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ABSTRACT: Robust analysis of signals from stochastic biomolecular processes is critical for
understanding the dynamics of biological systems. Measured signals typically show multiple
states with heterogeneities and a wide range of state lifetimes. Here, we present an algorithm
for robust detection of state transitions in experimental time traces where the properties of
the underlying states are a priori unknown. The method implements a maximum-likelihood &
approach to fit models in neighboring windows of data points. Multiple windows are

combined to achieve a high sensitivity for state transitions with a wide range of lifetimes. The

proposed maximum-likelihood multiple-windows change point detection (MM-CPD) algorithm is computationally extremely
efficient and enables real-time signal analysis. By analyzing both simulated and experimental data, we demonstrate that the algorithm
provides accurate change point detection in time traces with multiple heterogeneous states that are a priori unknown. A high
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sensitivity for a wide range of state lifetimes is achieved.

1. INTRODUCTION

Time-dependencies observed in biological systems are at the
most basic level controlled by the dynamics of biomolecular
processes. Examples are the binding and unbinding of ligands,
conformational switching of proteins, addition and removal of
chemical groups, modulation of enzyme activity, etc. At the level
of individual molecules, transitions between states are stochastic
and described by transition probabilities. The stochastic nature
of molecules and their interactions transpires into stochastic
properties at higher biological levels. For example, intracellular
transport by the molecular motor protein kinesin is dependent
on ATP binding and conformational changes of kinesin.'
Another example is bacterial chemotaxis where run-and-tumble
motion leads to a biased random walk in a preferred chemical
gradient direction. The bacterial motion, controlled by flagellar
motors, depends on single-molecule processes including
stochastic ligand binding to receptors.”

Dedicated experimental techniques have been developed to
study the dynamics of stochastic biological systems, such as
single-particle tracking,” optical tweezers," magnetic tweezers,"
fluorescence resonance energy transfer,” super-resolution
microscopy,” and nanopores.” A critical aspect of the experi-
ments is the data analysis. Here, discrete change points and
corresponding state transitions need to be accurately and
reliably detected in noisy time-dependent data. Furthermore,
the experiments typically exhibit multiple heterogeneous states
of which the properties are not a priori known, caused by the
complexity of biological systems and time-dependencies of the
constituent biomolecules. Furthermore, change points are
intrinsically difficult to recognize when states have time-
correlated properties that interfere with state change detection.
Several algorithms have been developed for change point
detection (CPD), e.g., thresholding,® hidden Markov models,”
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and maximum-likelihood-based methods.'™'*

However, the
algorithms typically require input parameters that sensitively
depend on the experimental conditions, and the implementa-
tions of the algorithms are generally computationally demand-
ing. Thus, there is a need to develop CPD algorithms that
require minimal input parameters for generalizability and
robustness and that are computationally efficient for enabling
real-time data analysis.

In this work, we present a CPD algorithm that can accurately
detect state transitions in experimental time traces from
multistate biological systems with a priori unknown state
properties. The algorithm is generalizable and computationally
efficient. Change points are detected by calculating the change in
log-likelihood of time-shifted neighboring windows, where
multiple window sizes are combined to achieve sensitivity for
a wide range of state lifetimes. The performance of the
maximum-likelihood multiple-windows change point detection
(MM-CPD) is demonstrated using simulated and experimental
time traces from a biomolecular sensing technology with single-
molecule resolution. Finally, we demonstrate the improved
sensitivity and speed of MM-CPD compared to alternative
methods reported in the scientific literature.
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Figure 1. Change point detection (CPD) in a biological system with multiple heterogeneous states. Illustration of the scientific problem using
simulated states and time traces of a model system with three mutually exclusive states. (a) The states have overlapping probability distributions of
coordinate x. (b) The traces x(t) of each state have different autocorrelation properties (0 to 10 time lag data points). (c) The states have different
lifetime distributions, represented as single-exponential distributions with different characteristic lifetimes. (d) Simulated time trace x(t), where the
color indicates the state of the system. The sampling rate of the time trace is 100 Hz. (e) State transitions detected by a CPD algorithm (example). The
black vertical lines indicate the detected state transitions. Not all state transitions are true positives (TP), i.e., correctly detected CPs, since both false
positives (FP) and false negatives (FN) are observed.
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Figure 2. Flow chart for CPD algorithm development using simulated data and experimental data. The arrows indicate the information flow. Analysis
of simulated data allows a quantitative evaluation of the algorithm by comparing detected change points with the true change points in the simulation.
The CPD algorithm is evaluated on experimental data by comparing scaling relationships between experimental input parameters and physical output
parameters. The dashed arrows indicate how the simulation parameters are adapted based on experimental parameters and results.
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Figure 3. Response time traces in a simulated two-dimensional system with multiple states. (a) Simulated state as a function of time. (b, c) Simulated x
and y time traces (a sampling rate of 100 Hz). The green and red boxes indicate two neighboring windows A and B (eq S) with a window size of 80 data
points. (d, e) Response time traces for window sizes of 20 and 80 data points, respectively. The red vertical lines indicate the detected change points,

