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Abstract: We consider the influence that the variable order of Binary Decision Diagrams
(BDDs) has on the computational effort that is required for symbolic supervisor synthesis. In
recent research it has been shown that improving the variable order can result in a substantial
decrease of synthesis effort. We propose the combined use of the Dependency Structure Matrices
(DSMs) and the matrix reordering heuristics Cuthill-McKee and Sloan to minimize the Weighted
Event Span (WES) of the variable order. This is done by placing variables that often appear
together in transition relations near each other. By performing benchmark experiments, we
measure the reduction in synthesis effort by utilizing a variable order with minimized WES. The
experiments show that our approach is competitive in reducing computational effort compared
to FORCE, a state of practice variable ordering heuristic. Moreover, the best improvements in
effort reduction are shown for the most computationally demanding models tested.

Keywords: Binary decision diagrams, Control system synthesis, Heuristic algorithms,
Supervisory control, Variable order

1. INTRODUCTION

c©2020 the authors. This work has been accepted to IFAC for publication under a Creative Commons Licence CC-BY-NC-ND.

Supervisory Control Theory (SCT) as introduced by Ra-
madge and Wonham (1989) is a model-based approach
to control Discrete Event Systems. In the framework of
SCT we compute a supervisor that is safe (unsafe or un-
desirable states are not reachable), non-blocking (marked
states are reachable), controllable (only controllable events
are disabled), and maximally permissive (restrictions are
minimal with regard to the three aforementioned criteria).
The supervisor is synthesized from plants (models of the
uncontrolled system) and requirements (specifications of
allowed or desired behavior).

Despite the fact that SCT has been successfully applied
to some examples of industrial size, e.g., for a magnetic
resonance imaging scanner (Theunissen et al., 2014) and a
waterway lock (Reijnen et al., 2017), industrial acceptance
is still scarce. This is mainly a result of the computational
complexity of synthesis, the exponential state-space ex-
plosion that occurs is a limiting factor (Wonham et al.,
2018). In case the plants and requirements are provided by
means of Extended Finite Automata (EFAs) (Skoldstam
et al., 2007), they can symbolically be expressed by Bi-
nary Decision Diagrams (BDDs) (Miremadi et al., 2012).
Synthesis can be applied directly to these BDD represen-
tations. Essential to utilizing BDDs is finding an efficient
variable order. This order has an enormous influence on
the amount of computation time and computer memory
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required (Minato, 1996; Somenzi, 1999). Computing the
most efficient order is NP-complete as shown by Bollig
and Wegener (1996) and therefore heuristic algorithms are
often used to find an acceptable order.

The importance of the variable order has been well de-
scribed in literature. More specifically, in recent research
Thuijsman et al. (2019) have shown the impact of BDD
variable order on symbolic supervisor synthesis. Even after
applying FORCE (Aloul et al., 2003), which is a variable
ordering heuristic that can be regarded as state of the art
as shown by Meijer and van de Pol (2016), they show that
the computational effort can still further be reduced by
order of magnitude.

This paper proposes a heuristic algorithm named DSM-
based Cuthill-McKee-Sloan variable ordering Heuristic
(DCSH) to find a variable order that further reduces the
computational effort required for symbolic supervisor syn-
thesis compared to current implementations. This heuris-
tic is based on two matrix ordering heuristics (Cuthill
and McKee, 1969; Sloan, 1989) that are used to minimize
the Weighted Event Span (WES) metric (Siminiceanu
and Ciardo, 2006). These matrix reordering heuristics are
applied to a Dependency Structure Matrix (DSM) that
stores the number of times BDD-variables appear together
in transition relations, to find a new variable order. Meijer
and van de Pol (2016) have shown that these heuristics are
able to reduce the WES, and thereby the computational ef-
fort for symbolic model checking. Directly minimizing the
WES has been shown to be NP-complete by Siminiceanu
and Ciardo (2006).



