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Abstract: Increasingly strict legislation for greenhouse gas and real-world pollutant emissions
makes it necessary to develop fuel-efficient and robust control solutions for future automotive
engines. Today’s engine control development relies on traditional map-based and model-based
control approaches. Due to growing system complexity and real-world requirements, these
expert-intensive and time-consuming approaches are facing a turning point, which will lead
to unacceptable development time and costs in the near future. Artificial Intelligence (AI) is a
disruptive technology, which has interesting features that can tackle these challenges. Al-based
methods have received growing interest due to the increasing availability of data and the success
of AT applications for complex problems. This paper presents an overview of the state-of-the-art
in Machine Learning (ML)-based methods that are applied for engine control development
with focus on the time-consuming calibration process. The overview here shows that the
vast majority of studies concentrates on regression modelling to model complex processes, to
reduce the number of model parameters and to develop real-time, ECU implementable models.
The identified promising directions for future ML-based engine control research include the
application of reinforcement learning methods to on-line optimize engine performance and
guarantee robust performance and unsupervised learning methods for data quality monitoring.

Copyright © 2021 The Authors. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. INTRODUCTION

| Towards dealing with all variation[>

b
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Driven by increasingly strict legislation for pollutant
and greenhouse gas emissions, and the growing attention
for real-world performance, future automotive powertrain
complexity will continue to grow. More precisely, the in-
troduction of new advanced fuelling and air management
technologies will go hand in hand with an increasing num-
ber of control parameters (Atkinson, 2014). Examples of
these technologies include fuel rate shaping, variable valve
timing systems, electrification and energy recovery sys-
tems. Real-world emissions limits set challenging require-
ments for future engine control systems. These control sys-

Robust performance
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tems have to guarantee robust performance under various
disturbances and system uncertainty, including varying
ambient conditions, production tolerances and component
ageing.

Traditional map-based control approaches rely on numer-
ous fixed maps. This rigid approach requires switching
between maps to cover a wide range of operating condi-
tions. As a result, it will become infeasible, since devel-
opment time and costs will explode to guarantee robust
performance for the increasing number of control param-
eters. Consequently, model-based control development is
attracting much attention and is becoming the standard
in automotive industry (Atkinson and Mott, 2005; Azmin
et al., 2014; Atkinson, 2014; Fang et al., 2015; Isermann
and Sequenz, 2016; Visser et al., 2016; Gutjahr et al.,
2017). As illustrated in Figure 1, this approach has led
to reduced development and calibration efforts. This is
because the engine dynamometer or vehicle testing ef-
fort can be reduced, since more control development and
calibration tasks are performed at the desk (i.e., virtual

Calibration effort

Fig. 1. Trade-off between robust performance and calibra-
tion effort and the impact of applied approaches.

testing). Moreover, with the use of physics-based models,
the model-based control approaches can deal with different
system configurations and extrapolation beyond the tested
operating envelope. Concerning robust performance, this
approach is sensitive to model uncertainties that can de-
grade the control performance, and associated feedback
controllers can have difficulties to compensate for these
uncertainties, besides existing disturbances. Models em-
bedded in the controller can also lack the required accu-
racy and speed. This especially holds for complex engine
processes, such as emission formation.

Self-learning powertrains have the potential to combine
minimal calibration effort with guaranteed robust perfor-
mance (Willems, 2017), see Figure 1. By using available
information about the actual and future powertrain be-
havior, optimal control settings can be determined. Exam-
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ples of control methods that optimize engine performance
on-line are model predictive control (Wang et al., 2006;
Stewart and Borrelli, 2008) and extremum seeking control
(Mohammadi et al., 2014; Ramos et al., 2017; van der
Weijst et al., 2019). Alternatively, Artificial Intelligence
(AI) has recently attracted much attention because of its
high potential in areas with complex systems and large
amounts of data, including pattern recognition and vision-
based applications. Furthermore, Al could dramatically
reduce the control calibration effort and realize learning
control for engine applications. Currently, limited research
activity is seen in this application area for engine con-
trol development. Until now, learning control using Al
methods has mainly been applied for energy management
strategies in hybrid and electric powertrains. This paper
aims to present a brief overview of the state-of-the-art
in ML-based engine control development and to identify
promising directions for future ML-based engine control
research. Based on studied literature and patents, we give
an overview of the applied methods and analyze the poten-
tial to guarantee robust control performance and efficient
calibration process.