which are identified by applying a threshold (green line).

2. CHANGE POINT DETECTION METHODS

2.1. Data Analysis Challenge. Figure 1 illustrates the data
analysis challenge for a biological system with multiple
heterogeneous states. A simulated time trace is shown of a
system with three states, where the states have overlapping
probability distributions, different autocorrelations, and differ-
ent lifetime distributions. The overlap complicates state
identification, the time-correlation influences the time that is
required to recognize a state, and the presence of a range of
lifetimes complicates the detection of short-lived states, making
the data analysis prone to misidentifications of states and state
transitions.

2.2. CPD Algorithm Development. Figure 2 shows a flow
chart that illustrates how a CPD algorithm is developed and
validated using both simulated and experimental data. Simulated
data gives the opportunity to quantitatively evaluate a CPD
algorithm by comparing detected change points with the known
change points in the simulation. In order to generate simulated
data that is a good representation of an experimental system, a
simulation model needs to be developed, based on knowledge of
the system, biophysical equations, and parameters derived from
experimental data. By performing the quantitative evaluation,
algorithm parameters can be tuned to optimize the CPD
algorithm. In parallel, the algorithm is tested on experimental
data. Here, the locations of true change points are not known.
Therefore, quantitative evaluations do not focus on individual
change points but rather on scaling relationships between
experimental input parameters and extracted physical output
parameters, such as lifetime distributions.

2.3. Quantitative Evaluation of CPD with Simulated
Data. Figure 1le shows the detected state transitions after CPD.

17728

Detected CPs can be either true positives (TP) i.e., detected
change points that correspond to a true change point or can be
false positives (FP). Missed state transitions are categorized as
false negatives (FN). The CPD performance can be evaluated by
calculating the Fl-score,'” which is equal to the maximum value
of 1 if no false positives and no false negatives are present.

TP
1
TP + ~(FP + FN) (1)

Fl—score =

2.4. Maximume-Likelihood Multiple-Windows Change
Point Detection (MM-CPD). The main principle of MM-CPD
is to calculate the probability of a change in distribution as a
function of time. First, a distribution is assumed, and a
maximum-likelihood approach is applied to calculate the
distribution parameters. A distribution with a mean y, standard
deviation o, and nearest-neighbor coupling parameter € is
assumed. This model is an approximation of an Ornstein—
Uhlenbeck process.'”

For convenience, we introduce 6, which describes the model
parameters:

0= (u,o,e€) (2)
The probability density function of a variable «; is given by

oy 1 _ (% — ex — (1 —e)p)’
f(xir 6) - 277:0_2 EXP[ 202 (3)

The log-likelihood of a time trace of N data points is given by

g(x; 0) = log[H flax; 9)] = )" log(f(x; 0))