Utilizing a DSM for computing a variable order for sym-
bolic supervisor synthesis is the first novel contribution
of this paper. The second contribution is an analysis of
synthesis in which we point out why applying these heuris-
tics results in less synthesis effort. DCSH is compared to
FORCE in benchmark experiments to measure the effort
reduction that is achieved. Moreover, experiments are con-
ducted where DCSH and FORCE are used in sequence to
compute a variable order applied to symbolic synthesis.

In Section 2 preliminary knowledge of BDD-based super-
visor synthesis and related subjects are elaborated upon.
Section 3 shows an analysis of the backwards reachability
search, which leads to the proposal of the new variable
ordering heuristic found in Section 4. This heuristic is
compared to FORCE in benchmark experiments as shown
in Section 5. Finally, conclusions are found in Section 6.

2. PRELIMINARIES

2.1 Extended Finite Automata

An EFA is a 7-tuple (L, V,Σ, E, Lm, L0, V0) with finite
set of locations L, bounded domain of discrete variables
V = V 1 × ... × V n where n is the number of variables,
set of events Σ, set of edges E, set of marked locations
Lm ⊆ L, set of initial locations L0 ⊆ L, and set of initial
variable valuations V0 = V 1

0 × ... × V n0 . Each edge e ∈ E
is a 5-tuple e = (oe, te, σe, ge, ue) with origin location
oe ∈ L, terminal location te ∈ L, event label σe ∈ Σ,
guard ge : V → {true, false}, and variable update function
ue : V → V (Ouedraogo et al., 2011).

The set of events Σ is divided into two disjoint sub-
sets Σc and Σu, respectively the set of controllable and
uncontrollable events. The guards of controllable events
can be adapted by synthesis, opposed to the guards of
uncontrollable events. By referring to controllable or un-
controllable edges, we refer to whether σe is controllable
or uncontrollable for e ∈ E. An edge e ∈ E from oe to te
with ge, σe, and ue can only be taken if ge evaluates to true
for the current variable valuation. After the transition, the
variable valuation is updated according to ue. The state of
an EFA is a valuation from L× V .

2.2 Binary Decision Diagrams

An EFA can symbolically be described by Boolean expres-
sions (Miremadi et al., 2012). Any Boolean expression f
containing Boolean variables b ∈ B, can be expressed as

(b ∧ f |b=true) ∨ (¬b ∧ f |b=false) . (1)

In this notation f |b=true denotes an assignment of true
to b in expression f . By recursively applying (1) for all
b ∈ B, a Binary Decision Diagram (BDD) (Akers, 1978)
can be constructed to express f . BDDs are directed acyclic
graphs that consist out of two types of nodes: decision- and
terminal nodes. Each decision node is labeled by a Boolean
variable b ∈ B and has two edges leading to child nodes,
one edge labeled true and the other false. When evaluating
b to true or false we take the respective edge. Visually
we represent a true (false) edge by a solid (dashed) line.
At the leaves of the BDD are terminal nodes, that are
labeled by true or false. When referring to BDDs in this
paper, we indicate reduced ordered BDDs (Bryant, 1992).
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(b) Variable order a<c<b<d

Fig. 1. Two variable orders for f : (a ∧ b) ∨ (c ∧ d) = true.

This type of BDD imposes some additional restrictions
such that the BDD is minimal in the number of decision
nodes and canonical for a given order of the variables.
This order is strictly imposed over all the variables in the
BDD and is called the variable order. A variable order is
denoted as <, where b1 < b2 indicates that decision node
b1 is placed closer to the root node than b2. Furthermore,
there are only two terminal nodes in the BDD, one labeled
true and the other false. The variable order can have a
major influence on the number of decision nodes required
to encode a Boolean expression, see Fig. 1 for an example.
The size of a BDD is defined by the number of decision
nodes and in worst-case this size can be exponential in the
number of Boolean variables (Bryant, 1992).

The BDD size affects the amount of computer memory
required. Furthermore, it also has a major effect on the
computation time of synthesis. Common BDD operations
are those of computing the conjunction (And operation)
and the disjunction (Or operation) of two BDDs. These
operations are both based on the recursive expansion
following from (1) of BDDs f and g with operation op
for variable b:

f op g = b ∧ (f |b=true op g|b=true)∨
¬b ∧ (f |b=false op g|b=false) .

