EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Design of a freeform two-reflector system to collimate and
shape a point source distribution

Citation for published version (APA):

van Roosmalen, A. H., Anthonissen, M. J. H., lizerman, W. L., & Ten Thije Boonkkamp, J. H. M. (2021). Design
of a freeform two-reflector system to collimate and shape a point source distribution. Optics Express, 29(16),
25605-25625. https://doi.org/10.1364/OE.425289

DOI:
10.1364/0OE.425289

Document status and date:
Published: 02/08/2021

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023


https://doi.org/10.1364/OE.425289
https://doi.org/10.1364/OE.425289
https://research.tue.nl/en/publications/76434cf3-0b09-4679-a424-f985d43283b1

™ |

Check for
updates

Research Article Vol. 29, No. 16/2 August 2021/ Optics Express 25605 |

Optics EXPRESS i N

Design of a freeform two-reflector system to
collimate and shape a point source distribution

A. H. VAN ROOSMALEN,!" M. J. H. ANTHONISSEN,! W. L.
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Abstract: In this paper we propose a method to compute a freeform reflector system for
collimating and shaping a beam from a point source. We construct these reflectors such that the
radiant intensity of the source is converted into a desired target. An important generalization
in our approach compared to previous research is that the output beam can be in an arbitrary
direction. The design problem is approached by using a generalized Monge-Ampére equation.
This equation is solved using a least-squares algorithm for non-quadratic cost functions. This
algorithm calculates the optical map, from which we can then compute the surfaces. We test our
algorithm on two cases. First we consider a uniform source and target distribution. Next, we use
the model of a laser diode light source and a ring-shaped target distribution.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Beam shaping is an important research topic within illumination optics. Especially the shaping
of a parallel beam into another parallel beam with a different distribution is well researched [1-3].
This is often linked to the shaping of laser beams. A common source for a laser is a laser diode,
which can be modelled as a point source [4,5]. The diverging beam from such a diode is often
collimated first with a lens, before other manipulations such as beam shaping are applied [5]. An
optical system that directly shapes and collimates the output from a point source is able to skip
the first collimation step. This can reduce the total number of necessary optical surfaces and
increase the efficacy by avoiding Fresnel reflections. An example of a useful light distribution
in a collimated beam that we will discuss is the ring shape, meaning that the projection of this
beam on a plane perpendicular to it gives a ring-shaped illumination pattern. A possible benefit
of such a ring-shaped target is that a subsequent focussing can be done more accurately [6]. A
ring-shaped illumination pattern also has a use in welding [7].

In most research regarding collimated beams, it is assumed that the outgoing beam is in the
same direction as the incoming beam. For the case of a point source, however, there is not one
single direction of light emission, but often there exists a symmetry axis that plays the role of
beam direction. In this paper we will drop that assumption and allow the outgoing beam to be in
any arbitrary direction. This gives us the possibility to create so-called folded optics. As a result
we can design more compact optical systems. As mentioned, we will look for an optical system
to collimate a beam from a point source. For this we need two optical surfaces, one to shape the
light to the desired target distribution and one to collimate the beam. We choose to work with
two reflector surfaces as freeform optical surfaces.

Optical design for illumination can roughly be divided into two categories: forward and inverse
methods. The former deals with the calculation of the output of an optical system. The result of
such a forward method can then be used to iteratively refine the design, which is a slow process
[8]. In this paper we will focus on inverse methods. With such methods, the goal is to compute
the shape of the optical system given source and target illumination patterns.

#425289 https://doi.org/10.1364/OE.425289
Journal © 2021 Received 19 Mar 2021; revised 6 May 2021; accepted 7 May 2021; published 27 Jul 2021


https://doi.org/10.1364/OA_License_v1#VOR-OA
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.425289&amp;domain=pdf&amp;date_stamp=2021-07-27

Research Article Vol. 29, No. 16/2 August 2021/ Optics Express 25606 |
Optics EXPRESS A N \

Although the example of a laser gives an idea of the possibilities, we will not restrict ourselves
to this. In our derivations we will use the approximation of geometrical optics. The goal is to
find an optical map from the source to target domain. Combining this map with local energy
conservation leads to a Monge-Ampere type equation with transport boundary condition [2].
This formulation can be cast in the framework of optimal transport (OT), identifying the source
and target distributions with the densities in OT and the optical map with the transport plan.
However, the equivalent of the total transport cost is less obvious. A rigorous formulation of our
optical design problem in terms of OT is far from trivial and beyond the scope of this paper.

Several methods have been developed for solving problems similar to the point source and
parallel outgoing beam. A more thorough overview of inverse methods can be found in [9].
Some of them use numerical methods such as finite differences and Newton’s method to directly
solve the Monge-Ampere equation [10,11]. Oliker et al. proposed the supporting quadric method
[1,12]. Alternatively, the optimal mass transport problem is reduced to a linear assignment
problem by Doskolovich et al. [13]. Another approach by Feng et al. uses ray mapping to
calculate the shapes and positions of the surfaces [14]. A ray mapping method has been used to
construct optical systems with two freeform surfaces for arbitrary input and output wavefronts
[15].

To the best of our knowledge, there are only a few publications on optical system design
for collimating and shaping a diverging beam from a point source. In [16], Oliker derives an
explicit and detailed form of the Monge-Ampere equation, but he does not discuss a solution
method. Glimm shows the equivalence, under certain conditions, of this design problem and
an infinite-dimensional linear programming (LP) problem, connected to optimal transport [17].
Later, he and Henscheid proposed a numerical solution method by discretizing the LP problem
[18]. Bosel and Gross proposed a method to design a system with two freeform surfaces for
arbitrary given input and output wavefronts and irradiance patterns [19,20], which can be used for
a point source and collimated output beam as well. Their approach involves calculating the ray
mapping and substituting this into the local energy balance. They solve the resulting equations
using finite differences.

In this paper we will modify a least-squares method to solve the Monge-Ampere type equation.
Versions of this algorithm have been used before for multiple optical design challenges, including
parallel to far-field [21], parallel to parallel [22] and point source to far-field [23].