i=1 i=1 (4)
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Figure 4. MM-CPD algorithm performance studied on simulated BPM data. (a) BPM competition assay system with a dsDNA tether, analogue
molecules on the particle, and detection molecules on the surface."> Switching between bound and unbound states is induced by reversible interactions
between the analogue molecules and detection molecules. Analyte molecules can also bind to the detecting molecules. Therefore, the number of
switches between bound and unbound states is reduced as a function of analyte concentration. Observed motion patterns in the unbound state are
circular in shape. In contrast, motion patterns in the bound state can have different shapes and sizes. Images are obtained from Yan et al."> (b)
Simulated state and x and y time traces of a single BPM particle. State 1 refers to the unbound state in (a) and states 2, 3, and 4 are bound states with
different distributions. (c) Performance of MM-CPD with a single window. The F1-score is shown as a function of the threshold and window size w,,;,.
(d) MM-CPD with multiple windows (N = 9) gives an improved F1-score compared to the single-window approach. (e, f) F1-score as a function of the
mean bound state lifetime 73 and mean unbound state lifetime 7y, for the MM-CPD and IB-CPD.

Maximization of eq 4 with respect to the model parameters
provides expressions for the maximum-likelihood estimators R,=1lo
(MLE), /1, €, and 6. Supporting Information Section 1 provides a
detailed derivation of the MLEs.

The null hypothesis assumes that the data points in two
neighboring windows A and B of equal window size w originate
from a single distribution:

g H:V:lf(xi; éA) H?:w+1f(xi; éB)
H?Zlf(x,.; éAB) 7)

which can be expressed in terms of individual log-likelihood
functions:

R, = g(x1,~--,w5 6y) + g(xw+1,--~,2w5 0p) — g(xl,--~,2w5 Orp)
8)
We refer to R, as the response that relates to the probability of

Hy: 6y = 0 = Oy (s)

The alternative hypothesis assumes that the data points in

windows A and B come from different distributions:

H;: 6, # 6y (6)

For both hypotheses the log-likelihood can be calculated with
eq 4 and the MLEs corresponding to the hypothesis. Calculating
the log-likelihood ratio between the two hypotheses provides an
expression for the likelihood of a change point:

17729

a change in distribution. In multidimensional systems, responses
from different traces can be added. For example, the response of
a two-dimensional system with traces of variables x and y is given

by
R =R;+R] 9)

Figure 3 shows the time trace of the response for simulated
two-dimensional time traces with multiple states. Panels 3a—c

https://doi.org/10.1021/acsomega.1c02498
ACS Omega 2021, 6, 17726—17733
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Figure 5. CPD algorithms applied to experimental BPM data for continuous monitoring of single-stranded DNA. Comparison between MM-CPD, IB-
CPD, and SMD-CPD. (a) Top panel shows the concentration of the ssDNA analyte as a function of time. The bottom panel shows the detected
switching activity as a function of time with MM-CPD, IB-CPD, and SMD-CPD. The error bars indicate the 99% confidence intervals of the mean of
the fitted Poisson distribution. (b) Dose—response curves of ssDNA determined with the different CPD algorithms. The curves were fitted with a Hill
equation with a Hill coefficient 1. (c) Survival curves of the bound state lifetimes determined from the detected change points with the different CPD
algorithms. (d) Average CPU time required to analyze an experimental time trace of 180 s (a sampling rate of 33.7 Hz) for the different CPD

algorithms implemented in MATLAB.

show the state and «x and y time traces of the simulated data,
respectively. The response is plotted as a function of time for
window sizes of 20 and 80 data points (Figure 3d,e). The
response time trace is a measure for the probability of a change
point as a function of time.

The red vertical lines in Figure 3 indicate the change points
that are identified from the response signals by applying a
threshold. Change points that are detected with a small window
size typically correspond to large changes in the distribution.
Applying a larger window size allows detecting smaller changes
in distribution, since a larger number of data points give a more
precise estimation of the model parameters. However, states
with a short lifetime, typically shorter than the window size, will
be missed with the larger window size. The threshold is an
important parameter that can be tuned to minimize the number
of FP and FN. Typically, a higher threshold results in an
increased number of FN, whereas a lower threshold gives more
FP.

