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m.a.reniers, j.m.v.d.mortel} Qtue.nl).

Abstract: Supervisory control synthesis is a model-based engineering method to design
supervisory controllers for high-tech and cyber-physical systems. Recent advances in synthesis
techniques and modelling formalisms allow for synthesis of supervisors for large-scale industrial
applications. Yet, the synthesis results depends on the quality and validity of the models
used as input. Other model-based techniques such as simulation, testing, and verification
provide complementary support in the design process to increase the quality and validity of
the models. In this paper, we propose, in addition to the other supporting techniques, eleven
modeling aspects to assess the model quality in the context of supervisory control synthesis.
Examples of modeling aspects are the interdependency between component models, whether
independent subsystems are modeled, and whether the model is annotated with comments. For
each modeling aspect, we discuss its importance and describe how it can be quantified. We report
on an experiment where 21 models of automated guided vehicles, created by students during a
course on Supervisory Control Theory, are evaluated with the proposed modeling aspects. This

experiment demonstrates the applicability of the modeling aspects.
Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0)
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1. INTRODUCTION

In cyber-physical systems, the task of supervisory control
is to coordinate the large number of components such
that the specified system functionality can be achieved in
a safe manner. Supervisory control theory of Ramadge-
Wonham (Ramadge and Wonham, 1987) provides means
to synthesize a model of the supervisor from a model
of the uncontrolled plant and a model of the control
requirements. Such a supervisor interacts with the plant
by dynamically disabling some controllable events. Then
synthesis guarantees by construction that the closed-loop
behavior of the supervisor and the plant adheres to all
requirements and is furthermore nonblocking, controllable,
and maximally permissive.

Advanced synthesis techniques have been introduced re-
cently to overcome the notorious state-space explosion
problem. On the one hand, there have been advances in
synthesis techniques, e.g. interface-based (Leduc et al.,
2009), distributed (Cai and Wonham, 2010), aggrega-
tive (Su et al., 2010), multilevel (Komenda et al., 2016),
and compositional supervisory control synthesis (Moha-
jerani et al., 2014). Furthermore, there have been advances
in the modeling formalism and the representation, e.g.
state-tree structures (Ma and Wonham, 2005), Extended
Finite Automata (Skoldstam et al., 2007), and state-based

* This work is supported by Rijkswaterstaat, part of the Ministry
of Infrastructure and Water Management of the Government of The
Netherlands.

expressions (Ma and Wonham, 2005), resulting in efficient
BDD-based implementation, see Miremadi et al. (2012).

The number of industrial applications of supervisory con-
trol theory reported in literature is low, see Wonham et al.
(2018). Some notable industrial applications include the
following ones. A supervisory controller has been synthe-
sized for a theme park vehicle (Forschelen et al., 2012),
a patient support table of an MRI scanner (Theunissen
et al., 2014), a manufacturing system (Fabian et al., 2014),
a waterway lock (Reijnen et al., 2017), and driver assis-
tance systems (Korssen et al., 2017). While these papers
propose models of different systems, there is also the
question when a model can be considered a ‘high quality’
model, as there would probably be multiple views on what
‘high quality’ entails in the context of supervisory control
synthesis.

The objective of this paper is to asses the quality of a
model by introducing eleven different modeling aspects.
Examples of modeling aspects are the interdependency
between component models, whether independent subsys-
tems are modeled, and whether the model is annotated
with comments. For each modeling aspect, we discuss its
importance and describe how it can be quantified. An
experiment is performed to determine whether models of
industrial applications can be assessed with the proposed
modeling aspects. To this end, 21 models of automated
guided vehicles, created by students during a course on
Supervisory Control Theory, are evaluated. These models
are created in the CIF modeling language, see van Beek
et al. (2014).

2405-8963 Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
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The paper is structured as follows. Section 2 provides
the preliminaries of this paper. Section 3 continues by
introducing the eleven modeling aspects, discussing their
relevance to model quality, and describing how they are
quantified. Section 4 describes the experiment and presents
the results. The paper concludes with Section 5.

2. PRELIMINARIES

This section provides a brief summary of concepts related
to finite automata, extended finite automata, state-based
expressions, and supervisory control theory relevant for
this paper.

2.1 Finite automata

A finite automaton (FA) is a five-tuple G = (Q, %, 4, qo,
Qm), where @ is the (finite) state set, ¥ the set of
events, § : Q x ¥ — (@ the partial transition function,
qo € @ the initial state, and @,, C @ the set of
marked states. The event set ¥ is partitioned into set Y.
containing the controllable events and set >, containing
the uncontrollable events.