In Section 2 we present the mathematical model linking the shapes of the surfaces to the source
and target distributions. The equations in this model are used in the algorithm mentioned before.
We will give a short summary of this algorithm in Section 3. For some parts of the algorithm we
refer to other papers and we briefly discuss the most important parts. In Section 4 we test our
algorithm on two test cases: First a uniform point source and a uniform target, second a laser
diode source and a ring-shaped target. The conclusion of our findings is given in Section 5.

2. Formulation of the mathematical model

In this section we formulate the mathematical model of a reflective optical system creating a
collimated beam from a point source. Given a source light distribution we want to design an
optical system of two reflectors. The first reflector will be used to shape the intensity profile
and the second one will collimate the beam. The collimated output beam should give a light
distribution on a target plane at a distance / from the source, where the distribution is a given
function of the position coordinates in the plane. A two-dimensional illustration of the system is
given in Fig. 1.

2.1. Derivation of the cost function

We choose the point source to be located at the origin of a coordinate system given by the
standard basis &1, €, 3. The orientation for this coordinate system is arbitrary. Often, the €3-axis
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Target plane
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Fig. 1. A sketch of the optical system in the x, z-plane.

is chosen to coincide with the symmetry axis of the bundle of light emitted from the source.
However, such a symmetry does not necessarily exist and will not be assumed for our derivations.
The only restriction we have on the coordinate system is that there can be no light emitted in the
negative é3-direction. The reason for this will become apparent later. This source emits rays
with unit direction vectors § = (s1, 52, 53)". Two reflectors, R; and R, are used to collimate and
shape the light emitted by the source into an output beam with the desired intensity distribution.
These output rays should propagate as a parallel beam that is parallel to a given direction vector
as perpendicular to the target plane. The direction of a3 with respect to 1, ..., é3 is given by a
rotation of &3 with a polar angle ¢ around the é,-axis and subsequently with an azimuthal angle
6 around the é3-axis. The matrix associated with this composite rotation is given by

cospcosf —sinf singcosfd
A =|cospsind cosf singsinf |, (H

—sing 0 cos @

and we define a; = Aé;, i = 1,2,3. These a;-vectors are the rotations of an orthogonal basis, so
they are again an orthogonal basis and a; is equal to the ith column of A. The target plane is
perpendicular to a; at a distance / from the point source along @3. Any point on the target plane is
then given by y1@; + y»@» + laz. The position in the target plane is denoted by y = (y;,y2)". The
first reflector, Ry, is defined by the radial distance from the source, u = u(§). The second reflector,
Ro, is given by the perpendicular distance from the target plane, w = w(y). The reflectors are
then mathematically described by

R1 :r1(8) = u(@®), Ry 1 ra(y) = y1@y + y2a2 + (1 — w(y))as = Ary(y), 2
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where r/(y) = (isy2. 1 - w(y))T. With P and Q we denote the points where a ray hits the first
and second reflector, respectively, see Fig. 1. The distance between those two points is denoted
by d. In the framework of optimal mass transport we want to derive a relation between § and y of
the form

ur®) + uz(y) = c.y), 3

where u; and u; are related to the shape and location of the surfaces and c is the so-called
cost function [2]. For any ray, we introduce the following notation. The 2-vectors ¢, = 0 and
q, =y denote the position of the ray at the source and target, respectively. These are projections
of 3-dimensional position vectors onto the plane z = 0 (source plane) and the target plane,
respectively. Similarly, p, and p, = 0 are the projections of the direction vectors on the source
and target planes. In terms of Hamiltonian characteristics, the optical path length (OPL), denoted
by L, is equal to the point characteristic V[24]. We can write

V(g,.q,) = u@®) +d +w(y). “4)

Because the variables § and y denote a direction at the source and a position on the target, we
work with the second mixed characteristic W* = W*(p,, ¢,), given by

Wps.q,) = V4.9, + 4 - ps- (5)

However, since g, = 0 we can dismiss the second term and the mixed characteristic is equal to
the optical path length. The following relations can be derived for the mixed characteristic [24]
owr owr

=4, = 0’ = = 0 (6)
aps 1 aqt pt

This proves that W* is independent of the direction from the source and the position on the
target plane. As a result, the optical path length L = V = W* is a constant.

We will eliminate d from Eq. (4) by using the fact that d is the distance between P and Q. We
denote by rp = r(§) and rg = r»(y) the position vectors of P and Q, respectively. Furthermore,

;o .
we use ry, = r)(y), so we can write

d2 = |rQ — rp|2
= |Ar}y - rp|? )

= |Ar’Q|2 +rp2 -2 (Aré) < rp.

Because A is a rotation matrix, we have |Aer| = |er|. We also haverp = u§ and A = (@, a»,as).
This can be used to write

& = lrpl + u - 2u (Ar)) -3

= + |y + (L= w)? = 2u(y1@) + yolia + (I — w)ii3) - § ®)

W+ |y + P = 2lw + w? = 2u8 - (Aoy) — 2ulf - @3 + 2uws - s,

where A, = (a;,a;) € R*? and we omit the dependence of u and w on § and y for now. We
combine Eq. (4) and Eq. (8) to obtain

y|? + 2 — 21w — 2u8 « (Azy) — 2ul - @3 + 2uws - @3 — L* + 2Lu + 2Lw — 2uw = 0. (9)

We want to separate u and w to get an equation of the form of Eq. (3). For that, we first divide
Eq. (9) by u. It is reasonable to assume u>0, since otherwise the reflector coincides with the
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source at some point. Introducing & = 1/u, Eq. (9) reads

%@ + it — 20w — 28 « (Aoy) — 208 - @3 + 2w - @3 — L*i+ 2L + 2Law — 2w = 0. (10)

The parameter § = L — [ is introduced, which is called the reduced optical path length. This is

used to rewrite the equation above as
_§-(Ayy)+I8-a3-L
7 .

