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a b s t r a c t

Identification methods for dynamic networks typically require prior knowledge of the network and
disturbance topology, and often rely on solving poorly scalable non-convex optimization problems.
While methods for estimating network topology are available in the literature, less attention has
been paid to estimating the disturbance topology, i.e., the (spatial) noise correlation structure and the
noise rank in a filtered white noise representation of the disturbance signal. In this work we present
an identification method for dynamic networks, in which an estimation of the disturbance topology
precedes the identification of the full dynamic network with known network topology. To this end
we extend the multi-step Sequential Linear Regression and Weighted Null Space Fitting methods to
deal with reduced rank noise, and use these methods to estimate the disturbance topology and the
network dynamics in the full measurement situation. As a result, we provide a multi-step least squares
algorithm with parallel computation capabilities and that rely only on explicit analytical solutions,
thereby avoiding the usual non-convex optimizations involved. Consequently we consistently estimate
dynamic networks of Box Jenkins model structure, while keeping the computational burden low. We
provide a consistency proof that includes path-based data informativity conditions for allocation of
excitation signals in the experimental design. Numerical simulations performed on a dynamic network
with reduced rank noise clearly illustrate the potential of this method.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Dynamic networks represent large-scale interconnected sys-
ems, and data-driven modeling of dynamic networks has re-
eived considerable attention in recent years. These networks can
e considered as a set of measurable (node) signals intercon-
ected through linear dynamic systems (the modules), driven by
easured external excitation signals and/or unmeasured distur-
ance signals. Modeling of these networks plays an important
ole in biological systems (Hagmann et al., 2008; Hickman et al.,
017), economic systems (Materassi & Innocenti, 2010), power
etworks (Pagani & Aiello, 2013), and many other fields in science
nd engineering. The challenges addressed in identification of
ynamic networks can roughly be divided into three categories.

✩ This project has received funding from the European Research Council
(ERC), Advanced Research Grant SYSDYNET, under the European Union’s Horizon
2020 research and innovation programme (Grant Agreement No. 694504). The
material in this paper was not presented at any conference. This paper was
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The first is identifying the interconnection structure of the nodes
in a dynamic network referred to as network topology detec-
tion (Chiuso & Pillonetto, 2012; Materassi & Innocenti, 2010).
The second is the identification of a specific module in a net-
work, referred to as local module identification. For this problem
closed-loop identification methods have been generalized to the
dynamic network situation in Van den Hof, Dankers, Heuberger,
and Bombois (2013), formulating the local module identification
problem as a multi-input–single-output (MISO) problem. This has
been further extended and generalized in e.g., Dankers, Van den
Hof, Heuberger, and Bombois (2016), Dankers, Van den Hof, Bom-
bois, and Heuberger (2015), Everitt, Galrinho, and Hjalmarsson
(2018), Gevers, Bazanella, and Vian da Silva (2018), Materassi and
Salapaka (2020), Ramaswamy, Bottegal, and Van den Hof (2021),
Ramaswamy and Van den Hof (2021) and Van den Hof and Ra-
maswamy (2021). The third challenge is identification of the full
network dynamics (Dankers, 2019; Fonken, Ferizbegovic, & Hjal-
marsson, 2020; Weerts, Galrinho, Bottegal, Hjalmarsson, & Van
den Hof, 2018; Weerts, Van den Hof, & Dankers, 2018b), where
the problem is formulated as the identification of a (structured)
multi-input–multi-output (MIMO) model.

In this paper we will further explore the development of

full network identification methods. While dynamic networks

icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ncrease in complexity and size, and measurement data is be-
oming increasingly accessible, there is a strong demand for
ccurate and scalable data driven modeling methods. The joint
irect method (Weerts, Van den Hof, & Dankers, 2017; Weerts
t al., 2018b) predicts all node signals in the network jointly
nd achieves consistency and minimum variance properties in
he situation that the network and disturbance topology are
iven a priori and the noise can be of reduced rank. However
t strongly relies on solving (constrained) non-convex optimiza-
ion problems, which seriously limits its scalability to larger
etworks. There are multi-step convex identification methods
vailable for full network identification, such as the Sequential
inear Regression (SLR) (Dankers, 2019), Sequential Least Squares
SLS) (Weerts et al., 2018) and extensions of Weighted Null
pace Fitting (WNSF) (Galrinho, Rojas, & Hjalmarsson, 2019) such
s Fonken et al. (2020). Moreover, methods such as the SLR and
LS allow for splitting the MIMO optimization into multiple linear
egressions, which contributes to a lower computational burden.
he available convex methods are scalable to larger networks, but
re limited to particular model structures of the network, and
dditionally, they do not allow for handling reduced rank noise.
articularly in large-scale network identification, stepping away
rom the typical assumption that all disturbance signals have
heir own independent noise source, is an appealing situation that
hould be supported by an effective estimation algorithm. Han-
ling this situation of reduced-rank noise can substantially reduce
he variance of estimated models. However it also introduces
he problems of estimating the noise rank and noise correlation
tructure from data.
All available convex and non-convex methods for network

dentification require prior knowledge on the topology (i.e. rank
nd spatial correlation structure of the disturbance model). While
n dynamic factor analysis (Deistler, Scherrer, & Anderson, 2015)
ttention has been paid to the estimation of noise rank, in predic-
ion error identification this does not appear to be included yet
n the identification algorithms. For situations where the distur-
ance topology information is not readily available, it is attractive
o develop methods that include estimating this information from
ata.
The topology estimation literature shows a variety of available

