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A B S T R A C T   

Nowadays, as industrial designs are close to their optimal configurations, the challenge lies in the extraction of 
the last percentages of improvement. This necessitates accurate evaluations of the performance and represents a 
significant higher computational cost. The present work aims at integrating Large Eddy Simulations in the 
optimization framework for an accurate evaluation of the flow field. The number of expensive evaluations is kept 
to a minimum by using the adjoint method for the evaluation of the gradient of the objective function. Diver
gence of the gradients due to the chaotic flow motion is avoided by an additional step which decouples the Large 
Eddy Simulations from the gradient calculations. An adaptation process based on a Reynolds Averaged Navier- 
Stokes simulation is therefore sought to mimic the more accurate Large Eddy Simulation results. The obtained 
field is then used in combination with an adjoint shape optimization routine. The method is tested on the design 
of a U-bend for internal cooling channels by minimizing its pressure loss. Starting from an optimized geometry 
obtained through a classical approach based on RANS evaluations, further improvements of the design are 
achieved with the application of the proposed strategy when performances are evaluated by means of LES.   

1. Introduction 

Product developments are nowadays assisted by computer software 
to speed-up the design process. Problems involving fluid dynamics can 
be simulated numerically, avoiding expensive experimental campaigns 
when many different design configurations need to be analyzed. This 
enables the use of computer aided optimization algorithms to search 
autonomously for design improvements. Usually the relationship be
tween shape and its effect on performance is rather complex and beyond 
the capability of human designers to be accurately predicted, which is 
why design processes driven by human instincts are mainly charac
terised by a trial and error process. On the other hand, numerical shape 
optimization algorithms, especially when guided by gradient informa
tion, allow to obtain performance improvements in a few cycles 
adjusting the design. As such, optimization routines have gained suffi
cient maturity to be deployed in an industrial context in the design 
process [1,2], reducing significantly the design time and the number of 
experimental tests needed. 

The accuracy of the optimization result largely depends on the nu
merical model used to simulate the flow. Reynolds Averaged Navier- 

Stokes (RANS) simulations are commonly used both in academia and 
industry due to the acceptable numerical cost [3–5]. This allows to 
explore a wide range of different configurations within the context of a 
design activity [1]. The prediction capability of RANS is however 
limited: highly three dimensional flows with secondary motions, flows 
with strong pressure gradients on the boundary layer, or flows with 
strong separations for instance are not well predicted by the steady state 
RANS approach and may guide the optimization algorithm to an erro
neous optimal solution. More accuracy is possible by means of a Large 
Eddy Simulation (LES) approach, where large unsteady turbulent 
structures are resolved. However, due to larger spatial discretization 
requirements and because the simulation is time-resolved, the compu
tational cost increases significantly compared to RANS. The role LES has 
within the design process was therefore initially quasi-similar to an 
experimental validation, and mainly performed in a final stage. But as 
computational power keeps increasing, LES within an optimization 
framework is becoming possible. As an example, Marsden et al. applied a 
gradient-free optimization in conjunction with LES to reduce the noise 
generated by turbulent flow over a hydrofoil trailing edge [6]. Goit and 
Meyer used LES with the aim of increasing the total energy extraction in 
wind farms [7]. Collis and Chang considered LES for determining the 
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optimal control of a turbulent flow for drag reduction problems [8]. 
Two main strategies exist when dealing with optimization problems. 

A first strategy requires only the evaluation of the objective function and 
does not need the computation of its gradient. Such optimization stra
tegies are mainly non-deterministic and require in general a large 
amount of simulations to be performed to reach an optimum, while the 
degrees of freedom given to the design are rather limited. A second 
strategy is based on the calculation of the gradient of the objective 
function. This strategy gives to the optimizer a direct hint on how the 
design needs to be changed to reach a certain improvement. This leads to 
a more efficient algorithm, especially when the gradient is computed 
using the adjoint approach, with a cost nearly independent of the 
number of control variables. For this reason the application of gradient 
based optimization is very attractive within a LES context. 

The adjoint method had been originally developed by Lions [9] in the 
context of control theory. The first application in the aerodynamics field 
goes back to Pironneau [10], who studied the energy dissipation due to a 
small hump on a body in a uniform steady flow with the aim to obtain 
the optimal condition for different drag minimization problems. 
Jameson introduced the technique in the aeronautical field [11] 
developing the adjoint counterpart of the Euler equations. The work of 
Jameson aimed to show how the design problem could be tackled 
through control theory, in which in particular the control is the shape of 
the boundary. The design problem considered was the search for an 
airfoil profile which gives a prescribed pressure distribution. The adjoint 
method continued to grow in the aeronautical industry framework 
bringing its use for: complete aircraft optimization [12], problems 
considering the compressible Navier-Stokes equations [13], 
aero-structural optimization [14,15]. The examples illustrated above are 
related to the aeronautical field but applications can be found in many 
other different domains, such as turbomachinery [16,17], automotive 
[18–20], energy [7], naval [21] and thermal exchange [22,23]. In the 
context of shape optimization, the coupling with deformation tech
niques [24,25] is necessary after the evaluation of the direction of 
improvement. 

The application of gradient based optimization techniques using LES 
is however not widespread and it is so far mainly limited to control 
problems [7,8] with short time-averaging windows. The reason is that 
the adjoint method becomes unstable and diverges due to the ”butterfly 
effect” [26,27]. Due to the chaotic nature of the flow, small perturba
tions in flow quantities, whether they come from numerical round-off or 
from a perturbed mesh, will increase exponentially in time such that 
after a certain time the perturbed flow will be totally different from the 
unperturbed one. The objective function for an optimization is typically 
a time averaged flow quantity, and hence, for a limited averaging 
period, it may lead to a completely different objective function value for 
a slightly perturbed shape. This remains so for the linearized model and 
thus the sensitivities computed through the adjoint method become 
unreliable. 