2. ENGINE CONTROL CALIBRATION
2.1 Engine control system

At a high level, the engine control system is shown in Fig-
ure 2 and contains feedforward and feedback controllers F
and C respectively, setpoint generator R, observers O, and
monitoring and diagnostics system also called On-Board
Diagnostics (OBD). The desired control actions u are de-
termined by the controllers based on the control objectives.
When available, measured outputs y are utilized for feed-
back control, or observers are introduced to estimate the
non-measurable outputs and 6 represents the calibration
parameters in the control system. The high-level engine
control objective is to realize the driver’s torque demand
with minimal fuel consumption while meeting emissions
and safety constraints under varying operating conditions.

Engine control system
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Fig. 2. General engine control system architecture.

2.2 Control calibration problem

The control calibration problem is defined as determining
control (and optionally embedded model) parameters 6 to
achieve optimal functionality of individual control system
components F,C,R,O in different operating conditions
and combustion modes. Calibration is performed in both
software-in-the-loop (SiL) and hardware-in-the-loop (HiL)
environment. It usually requires a lot of resources, such as
manpower, software tools and testing facilities. Improving
the calibration process implies optimizing the total de-
velopment time and costs associated with the calibration
process.

2.8 Control calibration process

The main stages of the engine control calibration process
are shown in Table 1 for the industry standard, model-
based approach. The calibration process starts after the
control system concept definition and control system de-
sign phase. Initially, experiment design is developed offline
to determine a set of inputs using design of experiments
(DOE) approach to reduce testing time. Once DOE is
prepared, measurements are conducted on the engine or
vehicle test bench in the data acquisition phase. This data
is further used for engine modeling and model parameter
tuning in an off-line environment at the desk. Finally,
these models are used to tune the control parameters and
validate the resulting controllers in two possible ways: 1)
off-line development using simulation models (also referred
to as model-in-the-loop (MIL)) and 2) on-line development
at the engine or vehicle test bench and during on-road
testing. Especially, the data acquisition and control tuning
phase are time consuming and require a significant expert
effort. Multiple iterations of experimentation and data
acquisition can be required dependent on data robustness
and the quality monitoring process.

3. ARTIFICIAL INTELLIGENCE

According to the EC expert group (EC, 2019), Artificial
intelligence (AI) refers to systems that exhibit intelligent
behavior by analyzing their environment and taking ac-
tions autonomously in order to achieve specific goals. In
this paper, we focus on Machine Learning (ML). This is
a subset of Al and refers to techniques that enable Al
systems to learn patterns and take decisions for improved
performance. It includes Deep Learning (DL), which refers
to algorithms that can learn from experience, understand
the environment in multiple layers, and build more com-
plex artificial neural networks (Goodfellow et al., 2016).
DL is typically applied to learning problems, which are
too complex to model using ML methods.

3.1 Machine learning methods

In this work, machine learning methods are classified using
the framework shown in Figure 3:

Supervised learning (SL) A group of methods that
can learn to predict the output of one or more output
variables based on labeled (known) input-output behavior
(Hastie et al., 2009). The classes of problems in SL are
determined based on the nature of the output variable.
The SL problem with prediction of quantitative continuous
outputs is called regression, whereas the prediction of
qualitative outputs is called classification.

Unsupervised learning (UL) Methods that can discover
patterns and associations in unlabeled data. The common
class of problems in UL is clustering. In clustering, the
goal is to partition observations into number of clusters
containing collection of objects that are more closely
related or similar to objects in the same cluster than in
other clusters, see (Hastie et al., 2009; Bishop, 2006).

Reinforcement learning (RL)  Methods in which a soft-
ware agent makes observations and learns to takes actions
within an environment based on the reward it receives
when it takes a certain action at a certain state. The
software agent aims to learn the optimal policy that will
maximize the total reward or a function of rewards over
time (Sutton and Barto, 2018).
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Fig. 3. Different types of learning and class of problems in
ML and their capabilities.