(2)

The two sub-operations are recursively expanded accord-
ing to the equation shown above, starting from the top
node(s), as imposed by the variable order. This is re-
peated until all recursive operations lead to terminal
cases (Somenzi, 1999). Applying operations to smaller
BDDs commonly results in fewer recursive operations and
thereby to reduced computation time. Next to the And
and Or operations, the existential quantification is an
operation that can be applied to a BDD (Bryant, 1992).
This operation is applied during the reachability search
that is required to compute a supervisor.

2.3 Compositional Interchange Format

The Compositional Interchange Format (CIF) (van Beek
et al., 2014) and Supremica (Malik et al., 2017) both allow
for BDD-based symbolic supervisor synthesis of EFAs.
Moreover, both modeling tools use FORCE as variable
ordering heuristic to find a variable order before synthe-
sis commences that often performs better compared to
a random order. FORCE optimizes the span of highly
related variables (Aloul et al., 2003). A global optimiza-
tion is performed by repeatedly placing highly related
variables closer to each other, until the span does not
reduce anymore. Afterwards, a window is slid over the
order produced by FORCE where the variables within
the window are reordered locally according to the same
placement criteria as the global order. In this paper we



refer to applying FORCE as applying first the global and
subsequently the local (window-based) reordering. In this
paper all experiments are conducted using CIF.

2.4 Metrics for computational effort

We express the computational effort required for synthesis
by two BDD-based metrics: peak used BDD nodes and
BDD operation count (Thuijsman et al., 2019). The first
metric is the peak size of all BDDs combined during
synthesis. As computer memory is always finite, this is the
main limiting factor for successful synthesis. The latter is
the number of times a recursive call is made to any BDD
operation and mainly influences the computation time.
These metrics allow to measure the required computa-
tional effort in a deterministic, platform-independent way
and include no overhead in their measurements, opposed to
more traditional metrics such as computer memory usage
and wall-clock time. Performing synthesis with constant
parameter settings results in the same measurement each
time for these BDD-based metrics.

3. THE BACKWARDS REACHABILITY SEARCH

Symbolic supervisor synthesis as applied in this paper
requires a backwards reachability search. By analysis of
this search we show which characteristics of the variable
order influence the size of intermediate BDDs and to what
extent this contributes to the total synthesis effort. The
computations of the non-blocking N and bad-state B
predicates are essential to this process. The non-blocking
predicate expresses what locations and discrete variable
values can be reached backwards from the marked states,
with respect to the current guards and updates. The
bad-state predicate expresses what locations and discrete
variable values lead to undesirable states (Ouedraogo
et al., 2011). These are states that can lead to blocking
states by a sequence of uncontrollable events.

We utilize current-state variables x ∈ X that specify
the state of the system, i.e., specify all locations of the
automata and all variable valuations, before a transition
is taken. Next-state variables x+ ∈ X+ specify the state
of the system after a transition is taken. Therefore, the
BDD of each update ue is expressed in both current- and
next-state variables (the update adapts the state after a
transition based on the state before a transition). The
BDD of each guard ge is only expressed in current-state
variables (the evaluation of the guard only depends on
the state before the transition). During the search one
transition at a time is added to the predicates. This is
described by the transition relation Te(X,X

+) = ge(X) ∧
ue(X,X

+); each edge e ∈ E has a single Te(X,X
+).

Fig. 2 shows a global overview of the steps that are
required for symbolic synthesis. Before synthesis, all plants
and requirements are combined by linearization such that
a single EFA results, see Fig. 3 for an example. For a
more thorough elaboration we refer to Nadales Agut and
Reniers (2011). The initial non-blocking predicate N0(X)
is set equal to the marked state predicate Nm(X) where
locations l ∈ Lm are set to true, otherwise to false. To
compute the non-blocking predicate, recursively apply

Nk(X)=Nk−1(X)∨
∨
e∈E
∃X+

[
Nk−1(X+)∧ Te(X,X+)

]
, (3)