To obtain an equation of the desired form, we will factorize the equation above and then apply
logarithms to both sides of the equation. The factorization leads to

ﬁw+i¢% (%[le—(L+l))—w%(l—§-d3) an

k1(§)ka(y) = T(8,y), (12a)
U IR 1yl
Kl(s)zu—E(l—s-a3), Kz(y)=w+§(7—(L+l)), (12b)
. 1, 1-§-a3, , 1 . ,
T(s,y):IEs-Agy—z—ﬂzM —E(s-a3+1). (12¢)

As mentioned, we would like to take the logarithm of both sides of the equation to get to the
form of Eq. (3). However, we need to make sure that both sides are positive. Weuse L = u+d+w
and we can write

l=u§-&3+d?-&3+w, (13)

where # is the (unit) direction vector after the first reflection. Combining both relations, we obtain
B =(1-§-a3)u+(1—-%-a3)d. Since #is a unit direction vector, we know that 8 > (1-§-asz)u > 0,
with the first equality only if #-@; = 1. In that case  is parallel to @3, so there would be no second
reflection. We can disregard this case and therefore write

I 1-§-a3 1 1-§-as3

- S - 0. 14
1= 5 u (-sayu 0 (14

The vector y is the displacement along the plane spanned by @&, and a,. We have y,a; + y,a, =
A»y. This displacement is determined completely by the first two ray segments; from the source
to the first reflector, and from the first to the second reflector. Using this, we write

y1=u§-&]+d?-ii1, y2=u§-&2+d?-ii2. (15)
Substituting this into the expression for «, and using Eq. (4) and Eq. (13) gives us

2By = 2pw + (u - @y +di - @)” + (uS - Gy + db - &r)°

o N (16)
—ﬁ((l+s-a3)u+(1+t-a3)d+2w).
We now use again that 8 = (1 —§ - @3)u + (1 — - a@3)d to obtain
2y = (uS -y +db-a))” + (ub - @y + i - &)
—((1=§-a3)u+(1-2-a3)d) (1 +§-a3)u+(1+2-a3)d)
17)

3 3 3
= u? (—1+ (ﬁ-ai)2)+d2 (—1"‘2(2'&1')2)_”‘1(2_2
i= i=1 i=

(§-a)@- &i)) .

1 i=1
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Note that we can combine the § - @; terms into a vector written as

§.a,|=ATS. (18)

This vector can be used to eliminate the #* term, since
3
DE-a)? = AT =P =1, (19)
i=1

as A is arotation matrix and therefore AAT = I. Similarly, swapping # for § gives us Z?:l (ta;)> = 1.
We use this to rewrite

3
2Bk> = —2ud (1 N a,»)(i-a,-))
i=1

= 2ud (1 —(AT§)- (ATi)) (20)

= 2ud (1-§-7)

<0,
with equality if and only if # = §. This will not occur, since there would be no reflection at the
first surface in that case. We deduced that x; >0 and x, <0. Consequently, 7 must be negative as
well. Both sides of Eq. (12a) are therefore multiplied by —1 to obtain

K1()(=k2(y)) = =T, y). @n

Before we apply the logarithm to this equation, we scale all the lengths by a factor 5. Note that
§ is already dimensionless. We introduce the variable z such thaty = Sz. We substitute this into
the function —7T'(8,y) = 7(§,z) and obtain

A 1 1
TG.2)= 8- Az + 5 (1-8-23) P + 5 G235 + 1). (22)
Next, we scale all the other lengths, viz. w(y) = SW(z), L = BL and [ = BI. Furthermore, i has

the dimension of length inverse, so we scale this by 1/ to i(s) = (1/8)ii(x). Substituting this in
the expressions for «; and «» gives

1
K1(§) = E(z)(x)+§&3 - 1), (23a)
o RN
K(ly)=p (w(z) + 3 (Izl2 —(L+ l))) . (23b)
So we can now define the new functions & and &, by
I?] (§) = z)(ﬁv‘) +§- t’i3 - 1, (243)
1 a oA
R2(@) = (@) + 5 (|z|2 i+ 1)) : (24b)
and k1 kp = K1k». Now Eq. (21) becomes
&18) (—ka(2) = TG, 2). (25)

For the algorithm that will be introduced in Section 3., we want to change the source coordinates
into two independent variables instead of three variables on the unit sphere. For that we choose
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the stereographic projection from the south pole (0, 0, —1) onto the equator plane z = 0, written
as x. These coordinates are given by

S1 ZX1
X1 1 S1 1
X = = s s=lg|= 2x . (26)
n T+s\s ST 22
53 1 - x|
Furthermore, we introduce
ui(x) = log (& (8(x))) , (27a)
uz(z) = log (=&(z)) - (27b)

When we take the logarithm of both sides of Eq. (25), taking into account the functions we
just introduced, we get the desired form of Eq. (3), given by

ur(x) + uz(z) = c(x,z), (28)

where the function c is called the cost function and is defined as

c(x,z) = log (T(ﬁ(x),z))
(29)
=log

“8(x) - Aoz + %(1 —5() -Zi3)|z|2 + %(ﬁ(x) s+ 1)

2.2. Energy conservation

We have deduced an equation that implicitly links x and z. We assume that there exists an explicit
relation given by z = m(x). A constraint for this function is that the energy of the source should
be conserved through the optical system. By S c S2, with S? the unit sphere, we denote the set of
direction vectors § from the source. For the stereographic projection x of this set we use X c R?.
The energy density of the source is given by f = f(§). We write 7~ c R? for the set of target
positions y and Z ¢ R? for the set of scaled target variables z. The desired illuminance on the
target plane is then given by g = g(y) fory € 7. The energy of any subset of the source domain
should be conserved through the optical system. For any subset A C S there is a corresponding
set A of stereographic coordinates. Energy conservation is given by the equation

//ﬁ £6)dSG) = //ﬁ L EaA0) (30)

where y = Sz. The first integral is over a surface element on the unit sphere, while the second
one is over an area element in R?. When A = S we have the special case of global energy
conservation. This means that the total energy in the source and target should be equal. We
assume that f and g are constructed such that this is true. First, we want to transform the left-hand

side integral to an integral over x instead of §. From integration by substitution we have
aw = [[ 16w s aw. 6
x) = §(x)) ———= dA(x).
A (k|?+1

