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VECTOR CONTROL OF INDUCTION MACHINES 

J.L. Duarte 

Abstract: Various vector control methods, which were introduced in the past as being 
quite different approaches, are present as particular cases that fit a more general treat­ 
ment. An analytical description is derived to facilitate the evaluation of the common 
back-ground among then. 

INTRODUCTION 

) 

J 

In the so-called scalar approaches for induction mo­ 
tor control, the machine model is considered just 
for steady state. As expected, the control flexi­ 
bility available with these methods is very limited 
and their application is, in the main, restricted to 
general-purpose ac drives where transient response 
and low speed-performance are not critical. Until 
recently, high performance applications have almost 
exclusively been the domain of de motors. With 
vector control, however, induction motor drives are 
more than a match for de drives. 
The Field-Oriented Control - FOC - proposed by 

Blaschke (1972) was the first and the most charac­ 
teristic vector control method. It can be understood 
from the Reference-Frame Theory (Krause, 1986). 
The reference frame used in FOC is one whose direct 
axis coincides with the cage-flux vector. This frame 
is not static and does not have constant speed dur­ 
ing transients. Actually, it was not a commonly used 
reference frame for the analysis of electric machines. 
The great advantage of this non-inertial frame is that 
the induction machine is seen as a separately-excited 
DC machine. As a result, for impressed stator cur­ 
rents, field orientation allows for independent flux 
and torque control. 

A drawback of FOC is that this method is sen­ 
sitive to parameter variations, principally the rotor 
time constant. Moreover, the determination of the 
cage-flux vector, to be used as referential for field 
orientation, and the implementation of the current 
control loop, necessary to impose the stator currents, 
can be performed in different ways. Therefore, alter­ 
native vector control strategies have been proposed 
since the 80's, trying to achieve robustness and/or 
ease-of-implementation. 

Among the new vector control methods, the fol­ 
lowing can be mentioned: Field Acceleration Method 
- FAM (Yamamura, 1986), Improved Field Acceler­ 
ation Method - IFAM (Takahashi & Noguchi, 1986), 
Direct Self Control - DSC (Depenbrock, 1988), Uni­ 
versal Field Orientation- UFO (De Doncker & 
Novotny, 1994), Direct Torque Control - DTC (Ti­ 
itinen et al., 1995), and others. As different math­ 
ematical notations have been used in these studies 
( e.g. spatial vectors, spatial phasors, spiral vectors, 
matrices, ... ) it is not straightforward to evaluate the 
correlation among then. 

For the purpose of attaining a basic understanding 
of the joint concepts involved, a general description 
of the control approaches is given in this paper, fol­ 
lowing the classification proposed by Santisteban & 
Stephan (1995). As it will be seen in the next sec­ 
tions, the proposals can be grouped in two main cat­ 
egories: quadrature control methods and slip control 
methods. 

BASIC RELATIONSHIPS 

The vector representation to be used in this paper 
allows for the analysis of induction machines in ar­ 
bitrary reference frames ( e.g. frames oriented with 
stator, rotor, stator flux, cage flux, air-gap flux, etc .. ) 
with relative simplicity. The motivation for the cho­ 
sen notation is given in Appendix, being a particular 
case of the classical vector theory. 
In terms of vector quantities, the fundamental 

voltage/ current/flux relationships of an induction 
machine are summarized by 

0 

71, + D{%}, 
r + D{,} =0, 

r.a + D{W!} + 5,R(a/2)p%, 
r + D{V{} + ,R(a/2)%, 

(1) 
2) 

where 

u,, u, are the stator and cage voltage vectors, 
1,,r, are the stator and cage current vectors, 
,, , denote the flux vectors linking the wind­ 
ings at stator and the cage windings at the rotor, 
respectively, 

rs,rt represent the stator and cage resistances, 

D{ } is an operator that performs differentiation 
with respect to time (= d{}/dt). 

In Eq.(1) the vectors are projected onto a stationary 
reference frame oriented with the stator (superscript 
s ), while in Eq.(2) the reference frame is rotating 
synchronously with the rotor (superscript r). 
The projection of the vectors in Eqs.(1-2) onto an 

arbitrary reference frame leads to 

(3) 
(4) 

with i; = D{o;}, i; = D{} denoting the angular 
velocity of the arbitrary frame with respect to the 
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stator and the rotor, respectively; and 

+ a.1 
v?+a1 
(a + 1), 

(5) 

e = /(1 + o) and r, = r/(d + a) are 're­ 
duced' machine parameters; 

and 
(11) 

where W is the vector related to the total flux cross­ 
ing the air-gap, is de machine main inductance, t,, 
and ,t are the leakage inductances of the stator and 
cage windings. 
In view of Eqs.(3-4), the electric torque developed 

by the induction machine is determined by conserva­ 
tion of energy to be 

(6) 

where T means vector transposition. 
It is convenient to define a generalized-flux vector 

(De Donker & Novotny, 1994) as follows 

(7) 

