recognition.

3. It is believed that image-based pattern recognition can be addressed based on the model-based

techniques, provided that one can precisely detect pattern edges and contours. Section 7.1.1.

gives more details on this topic.

Although Cognex and more precisely APT supports some additional functionalities such as model-

based pattern creation, in this project, we mainly focused on addressing the most critical questions and

features that requires more attention and investigation. Therefore, as we knew model-based pattern cre-

ation is doable and only requires some more effort in the implementation phase, we decided to consider

adding this feature to the new tool as a feature work. Instead we added a new and more critical feature

to the tool. Using this feature users can convert Cognex-based patterns to a new format, readable by the

new library and tool.

Figure 9. System of interest

The new library should be integrated into the YS application to assess the feasibility of replacing

Cognex and measuring the new library’s performance. This means that the pattern recognition wrapper

should be implemented using the new library. Figure 9 shows a closer look at the pattern recognition

module of the YS wafer alignment. While the right side of the figure shows the system's architecture

before this project, the left side depicts the system of interest of this project and how the system should

get updated in a high level. The main deliverables of this project can be summarized as follows:

• A new library based on the available open-source computer vision libraries, hereafter RECOG

• A new alignment pattern recognition tool based on the new library for model-based pattern

recognition called Alignment Recognition Tool (ART)

• A new YS patch supporting both RECOG and Cognex libraries for the wafer alignment pattern

recognition

 Project Constraints

Identifying the project constraints plays a vital role in the system architecture and finding the proper

solution direction. Essential project constraints are as follows:

• Utilization of any hardware dongles is not desired.

• The system shall only utilize open source libraries approved by the ASML Free and Open

Source Software (FOSS) portal to be used in commercial product integration.

• The PDEng project should be finished by October 2021.

5.Requirements and Use Cases
This chapter reviews the system requirements and use cases. Requirements are the specifications that

the deliverables (the new library, new tool, and the integrated YS) need to fulfill, and they were derived

from the stakeholder's concerns. Use cases describe the usage of the system from the point of view of

different actors. The requirements and use cases were discussed and agreed on with the stakeholders

before designing the system.

 Requirements Elicitation

The following sections describe the requirements of the project based on the MoSCoW method [31].

We categorized the requirements as business, functional, non-functional, architectural, and implemen-

tation requirements.

5.1.1. Business Requirements

This section lists the high-level statements of the goals, objectives, and requirements that should be met.

The business requirements of this project are listed in Table 3.

Table 3. Business requirements

Id Requirement Description Priority

B01 Alignment Recognition Tool (ART), an APT replacement, shall facilitate

pattern recognition without using Cognex or any hardware dongle.

Must

B02 YieldStar shall align wafers based on the model-based patterns without us-

ing Cognex in the wafer alignment stage.

Must

5.1.2. Functional Requirements

Functional requirements are detailed statements of capabilities, behavior, and information that

the solution should address. Table 4 lists the functional requirements of this project.

Table 4. Functional requirements

Id Requirement Description Related

concern

Priority

F01 The ART user interface shall allow the user to load the input

image in either PNG or IM format. IM is an ASML internal

image format.

5.G, 6.A Must

F02 The ART user interface shall allow the user to load and im-

port model-based patterns.

5.G, 6.A,

6.D

Must

F03 The ART user interface shall allow the user to set train pa-

rameters, including the train region and origin.

5.G, 6.A,

6.D

Must

F04 The ART user interface shall allow the user to train the

model.

4.B, 5.H Must

F05 The ART user interface shall present image metadata. Im-

age metadata contains additional information about the im-

age, including its size, location, resolution, and so forth.

5.G, 6.A Should

F06 The ART user interface shall allow the user to set runtime

parameters, including accept threshold, scale, and angle.

4.B, 5.E,

5.G, 6.A

Must

F07 The ART user interface shall allow the user to run a model-

based pattern recognition and get the recognition result.

4.B, 5.H Must

F08 The ART user interface shall show the recognition result in

a table with information including X, Y offset (microme-

ter), score, angle, and the scaling factor.

5.B Must

F09 The ART user interface shall enable the user to dump and

load the pattern recognition solution (tool) either as an

XML file or as an alignment profile.

5.G, 6.A,

6.D, 5.H,

4.B

Must

F10 ART shall facilitate pattern recognition using a specified ro-

tation or scale.

4.B Must

F11 ART shall run pattern recognition in batch for a set of im-

ages against a specific model-based pattern.

5.G, 6.A Should

F12 ART shall save the result of batch execution in a CSV file. 5.G, 6.A Should

F13 YieldStar shall allow users to align a wafer using either

RECOG, without dongle, or using Cognex.

Description: Integrating RECOG is required for the testing

purpose and as a proof of concept, not as a production-level

delivery.

4.B, 6.A Should

F14 YieldStar shall record diagnostic data based on the result of

the RECOG pattern recognition.

Description: Diagnostic records are needed for the testing

and result investigation.

4.B, 4.G Should

5.1.3. Non-Functional Requirements

Table 5 lists the requirements that specify criteria used to judge the system's operation rather

than specific functionality.

Table 5. Non-functional requirements

Id Requirement Description Related

Concern

Priority

NF1 The system shall recognize each mark in less than 50 milli-

seconds.

4.C, 5.A,

6.B

Should

NF2 The system shall recognize each mark in less than 250 mil-

liseconds.

Description: The recognition time of the prototype of the

system shall be less than 250 milliseconds. This recognition

time is promising enough to achieve the desired perfor-

mance in the production-ready application.

4.C, 5.A,

6.B

Must

NF3 The system accuracy (pattern recognition accuracy) shall be

at most 0.35 micrometer.

5.B, 6.C Should

NF4 The system accuracy (Pattern recognition accuracy) shall

be at most 0.8 𝜇𝑚.

Description: The pattern recognition module's accuracy

shall be less than 0.8 𝜇𝑚. This accuracy is promising

enough to achieve the desired accuracy in the production-

ready application.

5.B, 6.C Must

NF5 RECOG recognition success shall have at least 90 percent

of the Cognex recognition success given the same image

and pattern.

Description: The system shall recognize patterns regardless

of the image brightness or quality, as good as Cognex's ca-

pability to recognize the same patterns. The result is prom-

ising by achieving 90 percent success and it could be im-

proved later on.

5.G, 6.A Must

NF6 The system shall only utilize open source libraries approved

by the ASML Free and Open Source Software (FOSS) por-

tal to be used in commercial product integration.

1, 2, 3, 4 Must

NF7 The pattern recognition algorithm shall be deterministic.

Description: The system shall report the same result given

the same inputs.

5.D Must

5.1.4. Architectural Requirement

Table 6 lists the architecturally significant requirements that should be taken into account while

defining the system architecture.

Table 6. Architectural requirements

Id Requirement Description Related

Concern

Priority

A1 For integrating RECOG into YieldStar, RECOG shall com-

ply with the current architecture and interfaces of the Yield-

Star Pattern Recognition wrapper.

4. A Must

A2 The system shall have a module for converting existing

model-based patterns/xml/.align files to their correspond-

ing file acceptable by the ART.

4.D Should

5.1.5. Implementation Requirement

Table 7 describes the requirements that define implementation constraints.

Table 7. Implementation requirements

Id Requirement Description Related

Concern

Priority

I01 RECOG shall have a C# interface. 4.A Must

I02 RECOG shall be compatible with .Net framework 4.8 and

C# version 7.3.

4.A Must

 Use cases

In this section, the most important use cases of the system are discussed. Use cases represent actors'

interaction with the system. Defining use cases helps to figure out system requirements more precisely.

Additionally, by satisfying related requirements, one can be ensured that the system corresponds to the

user expectations. Figure 10 depicts the use case diagram of the system.

This system has two primary categories of actors. ASML customers and functional designers seem to

have similar interactions with the system from this project’s perspective. Another main actor of the

wafer alignment is the YS machine.

Figure 10. Use case diagram
YS should be to able to align a wafer and measure the quality metrics such as OV with or without using

Cognex libraries. Therefore, YS should be able to decide which library should be used and also retrieve

the data from alignment profiles, regardless of the pattern recognition library that is used. Finally, YS

should recognize patterns or marks to align the wafer.

Customers and functional designers need to set or edit training or run-time parameters, depending on

the pattern template, to get better results. As mentioned earlier, the reusability of the alignment profiles,

recipes, and patterns is one of the major concerns. Therefore, the system (new tool) shall enable users

to capture pattern recognition solutions and create alignment profiles for later use.

Additionally, the system should enable functional designers or customers to convert the Cognex files

into the RECOG ones, such that they can take advantage of the currently available recipes. The system

shall enable users to load the available RECOG-based files and execute the pattern recognition using

an alignment file, irrespective of its format.

Before executing the actual wafer alignment in the YS machine, users should run pattern recognition

and find the suitable parameters facilitating the successful wafer alignment. Notably, they need to run

batch pattern recognition for many input images to ensure that the parameters are set correctly. The

system shall help with troubleshooting by creating recognition reports in the format of CSV, similar to

Cognex, to help users finding the potential problem and fine-tune the parameters. Once the recipe is

created, YS can run pattern recognition during the Coarse or Fine wafer alignment procedure.

 Design Criteria

This section describes the design criteria for the proposed system. These criteria are revisited in 12.1

to verify how well the proposed solution satisfies the intended design criteria.

5.3.1. Performance

Wafer alignment plays a vital role in metrology and consequently in lithography. Any latency in the

pattern recognition could dramatically impact the wafer alignment and consequently the machine

throughput.

Accuracy is a big concern for a metrology tool. YS should provide feedback to the TWINSCAN ma-

chine to calibrate or correct the scanner for the next batch of wafers. Any errors, even a few nanometers,

could have significant impacts on the lithography procedure. Therefore, achieving high accuracy and

performance should be one of the leading design criteria.

5.3.2. Realizability

Realization and implementation of the designed approach must be achievable. The solution should be

integrated into YS and tested in a production environment. In this way, based on the measured KPI, the

feasibility of replacing Cognex with the new library can be investigated.

5.3.3. Extensibility

Pattern recognition has different applications in YS, and its usage is not confined to the wafer alignment.

Besides, due to the project's time limit, we confined the project scope, and not all different scenarios

are covered in this project. Therefore, the solution should be flexible enough to add a new feature or

algorithm with minimum effort. It also implies that the maintainability of the solution is highly im-

portant.

6. Related Work and Feasibility Study
The feasibility of replacing Cognex is highly intertwined with the successful recognition and localiza-

tion of patterns in images, which is referred to as object detection in the literature [1, 2, 3]. Object

detection is not a new topic, and it has gone through two historical periods: “traditional object detection

period” and “deep learning based detection period (after 2014)”[1]. However, note that it does not mean

that the traditional Computer Vision (CV) techniques have become obsolete [3].

Traditional CV techniques commonly extract rich features from images and match extracted features

with the input image [1]. On the other hand, state-of-the-art CV algorithms employ modern techniques

(machine learning or deep learning algorithms) to detect objects [2]. The first question in this project

was whether we should utilize the modern approaches or the traditional ones to address the problem.

The first section of this chapter explains why we did not apply modern approaches. The next question

was which kind of traditional techniques could be used in this project. To find an answer to this critical

question, we reviewed the literature. We prototyped the potential solutions using Python, regardless of

the final opensource library that we might select. We utilized the available wafer images used for trou-

bleshooting to investigate the applicability of different techniques. The results of this study set the pil-

lars of the proposed solution. The second section of this chapter explains the achieved results.

 Modern Computer Vision Techniques

Many studies have been conducted during recent years, and promising deep learning algorithms have

been introduced targeting object detection, like RNN, Fast-RNN, and YOLO [2, 3]. They all follow the

same procedure. There should be a large dataset. A significant proportion of the data should be used for

the training phase to capture the unique pattern's features and learn how to detect the pattern in unseen

images. The remaining data can be used for algorithm validation and parameter fine-tuning. Once the

pattern is trained, it can facilitate object (pattern) detection in images or videos.

Techniques based on deep learning have provided new opportunities for object detection in recent years.

However, there are still applications that traditional approaches could generate good results [2]. DL

could sometimes be an overkill if traditional CV techniques can solve a problem effectively, in fewer

lines of code, and less complexity than DL [3]. Therefore, depending on the problem and its complexity,

one should decide if using modern CV techniques is really needed or traditional techniques could ad-

dress it.

Usually, large datasets are used for the training and testing of AI-based algorithms [2,3], mainly because

the more training data available during the training phase, the more accurate result can be achieved.

However, looking at this project’s problem specifications, there is not enough training data, if there is

any. Customers could define their own set of alignment patterns specific to each product. Due to confi-

dentiality concerns, they might not be willing to share even one of the pattern images. Not having a

proper dataset implies that the essential requirement of using modern approaches cannot be met. Even

if we have access to a pattern image, there is not enough data that describes the pattern with its precise

location, especially in newly introduced patterns. Once we have enough annotated data for a pattern,

the pattern can be trained once at ASML and be used by the customer who use the pattern. Though,

note that for each product, a new alignment pattern might be required. For training the new pattern, a

new set of annotated data should be available or generated, which requires an extra effort. The frequency

of introducing a new product/pattern could vary depending on the company and customer preferences.

One possible solution could be to use a detector, which is pre-trained on large-scale datasets, and later

fine-tune it for specific detection tasks. There are some limitations when adopting the pre-trained net-

works in object detection, such as the domain mismatch or differences between the category of datasets,

their loss function, scale, and other differences. Because of differences, it is not always possible to

transfer the pertained knowledge to the detection task as desired [2]. Note that the category of objects

we need to recognize is unique.

The accuracy and precision of the pattern recognition in the wafer alignment are crucial. The algorithm

should recognize the pattern with the exact described size and orientation. Modern techniques aim to

find a pattern regardless of its size and orientation. Although recognition regardless of the size or ori-

entation might sound an interesting feature, it is opposed to this project requirement. Therefore, an

additional step for the refinement of results is required to exclude undesired results, leading to additional

time overhead.

YOLO1 is one of the fastest algorithms proposed so far, suitable for real-time applications, while Faster

RCNN is slightly more accurate. There is always a tradeoff between gaining accuracy and performance

[30]. Primarily these algorithms are not designed to be highly accurate in localization but mainly in

detection or classification, and some degrees of errors in the bounding box coordinates are acceptable.

However, accuracy is the main concern in this context, and even a few micrometers matters. According

to the mentioned justifications, limited project time, and the need for a learning and investigation phase,

as well as the potential need for data augmentation, we concluded that modern CV algorithms might

not be the best option for solving the current problem in the first place. If we could address the problem

using the traditional approaches, then as future work, one can apply modern techniques in addition to

the traditional approaches to gain better results.

 Traditional object detection techniques

Traditional object detection techniques take advantage of common CV techniques. Image registration

or image alignment, which is used in computer vision, transforms different images of one scene into the

same coordinate system. These images can be taken at different times (multi-temporal registration), by

different sensors (multi-modal registration), and from different viewpoints [15]. Image alignment has a

wide variety of applications. It is widespread in the field of medical imagery, satellite image analysis,

and optical flow. Since we expect to find the template pattern in the input image and shift its location

into the input image coordinate system, the problem can also be considered as an image (mark) align-

ment problem.

Image alignment algorithms can be categorized into two categories of intensity-based or feature-based

approaches [10]. Intensity-based methods compare image intensity patterns via correlation metrics,

while feature-based methods find correspondence between image features such as points, lines, and

contours. It is also possible to utilize a combination of these two approaches.

Different techniques were discovered and prototyped in this project to investigate if they could fit in the

current problem. The following sections summarize the most relevant approaches with their advantages

and disadvantages in practice.

1 You Only Look Once

https://en.wikipedia.org/wiki/Correspondence_problem

6.2.1. Feature-based matching

Feature-based approaches follow three main steps: key point detection and feature description, feature

matching, and image warping. Briefly, points of interest (key points) in both images should be selected,

and they should be described in a similar way to be comparable with each other. Each key point in the

reference image should be associated with its equivalent in the sensed image during the feature match-

ing phase. A geometrical transformation can be calculated by mapping enough key points in images

Homography matrix) to map the target image to the reference images. The matrix establishes a point-

by-point correspondence between the reference and target images. Figure 11 illustrates the idea.

Different algorithms exist targeting different steps (key point extraction, description, and matching.)

SIFT2[5] and SURF3 [6] are two of the best and most promising algorithms for feature-based matching.

However, both are patented. ORB4 [7] is an efficient alternative to SIFT and SURF, and it is not pa-

tented.

Figure 11. Feature-based matching technique

This technique is efficient if the image has a large resolution since it is based on feature extraction, and

there is no need to convolute the image. Also, by utilizing the homography matrix, the sub-pixel position

of each point in the template (pattern) image can be detected in the input image. However, this technique

is not good if different objects share the same features or if images have fewer features [8]. Moreover,

the accuracy of the homography matrix is highly dependent on how good key points are matched. Since

wafer patterns are fairly similar (not too many distinctive features), after prototyping, we did not get

good results, and in many cases, we observed keypoint mismatching. Therefore, this method failed.

6.2.2. Template Matching

Template Matching is a method for searching and finding the location of a template image in a larger

image. It is an intensity-based image alignment method and one of the common approaches for object

detection. It slides the template image over the input image (as in 2D convolution) and compares the

template and patch of the input image under the template image [9]. There are different comparison

methods, including Normalized Cross-Correlation (NCC) or square difference. These methods aim to

find the similarity/dissimilarity score between two images based on some statistical techniques. The

details of each approach are out of the scope of this document.