The use of LES within a gradient based optimization approach hence 
remains an active field of research. Many solutions have been proposed, 
of which the Least Square Shadowing Technique [28,29] is the most 
promising. This technique makes use of the shadowing lemma [30,31], 
which states that for each numerical trajectory in a chaotic dynamic 
system, a true trajectory can be found which is very close to the former 
one with slightly different initial conditions, even though the numerical 
trajectory would diverge exponentially from the true one if the same 
initial condition would be used. Applying this technique to LES, it im
plies that, when the grid is perturbed, a flow solution can be found near 
to the original one if a slightly different initial flow field would be used. 
As a consequence, the derivative of the objective function calculated is 
meaningful and can be used to drive the solution to its optimum. The 
Least Square Shadowing technique requires thus to find the initial flow 
field such that it shadows the original flow field time-evolution. This is 
an optimization problem with a very large set of degrees of freedom, 
which would significantly increase the overall computational cost. Some 
methods to reduce the cost of the optimization of the initial field have 
been proposed [32–34]. Nonetheless, to date the Least Square Shad
owing Technique can only be applied to very small numerical domains, 
far below the current interest. 

For this reason, another approach is chosen in the present work. Two 
observations lay at the basis of the proposed method: 1) RANS models 
fail to predict the time-averaged LES flow field mainly because of an 
inapt turbulence model, and 2) the gradients can in many cases be 
approximatively obtained using a frozen turbulence approach, which 
considers the turbulent viscosity invariant under small shape perturba
tions [35,36]. The novel approach presented here includes an initial step 
where a suitable RANS model is sought to fit the time-averaged flow 
field of the LES simulation. Hereto, the turbulent viscosity of each cell in 
the RANS simulation is adapted to yield a similar flow field as the LES 
result. This step requires an optimization and is similar to the work re
ported in Hayek et al. [37], in which a discrete adjoint formulation is 
presented. Once the RANS model is established, the adjoint method is 
used to compute the surface sensitivities under the assumption of con
stant turbulent viscosity. An optimizer allows then to update the shape, 
after which the full procedure is repeated. A new LES calculation is thus 
performed, followed by a RANS simulation adapting the turbulent vis
cosity, the computation of the adjoint field and of the surface sensitiv
ities and, finally, the shape modification. The procedure is repeated until 
no significant improvement is further obtained. The proposed strategy 
allows to combine the reliability of a LES evaluation to a low compu
tational cost optimization routine through the link with a RANS 
approach. 

The method is applied to the optimization of a U-bend, being a 
prototype test case for which RANS is proven to be insufficiently reli
able. The U-bend test case is described in Verstraete et al. and Coletti 
et al. [38,39] and optimized to reduce the pressure drop which arises 
from the significant flow turning [38]. A large reduction in pressure 

Nomenclature 

U mean velocity 
U mean velocity from LES 
U0 mean uniform inlet velocity 
U∗ normalized mean velocity 
p mean static pressure 
p∗ mean normalized static pressure 
Ua mean adjont velocity 
q mean adjoint pressure 
T.I. turbulence intensity 
Dh hydraulic diameter 
V cell volume 

ϕ mean face volumetric flux 
ν laminar viscosity 
νt turbulent viscosity 
J objective function 
Ω volume 
Γ boundaries 
L augmented objective function 
n boundary normal 
x coordinates 
λ step size 
γ relaxation factor 
β step size for the line search 
S surface sensitivity  
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drop was achieved by a classical RANS-based optimization algorithm 
through shape modifications that suppressed the flow separation in the 
bend. However, a recirculation bubble, not detected by the RANS 
evaluation, is still present inside the design as revealed by the experi
mental validation through Particle Image Velocimetry (PIV) [39]. On 
the other hand, simulations using LES could replicate with high accuracy 
the experimental findings [40]. To further improve the U-bend design, a 
LES based approach is thus inevitable. 

The paper is structured as follows: first the U-bend test case will be 
described in more detail. A following section focuses on the LES-based 
optimization approach used. The subsequent section then applies the 
approach to the U-bend and finally some conclusions are drawn. 

2. The U-bend test case 

Gas turbines are cooled by internal flows with air which is usually 
bled from the compressor, leading to a loss in thermodynamic efficiency. 
The design of the internal cooling system can be improved by reducing 
the internal losses and thus reducing the amount of work needed from 
the compressor. The U-bends which connect the different coolant pas
sages are significant contributors to the pressure losses inside the system 
[41]. As a consequence, they have been the subject of many optimiza
tion studies [17,42–45]. 

The starting point of the present work is the optimized design ob
tained in Verstraete et al. [38]. The initial design is represented by a 
circular U-bend of square section (hydraulic diameter Dh = 0.075m), 
Fig. 1a. The optimal shape, obtained by means of a metamodel assisted 
differential evolution algorithm, is shown in Fig. 1b. The numerical 
domain is completed by a 8Dh long straight channel connected to each 
side of the bend illustrated in Fig. 1. The domain is three dimensional 
but no variation to the shape is given in the z-direction. 

This section presents the comparison of RANS, LES and experiments 
of the optimized geometry obtained in Verstraete et al. [38] and serves 
to validate the numerical set-up. As the experimental configuration has 
very long inlet and outlet legs for developing the velocity profile [38, 
39], the numerical domain is shortened to reduce the computational 
cost. The boundary conditions for the simulations are extrapolated from 
a RANS evaluation of the experimental configuration, sampling the ve
locity field and the turbulent quantities at the location corresponding to 
the inlet of the numerical configuration. A uniform inlet velocity, 
U0=8.4 m/s, and a turbulence intensity T.I. = 5% are considered for the 
simulation of the experimental configuration, in analogy with the 
experimental campaign. Differently from the RANS simulations for 
which the aforementioned procedure is followed, a zero turbulence level 
is imposed at the inlet of the numerical configuration in the LES, as the 
bend itself trigger the turbulent structures. The Reynolds number is 
40000. A zero static gauge pressure boundary condition is imposed at 
the outlet and a no-slip condition to the walls. The simulations, both 
RANS and LES, are performed using a structured grid with 342x50x50 
cells with local refinements in the regions of high curvature and a 
maximum y+ value of 2.2. A mesh convergence study is performed with 
finer meshes with a maximum y+ value of 0.9; since no variation of the 
results is observed, the coarser mesh is used. 