For large systems, it is not feasible to model their behavior
by a single FA, as the state space is often too large. Instead,
a system can be modeled by a set of several interacting
automata G; (referred to as component models). The
combined behavior of the set of automata is given by the
synchronous product G = G || ... || G,, see Cassandras
and Lafortune (2008), which requires synchronization be-
tween automata of transitions labeled by the same event.

2.2 Extended finite automata

In Skoldstam et al. (2007), extended finite automata
(EFAs) are introduced for modeling systems, which are
FAs augmented with bounded discrete variables. An EFA
is a seven-tuple E = (L,V, X, —,lg, Vo, Lyy,), where L is
the (finite) location set, V' the set of variables, ¥ is the
set of events, — the extended transition relation, Iy € L
the initial location, vy the initial valuation, and L,, C L
the set of marked locations. The state of an EFA is the
combination of the active location and current variable
valuation.

In an EFA, the transition relation is enhanced with guard
expressions (conditions) and variable assignments (up-
dates). Formally, the extended transition relation is —C
L x(C x%xUx L, where C is the set of all conditions
and U the set of all updates. A transition is enabled if the
associated condition evaluates to true with respect to the
current valuation. After taking a transition, the variable
valuation is updated according to the associated update.
Subsequently, two EFAs can be combined by computing
the synchronous product as defined in Skoldstam et al.
(2007).

State-based expressions are introduced in Ma and Won-
ham (2005), and later generalized in Markovski et al.
(2010), as a modeling formalism more closely related to the
textual formulation of control requirements. This modeling
formalism is available in the CIF modeling language van
Beek et al. (2014).

2.8 Supervisory control synthesis

The objective of supervisory control synthesis is to con-
struct, based on a plant model and a requirement model,
an automaton called a supervisor which function is to
dynamically disable controllable events so that the closed-
loop system of the plant and the supervisor obeys the
following control properties, see Ramadge and Wonham
(1987); Cassandras and Lafortune (2008); Wonham and
Cai (2019).

e Safety: all possible behavior of the closed-loop system
should always satisfy the imposed requirements.

e Controllability: uncontrollable events may never be
disabled by the supervisor.

e Nonblockingness: the closed-loop system is able to
reach a marked state from every reachable state.

o Maximal permissiveness: the supervisor does not re-
strict more behavior than strictly necessary to enforce
safety, controllability, and nonblockingness.

Monolithic supervisory control synthesis results in a single
supervisor S derived from a single plant model and a single
requirement model, see Ouedraogo et al. (2011). When the
plant model and the requirement model are given as a
set of models P and R, respectively, the monolithic plant
model P and the requirement model R are obtained by
performing the synchronous products.

For large systems, returning a supervisor represented by a
single automaton becomes infeasible. The method of Mire-
madi et al. (2011) allows for a compact representation
of the synthesis result. It characterizes the restrictions of
the supervisor as guards, extracted during the synthesis
procedure. The result is an EFA with a single location
and for each controllable event in the plant a selfloop with
the derived guard. The supervisor is then represented by
the original set of component models, the original set of
requirement models, and the extracted guards.

3. MODEL QUALITY

In this section, we describe the model aspects to evaluate
the model quality. For each model aspect, we discuss its
importance and describe how it is quantified.

(1) Is each component model an elementary part of the
system?

The first modeling aspect is one that is sensative to in-
terpretation, as it depends on the system to be modeled.
Typically, systems are decomposed into subsystems. De-
composing the system until elementary subsystems are
reached eases modeling, as only a small part of the sys-
tem has to be captured in a single component model.
Furthermore, creating component models of elementary
parts of the system may result in asynchronous component
models (i.e., having no shared events or variables), which
can benefit synthesis, see Goorden et al. (2019b).

To quantify this modeling aspect, we report the number
of component models that are deemed to be elementary
based on expert judgement relative to the total number
of component models. A higher number implies more
elementary component models.
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(2) How strong is the interdependency between compo-
nent models?

There are several reasons to investigate the interdepen-
dency between the component models. For this purpose,
two component models are related to each other if they
share events or variables. First, the level of interdepen-
dency is a better indicator for computational effort of
synthesis compared to the uncontrolled state-space size,
as argued in Vahidi et al. (2006). Second, more related
component models result in less gain in computational ef-
fort with synthesis approaches like modular and multilevel
synthesis, see Goorden et al. (2019¢). Third, assessing the
correctness of the model can be more complicated with
higher interdependency between component models, as
argued in Swartjes (2018).