The main advantage of this technique is that there is no need for any annotated data compared to modern

techniques. It is a simple method, requires fewer parameters (compared to the feature-based ap-

proaches), and gives a similarity score that can be used as a pattern recognition score. Additionally, this

2 Scale-Invariant Feature Transform
3 Speed Up and Robust Feature
4 Oriented FAST and Rotated BRIEF

approach functions very well when templates have no strong features with an image, contrary to the

feature-based approaches [8].

On the other hand, it is slightly slower with larger images. Upon object detection, its upper left position

can be detected using template matching, but on the pixel scale. It implies that for finding the object's

sub-pixel position, some further steps are still required. As mentioned earlier, this technique is intensity-

based. Therefore, it only works well if two images have almost the same intensity. As mentioned in the

domain analysis chapter, patterns of the same structure could have different intensities in different lay-

ers. Therefore, we could not get good results from this technique without any preprocessing and cus-

tomization.

6.2.3. Contour-based matching

Contours are a set of points creating a closed shape. Contour detection is one of the image processing

techniques which finds the contours of each structure in the image. The approach is to find the contours

of both the input image and the template and then try to match the contours of the template to the input

image contours based on their area size similarity. This approach aims to extract a set of customized

and relevant features (contours) that could ease the detection. The good point about this technique is

that it is not dependent on the image intensity, and it does not require setting or fine-tuning many pa-

rameters. However, this approach is not practical if the pattern contains a set of detached shapes or if

there is more than one contour in the input image with the same size as the template pattern contour

area.

While none of these techniques could completely address the project concern, the template matching

technique seemed more promising if we could customize it. As it is mentioned, a common technique is

to use a combination of the image processing techniques to come up with the best solution. The follow-

ing sections review some other techniques that could ease the recognition.

 Techniques for getting sub-pixel accuracy

Referring to the system requirement, we needed to find the pattern origin with sub-pixel accuracy. Most

of the available techniques, such as template matching, report the pattern location with pixel accuracy.

Therefore, additional steps were required to get the sub-pixel position.

The first option was utilizing feature matching algorithms such as ORB. The idea was to grab the rec-

ognized area with some additional margin and then apply ORB to find the homography matrix. Each

point in the template image (pattern) could be easily mapped to the input image using the homography

matrix, including pattern origin. However, due to the nature of the pattern structures of this project and

their similarities, not enough good features could be extracted. Inaccurate features led to inaccurate

results.

Phase Correlation is an approach to estimate the relative translative offset between two similar images.

It is commonly used in image alignment and relies on a frequency-domain representation of the data,

usually calculated by fast Fourier transforms [23]. This approach seemed promising because of its high

performance. Besides, it generates a confidence score that could contribute in false positives detection.

However, in practice, its result is prone to high error rates in noisy images [12]. With noisy images, it

is hard to find the pattern edges. Inaccurate edges lead to incorrectly calculated shift results.

The sub-pixel interpolation technique is a way to get the sub-pixel value by an interpolation algorithm.

Pattern recognition is done on the interpolated input and template images. The result is then substituted

https://en.wikipedia.org/wiki/Translation_(geometry)
https://en.wikipedia.org/wiki/Image

into the correlation expression to calculate the sub-pixel position. This technique is a key way to im-

prove the displacement measurement accuracy in the correlation method; however, it is more time-

consuming [4].

We applied the phase correlation method to many different images with different qualities and com-

pared the results of this approach with the interpolation results. Results showed that the interpolation

technique is more reliable in practice by having a lower error rate. However, it is not as accurate as

phase correlation (in the case of correct detection.) Therefore, we proposed using interpolation to find

sub-pixel accuracy, accepting a little more time overhead and the risk of not getting the exact sub-pixel

position.

 Image contrast adjustment techniques

The quality and contrast of images could be different for various reasons, such as hardware imperfec-

tions. One of the merits of Cognex that makes it stand out is its flexibility in recognition of patterns

irrespective of the image quality. In low-contrast images with high noises, contours and edges cannot

be adequately detected. Inaccurate feature extraction leads to pattern recognition failure. Therefore, one

of the most significant prerequisites for attaining the project goal was adjusting image contrast and

improving its quality. We prototyped different approaches to find the best technique.

The Histogram Equalization (HE) process is an image processing method to adjust the contrast of an

image by modifying the image's histogram. HE improves the contrast of the image at the expense of

boosting the contrast image noises. On the contrary, the Adaptive Histogram Equalization (AHE) tech-

nique divides an input image into an M x N grid. It then applies equalization to each cell in the grid,

resulting in a higher quality output image without boosting noise as much as HE. The downside is that

AHE is more computationally expensive than HE.

An alternative technique was histogram matching. In this technique, a reference image is required to

get its histogram and then apply the input image's histogram to the target image. The problem with this

technique was the constant need for a reference image. Moreover, a reference image does not work for

all target images.

Finally, a promising method of Balanced Contrast Enhancement Technique (BCET) was proposed in

[13] to enhance the MRI image contrast. As MRI images also could have relatively low contrast, and

the application was quite similar (finding edges), this method was tested. Experiments showed that

although this method was slightly more time-consuming than the AHE, the results were increasingly

better, made it a potential solution.

 Summary

After reviewing system requirements and the alternatives approaches’ features, we found some limita-

tions for using modern approaches in this project, mainly not having access to enough data and limited

project time. We investigated the most promising traditional solutions by prototyping them and applying

each technique to the available data to explore the feasibility of utilizing each of them and finding the

best solution. The results ensured that a proper combination of these techniques could address this pro-

ject's concern and make the goal feasible. Please refer to Appendix D to find the summary table of the

given information in this chapter as well as visualization of the most important image processing tech-

niques used in the proposed solution. The next chapter describes the proposed solution in more detail.

7.Pattern Recognition
In the previous chapter, we concluded to use traditional computer vision techniques as the primary

solution direction. We also reviewed some of the most common techniques that could address the cur-

rent problem. This chapter describes the proposed pattern recognition solution. The proposed solution

addresses the model-based pattern recognition in the context of the wafer alignment. It enables pattern

recognition, finding the precise location of its origin, and assigning a score to the recognized pattern.

 Proposed Algorithm

The algorithm contains two main phases, training and recognition. During the training phase, some

features of the model-based pattern (template) are extracted. These features are the basis for finding the

pattern in the input image in the recognition phase. Once a pattern is trained, the training result can be

used to recognize the same pattern in the input (wafer) images.

7.1.1. Training Phase

A model-based pattern contains descriptions of simple geometric shapes like lines and their origin and

region on the micrometer scale. We can draw pattern shapes based on the descriptions, visualize the

pattern and convert them into images. Converting a model description to an image is the prerequisite of

using the proposed algorithm. That is why the solution can be easily extended to address image-based

pattern recognition as well. Note that converting a model-based pattern to an image implies that the

detection process should be done in the image coordinate system, i.e., on a pixel scale. Therefore, the

pattern definition should be converted into the image coordinate system, using the image resolution.

The image resolution defines the number of pixels per micrometer.

During the training phase, the goal is to visualize the pattern and extract some pattern features that could

help with successful recognition. The number of pattern contours and the minimum and maximum con-

tour area smooth the recognition procedure.

Since we proposed visualizing the pattern and creating an image using line descriptions, we are assured

that images are not noisy and have proper contrast. It means that no preprocessing on the template

pattern image is required. The image should be created in a grayscale format to ease the process of

contour detection. Grayscale images only contain the image intensity information per pixel. The pattern

lines should be drawn using white lines on a black background image to achieve the highest contrast.

Figure 12. Training phase

After finding the contours, the minimum and maximum contour area should be extracted as the training

features. The goal is to confine the search area during the recognition phase using the training data and

consequently reduce false-positive results. Figure 12 describes the training phase. Because the pattern

scale could impact the contour area, we should adjust the scale during the training phase.

7.1.2. Recognition Phase

The main idea in the recognition phase of the proposed solution is to apply template matching using the

NCC (Normalized Cross-Correlation) technique. It means that the template (the pattern image) should

be slid pixel by pixel across the input image to find the recognized area in the input image. we consid-

ered four main steps for this purpose:

• Input image preprocessing to enhance the image quality and contrast

• Coarse recognition, to find the recognized area on the pixel scale

• Score calculation, to exclude false-negative results

• Fine recognition, to find the precise pattern origin on the sub-pixel scale in the input image

Preprocessing

Figure 13 depicts the recognition phase steps. The quality and contrast of the wafer images could vary

depending on the machine camera or other factors. The image contrast could have a high impact on the

detection result. Moreover, the same structures might have different intensity levels in different layers.

Therefore, for a successful detection, a preprocessing step is required. For this purpose, we first con-

verted the image to a grayscale one. Wafer images are not colorful and saving the image color infor-

mation does not add any value. An image enhancement technique could be applied to the image to

facilitate edge detection. The technique used in this algorithm was suggested in [13] to address the edge

detection on low contrast medical images to detect brain tumors.

Figure 13. Pattern recognition solution

Instead of searching for the pattern in the entire image, we try to first find the interesting area in the

image using the training data. In this way, we can confine the search region and also exclude possible

noises in the image. This technique could immensely help in reducing the false-positive results.

For this aim, we decided to find all the image contours and select those with an area size similar to the

template (using the captured minimum and maximum area in the training phase), accepting some extent

of deviation. Based on the selected contours, we can create an image mask.

Thresholding is an image processing technique that turns an image into a binary image, which helps in

image segmentation. Thresholding is usually used as a prerequisite of contour detection. There are var-

ious ways to apply thresholding [28], such as simple or adaptive thresholding. We proposed to apply

adaptive thresholding. As its name implies, instead of using a global threshold value, it determines the

pixel threshold based on its surrounding pixel values. As a result, we can get different threshold values

for different regions of the same image, which gives better results for images with varying illumination

[22].

Gaussian blurring [24] is one the image processing techniques that help with smoothing the image and

remove noises. We applied this technique before the thresholding with the same reason. Then, using the

training result (minimum and maximum area of the template), only those contours in the input image

should be selected that their area is within the range of the template contour size. Finally, before initi-

ating the Coarse recognition phase, an image mask should be created by drawing selected contours on

an image with a black background and applying it to the grayscale image.

Coarse recognition phase

In the suggested algorithm, we proposed using template matching in the Coarse recognition phase. The

preprocessed image and the template pattern image are two inputs of this algorithm.

As template matching is an intensity-based approach and wafer images could have different intensity

levels (due to the difference in the layer, photoresist material, field coordinate,) we cannot compare

these two images without any modification on them. We know that model-based patterns are descrip-

tions of a set of lines. The patterns can be recognized more accurately if valuable and comparable fea-

tures can be extracted from both the input image and the pattern. With this goal, the edges of the input

image should be detected. Therefore, the resulted image also contains a set of lines with almost the

same intensity level. Gaussian blurring before the edge detection could remove some noises and im-

prove the result of edge detection. Dilation is one of the morphological image processing techniques

that adds pixels to the boundaries of objects in an image [25, 26]. We noticed that one iteration of

dilation could connect detached corners of edges and increase the edges' intensity. If there are some

shadows surrounding the patterns, blurring could make the situation worse for detecting edges, espe-

cially if pattern is brighter than the surrounding area (background). Based on experiments, we realized

that concerning these images, if we apply adaptive histogram equalization instead of Gaussian blurring,

better results can be achieved. Therefore, we proposed these two variants of the same algorithms, which

users can decide which one could generate better results, depending on the images and the pattern,

considering that the latter one could take a bit (about 5 milliseconds) more time. Therefore, using the

second one is only suggested if good results cannot be achieved by the first approach. Figure 14 demon-

strates the coarse recognition phase. Based on the experiments we conducted in this project, the first

algorithm (applying blurring) works best in most of the cases, except regarding one specific layer. All

the test results in the Verification and Validation chapter are based on the first approach, except the

result of testing pattern D.

Figure 14. Coarse recognition phase

It is essential to note that not all edges are important. Hence, we applied the created mask (during the

preprocessing step) on the edges to select edges of the interested area. This approach significantly re-

duces the risk of getting false-positive results. Depending on the image quality, there is a risk that edges

cannot be found precisely, especially after applying the mask. Therefore, we proposed making the de-

tected edges stronger by applying the dilation technique [25, 26]. Note that we applied the mask on the

detected edges, not the input image. This is mainly because, applying mask on the input image,

depending on the background color of the pattern, could cause an additional unwanted and incorrected

edges. Incorrect edges could lead to inaccurate offset results.

If we have the template pattern and the masked edges of the input image, then we can apply the template

matching technique [27] and NCC as the matching method to recognize the pattern and get the similarity

score. Users might need to recognize a pattern with a specific degree of rotation. If the orientation of

the template and the sliding window are not the same, the similarity score might be relatively low.

Therefore, it is required to adjust the angle before initiating the recognition procedure.

There were two options. We could either rotate the input image or the template image. However, as the

image size is larger than the pattern, adjusting the input image angle was more time-consuming. There-

fore, in this algorithm, we suggested rotating the template. For more details on how the algorithm ad-

dresses the angle adjustment, please refer to Section 7.2. Briefly, the main idea is to introduce a bound-

ing box for the template.

After adjusting the angle, NCC can be applied to the output image and the template image to find the

position of the pattern (if it exists) on the pixel scale. Users can define a threshold score for the coarse

phase. If the score is higher than the defined threshold, the final score should be calculated.

Score calculation

Although NCC returns a similarity score, this score could be relatively low and cannot be used as the

sole criterion to decide on the success of the recognition. Different factors could impact getting low

scores, such as:

• Difference between the intensity level of the image edges and the template

• Incomplete detection of input image edges due to the image low contrast or noises

Therefore, we proposed calculating the final score based on the intensity and similarity in the number

of contours. Input image for this phase is the Region Of Interest (ROI) of the reference image in the

Coarse phase. After selecting the recognized region based on the Coarse phase result as an input image

for this phase, we need to amend it by applying a few more iterations of dilation. It helps in connecting

detached edges; otherwise, the intensity score might remain incorrectly low.

Figure 15. Score calculation

Additionally, to detect false positives, we count the number of contours in the recognized area. Ideally,

we should find the same number of contours in case of proper recognition. However, the same number

of contours is not a guarantee for correct detection, as two different shapes could also have the same

number of contours. Moreover, other factors like noises or image contrast could impact the detected

contours. Therefore, we considered a weighted average of the mentioned score values to calculate the

total score. Note that the score should be within the range of zero to one. Figure 15 depicts the score

calculation steps. If the final score is above the defined accept threshold, the Fine recognition step is

followed to find the sub-pixel pattern origin position. Score calculation in case of rotation could be

slightly challenging, which is covered in Section 7.2.

Fine recognition phase

For finding the pattern sub-pixel position, as discussed earlier, an interpolation technique is suggested.

Instead of interpolating the entire image, which could dramatically impact the performance, we sug-

gested the interpolation of the region of interest. The region of interest is the recognized area with some

additional margin to consider any potential shift that could be detected in the Fine recognition phase.

NCC-based template matching on the interpolated pattern and the interpolated region of interest of the

input image should be applied. Then the result should be downscaled to get the sub-pixel position of

the pattern. Figure 16 illustrates the Fine recognition phase procedure.

Figure 16. Fine recognition phase

 Rotation

According to the system requirements, the proposed solution should recognize a pattern with a specific

degree of rotation. Additionally, it was highly desired if ART could facilitate users to find the best angle

under which the pattern could be recognized with the highest score.

In order to rotate an image, the rotation angle and its origin should be specified. Rotating a square-

shaped pattern from its center is easy and can be addressed using the available open-course library

functions without any specific considerations. However, this operation could be challenging if the im-

age has a rectangle shape and the rotation origin is not the image center. This situation is tricky as it

could lead to a case that the rotated image might not fit in the pattern image entirely after the rotation.

Note that, after rotating a rectangular shape, its height and width might change.

To address this issue, we decided to introduce a pattern bounding box. The idea is to copy the pattern

into a larger squared-shape image by aligning the center of the training region on the center of the bigger

squared-shape image. In this case, we can rotate the pattern from its center and make sure the pattern

remains inside the region after the rotation. Equation 1 defines the minimum width and height of the

bounding box that ensures that the pattern resides inside after rotation. Allocating a larger area to the

bounding box could increase the recognition time. Figure 17 shows a pattern located in a bounding box.

𝑆𝑞𝑢𝑎𝑟𝑒𝑆𝑖𝑧𝑒 = √𝑤𝑖𝑑𝑡ℎ2 + ℎ𝑒𝑖𝑔ℎ𝑡2 Equation 1

We search for the bounding box image (instead of the original pattern) in the input image whenever

rotation is needed. This approach could cause an issue in the score calculation. Since a larger area is

searched in the input image, the recognized area might contain additional data that might not be in the

original pattern. Therefore, if we find the recognized area and apply another template matching, the

score might be relatively low, leading to a false negative recognition. To deal with this issue, we could

take two approaches:

I. Create a mask based on the original template image and apply it to the recognized region.

II. Rotate the recognized region in a reverse direction as the requested angle and apply NCC

on the rotated recognized region and the original template pattern.

The first approach is more costly, as it significantly increases the recognition time. However, we only

need to rotate the pattern bounding box in the second approach, which is usually smaller than the input

image. Thus, we selected the second one. The rotation angle is checked each time, and a pattern bound-

ing box is created only if the angle is other than zero or 180 degrees to boost the performance.