[ s@aser= [[ e E

Now, for the right-hand side of Eq. (30) we also want to transform the integration variable to x.
For that we first have to change from y to z, since we know z = m(x). We had defined y = Sz,
so the Jacobi matrix of this transformation is given by 5. Substituting this and Eq. (31) into
Eq. (30) gives

08 9 08
6x1 6)62
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// FEE) —— dA@) = // ¢ (Bm(x)) | det(Dm)] dA(x). (32)
A A

(Ix]* + 1)
We use Dm to denote the Jacobi matrix of m. This equation should hold for any A
corresponding to an A C S. Therefore the integrands should be equal almost everywhere. Then
for any x(§) with § € S we have the generalized Monge-Ampére equation

4 f3x))

| det(Dm)| = =: F(x,m(x); B). (33a)
B(|x[? + 1) g (Bm(x))
The boundary condition of the problem is a transport boundary condition given by
0Z = m(0X). (33b)

It states that the boundary of the source domain should be mapped to the boundary of the target
domain, which is a result of the edge-ray principle [25]. This holds under the assumption that our
reflector surfaces are smooth. For the remainder of this article we will assume that det(Dm)>0,
so we can ignore the absolute value in Eq. (33a).

2.3. Polar coordinates

In general, the rays will be emitted by the source in a conical bundle symmetric around the z-axis.
In that case, the source domain in stereographic coordinates, X, will be a circle. So, it makes
sense to switch to the polar coordinate system. The polar stereographic coordinates are written
as w = (p, ¢) and the transformation x = x(w) is given by

x; =pcosd, Xy = psind. 34)

We define Q to be the source domain in polar stereographic coordinates, so Q = w(X).
Furthermore we define u}(w) = u;(x(w)) and ¢*(w,z) = c(x(w),z), so Eq. (28) changes to

uj(w) + usr(z) = c*(w,z). 335)

We also need to transform the energy conservation equation to polar coordinates. With
integration by substitution, we change Eq. (32) to

~ 4 * *
[ r6@)—mpdo= [ gtom@npaemmipdo, o
w(A) (p*+1) w(A)
where dw = dpd{. We introduce the notation m*(w) = m (x(w)), implying z = m*(w). Note

that Eq. (36) should hold for A corresponding to any arbitrary part of the source domain, so for
any w € Q we have

4 [ () -

det(Dm™) = =F (w,m"(w)). (37a)

B*(p* + 1) g (Bm*(w))
The matrix Dm* is the Jacobian of m expressed in polar coordinates and is given by

om 1 9m

Dm*=| % £ 9| (37b)
Omy 1 9my
dp p O&

This follows from a coordinate transformation of the Jacobian with Cartesian coordinates in
Section 2.2. The boundary condition (33b) changes to

0Z =m” (w (0X)). (37¢c)

Note that we have Q = w(X), but dQ # w (0X). For example, the relation p = 0 would give a
point in the interior of X, but a line on the boundary of Q. In the remainder of this article we will
omit the asterisks, because we will only work with functions of w.
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2.4. Mapping

We want to find an (implicit) expression for the optical mapping z = m(w). This can be done
using Eq. (35). There are many solutions to solve this equation for m, so we make a special
choice [2]. It is possible to find a c-convex pair of functions uy, u; such that

ui(w) = max (c(w,z) —ux(z)) . uz(z) = max (c(w,z) — ur(w)). (38)
zeZ weQ
Conversely it is possible to find a c-concave pair defined by
ur(w) = min (c(w,z) - u2(z)),  u2(z) = min (c(w,z) - u(w)). (39
zeZ weQ

In either case, the solution for u; has an argument & that is a stationary point. This leads to
the requirement that
Vo c(@,2) = Vuui (@) = 0. (40)

The gradient with respect to w is given by

g 1 0

Vo =€¢— + —e,—.
©"Pop prac

(41

To ensure that the solution is a maximum we need the Hessian w.r.t. w of c(w,z) — u;(w) to
be symmetric negative definite (SND). Similarly, to ensure a minimum we require the Hessian to
be symmetric positive definite (SPD). The Hessian matrix of any function v in polar coordinates
is given by [26]

v 18 _ 1o

2 opd 2 9¢
H[v] = % pop P . 42
[] 1 &% 1 dv v 1 9v ( )

1 _ Lo 19w 19v
)

pOpd,  p2dL  p2aL? " pdp
In the Hessian of the function c¢(w,z) — uj(w) the first derivative terms cancel because of
Eq. (40), so this Hessian is given by

H[c(w,z) — ui(w)] = Dyowc(w,z) — Dyoui (w), (43)
with
62 l 62
_| 92 3pdL
O Ry )

pdp P2 A
Note that D,V is not equal to the Hessian matrix of v. We assume that a mapping z = m(w)
exists, and substitute this into Eq. (40). We then take the derivative with respect to w and apply
the chain rule to obtain

Dupwc + CDm = Duy, (452)
where
Hc d*c
C =Dyc=| %% w0 | (45b)

1 &% 1 &%

p 0LOz1  p A0

Note that the first term in Eq. (45a) means differentiating ¢(w,z) w.r.t. o twice and then
substituting z = m(w). We can rewrite Eq. (45a) to

CDm = Dyotts — Doy =: P. (46)

Note that —P is the Hessian matrix in Eq. (43). Therefore, for a c-convex or c-concave pair of
functions u1, uy, we have the condition that P should be SPD or SND, respectively. We assumed
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that a mapping m is defined (implicitly) by Eq. (40). By the implicit function theorem such a
mapping is guaranteed to exist if the Jacobian matrix of the left-hand side of the equation with
respect to z is invertible [27, Sec. 12.8].