Several measures exist to quantify the interdependency
between components. In this paper, we use the level-
n dependency sets of Vahidi et al. (2006) to measure
the strength of the interdependency, yet generalized and
adapted to EFAs. Let P = {P,P,,..., P,} be the set
of component models. The level-1 dependency set of an
automaton P, € P, denoted by D!(P;), contains all
automata, including itself, to which it is connected by
shared events or variables: DY(P;) = {P € P | ¥p N
Yp, # 0V VpNVp # 0}. Recursively, we can construct
the level-n dependency set with n < 2, denoted by
D™(P;), from the level-(n — 1) dependency set, indicating
the set of automata related to each other in at most
n steps. Formally, D"(P;) = Upecpn-1(p,y D' (P). The
normalized cardinality of the level-n dependency set for
|P| > 1, defined as d"(P;) = %, quantifies the
interdependency between component models. Therefore,
d™(P;) = 0 indicates that component model P; is not
related to any other component model after n steps,
while d"(P;) = 1 indicates that it is related to all other
component models after n steps.

(3) Are requirement models elementary, i.e., can they not
be split any further?

By splitting requirement models, more elementary ones are
created each describing a single control objective. Having
smaller requirement models turns out to be beneficial for
the applicability of modular and multilevel synthesis, as
shown in Goorden et al. (2019c). Furthermore, under-
standing elementary requirement models is easier, similar
to the first aspect of the component models.

To quantify this modeling aspect, we report the number of
requirement models that are elementary based on expert
judgement relative to the total number of requirement
models. The higher the number, the more elementary
requirement models are present.

(4) Are there references in requirement models to other
requirement models?

Using the EFA modeling formalism it is possible to restrict
the behavior of the plant model by using a location refer-
ence of another requirement model. By referring to the lo-
cation of another requirement model, understanding such
intertwined requirement models may be difficult. Often,
the requirement referred to also acts as an observer to add
more complex states to the plant. Furthermore, module-

based synthesis approaches, like modular and multilevel
synthesis, may fail to cope with such a dependency be-
tween requirement models, see Proposition 4 in Goorden
et al. (2019d).

The dependency between requirement models can also be
quantified by the level-n dependency sets, yet now based
on the set of requirement models instead of on the set of
component models. For requirements formulated as state-
based expressions, we define that these requirements only
have a dependency with other requirements if they refer
to events or variables introduced in requirements.

(5) Do requirement models introduce new events or vari-
ables?

This modeling aspect is related to the previous one in
the sense that when requirements introduce new events
or variables, state-based requirement can refer to these
new events or variables. Furthermore, Supervisory Control
Synthesis is built upon the assumption that the desired
behavior as described by the requirement models should
be part of all possible behavior as described by the
plant model. This implies that a requirement should not
introduce events or variables. Yet, tooling like CIF and
Supremica allow the engineer to introduce new events
and variables in requirements and its interpretation is
inconsistent throughout the tools.

This modeling aspect is reported as a binary outcome
defining whether requirements introduce new events or
variables. Special attention is paid to location variables,
as these are implicitly constructed for each automaton in
CIF. We only count those if they are explicitly used by
other requirement automata.

(6) Are there independent subsystems modeled?

By analyzing the dependencies between component models
and requirement models as proposed in Goorden et al.
(2019a), one is able to verify whether independent subsys-
tems are modeled. Yet, as the modeler has combined these
independent subsystems into a single model, the most
likely explanation is that requirement models are missing,
which should capture dependencies between them.

This modeling aspect is reported as a binary outcome
defining whether independent subsystems are present or
not.

(7) Are uncontrollable events not unnecessarily blocked
in automaton-based requirements?

A common mistake in modeling automaton-based require-
ments is the omission of uncontrollable events in some
locations, leading to controllability issues that have to be
solved by synthesis.

We report the number of requirement models that may
have unnecessary omitted uncontrollable events relative to
the total number of requirements. The higher the number,
the more potential controllability issues are present.

(8) What is the length of the guards in the synthesized
supervisors, with and without forward reachability
analysis?

As noted in Fabian et al. (2014) and Reijnen et al.

(2019), representing the synthesis result as a guard for
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each controllable event is useful for validating the obtained
result. The more compact this result, the easier it is to
interpret the guards.

We quantify this modeling aspect by the average number of
binary operators in the guard for each controllable event.