7.2.1. Finding the pattern offset with rotation

The final goal is to find the distance of the train origin from the image origin. During the wafer align-

ment, the train origin is usually the center of the pattern train region, and the image origin is the center

of the input image. Therefore, the measured offset should be (0, 0) in a best-case scenario, indicating

that the pattern is located at the expected position.

After Template matching, we can get the offset of the top left corner of the pattern from the top left

corner of the input image. To get the accurate offset, first, we need to find the distance of the train origin

from the train region's top left corner. Then, we can calculate the offset from the top left corner of the

image. If the image origin is different from its top left corner, then the measured offset should be up-

dated based on the distance of the image origin from the image’s top-left corner. Finally, we can calcu-

late the offset based on the distance of the image origin from the image's top-left corner.

Figure 17. Measuring pattern offset

In the case of rotation and using a pattern bounding box, measuring offset is more complicated. In this

case, the measured coordinate is the offset of the pattern bounding box from the image’s top left corner

(ITL.) Therefore, we suggested the following additional steps to find the accurate offset. Figure 17

demonstrates these steps.

1. Find OFC5, the distance of the train origin from the train region center (center of the pattern

bounding box.) Note that the train region center and center of the pattern bounding box are

aligned.

2. Find PCC6, the coordinate of the template pattern (pattern bounding box) from its top-left cor-

ner (micrometer.)

3. Convert the measured offset during the recognition to the micrometer scale.

4. Calculate CFITL7, the coordinate of the pattern center from ITL.

5. Transform the train origin based on the angle

a. Calculate TOFC8, the new coordinate of OFC after the rotation, transformed origin.

b. Find the offset of the transformed origin from the ITL (based on CFITL and the trans-

formed origin.)

6. Finally, find the offset from the image origin instead of the image’s top-left corner.

5 Origin From Center
6 Pattern Center Coordinate
7 Center From the Image Top Left corner
8 Transformed OFC

8. Architecture and Design
One of the most well-known and common approaches for describing a software-intensive system's ar-

chitecture is the 4+1 view model defined by Philippe Kruchten [16]. It captures the software architecture

into multiple concurrent views, including logical, process, development, physical views, and scenarios

or use cases. We discussed use cases in Section 5.2. We covered the main topics related to the process

view, namely the activity diagrams in the previous chapter. Please refer to Appendix A to find the

sequence diagrams and class interactions. This chapter mainly focuses on the logical view.

 Logical View

The logical view captures the functional requirements of the application as decomposition of structural

elements or abstractions. It means it captures the application behavior into classes and packages. This

section goes through the logical view of the deliverables described in Section 4.4 one by one.

8.1.1. RECOG

RECOG is the new pattern recognition library in the context of the wafer alignment. A big picture of

the RECOG class diagram can be found in Appendix A. The following sections review it from three

different perspectives: recognition, training, and serialization.

Figure 18 shows a close-up of the recognition perspective. The class called RecogTool is the main class

responsible for pattern recognition. RecogTool (tool) owns a pattern (RecogPattern) and a run-time

parameter object (RecogRunParams). It has some other properties, such as an image, a recognition al-

gorithm, and a recognition result.

Figure 18. Recognition class diagram

IRecognitionAlgorithm is an interface designed to make the system maintainable and extensible.

Recognition algorithms are subject to change and new recognition algorithms could be introduced over

time. In this project, two similar recognition algorithms were proposed. We applied the strategy pattern

to enable the selection of the proper algorithm at runtime. In this way, the tool is extensible to support

new algorithms in the future. Additionally, the tool is not tightly coupled to the recognition algorithm

implementation. Moreover, adhering to the façade algorithm, the complexity of the recognition algo-

rithm is hidden from the tool.

We introduced an image processing interface to separate the concerns and increase the code's modular-

ity, readability, and reusability. In this way, the recognition algorithm and the tool are loosely coupled

with the implementations of the image processing functionalities. Currently, we implemented this in-

terface mainly based on the OpenCVSharp library. However, in the future, it can be implemented dif-

ferently. To comply with the YS pattern recognition wrapper, RecogTool holds an instance of

BaseResult. However, an instance of IRecognitionAlgorithm can instantiate a more extensive result

object, composing the BaseResult. In this way, the tool does not need to hold extra information. Finally,

as coordinate transformation addresses a different concern (transforming the result from the pixel-based

coordinate to the micrometer and vice versa,) a separate class takes care of this responsibility. The same

logic holds for the Drawer class, which is mainly responsible for creating the result images.

Figure 19. Training class diagram

Figure 19 focuses on classes involved in the training phase. From the training perspective, the pattern

or RecogPattern class is the primary class, holding all the training data and pattern description. With a

similar rationale in introducing the IRecognitionAlgorithm interface, we encapsulated the training al-

gorithm using ITrainingAlgorithm. As a result, the pattern and the training algorithm are not tightly

coupled anymore. Additionally, the pattern can easily support new training algorithms that support the

extensibility of the design. By applying the strategy pattern, a proper implementation or algorithm can

be selected. Depending on the training algorithm, different training results might need to be collected.

Therefore, we introduce an interface with the basic properties for the training result, ITrainResult. Con-

sequently, the design is open to support AI-based algorithms in the future with little effort.

As described, a model-based pattern description should be converted to an image. IPatternDrawer, a

specialization of the IDrawer interface, was introduced to take care of this responsibility. Adding this

functionality to the Drawer class is contrary to the SOLID principles. Interfaces should be specific and

contain relevant functionalities. As we see, ImageProcessingWrapper is reused in the training phase,

which shows the modularity of the design.

Figure 20 demonstrates classes involved in the serialization of the tool and pattern. The serialization

objective is to dump the tool and pattern state and make them reusable. Separation of the serialization

logic from the tool or pattern improves the extensibility and maintainability of the design and code. By

defining a new interface, we hid the complexity of the serialization from the tool or pattern, made the

code loose coupled. New serialization formats can be supported in the future without any changes to

the tool.

Figure 20. Serialization class diagram

8.1.2. Alignment Recognition

As described in the domain analysis Chapter, there has already been a shift towards a modularized

software application in YS, and a pattern recognition wrapper was introduced to decouple the pattern

recognition library from the rest of the YS business logic. To integrate RECOG into the YS solution,

we needed to implement the wrapper’s interfaces using the RECOG library. Figure 21 depicts the class

diagram of the newly introduced class library called “AlignmentLibrary,” which is the RECOG-based

implementation of the YS common pattern recognition interfaces.

Figure 21. Alignment recognition

Following the adapter design pattern, each class implements a relevant YS pattern recognition wrapper

interface and has an instance of the correspondence class in the RECOG library. Thus, it implements

the target interface by delegating to a RECOG object at run-time. It is important to note that the pattern

recognition interfaces were designed based on the Cognex definitions. As a result, some of the Cognex

library’s properties do not have a corresponding property in the RECOG library.

8.1.3. ART

APT is a Cognex-based pattern recognition tool that facilitates creating alignment profiles, running

pattern recognition, troubleshooting, and other functionalities. ART9 is a new GUI application devel-

oped as a replacement for APT, based on the RECOG library. It enables users to run pattern recognition,

find out the best training and run-time parameters, and create alignment profiles. Additionally, it enables

converting Cognex-based alignment profiles or Cognex objects into their corresponding RECOG-based

files or objects. Using this feature, users can readily use currently available alignment profiles to run

pattern recognition and customize them based on the RECOG specific parameters.

ART Design

ART is designed based on MVVM architectural design pattern and WPF. The rationale behind choosing

MVVM and WPF is discussed in Appendix A. ART has three main views (tabs), including batch recog-

nition, pattern trainer, and convertor. The ‘pattern trainer’ tab contains different user controls. However,

almost all the user controls belong to the ‘pattern trainer’ tab, which should reflect a singleton instance

of the tool. This implies that all the user controls sharing the same property should be notified upon any

changes in the tool state. In order to address this requirement while avoiding tight coupling between

view models, the mediator or observer design pattern could be applied.

Figure 22. (a) ViewModelBase, (b) Messenger class diagram

While the Observer pattern defines a one-to-many dependency between objects, the mediator defines

an object that encapsulates how a set of objects interact with each other. A mediator promotes loose

coupling by keeping objects from referring to each other explicitly. Therefore, classes communicate

through a mediator instead of direct communication. There are some merits in offloading the commu-

nication to a class that is only responsible for the synchronization. First, the single responsibility prin-

ciple can be met. Besides, it promotes loose coupling by keeping objects from referring to each other

explicitly. Figure 22b shows the idea of using a messenger or mediator to handle the communication

between different ViewModels. Figure 22a depicts the idea of using a mediator. IMessenger plays the

role of the mediator. All view-models should inherit from the ViewModelBase class, which has an

instance of a messenger.

Figure 23 depicts the ART high-level architecture. DataAccess is a singleton class that generates and

shares a single tool instance among view models using PmAlignmentFactory. ModelViewLocator con-

tains the list of all ViewModels, realizing the proper ViewModel implementations using a proper IOC

container. All ViewModels inherit from the ViewModelBase, which enables the communication

9 Alignment Recognition Tool

between different ViewModels. There is a one-to-one mapping between each View and ViewModel.

Finally, as mentioned, all ViewModels have access to a singleton object of the tool using DataAccess.

Considering different user controls for each function helps with the separation of concerns and increases

the readability and maintainability of the code, accepting adding to the code complexity. The ART

complete class diagram can be found in Appendix A.

Figure 23. ART high-level architecture

8.1.4. Integrated YieldStar

As mentioned earlier, the first and the main prerequisite towards integrating RECOG into the YS appli-

cation was the realization of the common pattern recognition interfaces using the RECOG library. How-

ever, it was not the only requirement. Here is the list of most important questions and concerns that

needed to be answered for successful integration:

• What are the classes or interfaces that have contribution to the wafer alignment?

• How to update these files without impacting other modules and YS functionalities?

• How to support both libraries (Cognex and RECOG) at the same time?

• How to read RECOG objects while performing wafer alignment?

Figure 24 demonstrates an abstract overview of the most important classes or interfaces that play a role

in the wafer alignment process. Green boxes are the newly introduced classes that are explained in the

following section. As it shows, wafer alignment can be done either in the fast mode or the normal mode.

During the alignment phase, the goal is to measure marks (regardless of the alignment mode), which is

the responsibility of MarkMeasurer class.

Each mark has the pattern definition (description of a serialized tool object with the pattern description

and all the required run parameters) as well as the pattern’s expected position. There is a set of recog-

nizers on top of each other that MarkMeasurer uses to recognize and measure required data, such as

PositionOffsetRecognizer. All recognizers are built on top of the ITrainedPatterRecognizer. For every

single mark, a proper ITrainedPatternRecognizer should be created. TrainedPatternRecognizer has the

ownership of a tool (IPmAlignTool.) This tool could be either a Cognex or a RECOG object.

PatternDataRepository takes care of a list of the already created recognizers for each pattern data

(mark.) If it is a new pattern data, then a new ITrainedPatternRecognizer should be created. Creating a

new recognizer requires loading the tool object; thus, proper implementation of IPmAlignFactory and

ITrainedRecognizerFactory should be in place. The implementation of the TrainedPatternRecognizer

was based on the Cognex. Therefore, there was a need for a new realization of this interface based on

the RECOG library. Then the factory could decide from which implementation to instantiate.

RecogTrainedPatternRecognizer is a new class introduced, which is shown in green in Figure 24. It

holds an instance of PmAlignmentTool (RECOG-based tool) similar to the TrainedPatternRecognizer

that holds an instance of PmAlignTool (Cognex-based tool.)

Figure 24. Wafer alignment class diagram

IPatternDataRepository required some changes to generates a correct instance of the ITrainedPattern-

Recognizer. However, it is important to note that IPatternDataRepository has applications in other YS

modules, such as Sensing. Therefore, the changes in this class should be safe, not to impact the other

modules. Thus, we introduced a new parameter to be set during the wafer alignment.

PatternData is created based on the recipe information. However, the available recipes only contain the

Cognex-based tool definition, while we needed a RECOG-based one. The ideal solution was updating

the recipe thoroughly to contain the new alignment profile. Since this change required considerable time

and procedure, it was not in the project scope. However, some other solutions were good enough for

the sake of feasibility study and prototyping, such as:

• Converting the alignment profile on the fly: The downside of this solution was that it was not

easy to customize the tool, and we needed to stick to the default configuration parameters. Ad-

ditionally, the Cognex hardware dongle should be available during the conversion. As a result,

by this approach, we could not evaluate if wafer alignment could be done solely using RECOG

or not.

• Utilizing a customized alignment profile: We needed to create a customized alignment profile

and then force YS to read the pattern data from the newly created file instead of extracting the

alignment profile from the recipe. However, then there was a need for an additional file besides

the recipes.

As utilizing a customized alignment profile was a better option, we selected the second option. By

introducing a new configuration file, YS can support both libraries simultaneously. Using this file, YS

can decide which library should be used. PatternData can be extracted from AlignmentInstructions,

which can be generated using IAlignmentInstructorFactory. Therefore, changes were made in this

interface implementation to accurately create the PatternData either based on the recipe or the added

alignment profile.

 Other Views

A physical view represents the deployment layout or infrastructure of an application. Ideally, the pro-

posed pattern recognition library should be deployed on the YS machine. Figure 25 depicts the main

components involved in the realization of the wafer alignment using RECOG. They should all be de-

ployed on the YS machine. For the sake of simplicity, only the relevant libraries are demonstrated in

this deployment diagram. It is important to mention that at this stage, these libraries are not deployed at

the YieldStar, and this figure depicts the final goal. The development view illustrates a system from a

programmer’s perspective. Figure 9 and Figure 25 together could reflect this view well enough.

Figure 25. Deployment diagram

9.Implementation
We discussed the system architecture and design from different viewpoints in the previous chapter.

There are some details regarding implementation, which are discussed in this chapter. All implementa-

tions are based on C# version 7.3 and .Net framework 4.8 to comply with the YS technologies.

 RECOG Library

For implementing RECOG, we took advantage of the OpenCVSharp library, which is a cross-platform

.NET wrapper of the OpenCV library used for image processing and computer vision algorithms. For

more information about the rationale behind choosing OpenCVSharp, please refer to Appendix A. In

order to improve the performance of the library, some considerations were taken into account.

The first performance bottleneck that we observed was related to the image enhancement technique we

used. As mentioned in Section 6.4, BCET10 was proposed to enhance the image contrast. However, it

is a compute-intensive algorithm because some operations need to be done on each pixel or float array

of the image. Therefore, processing larger images could become more time-consuming. To speed up

the algorithm, we used parallel loops to apply the same set of operations on all inputs simultaneously.

Second, in Fine recognition phase, we interpolated only the recognized region with some margin in-

stead of entire image and executed the template matching based on the recognized region. We men-

tioned that Gaussian blurring should be used to smooth the image and remove potential noises. The

kernel size used in this process could play a significant role, such that the bigger the kernel size, the

faster the algorithm since the convolution could be done faster. Therefore, we fine-tuned the algorithm

with the best kernel size, based on the experiment results, although this value is configurable. Similarly,

the interpolation scale has a dramatic effect on the performance. We made the interpolation scale con-

figurable while we set its default value to the optimized value.

The next technique was related to creating image masks. After analyzing each step’s elapsed time, we

figured out drawing contours on the images to create a mask was the most time-consuming step. To

improve the speed, instead of drawing contours, we drew the contours’ rectangle. This technique’s

downside is a slight risk of including available noises next to the pattern edges. However, the rectangle

area is usually quite similar to the contour area, especially with regard to the alignment targets. On the

other hand, using the contour’s rectangle, the edges are sharper, facilitating better pattern recognition

results. Always, there should be a trade-off between performance and accuracy. In this way, we gained

a significant improvement by this approach, without a considerable impact on the accuracy.

Finally, we decided to update the input image pixels in place instead of creating a new image and setting

it during the integration phase. During the integration, a float array of the image is passed to the tool.

We used the available YS’s performance library to update the image pixel’s data. Creating a new image

and allocating memory is only required for the first usage of the recognition tool or if the image size

has changed. In this way, we saved a considerable amount of time and improved the performance sub-

stantially.

During the implementation and testing phases, we faced some edge cases that RECOG was not able to

address them initially; for instance, if the train region was larger than the input image, or when the

10 Balanced Contrast Enhancement Technique

pattern presents in the image partially. For more information on how we addressed these edge cases,

please refer to Appendix C.

 ART

ART was developed using WPF and based on the MVVM framework. We used the MVVMLight toolkit

to implement the MVVM framework. The rationale behind choosing this framework can be found in

Appendix A. We tried to design ART’s user interface similar to APT. In this way, users can feel the

same experience while using the new tool, making the tool more user-friendly. Three ART tabs are as

follows:

1. Batch Pattern recognition: Figure 26 shows ART’s batch recognition tab. Users should set the

alignment file saved with the “recog” extension and define a folder containing images either in PNG

or IM format. Finally, they should specify the path that the final output should be saved. The batch

recognition result is saved in the CSV format, containing the recognition result per image in the

directory.

Figure 26. ART Batch recognition tab

2. Pattern Trainer: Pattern Trainer, shown in Figure 27, is the main ART tab. Users can create, load,

and export pattern recognition recipes in different formats. They can load images, train patterns, set

train or run parameters, and finally, run a pattern recognition and preview the results.