) where x can be seen as an unspecified turn-ratio be­ 
tween stator windings and (equivalent) cage wind­ 
ings. According to the value of y, W; represents 
different fluxes: 

x=(1+0,) 
x= l 
x= 1/(1+a) 

: }=V; 
: ;= } 
: ¢=," 

) 

(stator flux), 
( air-gap flux), 
(cage flux), 

where o, = ,a/ and at = ,/ are leakage factors, 
and 

@!"°_ ' ye 
+ (1+a) " 

represents, in fact, a 'reduced' cage-flux vector. 
By assuming impressed stator currents, it can be 

shown that the projection of Eqs.(4-6) onto a refer­ 
ence frame oriented with the generalized-flux vector 
yields 

ma = b, 1, (10) 

where 

è', = D{'} is the slip (angular velocity) of the 
generalized-flux vector with respect to the rotor; 
, = "l is the direct component of the gen­ 
eralized flux projected onto the reference frame 
linked to the generalized-flux vector ( of course, 
/ =0); 

"l,}"? are the stator current direct and 
quadrature components, respectively; 

Eqs.(8-10) are shown as a block diagram in Fig. 1. 
To emphasize the cross-coupling effect of the current 
components over the flux and the electric torque, the 
term a has been introduced in Fig. 1 following 

(12) 

In the case where the cage-flux vector is chosen as 
reference (hence o,= 0), it can be observed from 
Fig. 1 that the influence of ?(= "?) over the 
flux is eliminated. This approach corresponds to the 
field-oriented model proposed by Blaschke. As it can 
be also seen from the block diagram with = 0, the 
flux can be controlled independently by ?'(= $"), 
and the torque by ? (while maintaining constant 
flux level). 

TORQUE EQUATIONS 

Torque is the quantity that makes the interface be­ 
tween the mechanical and electrical parts of a drive 
system, being therefore an essential variable to be 
considered in the control of electrical machines. 
The mechanical part can be summarized by 

Di) = 4ca mo.a.) 

with " = D{p} representing the (electric) angular 
rotor velocity and 

o' 
mt6ad 

(13) 

(14) 
O 

D pshaft, 
(1/p) Moa, 
(1/p) 0.ar, 

where pis the number of pole-pairs, Pshaft the physi­ 
cal shaft angle with respect to the stator, Oaar the 
total inertia of all rotating parts on the shaft, and 
Maa all other instantaneous load torques. 
Eq.(10) presents the electrical torque as the prod­ 

uct of a generalized flux and the stator current com­ 
ponent orthogonal to it. This equation is similar to 
the one for a separately-excited de machine. In this 
paper the control methods based on Eq.(10) will be 
called quadrature control methods. 

On the other hand, by using Eqs.(8-9), it is pos­ 
sible to write ""? as a function of • The substi­ 
tution of this expression for "? into Eq.(10) yields 
a non-liner function between electric torque and slip 
', as follows 
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Figure 1: Induction machine model with impressed currents, projected onto a reference frame oriented with the 
generalized-flux vector. The linear blocks are given as transfer functions in the complex Laplace-variables. 
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where {' is the 'reduced' cage-flux direct compo­ 
nent, which, in light of Eqs.(5)&(7), follows from 

••"=" Cx •,g (16) 
" (1-0) "" 

The control methods based on Eq.(15) will be called 
slip control methods. 

If nearly-constant flux operation (D{b,} 0, 
,''eb) is assumed in Eq.(15), an approzimately 
linear first-order differential equation between torque 
and slip is found : 

• +u.= fa-o,%0\ w ar 
T£ T; 

However, when the cage-flux vector is chosen as ref­ 
erence (a, = O), it results from Eq.(15) that 

v-[r] w.. aso 
which leads to a direct relationship between torque 
and slip under constant flux operation. It is worth­ 
while to notice that Eq.(18) is always exact, also 
under transient conditions. 

QUADRATURE CONTROL METHODS 

As already pointed out, these control methods are 
based on Ea.(10). They can be further subdivided 
into direct and indirect methods. Direct ones have 
a control loop for the flux, a flux estimator or flux 
sensors being therefore necessary. Indirect ones as­ 
sume that the flux amplitude is constant, the spatial 
position of which being obtained by means of a feed­ 
forward block that has the rotor speed as input. 

Direct Quadrature Control Methods 

The general control scheme is presented in Fig. 2, 
where the superscript labels values that are provided 
by observers (Verguese & Sanders, 1988). The super­ 
script A denotes estimated ( therefore non-exact) values 
for the machine parameters, while the superscript 
represents desired ( or commanded) quantities. 
The PI-regulators shown in Fig. 2 may be substi­ 

tuted by other classical or modern controllers. Also, 
to improve the dynamic response, the desired stator 
current quadrature component may be given by 

k 2 _ me 
b, 

'lj)x 

To obtain decoupled torque and flux control loops, 
it is necessary to compensate for the cross-coupling 
current a. (cf. Eq.(12)). In the general case, this can 
be achieved by adding the term i, to the output of the 
flux controller, as shown in Fig. 2, being calculated 
from observed values . Decoupling occurs naturally 
with cage-flux orientation (a. = 0). 