To summarize, we need to find a mapping m satisfying Eq. (37c) and Eq. (46) for a matrix P
that is SPD or SND, with det(P) = F det(C). The exact mapping is determined by the parameters
land B (or L) and the direction of the outgoing beam, given by ¢ and 6.

3. Numerical method

We explain the least-squares algorithm which we use to solve the problem derived in the previous
section. This algorithm has been explained thoroughly for a source with Cartesian [2,21] and
polar [9] coordinates. In this section we give a brief overview. We first compute the mapping,
followed by a calculation of the surfaces. We restrict ourselves to the c-convex solution of
Eq. (35). As shown in the previous section, we need to solve

C(w,m(w))Dm(w) = P(w), 47

where C = D,;c and P satisfies det(P) = F det(C), see Eq. (37a). To get the c-convex solution, P
needs to be SPD. We enforce the equality in Eq. (47) by minimizing the functional J; defined by

I
J[m, P] = 5//Q||CDm—1D||1%pdw. 48)

The norm ||.||g is the Frobenius norm. To enforce the boundary condition we minimize the
difference between the (given) boundary of 7 and the mapping of the boundary of the source:

1
Islm.b] = 5 / o BRS 49)
w

where b € 0 Z. We combine these two functionals into a weighted average with parameter
a € [0, 1] given by

J[m,P,b] = aJiim,P] + (1 — a)Jp[m,b]. (50)
All of these functionals are defined on the following spaces

P(m) = {P € [C'(Q)]*? | det(P) = F det(C), P SPD}, (51a)

B = {b € [CH(@0X)]) | bw) € IZ}, (51b)

M = [C3(Q)]*. (51c)

We cover the domain Q by a grid with gridpoints w;;. The algorithm to find m is initialized by
a guess m for the mapping. With this mapping we compute the matrix C°. Then, we iteratively
perform the next steps either for a fixed number of iterations or until a stopping criterion is met,

prl = ar;?g“ Jg[m",b], (52a)

P! = argmin Ji[m", P], (52b)
PeP(m")

mn+1 — a;ggvi(nJ[m’PnH’an], (52¢)

cl = C(w,mn+1). (52d)

The minimization procedures for b and P do not contain derivatives of their respective variables,
so these can be minimized pointwise.
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A method for solving step (52a) is given by Romijn et al. [23]. We will explain step (52b) in a
bit more detail. The matrix P needs to be SPD. The symmetry of P is enforced by defining

p= P11 P12 . (53)

P12 p22
We approximate Dm using central differences and define Q = CDm. Instead of minimizing
[|@ — P||lr we solve an equivalent problem with the same minimizers [21]. We introduce the
symmetric matrix Qg = %(Q +Q"), with off-diagonal entries g = %(qlz +¢21)- The optimization
problem that needs to be solved is then

PO . 1
minimize  Hs(pi1.p22.p12) = 511Qs ~ PI.

subject to  det(P) = F det(C).

It turns out that we can always select at least one solution of this problem that satisfies the
constraint that P is SPD [2]. To solve problem (54) we use the Lagrange multiplier method. We
introduce the Lagrangian function

Ap11,p22:p12,4) = Hs(p11,p22,p12) + 4 (Pnpzz -l Fdet(C)) . (55)

To find stationary points we take the derivatives w.r.t. each variable and set them equal to zero.
Elementary calculation lead us then to the system of equations

(54)

P11+ Apn = q11, (56a)
Ap11 +p2 = qx, (56b)
(1=p12 = gs, (56¢)
pup2 — pi, = F det(C). (56d)

Solutions of this system can be calculated analytically and explicitly [2]. In the case that we
find multiple solutions, we have to choose the one that gives the lowest value for Hs.

3.1.  Computing the mapping

In the functional J there are derivatives of m, so we can no longer optimize pointwise. To be
able to minimize this functional, we apply calculus of variations. The first variation of m in the
direction of an arbitrary function = (17;,72)" € M is given by

1
6J[m,P,bl(n) = lirrz) ;(J[m +éen,P,b] - J[m,P, b])

1
= lim—(gﬂ||®m+s®n—Pl|§pdw+ a/ |m+e)7—b|2ds
e—=0e\2 Q w(8X)

] —
—9//||CDm—P||§pdw——“/ |m—b|2ds)
2 JJa 2 Jo@x)

: 2 (57)
= lim — (a[/ ep(CDm - P) : CDqp + ?pHCDqlll% dw
Q

e—0 &

2
+(1-a) s(m—b)-n+g—|l)|2ds)
w(8X) 2

=a//Q(CDm—P):CDI]pda)+(1—a)/w(ax)(m—b)-nds,

where : denotes the Frobenius inner product associated with the Frobenius norm ||.||r. Like
before, Dip denotes the Jacobian of  w.r.t. w. We can rewrite the inner product in the first
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integral to obtain

(CDm —P) : CDnp =wy -V +wy - Vip, (58)

where w; and w; are defined by

Yl 2 ¢T(cDm - P). (59)

W

We use this and Gauss’s divergence theorem to rewrite the integral over Q as

2
[/(CDm —P):CDppdw = Z//wk -V pdw
Q = e
2
= Z [‘7{ MWk nds — “// Nk diV(wk)pda)] ’
= [w@x) Q

where 7 is the outward unit normal of X. We substitute this into Eq. (57) and set the first variation
equal to zero to obtain

2
k=1

At a minimum of J, the first variation should be equal to zero for any vector 7. We can split this
in two cases. First we choose 77, = 0 and set the first variation equal to zero for any n; € C*(Q).
Similarly, we have the case where 17; = 0. With the use of the fundamental lemma of calculus of
variations [28] we get the boundary value problem

(60)

jlg Nk (awy - it + (1 — a@)(my — by)) ds — ”// an diV(wk)pdw] =0. 61)
w(0X) Q

div(CTCDm) = div(CTP), forw € Q, (62a)

aCTC(Dm)i + (1 — a)m = aC'Pi + (1 — a)b, forw € w(dX), (62b)
where div is defined in the following way. Let B = (b;) € R>*2, then

b
%(an)Jr s

oby |

i (63)
%(prI) + ac

div(B) = 1
P

This boundary value problem is then solved using the finite volume method [9, Appendix A].