Figure 27. ART Pattern Trainer tab

3. Convertor: ART has a new and different tab compared to APT, which is the Convertor tab. Users

can specify either a Cognex-based XML file containing a pattern recognition recipe or a Cognex-

based alignment profile and convert them to the corresponding file formats. Figure 28 depicts a

screenshot of this tab.

Figure 28. ART Converter tab

9.2.1. Configurable recognition recipe

It is not easy to get the best pattern recognition result using the same recipe for different pattern shapes

and images with different qualities. The more the algorithm is configurable, the more the chance of fine-

tuning the parameters and getting better results. However, introducing numerous run-time parameters

could turn the recognition procedure into a hassle for the user.

To find a balance, ART suggests the best parameter values to the users as default values. Usually, without

any changes to these values, the best results are achievable. There are some parameters for more ad-

vanced users that they can play with and create a customized recipe. They can hover over each parameter

to learn about their usage.

Two different recognition algorithms are introduced to avoid introducing many different parameters.

These two algorithms are quite similar, and there are some minor differences mostly related to prepro-

cessing the images and calculating the score. Depending on the image quality or the pattern shape, one

could outperform the other one. As this is the feasibility study and not all possible patterns could be

verified in this study, both algorithms are available in ART. In this way, the best decision could be made

based on various experiments by the functional engineers.

9.2.2. Training

This project aims to use the currently available patterns/recipes and creating a new model-based pattern

from scratch was not in the project scope. Each pattern can be used in various alignment profiles, and

alignment profiles can be used regularly. In other words, the reusability of these files is essential. There-

fore, we enabled users to extract the pattern data from the converted tool or alignment profile and save

it in an XML format. In this way, they can easily modify the content or even recreate a new model-

based pattern.

For extracting and converting patterns created by Cognex, we have to find the description of lines.

Notably, these lines' starting point and endpoint are not necessarily from the top left corner of the image,

and they might have even negative values.

For pattern visualization, first, the line coordinates should be transformed and recalculated from the top

left corner of the image to convert them to positive values. An additional margin from the top left corner

should be added. This margin depends on the train region specification. Finally, the pattern resolution

is needed to convert the values from the micrometer scale to the pixel scale.

In ART, users can create a tool by loading a pattern XML file. As it is shown in Figure 27, ART has

four different image previews, which are as follows:

• Input Image: It represents the original input image.

• LastRun.InputImage: It illustrates the input image with a green rectangle surrounding the rec-

ognized region. If the recognition is unsuccessful, it shows a blank image.

• LastRun.RecognizedPattern: It demonstrates how the recognized region is the same as the pat-

tern by aligning them on top of each other.

• Train Image: It represents the pattern with the train region rectangle and the train origin.

Upon any changes in the train region or train origin, the train image reflects the changes. It helps the

user to set the train region and origin properly. Also, in case of any changes in the training parameters,

the pattern should be retrained.

It is mentioned that knowing the pattern resolution is a must-have for pattern visualization. Upon load-

ing an image, pattern resolution gets updated automatically based on the input image resolution, which

makes the tool easier to use.

9.2.3. Tool Serialization

Each alignment profile contains a byte array of the tool. Each tool can be serialized in SOAP11 or binary

format to conform with the YS architecture. With APT, users can save the tool in the SOAP format with

an XML extension. To help users quickly distinguish between the tools being serialized using the

Cognex library or the RECOG library, we decided to save the tool with a new extension (recog.)

Besides, in order to increase the reusability of the serialized tool object, only the tool state will be

captured and serialized. It means that properties such as the recognition or training algorithm imple-

mentation are not saved. It decouples the serialized object from the implementation. The serialized form

of the tool is a property of the alignment profile.

11 Service Oriented Architecture Protocol

10. Verification and Validation
An essential step in each project is the verification and validation of the system. Verification evaluates

whether the system fulfills the specified requirements, whereas validation evaluates whether the system

targets the main concerns and expectations of the stakeholders [18]. This chapter clarifies how the sys-

tem is tested against the requirements, various approaches we took for testing, the expected results, and

finally, the test results.

 Test plan

After each step, including prototyping, implementing the library and ART, and finally, after the inte-

gration, we conducted various tests to make sure the system fulfills the requirements, detect potential

bugs, fix them and gain higher confidence in the product. The main goal in testing was to verify if

RECOG can recognize patterns accurately and efficiently compared to Cognex. While we tried to

achieve promising performance, we gave a higher priority to accuracy than to performance. During the

testing phase, we mainly used the Cognex result as the basis of how RECOG performs. We believe if

RECOG can generate results as good as Cognex, then the requirements are met. The reasons behind

this decision are mainly as follows:

• There was no ground truth data available. As part of the unit testing, we created some synthetic

images to evaluate the library’s accuracy; however, those images could not represent all actual

image’s quality variation or might not cover specific edge cases. Therefore, testing only against

synthetic images could not reflect the library’s reliability and accuracy completely.

• The project goal was to find a Cognex replacement. Therefore, it was essential to compare the

results with the Cognex results.

• Finally, after integration and wafer measurement, we can calculate KPIs (defined in ASML)

such as TMU12 or matching, which could help in identifying how well RECOG is performing

the pattern recognition. These metrics are measured based on the values that are dependent on

the pattern recognition results. Therefore, if there is an error or inefficiency in the pattern recog-

nition results, it should be reflected at this stage. There are specifications for these KPIs in YS

that, based on them, the RECOG performance and accuracy can be appropriately evaluated.

Generally, in order to deliver new projects or any changes to the YS master branch, some steps should

be taken to ensure that new changes in the code meet the expected code quality and will not break the

system. First, the code should be reviewed by the main stakeholders. Second, achieving at least 80

percent test coverage is mandatory. Therefore, the stakeholders reviewed the code to make sure it com-

plies with the YS code standard.

Depending on the project phase, test type, and goal, we performed various tests on different machines,

such as the local system, DevBench (a virtual machine similar to the YS machine,) and finally on the

real machine.

 Verification

During the verification phase, the main goal was to check if the deliverables were error-free (as much

as possible) and if all the must-have functional requirements were met. To gain high test coverage and

make sure that the system was well tested, we implemented a considerable number of unit tests and

12 Total Measurement Uncertainty

integration tests. Nunit [19], one of the .Net unit-testing frameworks, was used for the test implemen-

tation. The tests were automated using Bambo CI/CD 13 build server that is being used in YS.

Achieving high test coverage by unit testing in terms of ART (the GUI tool) was not possible. Hence,

in addition to unit testing, the tool was tested manually. Note that ART manual tests implicitly test the

libraries as well because the main part of ART business logic is implemented in the RECOG library.

Initially, we defined a set of test requirements based on the system requirements. Then, we created a set

of test cases that could cover the test requirements. Please refer to Appendix B to find more details

about the test cases, the traceability matrix (Table 16), and manual tests.

Using the available model-based patterns and the wafer images captured during a real wafer alignment

on the machine, we ran a batch pattern recognition using APT to record the Cognex pattern recognition

results. Then, alignment profiles and the tool XML definitions were converted to an acceptable input

for RECOG, using ART. Afterward, we ran the same test with the same inputs using RECOG and ART

and compared the results. To find out how reliable RECOG is in finding the patterns, we repeated the

same procedure for different patterns.

Albeit mostly Cognex results were used as the ground truth, we also designed some synthetic test cases

by creating triangle and trapezius pattern shapes to validate the accuracy of the pattern recognition

result. As a next step, we evaluated RECOG accuracy with different rotation angles. We asserted that

the measured offsets by RECOG were less than a pixel, even with rotation.

The strategy was to execute all the test cases and verify that the result matches the expectations. We

achieved 87, 73, and 56 percent test coverage with respect to RECOG, AlignmentLibrary14, and ART,

respectively. We could not achieve higher test code coverage with respect to AlignmentLibrary because

some of the pattern recognition wrapper (Cognex) concepts are not meaningful within the new library.

Therefore, testing those features was not feasible.

 Validation

Previously described tests ensured us that RECOG and ART passed all test cases, and with high test

coverage, we gained high confidence that the possibility of getting an error is low. Also, the results

demonstrated that RECOG could recognize patterns in machine images with reasonable accuracy. How-

ever, one crucial question remains. Can RECOG facilitate a real wafer measurement on the machine

with comparable accuracy and performance with Cognex? By answering this question, not only can we

validate the system, but we can also verify the integration of RECOG into YS.

10.3.1. Test on a local system

Since testing on the machine was expensive, we did some initial tests on local machines before running

tests on the machine. These tests can be categorized into two main groups:

• Testing algorithm flexibility and accuracy

• Testing the integration by running tasks or replays

Testing algorithm flexibility and accuracy

Before the integration phase, we ran various tests to ensure that the proposed algorithm can recognize

patterns accurately. Based on the NF5 requirement, the proposed solution should be flexible to

13 Continuous Integration/ Continuous Delivery
14 The library that contains the pattern recognition wrapper’s implementation based on the RECOG library

recognize patterns irrespective of the image quality. We mentioned in Chapter 4 that depending on the

machine camera or the photoresist materials used for each layer, patterns might look slightly different,

and their contrast might vary. To ensure that RECOG is flexible, we tested it against different patterns

(different shapes) and images of different layers of the same pattern.

Figure 29 and Figure 30 show a comparison between offset values (X offset and Y offset, respectively)

measured by Cognex and RECOG library for a pattern, called D. In each figure, The X-axis shows

different images in these charts, while the Y-axis shows X (Figure 29) or Y (Figure 30) offset of the

pattern origin from the image origin. The unit size in the Y-axis of the figures is about 0.3 𝜇𝑚, which

is almost equal to one pixel, based on the image resolution. As it can be seen, almost always, the differ-

ence is less than one pixel (one chart unit.). Mostly RECOG can perform as well as Cognex. There are

some cases that the RECOG library can find the pattern, while Cognex cannot find it with the same

setting. These are mainly those images that the pattern is covered with a shadow. Using the second

algorithm described in Section 7.1.2 made the proposed solution more promising than Cognex. For

some of the images (mainly images after 120) the reported offsets are quite different from the others

(with both libraries.) It could be due to the field location. If we try to recognize a target at the edge

fields, the target is more off centered than a target at the coarse (center) field. It can also be due to the

wafer load, which operates a bit worse (the wafer is put a bit further away on the stage than usual.)

Figure 29. Recognition offset comparison, X axis, Pattern D

One of the main concerns regarding pattern recognition is that the number of false positives should be

as few as possible. In Figure 30, Cognex reported a false positive result (for the 139th image) as its value

is quite different from the rest, while RECOG offset seems to be more accurate.

Figure 30. Recognition offset comparison, Y-axis, Pattern D

142.72
143.04
143.36
143.68

144
144.32
144.64
144.96
145.28

145.6
145.92
146.24
146.56
146.88

0 20 40 60 80 100 120 140 160

O
ff

se
t

X
 (

u
m

)

Image #

RECOG Cognex

109.44
109.76
110.08

110.4
110.72
111.04
111.36
111.68

112
112.32
112.64
112.96
113.28

113.6
113.92
114.24

0 20 40 60 80 100 120 140 160

O
ff

se
t

Y
(u

m
)

Image #

RECOG Cognex

Figure 31 and Figure 32 show a comparison between offset values measured using Cognex and RECOG

library for a different pattern, called V, on the X and Y axes, respectively. This pattern is quite different

from pattern D; because it consists of only one shape, while pattern D consists of four detached shapes.

Besides, the contrast of these images was relatively lower than the images of the former pattern. These

images were very noisy. Noises were mainly attached to the shape edges, which made the recognition

very challenging. Finally, the image resolution was different concerning this pattern. As it can be seen,

RECOG can recognize patterns even in noisy low-contrast images with a great extent of accuracy. There

were three images that Cognex couldn’t recognize the pattern while RECOG was able to do so. On the

other hands, for two other images (18th and 27th images), Cognex outperformed. Therefore, we can say

that RECOG and Cognex had almost the same level of flexibility in recognition concerning this pattern.

Please check Appendix B to find the comparison between Cognex and RECOG results for a pattern

with the same structure as pattern D but on a different layer.

Figure 31. Recognition offset comparison, X-axis, Pattern V

Figure 32. Recognition offset comparison, Y-axis, Pattern V

Testing the integration by running tasks or replays

The wafer alignment could be part of a procedure or a task (standalone executable.) There are some

tasks in YS to measure a specific parameter, such as performance. The code execution path for running

each task could be different depending on their goal. By running a wafer performance alignment task,

we might not be able to verify the integration thoroughly. However, it still could cover a considerable

amount of the desired execution path.

Replays are created based on the process jobs executed on the machine, containing the machine images,

recipes, configuration files, and the expected results. It is possible to run replays in the simulation mode.

Generally, the pattern recognition offset is reported as (0,0) in the simulation mode, which means the

149.94

150.28

150.62

150.96

151.3

151.64

151.98

152.32

152.66

0 10 20 30 40 50 60 70 80

O
ff

se
t

X
 (

u
m

)

#image

RECOG Cognex

120.36

120.7

121.04

121.38

121.72

122.06

122.4

122.74

0 10 20 30 40 50 60 70 80

O
ff

se
t

Y
(u

m
)

#image

RECOG Cognex

pattern is located at the image center. However, we forced YS to use either Cognex or RECOG while

running replays to be able to compare their results. After we made sure that the performance and accu-

racy of the results are acceptable and we could run wafer alignment without the Cognex dongle (using

the RECOG library,) we initiated testing on the machine. As we ran all these tests on the machine, we

skip the results of the tests on the local machine and instead focus on the machine test results.

10.3.2. Test on machine

The main difference between testing on the actual machine and the previous tests is that the images are

captured on the fly on the machine and all other enhancements on the image. We can categorize the

machine tests into three groups:

• Running a task

• Running a process job (PJ)

• Running a series of sequential process jobs (PJs)

Since the definition and procedure are similar for all three, we are not going into the details of each

category. The goal behind running the third test was multifold. First, we could make sure that the exe-

cution would not break while running a sequence of PJs. Second, to measure Key Performance Indica-

tors (KPIs) with respect to the RECOG library, we needed to have a series of the result. There are some

predefined KPIs for YS, and there are some tasks that simplify measuring them. For each test category,

we first ran the test using RECOG and then repeated it using Cognex. Then, we drew a comparison

between Cognex and RECOG results. Before initiating tests on the machine, a few preparation steps

were required. More information is given in Appendix B.

Analysis of the result of running a task

For running a task, first, we set a proper wafer on the stage and then executed the performance task.

Without reloading the wafer, we repeated the same task using Cognex. As we used the same wafer

without reloading it, then it made sense to compare position offset measured using these two libraries.

Figure 33 and Figure 34 represent the comparison between the offset values measured by Cognex and

RECOG per each mark in X and Y axes, respectively.

The unit size is 0.33 𝜇𝑚, which is roughly equal to one pixel. As it shows, almost always, the difference

between the measured values by Cognex and RECOG is less than one pixel. Please find the result of

the same comparison with 0-degree rotation in Appendix B. These results show that RECOG accuracy

meets the expected requirement.

Figure 33. Cognex and RECOG offset comparison, X-axis with 180 degree

-0.66

-0.33

0

0.33

0.66

0.99

0 10 20 30 40 50 60 70

O
ff

se
t

X
 (

u
m

)

Mark #

RECOG Offset X Cognex Offset X

Figure 34. Cognex and RECOG offset comparison, Y-axis with 180 degree

Analysis of the result of running process jobs

Looking at only one run result might not reflect the performance and accuracy of the libraries thor-

oughly. By running a sequence of PJs, we can get more information, including the mean alignment time

and the wafer alignment throughput, indicating the number of wafers that can be measured per hour.

Each time a process job gets started, the wafer is reloaded, which means that it might be loaded differ-

ently each time (like with a different orientation.) Consequently, the wafer model might change, and

there is no guarantee that the measured positions remain the same for different runs. It means that the

target position offsets (TPOs) reported after running a PJ are not comparable, even if we run a PJ twice

using the same library. However, based on the YS specifications, TPO should always be less than

2.5 𝜇𝑚. TPO shows the offset of overlay targets from the spot center, and its value depends on the

wafer alignment result.

Figure 35. RECOG TPO value range in X and Y axes

Figure 35 illustrates the range of TPO values measured using RECOG on the X and Y axes. The values

are less than 2.5 𝜇𝑚. Looking at the same values measured using Cognex, almost the same difference

in both axes can be observed. It implies that the difference between the X and Y values might be related

to a systematic error.

YS is a metrology machine measuring some quality metrics and giving feedback to TWINSCAN. OV

offset values are one of the interesting metrics that define the scanner error offset. It shows how well a

layer is printed on top of the other one. As discussed, YS should know the precise location of the target

for measuring OV. Accurate calculation of this position is highly dependent on the accuracy and preci-

sion of the wafer alignment, i.e., pattern recognition result. We expect to get almost the same OV values

for all targets with the same wafer, irrespective of the wafer alignment configuration or the pattern

recognition library. While Figure 36 compares the measured OV values in the X-axis per target calcu-

lated using both libraries, Figure 37 compares the Y overlay values.