The MM-CPD algorithm combines the detected change
points from multiple windows. The minimum window size w,,,
and number of windows N are input parameters that define the
list of window sizes. The sizes of the respective window are
chosen as follows:

WI = Wmin’ WZ = round(wmin-\/f) (10)
The sizes of the windows from 3 to N are given by
W, = 2wy (11)

17730

The increment by a factor of two is chosen for the reason of
computational efficiency, since the log-likelihood of the null
hypothesis (eq 5) for a window size w; can be used for calculating
the log-likelihood of the alternative hypothesis (eq 6) for a
window size of 2 - w;,. Combining the change points (CPs) from
multiple windows is a sequential procedure in which the CPs of
w) are all accepted. Change points from the next window size w;
are accepted only if the distance to already accepted CPs is larger
than w; _ . The process of combining change points from
multiple window sizes is performed sequentially in an ascending
order, i.e., from the smallest window size to the largest window
size. The final step of the MM-CPD algorithm is to perform a
test on accepted CPs with a minimum distance of wy to
neighboring CPs. These CPs are rejected if R,, is lower than the

threshold. This step is important to reduce the number of FP in
systems with long state lifetimes.

3. RESULTS

The MM-CPD algorithm discussed in the previous paragraph is
generally applicable for CPD in multistate biological systems.
Here, we will apply the algorithm to analyze simulated and
experimental time traces of a continuous biomolecular sensing
technology with single-molecule resolution, called biosensing by
particle mobility (BPM).'*~'® The biophysical sensing method-
ology relies on detecting changes in the motion of tethered
particles induced by reversible affinity-based interactions
between a biofunctionalized particle and surface. Different

https://doi.org/10.1021/acsomega.1c02498
ACS Omega 2021, 6, 17726—17733
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molecular sensor designs have been demonstrated, all exhibiting
motion pattern changes due to state switching between bound
and unbound states. In this paper, we will analyze experimental
data of a BPM competition assay, which is schematically drawn
in Figure 4a. Here, the surface is provided with antibodies and
the particles with analyte analogues. When no analyte is present
in solution, then particles switch frequently between unbound
and bound states due to the affinity between antibodies on the
surface and analyte analogues on the particle. When analyte
molecules are present in solution, then these bind to the
antibodies, thereby inhibiting binding of the particle to the
surface and increasing the mean unbound state lifetime of the
particles. BPM experiments provide time traces with the
heterogeneities presented in Figure 1b—d, namely, multiple
states, states with different autocorrelations, and a wide range of
state lifetimes. The Supporting Information Section 2 provides a
more detailed explanation of the BPM system and the BPM time
trace simulations.

3.1. Application to Simulated BPM Data. BPM time
traces with single-exponential distributed state lifetimes were
simulated and analyzed with the MM-CPD algorithm. Figure 4b
shows the «, y, and state time traces for a typical BPM particle
with a single unbound state and multiple bound states. Figure 4c
shows the F1-score as a function of the algorithm parameters, for
the case of a single window size (N = 1). The Fl-score clearly
depends on the threshold and on the minimum window size
W,i,- Given a certain w,,,, an optimal threshold can be found,
where a lower threshold would lead to more FP and a higher
threshold to more FN. The same data set was analyzed with a
multiple-windows approach (N = 9), showing that a higher F1-
score is achieved by combining the change points from multiple
windows (Figure 4d).

To test the performance of MM-CPD for a wide range of state
lifetimes, time traces with mean bound state lifetime 75 and
mean unbound state lifetime 7;; ranging from 1 to 100 s were
simulated. In order to be effective for a wide range of state
lifetimes, the following algorithm settings were chosen: w,,;, =
10, N = 9, and threshold = 20. The simulations were used to
compare the performance of the MM-CPD algorithm to the
information-based CPD (IB-CPD) algorithm developed by
Wiggins.'” The latter is a CPD algorithm for biophysical systems
with multiple heterogeneous states. Figure 4e,f shows the F1-
score as a function of 73 and 7y for both algorithms. Both
algorithms show a high F1-score for bound states with a long
lifetime. For traces with short bound state lifetimes and long
unbound state lifetimes, the MM-CPD algorithm gives a
significantly higher Fl-score compared to the IB-CPD
algorithm.