3.2. Computation of the reflector surfaces

The algorithm (52) computes a mapping m. From this mapping we can compute the shape of
the surfaces, given by # and w. To find u we first compute u| from Eq. (40). We introduce the
functional / to quantify how close a function ¢ is to the exact solution of that equation. Our
solution u is then given by

uy = arg ngn I[¢], (64)

where |
ol = 5 //Q 196 - Vol .m)Pp do. 65)

To solve this optimization problem we use calculus of variations. The first variation of (65) is

olu](v) = %[/Q(Vul - Vuo) s Vyvpdow, (66)
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analogous to Eq. (57). Similar to the calculation of the mapping, we use Gauss’s divergence
theorem and the fundamental lemma of calculus of variations to get the boundary value problem

Auy = div(Vyoe), w € Q) (67a)

Ouy _ 0c(-,z)

E ap

, wew(X). (67b)

z=m(w)

Here, A denotes the Laplace operator, which in polar coordinates is given by

(68)

1 8 ( (’)ul) 1 (921/!1
pap

Au1=diV(Vu1)=—— ’0% +/?a_§2

Let u; be a solution to this boundary value problem. To calculate the shapes of the reflector
surfaces, u and w, we combine Eq. (24) and Eq. (27) to obtain

B

_ 1 2 103
saTar W@ =1 3B(1-P) - pen, (©9)

) = —
where uy = ¢ — uj, using Eq. (28).

The solution to the boundary value problem (67) is unique up to an additive constant [9].
This means that choosing the value of u#; in one point gives us a unique solution. We use this
degree of freedom to choose the position of one of the reflectors along the central ray given by
§ =80 := (0,0, 1)". For example, we can choose u(§y) = ug for some 1o>0. With Eq. (69), this
then gives

1 (o) = log (L% —(1-% -&3>)  log (L% ~ (1 - cos <p)), (70)

where wo = w(§p) and ¢ is the polar angle of the output rays. This expression, together with
the boundary value problem (67), gives a unique solution for #; and therefore also for # and w.
In this case we cannot freely choose the position of the second reflector along the central ray.
Alternatively, we could give w(m(wo)) = wy as input instead of uy. This would also fix u;, u and
w.

4. Results

We will apply the method from the previous section to examples with two distinct combinations
of source and target distributions. We create several optical systems with different layouts to
show the possibilities of the algorithm.

4.1. Uniform to uniform

The example we will look at first consists of a uniform conical source and a uniform circular
target distribution. We will test several layouts of optical systems, so different angles for the
outgoing beam. Because our source is rotationally symmetric, our choice of § does not matter
and we can choose 6 = 0. We will discuss optical systems with ¢ = 0, ¢ = 7/2 and ¢ = . The
first and last one have outgoing beams parallel to the é3-axis in the positive and negative direction,
respectively. For ¢ = 7/2 the output beam is parallel to the &;-axis. We shift the target domain
along the target plane to avoid mirrors obstructing rays. Otherwise, for example, the first reflector
could be in the way of the rays from the second reflector to the target. For the point source, we
use a uniform distribution in the direction vector § rather than the stereographic coordinates x.
This means that the intensity distribution given by f = f(§) is constant. The source domain is
given by p < 0.1 and we choose the value of f such that the total flux is 1. The target domain is a
circle with radius 2. The target distribution g is constant over this domain, with a flux of 1.
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There are some parameter choices that will affect the optimization procedure or the resulting
optical system. For example, the functional in Eq. (50) contains the parameter @. The smaller «,
the more important the boundary is in the optimization, relative to the interior. The choice of a
will have an impact on the convergence speed of the algorithm [2]. Other parameters have an
influence on the layout of the optical system. These are the distance to the target plane, /, the
reduced optical path length, 8 (or L), and either ug or wy.

For our first test case we use @ = 0.1. From numerical experiments we found that this value
works well. We discretize the polar source domain with a 200 x 200 grid. The results of our test
case were obtained by running the least-squares algorithm for 200 iterations. First, we did this for
a case where ¢ = 0. We use a target plane at a distance / = 20 and we choose to shift the target
domain by a distance —10 along the @;-direction. Furthermore, we put uy = 10 and 8 = 15.

The full algorithm ran for 167 seconds, with each iteration taking approximately 0.6 seconds
on average. The calculations were done on a laptop with Intel Core i7-8750H CPU 2.20 GHz
with 32.0 GB of RAM. After iterating, the error functionals reached the values J; = 6.641 - 10710
and Jg = 6.785 - 10712, The resulting optical system is visualized using a ray trace procedure.
For this, we triangulate the reflector surfaces and use the normals on these triangles to calculate
the reflected ray directions. The result can be seen in Fig. 2. In the figure we show 100 random
rays that are obtained from this ray trace. On the target plane we show the illumination pattern
in a bounding box of the target domain. We divide this box in 100 by 100 bins and use a
quasi-Monte Carlo method tracing ten million rays to get an illumination pattern. A better view
of the illumination pattern is given in Fig. 3. As we can see, the illuminated part of the bounding
box forms a circle. The flux per bin, and thus the illumination, on this circle is nicely uniform.
The exact flux in a bin within the circle should be 1.572 - 1074, We take a square of 50 x 50 bins
to ensure that they are all fully inside the circle. The average calculated flux in these bins was
1.569 - 10*. We calculated the rms of the difference between expected and calculated values of
the flux in a bin and found the value 6.87 - 10~°. This is 4.4% of the mean flux. This variation is
caused by the numerical errors of our algorithm and the Monte Carlo method, but we cannot
separate the two contributions.

Fig. 2. The resulting optical system for the first test case with ¢ = 0, up = 10 and B = 15.