-0.99

-0.66

-0.33

0

0.33

0.66

0.99

0 10 20 30 40 50 60 70

O
ff

se
t

Y
(u

m
)

Mark #

RECOG Offset Y Cognex Offset Y

Figure 36. OV offset comparison, X-axis

Figure 37. OV offset comparison, Y-axis

As it shows, the difference between their results is negligible. Figure 38 depicts the significant differ-

ence value in the X and Y axes. The difference is mainly between 0.01 and 0.03 nanometers and based

on the specifications, the difference should be less than 0.07 nanometers.

Figure 38. Differences between OV X and Y offsets calculated by RECOG and Cognex (nm)

Total Measurement Uncertainty

Total Measurement Uncertainty (TMU) is one of the significant YS KPIs. It shows the stability and

precision of the YS results. Any instability in the pattern recognition result would be reflected on TMU

as well. The idea is to find the level of uncertainty of the results between different runs on the same

machine and with the same set of configurations.

Table 8 and Table 9 show the TMU results measured against the RECOG and Cognex libraries corre-

spondingly. According to the YS test specifications, TMU in the X and Y direction should be less than

0.22 nm. The results confirm that not only the RECOG TMU values satisfy the specifications, but also,

they are relatively close to the Cognex results.

-4.29
-3.96
-3.63

-3.3
-2.97
-2.64
-2.31
-1.98
-1.65
-1.32
-0.99
-0.66
-0.33

0
0.33
0.66
0.99
1.32
1.65
1.98

0 20 40 60 80 100 120 140 160 180 200

O
V

 O
ff

se
t

–
X

 (
n

m
)

OV target RECOG Cognex

-4.29
-3.96
-3.63

-3.3
-2.97
-2.64
-2.31
-1.98
-1.65
-1.32
-0.99
-0.66
-0.33

0
0.33
0.66

0 20 40 60 80 100 120 140 160 180 200

O
V

 O
ff

se
t

–
Y

(n
m

)

OV target RECOG Cognex

Table 8. RECOG TMU result

ATP Calculations

Calculation Machine ID Recipe Value Result [nm]

OV_TMU Stability M1 Recipe A TMU X (C10) 0.104

OV_TMU Stability M1 Recipe A TMU Y (C10) 0.113

OV_ TMU Stability M1 Recipe A Stability X (C10) 0.093

OV_ TMU Stability M1 Recipe A Stability Y (C10) 0.099

Table 9.Cognex TMU result

ATP Calculations

Calculation Machine ID Recipe Value Result [nm]

OV_TMU Stability M1 Recipe A TMU X (C10) 0.099

OV_TMU Stability M1 Recipe A TMU Y (C10) 0.112

OV_ TMU Stability M1 Recipe A Stability X (C10) 0.089

OV_ TMU Stability M1 Recipe A Stability Y (C10) 0.095

Matching

Matching reflects the accuracy of the results, and it is one of the critical YS KPIs. Usually, matching is

measure by running a series of PJs on different machines to determine how the results are matched. In

this experiment, we repeated PJs on the same machine but with different configurations, i.e., different

pattern recognition libraries for the wafer alignment. According to the YS specifications, the difference

in the mean values (both in x and y axes) should be less than 0.07 nm, and the three-sigma value, which

is another statistical metric, should be less than 0.17 nm. Table 10 shows the matching result. In this

test, machine contribution is not considered; therefore, the values should be less than the specifications,

which is the case.

Table 10. Matching result

ATP Calculations

Calculation Machine ID Recipe Value Result [nm]

OV_Matching M1 Recipe A Mean X -0.001

OV_Matching M1 Recipe A Mean Y -0.001

OV_Matching M1 Recipe A 3 Sigma X 0.035

OV_Matching M1 Recipe A 3 Sigma Y 0.031

Throughput

Throughput is one of the essential KPIs that shows the number of wafers that can be measured per hour.

We created a process job based on the throughput recipe and repeated this job five times by both librar-

ies. The first experiment was done using RECOG, and the second one was based on the Cognex library.

Table 11. Throughput result

KPI RECOG Cognex Delta

uDBO 1WL Wafer Throughput (Level 1) 84.86 85.77 1.06%

uDBO 1WL Process Job Overhead (Level 2) 3.447 3.268 6.01%

 uDBO 1WL Wafer Overhead (Level 2) 8.292 8.07 2.67%

Table 11 summarizes the result. While RECOG can measure 84.86 recipes per hour, Cognex can meas-

ure 85.77 wafers.

Table 12. Time overhead comparison between RECOG and Cognex

Table 12 reveals more details on the elapsed time per step during wafer measurement. We can see that

latency is related to the alignment phase and the Fine alignment (as we did a fast alignment.) It shows

that RECOG is roughly 4 percent (0.06 seconds) slower than Cognex. While the Cognex Fine alignment

average time was about 1.47 seconds, RECOG required about 1.54 seconds to do the same job. The

maximum accepted threshold for fast alignment is two seconds, while RECOG accomplishes this task

in about 1.785 seconds. Note that the average pattern recognition time using Cognex is about 30 milli-

seconds, while it is about 50 milliseconds using RECOG. Also, we can see that there is a latency of

roughly 4 percent in the PreAlign phase. However, the duration of PreAlign depends on the rotation of

the incoming wafer, and it is not related to the pattern recognition solution. Therefore, this difference

should be ignored.

11. Project Management
Project management is one of the key factors in project success. It aims to define the project roadmap

and strategies to tackle difficulties and risks within the project, facilitating the achievement of the pro-

ject goal within the given constraints. In this project, project management was done using earned-value

analysis. During the first weeks of the project, the main milestones were determined, and later on, during

each iteration, more detailed tasks were planned. The following sections explain the way of working,

project planning, and risk management in this procedure.

 Work-Breakdown Structure

This section explains the Work-Breakdown structure (WBS) of the project. The project had five major

phases: exploration, research and literature study, design and implementation, verification and valida-

tion, and finally, project closure. Figure 39 depicts all these phases with more details. A deadline was

defined for each phase to make sure the project could be completed on time.

Figure 39. Project Work Breakdown Structure

 Way of Working

During the initial meetings, the trainee defined the means of communication and the communication

frequency with each stakeholder depending on their interest and contribution to the project. Communi-

cations with almost all of the stakeholders were planned mainly by Microsoft Teams or via email. The

communication frequencies were as follows:

1. The ASML supervisor was updated twice a week during the first three months of the project to

make sure the project was going in the right direction. The meeting schedule changed to mostly

once a week during the second half of the project. In case of any obstacles, needs, or achieve-

ments, an ad-hoc meeting was planned. Also, he was present in the PSG meetings held once a

month.

2. Ad-hoc meetings were planned with the main stakeholders upon a need to get the required

information. Additionally, mainly at the end of each sprint or upon gaining an achievement, a

demo presentation was held to keep them updated about the project progress and get early feed-

back. It helped in defining the following sprint stories.

3. The TU/e supervisor participated in the monthly PSG meetings to get informed about the pro-

ject progress. He was informed about changes or obstacles during the project. At the start of the

project, bi-weekly meetings were planned to be held if there was a need to help.

Project

Exploration and
Project Management

Project Planning

Domain and Problem
Analysis

Requirement
Elicitation

Research

Pattern Recognition
Solutions and

Algorithms

Available Computer
Vision Open-source

libraries

Design and
Implementation

Alignment Pattern
Recognition Tool

Integration of the
library into the
YieldStar Wafer

Alignment Module

Verification and
Validation

Tool Verification

Integration Test

Project Closure

Documentation

Final Presentation

11.2.1. Project Planning and Scheduling

One of the first and essential steps in each project is to define the project scope. The project's scope was

determined by considering limited resources (only one person and a ten-month project) to make sure

the goals were achievable. Additionally, main milestones were discussed that helped with making the

project clear. The project plan and its main stakeholders were discussed with the ASML supervisor.

Agile methodology was used during this project. Work was completed in sprints that had a length of

two weeks. There was a total of nineteen sprints. Each sprint had a starting date, an ending date, and

goals corresponding to deliverables. Due to PDEng related activities that simultaneously occurred with

this project, each sprint had different working days per person. This period corresponded to the number

of hours the trainee could work on the project divided by the number of working hours per day the

trainee worked.

Apart from the WBS, a Gantt chart was created to track the project progress. All milestones were re-

flected in the Gantt chart with more details, and a deadline was assigned to each step. It was mainly

used for tracking the project. Figure 40 depicts the summary of tasks in this project created using Mi-

crosoft Excel. The chart was also shared with the ASML supervisor.

Figure 40. Project Gantt chart

The project plan was also reflected on the scrum board. All sprints were created during the first month

of the project, and all milestones in the form of more detailed user stories were added to the board and

its relevant sprint. It facilitated checking the project status both for the trainee and the ASML supervisor.

Additionally, it helped in the planning of each sprint, as the goals were defined ahead.

User stories were maintained in the ASML Jira application in a separate scrum board created by the

trainee for this specific project. At the start of each sprint, the user stories were defined in more detail

and were reviewed by the ASML supervisor to make sure the project was on the right track.

11.2.2. Risk Management

It was essential to recognize the main project risks from the start of the project and try to find some

mitigation strategies. Table 13 describes the risks identified in this project, their occurrence possibility,

potential impact and result, and the mitigation strategies applied to manage each of them.

Table 13. Risks and their mitigation strategies

Id Description Probability Impact Result Mitigation Strategy

1

Unavailability of

the main stake-

holders

Low Medium Not delivering the

desired artifacts or

delay for a specific

deliverable

- Scheduling meetings early on

- Giving regular reports on the

progress and impediments.

2

Underestimating

the project

workload

Likely Critical Change in

deliverables, delay in

project completion,

project failure

- Conducting a comprehensive

research

- Prototyping at early stages

- Short loop feedback

- Defining the minimum viable

product

3

Selecting

improper open

source library/al-

gorithm that can-

not satisfy the

requirements

Likely Critical Change in delivera-

bles, delay in the pro-

ject completion.

- Conducting comprehensive

research and feasibility study

- Prototyping at early stages

before design and implemen-

tation

- Keeping stakeholders in an

early feedback loop with a

regular demo on achieve-

ments or challenges

4 Lack of domain

knowledge

High Medium Not finding the best

solution, not being

able to accomplish the

project on time

- Pre-study and taking Online

courses

- Trying to build a network of

experts to ask for help

5 Main Stakehold-

ers' resignation or

illness (such as

Corona)

Likely Medium Depending on the

role, could lead to the

project delay for a

different period

- Try to find some alternatives

for asking questions and help

- Building a broad network at

the company

- Taking necessary measures

stated by the government

12. Conclusions
This chapter summarizes the project achievements and gives some suggestions for future work. Finally,

a self-reflection on the project is given by the trainee.

 Results and Remarks

In this project, we aimed to investigate the feasibility of replacing Cognex with a new pattern recogni-

tion solution in the context of wafer alignment. The goal was to take advantage of available open-source

libraries. Cognex is a mature commercial tool offering several functionalities. Therefore, replacement

should be done step by step. In Section 5.3, we defined three main design criteria, which are revisited

while looking at the achievements.

Massive chip production and ease of use are two main concerns of ASML customers. ASML's goal is

to reduce the cost while keeping its customer satisfied and even grab the attention of more customers.

Replacing Cognex with an in-house solution could decrease the cost. Therefore, in this project, as the

first try towards Cognex replacement, we focused on studying the feasibility of designing and develop-

ing a library with comparable accuracy, performance, and flexibility with Cognex, while supporting the

most critical Cognex functionalities. We always kept performance (recognition time) and accuracy as

the main priorities for making decisions. In the previous chapters, we explained how we tried to make

the best decisions concerning performance. Additionally, we set the goal to design an extensible frame-

work that can be improved with minimal effort in the future. Realization of the solution was the third

design criterion, which was met with ART and library integration.

By integrating RECOG into YS and testing the solution on the machine, we demonstrated the feasibility

of the solution. Test results were highly promising and proved that RECOG followed the YS architec-

tural requirements. Extensibility of the solution was achieved by designing RECOG and ART based on

best design practices and applying design patterns like the strategy pattern or MVVM architectural

pattern. Moreover, we increased the maintainability and readability of the code by applying SOLID

design principles. To demonstrate the extensibility of the solution, we already proposed two algorithms,

and we demonstrated that the recognition or training algorithm could be selected during alignment rec-

ipe creation.

RECOG met the YS specifications (such as TMU, matching, and performance) based on the test results.

The results gained by RECOG were highly comparable with Cognex results. The difference between

the offset values measured by RECOG and Cognex was mainly less than one pixel. Additionally, test

results showed that the proposed solution was considerably flexible in pattern recognition against low

contrast or noisy images, making it a robust solution.

Although results showed that RECOG needed 4% more time to align wafers than Cognex, the average

fast alignment using RECOG is about 1.7 ms, which is below the specifications (2 ms.) Therefore, even

without any improvements, the library performance is acceptable. We believe the performance and ac-

curacy can be improved in the future.

ART supports the main functionalities of APT. Its user interface is quite similar to APT. Thus, users

can get used to it readily. It has an additional feature for converting available alignment profiles to the

new version, smoothing the migration to the new library. It also provides a new view to the users to

verify pattern recognition accuracy by aligning the template pattern and the recognized pattern on top

of each other.

To sum up, this project proved that replacing Cognex with an in-house solution is feasible and achiev-

able. The result of this project shows that investment in this project can bring added value to ASML.

Still, there are some steps towards achieving the main goal, which is replacing Cognex. The following

section gives a few suggestions for future work.

 Recommendations and future work

Coming up with a solution comparable with a mature commercial tool only in ten months and one

person is a valuable result, and it is highly promising. As a next step, it is recommended that experts at

ASML try to utilize ART internally to test RECOG against more data from the customers and find its

potential shortcomings. Based on this information, new ideas can be proposed on how and in which

way the library could be improved. As mentioned earlier, the developed library and tool can be used as

a basis for the replacement of Cognex shortly. Although we demonstrated the feasibility of replacing

Cognex, several topics are still not fully addressed in this project or could be improved.

In this project, we tried to address model-based pattern recognition. Since we are converting model-

based pattern descriptions to images, we expect that the solution could be readily extended to address

the image-based patterns, provided that the edges of the image-based patterns can be detected accu-

rately. Therefore, it might be necessary to consider a precondition for users to take high-contrast, noise-

free images for image-based pattern creation. Moreover, currently, ART does not support new model-

based pattern creation. Additional APT functionalities which are not implemented in ART can be added

to the tool step by step once it is required. We did not consider the possibility of the presence of multiple

instances of the same pattern in the input image. Therefore, if someone found it a necessity, then the

algorithm should be extended.

Although we integrated the solution into YS to show that RECOG adheres to the YS architecture and

test its performance, we did not modify the recipes due to the time limitation. As future work, recipes

can be updated to support RECOG objects as well. Additionally, instead of using a configuration file,

new equipment constant can be introduced to set the desired pattern recognition library.

As mentioned in the Domain Analysis Chapter, the application of pattern recognition is not confined to

the wafer alignment. The possibility of utilizing RECOG in other contexts can be investigated as a next

step, and the algorithm could be extended if needed to be used in other domains as well. In this way,

YS can utilize a unified pattern recognition solution.

In Chapter 6, we discussed the feasibility of using modern CV techniques. We argued that although

they are highly powerful, they might not be the best or the first option for addressing the current prob-

lem. The main difference between traditional and modern approaches is that a technique is implemented

in the former, while a system is trained in the latter. In the first scenario, there is always a necessity to

extract the best features, fine-tune parameters, and in the case of new data, there might be a need to

parameter fine-tunning. However, if a detector can be trained properly, it should be able to deal with

unforeseen cases. Therefore, it is recommended to study the possibility of applying AI-based techniques

based on the proposed solution and framework for future work. We believe that it could help in detecting

false positives and detecting patterns in noisy or low contrast images.

 Self-reflection

The project conducted during the past nine months was a precious and fulfilling experience for me. It

was a great opportunity to put together the expertise I gained during my previous work experience and

the knowledge I acquired in the first year of the PDEng program. The project domain and its related

technologies were almost new to me, making it challenging while interesting. The project was a com-

bination of the software design problem and pattern recognition in practice. Without any previous back-

ground knowledge about image processing or pattern recognition, the first risk or concern was if I could

find the proper solution within a limited time. Therefore, I initiated an exploratory phase, studied the

literature, prototyped different techniques, and planned regular demo meetings with stakeholders. The

meetings were quite helpful, as I could get early feedback and ensured I was on track. Meanwhile, I

could learn more about the domain based on the discussions and result analysis. Although learning and

exploring a new topic was interesting enough, investigation and endeavor to find a replacement for a

mature commercial tool gave me more motivation.

There is always a risk when starting a project in a new broad domain like lithography. You should

always find a balance between diving into details and gaining a high level and abstract knowledge. This

project helped me immensely to develop my project management, time management, and risk manage-

ment skills. Despite other projects, it was almost a solo project that I was mainly responsible for every

aspect of it. I had to build a network within different teams. Each project phase had its own requirements

and challenges, and I had to communicate with different stakeholders.

Throughout the execution of the project, I developed my technical skills with respect to design and

analysis, C# development, and testing. I refactored the design and code several times to increase its

quality and make it more extensible. Testing was one of the key phases of this project. Upon a small

change, all tests had to be repeated. Finding a balance between achieving high accuracy and perfor-

mance was challenging. Additionally, identifying expected results and deciding on the testing approach

was highly important, as there was no ground truth data. Discussion with stakeholders and learning

about their concerns and the available specifications within YS smoothed this phase.

In conclusion, the project was an excellent opportunity to broaden my horizon, challenge myself, and

develop my skills. The project was completed on time and met the expectations of the stakeholders,

including me.