3.2. Application to Experimental BPM Data. In order to
demonstrate the performance of the algorithm on experimental
data, we analyzed BPM data from Yan et al'> This study
describes a competition assay for continuous biosensing of
single-stranded DNA (ssDNA) and small molecules. In short,
addition of analyte molecules decreases the probability for a
particle to transition from an unbound to a bound state. The
average number of switching events between bound and
unbound states per particle per unit of time is referred to as
the activity. The activity is obtained by fitting a Poisson
distribution on the number of detected change points per
particle. Figure Sa shows the activity as a function of time in a
BPM assay with varying ssDNA concentrations. The system
behaves as expected, since an increase in analyte concentration
leads to a decrease in activity.
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The activity was calculated with MM-CPD, IB-CPD, and with
the second-moment divergence CPD (SMD-CPD) algorithm
that was applied by Yan et al. The latter SMD-CPD algorithm
was developed specifically for BPM.'* Clearly, more change
points are detected with MM-CPD and IB-CPD compared to
SMD-CPD. Figure 5b shows the dose—response curves for
ssDNA determined with the three CPD algorithms.

A further comparison of the CPD algorithms was performed
by extracting the distributions of state lifetimes from the
measured data. In a BPM assay, the bound state lifetime is
determined by the dissociation properties of the molecular
interactions between the particle and the surface. In the regime
of single-molecular interactions, the dissociation behavior
should obey a first-order rate equation with a well-defined
dissociation rate constant (kuff) and single-exponential dis-
tributed bound state lifetimes.

Here, we studied to what extent the algorithms reproduce
single-exponential distributed bound state lifetimes. We used
experimental BPM traces, applied the three algorithms, and
classified states between consecutive change points. States were
classified as a bound state, unbound state, or an undefined state
by analysis of the standard deviation in x and y (see Supporting
Information Section 3). Figure Sc shows cumulative distribution
functions, also called survival plots, of the bound state lifetimes
determined with the three different CPD algorithms. A straight
line in a survival plot with a linear x-axis and a logarithmic y-axis
indicates a single-exponential distribution. The figure shows that
MM-CPD and IB-CPD give straight lines, while the data from
SMD-CPD deviates from a straight line. This indicates that
SMD-CPD detects short and long state lifetimes with nonuni-
form sensitivity, resulting is an under-representation of short
state lifetimes in the distribution. A comparative analysis of the
bound and unbound state lifetime distributions for different
concentrations can be found in the Supporting Information
Section S.1.

The computational efficiencies of the three CPD algorithms
are reported in Figure Sd. The data shows the average CPU time
required for the analysis of experimental time traces, for CPD
algorithm implementations in MATLAB. The results show that
the MM-CPD is between one and two orders of magnitude
faster than the IB-CPD and SMD-CPD algorithms. The
increased CPU time of IB-CPD can be attributed to the
segmentation algorithm that is applied in IB-CPD, which is a
reiterative procedure. This leads to an analysis time that is
dependent on the number of detected change points; data in the
Supporting Information Section 4.2 shows that the CPU time in
IB-CPD depends on the state lifetimes.

4. DISCUSSION

From a statistical perspective, a minimum number of data points
is required to detect a specific state transition with a certain
reliability. The required number of data points is dependent on
the significance of the change in distribution but is also
influenced by time-correlation properties of the states.
Detection of short-lived states is therefore theoretically limited.
High sensitivity for short-lived states is desirable and can be
achieved by applying a window size close to this theoretical limit.
However, in time traces with multiple heterogeneous states,
transitions are unique and for each transition, a different window
size might be optimal. By combining detected change points
from multiple windows, a high sensitivity is achieved for a wide
range of state lifetimes. In particular, small window sizes are
sensitive for significant state transitions between short-lived
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states. On the other hand, larger window sizes are sensitive for
less significant state transitions between states with longer
lifetimes. This explains why the multiple-windows CPD
approach performs significantly better compared to the single-
window approach (Figure 4c,d).

