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A B S T R A C T   

This paper presents an automated flower counting method based on Multiple Hypothesis Tracking (MHT) with a 
connected-flower plant model which is based on detections of flowers. Multiple viewpoints of each plant are 
taken into account as plants are considered in which flowers can occlude each other. To prevent double counting 
and to solve inconsistencies caused by false flower detections, a model is developed which describes the plant 
movement with respect to the camera. The uncertainty of the flower detections is considered in this model. To 
address variations in the velocity of the plant movement, the model realized in this work explicitly takes into 
account that motions of flowers are correlated since the flowers are connected to each other via the stem of the 
plant. This is in contrast to the traditional MHT approach where the movement of each object is typically 
modeled and estimated separately. In our approach, based on the set of detected flowers, the uncertainty of the 
plant movement is reduced. As a result, the movement of modeled but not always observed flowers is still 
properly tracked. To demonstrate the validity of the approach, the proposed counting method is tested on a 
dataset obtained in a real greenhouse containing multiple viewpoints of 71 Phalaenopsis plants and compared to 
existing methods. The methods considered include a single viewpoint approach, a heuristic state of the practice 
approach and an MHT approach with both an independent and connected object description. Within a margin of 
1 flower, these methods respectively counted the number of flowers in 44%, 58%,70% and 92% of the plants 
correctly. As a result, this work validates the superiority of the MHT approach with a connected-flower plant 
model.   

1. Introduction 

Automation in the field of agriculture, horticulture and the food in-
dustry is increasing rapidly and gradually substituting human labor with 
machinery. Traditional manual tasks such as harvesting, inspection, 
sorting and packaging are becoming more and more automated with the 
ultimate goal being to eliminate the need for human assistance. Among 
the advantages of automation are effort, time and production cost 
reduction, availability as well as improved quality and reliability 
(Mahmud et al., 2020). 

An example of such a task is the classification of plants in general and 
Phalaenopsis plants specifically. The grading of these plants, of which an 
example is shown in Fig. 1c, is based on a number of features like the 

height, the number of stems, the number of flowers and buds as well as 
the color and pattern of the flowers. The quantification of the number of 
flowers of the Phalaenopsis plant based on computer vision methods is 
challenging as flowers might be (partially) unobservable due to occlu-
sions. Furthermore, detection inaccuracies of flowers might lead to false 
detections, missed detections, flower fragmentations and flower merges. 
In the case of flower fragmentations multiple detections which originate 
from a single flower are obtained, while for flower merges two or more 
overlapping flowers are detected as one. Such detection inaccuracies can 
lead to incorrect estimates of the number of flowers. Therefore, this 
work focuses on the correct quantification of the number of flowers 
based on a set of images which are recorded from multiple viewpoints of 
the same plant. This work is applied to the system which can be seen in 
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Fig. 1. Multiple viewpoints of a plant are obtained by moving this plant 
by means of a conveyor belt in front of a static camera. In order to solve 
the detection inaccuracies for this specific system, within the current 
state of the practice the number of flowers is estimated using a heuristic 
method. In this heuristic method, the images are ranked from high to 
low based on the number of flower detections. The number of flowers on 
the image with the third highest number of flowers is considered as the 
estimated number of flowers. This leads however to inaccurate results. 
Improvements are sought in a better description of the relations between 
the consecutive images. 

By considering multiple viewpoints of a plant, the same flower is 
being detected in different images. To derive a correct estimation of the 
number of flowers, it is desired to know which detections originate from 
the same flower. Determining which detections come from the same 
source is within the field of robotics and surveillance known as the data- 
association problem. This problem can be solved by Multiple Target 
Tracking (MTT) algorithms (Robin and Lacroix, 2016). Within this work, 
an MTT algorithm will be selected. These algorithms typically consider 
objects which are supposed to move independently, such as pedestrians 
in an automotive context (Luo et al., 2021). In contrast, the flowers of a 
plant are connected by the stem of the plant and the pot it is placed in, 
hence motions of flowers are correlated due to motions of the pot and 
connections to their stem(s). Therefore, within this work a model is 
created which describes the connected flower-positions within the plant 
as well as the translation and rotation of the plant over the conveyor 
belt. We refer to this model as the Connected-Flower Plant Model 
(CFPM). Due to these interconnections, the entire plant state can be 
updated despite a subset of the flowers being observed at each image: if 
for example several flowers are occluded, the rotation of the pot can still 
be properly estimated based on flowers which are detected. To 
demonstrate the benefits of this CFPM, we compare this approach to the 
typical MTT approach where each flower would be modeled indepen-
dently. This latter model is referred to as the Unconnected-Flower Plant 
Model (UFPM) and allows for more or less independent flower move-
ments. The flower estimation algorithm is developed by requiring it to 
(1) solve the occlusions by considering multiple viewpoints, (2) solve 
the inconsistencies caused by false and missed detections, (3) take into 
account the detection uncertainty caused by deviations of the detections 
from the actual flower position and the lack of depth perception, (4) take 
into account the rotational uncertainty caused by slip and wear of the 
conveyor belt system and (5) estimate the number of flowers with a 
maximum allowed deviation of ±1 flower for each plant. The flower 
estimation algorithm is validated on a dataset consisting of 71 plants and 
compared to both a strategy which determines the number of flowers 
based on a single image and a strategy which estimates the position of 

each flower in a plant independently. Hereby, the benefit of the CFPM 
applied on an MHT to consider multiple viewpoints is demonstrated. 

The remainder of this paper is structured as follows: the next section 
gives a literature overview and lists the contributions of this work. Then, 
Section 3 elaborates on the conventions applied and the methods tested 
in this work. An overview of the independent flower model as well as the 
combined plant approach is given. Further, the adaptations of the MTT 
algorithms are elaborated. Next, in Section 4 these methods are exper-
imentally validated and compared. Section 5 concludes this paper. 

2. Related Work 

This section discusses the work related to the quantification of ob-
jects based on (a set of) images with a focus on approaches considered 
within agriculture. Next, the multiple target tracking problem will be 
considered in the context of tracking flowers within a plant with mul-
tiple occlusions. The final paragraph summarizes the contributions of 
this work. 

