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Toward Multilabel Image Retrieval
for Remote Sensing

Raffaele Imbriaco , Clint Sebastian, Egor Bondarev, and Peter H. N. de With , Fellow, IEEE

Abstract— The availability of large-scale remote sensing (RS)
data facilitates a wide range of applications, such as disaster
management and urban planning. An approach for such prob-
lems is image retrieval, where, given a query image, the goal
is to find the most relevant match from a database. Most RS
literature has been focused on single-label retrieval, where we
assume an image has a single label. The primary challenge in
single-label RS retrieval is that performance in most datasets is
saturated, and it has become difficult to compare the performance
of different methods. In this work, we extend the major multilabel
classification datasets to the multilabel retrieval problem. We also
define protocols, provide evaluation metrics, and study the impact
of commonly used loss functions and reranking methods for
multilabel retrieval. To this end, a novel multilabel loss function
and a reranking technique are proposed, which circumvent the
challenges present in conventional single-label image retrieval.
The developed loss function considers both class and feature
similarity. The proposed reranking technique achieves high
performance with computation cost that is well-suited for fast
online retrieval.

Index Terms— Image retrieval, loss function, multilabel, query
expansion, remote sensing (RS).

I. INTRODUCTION

THE increasing availability of large remote sensing (RS)
image collections has greatly contributed to explorations

in the image retrieval domain. Given a query image, an image
database should be sorted based on its similarity or relevance
to the content of the query. A large body of work exists,
which proposes solutions to this problem in the context of
RS. Conventional systems rely on handcrafted features [1],
[2], but more modern alternatives deploy convolutional neural
networks (CNNs), to produce compact representations that
encode the semantic content of the images [3]–[6]. In these
systems, the CNNs act as feature extraction producing highly
descriptive vectors from the images. More advanced systems
exploit either local features [4], [7]–[9] or more sophisticated
metric learning techniques [6], [10]–[12]. However, it seems
that the datasets and the benchmark protocols have not evolved
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as rapidly as the retrieval systems themselves. The latter
became significantly more powerful, where even several differ-
ent systems saturate the performance on popular benchmarks.
This complicates the direct comparison between systems since
the advantages of one solution over another become hard
to evaluate. Furthermore, various works report on different
evaluation metrics and inconsistent dataset splits. Therefore,
a fair comparison between different methods becomes even
more challenging.

Another challenge is that the studied datasets may be insuf-
ficiently large to properly assess how solutions would behave
in large-scale scenarios. The datasets frequently studied in the
literature range from 2100 to 31 500 images [13], [14]. In addi-
tion, the focus has been centered around single-label retrieval,
with few exceptions for multilabel retrieval [15]–[17].
This is an additional simplification of the image retrieval
problem in the context of RS imagery. Considering the nature
of the images, different semantic classes typically occur within
a single picture. Therefore, to foster research on multilabel
retrieval, we explore the challenges with single-label retrieval
and extend the existing datasets to multilabel problems. This
extension of the RS image retrieval problem not only pro-
vides a challenging definition of the retrieval problem but
also remains useful for applications, such as urban planning,
agricultural management, and crisis aversion. Furthermore,
multilabel retrieval can be useful for difficult problems, such
as cross-domain retrieval, where finer labels provide improved
results [18]. Compared to single-label retrieval, multilabel
retrieval enables more accurate results that are representative
of a query image. In this work, several datasets of various
sizes and labels are explored such that it is easier to verify
the strength of a method. To this end, various evaluation
metrics are also investigated, which are suited for multilabel
retrieval. We propose standardized protocols to assess retrieval
performance. To establish baselines, we study the existing
loss functions and reranking methods commonly used in the
RS literature. Finally, a novel multilabel loss function and
a reranking method are proposed. Our contributions can be
summarized as follows.

1) A new set of annotations and evaluation protocols for
multilabel image retrieval is generated on four different
multilabel datasets. Our protocols provide a clear defin-
ition of challenging examples and easy ones.

2) New baselines and benchmark of several existing
loss functions and reranking techniques for multilabel
retrieval are established. Since most metric learning
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loss functions are originally intended for single-label
retrieval, we extend these such that they are applicable
for multilabel retrieval.

3) A novel loss function called ordered multilabel (OML)
loss is proposed, which accounts for both classwise and
order information, offering high performance.

4) A fast and effective reranking method called Jaccard
Affinity reranking is proposed, and we study commonly
used reranking techniques in the RS literature.

The remainder of this article is organized as follows.
Section II provides an overview of the existing methods in
the RS literature. Section III describes the new evaluation
protocols, loss functions, and reranking techniques. Section IV
provides the experimental setup and results followed by the
conclusion in Section V.

II. RELATED WORK

This section provides a summary of recent single-label
remote sensing image retrieval (RSIR) systems. This is fol-
lowed by an overview of existing multilabel RSIR systems
and datasets. Afterward, reranking techniques in the context
of RSIR are briefly discussed.

A. Single-Label RSIR

The earliest retrieval systems employ handcrafted tex-
tural features to describe the information present in aerial
images [1], [2]. More advanced systems exploit high-level
features by aggregating local descriptors into a single represen-
tation. Combinations of low- (e.g., textural) and medium-level
features, such as Bag-of-Words [22], have also been studied
in [13], [23]–[25]. However, the advent of CNNs has dra-
matically increased the performance of RSIR systems. Con-
volutional descriptors provide high-level semantic features in a
compact representation. Furthermore, CNN-based descriptors
are often trained to further enhance their performance and
robustness [5], [7], [8], [26], [27].