Abbreviations and Glossary
AHE Adaptive Histogram Equalization

APT Alignment Pattern Tool

ART Alignment Recognition Tool

BCET Balanced Contrast Enhancement Technique

CD Critical Dimension

CV Computer Vision

DBO Diffraction-Based Overlay

DL Deep Learning

HE Histogram Equalization

IC Integrated Circuit

KPI Key Performance Indicator

LCP Litho Computing Platform

MVC Model View Controller

MVP Model View Presenter

MVVM Model View ViewModel

NCC Normalized Cross-Correlation

OV Overlay

PDEng Professional Doctorate in Engineering

PJ Process Job

PSG Project Steering Group

ST Software Technology

TMU Total Measurement Uncertainty

TPO Target Position Offset

TU/e Eindhoven University of Technology

WCS Wafer Coordinate System

WPF Windows Presentation Foundation

YS YieldStar

Bibliography

References

[1] Shantaiya, Sanjivani, K. Verma and K. Mehta. “A Survey on Approaches of Object Detection.” In-

ternational Journal of Computer Applications 65 (2013): 14-20.

[2] Zou, Zhengxia & Shi, Zhenwei & Guo, Yuhong & Ye, Jieping. (2019). Object Detection in 20

Years: A Survey.

[3] O' Mahony, Niall & Campbell, Sean & Carvalho, Anderson & Harapanahalli, Suman & Velasco-

Hernandez, Gustavo & Krpalkova, Lenka & Riordan, Daniel & Walsh, Joseph. (2019). Deep Learning

vs. Traditional Computer Vision.

[4] Lv, Yong & Feng, Qibo & Qi, Liangyu. (2008). A study of sub-pixel interpolation algorithm in

digital speckle correlation method. 10.1117/12.807128.

[5] Lowe, David. (2001). Object Recognition from Local Scale-Invariant Features. Proceedings of the

IEEE International Conference on Computer Vision. 2.

[6] Bay, Herbert & Tuytelaars, Tinne & Van Gool, Luc. (2006). SURF: Speeded up robust features.

Computer Vision-ECCV 2006. 3951. 404-417. 10.1007/11744023_32.

[7] Rublee, Ethan & Rabaud, Vincent & Konolige, Kurt & Bradski, Gary. (2011). ORB: an efficient

alternative to SIFT or SURF. Proceedings of the IEEE International Conference on Computer Vision.

2564-2571. 10.1109/ICCV.2011.6126544.

[8] Template-based versus Feature-based Template Matching. (2019). https://medium.datadriveninves-

tor.com/template-based-versus-feature-based-template-matching-e6e77b2a3b3a.

[9] Kai Briechle, Uwe D. Hanebeck, "Template matching using fast normalized cross correlation," Proc.

SPIE 4387, Optical Pattern Recognition XII, (20 March 2001);

[10] Zitová, Barbara & Flusser, Jan. (2003). Image Registration Methods: A Survey. Image and Vision

Computing. 21. 977-1000. 10.1016/S0262-8856(03)00137-9.

[11] The Model-View-Presenter (MVP) Pattern. (2010). https://docs.microsoft.com/en-us/previous-

versions/msp-n-p/ff649571(v=pandp.10)?redirectedfrom=MSDN,

[12] https://en.wikipedia.org/wiki/Phase_correlation

[13] Hamad, Yousif & Simonov, Konstantin & Naeem, Mohammad. (2018). Brain's Tumor Edge De-

tection on Low Contrast Medical Images. 45-50. 10.1109/AiCIS.2018.00021.

[14] Pattern Recognition. (2021). https://en.wikipedia.org/wiki/Pattern_recognition

[15] Image Registration. (2021). https://en.wikipedia.org/wiki/Image_registration

[16] Kruchten, Philippe (1995, November). Architectural Blueprints — The “4+1” View Model of Soft-

ware Architecture. IEEE Software 12 (6), pp. 42-50.

https://medium.datadriveninvestor.com/template-based-versus-feature-based-template-matching-e6e77b2a3b3a
https://medium.datadriveninvestor.com/template-based-versus-feature-based-template-matching-e6e77b2a3b3a
file:///D:/TUe/Final_report/SecondDraft_03082021/The%20Model-View-Presenter%20(MVP)%20Pattern
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ff649571(v=pandp.10)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ff649571(v=pandp.10)?redirectedfrom=MSDN
https://en.wikipedia.org/wiki/Phase_correlation
https://en.wikipedia.org/wiki/Pattern_recognition
https://en.wikipedia.org/wiki/Image_registration
http://www.cs.ubc.ca/~gregor/teaching/papers/4+1view-architecture.pdf
http://www.cs.ubc.ca/~gregor/teaching/papers/4+1view-architecture.pdf

[17] MVVM Light Messenger. (2018). http://dotnetpattern.com/mvvm-light-messenger

[18] ISO 9001:2015, "Quality Management Systems - Fundamentals and vocabulary," International

Organization for Standardization, Geneva, Switzerland. (2015). www.iso.org

[19] Nunit. (2019). https://nunit.org/.

[20] Introduction to Model/View/ViewModel pattern for building WPF apps. (2005). Introduction to

Model/View/ViewModel pattern for building WPF apps | Microsoft Docs.

[21] Patterns - WPF Apps With The Model-View-ViewModel Design Pattern. (2009). Patterns - WPF

Apps With The Model-View-ViewModel Design Pattern | Microsoft Docs, MSDN Maganize.

[22] Image Thresholding. (2021). https://docs.opencv.org/4.5.2/d7/d4d/tutorial_py_thresholding.html.

[23] Sarvaiya, Jignesh & Patnaik, Suprava & Bombaywala, Salman. (2009). Image Registration by

Template Matching Using Normalized Cross-Correlation. Advances in Computing, Control, and Tele-

communication Technologies, International Conference on. 819-822. 10.1109/ACT.2009.207.

[24] Gaussian blur. (2021). https://en.wikipedia.org/wiki/Gaussian_blur#:~:text=In%20image%20pro-

cessing%2C%20a%20Gaussian,image%20noise%20and%20reduce%20detail.

[25] Lin, Rey-Sern. (2008). Edge Detection by Morphological Operations and Fuzzy Reasoning. Pro-

ceedings - 1st International Congress on Image and Signal Processing, CISP 2008. 2. 729 - 733.

10.1109/CISP.2008.346.

[26] Dilation (morphology). (2020.) https://en.wikipedia.org/wiki/Dilation_(morphology)

[27] Template Matching. (2020.) https://docs.opencv.org/4.5.1/d4/dc6/tutorial_py_template_match-

ing.html

[28] Image Thresholding. (2020.) https://docs.opencv.org/4.5.2/d7/d4d/tutorial_py_thresholding.html

[29] Measuring Accurcy. (2019.) https://www.asml.com/en/technology/lithography-principles/measur-

ing-accuracy

[30] Srivastava, Shrey & Divekar, Amit & Anilkumar, Chandu & Naik, Ishika & Kulkarni, Ved &

Pattabiraman, V.. (2021). Comparative analysis of deep learning image detection algorithms. Journal

of Big Data. 8. 10.1186/s40537-021-00434-w.

[31] MoSCoW method. (2021.) https://en.wikipedia.org/wiki/MoSCoW_method

[32] Diffraction grating. (2021.) https://en.wikipedia.org/wiki/Diffraction_grating

https://nunit.org/
https://docs.microsoft.com/en-us/archive/blogs/johngossman/introduction-to-modelviewviewmodel-pattern-for-building-wpf-apps
https://docs.microsoft.com/en-us/archive/blogs/johngossman/introduction-to-modelviewviewmodel-pattern-for-building-wpf-apps
https://docs.microsoft.com/en-us/archive/msdn-magazine/2009/february/patterns-wpf-apps-with-the-model-view-viewmodel-design-pattern
https://docs.microsoft.com/en-us/archive/msdn-magazine/2009/february/patterns-wpf-apps-with-the-model-view-viewmodel-design-pattern
https://docs.opencv.org/4.5.2/d7/d4d/tutorial_py_thresholding.html
https://en.wikipedia.org/wiki/Gaussian_blur#:~:text=In%20image%20processing%2C%20a%20Gaussian,image%20noise%20and%20reduce%20detail
https://en.wikipedia.org/wiki/Gaussian_blur#:~:text=In%20image%20processing%2C%20a%20Gaussian,image%20noise%20and%20reduce%20detail
https://docs.opencv.org/4.5.1/d4/dc6/tutorial_py_template_matching.html
https://docs.opencv.org/4.5.1/d4/dc6/tutorial_py_template_matching.html
https://www.asml.com/en/technology/lithography-principles/measuring-accuracy
https://www.asml.com/en/technology/lithography-principles/measuring-accuracy
https://en.wikipedia.org/wiki/MoSCoW_method
https://en.wikipedia.org/wiki/Diffraction_grating

Appendix A. Architecture and Design
This appendix mainly discusses some additional information regarding the design and architecture of

the solution. First, the domain is given to summarize the result of domain analysis. We covered the

logical view of the architecture in Chapter 8. In this section, we show the big picture of the RECOG

and ART class diagrams. As sequence diagrams could give too much details about the implementation

phase, we included them in this appendix. Finally, in the last section of this appendix, we listed some

additional design decisions to represent the rationale behind these decisions.

Domain model

Figure 41 depicts the domain model of the YS wafer alignment. It summarizes concepts covered in

Chapter 4 and represents how they are related.

Figure 41. Wafer alignment domain model

Logical View

Figure 42 Depicts the RECOG class design.

Figure 42. RECOG class diagram

Figure 43 depicts a more detailed view of the ART design. For the sake of simplicity, Views are not

presented in the class diagram. ViewModels hold the state of the data in the model, and the business

logic is mainly implemented in the model, the RECOG library, in this case. Batch recognition and recipe

conversion logic are implemented in the separated classes, RecipeConvertor and BatchRecognizer, re-

spectively.

Figure 43. ART class diagram

Process View

As discussed in Chapter 6, we discussed that the process view deals with the dynamic aspects of the

system, explains the system processes and how they communicate and focuses on the system run-time

behavior [16]. Chapter 7 covers the main part of the process view. We also reviewed the logical view

in the Architecture and Design chapter; this section mainly demonstrates the object interactions in run

time using sequence diagrams. Figure 44 shows the training sequence diagram, focusing solely on the

main run-time interactions during this phase.

Figure 44. Training procedure

Figure 45 illustrates the sequence diagram of the pattern recognition procedure. In this diagram, details

of the training sequence or iterative runs are excluded. The main goal is to show the interaction of the

most significant classes and interfaces in the recognition procedure. With the same rationale with the

training phase, concrete classes are not shown in the below sequence diagram to generalized it.

Figure 45. Pattern recognition procedure

Recipe Conversion

Addressing the need for the reusability of the available Cognex-based recipes or alignment profiles,

ART has a feature that allows users to convert the available recipes to the new format. Figure 46 illus-

trates the sequence diagram of the recipe conversion. It is important to note that the Cognex dongle is

required to deserialize the Cognex object for conversion.

Figure 46. Conversion sequence diagram

In Section 7.2 we explained how RECOG addresses the recognition with various rotation angles. Re-

garding implementation, it is worth mentioning that with Cognex, rotation is clockwise, while it is

counter-clockwise concerning OpenCVSharp, and therefore, RECOG. Additionally, Cognex saves the

rotation in radian, while RECOG interprets rotation based on degree. While converting a Cognex recipe,

first, a conversion from radian to degree is needed, and then we multiply the angle by minus one to gain

the same result. Equation 2 formulates how we convert a Cognex Angle to a RECOG angle.

𝑅𝐸𝐶𝑂𝐺𝐴𝑛𝑔𝑙𝑒 = (
180 ∗ 𝐶𝑜𝑔𝑛𝑒𝑥𝑎𝑛𝑔𝑙𝑒

𝜋
) ∗ −1 Equation 2

Design decision and Technology choices

To decide on important design choices, we always first identified possible alternatives. The downsides

and upsides of each approach, depending on the context and the primary concerns, were studied. Based

on the results, a decision was made and shared with stakeholders to get feedback as early as possible.

Here you can find a sample of such decisions and the rationale behind choosing them.

Computer Vision Open-Source Library Opportunities

During the initial project phase, different pattern recognition and image alignment techniques have been

reviewed. We didn't confine ourselves to any specific library at the exploration phase but studied dif-

ferent techniques and algorithms. The main objective was to investigate which approach could lead to

the desired result.

After deciding on the techniques that should be used, a comparison between available open-source li-

braries was drawn. The main criteria for this comparison were their license, supported programming

language, performance, and the functionalities they support. Table 14 describes the result of the com-

parison between the short-listed libraries.

Table 14. Computer vision open-source libraries comparison

Library Wrappers License Language Pros Cons

OpenCV Apache 2 C++ Best

performance

Programming

Language

Python Apache 2 Python Easy

prototyping

Programming Lan-

guage/ performance

EMGU GPL C# Programming

Language

License

OpenCVSharp Apache 2 C# Programming

Language

Not enough docu-

mentation and sam-

ples as the C++ or

Python version

BoofCV Apache 2 Java Language

VLFeat - BSD

License

C or

MATLAB

Rich set of algo-

rithms for feature

extraction

Not active anymore,

Last

update 8/1/2018

Scikit-Image

and SciPy

- BSD

3-clause

Python Easy prototyping Language, and do

not

support all OpenCV

functionalities

Accord.Net

/AForge.NET

- LGPL v3

license

C# Rich set of image

filters

License

OpenCV turned to be the most comprehensive computer vision library on the market. It also has almost

the best performance in comparison to the other libraries. There are various wrappers for this library in

the market. The original OpenCV is based on C/C++, and it has the best performance; however, based

on the system implementation’s requirement, the library should provide a C# interface.

Consequently, we drew a comparison between different alternatives to investigate the performance of

the available C# wrapper. For this aim, we implemented a set of similar functionalities using both

OpenCVSharp and OpenCV C++. We measured the elapsed time of invoking the C++ library and

calling the C# function and compared the results. The result showed that OpenCVSharp has almost the

same performance as its C++ counterpart. However, memory management in C++ is more challenging,

and also maintaining a C# code is more straightforward considering that the YS code is in C#. Therefore,

OpenCVSharp was selected.

WPF or Windows Form

For the design and development of ART, we needed to decide if we would like to use WPF15 or Win-

dows Forms Applications (Winforms). They are both mainly used to develop and design Windows

applications. However, WPF can be used for developing web applications as well. APT is a Windows

Form application. Windows Form applications are simpler and require less effort for implementation.

WPF applications are more scalable, providing better performance and rendering speed. One of the

15 Windows Presentation Platform

main merits of using WPF is that it can effectively separate UI from the business logic, enhancing code

testability and maintainability with its great support in data binding.

Since this project was a feasibility study, creating a fancy user interface was not a priority. However,

WPF enables developers to readily alter the user interface without changing any single line of the busi-

ness logic. In this way, in the future, they can easily alter the user interface when the product is ready

to deliver to the customers. Additionally, the majority of YS windows applications are implemented

using WPF. Hence, selecting WPF complies with the YS architecture. All in all, we decided to imple-

ment ART using WPF, accepting its complexity and possibly more implementation time.

Architectural Framework

Over the last few years, a few best practices evolved to organize applications into logical components,

like MVC16, MVP17, and MVVP18. MVP and MVVM are derivations of the MVC pattern and two of

the most widely adopted patterns used for building user interfaces.

Since we opted to use WPF, we decided to use the MVVM architectural pattern. This pattern facilitates

the separation of the graphical user interface development from the business logic development. The

combination of WPF and MVVM is one of the best practices [21]. MVVM applications consist of three

layers:

• The Model layer: It contains business rules, data access, and classes.

• The View layer: It defines the user interface.

• The ViewModel layer: It plays as a mediator between the view and the model layer, contain-

ing the presentation logic.

MVVM was designed to remove all GUI code (“code-behind”) from the view layer by using data bind-

ing functions in WPF. The MVVM pattern attempts to gain both advantages of separation of functional

development provided by MVC while leveraging the advantages of data bindings and the framework

by binding data as close to the pure application model as possible [20]. Figure 47 illustrates the MVVM

architectural pattern.

Figure 47. MVVM architecture

MVVM uses data binding, and therefore it is an event-driven architecture. In MVP [11], the presenter

has knowledge about the view; however, in MVVM, the ViewModel layer has no reference to the View.

It allows binding multiple views to a single ViewModel. In other words, it makes the application mod-

ules loosely coupled. Hence, we decided to apply MVVM architectural pattern, to follow the best prac-

tices in designing the system, and increase the code extensibility and maintainability.

16 Model-View-Controller
17 Model-View-Presenter
18 Model-View-ViewModel

MVVM Framework

Although it is possible to implement MVVM architecture without using any framework, there are many

powerful frameworks that address the common concerns, reducing the implementation time, including

Prism, Caliburn.Micro, and MVVMLight. Prism and Caliburn.Micro are two more powerful frame-

works, supporting lots of features. As a result, it is expected that they might have steeper learning curve

in comparison to MVVMLight. While Caliburn and MVVMLight are licensed under MIT, Prism has a

GPL license, which means it was not acceptable by the ASML Free and Open Source Software (FOSS)

portal. We decided to use MVVMLight. The main and the most important reason for picking an MVVM

framework was to address the communication between ViewModels, which was nicely supported by

the MVVMLight framework, without adding unnecessary features that could not add any values to this

project. Besides, the MVVMLight framework was already introduced in YS in some other YS projects,

so there was no need to introduce a new library to YS.