3.2 Machine learning potential for engine control

This work aims to identify the potential of ML-based
approaches to reduce the development effort and to en-
hance robust performance for engine controllers. Dramatic
reductions in control calibration efforts are foreseen by ap-
plying ML methods. These methods combine the following
promising characteristics:

Reduced number of model parameters;
On-line model parameter identification;
Automated testing;

On-line calibration of controllers

SL methods can efficiently parametrize embedded maps
and models, hence reducing the number of calibration pa-
rameters. With regression methods, significantly reduced
number of parameters i.e., hyperparameters, are to be
calibrated in contrast to map-based approaches where
large number of parameters are manually calibrated by
an expert. This characteristic makes SL methods suitable
to eliminate existing, numerous compensation maps for
varying ambient conditions and transient engine opera-
tions. Consequently, also the number of tests that are
required to determine these parameters can be minimized.
These methods can also be applied to accurately model
complex engine processes with a large number of inputs,
such as emission formation. Although they have varying
computational and memory requirements, a subset of these
methods is suitable for real-time ECU implementation.
Furthermore, dynamic conditions can be efficiently mod-
eled using DL methods. This offers opportunities for effi-
cient calibration and improved engine performance dur-
ing transients. RL-based approaches can assist experts
by automated testing and control tuning. Ultimately, it
opens the route to on-road controller tuning and on-line
adaptation by determining the desired control settings
using real-time information on the actual and future state
of the engine.

ML-based approaches are also of interest to enhance ro-
bust performance. Probabilistic SL methods can deal with
system uncertainty and non-deterministic disturbances.
This creates opportunities to capture varying system un-
certainties, such as component ageing. This information
can be utilized in off-line control calibration to achieve
robust performance. If we go even one step further, by
combining these methods with RL algorithms, model and
control parameters can be adapted on-line, while explicitly
dealing with the modelled uncertainties and disturbances.
This approach combines minimal calibration effort with
robust performance; the controller can deal with a wide
range of variations.

In the next section, we review the actual reported methods
and results for engine control.

4. AI-BASED ENGINE CONTROL DEVELOPMENT

Based on a literature and patent search, we aim to give
a brief overview of the state-of-the-art in ML-based ap-

proaches for engine control development. Table 1 lists the
various Machine Learning (ML) methods that are found
for engine control applications. Also, the necessary factors
to reduce the calibration effort and enhance robust perfor-
mance are discussed and analyzed. Figures 4-6 summarize
the results of this analysis. We focus on supervised learning
and reinforcement learning, since only a single study is
found for unsupervised learning.

4.1 Supervised learning

Engine models are utilized throughout the different steps
in the engine control development process, i.e., control
concept definition, control system design, experimental
design or controller tuning (see Table 1). These appli-
cations require different model accuracy, detail and eval-
uation speed. In the calibration process, engine models
have been utilized: i) as simulation tools; ii) to assist cal-
ibration of control parameters (also called model-assisted
calibration), and iii) embedded in controllers and refer-
ence generators. Especially, SL regression techniques have
received much attention over the last two decades for
engine modeling. These techniques have shown potential
to accurately model complex processes depending on the
amount and quality of the data. Figure 4 shows the eval-
uation of the reference papers based on the necessary
factors required for efficient engine modeling and robust
performance. These papers are discussed in more detail.

Model complex

*
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boundary 12 __mpv "
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Number of Quantify
measurements uncertainty

[Berger et al. 2011] [Papadimitriou et al.

Evaluation speed 2005, Wang et al. 2006,
[Wu et al. 2006, Sediako et al. 2018, Berger et al. 2011, Xia et
Wysocki et al.2019, Berger et al. 2011]  al. 2020]

*[Muller and Schneider 2000, Papadimitriou et al. 2005, Wu et al. 2006,
Nelles et al. 2008, Deflorian et al. 2010, Berger et al. 2011, Sequenz 2013,
Fang et al. 2015, Isermann and Sequenz 2016, Gu et al. 2019, Sediako et
al. 2018, Wysocki et al. 2019, Joerg et al. 2019, Xia et al. 2020]

Fig. 4. Analysis of ML-based studies for engine modeling.
Numbers on the radar chart are the number of papers.

4.1.1 Engine models as simulation tools

In the control system design phase, engine models are
utilized as simulation tools for system analysis. Tradi-
tionally, physics-based (PB) engine models were applied.
These models require in-depth system knowledge and large
development times. The accuracy depends on the chosen
model structure and parameters, which are not precisely
known for all processes (Isermann and Sequenz, 2016).
Moreover, these models require large simulation times,
which limit their application for system analysis. A grow-
ing body of literature has investigated black-box engine
modeling methods as an alternative to PB models. Regres-
sion methods, such as artificial neural networks (ANN),
radial basis function neural networks (RBFNN), as well
as probabilistic methods, such as Gaussian process regres-
sion (GPR) and local model networks (LMN) have been
studied to accurately model complex, non-linear processes
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Table 1. Overview of ML-based literature for engine control development. Stages of the
calibration process are highlighted in gray.