The RANS and LES simulations are carried out using the simpleFoam 
and pimpleFoam solver from OpenFOAM [46], respectively. The 
open-source CFD software OpenFOAM uses a finite-volume cell-cen
tered approach in which the flow equations are solved in a segregated 
manner by means of the SIMPLE and PIMPLE algorithm, respectively for 
the RANS and LES approach. The turbulence model equations are solved 
separately. The Launder-Sharma low-Reynolds k − ϵ turbulence model is 
used in the RANS simulations. Although the model chosen is not ex
pected to give extremely reliable results for high turbulent flow with 
swirl, it is chosen here for its wide industrial use. The Wall-Adapting 
Local Eddy-viscosity (WALE) model is chosen for the LES simulations 
with a filter width related to the local grid cell size, i.e. the cube root of 
cell volume in the present case. A second order discretization scheme is 
used both in space and time. In particular, the time discretization 
scheme used for the LES is second-order implicit backward Euler. The 
averaging of the flow quantities is started after 20 flow-through times 
(FT) and carried out for 40 FT, sampling each time step of the simula
tion. A plateau in the average static pressure is reached within the 
averaging time window and the simulation is stopped at the end of the 
40 FT. The Courant-Friederichs-Levy (CFL) number is kept below unity 
to satisfy the stability requirements by using an adaptive time step. The 
time step, Δt, changes at each simulation iteration according to Eq. 1, in 
order to keep a maximum CFL number in the domain that does not 
exceed the user imposed value: 

Δt = min

⎛

⎜
⎜
⎜
⎝

CFL
1

2V

∑
faces|ϕi|

⎞

⎟
⎟
⎟
⎠
, (1)  

where V is the cell volume, ϕ is the face volumetric flux and the sum
mation is carried out over all cell faces. The factor 1/2 assures the 
calculation of the average velocities. The computations require 
approximately 3 days on 40 cores for the LES simulations and one hour 
on 16 cores for the RANS ones. In particular, the Thinking cluster of the 
Vlaams Supercomputer Centrum [47] and an Intel Xeon workstation are 
used for the LES and RANS simulations, respectively. For the present test 
case, LES is thus about 2 orders of magnitude more expensive than 
RANS. 

The obtained flow field characteristics are compared to the experi
mental measurements performed by Coletti et al. [39]. In particular, the 

normalized mean velocity field, U→
★ 

(Eq. 2), and the normalized mean 
static pressure drop, Δp★ (Eq. 3), are compared to PIV visualizations and 
to static pressure measurements respectively, 

U→
★
= U→

/
U0 (2)  

Δp★ =
ps,up − ps,down

1
2 ρU2

0
(3)  

where ps,up and ps,down are respectively the mean static pressure at the 
upstream and downstream measurement section, i.e. at a distance of 5Dh 
and 11Dh from the tip of the bend. 

A comparison of the velocity field obtained in the middle plane, z/
Dh = 0.5, with the different techniques is shown in Fig. 2. The PIV 
measurement, Fig. 2a, shows an acceleration of the flow around the 
inner-wall approaching the bend where the maximum velocity is 
reached, while a deceleration follows on the outer-wall. Along the in
ternal bend a separation occurs and a recirculation region is formed as a 
result of the adverse pressure gradient caused by the bend curvature. 
The flow reattaches before the end of the bend. The RANS approach fails 
in the characterization of the separation region, which is largely 
underestimated (Fig. 2b). On the other hand, the LES simulation, Fig. 2c, 
confirms the experimental observations: both the velocity field and its 
streamline features are in agreement with the experimental ones. A 
slight overestimation of velocity magnitude is present on the inner-wall Fig. 1. U-bend geometries.  
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before and around the recirculation region. The same behaviour is 
highlighted on the outer-wall at the end of the bend. Similar conclusions 
can be drawn for the comparison of the initial geometry [40]. 

The reference study considers the total pressure drop as objective 
function, therefore a reliable prediction is of paramount importance to 
drive the optimization to an improvement of the design. The comparison 
regards however the static pressure drop, as indicated in Eq. 3. Indeed, 
no variation between the static and the total pressure drop is expected at 
the planes considered, since the dynamic component of the total pres
sure is expected to be the same [38]. The Δp★ obtained with the 
different techniques is compared in Table 1, both for the initial and 
optimized bend of Verstraete et al. [38]. The absolute static pressure 
values obtained with RANS are largely overestimated for both geome
tries, while for LES they approach the values within the uncertainty 
interval of the experiments. Despite the inaccuracy of RANS to predict 
the absolute static pressure values, the relative improvement in the 
design by RANS (32.5%) is close to the one measured experimentally 
(∼ 36.5%). 

The pressure drop comparison highlights that the RANS approach 
fails in evaluating the absolute quantities but gives a reliable indication 
of the variation. This is further confirmed through the PIV data, that 
confirm that the precise flow field is not well captured by RANS, 
although the modifications suggested by the RANS-based optimization 
have guided the design to an improved flow field, reaching a gain close 
to the one measured experimentally. As a consequence, a first optimi
zation with RANS is meaningful since an improved design can be ob
tained at a low computational cost. However, PIV data and LES have 
shown that a potential for further design improvements is present and 
could be achieved by removing the recirculation bubble. As a conse
quence, further improvements can only be obtained by a LES approach 
in the optimization phase, however this entails a significant larger 
computational cost. 

3. Towards LES-based optimization 

The aim of the present work is to apply a LES-based optimization 
starting from the already optimized geometry of Verstraete et al. [38]. 
As the separation bubble has already been significantly reduced, only 
small changes are expected and therefore local gradient based optimi
zation methods are more favourable. Despite the small design variations 
expected, many degrees of freedom need to be given to the shape to 
allow local adaptation for avoiding separation, which additionally fa
vours gradient based methods. 