Within the agricultural and horticultural field, quite some work is 
conducted to automated flower and fruit identification, quality estima-
tion and quantification. Examples are seen in the identification of plant 
species (Tripathi and Maktedar, 2020), localization of fruits for auto-
mated harvesting (Wei et al., 2018; Tang et al., 2020), recognition of 
fruit diseases (Dubey and Jalal, 2015) and yield prediction (Wang et al., 
2013; Stein et al., 2016). As described by Stein et al. (2016), progress 
over the last years from the machine vision community with convolu-
tional neural networks has led to highly accurate fruit detection in color 
imagery. Some recent overviews of these developments can be found in 
Koirala et al. (2019), Tripathi and Maktedar (2020), Wäldchen and 
Mäder (2018), Naranjo-Torres et al. (2020). For counting purposes, it is 
typically seen that these techniques are applied to determine the number 
of fruits or flowers based on a single image. Examples of this approach 
can be found in Bairwa and Agrawal (2014), Sethy et al. (2019), Syal 
et al. (2014), Hamidinekoo et al. (2020). These methods assume all 
fruits or flowers to be visible on a single image as occlusions can not be 
taken into account. Though in an object detection context the handling 
of occlusions is addressed, these methods are not robust for heavy or full 
occlusions (Wang et al., 2017; Koporec and Pers, 2019; Yang et al., 
2021). As a result, for the purpose of counting flowers in the Phalae-
nopsis plant, quantifying the number of flowers based on a single view is 
not possible as significant parts of the flowers might be (fully) occluded 
such as can be observed in Fig. 1c. Furthermore, false detections, both 
positive and negative, can not be resolved based on a single image. 
Therefore, within this work, multiple images need to be considered with 
multiple viewpoints of the plant which requires to determine which 

Fig. 1. Conveyor belt system with the acquisition setup to grade Phalaenopsis plants. Within the range of the camera, images are taken as the plant translates and 
rotates along the conveyor belt. 
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detections in the dataset originate from the same flower. 
To derive which detections in the dataset originate from the same 

flower, the Multiple Target Tracking problem for an a priori unknown 
number of targets needs to be resolved. This problem is widely studied in 
the field or robotics and surveillance, leading to several approaches 
which each come with its possibilities and limitations (De Laet, 2010; 
Robin and Lacroix, 2016). The MTT-problem typically combines data 
association and model-based object tracking (Elfring et al., 2013), which 
both will be discussed. 

The first component of the MTT considers the data-association 
problem. Data-association algorithms typically try to consider the 
possible explanations of uncertain object measurements by determining 
which measurement belongs to which of the objects modeled and their 
corresponding tracks. Typically, possible measurement-to-object asso-
ciations are taken into account in a hypothesis. Variations with an 
increasing (computational) complexity are (1) the Global Nearest 
Neighbor (GNN) method, (2) the Joint Probabilistic Data Association 
Filter (JPDAF) and (3) the MHT approach (Elfring et al., 2013). The 
GNN-approach is within an agricultural context successfully applied by 
means of the Hungarian algorithm to track mangoes on an orchard 
(Stein et al., 2016). Within the agricultural context, similar ideas are 
proposed by Harmsen and Koenderink (2009); Song et al. (2014); 
Moonrinta et al. (2010). The GNN-method assumes that a measurement 
can originate from one target or from clutter and that a target can 
produce zero or one measurement at a time. Associations are based on 
the current measurement and even in the case of ambiguities no alter-
natives are maintained. This leads to irreversible decisions as assign-
ments cannot be influenced by data collected in later measurements (de 
Waard, 2008). Consequently, this method is not robust against target 
occlusions (De Laet, 2010). Therefore, the GNN-approach is not suitable 
for the quantification of the flowers of a Phalaenopsis plant as consid-
ered in this work. In contrast, the MHT-approach considers all possible 
explanations or hypotheses from measurements to objects in parallel. As 
plausible alternatives are maintained, based on new evidence hypoth-
eses could switch since a more probable explanation of the object tracks 
is available. The JPDAF results can be obtained from an MHT by rep-
resenting the world by a probabilistically weighted average of a subset 
of hypotheses and again prune all other hypotheses (Elfring et al., 2013). 
Like the GNN approach, irreversible decisions are made. For the flower 
counting problem it is however not required to, at each point in time, to 
have a single estimate. The most probable explanation is sought after 
having received all measurements and switching between hypotheses is 
not a problem. As the MHT-approach is capable in considering the 
plausible explanations in parallel, this approach will be selected for this 
work. A typical problem of MHT is that this approach is both exponential 
in time and memory such that in practice only a limited number of 
hypotheses can be maintained. In this work, soft real-time constraints of 
3 − 4 [s] are considered, which indicates the typical time in which a 
plant moves from the image collection system to the sorting system. 
Within this time horizon, it is assumed that a sufficient set of alternatives 
can be evaluated and hence, the time and memory problems are not 
considered as an issue. Concretely, the MHT as described by Elfring et al. 
(2013) and available at Elfring (2021) is adopted and modified within 
this context. 

Whereas the first step of the MTT hypothesized about the possible 
measurement-to-object associations, the second component of the MTT- 
problem considers the model-based object tracking. In the latter 
component, each measurement is used to refine the object’s state esti-
mate. For MTT-problems, typically detections are associated with ob-
jects that are considered to move independently. Within an agricultural 
context, (Harmsen and Koenderink, 2009) applied a particle filter to 
estimate the ellipsoidal projection on an image for each flower of a plant 
rotating in front of a camera. A set of particles that are hypotheses for the 
flower position in the image plane represent the posterior probability 
distribution. In combination with the MHT for solving the data- 
association problem, this leads to a combinatorial explosion of hy-
potheses. This makes the particle filter not suitable for our approach. 
Furthermore, this reference considers each flower independently given a 
measured rotation of the plant. In contrast, within the proposed work 
unknown but bounded variations of the rotational velocity are consid-
ered as the rotational velocity is not directly measured. However, the 
rotational velocity is observable as the detections of the set of flowers 
are correlated since the plant translates and rotates as a single entity 
over the conveyor belt. To demonstrate the benefits of taking this 
correlated movement into account, an MHT-approach which, similarly 
to Harmsen and Koenderink (2009), models each flower as a separate 
object is compared to an MHT-approach which considers the correlated 
movement. For the latter alternative, a state representation is applied 
which represents the positions of all flowers with respect to the pot 
center as well as the translational and rotational velocity of the pot 
center. Note that depending on the number of flowers considered within 
a hypothesis, the state size varies. For this approach, the MHT-tracker is 
revised such that associations can be made based on the flowers of the 
plant in order to update the estimate of the plant movement given these 
associations. 

In conclusion, the contributions of this work are:  

• A method which estimates the number of flowers in a single plant by 
means of an MHT-tracker. In comparison with the single image 
approach and a heuristic state of the practice method, it will be 
demonstrated that by consistently considering multiple views, oc-
clusions and false detections are largely resolved.  