Set	of	automata
(CIF-model)

	Variable
ordering

Symbolic
model

Symbolic
synthesis

Symbolic
supervisor

Linearized
model

Supervisor

Linearization

CIF	to	BDD	conversion
BDD	to	CIF
	conversion

Fig. 2. Flowchart of symbolic synthesis.
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a
when	A	=	l1	and	B	=	l1
do	A	:=	l2	and	B	:=	l2

b
when	C	=	l1
do	C	:=	l2

initial;
A	=	l1	and	B	=	l1	and	C	=	l1

marked;
A	=	l2	and	B	=	l2	and	C	=	l2

Fig. 3. EFA M that results from the linearization of three
automata A,B and C.

until the fixed-point Nk(X) = Nk−1(X) is reached. Next,
the BDD of the initial bad-state predicate is set equal to
B0(X) = ¬Nk(X) and a similar fixed-point computation,
now with only uncontrollable edges, is performed using

Bj(X)=Bj−1(X)∨
∨

(e∈E|σe∈Σu)

∃X+

[
Bj−1(X+)∧Te(X,X+)

]
. (4)

Next, the initial non-blocking predicate is set to N0(X) =
Nk(X)∧¬Bj(X). The previous steps starting from N0(X)
are repeated, unless Bj(X) is unchanged after a new
iteration. If this is the case, the backwards reachability
search is finished and the predicate of the controlled
system is set to Pc(X) = Nk(X), where Nk(X) is the
most recently computed non-blocking predicate. Finally,
the supervisor is computed by strengthening the guards of
all controllable edges, using

ge(X) = ge(X) ∧ ∃X+

[
Pc(X

+) ∧ Te(X,X+)
]
. (5)

3.1 The relational product

A frequently applied operation during the backwards
reachability search is ∃v [f ∧ g], where f and g are both
BDDs and v is the set of existentially quantified variables,
as found in (3), (4), and (5). This operation can be ex-
ecuted by first computing the And for f and g and later
quantifying over v. However, this results in a large inter-
mediate result of f ∧ g. Therefore, both the conjunction
and existential quantification are computed in a single
recursive pass over f and g by utilizing the relational
product operation (Burch et al., 1994). This operation
prevents computing the entire BDD f ∧ g and quantifies
early over v, thereby reducing memory usage and number
of required operations. The worst-case complexity of the
relational product is O(|f | × |g| × 22|b|), where |f | and |g|
are the sizes of the BDDs and |b| is the total number of
BDD-variables in the model (McMillan, 1993). Nonethe-
less, computing the relational product is known to be an
expensive computation during the backwards reachability
search (Burch et al., 1994).

3.2 Propagation of transition relations

Recall (3) and (4), notice that each computation depends
on the previous result. As the number of BDD-variables n
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Fig. 4. BDDs during the backwards reachability search.

and the size of each transition relation is equal throughout
synthesis, we know that the BDD that determines the
computational effort of the following relational product
operation is the previously computed non-blocking or bad-
state predicate. Thus, if Nk−1(X) is small, the effort re-
quired for the computation of Nk(X) is low. Furthermore,
note that during each step of the computation of the non-
blocking predicate first ∃X+ [Nk−1(X+) ∧ Te(X,X+)] is
computed. The same applies to the bad-state predicate.
Both consist only out of current-state variables, as the
next-state variables are existentially quantified. In a sense,
each iteration we add assignments that are imposed by
the current-state variables of the transition relation. Fur-
thermore, we known that the variables in each transition
relation are strongly related in the Boolean expressions
the BDDs represent. Moreover, BDDs are overall small if
strongly related BDD-variables are placed near each other
(Minato, 1996; Somenzi, 1999). An example of this effect
is shown in Fig. 1, where keeping BDD-variables a and b as
well as c and d near each other results in a smaller BDD.

To summarize our observation, if we keep all current-
state variables of each transition relation near each other,
it is likely that the resulting non-blocking and bad-state
predicates are small, as we know that these variables
are strongly related. We denote the transition relation of
current-state variables by

Te(X) = ∃X+Te(X,X
+). (6)

In the following section we shown an example of this effect.