As pointed out in the introduction, the direct application of the 
adjoint method to LES delivers unreliable gradients, therefore an 
another approach to include LES in the optimization loop is presented 
here. A general overview of the method is shown in Fig. 3. Initially, a LES 
simulation is performed on the initial geometry in order to have an ac
curate prediction of the flow field characteristics. The time averaged 
flow field from the LES is subsequently used to adapt a RANS model, 
such that the result of the RANS simulation approaches the LES time 
averaged flow field. This is achieved by adapting the turbulent viscosity, 

Fig. 2. Normalized velocity field and its planar streamlines in the optimized U-bend ([38]) at z/Dh = 0.5.  

Table 1 
Normalized static pressure drop comparison.  

Δp★  Experiment RANS LES 

Standard 1.03 ± 0.03  1.26 1.08 
Optimized 0.65 ± 0.02  0.85 0.72 
Improvement [%]  36.5 ± 3  32.5 33.3  

Fig. 3. LES-based optimization loop.  
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νt, in every cell of the domain. A detailed explanation of the procedure is 
expounded in Section 3.1. An adjoint approach is then used to compute 
the gradient with a frozen turbulence approach, hence considering νt 
invariant under shape modifications. This assumption, whose applica
tion can be found in many different works [20,48,49], allows to 
decouple the LES from the gradient evaluation procedure. Hence, only a 
differentiation of the steady state RANS model is required, which can be 
recuperated from a standard RANS based adjoint approach [2]. The 
adjoint solution then allows to compute the surface sensitivities, which 
indicate, under a linearised assumption, how the U-bend walls need to 
change for a reduced pressure loss. A line search is employed in the 
indicated search direction to determine the magnitude of the variation 
to apply. For each iteration of the line search a LES computation is 
performed. Details of the optimizer and of the line search approach are 
explained in Section 3.2. After evaluating the best step size for the 
movement, i.e. the magnitude of the geometry variation, the new ge
ometry is obtained, which represents the starting point for the subse
quent loop. The algorithm is terminated if after subsequent loops no 
significant further improvement is obtained. 

The optimization loop proposed in Fig. 3 is a combination of two 
optimization strategies: an internal optimization loop which aims to 
improve the prediction of the RANS evaluation and an adjoint shape 
optimization. The νt-adaptation is repeated at each iteration of the 
optimization loop to ensure the proper evaluation of the turbulent vis
cosity, giving the correct flow field inside the design. 

3.1. Turbulent viscosity adapted RANS 

The LES is emulated by a computationally cheaper RANS simulation 
through specifying an inverse problem, in which the target is to retrieve 
as close as possible the average velocity obtained by LES (Ui). A suitable 
objective function for the RANS velocity field (Ui) can be therefore 
defined as: 

J =

∫

Ω

(

Ui − Ui

)2

dΩ (4)  

where Ω represents the computational volume. 
A RANS solution closer to the LES one can be obtained by controlling 

the turbulent viscosity, νt , independently over the whole flow field. This 
allows to define an optimization problem in the control variable νt: 

min J(U, νt) (5)  

subject to the RANS equations: 

Rp(U, p, νt) = −
∂Uj

∂xj
= 0 (6)  

RU
i (U, p, νt) = Uj

∂Ui

∂xj
−

∂
∂xj

[

νeff

(
∂Ui

∂xj
+

∂Uj

∂xi

)]

+
∂p
∂xi

= 0 (7)  

where νeff is the effective viscosity, given by the sum of the laminar and 
turbulent contribution νeff = ν+ νt . The RANS equations are specified as 
constraints and enforce that the mean velocity solution (Ui) satisfies 
them for the specified νt field. The approach still makes use of the 
Boussinesq approach, which assumes the isotropic behaviour of turbu
lence. This is a limitation of the methodology, as in general the flow field 
expected from the LES computation can yield large zones of non- 
isotropic turbulence. Further improvements to the methodology are 
thus possible by deviating from the Boussinesq approach. In the present 
work, however, as a proof of concept, the Boussinesq approach is kept 
which as a result will limit the potential reduction of the objective 
function defined in Eq. 4. 

To solve the optimization problem defined by Eq. 5–7, a gradient 
based method is applied for which the adjoint method is used for the 
calculation of the gradient. The flow chart of the νt-adaptation of the 

RANS model is shown in Fig. 4. Turbulence models are not used in the 
solution of the RANS equations: they are indeed not necessary as the 
turbulent viscosity is adapted according to the gradient of the objective 
function to minimize. The solution of the adjoint equations follows the 
RANS evaluation. When both systems of equations are solved, it is 
possible to evaluate the turbulent viscosity sensitivity which indicates 
how to modify the turbulent viscosity in each cell of the domain in order 
to minimize the objective function. In the present work, a steepest 
descent algorithm is then used to update the turbulent viscosity [50]. To 
speed-up the convergence of the whole loop, starting from an initial fully 
converged RANS solution, each individual solution of the RANS and 
adjoint equations is not fully converged and a one-shot approach [51] is 
used. 

A classical approach to solve the optimization problem defined by 
Eq. 5–7 consists in the use of Lagrangian multipliers. In particular, for a 
general objective function J, the augemtented objective function L is 
introduced as: 

L = J +

∫

Ω
qRp dΩ +

∫

Ω
UaiRU

i dΩ (8)  

where q and Uai are Lagrancian multipliers, termed respectively the 
adjoint pressure and adjoint velocity. The variation of the objective 
function with respect to an arbitrary control variable bn, which identifies 
the improvement direction, can be computed as: 

δL
δbn

=
δJ
δbn

+
δ

δbn

∫

Ω
qRp dΩ +

δ
δbn

∫

Ω
UaiRU

i dΩ (9) 

Considering the turbulent viscosity as control variable (bn = νt), 
applying the Leibniz theorem and considering the equality given by Eq. 
6 and Eq. 7, this results in: 

δL
δνt

=
δJ
δνt

+

∫

Ω
q

∂Rp

∂νt
dΩ +

∫

Ω
Uai

∂RU
i

∂νt
dΩ (10) 

The three terms on the r.h.s of Eq. 10 can be further developed. In 
particular, considering the chain rule, the first term becomes: 