As mentioned before, an important benefit of our algorithm is the ability to construct a wide
variety of optical systems. Some examples of possible layouts are shown in Fig. 4. The first two
figures both have ¢ = 7/2, § = 0 and 8 = 22. The target plane is located at a distance / = 5
and the center of the target domain is shifted by —5 along a@,. With ¢ = 7/2 and = 0 we have
a; = —é3. The difference between the two optical systems is that in Fig. 4(a) we have ug = 10
and in Fig. 4(b) we have uy = 1. Note that these two have the exact same mapping, since the
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Fig. 3. The ray traced light flux per bin on the target domain visualized in two ways.

parameter u( only plays a role in the calculation of the surfaces (see Sec. 3). Therefore, we only
need to calculate the mapping once, and we are able to construct both of these optical systems
from this mapping by varying ug. For Fig. 4(c) we change the angle of the outgoing beam to
¢ = m and we use wyg = 6. We choose ! = 0, so the target plane is equal to the source plane. We
shift the target domain by 10 along the é;-axis and we again use 8 = 22. In each of the previously
mentioned optical systems, there is a plane of symmetry. However, this is not necessary for our
algorithm. In Fig. 4(d), we shift the target domain by —5 along @; and 5 along a,. This breaks
the symmetry of the optical system. Furthermore, we set 8 = 15 and wg = 5.

4.2. Laser diode to ring-shaped target

The second test case for our algorithm is the case of a laser diode [5] to a ring-shaped target
pattern. In this case we choose ¢ = /2 and 6 = 0, so that the outgoing beam is parallel to
the e;-axis. Note that the angle 6 only matters when the source distribution is not rotationally
symmetric. The intensity distribution of a laser diode can be modeled by an elliptical Gaussian
on a plane perpendicular to the é3-axis [4]. The emitted light has a 1/¢? intensity angle of 6,
in the &1, &3-plane, and 6, in the &;, é3-plane. From this we can derive a density in terms of the
x-variables, see Appendix A. The following density function is obtained:

2 3 > 2
f =B (exp[(1 ) (x1+x—22)

(1 - Ix|?)? ~ k) \o? oy

+5), (71)

with o = tan(6,/2) and o, = tan(,/2). The scalar B, is a scaling parameter such that the flux
of f over X is 1. The parameter ¢ is used to ensure a minimal value for the source density. The
source domain X is given by

X ={xeR*|p<tan(0/2)}, (72)

where ©® = max(6,, 0,)/2.

We want to have a target which consists of a ring on a target plane with an outer radius r,
and an inner radius r;. For this we will construct a density as a function of the unscaled target
variables y. We want this density to be uniform on a ring ,. With our algorithm we need a
simply connected domain. So, instead of a ring, the domain we use will be a disk Q7 = Q, U €;,
where Q; is the circular domain enclosed by €,. The ring will have a higher density than the
inner disk. Our model assumes that the density is smooth, so we will need to approximate this
discontinuous change in density between the ring and the inner circle. From the derivation in



Research Article Vol. 29, No. 16/2 August 2021/ Optics Express 25620 |

Optics EXPRESS

T

\r\'\\,\// 6

4
0 2 0o 2
€1 €2

@ =mp=22,wo=6. @¢=%.8=15w=5.

Fig. 4. Some examples of layouts constructed with our algorithm

Appendix B. we obtain the target intensity distribution

c

gly) = m + €. (73)

We choose ¢ so that the total flux over the target domain is equal to 1. The parameters k and &
determine how close this density is to the ideal density, uniform on €, and zero on €;. They also
influence the convergence of the algorithm. Generally a smaller k or larger &£ will give better
convergence, but a less pronounced difference in density between the inner region and the outer
ring.

For the source density, we choose to work with 1/¢? intensity angles 6, = 45° and 6y, =13°.
These are typical values for a laser diode [5]. To avoid a too large difference in intensity in the
source, we choose 6 = 1073 in the density function from Eq. (71). The target domain consists
of an outer radius r, = 2 and an inner radius r; = 1. This is shifted by —5 along the a;-axis in
the target plane at a distance / = 5 from the point source. We choose & such that the density in
the inner circle is at least 10% of the density in the ring. Furthermore, we used k£ = 100 in the
target density. We set 8 = 30 and ug = 20. Because the intensity on the boundary of the source
is much lower than at the center, it is more difficult for the algorithm to find a good mapping for
the boundary compared to our previous test case. To counter this problem we decrease @. We
now choose @ = 0.01 to put more emphasis on Jp relative to J;. Compared to the previous cases,
we also increase the number of grid points and apply a 400 x 400 grid to the source domain.

This time, we ran the algorithm for 1000 iterations. This took 3010 seconds, with approximately
2.65 seconds per iteration, converging to the values J; = 6.792 - 1077 and Jg = 2.590 - 10~°.
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Tracing one million rays through the system that results from our algorithm gives us the
illumination pattern and optical system in Fig. 5 and Fig. 6.

%10
2 6
5 %107
-1 c
4 ie)
{ @
& o 3 >
=
2
1
;
2 0
(a) illumination pattern, using 200 X 200 bins. (b) 3-dimensional density plot, using 50 x 50 bins.

Fig. 5. The ray traced light intensity on the target plane for a laser diode source and
ring-shaped target intensity.

Fig. 6. The optical system of our solution to the laser diode to ring-target problem.

5. Conclusion

In this paper we introduced a method for computing the shapes of two reflectors to collimate
a beam from a point source, for given source and target light distributions. A specific point
of interest is the fact that the outgoing beam can be in any arbitrary direction. First we have
derived a relation between the surface shapes and locations, and the optical mapping. Then we
derived a Monge-Ampere type equation for this problem. We proposed an algorithm based on
the least-squares method to solve this equation.
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We tested our algorithm on two test cases. A uniform source and target, and a model of a laser
diode to a ring-shaped target. The former was used to test the algorithm and the different layouts
that it could attain. The latter consisted of more complicated source and target distributions
instead. The second test case showed us that we might need to put some restrictions on our
model to improve the convergence of the algorithm. For example, the variation of the intensity
in the source cannot be too large. This was solved by imposing a minimal value of the source
distribution.