3.3 Relation between transition relations, variable order
and computational effort

In Fig. 4 the first two steps of synthesis are shown applied
to EFA M given in Fig. 3. Note that keeping A and B
strictly next to each other in the order results in the
least number of decision nodes. To further analyze this
behavior the same experiment is executed for a model of
relevant complexity. In this experiment we measure the
size of all BDDs combined, non-blocking (3) and bad-
state predicates (4) and new guard predicates (5) during

(a) Order with variables appear-
ing in Te(X) placed near each
other.

(b) Order with variables appear-
ing in Te(X) placed apart from
each other.

Fig. 5. Evolution of the total BDD size for two orders with
opposing characteristics.

synthesis, where two variable orders are chosen such that
variables appearing in transition relations are placed near
each other for the first order and far apart from each
other for the second order. In Fig. 5 the results of this
experiment are shown for the Cluster tool model (Su et al.,
2010). Notice that the total size of the BDDs prior to the
computations of the non-blocking and bad-state predicates
in the backwards reachability search is relatively equal for
both orders. For the first order the total BDD size only
slightly increases during synthesis, for the second order
the total BDD size becomes substantially larger, more so,
during the computation of the new guards the total BDD
size reaches its peak. For the first order this effect is hardly
noticeable. As larger BDDs require more recursive calls
when operations are applied to them, this also results in a
large difference in operation count.

4. VARIABLE ORDERING HEURISTIC

We introduce a variable ordering heuristic to find an order
where the variables often appearing together in transi-
tion relations are placed near each other. The heuristic
utilizes a Dependency Structure Matrix (DSM) to store
pairs of CIF-variables that appear together in Te(X). Sub-
sequently, the DSM is manipulated utilizing two matrix
reordering heuristics, resulting in several viable orders.

4.1 Dependency Structure Matrix

A DSM is a square n×n matrix representing dependencies
between n aspects of a system or model (Browning, 2016).
We capture variables of SCT models along the rows and
columns where each index represents a single CIF-variable.
In this paper we utilize static Numerical DSMs (NDSMs).
The off-diagonal elements can be non-negative integers,
where the value indicates the number of times the respec-
tive variables appear together in Te(X). In our use, the
diagonal elements are always zero. Furthermore, all de-
pendencies in the NDSM are regarded as undirected, thus
providing a symmetric matrix. Subsequently, the NDSM is
manipulated by two matrix ordering heuristic algorithms
that reorder the row and column indices such that non-
zero values are placed towards the diagonal. The order
in which the variables appear along the rows/columns is
used as variable order for synthesis. Essentially we are
creating a variable order such that variables that often
appear together in pairs in Te(X), are placed near each
other in the variable order.



4.2 Construction of the NDSM

Before synthesis we extract the variables that appear in
Te(X) for all e ∈ E, recall (6). For all occurrences of
pairs of variables per Te(X) we increment the element
in the NDSM by one, thus a higher value indicates a
stronger dependency between the variables. The increment
is executed for both combinations of the pair such that the
resulting NDSM is symmetric.

The use of DSMs in SCT is not new, Goorden et al. (2017)
used DSMs to find clusters of highly interactive compo-
nents for the purpose of applying multilevel synthesis.
However, we are not looking for clusters, but interested
in reordering the row and column indices such that higher
valued elements are placed as close as possible towards the
diagonal relative to lower valued elements. By finding such
an order, we also find an order where variables that often
appear together in transition relations are placed near each
other.