δJ
δνt

=

∫

Ω

∂JΩ

∂Ui

∂Ui

∂νt
dΩ +

∫

Γ

∂JΓ

∂Ui

∂Ui

∂νt
dΓ +

∫

Ω

∂JΩ

∂p
∂p
∂νt

dΩ +

∫

Γ

∂JΓ

∂p
∂p
∂νt

dΓ

(11)  

where Γ represents the boundary of the computational domain, JΩ and 
JΓ represent the objective function contributions in the volume and on 
the boundaries respectively. By applying permutation and the Gauss 
divergence theorem, the second term of the r.h.s. of Eq. 10 becomes: 
∫

Ω
q

∂Rp

∂νt
dΩ = −

∫

Ω
q

∂
∂νt

(
∂Uj

∂xj

)

dΩ = −

∫

Γ
q

∂Uj

∂νt
nj dΓ +

∫

Ω

∂q
∂xj

∂Uj

∂νt
dΩ (12) 

The third therm of the r.h.s. of Eq. 10 can be written as: 

Fig. 4. νt -adaptation loop.  
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∫

Ω
Uai

∂RU
i

∂νt
dΩ =

∫

Ω
Uai

∂
∂νt

(

Uj
∂Ui

∂xj

)

dΩ

−

∫

Ω
Uai

∂
∂νt

{
∂

∂xj

[

νeff

(
∂Ui

∂xj
+

∂Uj

∂xi

)]}

dΩ

+

∫

Ω
Uai

∂
∂νt

(
∂p
∂xi

)

dΩ.

(13) 

The three terms on the r.h.s. in the equality of Eq. 13 (b1, b2 and b3 
respectively) can be further developed applying permutation and the 
Gauss divergence theorem, such that: 

b1 =

∫

Ω
Uai

∂Ui

∂xj

∂Uj

∂νt
dΩ +

∫

Γ
UaiUjnj

∂Ui

∂νt
dΓ −

∫

Ω

∂
(
UaiUj

)

∂xj

∂Ui

∂νt
dΩ (14)  

b2 = −

∫

Ω
Uai

∂
∂xj

(
∂Ui

∂xj
+

∂Uj

∂xi

)

dΩ−

∫

Ω
Uai

∂
∂xj

[

νeff
∂

∂νt

(
∂Ui

∂xj
+

∂Uj

∂xi

)]

dΩ

= −

∫

Ω
Uai

∂
∂xj

(
∂Ui

∂xj
+

∂Uj

∂xi

)

dΩ −

∫

Γ
Uainjνeff

∂
∂νt

(
∂Ui

∂xj
+

∂Uj

∂xi

)

dΓ

+

∫

Γ
νeff

(
∂Uai

∂xj
+

∂Uaj

∂xi

)

nj
∂Ui

∂νt
dΓ −

∫

Ω

∂
∂xj

[

νeff

(
∂Uai

∂xj
+

∂Uaj

∂xi

)]
∂Ui

∂νt
dΩ

(15)  

b3 =

∫

Γ
Uaini

∂p
∂νt

dΓ −

∫

Ω

∂Uai

∂xi

∂p
∂νt

dΩ (16) 

Substituting Eq. 11, Eq. 12 and Eq. 13 (considering the equality in 
Eq. 14, Eq. 15 and Eq. 16) into Eq. 10, the variation of the augmented 
objective function with respect to the control variable, i.e. the turbulent 
viscosity, is obtained: 

δL
δνt

=

∫

Ω

∂JΩ

∂Ui

∂Ui

∂νt
dΩ +

∫

Ω

∂JΩ

∂p
∂p
∂νt

dΩ +

∫

Ω

∂q
∂xj

∂Uj

∂νt
dΩ +

∫

Ω
Uai

∂Ui

∂xj

∂Uj

∂νt
dΩ

−

∫

Ω

∂
(
UaiUj

)

∂xj

∂Ui

∂νt
dΩ −

∫

Ω
Uai

∂
∂xj

(
∂Ui

∂xj
+

∂Uj

∂xi

)

dΩ −

∫

Ω

∂Uai

∂xi

∂p
∂νt

dΩ

−

∫

Ω

∂
∂xj

[

νeff

(
∂Uai

∂xj
+

∂Uaj

∂xi

)]
∂Ui

∂νt
dΩ

+

∫

Γ

∂JΓ

∂Ui

∂Ui

∂νt
dΓ +

∫

Γ

∂JΓ

∂p
∂p
∂νt

dΓ −

∫

Γ
q

∂Uj

∂νt
nj dΓ +

∫

Γ
UaiUjnj

∂Ui

∂νt
dΓ

−

∫

Γ
Uainjνeff

∂
∂νt

(
∂Ui

∂xj
+

∂Uj

∂xi

)

dΓ +

∫

Γ
νeff

(
∂Uai

∂xj
+

∂Uaj

∂xi

)

nj
∂Ui

∂νt
dΓ

+

∫

Γ
Uaini

∂p
∂νt

dΓ.

(17) 

So far the Lagrange multipliers q and Uai are still to be chosen freely. 
As the evaluation of the derivatives of the flow variables w.r.t. the 
control variable are expensive to evaluate, it is common to group the 
volume integrals that involve those derivatives and set them to zero, 
thus establishing a system of equations involving the Lagrange 
multipliers: 

−
∂Uai

∂xi
+

∂JΩ

∂p
= 0 (18)  

Uai
∂Ui

∂xj
−

∂
(
UaiUj

)

∂xj
−

∂
∂xj

[

νeff

(
∂Uai

∂xj
+

∂Uaj

∂xi

)]

+
∂q
∂xj

+
∂JΩ

∂Ui
= 0 (19) 

The equations above, Eq. 18 and Eq. 19, are called the adjoint con
tinuity and the adjoint momentum equation, respectively. 

The boundary conditions necessary to solve the adjoint equations 
can be obtained from the surface integrals in Eq. 17. In particular, the 
derivation corresponding to some typical boundary condition for the 
flow field is as follows:  

• Inlet and walls. Usually a Dirichlet boundary condition is chosen for 
the velocity, as a consequence all the terms involving the surface 
integral of the derivative of the flow velocity w.r.t. the control var
iable vanish since ∂Ui

∂νt
= 0. On the other hand, the boundary con

dition for the pressure is of Neumann type, thus ∂p
∂νt

∕= 0. Therefore, 
the boundary condition to set for the adjoint velocity is obtained by 
setting the terms involving those derivatives to zero. The boundary 
condition for the adjoint pressure is set in accordance with the 
pressure boundary condition: 

Uaini +
∂JΓ

∂p
= 0,

Uainj = 0,

∂q
∂xi

= 0.