We have chosen to present these two test cases, but the algorithm can be used for other source
and target distributions. We have shown some limitations, e.g., the value of g cannot be 0, but
the method can still be used broadly. For example, it has been shown by Romijn et al. in [23]
that with a slightly different cost function, this algorithm can also be used to create complicated
grayscale images as a target.

For further research there are several points of interest. In this paper we have skipped over
some practical constraints. There is nothing in the algorithm yet preventing the rays from crossing
areflector. For example, the first reflector might (partially) be in the way of the outgoing beam.
We managed to work around this by varying parameters to get a feasible solution. However,
for the future it might be interesting to research if it could be possible to incorporate physical
constraints like this into our algorithm. Furthermore we want to extend our algorithm to include
more physical phenomena. Examples of this are Fresnel reflection (for lenses) and scattering.

Appendix A. Laser diode model

The intensity distribution of a laser diode can be modeled by an elliptical Gaussian on a plane
perpendicular to the &3-axis [4]. We choose the plane z = z,. The intersection of a ray with this
plane is given by the position vector p = (py,p2)" on this plane. The p;- and p;-axes are parallel
to the &;- and é;-axes, respectively. The intensity on the plane is then given by

2 2

I(p) = Bexp , (74)

2
wy o W,

where w; and w, are the 1/ &2 intensity radii. These are the values along the p|- and p;-axes
where the intensity has decreased to a factor 1/e? of the maximum. The factor B will be used to
scale the function such that the total flux of the source is equal to 1.

We denote by €, the source domain in p-coordinates, so Q, = {p = p(x) | x € X}. We need to
have a finite support for the intensity, so we choose the domain Q,, given by |[p| < max (w1 ,wa).
The difference between w; and w; can often be quite large. This could create a ratio of many
orders of magnitude between the minimal and maximal value of / in the domain. This causes
problems with grid lines getting too close to each other on the target. Therefore we add a constant
0>0 to the intensity to assure a minimal value. This gives the new intensity

2 2
Ip) =B (exp -2 (p—l2 + p—22 + 5) . (75)
wi 2

Again, the factor B is used to scale the total flux to 1. Now we have a formula for the source
intensity on the plane z = z,, but we want to convert this into an intensity f in stereographic
coordinates. For this, we first convert p to a directional vector § and then to stereographic
coordinates x to obtain

Zp [ 51 27,X
=2 = —"2' (76)
s3 Ky 1- |x |

We already used X for the source domain in stereographic coordinates. For any subset A ¢ X
we have a corresponding set Ap = p(A) C Q. The total flux in those two sets should be equal,
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//ﬂ f) dAx) = //ﬂ ) aa0p). 77)

We write the right-hand side as an integral over A by using integration by substitution. Because
this holds for any subset A, this gives a source density function f, with

f(x) = det (Dp(x))I(p(x))

-, 1+ x]? -8z (22 X2
= 4B7> 4,2
U=y \ 7P | TR (w2 w2

+5). 7%

This density seems to be dependent on z,, while the intensity of the point source should of
course not depend on the plane of projection. We will show that we can in fact write f as a
function independent of z,,. In general, the increase of w and w» for increasing z,, is given by the
full angles at the source point, 6, and 6,. So these radii of a laser diode increase linearly in z,,.
We then have

w1 = zp tan(6,/2), wy = zp tan(6,,/2), (79)

1+ Jxf? -8 x% %
x)=8B ex + —=
T =B ey | | T |02 2
with o, = tan(6,/2), o, = tan(6,/2) and B, = 4Bz12,. With Eq. (75) and integration by substitution,
B, can be written as

// 1+ |x? -8 ﬁ+ X
x PP\ | T2 \ o2 7 o2

This shows that B, is independent of z, and indeed also our source density f is independent of z,,.
The only part left for our source density is to define the boundary of the domain in stereographic
coordinates. We mentioned before that the boundary of the domain in p-coordinates on the plane
z =z, is given by |p| = max (wy, w), which is written as [p| = max (z, tan(6y/2), z, tan(6,/2)) =
zp tan (©/2), with ® = max (6, 6,) /2. From Eq. (76) we obtain

Ja+ P -2z

so that

+ 5) , (80)

-1
+6) dA) . 81)

x| = (82)
lp|
On the boundary this gives
Vo +5an? (©) -2z | _co5(@)
lx| = = =tan (0/2). (83)

7p tan (O) sin (®)

Again, this result is independent of the choice of z,. We have now modeled the laser diode by
the intensity distribution in Eq. (80), defined on the domain

X ={x eR?*| x| < tan(©/2)}. (84)

Appendix B. Ring-target density

We define our circular domain Q7 by an angle ¢ € [0, 2) and a radius r € [0, r,]. The outer ring
is denoted by Q, and given by r € [r;, r,]. The inner disk €; is then given by r € [0, 7;] such that
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we have Qr = Q, U Q;. We denote the area of the ring by A and we have
A= Jr(rg - rlz) (85)
Ideally, we would have a density function 4 defined on Q7 with values

- 1/A, for|y| > r;,
h(y) = / bl (86)
0, for |y|<r;.

This density has similarities to the Heaviside stepfunction H. We use this to write i(y) =
(1/A)H(ly| — ;). As can be seen in Eq. (37a), we cannot have a target intensity equal to 0 at any
point in the target domain. To avoid this, we construct a density which has value € on Q;. We
define the function & by

+&, f > 1,
hy) = cH(ly| —r) + o= < H& forblzr (87)
£, for |y|<r;.

The problem with the density function that we have proposed now is that it is discontinuous
across the circle |y| = r;. Experiments have shown that our algorithms will not work with
discontinuities. To avoid this problem, we have to approximate the discontinuous density by a
smooth function. The Heaviside stepfunction that was mentioned before can be approximated by

1

Tre ®®

1
H®y) ~ 5(1 + tanh(ky)) =
where k>0. The approximation converges pointwise to H for k — oo [29, Ch. 9]. We use this in
combination with Eq. (87) to construct a density that approximates the ring target. This density

is given by
c
80) = T e
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