| Main stages in model-based engine control development process

Control system Control system Experiment design
concept desi i; & Data Modeling Tuning Validation
definition g acquisition
Wu et al. 2004
Nareid et al. 2005
Papadimitriou et al. 2005 . i N ) JUS
ANN Atkinson 2014 El Hadef et al. 2013 ‘ﬁt‘iﬁfs;"ﬁ 22[?33 &Zn:telﬁr ;&% Crarnigowski 2000
Sediako et al. 2018 N .
Jo et al. 2019
Wysocki et al. 2019
‘ ‘ RBFNN ‘ Papadimitriou et al. 2005 Azmin et al. 2014 Azmin et al. 2014
Berger et al. 2011
Regression | Aran and Unel 2018 . ; . o5 . -
GPR Gutjahr et al. 2012 Xie et al. 2018 Xia et al. 2020 Xia et al. 2020
SL Xie et al. 2018
Sequenz 2013 Sequenz 2013
LMN Nelles et al. 2008 Isermann and Sequenz 2016  Isermann and Sequenz 2016
Gu et al. 2019 Gu et al. 2019
| | Hybrid | Joerg et al. 2019
RNN Miiller and Schneider 2000 Miiller and Schneider 2000 Miiller and Schneider 2000
(DL) Kamat et al. 2006 Fang et al. 2015 Fang et al. 2015
MLD Deflorian et al. 2010 Deflorian et al. 2010
(DL)
Classifi-
cation
UL ‘ Clustering ‘ ‘ Pan et al. 2019
PR Malikopoulos et al. 2007
‘ ‘ MDP ‘ Malikopoulos et al. 2007 Wagner 2019
‘ Decision ‘ Model-free ‘ Xu et al. 2021
RL :
making Dee
‘ RL P ‘ Neema et al. 2020

with high number of inputs. These methods are suited for
modeling steady-state engine operation. Moreover, limited
system knowledge and expert effort is required due to
the black-box nature of these regression models. GPR is
more appropriate than neural networks (NN) for small
number of training datasets. NN surpass GPR in regard
to computational effort with large training datasets. LMN
are more suitable where a strong human interaction in the
process is needed and the training dataset is large (Berger
et al., 2011). For dynamic engine modeling, fewer studies
have been conducted. These studies employ deep learning
methods, such as recurrent neural network (RNN) and
multi-layer perceptron (MLP), which are suited to process
sequential data and model complex, non-linear processes.

Figure 4 shows the focus areas for engine modelling re-
search. It is evident that there are open topics that need
more attention. Concerning minimizing the number of
measurements, limited research has been conducted. How-
ever, Berger et al. (2011) compared the model accuracy
of GPR and polynomial stepwise regression by varying
the size of the training dataset. The results showed that
for NOy emissions, GPR is more accurate even with the
reduced size of dataset. On the question of robustness at
boundary conditions, regression methods lack extrapola-
tion capability unlike physics-based models and have not
been dealt with in depth. Recently, Joerg et al. (2019)
have investigated hybrid modeling, in which robustness of
physics-based models in boundary cases is combined with
high accuracy regression models, such as NN and GPR.
As far as the generalizability of these regression methods
to data from different engines is concerned, it has not yet
been established.

4.1.2 Controller tuning

In model-based control development, engine models are
utilized in an off-line optimization framework for controller
tuning (or calibration), see Table 1. Traditionally, multiple
polynomial models were employed to model local steady-
state engine operating conditions (Berger et al., 2011).

These models are more suitable for low dimensional input
space. To model the complete operation region, a large
number of experiments and expert effort is required due
to high model complexity. To overcome this complexity, a
growing body of literature has investigated global engine
models as an alternative to these local models. Especially,
SL regression methods, such as ANN, RBFNN, GPR and
LMN have been studied for global engine modeling. These
methods are suited for modeling steady-state engine oper-
ation. For example, the calibration and optimization tool
ETAS ASCMO applies GPR for global engine modeling
(Gutjahr et al., 2017).