The work of Sumbul et al. [28] provides an overview of
RSIR systems using deep learning. The authors categorize
them according to the strategies used for training and model
deployment. For example, a system can be characterized by
its network architecture, learning strategy, or loss function.
We adhere to this categorization and discuss other works
based on their approach to feature learning for RSIR. Three
different ways of learning features exist in the literature,
which is briefly elaborated in the following. The first approach
is training networks using classification losses to produce
semantically enriched representations. The second employs
metric learning to improve the distance between similar images
in feature space. Finally, the third uses reconstruction losses
for training without supervision. An example study of this
last category is [7], where patches are reconstructed and used
inside the Bag-of-Words framework. In this work, we focus
on supervised systems and solutions for RSIR.

1) Classification: CNN features have become increasingly
popular in RS since they provide high-level semantic informa-
tion that can be adapted for specific tasks [29]. In this case,
the assumption is that each image Xi in a dataset is assigned a

label li belonging to one of C different classes. These networks
are trained using a classification loss, such as the cross-entropy
loss. The results are descriptive and compact feature represen-
tations that can be extracted at different network depths [7].
In [10], Schuman et al. present a masking loss that enables
simultaneous training of multiple datasets. In this way, a single
network can learn from diverse datasets avoiding the pitfalls of
semantic association between disjunct classes. In [8], a CNN
is trained to extract local descriptors following a two-stage
procedure. First, the network features are fine-tuned with RS
imagery. Then, it learns an attention mask for local feature
selection. In both stages, a classification loss is employed.
The local descriptors are aggregated and converted into a
single global representation as a vector of locally aggregated
descriptors (VLAD) [30]. Although training these networks
is relatively straightforward, there is no guarantee that the
descriptors will be close in the feature space. Metric learning
provides a solution to this problem. By explicitly learning
similarity and dissimilarity, better representations are obtained
which are particularly suited for retrieval applications.

2) Metric Learning: Since its introduction in [31], metric
learning has become instrumental in image retrieval tasks, such
as landmarks [32] and person reidentification [33]. In metric
learning, the CNNs learn to quantify image similarity using
the contrastive loss [31], the triplet loss [34], or other more
advanced loss functions. In [35], an in-depth review on metric
learning is provided.

In RSIR, metric learning is commonly used and generates
highly descriptive image representations [3]. The work of
Liu et al. [6] focuses on improving the loss used for metric
learning. They propose a global optimal structured embedding
concept that considers the distribution of positive and negative
samples in each training batch. Thereby, the authors decrease
the intraclass variability and increase the interclass descriptive-
ness. Similarly, [12] proposes a novel loss function that utilizes
an informative set of image samples. This set is dynamically
weighted to enhance the resulting descriptors, hence improving
the retrieval performance. A different proposal is introduced
in [4], where a Siamese graph convolutional network is
deployed to encode the relationships occurring in each image.
The authors generate superpixels for each image and produce
a region adjacency graph. This approach takes a finer look at
the details in the images and learns graph similarity. While
metric learning improves the performance of RSIR systems,
similarity learning does not explicitly capture the relative
sorting between images. Loss functions that enable explicit
rank-learning are discussed as follows.

3) Rank Learning: In this paradigm, the network learns the
relative ordering between a query image and a collection of
database images. Commonly, the optimized metric is the aver-
age precision (AP, the area under the precision–recall curve).
However, the AP metric uses a nondifferentiable indicator
function. This indicator function is a unit step function that
has either discontinuous or zero derivatives. Hence, training
with gradient methods is impossible [36]. There are different
approximations to the AP function in the literature. In [37],
the AP metric is approximated in a histogram fashion that
considers the precision and recall as parametric functions to
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be learned. An alternative histogram relaxation of the AP
function is presented by the authors of [38]. Here, the indicator
is replaced by a smooth quantization function that produces
a soft assignment. In addition, the ranks of all images in
the dataset are efficiently computed and used during training.
While AP losses consider a histogram for the approximation of
the AP function, recent work provides a simpler differentiable
approach to learning with AP [36]. The authors substitute
the indicator function with a parameterized sigmoid function.
This sigmoid contains a temperature parameter that allows
increasing or decreasing the sharpness of the derivative.

A caveat of the previously discussed work is that it deals
exclusively with single-label images. However, RS imagery
captures large areas where several semantic categories
occur [39], [40]. This is a significant increase in complexity
because losses and methods based on binary image correspon-
dences (an image is either a positive or a negative match) need
to be extended to consider nonbinary image matching. While
the single-label RSIR literature is abundant, multilabel RSIR
has received little attention.

B. Multilabel RSIR

In recent years, the multilabel image retrieval problem has
attracted the interest of the computer vision community. As a
result, various solutions have been proposed, which exploit
region proposals to identify object instances [41], [42] or
directly exploit label information [43]–[45]. Satellite and aerial
images span a much larger geographical area and present
significant appearance variations even across objects of the
same class. The former is due to seasonal and environmental
changes, whereas the latter stems from the intrinsic variability
of the imaged objects. Nevertheless, some of the modules and
proposals from image retrieval literature can be adapted for
ML-RSIR.

In [16], Dai et al. present a multilabel RSIR (ML-
RSIR) system based on both spectral and spatial features
(extracted with scale-invariant feature transform (SIFT) [46]).
Their system constructs a codebook as in BoW [22] for
each of the extracted features. Then, they are combined
into a single descriptor. The proposed retrieval pipeline
learns the probability of a label appearing in an image,
given its spatial and spectral content. The system of [16]
is tested and trained with a multispectral dataset [47].
Chauduri et al. [48] propose a novel graph-based framework
for ML-RSIR. In addition, they also provide image-level
annotations for the UC Merced dataset [13]. The authors
of [15], [17] consider that the absence of dedicated ML-RSIR
datasets hinders research in the field and proposes to remedy
this by annotating the UC Merced dataset. Using a semi-
automated system, they generate pixel-level annotations for
17 different classes. Two other datasets (Wuhan dense labeling
dataset (WHDLD) [49], aerial image dataset (AID) [50]) have
been adapted from single-label to enable multilabel processing.
Semantic segmentation-based solutions to the ML-RSIR prob-
lem are evaluated in [51] and [49]. The networks are trained
for semantic segmentation, and features are extracted from the
various predicted masks.