• A revision of the MHT-approach where partial detections contribute 
to a single object model by considering the relations between the 
object model and the partial detections. Within the context of this 
work, this means that the state contains the pot movement and all 
flower positions with respect to the pot and the measurements 
contain the flower positions. Here, the stem is assumed to be static. 
As a result, correlations between estimated flower positions and the 
plant movement can be exploited such that a consistent and more 
accurate plant movement is obtained.  

• The validation of and a comparison between the connected and 
unconnected-flower plant model, or generally speaking, a connected 
and independent object description by means of a dataset obtained in 
a greenhouse. 

3. Methods 

This section elaborates on the proposed algorithm. An overview is 
shown in Fig. 2. As indicated in this figure, a system to collect a set of 
images with multiple viewpoints of a plant and a method to detect the 
positions of the individual flowers on the image is considered as a pre-
requisite. For each image, these flower detections are fed to the MHT to 
(1) associate the detected flowers to flowers previously modeled, (2) 
initiate a new flower in the model or (3) mark the detection as clutter. 
These alternatives are considered as the association hypotheses in the 
data-association step of the figure. The next step is to maintain each 
hypothesis, which is the task of the “Target Tracker”. Given the associ-
ations corresponding to each hypothesis, the plant state, which repre-
sents the (rotational) movement of the plant and the corresponding 

Fig. 2. Overview of the proposed MTT algorithm.  
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flower positions, is estimated and maintained within a single state 
vector. Based on the expected plant motion, the flower positions for the 
subsequent frame are predicted. By comparing the predicted detections 
to the actual detections, a new set of hypotheses is formed and validated 
by determining the probability of a hypothesis being correct. Finally, 
when all images are processed, the state of the Maximum A Posteriori 
(MAP) hypothesis indicates the number of flowers present in a plant. 
After discussing the conventions, the remainder of this section elabo-
rates on each of the MTT components. Considering the target tracker, 
the object description where each flower is designed as an independent 
object as well as the description where all flowers are considered as a 
component of the object description with both a correlated movement 
and a correlation between the object positions will be elaborated. 
Regarding the data association algorithm, the consequences of the ob-
ject description will be discussed. For clarity, an overview of the 
nomenclature as applied in this work is given in Table 4 of Appendix A. 

3.1. Conventions and Flower projections onto the Image Plane 

In this paragraph, the conventions as applied in this work are dis-
cussed. Based on this discussion, the projections on the image plane are 
derived in the second part of this section. These projections are used in 
the observation models of the target tracker. 

A graphical representation of the image collection system is provided 
in Fig. 3. In this figure, a sketch of the camera and the conveyor belt is 
provided. The image plane is projected at the center of the conveyor 
belt, along its motion direction. The flower detections, which are rep-
resented by a circular bounding box of which its center indicates the 
center of each flower, are expressed in the image-frame (ud,vd). Further, 
the ud-coordinate of the detected pot center is measured. The image- 
center (ud

0, vd
0), expressed with respect to the image-frame, is 

determined by calibration. Here, the (u, w, v)-frame is located. The 
camera is located at the origin of the (xc,yc, zc)-frame, while the image 
plane is found along the center of the conveyor belt at a distance D in the 
yc-direction of the (xc, yc, zc)-frame. As a result, the origin of the (u,w,

v)-frame expressed with respect to Oc equals (0, D, 0). The flower- 
coordinates (x, y, z) are represented in a local frame with its origin Ol 

above the pot center. Hence, given the pot center location u expressed in 
the (u,w,v)-frame, the translation from the (u,w,v)-frame to the flower 
frame (x, y, z) equals (u, 0, 0). The rotation around the z-axis is repre-
sented by θ, with the rotational velocity ω equal to its time-derivative, 
hence ω = θ̇. 

Given the conventions, the projections of the flowers on the image- 
plane can be derived based on the principles of parallel projection 
(Spong et al., 2005). Hereby it is assumed that lens-distortion is negli-
gible or corrected. Fig. 4 shows a top view and a side view of a flower f 
having position (uf ,wf , vf ) expressed in the (u,w, v)-frame and its pro-
jection fp on the image having coordinates (ufp , 0, vfp ). Given that ▵Oc,

(uf ,wf ), (0,wf ) and ▵Oc, (ufp ,0),O of Fig. 4a as well as the ▵Oc, (vf ,wf ),

(0,wf ) and ▵Oc, (vfp ,0),O of Fig. 4b are similar, the following set of re-
lations is derived: 

uf

ufp
=

wf + D
D

vf

vfp
=

wf + D
D

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

↔

ufp =
uf

1 + wf
/

D

vfp =
vf

1 + wf
/

D

⎫
⎪⎪⎬

⎪⎪⎭

. (1)  

3.2. Target Tracking: Unconnected versus Connected Flower Model 

Next, the model-based target tracking component as shown in Fig. 2 
is discussed. The task of this component is to update the object state 
estimation based on the associations as determined by the hypotheses 
tree. Both the UFPM as well as the CFPM are presented. Further, for the 
hypotheses where new flowers are considered, in both cases an initial-
ization of the three dimensional flower position is required based on a 
two dimensional detection on the image plane. The principles applied 
for this initialization step will be discussed. 

Under the assumption of additive zero mean Gaussian measurement 
noise in flower detections on the image plane and a (non) linear process 
model associated with Gaussian process model noise in the (rotational) 
movement of the plant, for both the independent flower representation 
as well as the combined plant representation, an approach based on an 
Extended Kalman Filter (EKF) is proposed. For clarity and notation, the 
process and observation equations are provided here. More details on 
(E)KFs can for example be found at Thrun et al. (2005); Welch and 
Bishop (2006). When considering a process model with no control input, 

Fig. 3. Graphical representation and conventions of the image collec-
tion system. 

Fig. 4. Top and side view of the flower, while the plant rotates on the conveyor belt.  
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the process model and the measurement model are described by the 
following equations: 

xk = g(xk− 1)+qk (2)  

zk = h(xk)+ sk. (3)  

Here, the estimate ̂x of the state vector x ∈ Rn at discrete time step k with 
dimensions n is governed by a nonlinear process model g and the zero 
mean Gaussian process noise vector q. A measurement z ∈ Rm of 
dimension m is described by a nonlinear observation model h and the 
zero mean Gaussian measurement noise vector s. The zero mean 
covariance matrices of both noise variables are denoted as Q and S, 
respectively. At every time step, a state estimate can be obtained using a 
two step method, namely a prediction step and an update step. For de-
tails about these steps, the reader is referred to Thrun et al. (2005); 
Welch and Bishop (2006). Further, the Jacobians of the non-linear 
functions g and h evaluated at a given state estimate are respectively 
represented by Gk and Hk. 