Supporting Information Section 6 gives an overview of
frequently applied methods for CPD in biological time traces.
These include half—am}l)litude thresholding,8 maximum-like-
lihood-based methods,"* and hidden Markov models.” Most
methods rely on a defined number of states as input and
therefore are not suitable for systems with a priori undefined
states as presented in this paper. The IB-CPD algorithm of
Wiggins'~ can be applied without a priori knowledge of the
states. In comparison to the IB-CPD algorithm, the MM-CPD
algorithm is more likely to detect short-lived bound states,
especially when neighboring unbound states are long. This effect
was clearly visible in the F1-scores of the simulated data (Figure
4e,f). In addition, the lifetime analysis in experimental BPM data
showed shorter bound state lifetimes for the MM-CPD
approach compared to the IB-CPD approach (Figure Sc). The
difference is most likely due to the binary segmentation
algorithm that is applied in IB-CPD. The algorithm starts with
determining the most likely change point in a time trace. If the
candidate change point is significant, it is accepted, and the trace
is split into two segments. The process is repeated until no new
candidate change points are accepted. This method might have
difficulties to detect a short-lived bound state between two long
identical unbound states, since the distributions on both sides of
a candidate change point are dominated by the unbound state.
In contrast, the MM-CPD approach compares two windows of
data points. Thus, a short-lived bound state will result in two
peaks in the response trace of a window size close to the state
lifetime. In general, short-lived states that are hidden in the
distribution of neighboring identical states are more likely to be
detected with MM-CPD compared to IB-CPD.

The MM-CPD algorithm is designed to be robust for traces
with time-correlated data points, such as BPM. Similar to the IB-
CPD, the MM-CPD assumes a Gaussian distribution with a
nearest-neighbor coupling parameter. Including the nearest-
neighbor coupling parameter in the distribution model
significantly increases the robustness of CPD in traces with
time-correlated data points (Supporting Information Section
4.1). The MM-CPD has only three algorithm parameters. The
following settings were found to give good results for BPM data
with two input time traces: w,,;,, = 10, N = 9, and threshold = 20.
In some cases, it might be beneficial to further tune the
algorithm parameters. For example, the minimum window size
can be increased in systems with only long state lifetimes. Also,
the number of windows could be decreased if higher
computational efficiency is desired. The threshold level might
also be tuned, especially if the number of input time traces is
changed, since responses are added linearly (eq 9). Furthermore,
it should be considered that the choice of the threshold can have
a large influence on the extracted physical parameters
(Supporting Information Section 5.2). Therefore, performing
a quantitative evaluation with both simulated and experimental
data as shown in Figure 2 is important for validation when
applying the MM-CPD in other biological applications.

The performance of the MM-CPD was discussed for BPM
experiments. In BPM, the detection of short-lived states is
theoretically limited by the autocorrelation times of the states.
Further increasing the sampling rate does not significantly
improve the CPD performance, but it does decrease the

computational efficiency. In other biological processes with
shorter autocorrelation times, the sampling rate can be increased
to improve the sensitivity for short-lived states. When
autocorrelation times are long in comparison to the intersam-
pling time, it might be beneficial to increase the minimum
window size.

One of the main advantages of the MM-CPD is that the
algorithm is computationally very efficient. In contrast to
alternative methods, the analysis time is independent of the state
lifetimes (Supporting Information Section 4.2). This leads to a
predictable total analysis time, which is crucial in real-time
applications. We showed that the time to analyze a two-
dimensional BPM time trace of 180 s (~6000 data points) is
only ~0.02 s in MATLAB (Figure 5d). This speed enables real-
time CPD of ~10* BPM time traces in parallel. Even faster
biological processes, having shorter autocorrelation times
measured, e.g, at a sampling rate of 1 kHz, can be analyzed in
real time with MM-CPD for hundreds of time traces in parallel.
We expect that the MM-CPD algorithm will allow real-time
analysis with a time lag that is of the order of magnitude of the
largest window size.

5. CONCLUSIONS

We developed a CPD algorithm for rapid and reliable detection
of state transitions in experimental time traces from multistate
biological systems with a priori unknown state properties and a
wide range of state lifetimes. The maximum-likelihood multiple-
windows change point detection (MM-CPD) algorithm is
controlled by three input parameters with a clear significance.
The algorithm was validated using both simulated and
experimental data of a biosensing method with single-molecule
resolution. The MM-CPD shows an increased sensitivity for
short-lived states that are hidden in the distribution of
neighboring identical states, and the algorithm is between one
and two orders of magnitude faster compared to alternative
methods. The computational efficiency allows CPD in
thousands of time traces in parallel, for a real-time readout
and statistical analysis of stochastic signals from dynamic
biological systems.
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