(9) How many component models, requirement models,
event declarations, and variable declarations are pro-
vided with comments describing their meaning?

In software engineering, it is common practice to comment
the source code, as experiments have shown that com-
mented source code is better maintainable than not com-
mented code, see Tenny (1988). Therefore, we examine
whether the implemented models also contain comments
to explain the model. As model maintainability relates to
the interpretation of the modeled features, like component
models, requirement models, events and variables, we ex-
amine whether they are provided with such interpretation
using comments.

We report the number of commented model features (com-
ponent models, requirement models, events, and variables)
relative to the total number of model features. We do not
examine whether the actual content of the comment is
sufficient to understand the model feature, as is shown to
be possible for software source code in Steidl et al. (2013).

(10) Are templates used?

Templates allow for the re-use of models. In Grigorov et al.
(2011), it has been shown that using templates reduces
the modeling effort and time. Furthermore, adapting the
model is more straightforward, as only the templates have
to be understood and changed instead of each component
model separately.

We report a binary outcome defining whether templates
are used or not to model component or requirement
models.

(11) Are groups used to structure the model?

Groups can be used to combine related models. While
groups add no modeling expressiveness, they ease the
understandability of the model. For example, groups can
be used to indicate the system decomposition the modeler
had in mind while modeling the system.

This modeling aspect is reported as a binary outcome
defining whether groups are used or not.

4. EXPERIMENT

In this section, we describe the experiment performed to
analyze models with the model quality aspects from Sec-
tion 3. As a final assessment for the course on Supervisory
Control, groups of two to four students had to provide a
model of the plant and a model of the requirement from a
system description, perform supervisor synthesis, and vali-
date the controlled system using simulation, all performed
in the CIF toolset. The course is given at the graduate
level to a varied population of student, most of which are
pursuing a master’s degree in mechanical engineering (with
a specialization in control systems technology or man-
ufacturing systems engineering) and systems & control.
There are no specific prerequisites for the course besides a

Fig. 1. Amazon Robotics, or formerly known as Kiva
System. Picture from Guizzo (2008)

relevant bachelor education. Students were graded for this
assignment based on expert judgement.

The goal of the experiment is to determine whether the
quality of the models provided by the students can be
assessed by the model aspects from Section 3. To this
end, we quantify the different aspects for each model. The
experiment is set up after running the assignment in the
course.

First, the system to be modelled is explained briefly.
Subsequently, the results of the experiment are presented.
Finally, this section is concluded with a discussion on the
results.

4.1 System description

In the assignment, connected automated guided vehicles
(AGVs) in warehouses and distribution centers need to
be modeled. Several examples of these systems include
Amazon Robotics (formerly known as Kiva Systems)
(Robotics, 2019), Symbotic (formerly known as CasePick
Systems) (Symbotic, 2019), Adapto (Adapto, 2019), and
Fleet (Fleet, 2019). The full assignment description can be
accessed at a GitHub repository ! .

The Amazon Robotics system consists of numerous AGVs
moving along a grid in a warehouse and a centralized
server. The centralized server solves the resource allocation
problem, i.e., it determines for each AGV which product
rack it should move around, which picking station to
drive to, and where to store the rack after service by the
warehouse worker. The AGVs are differential-drive two-
wheeled robots equipped with numerous sensors, as de-
scribed in D’Andrea and Wurman (2008); Guizzo (2008).
An AGYV is able to drive forward along a grid and to make
turns of 90 degrees. Each AGV can determine its location
by reading barcode stickers on the floor with a camera.
Arriving at a location in the storage area, the AGV is able
to lift or lower a product rack from the ground. As they
move autonomously, several sensors are present in each
AGV to observe the nearby area and to detect collisions.

The proper functioning of these connected AGVs requires
solving several control challenges on different abstraction
levels, as described in D’Andrea and Wurman (2008). On

! https://github.com/magoorden/WODES2020
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Fig. 2. The score on modeling aspect (1) and (3), which
are related to whether the models are elementary. A
higher score is better.

the low level, proper feedback loops need to be designed
to drive the AGVs with high precision. A level higher,
AGVs needs to operate safely in a warehouse environment,
ensuring no collisions with each other, humans, or other
equipment, and a correct execution order of the different
tasks (like raising the rack, turning 90 degrees). Again, one
level higher a path planning problem needs to be solved to
calculate the best route from the current position to the
desired destination. Finally, at the highest level, a dynamic
resource allocation problem is solved constantly to assign
to each AGV a goal it autonomously needs to fulfill.