Unfortunately, some of the previously mentioned work does
not provide a thorough enough explanation of the metrics
employed. These metrics have been directly uprooted from
the single-label task without providing explanations on how
they are being computed for the multilabel case. For exam-
ple, the mean Average Precision (mAP) metric is commonly
employed to evaluate the performance of ML-RSIR systems.
As mentioned above, the mAP metric employs a ranking func-
tion based on a binary indicator. However, it is not explained
how the new multilabel notation of the datasets affects this
metric. An exception is [49], where the authors specify that
images should have at least one label in common to be
considered correct. This binarizes the image correspondences
but is an oversimplification of the ML-RSIR problem.

A common component of image retrieval systems is rerank-
ing, which involves postprocessing techniques exploiting sim-
ilarities in the database to improve retrieval performance.

C. Reranking

A popular technique for reranking is average query expan-
sion (AQE) [52], [53], wherein a new representation of the
query vector is generated by averaging the descriptors of the
query and the top-k database matches. An improvement of
AQE is presented in [32], where the database descriptors are
weighted by their distance to the query image.

Other reranking techniques do not reconstruct a query
descriptor but exploit additional information instead. For
example, the work of Ye et al. [21] proposes to compute
the CNN-generated label vector to that of the database after
retrieving the top matches. Pedronette et al. [54] present a
scalable technique that uses truncated rank lists and efficient
data structures to leverage the contextual information present
in ranked lists. A trainable reranking technique is developed
in [55]. After generating the initial ranking, the authors train
a classifier to identify similar and dissimilar images. Further-
more, a secondary step of visual reranking is employed to
increase retrieval performance.

D. Dataset Evaluation Protocols

In the current RSIR landscape, there exist a variety of
datasets for the evaluation of RSIR methods. Unfortunately,
across this vast literature, there appears to be little consensus
on dataset splits and evaluation protocols. Hence, replicating
results and direct comparisons across systems are difficult.
The latter is further complicated when different systems
saturate the performance on the available datasets. Table I
lists a summary of the retrieval results of several state-
of-the-art solutions. The results presented in Table I come
from systems using different train and test splits, ranging
from 50%–50% to 80%–20% per dataset. The inconsistencies
in the current evaluation protocols complicate fairly assess
RSIR systems. For example, this occurs when comparing the
performance of the systems proposed in [20] and [3]. Across
both datasets, their performances are almost identical and
consistent. However, when looking at the second-best systems
( [5] and [11]), we observe roughly a 27-point mAP difference
in the UC-Merced dataset. In our opinion, these differences
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Fig. 1. Visual representation of the Jaccard label distance on BigEarthNet19 images. The leftmost image is an example query, while the other images are
used to compute the Jaccard distance. Visual content similarity can occur with little to no label similarity.

TABLE I

RETRIEVAL PERFORMANCE COMPARISON OF STATE-OF-THE-ART

RSIR SYSTEMS ON TWO POPULAR BENCHMARKS. LARGER

mAP, MP@10 VALUES, AND SMALLER AVERAGE NORMALIZED
MODIFIED RETRIEVAL RANK (ANMRR) VALUES ARE

BETTER. SEVERAL OF THE PRESENTED SYSTEMS SATURATE

PERFORMANCE ON COMMON RSIR DATASETS,
WHICH INDICATES THE NEED FOR A MORE

CHALLENGING RSIR PROTOCOL

stem from the lack of consensus between evaluation and
dataset splits.

The authors of [27] also identify a similar problem and
propose a method for generating challenging RSIR datasets
from the existing sets. However, ML-RSIR has received lit-
tle attention. The existing benchmarks consist of relatively
small datasets containing pixel-level multilabel information.
We propose to leverage the large, multilabel dataset BigEarth-
Net19 [56] and provide a standardized protocol for the evalua-
tion of ML-RSIR systems using metrics common to multilabel
retrieval and a flexible image correspondence methodology.
By doing this, we aim at a solution that facilitates a fair
comparison between systems and preserves reproducibility.
The code and models will be made available upon acceptance.

III. METHODOLOGY

As previously discussed, current ML-RSIR systems use
evaluation metrics from single-label problems where image
correspondences are binary (matches are either positive or
negative). However, when images can belong to more than
a single class, correspondences can be interpreted as a real

number in a predetermined range. An example is depicted
in Fig. 1, where images are ranked within a label-similarity
interval between zero and unity. To employ metrics, such
as mAP, the multilabel matching should be converted into
a binary correspondence. This relaxation of the multilabel
image correspondence drastically changes the difficulty of
the ML-RSIR problem. If only the exact label matches are
positives, a minuscule number of the database images will
be relevant. This is especially true for large datasets with
more varying class nomenclatures. Alternatively, one could
consider the case of sharing at least one class in common,
as in [49]. Under this convention, images that share more than
one label are equally relevant as images that share a single
class. To solve these problems and inspired by recent work in
landmark retrieval [57], we propose a more flexible relaxation
of the multilabel correspondence for ML-RSIR.

The methodology is organized as follows. The new eval-
uation protocols are described in Section III-A. The novel
loss function and reformulated loss functions for multilabel
retrieval are elaborated in Section III-B. The novel and existing
reranking techniques are discussed in Section III-C.

A. Evaluation Protocol

To determine how similar the labels of an image Xi are
to the labels of any other image X j , we consider the Jaccard
Index of their multiclass labels li and l j , respectively. By doing
so, the label similarity is defined as

J (li , l j ) = �li ∩ l j�
�li ∪ l j� . (1)

Using the Jaccard index, the label similarity will span
the interval between zero (total mismatch) and unity (perfect
match). In this manner, it is possible to select a cutoff threshold
τc to determine whether images should be considered matched
or mismatched. The advantage of this approach is the inherent
flexibility allowed by the value of τc. Thus, we define the set
Si of correct matches for image Xi by

Si = {X j | J (li , l j ) ≥ τc}. (2)
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By adopting different values of τc, the ML-RSIR problem
can be posed as strictly as desired. In this work, we propose
three different evaluation protocols with an increasing level
of difficulty, as in [57]. These protocols are denoted as Easy,
Medium, and Hard, corresponding to the thresholds 0.40, 0.60,
and 0.80, respectively.