3.2.1. Connected-Flower Plant Model 
For the CFPM, the movement of the plant along the conveyor belt as 

well as the entire set of flowers is represented in the state vector. The 
plant movement is described by the translational and rotational velocity 
of the pot center and each flower is described by its position with respect 
to this pot center. For the local frame (x, y, z), the first measurement is 
chosen as reference configuration. Since the flowers present within a 
plant are considered to have a fixed configuration, this frame is 
considered static. As a result, when omitting time step k in the notation, 
the plant state xP is represented as 

xP =
[

ω u0 u̇ xT
f1 ⋯xT

fN

]T
. (4)  

Here, the first three states represent the plant movement. These consist 
of the (average) rotational velocity ω of the pot center since the initial 
detection, the initial position of the pot center at the first image u0 and 
the (average) translational velocity of the pot center u̇. Also, the esti-
mation of the translational pot center velocity is considered since the 
initial detection. The latter two variables are expressed with respect to 
the center frame (u,w,v). The remaining elements of the state vector in 
(4) represent the estimated start position xfi of flowers fi, i = 1,…,N if 
the (rotational) velocity of the pot would have been constant. Here, N 
indicates the number of flowers considered in the plant state description 
of (4). Note that different hypotheses may have different values for N 
and, in general, will have different flower position estimates xfi . The 
flower states are described by the Cartesian flower position with respect 
to the pot center, hence the estimated start position (x0, y0, z0) is 
expressed in the local plant frame. This gives 

xfi =
[

xi,0 yi,0 zi,0
]T
. (5)  

As the rotational and translational velocity of the pot center are assumed 
to be constant and the relative position of the flowers within the plant is 
considered static, the state transition represents a constant process 
model gP, hence 

xP,k|k− 1 = gP
(
xP,k− 1|k− 1

)
= xP,k− 1|k− 1. (6)  

The predicted state at time step time k given the state estimate up to the 
previous time step k − 1 is denoted by subscript as k|k − 1. The Jacobian 
GP of the estimated state equals the identity matrix I, giving 

GP = I ∈ R3(N+1)×3(N+1). (7)  

The expected measurement vector h at time-step k considers the ex-
pected pot center position as well as the expected measurement of each 
flower contained in xP given the pot center movement. As a result, when 
considering M flowers being associated with measurements received at 

time k, the expected measurement vector of the plant equals 

hT
P

(
xP,k|k− 1

)
=
[

hT
f1

(
xP,k|k− 1

)
⋯ hT

fM

(
xP,k|k− 1

) ]T
. (8)  

Note that in the prediction step there are no associations to the mea-
surements yet, hence M = N in this step. In the equation, the expected 
flower measurement hfi of flower fi is represented by 

hfi

(

x̂P,k|k− 1

)

=

⎡

⎢
⎢
⎢
⎣

ûk|k− 1
ûpf i ,k|k− 1
v̂pf i ,k|k− 1

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

û0,k|k− 1 + ̂̇uk|k− 1⋅dt
ûpf i ,k|k− 1
v̂pf i ,k|k− 1

⎤

⎥
⎥
⎥
⎦
. (9)  

The first element of this vector indicates the expected position of the pot 
center and is based on the position of the pot center at the initial frame, 
its estimated translational velocity and the time dt between the mea-
surement at time step k and the initial frame. The second and third el-
ements of this vector consider the estimated projections of the flowers 
(ûpf i

, v̂pf i
). These are determined according to (1) and the expected 

flower position in the (u, w, v)-frame. This expected flower position is 
estimated based on the translation and rotation of the plant. It is 
determined as 
⎡

⎣
ûfi ,k|k− 1
ŵfi ,k|k− 1
v̂fi ,k|k− 1

⎤

⎦ =

⎡

⎣
û0,k|k− 1 + ̂̇uk|k− 1⋅dt

0
0

⎤

⎦+R
(

θ̂k|k− 1
)
xfi ,k|k− 1. (10)  

Based on the image update frequency f, the expected rotation θ̂k|k− 1 is 
determined as 

θ̂k|k− 1 = ω̂k|k− 1⋅dt = ω̂k|k− 1⋅k
/

f , (11)  

while R(θ) represents the rotation matrix around the pot center or z-axis. 
Note here that the EKF is initialized at k = 0. The rotation matrix is 
computed as 

R

⎛

⎝θ̂k|k− 1

⎞

⎠ =

⎡

⎣

cos
(

θ̂k|k− 1

)
− sin

(
θ̂k|k− 1

)
0

sin
(

θ̂k|k− 1

)
cos
(

θ̂k|k− 1

)
0

0 0 1

⎤

⎦. (12)  

The process covariance matrix quantifies the uncertainty in the process 
model of xP. Within this context, causes for uncertainty are for example 
by slip in the pot center movement and vibrations of the flowers during 
their movement on the conveyor belt. The covariance depends on the 
number of flowers and is considered as 

QP,k =

[
QPC,k 03×3N

03N×3 diag
( [

Qf1 ,k…QfN ,k
] )

]

. (13)  

By using a block-diagonal structure, we assume that the uncertainty in 
the process model between the pot center and all flowers is uncorrelated. 
The covariance of the process model noise of the pot center movement is 
indicated by QPC ∈ R3×3 and the flower process covariance of flower i is 
represented by Qfi ∈ R3×3. In a similar way, the measurement error 
covariance matrix of the measurement vector of the plant (8) is modeled. 
It is determined as 

S3M×3M
P,k = diag

( [
Sf1 ,k … SfM ,k

] )
. (14)  

3.2.2. Unconnected-Flower Plant Model 
For the UFPM, the reasoning is similar as for the CFPM, but a 

maximum of one flower is considered in each state, hence N = 1. 
Consequently, each hypothesis has multiple EKFs, namely one for each 
flower, whereas in CFPM one EKF per hypothesis is sufficient. As a 
result, for the unconnected-flower plant representation xf the plant state 
description of (4) reduces to 
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xf =
[

ω u0 u̇ xT
f1

]T
. (15)  