In the assignment, the students focused on developing
a supervisory controller for AGVs to ensure their safe
behavior. We assumed that all other control systems are
in place and designed correctly. Several details and design
choices were not specified in the assignment to endow
the project with a significant level of flexibility also on
the formulation side. An important part of the project
is therefore to make assumptions. Moreover, the students
were highly encouraged to propose other functionalities to
the system and changes to the present project. Therefore,
we do not assess in this paper the correctness of the models
provided by the students.

4.2 Results

In total, 21 models of different groups of students have
been assessed. All collected data can be accessed at a
GitHub repository 2 . The scores related to the 11 modeling
aspects of Section 3 are presented here.

Figure 2 shows the score of each group on the modeling
aspects (1) and (3), which assess whether the component
models and the requirement models, respectively, are el-
ementary. A model with a higher score is considered to
be a higher quality model. For the component models, all
scores are above 0.5, which indicates that more than half
of the component models describe elementary parts of the
system. Three models achieve the highest score of 1, mean-
ing all component models are elementary. For requirement
models, the scores are more diverse. The lowest score is 0

2 https://github.com/magoorden/WODES2020
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Fig. 3. The score d*(P;) and d®(R;) on modeling aspect
(2) and (4), respectively, which are related to the
interdependency between models. The lower a score
is the better.

and the highest score is 0.94. No score is available for the
model of group number 2, as the model did not contain
any automata labeled as requirement.

For most of the models, it holds that the score for the
requirement models is lower than the score of the compo-
nent models. Only four models have a higher score for the
requirement models than the component models. A low
score is often the result of writing down how the system
should be controlled, i.e., partly specifying the supervi-
sor, in requirement models instead of describing what the
system should do. Furthermore, several groups tried to
provide a single requirement automaton model for each
textual requirement given in the assignment description,
which also results in non-elementary requirement models.

Figure 3 shows the normalized level-3 dependency score
for both the components model and the requirement
models, which are the measures for the modeling aspects
(2) and (4), respectively, describing the interdependency
between models. The normalized level-1 dependency and
normalized level-2 dependency scores can be found in the
repository. Up to level-3 scores are determined, as higher
scores rarely differs from the level-3 score. A model with
a lower score is considered to be a higher quality model.
No requirement models score is available for the model
of group number 2, as the model did not contain any
automata labeled as requirement. The scores of group 19
are 1 for both the component models and the requirement
models. Therefore, the red mark overlaps the blue mark in
the figure.

Most of the normalized level-3 dependency scores are be-
low 0.25, which indicates that each component or require-
ment model is connected with less than 25% of the other
component or requirement models in at most three steps.
The higher scores are almost all for the interdependency
between requirement models, with the exception of the
component models score of group 19. The high component
model score is due to shared breakdown and repair events.
The high requirement model scores are due to intricate FA
requirement models that share numerous events.
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Fig. 4. The score on modeling aspect (7), which is re-
lated to potentially unnecessary omitted uncontrol-
lable events. The lower a score is the better.

The perfect score of 0 for the normalized level-3 depen-
dency score for the component models is achieved by five
groups, which indicates that their component models do
not share any events or variables. The perfect score of 0
for the normalized level-3 dependency for the requirement
models is achieved by five other groups. This is achieved
by having (almost) only requirements in the form of state-
based expressions, such that there is no dependency be-
tween requirement models by definition of the dependency
score.

Figure 4 shows the score of each group on modeling aspect
(7), which is related to potentially unnecessary omission of
uncontrollable events in requirement models. A model with
a lower score is considered to be a higher quality model.
Again, no score is available for the model of group number
2, as this modeling aspect also relates to the requirement
models.

Most of the groups managed to keep the score lower than
0.25, which indicates that less than 25% of the require-
ment models may have unnecessary omitted uncontrollable
events. For those groups that only have requirements in
the form of state-based expressions, it is easier to have
a score of 0. It feels natural to formulate this form of
requirement models only for controllable events, as this
form explicitly describes the enablement or disablement of
an event and a synthesized supervisor may never disable
uncontrollable events. The high score of group 16 results
in a supervisor which blocks almost all controllable events
permanently due to omitting selfloops labeled with uncon-
trollable events in over 90% of the requirement models.