These thresholds are selected to highlight how well the
features encode the semantic differences present in the data.
Better performing models will also be able to learn represen-
tations for similar images with only slight label differences.
Furthermore, this evaluation protocol will facilitate compar-
isons between different proposals. As discussed above, many
RSIR systems employ increasingly advanced techniques and
more complex models. However, the datasets used for training
and testing do not seem to increase in complexity at the same
pace. Therefore, we consider it relevant to develop a range of
protocols that enable the evaluation of problems of varying
complexity.

In the existing literature, machine learning systems are
evaluated on problems of different complexity by testing them
across several datasets. However, there are some disadvantages
to this approach. First, there is no apparent consensus regard-
ing the fraction of test and training splits. Common ratios
range from 50/50 to 80/20. These do not generally include val-
idation sets and are likely different in each work. In addition,
different datasets have different nomenclatures, or even differ-
ent semantic categories altogether. Hence, the image content
and the number of classes can vary. Second, the CNNs acting
as feature extraction units need to be trained in each dataset.
In most cases, this is a time-consuming and computationally
intensive task. By considering different evaluation protocols
using the same dataset, we can alleviate the aforementioned
issues. In addition, this may enable better and fair comparisons
across RSIR systems.

Needless to say, binarization of the multilabel image corre-
spondence leads to information loss. Images below the cutoff
threshold are considered negatives, but this does not encode
how far apart the labels actually are. This also holds for the
positive samples. Better representations should be obtained by
systems capable of exploiting the full multilabel information.
After obtaining a suitable dataset split and appropriate nomen-
clatures, the model should be trained with a loss function that
is in accordance with the new protocols.

B. Loss Functions

This section formulates the existing loss functions for multi-
label retrieval and describes the proposed multilabel loss. The
conventional approach to learning descriptors can be divided
into two types. The first approach deploys metric learning
or ranking loss functions that separate the descriptors by
using feature distances. The second approach is to learn to
discriminate descriptors by classifying them. In the latter case,
the descriptors are implicitly separated in feature space via a
classification loss. In an ideal scenario, the class information
and the feature distance are essential to improve performance.
In the context of multilabel retrieval, the current loss func-
tions that are used in single-label retrieval cannot be directly

applied. Therefore, we reformulate them such that they are
applicable to multilabel retrieval systems.

The two most popular metric learning-based loss functions
are contrastive and triplet loss functions. Both of these loss
functions utilize mining strategies to select anchor, positive,
and negative samples to maximize distances between the
positive and negative samples. In the case of single-label
retrieval, the definition of what is positive or negative is well
established. Given a sample anchor a ∈ Ci , a sample is defined
as positive when p ∈ Ci and negative when the sample n ∈ C j ,
where j �= i and {Ci , C j} ∈ C. The set C is the set of all class
labels. This formulation is challenging for multilabel retrieval,
as each sample could have a variable number of labels.

The existing protocol does not provide a clear distinction
between positive and negative images, for a given anchor.
To create this separation, we utilize the Jaccard Index between
the labels of the anchor image a and another image i . For
example, an image is positive (p), when J (la, li ) > 0.5,
and negative (n), when J (la, li ) < 0.5, where la and li are
the labels of the anchor image and another image in the
minibatch. Hence, during mining in metric learning losses,
such as contrastive and triplet loss, the label correspondences
are checked to generate positives and negatives. Therefore,
the contrastive loss can now be formulated as

Lcont =
�

T (z) · D(xa, x p), z > 0.5

(1 − T (z)) · max(0,m − D(xa, xn)), otherwise.

(3)

Here, D denotes the cosine distance between a pair of
embeddings xi , x j . The parameter m is the margin, and T (z)
is the step function given by

T (z) =
�

1, for z > 0.5

0, otherwise
(4)

where z = J (la, li ). Similarly, the triplet loss is given as

Ltriplet = max(0,m + D(xa, x p)− D(xa, xn)). (5)

The metric that we use for determining positives and nega-
tives is the Jaccard Index. We choose a Jaccard Index of 0.5,
as other settings add additional challenges. For example,
a value of 0.8 would make batch mining very strict. This would
require the anchor and positive sample to have a high degree of
label similarity. In practice, such samples may not be present
in the minibatch. On the other hand, a value of 0.2 would make
the mining too lenient and may consider sample pairs with low
label similarity to be positives. To preserve the simplicity and
avoid overtuning, we choose a Jaccard Index of 0.5 as the
boundary for separating positives and negatives.

For single-label multiclass problems, the cross-entropy loss
is the most widely used objective function. The cross-entropy
objective is a feasible loss function for multilabel classifica-
tion. In such a scenario, the sigmoid activation replaces the
softmax function moving from a multinomial to a binomial
distribution. Applying the cross-entropy loss function over the
binomial distribution of each classification label creates a one-
versus-all objective. Therefore, the cross-entropy function will
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be applied across each label of a sample. The cross-entropy
loss (Lxent) specified by

Lxent = −(y · log( p̂)+ (1 − y) · log(1 − p̂)) (6)

where y is the target class probability and p̂ the predicted
probability.

The benefit of the metric learning approaches is that they
discriminate embeddings by separating them in feature space
while ignoring class-based separation. The classification losses
ignore feature distances between embeddings and segregate
features by classification labels. Although a strict feature-based
separation is absent in classification losses, this is implicitly
applied.