(20)    

• Outlet. A Dirichlet boundary condition is commonly used for the 
pressure, i.e. ∂p

∂νt
= 0, thus the according terms vanish. Moreover, 

assuming an uniform velocity profile as the outlet section is far 
enough from the bend, the integral containing ∂Ui

∂xj
+

∂Uj
∂xi 

is zero. A 
Neumann boundary condition is typically applied to the velocity, as a 
result ∂Ui

∂νt
∕= 0. As a consequence, the surface integrals containing 

these derivatives give the adjoint boundary conditions for the adjoint 
pressure and for the tangential adjoint velocity by setting the 
multiplying terms to zero. The adjoint velocity normal to the 
boundary is extracted from the internal domain. 

− qnj + UaiUjnj + νeff

(
∂Uai

∂xj
+

∂Uaj

∂xi

)

nj +
∂JΓ

∂Ui
= 0 (21)   

The adjoint equations, Eq. 18 and Eq. 19, and their boundary con
ditions, Eq. 20 and Eq. 21, depend on the objective function chosen. In 
the present work, this is the difference between the velocity field ob
tained with a RANS evaluation, Ui, and the mean velocity obtained with 
a LES one, Ui. Because the objective function, defined in Eq. 4, is a 
volumetric objective function, its derivative on the boundaries is zero. 
The terms in Eq. 22 complete the adjoint equations and the adjoint 
boundary conditions. 

∂JΩ

∂Ui
= 2

(

Ui − Ui

)

;
∂JΩ

∂p
= 0 ;

∂JΓ

∂Ui
= 0 ;

∂JΓ

∂p
= 0 (22) 

The solution of the adjoint equations, Eq. 18 and Eq. 19, with their 
boundary conditions, Eq. 20 and Eq. 21, allows the evaluation of the 
adjoint variables, Ua and q, and reduces equation Eq. 17 to one term 
only: 

δL
δνt

=
δJ
δνt

= − Uai
∂

∂xj

(
∂Ui

∂xj
+

∂Uj

∂xi

)

(23)  

because the gradient of L is identical to the gradient of J when Eq. 6 and 
Eq. 7 are satisfied. The above expression represents the sensitivity of the 
objective function J with respect to the control variable νt, and thus 
identifies how to adjust the control value to reduce the objective 
function. 

A steepest descent algorithm is used to minimize J. To prevent non- 
physical values, the steepest descent algorithm is modified to ensure that 
the value of νt is clipped between νmin

t and νmax
t , 

νNew
t = min

[

max
(

νT
t + λ

δJ
δνt

, νmin
t

)

, νmax
t

]

(24)  

where λ defines the step size of the control variable modifications. 
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Negative turbulent viscosity values are prevented by imposing νmin
t = 0, 

while enforcing a maximum limit (νmax
t ) avoids a divergent solution. A 

relaxation factor γ is used to help the solution convergence, 

νT+1
t = (1 − γ)νT

t + γνNew
t (25)  

where the superscripts T and T + 1 refer to two consecutive iterations. 
The described approach is general and can be applied to all flows 

suitable for an adjoint optimization strategy. The test case presented in 
this paper has a starting flow field which is similar to the target one, 
facilitating the optimizer in reaching the desired flow field character
istics (i.e. the creation of the recirculation bubble). However, from a 
theoretical point of the view, this approach would work also if the RANS 
solution is very far from the LES one. When the RANS and LES solutions 
differ considerably from each other, an optimized solution closer to the 
LES than the RANS one would be still obtained although the discrep
ancies between the optimized and LES solution could be still significant. 

3.2. Node-based shape routine and line search approach 

The resulting flow field obtained from the νt-adapted RANS is then 
used for the evaluation of the adjoint field in the context of a shape 
optimization problem in which the objective is the minimization of the 
pressure losses. Thus, the considered objective function J is now rep
resented by: 

J = pin
T − pout

T =

∫

Γin

p +
1
2

ρU2 dΓ −

∫

Γout

p +
1
2

ρU2 dΓ, (26)  

where pT represents the total pressure and in and out refer to the inlet 
and outlet boundary of the domain respectively. 

In particular, the node-based adjoint optimization routine by Alessi 
et al. [52] is used in this work. The adjoint equations for shape opti
mization and pressure loss reduction are solved using a frozen turbulent 
approach and, in particular, using the optimal turbulent viscosity field 
obtained as a result of the inverse problem. The control variables chosen 
at the present step of the LES-based optimization are represented by the 
normal displacement of each surface node, resulting in a very rich design 
space. As a consequence, the surface sensitivity map obtained from the 
solution of the adjoint and RANS equations expresses how much the 
objective function would change for a unit movement in the direction of 
the surface normal. Before converting the gradient information into a 
design variation, a Gaussian filter is applied to damp short wavelength 
oscillations [53]. The attainment of a smooth sensitivity is a crucial 
point to obtain a valid geometry deformation, and thus an admissible 
design. Therefore, the use of a filter is indispensable. The filtered surface 
sensitivity is linked with a steepest descent algorithm to modify every 
node of the U-bend wall and obtain the newly optimized design, as 
follows: 

xi+1 = xi + βSn, (27)  

where xi and xi+1 represent the position vector of each node before and 
after the boundary movement respectively. Each node is displaced in the 
direction normal to the surface, n, with a magnitude depending on the 
smoothed surface sensitivity, S. The parameter β represents the step size 
of the algorithm. The optimizer guarantees a smooth design and the 
compliance of constraints, if present. Similar to the optimization in 
reference [38], no movement is allowed in the z direction and a 
bounding box surrounding the bend defines the geometrical constraints. 
In-plane modifications of the bend are possible in order to take full 
advantage of the potential of a node-based optimization, different from 
the reference case where only 26 degrees of freedom are given to the 
parametrized model of the U-bend. In addition, in agreement with the 
work of Verstraete et al. [38], the inlet and outlet leg of the bend remain 
fixed for a length of 8Dh and only the remaining regions close to the bend 
take part in the optimization process. 