We utilize existing node ordering heuristics, that have
been designed for bandwidth, profile, and/or wavefront
reduction of symmetric sparse matrices. The three afor-
mentioned metrics indicate the closeness of non-zero ele-
ments to the diagonal in a matrix, for an elaboration on
these metrics we refer to Cuthill and McKee (1969) for
bandwidth and Sloan (1989) for profile and wavefront. By
minimizing any of these metrics we also achieve our desired
order. We experienced that the NDSMs constructed in
our approach are also sparse. The effective use of these
heuristics for static variable order optimization for deci-
sion diagrams is shown in Meijer and van de Pol (2016),
where several node ordering heuristics have been com-
pared. These heuristics apply a reordering to the adjacency
graph that can directly be extracted from the NDSM.
As we utilize an NDSM we append the graph’s edges by
weights resulting in a weighted adjacency graph. For an
NDSM with row index i and column index j, we denote
elements by ei,j . For each row i we generate a node labeled
by i. Subsequently, each non-zero element ei,j results in an
undirected edge with weight ei,j between nodes i and j.
This results in a weighted adjacency graph where the node
labels are reordered using the following two heuristics.

4.3 Weighted Cuthill-McKee ordering

The Cuthill-McKee (CM) ordering is a bandwidth reduc-
ing node ordering heuristic introduced by Cuthill and
McKee (1969). The standard algorithm places non-zero
elements near the diagonal to result in a matrix with a
lower bandwidth. We introduce an adjustment to the stan-
dard algorithm, such that it is able to differentiate between
non-zero elements. Higher valued elements are prioritized
in being placed close to the diagonal over lower valued
elements. We will refer to this algorithm as the weighted
CM ordering, which is shown in Algorithm 1. Lines 5 and
6 are an adjustment of the standard algorithm found in
Cuthill and McKee (1969). The algorithm starts by finding
a peripheral node that is defined as a node whose shortest
distance to the node furthest away is equal to the diameter
of the graph. However, finding a true peripheral node is
often very expensive to calculate and therefore a heuristic
approach is taken to find a pseudo-peripheral node (George

Algorithm 1 Weighted Cuthill-McKee ordering

Input NDSM M
Output Order R

1: Initialize empty list R, compute weighted adjacency
graph A of M and initialize list of unconnected nodes
E in any order

2: Compute pseudo-peripheral node p of A
3: Mark p and append p to R
4: while Unmarked nodes exist in A do
5: Find list of unmarked neighbors C of p and sort C

in descending weight
6: Sort nodes in C with equal weight in ascending

degree
7: Append C to R and mark all nodes in C
8: Set the next node in R as p
9: end while

10: Set R equal to R appended to E

and Liu, 1979). Nodes can be unconnected as in not having
any edges connected to any other nodes. Those nodes are
stored in a list of unconnected nodes E.

4.4 Sloan’s ordering

Sloan’s ordering is a profile and wavefront reducing node
ordering heuristic introduced by Sloan (1989). It places
non-zero elements near the diagonal to result in a lower
profile of the matrix. In this paper the standard algorithm
is not adjusted to be able to differentiate between non-zero
elements, although this is of interest for future work.

4.5 Weighted Event Span

We apply both ordering heuristics to the NDSM indi-
cating related pairs of variables. This results in two or-
ders, furthermore, we notice that reversing the order can
sometimes lead to significant differences in synthesis ef-
fort. Siminiceanu and Ciardo (2006) noticed that placing
variables that result in more costly operations towards the
bottom of the BDD resulted in less effort required in a
similar application of decision diagrams. This resulted in
the Weighted Event Span (WES) metric. Furthermore, the
WES has extensively been tested by Meijer and van de Pol
(2016), where a correlation is shown between peak BDD
nodes, computation time, and the WES for several types
of decision diagrams applied to symbolic model checking.
The WES is found by

WES =
∑
e∈E

2xb
|x|
· xb − xt + 1

|x||E|
(7)

where |E| indicates the total number of edges, |x| the
number of current-state variables, and xb and xt are
respectively the index of the bottom and top BDD-variable
that occur in Te(X) where the index is numbered (1, ..., |x|)
starting at index 1 for xt. For the computation of the
WES of a given variable order, we take the bottom and
top BDD-variables that appear in each Te(X) after the
reordering has been applied. The first term in (7) increases
as xb is placed later in the variable order. The second term
increases the WES when xb − xt is large.