Table 1 shows the result of the other modeling aspects from
Section 3. Modeling aspects (8) and (9) are reported here
as true or false questions, while in Section 3 they are quan-
tified differently. The data of the original quantification
can be found in the GitHub repository. We report these
modeling aspects differently in this table for the following
reasons. For modeling aspect (8), which assesses the length
of the guards in the synthesized supervisor, we observed
that for most groups the average guard length is either
exactly 0 or close to 0. For modeling aspect (9), which
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Fig. 5. The relation between the score of elementary
component models (modeling aspect (1)) and the
score of elementary requirement models (modeling
aspect (3)).

assesses the comments in the model, we observed that no
group has commented events or variables (when present)
and that 9 groups also did not comment component or
requirement models.

Six out of the 21 groups have requirement models that
introduce new events or variables not defined in the
plant models. An even larger number of groups, to be
exact 9, have modeled independent subsystems, i.e., in
a single model there are multiple sets of component and
requirement models that have no relationship with other
parts of the system. In these cases, the students forgot
to remove component models they no longer wanted to
include in the model or they missed requirements. When
focussing on the length of the guards, modeling aspect
(8), from those that have an average larger than zero 7
groups have an average of less than 2 binary operators per
controllable event. The ‘largest’ supervisor has an average
number of binary operators of 37.3 per controllable event,
which has a single guard with 398 binary operators.

The CIF modeling concepts mentioned in modeling as-
pects (9), (10), and (11) are not taught actively in the
course on Supervisory Control. Therefore, lower scores
were expected on these aspects. Several groups used groups
and templates as they (tried to) model a warehouse system
with multiple autonomous vehicles. In such a situation,
using groups and templates reduces the modeling effort.

4.8 Discussion

The data reveals that scoring high on one modeling aspect
does not imply a high score on the other modeling aspects.
There is a low correlation between the scores. Figure 5
illustrates this observation. In this figure, the relation
between the score of elementary component models (mod-
eling aspect (1)) and the score of elementary requirement
models (modeling aspect (3)) is shown. No clear correla-
tion can be observed. For example, the three models that
have the perfect score on modeling aspect (1) have only an
average score on modeling aspect (3). Furthermore, their
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Table 1. The score on modeling aspects (5), (6), (8), (9), (10), and (11). No scores could be obtained for group

number 2 on modeling aspects (5), (6), and (8).

(5) I?o (6) Are 9) Ar.e some
Group requlren}ent independent (8) Is length of modeling (10) Are (11) Are groups
number models introduce subsystems guard larger than | elements . templates used? used to structure

new events or zero? annotated with the model?

variables? modeled? comments?
1 no yes no no no no
2 - — - no no no
3 no no no yes no no
4 no no yes no no no
5 no yes yes yes no no
6 yes yes yes no yes yes
7 no no no yes no no
8 no yes yes yes yes yes
9 no yes yes yes yes yes
10 yes yes yes yes yes yes
11 no no no yes no yes
12 no yes yes yes no no
13 no no yes yes no no
14 yes no yes yes no yes
15 yes yes no yes yes no
16 no yes no no no no
17 yes no yes no no no
18 yes no yes no no no
19 no no no no no no
20 no no no no no no
21 no no yes yes no no

score on modeling aspect (3) ranges from 0.49 to 0.75.
Similar analyses between other pairs of modeling aspects
result in the same conclusion.

The data on modeling aspect (6) about independent sub-
systems is surprising. Nine out of 21 models contain in-
dependent subsystems, i.e., the model can be divided into
groups of component and requirement models that have no
shared events or variables with any other group. Spotting
independent subsystems manually is not straightforward,
while an automated analysis reveals this fact immediately.
The expectation is that during modeling a system over-
sight on the model is lost, such that conceptual require-
ments between component models are forgotten.

Finally, this experiment shows that a model can be as-
sessed with different modeling aspects, yet the question
remains how to combine the scores on the individual
modeling aspects into a total score reflecting the overall
model quality. There are three questions to consider: how
to combine binary with non-binary scores, how to weigh
each individual score in the total score, and is the set
of proposed modeling aspects complete. Answering these
questions turns out to be harder than expected, so it is
left open in this paper for future research.

5. CONCLUSION

In this paper, we propose eleven modeling aspects to assess
the quality of a model in the context of supervisory control

synthesis. These modeling aspects have been applied to
assess 21 different models of a problem with automated
guided vehicles. This experiment has demonstrated the
applicability of the proposed modeling aspects to quantify
model quality.

Future research may focus on the question how to combine
the scores of the individual modeling aspects into a total
score that reflects the overall model quality. Furthermore,
if the proposed modeling aspects can be quantified auto-
matically, reporting on these during the modeling process
may benefit the final model.
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