OML loss: From Section III-B, it is evident that both feature
distances and class-based information would be an effective
approach. However, multilabel retrieval has an additional
challenge: the ordering of the samples. Unlike single-label
tasks where any image from the same class as the query
is considered a correct match, a multilabel problem would
require the image with a Jaccard Index of unity to be the
best match. The consecutive ranks would be images with
lower Jaccard Indices in descending order. However, inducing
the ordering of embeddings often requires quantization of
scores, which is not differentiable. Therefore, to obtain an
approximation of the ordering, we follow the same method as
in [36] such that the final loss becomes differentiable. Given
these constraints, we propose a loss that considers ordering and
class information called OML loss. The OML loss is given as

LOML = 1

NC

�
c∈C

�
1 − 1

NXc

�
i∈Xc

S(i, τ )

S(ψ, τ )

�
(7)

where C is the set of classes present in the minibatch,
NC , the cardinality of set C. Similarly, Xc is the set of
all the elements with label c in the minibatch. NXc denotes
the number of elements in Xc. The variable ψ denotes all the
elements in the minibatch. The scoring function S(·, τ ) is the
temperature-scaled sigmoid shifted by unity, which is given
by

S(i, τ ) = 1 +
�
j∈Xt

1

1 + exp
�

Ad
i j

�
τ
� . (8)

The affinity matrix Ai j is the similarity between the i th and
j th embeddings. The matrix Ad at i, j represents the sum of
differences of the similarity of an element i with every other
element j in the matrix Ai j . The output of the scoring function
is the accumulation of the distance affinity matrix Ad

i j after
normalization.

The scoring function generates a score for each element
in the minibatch. The highest scoring element indicates the
least correlated sample within the given class. Conversely, the
sample will have the highest similarity with itself, and the scor-
ing function will yield a value of zero. Therefore, the scoring
function approximates an ordering to all elements in the set.
The scoring function is applied across all elements of a class
c and the entire sample space ψ in the minibatch. The output
of S(ψ, τ ) denotes the true ordering of an element in the
minibatch, whereas S(i, τ ) indicates the ordering within the

class. The OML loss enforces each classwise ordering to be
close to the true order. In a multilabel scenario, each classwise
ordering is pushed toward the true order. This effectively
means that each sample is implicitly reweighed with the
number of associated labels. For example, in Class B of Fig. 2,
the triangle in red has the first position locally. However, it has
the third rank in the global ordering. The OML loss pushes the
local first rank toward a global third.

C. Reranking

Reranking is often applied to improve retrieval performance
by recomputing similarity with an enhanced representation
or other improvements. The most common approach for
reranking images in RS and landmark retrieval literature is
using query expansion [8]. The conventional query expansion
technique is the AQE. Given a query q and its top matches
d1, d2, . . . , dm , AQE renews the query to an improved repre-
sentation rqe into

r̂QE = q +
k�

i=0

di (9)

and

rQE = r̂QE

�r̂QE� . (10)

Similarly, the query representation is improved by consid-
ering the power (α) of the query distance to each of its top
matches. This is known as α query expansion (αQE), which
is defined as

r̂αQE = q +
k�

i=0

di · simcos(q, di)
α (11)

and

rαQE = r̂αQE

�r̂αQE� (12)

where simcos is the cosine similarity between a pair of embed-
dings. The reformulated query using αQE is rαQE, and parame-
ter k is number of top matches considered for query renewal.
Both these methods are online methods and are calculated
on the fly. However, both these methods also rely on feature
similarity to improve reranking. This is reliable in the cases
where the ranks are indifferent to ordering. As discussed in
Section III-B, it is evident that multilabel retrieval performance
depends on well-ordered results.

Jaccard Affinity Reranking: To improve efficiency and per-
formance, we propose to use a novel reranking scheme based
on label similarity. This scheme relies on the label rather
than feature similarity since label similarity provides a more
accurate representation of the correct ordering. To utilize
the label similarity, we propose a graph-based approach for
reranking. The benefit of this approach is that it requires
minimal online computation because the database graph can be
constructed offline. Let L = [�1, �2, �3, . . . , �m] be the overall
vector representing the labels vectors corresponding to each
image in the database. Then, the label affinity matrix AL

i j is
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Fig. 2. Visualization of OML loss. Given a batch of images, we sample a query image (shown in the circle) and its corresponding top matches to obtain
global ordering (mid-row). We select a single label from each sample and order them per class by feature distances to get local ordering (shown in top and
bottom rows). Each shape represents a sample, and each color denotes a class. Through OML loss, the local ordering per class is pushed toward a global
ordering.

defined by the Jaccard function of the overall vector and its
transpose such that

AL
i j = J (L,LT ) (13)

where L ∈ IRm×n , parameter m is the number of label vectors
in L, and n is the number of labels associated with each
query image. The affinity matrix is then ranked with respect
to the Jaccard Index to obtain a graph G corresponding to
each element di in the database. Given a query descriptor
q , with matches d1, d2, . . . , dm , we replace the matches by
top matches corresponding to query d1 from G. It should be
noted that both AL

i j and G ∈ IRm×m . The key advantage is that
the nearest neighbor graph G can be computed offline, which
results in fast online retrieval. Besides this, the label similarity
graph is far more accurate than a feature similarity graph as
the former induces ordering through the Jaccard Index.

D. Deep Hashing

In the RSIR literature, deep hashing is a common technique
for addressing large-scale datasets [58]. While we consider
deep hashing to be outside the scope of this work, it is
important to address how such a popular technique can be
integrated into ML-RSIR. Fortunately, the proposed system
requires minimal changes in order to enable deep hashing.
In order to obtain short binarized descriptors, the last few
layers of the CNN need to be changed to fully connected layers
for dimensionality reduction. This would introduce additional
parameters but would not fundamentally alter the computation
of OML. In addition, our system does not preclude the
deployment of regularizing losses, such as the binary quan-
tization loss in [59]. However, there exists the possibility that
employing the Hamming distance directly within OML could
yield subpar results as it currently computes the Euclidean
distance.