The reason for the choice of the steepest descent algorithm lies in its 
ease of implementation. However, the choice of a suitable step size for 
the optimization represents a drawback, which could lead to a long 
convergence time and consequently to waste of computational re
sources. In order to mitigate the aforementioned disadvantage, a line 
search strategy is added to the steepest descent algorithm to speed-up 
the optimization process. The idea behind the line search is to vary 
the step size for a given iteration, in order to find the one that minimizes 
the objective function in the descent direction given by the sensitivity. In 
particular, starting from an initial guess, β∗, the step magnitude is 
increased and decreased by a factor of 1.5. The performance of the three 
different geometries is evaluated in search for the minimum of the 
objective function. If a minimum is not identified, the step size is 
changed in the direction of performance increase until the identification 
of the geometry with the best performance, stating the end of the line 
search for the iteration considered. The corresponding step magnitude is 
used as initial guess for the line search of the next optimization iteration. 
A LES simulation is carried out at each step of the line search in order to 
have an accurate prediction of the objective function. 

The last step of the optimization process is represented by a link 
between the boundary movement and the mesh deformation. In the 
present work is used a mesh morpher based on the Laplace equation in 
which the prescribed boundary movement represents the boundary 
condition for the internal cell motion. The diffusivity in the Laplace 
equation is equal to the inverse square distance from the nearest 
boundary. A distance-based diffusivity improves the mesh quality near 
the boundaries: it redistributes the movement inside the domain 
allowing bigger deformations on the center of the domain where bigger 
cells are present. Details on the used optimizer, smoothing operations, 
the attainment of constraints and mesh deformation strategy can be 
found in Alessi et al. [52]. 

4. Optimization results of the LES-based optimization 

The previously outlined algorithms define an optimization strategy 
within a LES context. The methodology is applied to the U-bend test case 
optimized in Verstraete et al. [38] and aims to reach further improve
ments by a more accurate evaluation of the flow field. 

4.1. Results of the νt -adapted RANS 

The first step of the proposed approach aims to fit the LES time 

Fig. 5. Normalized velocity field and its planar streamlines in the νt -adapted 
RANS solution at z/Dh = 0.5. 
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averaged flow field with a RANS calculation through the solution of an 
inverse problem. The output of the νt-adapted RANS solution is shown in 
Fig. 5. It concerns the first loop of the optimization algorithm, therefore 
it refers to the initial geometry taken into account and analyzed in Fig. 2. 
In particular, Fig. 5 shows the velocity field at the middle plane z =
0.5Dh. The planar streamlines highlight the formation of a recirculation 
bubble in the internal bend region, recovering the correct fluid struc
tures inside the bend shown in the PIV visualization (Fig. 2a). A com
parison between Fig. 2c and Fig. 5 shows a very good agreement 
between the solution obtained with the LES and νt-adapted RANS. 
Approaching the internal bend, a slight overestimation of velocity 
magnitude is present in the νt-adapted RANS solution in comparison 
with the LES one. On the other hand, slightly slower velocity regions are 
obtained in the outer side of the bend. The cell-based variation of the 
turbulent viscosity allows therefore to obtain a RANS solution very 
similar to the LES one. 

The turbulent viscosity field at the middle plane resulting from the 
solution of the inverse problem and its comparison with the field ob
tained from a standard RANS simulation is shown in Fig. 6. In particular, 
the colorbar range of the two fields is saturated to a value of νt = 3⋅10− 3 

to highlight the differences. The νt-adapted field is very similar to the 
standard field with differences in a few regions. An increase of turbulent 
viscosity is present close to the inner-wall at the bend entrance (label A 
in Fig. 6b), which is the main region to be modified in order to recreate 
the recirculation region. The viscosity increment represents an obstacle 
to the flow promoting the flow separation. Due to the obstruction, the 
region of maximum velocity shifts from occupying a large region along 
the wall (Fig. 2b) to a slightly detached location (Fig. 5). Differences can 
be also noted in the region of the now properly represented flow recir
culation. A comparison between the RANS and LES solution, Fig. 2b and 
Fig. 2c respectively, shows a difference in the velocity field at the outer- 
wall region of the inlet leg. The bigger zone with low velocity in the LES 
simulation is now well represented due to an increase of turbulence 
viscosity in the νt-adapted RANS simulation. A local adaptation of the 
viscosity field is therefore capable of adjusting the regions of main dif
ferences between the RANS and LES velocity field. 

The νt-adaptation convergence history is shown in Fig. 7, where the 
evolution of the objective function in Eq. 4 with iteration number is 
plotted. The optimization history shows a fast reduction of the objective 
function, which reaches its minimum value in approximately 1000 it
erations. However, the νt distribution found is not associated to a 
convergent flow field. The residuals of the flow field and adjoint equa
tions decrease indeed for 5000 iterations. After that, the residuals 
gradually stabilize and no variation on the shape of the newly created 
recirculation bubble is observed in the last two thousand iterations. A 
plateau identifies the end of the optimization process, which establishes 
that a reduction of 41.6% in J is achieved in 8000 iterations. The solu
tion of the νt-adaptation problem requires 3 hours using 16 cores. 

4.2. Results of the LES-based optimization 

The νt-adaptation methodology provides a more correct flow field 
and can be used in combination with the adjoint shape optimization 
routine, such that the LES is not involved in the gradient evaluation 
procedure. The objective is now the reduction of the total pressure drop, 
using the optimization loop in Fig. 3. As no variation between the static 
and the total pressure drop is expected at the planes considered, the loop 
is solved until no further gains in static pressure drop are obtained. The 
latter can be monitored by the optimization history curve shown in 
Fig. 8. Each iteration corresponds to one whole loop of the algorithm, 
which includes a line search. A large improvement in performance is 
already obtained by the first iteration, with an additional gain in terms 
of static pressure drop of Δp = − 2.97% on a previously optimized 
design. The successive iterations essentially confirm the first one, as the 
following designs display comparable performances. As the starting 
design comes from a previous optimization [38], only very small mod
ifications would be expected after the first iteration of the optimization 
loop in which a line search approach is used. The strategies employed to 
ensure a smooth design further reduce the modifications at the second 
iteration of the optimization loop and at the successive ones, resulting in 
a similar geometry to the one obtained at the first iteration, with a 
similar performance. The computational time is approximately 4 days 
per optimization loop iteration on 40 cores. 