Similar to the CFPM, the rotational velocity, the initial position of the 
pot center and the translational velocity of the pot center are described. 
However, as indicated by the last element of the vector, for the UFPM a 
single flower is considered. As a result, the initial and the (rotational) 
velocity of the pot are estimated for each flower separately thereby 
allowing independent flower movements. For the UFPM, the state 
transition model gf , the observation model hf , the process covariance 
matrix Qf ,k and observation covariance matrix Rf ,k are evaluated simi-
larly to the plant representation, thereby considering N = 1. As a result, 
the flower transition model describes a constant state, giving 

xf ,k|k− 1 = gf
(
xp,k− 1|k− 1

)
= xf ,k− 1|k− 1. (16)  

Its Jacobian Gf equals the identity matrix, hence 

Gf = I ∈ R6×6. (17)  

The predicted flower observations are determined as 

hf
(
xf ,k|k− 1

)
= hf1

(
xf ,k|k− 1

)
, (18)  

in which hf1 (xf ,k|k− 1) is computed according to (9)–(12). Similar to (13) 
and (14), the process covariance matrix and the observation covariance 
matrix are for the UFPM respectively derived as 

Qf ,k =

[
QPC,k 03×3

03×3 Qf1 ,k

]

(19)  

and 

Sf ,k = Sf1 ,k. (20)  

3.2.3. Initialization of Flower State 
When initializing a new flower in the state representation, for both 

the CFPM and UFPM, the full flower state and its corresponding 
covariance must be initialized based on the measurement on the image 
plane. In both cases the state initialization is based on this measurement 
and the maximum radius with respect to the pot center rf at which a 
flower is typically found. An overview is depicted in Fig. 5. Here a top 
view of the situation is shown with respect to the center frame. A pro-
jected flower fp which is detected on the image plane at (ufp , 0, vfp ) is 
considered. The sight line between the camera is drawn in magenta and 
the maximum flower radius with respect to the pot center is drawn in 
red. The initial flower position is determined as the center of the in-
tersections u′

fp 
between the sight line and the maximum flower radius rf 

at which the flowers are found. In the figure, this initial flower position 

is shown with a magenta cross. As the flower positions are represented 
with respect to the pot center at the initial frame, the initial position 
vector xfi ,0 of flower fi is required with respect to the moment of state 
initialization. Therefore, u′

fp 
is rotated according to the estimated rota-

tion as 

xfi ,0 = R
(
− θ̂k|k

)
u′

fp . (21)  

This derivation leads to the position represented with a green cross in 
Fig. 5. Note that for the individual flower representation the initial po-
sition is estimated at the moment of detection, hence there is no rotation 
considered. As a result, for this situation R( − θ̂k|k) = I ∈ R3×3. Further, θ 
is considered at k|k. This means that based on the associated measure-
ments, first the update step is applied before the state is extended as this 
gives a more accurate estimate. 

The covariance Λ with respect to the initial center point u′

fp 
is drawn 

with a magenta dotted line and determined along the sight line as 

Λ = diag
([

σ2
uf

σ2
rsl

σ2
vf

] )
. (22)  

In this equation, the standard deviation with respect to the center point 
in the direction of the sight line is represented by σrsl . This distance 
equals half the difference between the intersection points. σuf and σvf 

represent the standard deviation of the detection uncertainty in the u 
and v-direction of the image plane respectively. Given that D≫rf and 

D≫
⃒
⃒
⃒uc

fp

⃒
⃒
⃒, these variables are assumed to be mutually perpendicular to the 

sight line. To represent the initial flower covariance Pfi ,0 in the local 
frame, the rotation between the sight line and the local frame and the 
flower rotation with respect to the initial position is considered as 

Pfi ,0 = R

(

− θ̂k|k

)

R0
(
α, β
)
ΛRT

0

(
α, β
)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟Covariance along sight line
RT

(

− θ̂k|k

)

. (23)  

Here, the initial rotation matrix R0(α, β) indicates the rotation between 
the sight line and the local frame. It utilizes the angle α =

atan2
(

ufp , − D
)

, visualized in Fig. 5, between the (w, v)-plane and the 

sight line. In a similar fashion, the angle β = atan2
(
− D, vfp

)
between 

the (u,w)-plane and the sight line is applied. This angle is visualized in 
Fig. 4b. The rotation matrix is computed as 

R0

⎛

⎝α, β

⎞

⎠ =

⎡

⎣
c(α) − s(α) 0
s(α) c(α) 0

0 0 1

⎤

⎦

⎡

⎣
1 0 0
0 − s(β) c(β)
0 c(β) s(β)

⎤

⎦. (24)  

For the sake of compact notation, s() and c() represent the sine and 
cosine function respectively. Further, the estimated plant rotation is 
utilized to obtain the covariance at the moment of the initial detection. 
As a result, the green dotted line of Fig. 5 is obtained. 

3.3. MHT: Adaptations for Single State Representation based on Partial 
Detections 

This section elaborates on the data-association component of the 
counting algorithm as shown in Fig. 2. The MHT-algorithm as proposed 
by Elfring et al. (2013, 2021) is adopted. In accordance with the UFPM 
of the target tracker, each object considered in the MHT is considered 
independent. As this is in contrast with the CFPM, the adaptations and 
consequences of the MHT data-association algorithm for the plant rep-
resentation based on flower detections are discussed. 

The main idea of the MHT-framework of Elfring et al. (2013, 2021) is 
that each measurement can (1) represent an object not contained in the 
the state vector, (2) originate from a flower which is present in the state 
vector already or (3) be a false detection. Within the framework applied, 

Fig. 5. Top view of the estimation of the initial flower position and its 
covariance based on the maximum flower radius. 
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the general idea is to associate the observations to objects estimated. As 
such, an object o represents the object as 

oa = oa
(
ι, zj

k,M k,a
)
. (25)  

In this equation, ι represents a unique identifier, zj
k represents a mea-

surement performed at time step k that will be linked to this object and 
j = 1,…,M is the measurement index of a measurement set containing M 
measurements. Further, a = 1,…,No is the object index of a hypothesis 
which describes No objects. M k,a contains the behavior model of the 
object. For the UFPM each flower is modeled independently, hence No 
equals the number of flowers N contained in a hypothesis. M contains 
the independent flower xf state (15) and the EKF including its process 
model (16) and observation model (18). As each flower is modeled 
individually, this description is sufficient for the UFPM. In contrast, for 
the CFPM this description is insufficient as the motion model describes 
the plant movement of multiple flowers which are detected separately. 
To describe the relations between the plant movement and the flower 
observations as contained in a hypothesis, the object description is 
extended with a parent–child description according to 

oap = oap
(
ι, zj

k,M k,ap, oac
)
. (26)  

In here, ap = 1,…,Npo and ac = 1,…,Nco respectively represent the 

index of the parent and child objects contained in a hypothesis. An 
overview of the relations as applied in this work is shown in Fig. 6. Here 
it is shown that the parent object describes the plant, namely the CFPM. 
Since a single plant is contained in a hypothesis, Npo = 1 for the problem 
considered in this work. Its behavior model M k,ap contains the plant 
state xP (4) and both the motion model (7) and observation model (8) of 
the EKF at time step k. In order to associate the child objects, the flowers 
in this work, to the flower measurements, the (predicted) flower mea-
surement (9) is imposed by the parent object. In return, the actual 
measurement to modeled flower object associations of a hypothesis are 
derived via the child objects. As in this work each flower is described as a 
child object, Nco = N. 