Focus areas for controller development are summarized in
Figure 5. Most of these studies overlook the effect of sys-
tem uncertainties, such as model and input uncertainties,
manufacturing tolerances and ageing, on the calibration
parameters. A standard practise to compensate for these
uncertainties is to generate fixed correction maps, which
require high expert effort. Probabilistic methods, such as
GPR and RBFNN, can quantify model uncertainty, which
can be used to calibrate for robust control performance.
However, these methods have not been widely applied;
currently, use of deterministic models is still common
practice for off-line calibration. In a recent study, Xia et al.
(2020) derived a GPR to model the RCCI combustion
process. They used this model for robust, off-line optimiza-
tion of fuel economy in the presence of disturbances and
uncertainties and of safety and emission constraints. The
results showed that the algorithm could determine optimal
feedforward control settings under the studied input un-
certainties and model uncertainties. However, no results
were provided that quantify calibration effort reduction
by this approach compared to the standard practise. Few
studies have employed SL methods for applications other
than engine modeling. Wendeker and Czarnigowski (2000)
modeled the speed of adaptation factor using ANN for
an indirect, adaptive control approach for air/fuel ratio
control in SI engine. This approach was implemented in
an off-line environment.
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4.1.8 Embedded models in controllers

RNN has been used to develop a dynamic engine torque
model and neuro-controller embedded in feedback con-
troller for torque control in SI engines (Miiller and Schnei-
der, 2000). The results show that the neuro-controller
is able to track the torque demand for small and large
load steps. However, no comparison is made between the
proposed approach and the benchmark engine controller
for criteria, such as computational requirements and effect
on calibration effort. Due to lack of evidence, the potential
advantage of this RNN-based neuro-controller approach is
not yet clear. To substitute the conventional map-based
feedforward controller with a SL method, Aran and Unel
(2018) proposed an approach, which in turn would reduce
the number of calibration parameters. The authors used
a GPR model to parametrize the inverse air-path model
in the feedforward controller of a diesel engine control
system. This study implemented the GPR model in an
off-line environment. GPR is chosen, as it can achieve
good accuracy with small amount of datasets. The PID
controller is replaced with a sliding mode controller. The
results show improved reference tracking performance and
reduced feedback control actuation, which is attributed
to the accurate feedforward controller. The authors claim
that less training data is required for the proposed ap-
proach compared to a map-based feedforward controller.
This study does not include the effects of system uncer-
tainties and different ambient conditions in the controller
design, and therefore, robustness to these disturbances
cannot be guaranteed. Moreover, the reduction in number
of calibration parameters and requirements for on-line
ECU implementation are not quantified in this study.
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Wagner 2019, Xia et al. 2020]

Fig. 5. Analysis of ML-based studies for controller devel-
opment. Numbers on the radar chart are the number
of papers.

4.1.4 Embedded models for observers

Observers (also called virtual sensors) are generally used
as a substitute to physical sensors for control, and as a
software redundancy for OBD. Map-based, physics-based
and semi-empirical models are the industry standard, but
have their limitations. Map-based observers are suitable
only for estimation in steady-state conditions. Physics-
based and semi-empirical observers cannot achieve high ac-
curacy across the wide operating conditions and generally
required high development times for complex processes,
such as NO, formation.

To overcome these limitations, different regression meth-
ods have been studied in the literature. Figure 6 shows
analysis of these studies for necessary factors to reduce cal-
ibration effort and enhance robust performance. ANN and
GPR have been used for steady-state prediction as these
methods can model complex non-linear process accurately
over wide operating conditions. Also, ANN can achieve
faster evaluation speeds compared to physics-based ob-
servers. GPR is suitable for small training datasets, how-
ever, it suffers from high computational effort. For dy-
namic modeling, deep learning methods such as RNN
and MLP have been used. One of the main limitations
with neural networks, especially RNN and MLP is that a
large amount of data is required for training. This could
lead to large number of experiments if real data is used
for training. An observation similar to regression-based
engine models is made here regarding the focus areas of
the literature. Most of the literature makes no attempt
to quantify the benefit of regression models with respect
to the evaluation speed, required number of experiments,
requirements for on-line ECU implementation, deal with
uncertainty and generalizability towards different engine
measurements.
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Fig. 6. Analysis of ML-based studies in development of
observers. Numbers on the radar chart are the number
of papers.

4.2 Reinforcement learning

For RL, limited application in engine control development
has been found. Studies found are very recent with focus
on automated calibration and, are still in research phase.