Various examples of direct quadrature control 
methods are given by Jansen & Lorenz (1993), show­ 
ing that it is also possible to perform regulation in a 

different reference frame than the one used for field 
orientation. 

Indirect Quadrature Control Methods 

In this case, there is no flux control loop and 1Pa1 
in Fig. 2 is imposed constant. Some examples of 
this control method are given with the indirect UFO 
scheme (De Doncker & Novotny, 1994), which is 
based on the inverse model of the induction motor. 
Another one is the well-known indirect FOC (Mur­ 
phy & Turnbull, 1988). 

SLIP CONTROL METHODS 

These methods are based on Eq.(15). 

Cage-flu Slip Control 

As already mentioned, in this case o- x = 0 and 
Eq.(15) can be written exactly as Eq.(18). Moreover 
it can be seen from Eq.(8) with o, = O that there ex­ 
ists a direct relationship between }? and the slip. 
Therefore, when 0, = 0, Eq.(8) is the equivalent 
quadrature form of E4.(15). This means that the 
cage-flux based slip control and the cage-flux based 
quadrature control are equivalent. 

An example of cage-flux slip control is the FAM 
applied to the T-I model (Yamamura, 1986). The 
equivalence of this control scheme and the indirect 
FOC was shown by Stephan (1991). 

Air-gap and Stator-fluz Slip Control 

FAM applied to T and T-II models (Yamamura, 
1986) are examples of air-gap and stator-flux slip 
control, respectively, where the derivative terms in 
Eq.(15) are negleted, yielding 

ml= (10) 

As it can be expected, by using Eq.(19), a linear 
control can not produce the best dynamic behaviour 
during transients. 
IFAM, DSC and DTC are other examples of 

stator-flux slip control methods, where non-linear 
controllers are applied. In contrast to field orienta­ 
tion, the non-linear approach in these cases does not 
require an accurate instantaneous flux angular posi­ 
tion, being based on hysteresis control of the electro­ 
magnetic state of the motor. 

CONCLUDING REMARKS 

An overview about vector control of induction ma­ 
chines has been presented. Analytical comparisons 
were derived and a general classification given. 
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Figure 2: Direct quadrature control. 
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From the analysis, the following conclusions can 
be deduced: 

• The quadrature control methods are based on 
exact torque equations. Therefore, if the motor 
parameters necessary for the control algorithm 
are known, the transient performance can be op­ 
timal. 

• The slip control methods which are based on ap­ 
proximate torque equations can not produce op­ 
timal transient responses for all operating con­ 
ditions. 

• The cage-flux based slip control is equivalent to 
the cage-flux based quadrature control. 

• All direct quadrature control methods can 
present equivalent optimal transient responses. 
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APPENDIX : Vector notation 

Accurate lumped-parameter models for electric ma­ 
chines can be readily derived from vector principles 
(see Serrano-Iribarnegaray, 1993, for more details). 
In this paper, bold symbols such as u, and 1, repre­ 
sent space vectors related to machine quantities (in 
case, u, denotes the stator voltage and 1, is the sta­ 
tor current, respectively). 

Specific vector component values have always to 
be given with reference to a coordinate system. For 
instance, the components of u, and 1, that are re­ 
lated to a coordinate frame of two orthogonal axis, 
one of which being oriented with a stator winding 
axis ( usually phase a), may be noted as 

where u%;' is the projection of u, onto the stator 
winding axis (direct component), u?? the projec­ 
tion of u, onto the stator winding orthogonal axis 
( quadrature component), etc .. 
The (power-invariant) transformation of the ma­ 

chine terminal quantities to this stationary stator ref­ 
erence frame can be obtained by means of measure­ 
ments of the motor phase-to-phase voltages ua, ue 
and the line currents sa, 4 following 

l. %1/1 
+[± Ml.:] 

assuming that a,a + s +4. 0(no neutral wiring). 
With reference to the stationary stator frame, the 

stator-flux vector is found to be 
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which may also be described as 

with 

• ·/) +£%), 
e' arctan (%/,'). 

In fact, p; is the angular position of , with re­ 
spect to the direct axis of the stator reference frame, 
being therefore the basis quantity for transforming 
vector coordinates from the stationary stator frame 
to a reference frame rotating synchronously with , 
(or vice-versa). For instance, 

u!" = R(-;)u, or u, = R(¢;)u!", 
where, in general, 

) 
-«!] 
cos(7) ' 

and 

[ 
u'!/Jsl l bs - s 

u, "? · 
with the direct component u!°' denoting now the 
projection value of u, onto the direction of ,, and 
the quadrature component u!"" the projection value 
onto the orthogonal direction. It is obvious that 

) 

7 