Once the possible associations are determined, the object state can be 
updated and the probabilities of each hypothesis being correct can be 
computed. Compared to the single object approach, in accordance with 
(21), the order of updating objects and initializing new objects becomes 
relevant for the CFPM as the initialization of new flowers in an existing 
plant depends on the rotational velocity. To achieve a more accurate 
estimate of this velocity, for the CFPM, first the update step is applied 
based on all associations to flowers which are present in the state 
description xP. In the second phase, the new objects are initialized based 
on the estimated rotational velocity. To update the hypotheses proba-
bilities, for both state estimates and object-descriptions Bayes’ rule is 
used as described in Elfring et al. (2013). For a detailed derivation, the 
reader is referred to Section 5 of this reference. In the context of this 
work, the Mahalanobis distance between a flower measurement on the 
one hand and the expected flower projection onto the image plane as 
derived in (1), (9) and (10) on the other hand is applied as an important 
criterion to determine the likelihood of an association. 

4. Experiments & Discussion 

To compare the single image approach with both the CFPM and 
UFPM present in the MTT for the multiple image approach, this section 
presents and discusses the results achieved for these methods. First, the 
system properties and algorithms applied to obtain the flower detections 
are described. Next, the functionality of the hypothesis tree will be 
validated for both models, followed by the improvements in the quan-
tification of the number of flowers in each plant. In the final subsection, 
suggestions for future work are provided. 

4.1. System Properties and MHT Settings 

To test the methods developed in this work, a dataset of 71 Phalae-
nopsis plants was collected. The dataset originates from a real green-
house and is thus considered as representative for real applications. A 
Sony XCG-H280CR-camera running at 13.33 [Hz] collected images of 
the plants and the flower counting algorithm was processed on a HP 
ZBook Studio G3 with an Intel i7-6700HQ 2.60 GHz × 8 processor 
running Ubuntu 16.04. Within the camera-view, the plant typically 
makes a rotation of 210 [degrees] to record a set of 20 images. The 

Fig. 6. Visualization of parent–child relationships as applied in the object description for the CFPM of this work. Each hypothesis contains its own instance of 
this figure. 

Table 1 
Parameters of the flower counting system as applied in this work.  

Parameter Quantity Value 

D Distance between camera and image plane 1.808 [m]  
f Image update frequency 13.33 [Hz]  
rf  Maximum radius w.r.t. the pot center at which 

flowers are found as indicated in Fig. 5 
18⋅10− 2 [m]  

(ud
0,vd

0) Image center (960,820)
[pixels]  

σuf  Standard deviation in u-direction of flower 
measurement 

0.01 [m]  

umax × vmax  Image dimensions 1920 × 1440 
[pixels]  

u̇0  Expected initial translational velocity of the pot 
center 

− 0.35 [m/s]  

σu  Standard deviation of the pot center 
measurement and process uncertainty 

5.0⋅10− 2 [m]  

σu̇  Standard deviation of the pot center velocity 
along the conveyor belt 

3.2⋅10− 2 [m/s]  

σvf  Standard deviation in vc-direction of flower 
measurement  

0.01 [m]  

σx ,σy,σz  Standard deviation of flower process uncertainty 
in x,y,z-direction  

1⋅10− 3 [m]  

σω0  Initial standard deviation of the rotational 
velocity 

0.025⋅ω0  

σω  Standard deviation of the rotational velocity 0.01⋅ω̂  
ω0  Expected initial rotational velocity of the pot 

center 
2.54 [rad/s]   
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arrival of a plant is measured with an external sensor which ensures that 
the full plant is recorded at the initial image. Each plant contained up to 
25 flowers. The distribution of the number of flowers over the plants is 
shown by means of a histogram in Fig. 10i. The flower detections were 
obtained using local binary patterns and AdaBoost learning as described 
and validated by Puttemans and Goedemé (2015). Further, for each 
image the pot center is determined by measuring the edges of the pot 
based on the color difference between the pot and the background. 

The MTT settings depend on the plant type and setup. An overview of 
the MTT settings as applied for the Phalaenopsis plants is provided in 

Table 1. For both the CFPM and the UFPM and of the target tracker, 
similar settings were chosen. The initial translational u̇0 and rotational 
velocity ω0 of the plant are set to the nominal velocities as configured 
within the image collection system. To account for unmodeled dynamics 
such as slip of the pot movement and flower vibrations caused by plant 
accelerations, the process uncertainty of both the CFPM and the UFPM 
as respectively indicated in (13) and (19) are considered. The process 
uncertainty QPC,k of the movement of the pot center at time step k is 
represented as 

Fig. 7. Visualization of the UFPM (right) and the projected flower states on the images (left) after processing the detections. The rotational velocity for each flower is 
listed in Table 2. The plant consis.ts of 3 flowers. 
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QPC,k = diag
( [

σ2
ω σ2

u0
σu̇

2] )
. (27)  

Here, σ indicates the Standard Deviation (SD) of the respective state 
variable. As indicated by the table, the main source of uncertainty of the 
plant movement is the rotational velocity caused by slip and wear of the 
conveyor belt. Based on experience, the deviation σω0 is typically 
bounded within 5% of the rotational velocity and as such this value is 
chosen as its 95% confidence interval. The main source of uncertainty of 
the flower positions with respect to the pot center is the occurrence of 
flower vibrations due to rotational plant acceleration. In between 
consecutive images, the standard deviation of the flower vibrations is 

Table 2 
Estimated rotational velocity [rad/s] of the flower states ±2 standard deviation 
of Fig. 7.   