Appendix B. Verification and Validation
This appendix gives more information about the testing phase. Chapter 5 gives a short summary of the

requirements. In this Appendix, we listed all functional requirements in more detail in Table 15. Test

requirements were elicited based on the requirements, and a traceability matrix was created. You can

find more details about the manual tests in the following sections.

Table 15. Functional requirements in detail

Id Requirement Description Related

concern

Priority

F01 The ART user interface shall allow the user to load the input

image in IM format.

4B, 5.G,

6.A

Must

F02 The ART user interface shall allow the user to load the input

image in PNG format.

4B, 5.G,

6.A

Must

F03 The ART user interface shall allow the user to import the

model-based pattern.

5.G, 6.A,

6.D

Must

F04 The ART user interface shall allow the user to save the

model-based pattern.

5.G, 6.A,

6.D

Must

F05 The ART user interface shall allow the user to set the reso-

lution of the model-based pattern.

4.C, 5.B,

6.A, 6.D

Must

F06 The ART user interface shall allow the user to train the

model.

4.B, 5.H Must

F07 The ART user interface shall represent image metadata. 5.G, 6.A Should

F08 The ART user interface shall allow the user to define the

train region in the rectangle shape.

5.E, 5.G,

6.A

Must

F09 The ART user interface shall allow the user to define the

train origin on the micrometer scale.

5.E, 5.B,

5.G, 6.A

Must

F10 The ART user interface shall allow the user to switch be-

tween four different views, including input image, recog-

nized pattern, last run result image, and train image.

5.G, 6.A Must

F11 The ART user interface shall allow the user to zoom into

the last run image.

5.G, 6.A Should

F12 The ART user interface shall allow the user to set the train

region either based on the region top left corner or it's cen-

ter.

4.B, 5.H Should

F13 The ART user interface shall allow the user to set runtime

parameters including accept threshold, scale, and angle.

4.B, 5.E,

5.G, 6.A

Must

F14 The ART user interface shall allow the user to run a model-

based pattern recognition and get the recognition result.

4.B, 5.H Must

F15 The ART user interface shall show the recognition result in

a table with information including X, Y offset (microme-

ter), score, angle, and the scaling factor.

5.B Must

F16 The ART user interface shall facilitate automatic pattern

recognition execution upon changes in the parameters.

5.G, 6.A Could

F17 The ART user interface shall enable the user to save the

pattern recognition settings in the XML format.

5.G, 6.A,

6.D, 5.H,

4.B

Must

F18 The ART user interface shall enable users to save the align-

ment profile, with the “.align” extension.

5.G, 6.A,

6.D, 5.H,

4.B

Must

F19 The ART user interface shall enable the user to load an

alignment profile.

5.G, 6.A,

6.D, 5.H,

4.B

Must

F20 The ART user interface shall enable user to load an existing

XML-based pattern recognition setting and model.

5.G, 6.A,

6.D, 5.H,

4.B

Must

F21 ART shall facilitate pattern recognition using an specified

rotation or scale.

4.B Should

F22 ART shall facilitate measuring the best rotation angle in a

given range, which could lead to the best pattern recogni-

tion result.

4.B Could

F23 ART shall facilitate finding the best pattern scaling factor

in a given range.

4.B Could

F24 ART shall retrain the pattern automatically based on the in-

put image resolution.

4.B, 5.E Should

F25 The ART user interface shall enable the user to name the

pattern.

4.B, 5.G,

6.A

Must

F26 The ART user interface shall enable the user to define the

search region.

4.B, 5.B,

6.A

Could

F27 RECOG shall measure a similarity score to help detecting

false positives.

4.B, 5.B Must

F28 ART shall be able to run pattern recognition in batch for a

set of images against a specific model-based pattern.

5.G, 6.A Should

F29 ART shall save the result of batch execution in a csv file. 5.G, 6.A Must

F30 ART shall enable users to convert a model-based align file

created by Cognex to a default RECOG-based align file.

4.D, 6.A,

6.D

Should

F31 YieldStar shall let users decide whether the Cognex library

or the RECOG library should be used during the wafer

alignment.

4.B Should

F32 YieldStar shall allow users to measure a wafer using

RECOG.

4.B, 6.A Should

F33 YieldStar shall record diagnostic data based on the result of

the RECOG pattern recognition.

4.B, 4.G Should

Traceability

The traceability matrix shown in Table 16 describes new test requirements defined based on the system

requirement. It shows how they can be mapped to the system requirements and test cases.

Table 16. Traceability matrix

ID Test Requirement Ref.

Requirement

Test Case Test

Approach

TR01 Converting a Cognex-based tool to a RECOG-based tool

TR01.1 Description: ART shall be able to convert an align

file created using Cognex to a new RECOG-based

align file.

Rationale: Creating recipes (alignment profiles)

from scratch is time-consuming. We want to make

sure they can be reused.

Pass Criteria: The file should be converted without

any exception if the Cognex dongle is present. ART

should be able to load the converted align file.

F30, F31 TC-001 Manual

test

and

unit tests

TR01.2 Description: ART shall be able to convert an XML

file created using Cognex to a new file with the

“.recog” extension that is acceptable by ART.

Rationale: The same as TR0.1.1., but with respect to

the XML/recog file.

Pass Criteria: The same as TR0.1.1., but with respect

to the XML/recog file.

F30 TC-004 Manual

test

and

unit tests

TR02 Description: ART shall run batch recognition, given

the set of images and a RECOG-based file containing

the tool description.

Rationale: In order to troubleshoot the system, run-

ning a batch pattern recognition is required.

Pass Criteria: A CSV file containing the recognition

results of the images should be created.

F28, F29 TC-005 Manual

test

and

unit tests

TR03 Save/Load a model-based pattern

TR03.1 Description: ART shall save a model-based pattern

as an XML file.

Rationale: Each pattern can be used for different wa-

fers. New recipes can be created based on the same

pattern.

Pass Criteria: An XML file containing the pattern de-

scription should be created without any exception.

F04 TC-001 Manual

test

and

unit tests

TR03.2 Description: ART shall load a model-based pattern

saved as an XML file using ART.

Rationale: For creating a new recognition tool, the

pattern should be loaded. Patterns can be reused.

F03 TC-002 Manual

test

and

unit tests

Pass criteria: Pattern should be loaded and get visu-

alized.

TR04 Import/Export tool

TR04.1 Description: ART shall export the tool with “.recog”

extension, containing the tool pattern info, image

info, train, and run parameters.

Rationale: Each “.recog” file can be used to load the

tool with the same setting again.

Pass Criteria: A file with “recog” extension should

be created.

F17, F25 TC-002 Manual

test

and

unit tests

TR04.2 Description: ART shall save the tool alignment pro-

file.

Rationale: An alignment profile is required for cre-

ating a wafer alignment recipe.

Pass Criteria: A file with “.align” extension should

be created.

F18, F25 TC-003 Manual

test

and

unit tests

TR04.3 Description: ART shall import the tool alignment

profile (.align) file.

Rationale: alignment profile is required for creating

a wafer alignment recipe.

Pass Criteria: The tool’s pattern with already defined

parameters should be loaded.

F19 TC-001,

TC-003

Manual

test

and

unit tests

TR04.4 Description: ART shall import the exported tool with

“.recog” extension.

Rationale: Loading an already created tool can be

used in batch recognition, rerunning, and trouble-

shooting pattern recognition.

Pass Criteria: The tool’s pattern with already defined

parameters should be loaded.

F20 TC-003 Manual

test

and

unit tests

TR05 Description: ART shall run the pattern recognition

given the runtime parameters and represent the re-

sult.

Rationale: ART shall use RECOG to recognize pat-

terns or report the absence of patterns in the given

image.

Pass Criteria: RECOG shall run the recognition pro-

cedure based on the given parameters without any

exception and show the result. The result might con-

tain the last run images and also the offset and score.

F10, F11,

F13, F14,

F15, F21,

F22, F23,

F24, F27

TC-001,

TC-004

Manual

test

and

unit tests

TR06 Description: ART shall train patterns given the train

parameters.

Rationale: Training is the prerequisite for the recog-

nition phase. Therefore, it should be done without

any error.

Pass criteria: Pattern should be visualized, and the

status of the training info should change.

F05, F06,

F08, F09,

F12

TC-003 Manual

test

and

unit tests

TR07 Description: ART shall load images either in IM or

PNG format.

Rationale: Running a pattern recognition requires an

input image, which could be either in PNG or IM for-

mat.

Pass Criteria: Image metadata shall be represented.

Input image shall be represented in the image box.

Finally, recognition should be done based on the

loaded image.

F01, F02,

F07

TC-002,

TC-004

Manual

test

and

unit tests

TR08 Description: RECOG shall find the offset X and off-

set Y with less than 0.8-micrometer difference with

the reported offset X and offset Y by Cognex.

Rationale: RECOG should recognize patterns accu-

rately.

Pass criteria: The difference between the Cognex

and RECOG results should be less than 0.8 um.

NF4 TC-002 Manual

test

and

unit tests

TR09 Description: Given the same image and pattern,

RECOG recognition success shall be at least 90 per-

cent of the Cognex recognition success.

Rationale: The system shall recognize patterns re-

gardless of the image brightness or quality.

Pass criteria: The number of successful recognition

by RECOG should be more than 90% of Cognex's

successful recognition.

NF5 TC-004,

TC-005

Manual

test

TR10 Description: The pattern recognition algorithm shall

be deterministic.

Rationale: The system shall report the same result

given the same inputs, proving the algorithm's stabil-

ity and reliability.

Pass Criteria: Getting the same result for running the

same recipe.

NF6 TC-002 Manual

test

TR11 Description: RECOG shall recognize each mark in

less than 250 milliseconds.

Rationale: This recognition time is promising

enough to achieve the desired performance in the

production-ready application.

Pass Criteria: recognition time should be less than

250 ms.

NF2 TC-001,

TC-002,

TC-005

Manual

test and

unit test

TR12 Description: YS shall measure a wafer without a

Cognex dongle.

Rationale: RECOG shall be integrated into YS and

should facilitate measuring wafers accurately and ef-

ficiently.

Pass Criteria: YS should align wafers without a

Cognex dongle. TMU and matching values should be

F30, F31,

F32, F33,

NF2, NF4,

NF5

TC-006 Manual

test

based on YS specifications. These values are ex-

plained in detail in the validation section.

The short description of the test cases are as follows:

- TC-001 Conversion test: Ensure that .align files created using the Cognex library can be con-

verted properly to be loaded in the ART. Make sure that the image can be set, and we can run

a recognition based on the default parameters. Finally, the goal is to check if the pattern can be

extracted from the tool and saved as an XML file.

- TC-002 Accuracy test: Ensure that pattern recognition can be done without a Cognex dongle.

Additionally, the goal is to make sure the difference between the offset reported by the APT

(tool based on the Cognex library) and ART is less than 0.8 𝜇𝑚. At the same time, we can

check if the algorithm is deterministic by comparing the result with the previous test result. As

another test, after loading the image, we can test if the image metadata can be represented by

ART. Finally, exporting the tool with the “recog” extension can be verified.

- TC-003 Parameter test: Ensure that file created with the “recog” extension can be loaded. Make

sure that the user can change the train region, even based on the “center” of the region. Verify

if the user can change the pattern origin. Also, in this test, the goal is to check run parameters

could be set correctly, and the algorithm and the tool can recognize the pattern based on the set

parameters.

- TC-004 Flexibility test: Ensure that Cognex objects (.XML files) can be converted to the new

definition. RECOG flexibility and reliability will be tested against a different pattern. By load-

ing IM images, we can make sure the tool can represent IM images. Finally, by setting a low-

contrast and noisy input image, test the library flexibility.

- TC-005 Batch recognition test: Ensure that ART can run batch pattern recognition. Also, check-

ing the recognition time of a batch of images makes sure that the recognition time is less than

the threshold. Finally, the robustness and flexibility of the RECOG are tested.

- TC-006 Integration test: Ensure that RECOG is integrated into YS. Wafer measurement and

alignment can be done using RECOG. Diagnostic files can be created based on the RECOG

library results. Performance and accuracy of wafer measurement using RECOG are accepted

based on the YS specifications.

ART Manual Tests

1.1.1 Tool Conversion

Table 17. TC-001 Tool Conversion

Objective Ensure that .align files created using the Cognex library can be converted properly so that it can be

loaded in ART. Ensure that the image can be set and the tool can be ran based on the default param-

eters. Finally, the goal is to check if the pattern can be extracted from the tool and saved as an XML

file.

Pre-conditions /

Set up

A Cognex dongle should be present. A Cognex-based align file should exist.

Configuration Local system

Duration Two minutes on average

Step

ID

Execute Expected result

1. Load the Cognex tool (.align file,) and

press convert. A new .align file at the

same path should be created.

After selecting a file, the path should be represented in the Cognex

file box. After pressing ‘convert’, the Info box should show a mes-

sage describing if conversion was successful or an error has oc-

curred.

2. Check file system while importing tool to

check if the file exists.

GA_recog.align should exist in the same path as described in the

Info box in the previous step.

3. Load the recenly converted .align file by

pressing the “Import Tool” button.

After loading the converted tool, the pattern should be represented

in the “train params” tab. Also, one can select the “Train Image”

from the combobox on the right side. Pattern with its region should

be presented.

4. Load the image named Align-

ment_ID49.png.

The image should be shown in the input image tab. Also, image

metadata should be represented in the metaData tab.

5. Press “Run”. Upon running the recognition, the recognition result should be

shown in the LastRun.InputImage.

6. Check the result tab. In the result tab, there should be a record if the pattern is recog-

nized. Also, the infobox should show the information about the

success/failure of the recognition.

7. Press “Save Pattern”. GaPattern.XML file should exist in the selected path after saving.

TAR OK/NOK Ok

1.1.2 Test Recognition accuracy

Table 18. TC-002 Test recognition accuracy

Objective Ensure that pattern recognition can be done without Cognex dongle. Additionally, the goal is to make

sure the difference between the offset reported by the APT (tool based on the Cognex library) and

ART is less than 0.8 micrometer. At the same time, one can check if the algorithm is deterministic or

not by comparing the result with the previous test result. As another test, after loading the image, we

can test if the image metadata can be represented by ART. Finally, exporting the tool as .recog file is

tested.

Pre-conditions /

Set up

Make sure the Cognex dongle is not present. The pattern XML file and input image should exist.

Before this test (when Cognex dongle is present,) load the GA.align file into APT and set the same

input image (Alignment_ID49.png,) and run the recognition.

Configuration Local system

Duration One or two minutes in order to do all preparations and run the tests.

Step

ID

Execute Expected result

1. Press “Reset” to reset the tool. Input image and the pattern should be removed.

2. Press the “Load Pattern” button and select the

pattern created in the previous test.

The pattern should be loaded and trained automatically. Also,

the Train Image view should represent the pattern with its train

region and the train origin.

3 Load the input image, the same input image as

the previous test. Press the “Run” button one

more time. Check the result tab again.

MetaData column should represent the image metadata.

The result tab should show the recognition result details. The

image preview section should show the LastRun.InputImage.

4 Compare the result of APT and ART. Also,

compare the result reported by ART in the pre-

vious test and the new result.

It is expected that the difference between X offset and Y offset

reported by ART with the ones reported by APT be less than

0.8 micrometer. Also, the offset reported by ART in the previ-

ous test and this test should be similar.

5 Press “Export” button to save the tool as

“.recog“ file. Fill in the “File Name” section as

“ExportedGATool” without any extension.

A file with the name “ExportedGATool.recog” should exist in

the path you saved the tool.

TAR OK/NOK Ok

1.1.3 TEST Parameters

Table 19. TC-003 Test recognition with different parameters

Objective Ensure that the saved “.recog” object can be loaded. Make sure that the user can change the train

region, even based on the “center” of the region. They can change the pattern origin. Also, the goal

is to check whether run parameters could be set correctly, and the algorithm and the tool can recognize

the pattern based on the set parameters.

Pre-conditions /

Set up

Cognex should not be present. ExportedGATool.recog can be created as explained in the previous

test. In summary, you need to load GA pattern and Alignmen_ID49.png as an input image, export

the tool as “ExportedGATool.recog”.

Configuration Local system

Duration Two minutes on average to do preparations and run tests.

Step

ID

Execute Expected result

1. Reset the tool by pressing the “Reset” button. Press on

the “Import Tool” button and load the “ExportedGA-

Tool.recog” file created in the previous test.

The file should be located at the saved path.

Upon loading the “.recog” tool, the recognition

should be done automatically.

2. On the “Train Region and Origin” tab, set the origin X

and Origin Y to 10, and rerun the tool.

The new offset X and offset Y should also be shifted

by 10 compared to the previous result.

3 Set the origin again to (0,0). On the “Run Params” tab,

set the scale and angle as below:

And re-run the tool.

The angle in the result tab should be 180. The scale

should be equal to 1. Also, looking at the

LastRun.RecognizedPattern, the pattern should be ro-

tated 180 degrees.

4 Set the accept threshold to 0.65, angle to 180, scale to

0.5, and rerun.

The result should be relatively low in comparison to

the previous run because the scale is 0.5.

5 Set the scale again to 1. On the “Train region and origin”

tab, select “Center” as the select mode, and set the origin

X and origin Y to 10.