IV. EXPERIMENTS

A. Datasets

We evaluate our proposed loss and reranking technique
across four different multilabel datasets, including a large-scale
dataset. These datasets are described as follows.

1) DLRSD: This dataset is presented in [17], and it is a
multilabel adaptation of the UCM [13] dataset. The authors
provide annotations for 17 classes obtained from semantic
segmentation. It contains 2100 images with a spatial resolution
of 0.3 m, and each image is 256 × 256 pixels.

2) WHDLD: The dataset first was introduced in [49] and
contains 4940 RGB images with a spatial resolution of 2 m.
Their image sizes are identical to those of the dense labeling
remote sensing dataset (DLRSD) dataset. However, the num-
ber of classes present in WHDLD is drastically smaller.
Only six semantic labels are annotated: bare soil, building,
pavement, road, vegetation, and water. Similar to DLRSD,
pixel-level annotations are available.

3) ML-AID: The ML-AID dataset [50] consists
of 3000 images, which is adapted from [60] and was
originally used for multilabel classification. Unlike the
previous datasets, it contains images with various spatial
resolutions ranging between 0.5 and 8 m. ML-AID uses the
same 17-class nomenclature of DLRSD.

4) BigEarthNet19: Originally published for multilabel
classification [61], this large-scale dataset contains
590 236 multispectral images belonging to 45 classes.
A recent revision to the nomenclature [56] collapses many
of the original 45 classes into 19 complex semantic labels.
BigEarthNet19 provides hyperspectral bands in addition to
the RGB bands present in the previous datasets.

B. Evaluation Metrics

The results are evaluated using the standard metrics in
retrieval. We consider the mAP under different thresholds of
the Jaccard Index to assess the relevance of label overlap
between a query and its top matches. To evaluate the quality of
the matching order, we use normalized Discounted Cumulative
Gain (nDCG). To obtain global performance, we use weighted
Average Precision (wAP) [62]–[64].

1) Mean Average Precision: The mAP is defined as

mAP = 1

Q

Q�
q

AP(q) (14)
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where AP is the average precision and is defined as

AP(q) = 1

N�(q)@k

k�
i

�(q, i)
N�(q)@i

i
(15)

where �(q, i) is the indicator function for the query q and
i th image, and N�(q)@k is the number of positive images in
the top-k ranks. As mentioned above, we study three different
settings for the indicator function for assessing the difficulty of
image matching. These protocols, denoted as Easy, Medium,
and Hard, use increasingly strict Jaccard Index thresholds
of 0.40, 0.60, and 0.80, respectively. These protocols quantify
how well the method performs under the condition a variable
number of labels. This enables intuitive interpretation of the
results. Furthermore, it enhances the importance of the label
similarity in ML-RSIR and proper ordering when ranking the
database (higher Jaccard Index should be ranked higher).

2) Normalized Discounted Cumulative Gain: The nDCG is
well-suited for multilabel retrieval problems, as the metric can
measure the relevance of the top-ranked results. The nDCG at
k is defined as

nDCG@k = DCG@k

IDCG@k
. (16)

The DCG@k for a query q is defined as

DCG@k =
k�

i=1

2J (q,i) − 1

log2(i + 1)
(17)

where J (q, i) is the Jaccard Index between query and the
i th ranked image. The ideal discounted cumulative gain
(IDCG@k) is specified by

IDCG@k =
k�

i=1

2J (q,i)r − 1

log2(i + 1)
(18)

where J (q, i)r is the number of common labels between the
query and the i th ranked image sorted by decreasing order of
relevance r . The advantage of nDCG is that it constrains the
value between zero and unity, leading to more interpretable
results and comparisons.

3) Weighted Average Precision: The weighted Average
Precision (wAP) metric is similar to the mAP. However,
it employs the number of shared classes between the query and
each retrieved image in its construction. Hence, it is suitable
for ML-RSIR without needing to define a specific threshold for
the indicator function. Therefore, the wAP can be calculated
by

wAP = 1

Q

Q�
q

⎛
⎝ 1

N�(q)@k

k�
i

�(q, i)

⎛
⎝ i�

j

J (q, j)

i

⎞
⎠
⎞
⎠.

(19)

C. Implementation Details

We deploy the ResNet50 architecture pretrained on Ima-
geNet and train it on each of the previously mentioned
datasets [65]. We employ the Adam optimizer with a learning
rate of 10−4 [66]. The network is trained with contrastive,

TABLE II

RETRIEVAL RESULTS ON THE DLRSD DATASET.
BOLD INDICATES THE HIGHEST SCORE

triplet, cross-entropy, or OML losses. Except for BigEarth-
Net19, we use a reproducible data split of 70/10/20 for
training, validation, and testing. On BigEarthNet19, we use
the splits provided by the authors. Each minibatch contains
72 images and is trained for 100 epochs on the DLRSD,
WHDLD, and ML-AID datasets. The BigEarthNet19 dataset
is trained with a batch size of 256 for 60 epochs. During the
evaluation, the test set is separated into disjoint sets of queries
and databases. Query images with no positive matches are
discarded due to this separation (all positives belong to the
query set). We compute the mAP over the whole database
for the different protocols (Easy, Medium, and Hard), and the
wAP and nDCG metrics with k = 100.

D. Results

This section compares and discusses the performance of
the proposed OML loss against losses commonly used in
single-label and multilabel RSIRs. The retrieval performance
is evaluated before and after Jaccard Affinity reranking on four
different datasets. Afterward, different reranking methods are
compared on the descriptors generated by the OML loss.