13 images considered Full set considered 

ωf1  2.5386 ± 0.1376  2.5369 ± 0.1631  
ωf2  2.5561 ± 0.2162  2.5389 ± 0.1854  
ωf3  2.5408 ± 0.2154  2.5561 ± 0.2494  
ωf4  – 2.5408 ± 0.2487   

Fig. 8. Visualization of the CFPM (right) and the projected flower states on the images (left) after processing the detections. The plant consists of 3 flowers.  
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low in relation to the other parameters and are estimated to have an 
order of magnitude of 10− 3 [m] and considered equal and independent 
in each direction. As a result, the process uncertainty Qfi ,k of each flower 
position is set to 

Qfi ,k = diag
( [

σ2
x σ2

y σ2
z
] )

. (28)  

The measurement covariance matrix Sfi ,k of flower i is for the CFPM 
applied in (14) and for the UFPM in (20). The measurement noise of the 
flower detections is considered equal for each flower and to be bounded 
by the flower radius in both the u and v direction. As a result, the 
measurement noise covariance matrix is set to the typical flower radius 
according to 

Fig. 9. Visualization of the CFPM (right) and the projected flower states on the images (left) after processing the detections. The plant consists of 9 flowers.  

Table 3 
Comparative results for the flower quantification when considering the entire 
dataset.  

# Images Method Exact ±1 Object  

Single Counting detections 18%  44%  
Multiple Heuristic Approach 32%  58%  
Multiple MHT based on UFPM 37%  70%  
Multiple MHT based on CFPM 61%  92%   
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Fig. 10. Results achieved when quantifying the number of flowers in each plant for the methods considered in this work.  
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Sfi ,k = diag
([

σ2
u σ2

uf
σ2

vf

] )
. (29)  

4.2. Validation of CFPM and UFPM 

For the validation of the methods, the functionality of both the CFPM 
and the UFPM when running the MHT algorithm is demonstrated and 
compared. For visualization purposes, a plant with a low number of 
flowers is shown. Components of the estimated state vector obtained 
when running the entire MHT algorithm for a plant consisting of three 
flowers using the independent object models is given in Fig. 7 and 
Table 2. In this figure, the derived object states of the MAP hypothesis 
after processing 13 images and after the full set of 20 images is shown on 
the right side of the figure. To properly assess the relative flower posi-
tions, for the UFPM the states are rotated to the moment at which the 
first flower was detected. The states are visualized in the local frame and 
the numbers in these figures indicate the identifier of each flower. Due to 
solving the ambiguities within the MHT approach these identifiers may 
switch between images due to switching of the MAP hypothesis. 
Furthermore, the 95% confidence interval of the (projected) flowers is 
indicated. On the left side of the figure, the recorded images are shown 
in the center-frame. In this figure, the image center is indicated in 
magenta and the detections including their 95% confidence interval are 
indicated in red. Further, the projection of propagated state to mea-
surement space and their corresponding confidence interval are deter-
mined according to the observation model and indicated in green. The 
results of a similar experiment for the CFPM are shown in Fig. 8, while 
the results of a plant with more flowers, 9 in this case, are given in Fig. 9. 
For the CFPMs, the rotational velocity is indicated in the corresponding 
figures. 

The upper images of these three figures all indicate a moment where 
one or more flowers are first seen in the MAP hypothesis. Typically, a 
relatively large uncertainty in a single direction is observed as the cor-
responding flower is not observed from multiple viewpoints yet. Based 
on the projections it is seen that after several update steps the projected 
state of each flower converges to the desired position, namely the center 
of the corresponding flower. After processing all evidence of the UFPM 
as shown in Fig. 7c and Fig. 7d a relative high uncertainty is observed in 
the u-direction of the image for Flowers 2 and 4. Inspection of the data 
indicated that this high uncertainty is caused by both flowers not being 
detected for several frames, leading to an increase in uncertainty in the 
estimate of the rotational velocity as indicated by Table 2. This results in 
a false flower as the uncertainty in the estimate of the rotational velocity 
was too large. Next, caused by large distance between the measurement 
and the predicted measurement, a better explanation was found by 
initializing a new object. For the same experiment with the CFPM, 
visualized in Fig. 8c, the large uncertainty in the u-direction is resolved 
as the rotational velocity estimation is updated by the detections of the 
other flowers. For the plant with 9 flowers of Fig. 9 a proper estimation is 
obtained and even the two sets of flowers which originate from the two 

branches can be discriminated in the estimated flower states. On both 
branches in the final state estimate of Fig. 9c, the occlusions are visu-
alized as the states of the occluded flowers are projected on the image 
while the occluded flowers are hardly visible on the image. Improve-
ments lie in including the estimation of the flower size, such that oc-
clusions could be predicted and associations of detections to occluded 
flowers could be excluded or have a low probability. 

4.3. Greenhouse Dataset 

The results when determining the number of flowers for the entire 
dataset consisting of 71 plants are given in Table 3 and Fig. 10. The 
correct number of flowers were determined by two persons by visual 
inspection of the image-sets obtained. In all cases, the persons counted 
the same number of flowers. The results of the “Single Image”-method 
are obtained by counting the number of detections for the image where 
the pot center of the plant was closest to the image center. The choice of 
the image selection is an arbitrary one. This choice could easily be 
replaced with another decision and will lead to similar results. The 
heuristic state of the practice method ranks the detected number of 
flowers in each image from high to low. Based on the reasoning that in 
images both occlusions as well as false positives are present, empirical 
tests indicated that the best results were obtained by considering the 
image with the third highest number of flowers as the estimated number 
of flowers. For the MHT algorithm with both the UFPM and the CFPM, 
the number of flowers was estimated based on the number of flowers 
present in the MAP hypothesis. Whereas the table quantifies the esti-
mated number of flowers with no deviation and a maximum deviation of 
1 flower, the left side of Fig. 10 shows the accuracy for each of the test 
cases as a function of the number of flowers present in each plant. On the 
right side of the figure, the counting error of the dataset is demonstrated 
by means of a histogram. A positive deviation indicates that too many 
flowers are estimated, no deviation indicates a correct estimation of the 
number of flowers and a negative deviation indicates an underestima-
tion of the number of flowers. The data indicate that significant im-
provements (respectively 70% and 92% correct for the UFPM and the 
CFPM when considering a maximum deviation of 1 flower) are obtained 
by consistently using multiple viewpoints of each plant compared to a 
single viewpoint method (44% correct) and the heuristic method (58% 
correct). As the left side of Fig. 10 indicates, this is especially demon-
strated when more flowers are present in a plant. The reason for this is 
sought in the fact that a larger part of the flowers in a plant are occluded 
when more flowers are present. This is confirmed by the right side of 
Fig. 10, as this typically leads to an underestimation of the number of 
flowers present in the plant. The underestimation of the number of 
flowers cannot be avoided when using a single image due to occlusions 
present in Phalaenopsis plants. At the same time, the MHT-based ap-
proaches are expected to perform better as well when provided with 
more accurate and less false positive detections. 