The pattern should be set to untrained.

6 Press the “Train button.” Then run the tool. The pattern should be partial.

Recognition result should also reflect the partial pat-

tern.

7 Give the pattern a name, such as ‘PartialGAMark” and

Press “Save Align” to save the alignment profile.

Look at the PatternGAMark in the pattern textbox.

8 Reset the tool and import the saved tool in the last step

to make sure that it was saved in good order.

After import, the pattern with the same name and result

should be loaded.

TAR OK/NOK OK

1.1.4 Test Tool Robustness

Table 20. TC-004 Test RECOG flexibility

Objective Ensure that Cognex objects (XML files) can be converted to RECOG objects. RECOG flexibility

and reliability in recognition will be tested against another pattern. By loading an IM image, make

sure the tool can represent IM images. Finally, by choosing a low contrast and noisy image ensure

that the library is flexible.

Pre-conditions /

Set up

Test data, including the Cognex XML file, IM image, should be available.

Configuration Local system

Duration One or two minutes.

Step

ID

Execute Expected result

1. In the “Converter” tab, press “…” to load an XML

file containing the Cognex object and press “Con-

vert.”

After choosing the XML file, the path to the file should

be represented in the Cognex file text box. After press-

ing convert, the conversion result should be repre-

sented in the “info” text box.

2. Then in the “Pattern Trainer” tab, press “Import

Tool” and load the converted tool (.recog file) at the

last step.

After importing the tool, the pattern should be shown

in the train params tab.

3. Press on the “Load” button to load the IM file. After

loading the IM files, the image should be represented

in the input image view. It should be possible to re-

view the image metadata in the Metadata panel.

The resolution of the image metadata and pattern res-

olution should be the same.

After selecting and importing an IM file, the image

should be shown in the Input image section. The

metadata tab should reflect the image metadata. Also,

the pattern resolution box in the “Train Params” tab

should get updated based on the IM image resolution,

shown in the metadata tab.

4. Because there are lots of noises around the pattern

shape in the input image, we increase the MinA-

reaThreshold (to 8) in the “Run Params” tab. Press

“Run”.

The pattern should be recognized after increasing the

MinAreaThreshold. Note that depending on the image

contrast, noises, or even the type of pattern, the run pa-

rameters might need to be set differently. The goal is to

test if the tool is configurable or not.

TAR OK/NOK OK

1.1.5 Batch recognition test

Table 21. TC-005 Test batch recognition

Objective Ensure that ART can run batch pattern recognition. Also, by checking the recognition time of a batch

of images, make sure that the average recognition time is less than the threshold (250 milliseconds.)

Finally, the robustness and flexibility of RECOG is tested.

Pre-conditions

/ Set up

Test data is available. Cognex dongle should be present in order to run the batch recognition using

APT and compare the results.

Configuration Local system

Duration A few minutes depending on the number of images used in the recognition. Usually, it could take

roughly one minute for 40 images.

Step

ID

Execute Expected result

1. Go to the “Batch Pattern Recognition” tab, in the

“Training Pattern” row, press “…” button, and load

“ExportedGATool.” Select the folder containing the

images. Select a path to save the recognition result

and give a name to the file. Finally, press Run.

Upon selecting a file, the path to the file and its name

should be shown in the corresponding box. In case you

give only a name to the output CSV file, a “.csv” exten-

sion should be added automatically.

2. Press “Run”. Upon pressing run, the progress bar should show the pro-

gress status of the batch recognition.

3. Open the CSV file. There should be a record for each image. The processing

time for each record should be less than 250 milliseconds.

 Run the batch recognition for the same images based

on the same pattern (in the XML format).

 Open the Cognex result file. It is expected that RECOG could at least recognize 90%

of patterns that are recognizable using the Cognex library.

Comparing their results, both were able to recognize the

pattern in all images.

TAR OK/NOK OK

1.1.6 Integration test

Objective Ensure that RECOG is integrated into YS. Wafer measurement and alignment can be done using

RECOG. Diagnostic files can be created based on the RECOG library results. Performance and ac-

curacy of wafer measurement using RECOG are accepted based on the YS specifications.

Pre-conditions

/ Set up

A new patch should be created. The configuration file should be in the recipe root folder. The con-

verted align file (compatible with RECOG) should be available in the recipe folder with an expected

name. The patch should be installed, and the machine should get initialized.

Configuration YieldStar machine, the user can get connected to the machine remotely.

Duration Depending on the test, it could take up to 4 hours to complete all the tests, including the installation

and initialization phase.

Step

ID

Execute Expected result

1. Install the patch and initialize the machine. The machine should get initialized without any errors.

2. Create a wafer FOUP and set the proper wafer on

the stage, then press “Align.”

You should get a score for all the fields and with a green

tick.

3. Choose the correct wafer and set it on the stage for

running the “AlignmentPerformanceTask.”

The task should get started and finished without any er-

rors or exceptions.

4 Recreate the Foup and create a process job after set-

ting the wafer on the stage and initiate a process job.

It should get started and finished without any errors or

exceptions. The pattern should be located almost in the

center of the Darkfield camera spot, proving that wafer

alignment is accurate enough.

5 Repeat all these tests, using the same patch, but

without the configuration file, to make sure that us-

ing the same patch, we can use Cognex. Afterward,

check the performance time of running a process job

with Cognex and RECOG. Additionally, check the

difference between offset values computed using

1. The time for running a process job should be less

than 2 seconds.

2. The difference between offset values measure

by Cognex and RECOG should be less than 0.5

micrometers.

RECOG and Cognex after running an alignmentPer-

formanceTask.

TAR OK/NOK OK

RECOG additional accuracy test results
The accuracy test results of RECOG were demonstrated in Chapter 10, Section 10.3.1. This section

demonstrates the result of comparison between the Cognex and RECOG results against a pattern called

P (Figure 48 and Figure 49,) which has the same geometric shape as pattern D, but it is being used in a

different layer.

Apart from the difference in the contrast of this layer images, since different photoresist material was

used in this layer, the intensity level of pattern images were quite different from the D layer’s images,

which made the pattern recognition challenging. After looking at the images of this layer, we realized

that for some of them the pattern (inside the pattern shape) was lighter than its surrounding, while for

some of them it was vice versa. Sometimes only the pattern border was darker and inside the pattern

shape was the same color as its surrounding. Finally, some images were too noisy. The algorithm should

deal with all different situations.

As it can be seen, RECOG was successful in pattern recognition in all different situation. Therefore, we

can say that RECOG is flexible and can conduct pattern recognition successfully, regardless of the

image brightness, contrast, or even in the noisy images. Sometimes RECOG performed better than

Cognex. For instance, by looking at Figure 49, we see that Cognex results are sometimes inaccurate

(the ones who are quite different and far from the rest.) We manually tested these specific cases and

compared the results and made sure that RECOG results were more accurate. Even without manuall

checking, it can be seen that the Cognex values for these images are by far different from the majority,

which could show a false detection.

Figure 48. Accuracy comparison between Cognex and RECOG result for the pattern P, X-axis

143.04

143.36

143.68

144

144.32

144.64

144.96

145.28

145.6

145.92

146.24

146.56

0 20 40 60 80 100 120

O
ff

se
t

X
 (

u
m

)

Image #

RECOG Cognex

Figure 49. Accuracy comparison between Cognex and RECOG result for the pattern P, Y-axis

Machine test preparation

Figure 50 summarizes the test preparation steps. First, we needed to make sure the wafer type and the

recipe were compatible. Depending on the test goal, there are different recipes available. Because we

only addressed model-based recipes in this project, we needed to make sure that we were using a model-

based recipe.

Image-based recipes can be converted to model-based ones if the model-based alignment profile of the

same pattern is available. Replacing the alignment profile might change other recipe parameters such

as alignment model (normal or fast) and dose settings. Hence, these parameters were set as well.

Figure 50. Machine test preparation steps

As mentioned earlier, in this project, instead of changing the recipe structure, we decided to read the

pattern data from a separate alignment profile file located at a specific location. This alignment profile

should be created using ART to contain the RECOG library objects. Hence, we first extracted the align-

ment profile from the model-based recipe and converted it to the new format using ART. If needed,

users can fine-tune the parameters to get the best recognition result and so the best alignment result.

Note that it is mandatory to set the proper pattern resolution and train the pattern based on the new

resolution. Otherwise, the result might be inaccurate. After all, we saved the new RECOG-based align-

ment profile with a specific name. As the last step, we added the new configuration file at a specific

location so that YS can run the alignment using RECOG.

112

112.32

112.64

112.96

113.28

113.6

113.92

114.24

114.56

114.88

115.2

115.52

0 20 40 60 80 100 120

O
ff

se
t

Y
(u

m
)

#image

RECOG Cognex

RECOG accuracy analysis based on the Task result

After running the AlignmentPerformanceTest, we compared the result of measured offset using both

libraries with 0-degree or 180-degree rotation. While we discussed the result of this comparison with

the 180-degree rotation, this section demonstrates the same comparison result with no rotation (0-degree

rotation.) Figure 51 and Figure 52 depicts the result in the X axis and Y axis, respectively. Similar to

the 180-degree rotation, the difference is almost always less than one pixel, which is desired.

Figure 51. Offset comparison with no rotation for task execution, X axis

Figure 52. Offset comparison with no rotation for task execution, Y axis

-0.85

-0.52

-0.19

0.14

0.47

0.8

1.13

0 10 20 30 40 50 60 70

O
ff

se
t

X
 (

u
m

)

Mark #

RECOG Offset X Cognex Offset X

-0.66

-0.33

0

0.33

0.66

0 10 20 30 40 50 60 70

O
ff

se
t

Y
(u

m
)

Mark #

RECOG Offset Y Cognex Offset Y

Appendix C. Algorithm edge cases
This section reviews two edge cases and explains how the proposed solution deals with them.

Partial Pattern

In most cases, during the wafer alignment, the pattern is expected to be in the center of the input image.

However, there might still be a few cases where the pattern resides partially in the input image. While

the left side of the Figure 53a shows a pattern, on the right side of the same image, an image that partially

contains this pattern can be seen. The problem with this situation is that although the algorithm might

find the pattern, the reported offset might not be accurate, as shown in Figure 53b. The issue is mainly

because the pattern slides through the input image during the template matching, pixel by pixel. Alt-

hough it will find the most similar area to the template, it can still not find the offset accurately because

the pattern and the image cannot be matched completely; therefore, a slight deviation from the correct

offset is predictable.

Figure 53. Partial pattern

Usually, it is expected that the train region be smaller than the input image size. However, because the

user defines the train region, it was safer to consider the possibility of the situation that the train region

was bigger than the input image. The algorithm could face some issues in this case because the window

size is bigger than the input image. To address this edge case, we introduced an image bounding box.

It means that an additional marginal space equal to the template width and height is added to the image

width and height. All these newly introduced pixels have a value equal to zero (black.) The downside

of this approach is that it adds an overhead to the recognition performance, as a more extensive area

should be scanned. Therefore, we added this feature as an optional feature to the algorithm and tool so

that the user can decide if a partial pattern should be recognized or not.

When using this feature, the recognition offset result is measured from the image bounding box. This

means that an additional margin that is added to the input image impact the offset coordinate and should

be subtracted from the recognition offset. Equation 3 formulates how the final offset should be calcu-

lated.

𝑂𝑓𝑓𝑠𝑒𝑡𝑥 = 𝑜𝑓𝑓𝑠𝑒𝑡𝑥 − 𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑤𝑖𝑑𝑡ℎ

𝑂𝑓𝑓𝑠𝑒𝑡𝑦 = 𝑜𝑓𝑓𝑠𝑒𝑡𝑦 − 𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛ℎ𝑒𝑖𝑔ℎ𝑡
Equation 3

Imaginary Template Pattern Border

As discussed earlier, one of the steps during the training phase is to find the minimum or maximum area

of the template pattern. Patterns could have different shapes. They could either consist of various

(a) (b)

detached shapes or have a single closed shape. If the user defines a partial section of a pattern area as

the training region, the pattern might turn into an open shape. In this situation, the minimum and max-

imum area of the pattern are equal to the entire pattern area since no contours could be detected.

Consequently, during the recognition phase, the algorithm might not find any contours concerning the

training data (the expected minimum or maximum contour area.) This situation could lead to a false

negative recognition. To avoid this situation, we decided to add an imaginary border to the template

pattern. While Figure 54a depicts a typical case that the pattern resides in the center, Figure 54b illus-

trates the edge case mentioned in this case. As it shows, adding the imaginary border helps with finding

at least one contour, and therefore the minimum area is less than the actual pattern contour size.

Figure 54. Imaginary template pattern border

Appendix D. Image Processing
This appendix reviews the basic image processing techniques used in the proposed solution, by giving

some sample images to help readers who might not be familiar with this topics. In the second section,

a summary of the techniques discusses in Chapter 6 are given in a table format. Figure 55 shows a

sample image used as a reference for demonstrating different techniques.

Figure 55. Sample Image with pattern G

Gaussian blurring

Figure 56 shows the effect of Gaussian blurring on the reference image. As it can be seen, this image is

a bit blurry compared to the initial version. By increasing the kernel size, the image gets more blurry.

Figure 56. Gaussian blurring

Thresholding

As mentioned in Chapter 6, thresholding is the simplest method of segmenting images by converting

the grayscale image into a binary one. A sample of this technique is shown in Figure 57.

Figure 57. Reference image after applying thresholding

Edge Detection

Edge detection is a technique of image processing used to identify points in a digital image with dis-

continuities, simply to say, sharp changes in the image brightness. These points where the image bright-

ness varies sharply are called the edges (or boundaries) of the image. Figure 58 shows the edges detected

in the reference image.

Figure 58. Result of edge detection

Dilation

Dilation expands the image pixels i.e. it is used for expanding an element A by using structuring ele-

ment B. Dilation adds pixels to object boundaries. The value of the output pixel is the maximum value

of all the pixels in the neighborhood. A sample of image dilation is depicted in Figure 59.

Figure 59. Initial image (left side) and dilated image (right side)

Interpolation

Image interpolation occurs when you resize or distort your image from one pixel grid to another. Zoom-

ing refers to increase the quantity of pixels, so that when you zoom an image, you will see more detail.

Interpolation works by using known data to estimate values at unknown points. Image interpolation

works in two directions, and tries to achieve a best approximation of a pixel's intensity based on the

values at surrounding pixels. Figure 60 shows pattern G with its actual size. Figure 61 shows the inter-

polated image of the pattern G. while there are various methods for interpolation, we used cubic inter-

polation technique. Based on the experiments, we got the best results with this method.

Figure 60. Pattern G

Figure 61. Interpolated pattern G

Image processing techniques summary

Table 22. Comparison of traditional and modern CV approaches

 Pros Cons

Traditional Approaches

[1, 2, 3]
• Customizable

• No need for the training data

• With highly fine-tuned parameters

could localize the pattern accu-

rately

• Easy to learn, with easy concepts

and techniques

• Highly dependent to the pa-

rametes such as Gaussian

kernel size

• Difficulty in detection in case

of noisy and low-quality im-

ages

Modern Approaches

(using ML/DL)

[1, 2, 3]

• Can help in finding false positives

• Could be a more generic approach

(find patterns in noisy images bet-

ter)

• Requires large annotated da-

taset

• Mainly for classification

• Performance in the cost of

accuracy

Table 23. Object detection methods

 Pros Cons Application

Feature-based

Matching [8]
• Efficient with large resolu-

tion images

• Compute sub-pixel position

• Prone to false results in

case of incorrect key

point matching

• Does not compute the

score

Not a good choice

if different objects

share the same

features or images

have fewer fea-

tures.

Template

Matching [8]
• Compute similarity score

• Simple and less parametric

• Support different compari-

son methods

• Highly dependent on

image intensity

• Does not compute the

sub-pixel position

A perfect fit when

templates have no

strong features

with an image

Contour-based

Matching
• Less parametric

• Not dependent on image in-

tensity

• No scoring

• No support for sub-

pixel accuracy

Not a good choice

in the case of de-

tached shapes

Table 24. Techniques for getting the sub-pixel position

 Pros Cons

Feature Matching techniques • Time-efficient • Highly dependent on accu-

rate feature mapping, other-

wise could lead to inaccurate

mapping (result)
Phase Correlation [12] • Higher performance com-

pared to the interpolation

technique

• computes confidence score

• High error rate, due to incor-

rect feature matching [1]

Interpolation [4] • More reliable results (based

on the experiments result)
• Not time efficient

About the Author

Raha Sadeghi received her Bachelor’s degree in Software Engineering

from Alzahra University in 2010. As she found herself drawn by

computer science, she started her Master's degree in the same field with

a significant focus on Distributed Systems at Iran University of Science

and Technology. Raha accomplished this degree in 2013 by proposing

a trust model for service selection in a service-oriented environment as

her final thesis. Upon graduation, she started working as a software

developer at a national company in Iran. After five years of work ex-

perience, developing her technical knowledge, she started a new jour-

ney in 2019 by joining the PDEng program in Software Technology at

the Technical University of Eindhoven to broaden her horizon. During

the last two years, she did multiple projects at well-known companies,

including CERN, TNO, ESA, and ASML, and experienced different

test manager and software architect roles. She is mainly interested in

system/software architect and design, as well as data Science.

PDEng SOFTWARE TECHNOLOGY

PO Box 513

5600 Eindhoven

The Netherlands

tue.nl