1) Multilabel Retrieval: Table II showcases the retrieval
performance on the DLRSD dataset. We observe that the
OML loss consistently outperforms other losses across all
protocols and yields a significant mAP gain. A similar trend
is noticeable both for nDCG and wAP, each presenting an
increase of approximately 2% and 8%. A surprising outcome
is a high performance produced by the cross-entropy loss and
the poor-quality matches generated by the contrastive loss.
In several metrics, the performance of cross-entropy loss rivals
or exceeds that of the triplet loss. The likely cause for this
is the simple relaxation used for determining positive and
negative matches during mining. When training with the metric
losses, only partial class information is present. This is due
to the binarization of the multilabel image correspondences.
However, OML learns the relative ordering between sam-
ples from class and metric information, which improves the
performance.

When Jaccard Affinity reranking is applied, another sig-
nificant mAP gain is observed. However, when using this
reranking technique, the performance gap across three losses
(OML, Cross-entropy, Triplet) is significantly reduced. This
can be explained by the strong dependence of the Jaccard
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Fig. 3. Example of retrieved images on the DLRSD dataset with different losses. Top to bottom: contrastive, triplet, cross-entropy, and OML. The query
image is the leftmost image. The black boxes at the bottom right of the matched images contain the Jaccard Index in relation to the query (higher is better).

TABLE III

RETRIEVAL RESULTS ON THE ML-AID DATASET.
BOLD INDICATES THE HIGHEST SCORE

Affinity reranking technique and the top-ranked images. If the
best match across the different models is correctly identified,
then the reranking technique will yield similar results. Hence,
if all losses succeed in retrieving the most relevant image, their
performance will be equalized. An example prior to reranking
of the top matches for each loss is depicted in Fig. 3. It should
be noted for the three best performing losses that the retrieved
images have high relevance (Jaccard Index closer to unity).

For the ML-AID dataset, results in Table III, a trend similar
to that of DLRSD is observable. This dataset has the same
17 semantic classes but shows a smaller gap between OML and
the other losses in mAP. However, OML still obtains a higher
nDCG and wAP indicating that more relevant images are
found in the top-100 ranks (better overlap between query and
database labels). This also highlights the increased difficulty of
the ML-AID dataset, as the mAP on the Hard protocol barely
exceeds 50% without reranking, whereas most losses achieve
higher performance on the same protocol for DLRSD.

A possible explanation for this performance drop is the
nature of the annotations for each dataset. ML-AID uses exclu-
sively human annotations, while DLRSD used segmentation
maps reviewed by human annotators. This, in conjunction with
the smaller size of DLRSD, largely explains the difference
in performance. Evidence for this claim is present in the
nDCG and wAP metrics. For DLRSD, the wAP ranges from
1.5 to 2.6, whereas these values range between 3.9 and 4.5 for

TABLE IV

RETRIEVAL RESULTS ON THE WHDLD DATASET.
BOLD INDICATES THE HIGHEST SCORE

ML-AID. This indicates that each image in the ML-AID
dataset has more classes than the DLRSD dataset. The average
number of labels assigned per image is 3.31 and 5.17 for
the DLRSD and ML-AID datasets, respectively. This means
that it is hard to provide a good separation of the descriptors
since it should largely remain similar to several classes at
once. However, this peculiarity of the dataset construction
significantly increases the impact of reranking. Deploying
Jaccard Affinity reranking on ML-AID yields an increase of
roughly ten mAP points. We conjecture that the large overlap
in labels enables the reranking technique to retrieve a higher
number of relevant samples.

The results on the WHDLD dataset are summarized
in Table IV. In this case, cross-entropy provides a slightly
higher performance on the mAP. The contrastive loss, which
lags in previous experiments, offers similar performance to
the other loss functions. While the WHDLD dataset is also
annotated by pixel-level segmentation, it only contains six
semantic classes, and the mean number of labels per image is
4.63, which is similar to ML-AID. We particularly note that
cross-entropy offers strong performance when the number of
classes in the dataset is low and has several labels per image.
By further applying Jaccard Affinity reranking, all the methods
observe a significant gain in performance.

The experimental results on BigEarthNet19 are given
in Table V. While cross-entropy loss has the best overall
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Fig. 4. Example of retrieval and reranking (lower row) with Jaccard Affinity on all the datasets. Descriptors are obtained with the OML loss. The query
image is the leftmost image. The black boxes at the bottom right of the matched images contain the Jaccard Index in relation to the query (higher is better).
(a) DLRSD. Query labels: “buildings,” “cars,” “pavement,” and “trees.” (b) WHDLD. Query labels: “building,” “pavement,” “vegetation,” and “bare soil.”
(c) AID. Query labels: “airplane,” “bare soil,” “buildings,” “cars,” “grass,” and “pavement.” (d) BigEarthNet19. Query labels: “pastures,” “inland wetlands,”
“land principally occupied by agriculture,” and “moors, heathland, and sclerophyllous vegetation.”

performance, the OML loss offers competitive perfor-
mance. Both OML and cross-entropy outperform all met-
ric learning-based losses by a large margin. Nevertheless,
the BigEarthNet19 dataset remains the most challenging, and
it is of particular interest, as it has low retrieval performance
across all losses. Unlike the previous three datasets, no loss
function obtains an mAP score of over 50% on the more
challenging protocols. The strong cross-entropy loss perfor-
mance is remarkable in this case. We conjecture that the high
performance is due to the low number of labels associated with
each image. On average, BigEarthNet19 has only 2.88 labels
per image compared to 3.13, 4.63, and 5.15 labels for DLRSD,
WHDLD, and ML-AID, respectively. We consider that, in this
case, classification losses offer better performance as each
image needs to associate only a few labels per image. In

essence, this is closer to a classification task. Qualitative results
are found in Fig. 4.

Similarly, with Jaccard Affinity reranking, the performance
improves in all cases. However, on losses such as contrastive
and triplet, the gains are not as large as OML or cross-entropy.
Like most reranking techniques, Jaccard Affinity reranking is
sensitive to the initial set of ranks. A poor set of initial ranks
acts as an insufficient baseline for the reranking technique.
In the cases of contrastive and triplet losses, the mAP on the
Hard protocol is low, thereby leading to lower gains when
Jaccard Affinity reranking is applied.