Off-line control calibration ~ Malikopoulos et al. (2010)
alm to overcome the sub-optimal transient performance
observed with map-based controllers, which are calibrated
at steady-state points. They propose an off-line feedback
controller calibration approach using RL. The control
objective is to minimize fuel consumption in SI engines
with spark timing as a control input. In this work, the
engine is treated as a controlled stochastic system, which is
modelled as a Markov decision process (MDP). The engine
calibration problem is formulated as a sequential decision-
making problem with uncertainty. The main idea is to
perceive the driver’s driving style and learn to optimize
fuel consumption in transients. For the above-mentioned
control objective, an improvement in average BSFC by
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1.4% compared to a baseline map-based approach is ob-
served for a step input in throttle position. Such a data-
extensive learning approach raises questions about compu-
tational effort, quantity of data and effect of data quality
on controller performance. However, these topics are not
addressed in the paper.

More recently, Wagner (2019) proposed an approach, in
which RL was used to learn off-line the optimal control
parameters to limit maximum turbine speed by manipu-
lating fuel mass in CI engines. The authors argue that such
an approach can overcome the drawbacks due to model
uncertainty associated with model-assisted control tuning.
The algorithm is implemented and validated in an off-line
environment. Results show that the control objective could
be achieved. Unfortunately, no information is reported
on the RL algorithm, applied cost function, impact on
calibration effort, and the effect of data quality on control
performance.

On-line control calibration In a recent patent, Neema
et al. (2020) propose a deep RL-based approach on on-
line control calibration of an air-path control systems.
An agent learns an optimal reference generator for both
steady-state and dynamic conditions in real-time, such
that performance targets of fuel consumption, torque
demand and emissions are achieved in long-term. Multiple
practical challenges arise regarding choice of RL algorithm,
amount and quality of data. These challenges are not
addressed by the authors. With this approach, a data-
driven adaptive calibration approach can be foreseen that
adapts the reference generator based on sensor information
during real-time operation.

In general, it is seen that the discussed RL-studies do not
quantify the impact of Al-based controller approaches on
calibration effort. Moreover, impact on robust performance
with Al-based approaches is not well established. A ne-
glected area in the field of engine calibration is control
calibration for transient conditions, which currently relies
on engineering experience and requires high calibration
effort for map-based approaches. Moreover, most studies
focus on off-line calibration, where it is common practice
to fix the calibration parameters, which offers limited
robustness under various disturbances and uncertainties.
With regard to learning control, RL is an emerging ap-
proach. It is gaining attention for its potential to learn and
adapt control parameters based on sensor data to realize
automated calibration and robust performance.

5. CONCLUSIONS AND OUTLOOK

Based on a literature and patent search, a brief overview
of the state-of-the-art in Machine Learning (ML)-based
engine control development with focus on the calibra-
tion process is determined. From this study, the following
trends are observed: (i) Supervised learning (SL) regres-
sion methods have received much attention over the last
two decades. These methods are mainly applied for engine
modeling to assist off-line calibration and for realizing real-
time, embedded models for observers. More recently, stud-
ies are found that focus on embedded models in controllers
and on uncertainty modeling using probabilistic regression
methods. In most studies, SL methods have been employed
in an off-line environment; (%) Unsupervised learning (UL)
did not attract much attention; so far, clustering seems not
of interest in engine control development; (iii) Reinforce-
ment learning (RL) is an emerging field that is applied for
automated engine controller calibration. Limited studies
have been found and mainly focus on off-line applications.

ML-based methods promise a large potential to dramati-
cally reduce the calibration effort associated with engine
control development. Besides reducing the number of cali-
bration parameters by efficiently parametrizing embedded
maps and models in the controllers, a huge impact is fore-
seen by automated controller calibration and automated
testing. Especially, on-line, RL-based control adaptation
is identified as a promising direction for future research.
This will not only minimize the need for an elaborate,
expert-intensive calibration process, but will also guaran-
tee robust performance under a wide range of real-world
operating conditions.

Multiple challenges arise to implement RL-based engine
control development methods. Firstly, off-line training on
a simulated environment has limitations due to use of
deterministic models or of collected test bench data, which
both do not cover the full range of real-world scenarios.
Moreover, learning by exploration on the real engine is
limited, because safe operation has to be ensured through-
out learning. Partial observability and stochasticity of en-
gine behaviour needs to be handled in order to guarantee
robustness against system uncertainties and noisy sensor
signals. High computational effort is another challenge
with on-line implementation of RL-based control methods.
See Ding and Dong (2020); Dulac-Arnold et al. (2020,
2021) for more detail on challenges of real-world RL. Also,
these methods have to guarantee safe operation and to deal
with real-world emission constraints. A second promising
area for future research is data quality monitoring. UL-
based methods can overcome the limitations of the existing
manual validation process in the data acquisition phase.
This process is time-consuming and prone to human error.
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