The line search corresponding to the first major iteration is shown in 
Fig. 9. Starting from an initial guess, β∗ = 0.066Dh, a descent direction 
in the value of the static pressure drop is present with an increase of the 
step size until a minimum is obtained at β = 2β∗ = 0.132Dh. This step 

Fig. 6. Turbulent viscosity field at z/Dh = 0.5 (initial geometry).  

Fig. 7. Convergence history of the objective function in the νt-adapta
tion process. 

Fig. 8. LES-based optimization history.  
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size identifies the design corresponding to the best performance 
achievable in the searched direction and is used as initial guess for the 
next optimization loop iteration. Its geometry is adopted as starting 
point for the subsequent major iteration. 

The obtained optimized design is shown in Fig. 10. In particular, a 
comparison between the initial and the optimized U-bend, respectively 
in black and in red, is shown at two different planes: at z /Dh = 0.5 in 
Fig. 10a and at the yz plane in Fig. 10b. The comparison highlights how 
small modifications are sufficient to obtain a remarkable performance 
improvement. The two designs are indeed very close to each other and 
only few modifications are applied to obtain the LES-based optimized 
design. This was however expected since the starting U-bend is the result 
of a previous RANS-based optimization study ([38]) and thus its ge
ometry is already close to the optimal one. The small modifications 
applied are however sufficient to obtain an improved design, squeezing 
the last percentage of performance improvement. The variations affect 
almost exclusively the internal bend region, as shown in both planes 
illustrated. A small asymmetry in the shape with respect to the middle 
plane is highlighted in Fig. 10b. Indeed, the mean velocity field obtained 
from the LES simulation and consequently the one from the νt-adapted 
RANS approach shows small asymmetries that affect the surface sensi
tivity information and, as consequence, the geometry movement. This 
could be improved by imposing symmetry in the geometry deformation 
and averaging the surface sensitivities from the top and bottom sym
metric sides, which is however not performed in the present work. 

The normalized mean velocity field from the LES simulation with its 

planar streamlines at the middle plane in the newly optimized geometry 
is shown in Fig. 11. A comparison between the mean velocity field of the 
initial design, Fig. 2c, and the one obtained after the optimization pro
cess, Fig. 11, confirms that the modifications performed by the optimizer 
effectively decrease the total pressure drop in the design by reducing the 
recirculation bubble, which almost disappears. The modifications in the 
design concern the entry region of the internal bend, as shown in 
Fig. 10a, which now better guides the flow in the bend. As a conse
quence, a decrease of the maximum mean velocity is obtained around 
the inner bend in comparison with the initial geometry, resulting in a 
lower adverse pressure gradient and in the consequent reduction of the 
separation region size. This is confirmed by the comparison of the 
normalized static pressure field at z/Dh = 0.5 shown in Fig. 12. The 
region of adverse pressure gradient around the bend that is present in 
the initial geometry (Fig. 12a) is considerably reduced in the νt-adapted 
RANS optimized geometry (Fig. 12b), resulting in the reduction of the 
size of the separation region. 

5. Conclusions 

The use of the RANS approach to evaluate the flow field character
istics in an optimization framework could lead to inaccurate results. A 
comparison between the mean velocity field obtained with RANS and 
LES and the experimental data available in literature shows that the 
RANS approach fails to correctly evaluate the flow features inside a U- 
bend geometry. A validation study in an optimized geometry highlights 
the presence of a recirculation region inside the bend both in the ex
periments and in the LES simulation, while it is not detected by a RANS 
evaluation. The separation region is responsible for additional pressure 
losses inside the system and its elimination would bring an improvement 
to the design, which could only be achieved by using a LES based 
approach. 

The present work therefore proposes a new approach for the intro
duction of LES in an optimization framework, by using the adjoint 
method to keep the number of expensive LES computations to a mini
mum. As the direct application of the adjoint approach would lead to 
unreliable sensitivities, an additional step to detach the LES from the 
gradient computations is developed and introduced in the optimization 
loop. Starting from a RANS simulation, an adaptation process of the 
turbulent viscosity is carried out aiming to obtain a velocity field that 

Fig. 9. Line search result of the first major iteration.  

Fig. 10. Comparison between initial (black) and optimized U-bend (red). (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 11. Normalized mean velocity field and its planar streamlines for the LES- 
based optimized U-bend at z/Dh = 0.5. 
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represents the mean velocity field coming from a LES solution. The re
sults show that the proposed approach can overcome the limitations of 
the original RANS solution, as with an adaptation of the turbulent vis
cosity a mean velocity field very similar to the experimental one can be 
obtained. This solution is then used as the starting point for an adjoint 
shape optimization routine to further improve the design based on LES 
evaluations. The obtained design has an additional 3% reduction in total 
pressure drop compared to a previously optimized geometry. The opti
mizer aims to reduce the total pressure drop by reducing the recircula
tion region inside the bend, confirming that an accurate evaluation of 
the mean velocity field inside the bend is of fundamental importance. 
The computational cost of the proposed approach based on LES evalu
ations is considerably higher than the one based on RANS simulations, 
approximately 96 and 12 hours respectively. As a consequence, a first 
optimization with RANS should be carried out, since it allows to obtain 
an optimized design at a low computational cost. The design obtained 
can be then fine-tuned and further improved by considering the LES- 
based approach. 

The proposed approach allows to integrate LES evaluations in an 
adjoint optimization routine, providing reliable gradient information. 
This results in optima that are more effective in real operating condi
tions, as the optimization uses accurate flow field predictions. 
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