2) Reranking: For these experiments, we have evaluated
two popular reranking techniques in retrieval literature, AQE,
and alpha query expansion (αQE). Unlike Jaccard Affinity
reranking, AQE and αQE possess hyperparameters that should
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Fig. 5. mAP Performance on the Medium protocol across the four datasets. The baseline performance of OML loss is in blue, AQE in green, αQE in red,
and Jaccard Affinity in orange. The Jaccard Affinity consistently improves performance, whereas both AQE and αQE lower performance to the baseline for
different values of k.

Fig. 6. nDCG performance of the four datasets. The baseline performance of OML loss is in blue, AQE in green, αQE in red, and Jaccard Affinity in orange.
The Jaccard Affinity consistently improves performance, whereas both AQE and αQE offer inconsistent and unreliable performance.

TABLE V

RETRIEVAL RESULTS ON THE BIGEARTHNET19 DATASET.
BOLD INDICATES THE HIGHEST SCORE

be carefully selected to ensure the best possible performance.
AQE is controlled by a single parameter k that determines
the number of images used in the construction of the new
query. Meanwhile, αQE also requires tuning the α parameter,
which serves to regulate the impact of image similarity when
generating the query. In Figs. 5 and 6, the mAP for the Medium
protocol and the nDCG are plotted for various values of k.
We have selected an α value of 2, as it yields the best overall
performance. Regarding the mAP, we observe a significant
decline with growing values of k for both QE techniques.
This is due to the introduction of unrelated classes mixing
with the original query. This aspect reduces the descriptiveness
of the query vector since it becomes polluted with unwanted
information that lowers performance.

Furthermore, AQE shows a marked decrement in perfor-
mance for larger k values in the DLRSD and ML-AID datasets,
unlike its αQE counterpart. The weight assigned by the
similarity of query and top matches powered by αQE adds
a strong penalization to the renewed query descriptor. This
reduces the impact of less relevant matches. We conjecture
that this behavior is not present in the WHDLD due to the low
number of classes and the large average number of classes per
image. As several images have large label overlap, the vector
becomes more descriptive, improving the overall retrieval
performance. Regardless, both query expansion methods are
ill-suited, as they perform below the baseline. It should be
noticed that the performance using the QE family of tech-
niques requires tuning of their hyperparameters. They vary
depending on the dataset, whereas Jaccard Affinity reranking
is dataset-agnostic. The caveat with all of these methods is that
low retrieval performance in the top ranks will produce poor
results as they are highly sensitive. Nevertheless, the Jaccard
Affinity technique yields significant mAP gains in comparison
to QE techniques.

On BigEarthNet19, we observe that both query expansion
methods perform marginally better than baseline or lower. The
αQE method performs significantly lower for large values of k.
This is because, even though feature similarity with the query
is high, the label similarity is low. When the query is renewed
with irrelevant top matches, this scaling with feature similarity
significantly lowers performance. As AQE is not scaled with
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feature similarity, the impact of the performance drop is not
as high as with αQE.

The mAP metric provides a holistic view of performance.
However, in a realistic setting, the user of the retrieval system
may not be interested in a perfect ranking of the dataset
but in receiving relevant matches in the top positions. Fig. 6
depicts how the nDCG@100 changes for increasing values
of k. This metric quantifies how much the ranking of the
top-100 images deviates from the ideal sorting. We observe
that Jaccard Affinity reranking consistently outperforms other
reranking methods in almost all cases. Apart from retaining
high mAP, Jaccard Affinity maintains the high-quality ordering
of the retrieved results. Again, we observe the inconsistent
performance of query expansion methods. As an explanation,
we speculate that the poor performance of the QE tech-
niques is due to their construction of a new query based
on the top-k matches. Neither AQE nor αQE considers the
correspondences between images to be nonbinary and can
introduce features from classes unrelated to the original query.
Such features reduce the descriptiveness of the new vector
and can even cause significant topic drift. To assess the
performance further, we also evaluated the computation costs
on the largest available dataset. The BigEarthNet dataset,
with 120 000 images, is utilized for the timing experiments.
The Jaccard Affinity reranking took approximately 3.5 ms
for retrieving 10 000 queries. The Jaccard Affinity method
is fast as it requires only lookup to the top match from the
precomputed graph.

While we have proposed an effective reranking technique,
it is clear that reranking in ML-RSIR is a complicated problem
requiring custom-made solutions. The direct application of
existing techniques may not be sufficient for the ML-RSIR
case, as evident by the low performance of AQE and αQE.
However, exploiting the semantic relationships between differ-
ent classes may improve the retrieval performance considering
that certain objects are likely to appear together (e.g., buildings
and pavement).

V. CONCLUSION

As image retrieval is one of the most vital tasks in RS
image understanding, we have extended the DLRSD, ML-
AID, WHDLD, and BigEarthNet19 datasets for multilabel
image retrieval. We propose a framework that clearly defines
the multilabel retrieval task and provides updated evaluation
metrics to account for a variable number of labels. We also
extend popular metric loss functions such that contrastive and
triplet losses are compatible with the multilabel image retrieval
task. Apart from extending these loss functions, we also
propose a novel differentiable multilabel loss function that
accounts for the class and ordering top-ranks based on feature
distances. To the best of our knowledge, this is the first
multilabel rank learning loss. Furthermore, we develop the
Jaccard Affinity reranking technique and compare it against the
popular reranking methods in image retrieval. We demonstrate
that the OML loss outperforms, or remains competitive with,
existing losses popular in the RSIR literature across four
different datasets with varying semantic complexity and scale.
In addition, it is shown that the Jaccard affinity reranking

technique consistently improves the retrieval performance
without hyperparameter tuning. We consider that ML-RSIR
is an understudied field in RS due to the lack of standardized
protocols and its intrinsic complexity. We hope that the frame-
work and techniques presented in this article will foster the
interest of the community for multilabel RSIR.
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