Fig. 10. (continued). 
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Further it is observed that the CFPM representation (92% correct 
when considering a maximum deviation of 1 flower) is superior to the 
UFPM (72% correct). It is seen in Fig. 10h that the underestimation of 
the number of flowers is mostly resolved and that plants with even more 
flowers are determined correctly. The reason of a slight overestimation 
in the number of flowers is sought in the flowering of the buds. The 
detection algorithm can give positive flower detections which are 
consistent with the model but are not counted in the ground truth. Apart 
from that, it is concluded that the CFPM suffers less from flower occlu-
sion as the CFPM updates the rotational and translational velocity using 
flower detections which are correctly associated. 

4.4. Future work 

For the methods as developed in this work, several options for future 
work are seen. With respect to the implementation of the current 
methods in a real time system, which is relevant when sorting the plants 
based on their number of flowers, the computational efficiency needs to 
be considered by means of the number of hypotheses. Now, combina-
torial associations are initiated as each measurement is separately 
associated to each modeled object. This includes a set of irrelevant hy-
potheses. An answer to this is sought in determining better metrics 
which quantify the plausible flower associations. Considering the entire 
detection set in the association step at once could for example be 
beneficial as this creates the opportunity to take neighboring detections 
and associations into consideration. If for example a detection is found 
left of another detection at a distance which is expected by the model, 
the hypothesis which associates the left detection to the expected posi-
tion of the right object is unlikely and could thus be neglected. 

Though improvements in the detection methods are expected given 
the recent results of deep learning compared to the local binary patterns 
and AdaBoost learning methods as applied in this work (Kamilaris and 
Prenafeta-Boldú, 2018; Koirala et al., 2019), the underestimation of the 
number of flowers cannot be avoided when using a single image due to 
(full) occlusions as present in Phaleanopsis plants. At the same time, the 
MHT-based approaches are expected to perform better as well when 
provided with more accurate and less false positive detections. 

Within a robotics context, we see the benefits of this method when 
tracking for example persons based on partial observations. The obser-
vation of for example a hand gesture can indicate some hints about the 
states of the entire body, even if parts of the body are not detected. This 
requires however a deeper level of parent–child object relations. 

5. Conclusion 

To quantify the number of flowers in a plant in the presence of oc-
clusions and detection uncertainty, this work proposed an MHT 
approach to solve the data association problem given multiple views of 
the plant. Hereby, the motion uncertainty when obtaining multiple 
viewpoints is taken into consideration. Under the consideration of a 
maximum allowed deviation of 1 flower for the quantification of the 
number of flowers, the CFPM of the MHT target tracker (in which each 
flower is considered as a part of the plant, 92% accurate as indicated by 
Table 3) outperformed the UFPM of the MHT (in which each flower is 
modeled independently, 70% accurate), the heuristic state of the prac-
tice counting method (58% accurate) and the single image approach 
(44% accurate). The most significant differences were found when more 
flowers and thus occlusions are present, as for the single image approach 
multiple flowers are not visible at all and for the CFPM the predicted 
position estimate of unmeasured flowers can still be properly updated 
based on correct associations of the measured objects. The CFPM-based 
approach required the MHT to be extended with parent–child relations 
in the object descriptions to consider the motion model at the parent 
level and the connections at child level. Whereas in this work a single 
parent–child relation was sufficient, future research could consider the 
situation where multiple layers of parent–child relations are required. 

Furthermore, the use of computational resources of the MHT might be 
reduced by considering the full detection set of an image. This might 
help to hypothesize about the uncertain associations only, such that the 
irrelevant hypotheses could be neglected without sacrificing tracking 
performance. Despite the room for improvement there still is, given the 
high accuracy of the MHT based on the CFPM, it was seen that most 
occlusions and inconsistencies caused by false detection information 
were solved due to the incorporation of multiple viewpoints. 
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Appendix A. Nomenclature 

An overview of the nomenclature applied in this work can be found 
in Table 4. 

Table 4 
Nomenclature as applied in this work. Where necessary, subscripts, superscripts 
or vectors are indicated to differentiate the variables.  

Variable Meaning 
c() cosine-function 
D Distance between camera and image plane 
f Image update frequency 
G Linearized state transition matrix 
g Nonlinear stochastic difference equation 
H Linearized observation matrix 
h Observed state 
k Frame number 
I Identity Matrix 
M Number of flowers in the observed state 
N Number of flowers present in the object state 
Nco  Number of child objects contained in a hypothesis 
Npo  Number of parent objects contained in a hypothesis 
M  Object behavior model 
O Origin 
o Object 
P State covariance matrix 
p probability 
Q Process covariance matrix 
q  Random process noise vector 
R Rotation Matrix 
r Radius 
S Measurement covariance 
s  Random measurement noise vector 
s() sine-function 
t Time 
(u,v) Image-frame coordinates 

(ud
0, vd

0) Image center w.r.t.image origin 

(u,v,w) Center-frame coordinates 
x  State vector 
(x,y,z) Plant-frame coordinates 
Z Measurement set 

(continued on next page) 
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Table 4 (continued ) 

z  Observation vector 
α  Angle between the w-axis and the sight line 
β  Angle between the u-axis and the sight line 
θ  Plant rotation 
ι  Identifier 
Λ  Covariance matrix along sight line 
σ  Standard deviation 
ω  Rotational velocity of the pot center   

Acronym Meaning 
CFPM Connected-Flower Plant Model 
EKF Extended KF 
GNN Global Nearest Neighbor 
JPDAF Joint Probabilistic  

Data Association Filter 
KF Kalman Filter 
MAP Maximum A Posteriori 
MHT Multiple Hypothesis Tracker 
MTT Multiple Target Tracking 
SD Standard Deviation 
UFPM Unconnected-Flower Plant Model   

Subscript Meaning 
0 Initial 
a Object index 
ap Parent object index 
ac Child object index 
c Center 
d Detection 
f Flower 
i Flower identifier 
j Measurement index 
l Local frame 
m Dimension of the measurement vector 
max Maximum 
n Dimension of the state vector 
P Plant 
p Projected 
pc Pot center 
pf projected flower 
sl Sight line 
T Transpose  
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