To estimate which of the four orders (two orders resulting
from two different ordering heuristics and two reversed



(a) NDSM before reordering. (b) NDSM after reordering.
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Fig. 6. NDSM before and after reordering for the Power
substation model (Chao et al., 2017).

orders) should be applied to synthesis, the WES is com-
puted for each of the orders. The order that has the lowest
WES is applied to synthesis. This results in the proposed
variable ordering heuristic, named DSM-based Cuthill-
McKee-Sloan variable ordering Heuristic (DCSH), for ease
of reference. Fig. 6 shows an example of an NDSM before
and after reordering.

5. BENCHMARK EXPERIMENTS

To measure the effectiveness of DCSH in effort reduction,
we perform two experiments for each of the eleven bench-
mark models shown in Table 1. For each model 10,000
random variable orders are generated and synthesis is
applied using CIF for each random order. To measure the
synthesis effort we extract the peak used BDD nodes and
BDD operation count. This experiment is used to form a
baseline of required effort when no heuristics are applied to
the models. The results of the Bridge and FESTO models
are excluded from this experiment as synthesis was unable
to compute a supervisor for some of the random orders
with 16 GB of memory allocated. Moreover, DCSH is used
to generate a single order per model, this order is used for
synthesis and the effort is measured.

To measure the effectiveness of DCSH compared to
FORCE in synthesis effort reduction, a second experiment
is conducted: the same random orders are used, however
in this case used as initial order for FORCE. These results
are used as a baseline. As FORCE is the state-of-the-art
heuristic used for variable ordering for supervisor synthe-
sis, this baseline is used to compare it against DCSH. In
this experiment we use FORCE as it currently is imple-
mented in CIF; FORCE performs an optimization of the
span based on other dependencies compared to DCSH.
The order that results from FORCE is used for synthesis.
Lastly, we notice that applying FORCE as post-ordering to
the order computed by DCSH can be noticeably beneficial.

Table 1. Benchmark models.

Model

Adv. Driver Assist. System (ADAS) (Korssen et al., 2018)
Power substation (Chao et al., 2017)
Theme park (Forschelen et al., 2012)
Automated Vehicle Guidance (AVG) (Wonham and Cai, 2019)
Multi Agent Formation (MAF) (Cai and Wonham, 2015)
Cluster tool (Su et al., 2010)

Ball system (Čengić and Åkesson, 2008)
Bridge (Reijnen et al., 2018b)
Production cell (Feng et al., 2009)
Waterway lock (Reijnen et al., 2017)
FESTO (Reijnen et al., 2018a)

10,000	random
variable	orders

SupervisorSymbolic
synthesis

DCSH Computational
effort

Peak	used	BDD	nodes

BDD	operation	count

FORCE

Fig. 7. Flowchart of the benchmark experiments.

Thus, we use the orders computed by DCSH as initial
order for FORCE and apply the order that results to
synthesis accordingly. For ease of reference, we refer to
this method of applying the two heuristics in sequence
as DCSH-FORCE. A flowchart of these experiments is
shown in Fig. 7. For each model a normalized histogram
is derived and shown along with the means, and results
of DCSH and DCSH-FORCE in Fig. 8. For each model
two histograms derived from the 10,000 measurements are
shown per metric, one histogram for applying FORCE and
one for no heuristics applied. The markers indicate the
resulting effort from applying DCSH and DCSH-FORCE
as well as the mean of the randomized measurements. The
solid black lines indicate the best-case (bottom) and worst-
case (top) effort as measured using the 10,000 randoms
orders.

It can be seen from the means in Fig. 8 that FORCE re-
duced average effort for all models except the Theme park
model. By applying DCSH the effort reduces compared
to no heuristics applied for all models except the Theme
park and ADAS models. Applying DCSH-FORCE shows
a further reduction of effort compared to DCSH for most
models. If the effort increased, this is only marginal com-
pared to the reduction that is achieved for other models.

To quantify the effort reduction of DCSH and DCSH-
FORCE against FORCE, we compute the number of
random initial variable orders nran used for FORCE that
resulted in less effort compared to DCSH or DCSH-
FORCE, and compute its fraction out of all measurements
ntot by f = nran/ntot. We compute this fraction for
DCSH f and DCSH-FORCE fF , where subscripts B and
O indicate the peak used BDD nodes and total operation
count, respectively. These fractions are shown in Table 2.
If f < 0.50 for both metrics, DCSH or DCSH-FORCE
outperforms FORCE.

For five out of eleven models, DCSH performed better
than FORCE. For these models, both metrics show that
it resulted in less effort than 50% of the random orders

Table 2. Fractions and WES for DCSH and
DCSH-FORCE.

Model
DCSH DCSH-FORCE

fB fO WES fF
B fF

O WES

ADAS 1.00 1.00 0.044 1.00 0.97 0.061
Pow. sub. 0.01 0.00 0.063 0.02 0.00 0.065
Theme park 0.70 0.28 0.025 0.80 0.28 0.080
AVG 0.37 0.45 0.166 0.37 0.51 0.170
MAF 0.60 0.50 0.017 0.19 0.19 0.037
Cluster tool 0.06 0.17 0.055 0.12 0.18 0.050
Ball system 0.87 0.54 0.043 0.50 0.10 0.042
Bridge 0.97 0.81 0.090 0.02 0.01 0.086
Prod. cell 0.55 0.72 0.070 0.09 0.16 0.065
Wat. lock 0.16 0.13 0.078 0.05 0.05 0.075
FESTO 0.00 0.00 0.041 0.00 0.00 0.041



(a) Peak used BDD nodes.

(b) BDD operation count.

Fig. 8. Synthesis effort of applying DCSH, FORCE and DCSH-FORCE.

where FORCE is applied, see Table 2. Applying DCSH-
FORCE shows this improvement for seven out of eleven
models. Furthermore, it can be seen in both Table 2 and
Fig. 8 that DCSH performed noticeably better for the two
largest models tested in this case study, the FESTO and
Waterway lock models. The lowest overall effort is shown
for DCSH-FORCE. This can be explained by the WES
shown in Table 2. For most cases, applying FORCE to the
order computed by DCSH resulted in a further decrease
of the WES that also resulted in a decrease of synthesis
effort. This can be explained as FORCE’s span and the
WES are closely related metrics (Meijer and van de Pol,
2016). By providing an initial order for FORCE with a
low WES, we also provide an order that initially has a low
span. Subsequently, FORCE optimizes the span which also
results in a lower WES, this was the case for the five most
complex models. For some cases the WES did increase as
well as the effort. The only models that did not show this
correlation between effort and the WES are the ADAS,
MAF and Cluster tool models. The authors note that even
for models describing the same system, different modeling
strategies can result in varying results of DCSH. Overall,
DCSH chose the weighted CM six times and Sloan five
times. The chosen variable ordering with minimal WES
did not always result in the lowest effort, but using the
WES rather than always weighted CM or Sloan was still
the better strategy.

6. CONCLUSION

We present a variable ordering heuristic for the reduction
of computational effort of BDD-based supervisor synthe-
sis. We show why certain variable orderings result in effort

that is higher in order of magnitude. The relation between
transition relations, variable order and computational ef-
fort has been studied in literature, however, to the best
of the authors’ knowledge, no detailed explanation for the
existence of this relation had been given in prior work.
Benchmark experiments are performed to compare DCSH
to FORCE which shows that DCSH performs competi-
tively with FORCE. For the most computationally de-
manding models, DCSH shows better results. By using
the two heuristics in sequence, the largest effort reduction
is observed.

As the computation time for running both heuristics is in
the order of hundreds of milliseconds and the benefits for
the computational effort that can be obtained is orders of
magnitude larger, use of the method shown in this paper
is recommended. The best results are shown for the model
with the highest worst-case peak used BDD nodes, the
FESTO model, where the effort reduced by over a factor
of 50 compared to the mean of applying FORCE to random
orders.

For future work it would be of interest how DCSH performs
for different, albeit similar, applications such as model
checking. Sloan’s ordering can be adjusted such that it
is able to sort a numerical DSM. Moreover, it would
be interesting to investigate whether additional (matrix)
ordering schemes could result in a further decrease of
synthesis effort.
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