ethods to estimate the topology, such as Wiener filter based
ethods (Materassi & Innocenti, 2010; Materassi & Salapaka,
012; Materassi, Salapaka, & Giarrè, 2011), Bayesian model se-
ection techniques (Chiuso & Pillonetto, 2012; Shi, Bottegal, &
an den Hof, 2019; Wasserman, 2000), or methods that infer
he topology from parametric estimates (Bolstad, Van Veen, &
owak, 2011; Dankers, Van den Hof, Heuberger, & Bombois,
012; Yuan, Stan, Warnick, & Gonçalves, 2011). While the main
ocus of topology detection literature has been on estimating
etwork topology in the situation of a diagonal disturbance spec-
rum Φv(ω), extensions towards nondiagonal spectra have been
resented in Bombois and Hjalmarsson (2021), Dimovska and
aterassi (2017) and Veedu and Salapaka (2020). In Veedu and
alapaka (2020) network topology and the non-zero pattern in
he disturbance spectrum are estimated jointly. In this paper we
ssume that we do not know the disturbance topology a priori,
ut we assume that the network topology is known e.g., from its
nderlying physics, which is commonly the case for engineered
ystems. In the situation that the network topology is not known
eforehand, it is possible to use any of the above cited methods to
stimate it. We allow the process noise to be spatially correlated,
.e. the disturbance spectrum Φv(ω) is not necessarily diagonal.
dditionally the noise is allowed to be of reduced rank, i.e. Φv(ω)

can be singular.
The objective is to develop a multi-step convex algorithm that
estimates the disturbance topology and the dynamic modules in

2

the network for general model structures including the Box Jenk-
ins (BJ) structure, while adhering to computational algorithms
that are scalable, while achieving favorable properties in terms
of low experiment cost, consistency and reduced variance of the
network estimates.

To this end we develop a multi-step algorithm to identify
the network dynamics. In the first step the noise rank and the
nonzero pattern in the corresponding disturbance model (noise
shaping filter) are estimated. This is done through a (nonparamet-
ric) high-order ARX model, inspired by the SLR method (Dankers,
2019). Next, this information is used to develop a multi-step
convex algorithm that can accurately identify the dynamics of
the network in the situation of reduced rank noise and for a
very general Box Jenkins model structure, thereby combining
the recently introduced multi-step convex identification methods
SLR (Dankers, 2019) and WNSF (Fonken et al., 2020; Galrinho
et al., 2019) and extending them to the described situation.

The paper proceeds with a definition of the considered dy-
namic network setup in Section 2. In Section 3 we present a
new method for estimating the disturbance topology from data,
followed in Section 4 by a multi-step identification algorithm
that exploits the prior estimated disturbance topology. Section 5
presents the consistency analysis of the method, including graph-
based conditions for data informativity. Results of numerical sim-
ulations are provided in Section 6, followed by conclusions in
Section 7. The consistency proofs are collected in Appendix.

2. Dynamic networks

Following the setting of Van den Hof et al. (2013) a dynamic
network is defined by L nodes or internal variables wj(t), j =

1, . . . , L, that are scalar-valued measured signals. The underly-
ing network is linear time invariant (LTI), and the nodes of the
network can be expressed as

wj(t) =

∑
l∈Nj

G0
jl(q)wl(t) +

∑
k∈Rj

R0
jk(q)rk(t) + vj(t), (1)

here

• q−1 the delay operator, i.e. q−1wj(t) = wj(t − 1),
• Nj defines the set of indices of measured node signals wl,

l ̸= j, for which G0
jl(q) ̸= 0, where G0

jl(q) is a strictly proper
rational transfer function,

• Rj defines the set of indices of measured external excitation
signals rk, for which R0

jk(q) ̸= 0, where R0
jk(q) is a known

proper rational transfer function,
• vj(t) is unmeasured process noise, where the disturbance

vector v = [v1 · · · vL]
⊤ is modeled as a wide sense stationary

stochastic process represented by v(t) = H0(q)e(t). The
e = [e1 · · · ep]⊤ is a white noise process of dimension p ≤ L
with covariance matrix Λ0 > 0. H0(q) is a rational transfer
function matrix.

he full network expression, with omitted q and t , is

w1
w2
...

wL

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
0 G0

12 · · · G0
1L

G0
21 0

. . . G0
2L

...
. . .

. . .
...

G0
L1 G0

L2 · · · 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣

w1
w2
...

wL

⎤⎥⎥⎦ + R0

⎡⎢⎢⎣
r1
r2
...

rK

⎤⎥⎥⎦ + H0

⎡⎢⎢⎣
e1
e2
...

ep

⎤⎥⎥⎦
(2)

ith the matrix notation given by

= G0w + R0r + H0e, (3a)

= (I − G0)−1(R0r + H0e), (3b)
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here we assume that the inverse (I − G0)−1 exists and the
network is well-posed, as used in Van den Hof et al. (2013).

In the situation p < L, i.e. when the noise is of reduced rank
or singular, the disturbance model H0 is a non-square matrix, i.e.

• H0
∈ RL×p(z) is stable and has a stable left inverse H† that

satisfies H†H = I ∈ Rp×p;

or a unique representation of reduced rank spectra that can be
sed to construct a predictor we can adopt a result from Weerts
t al. (2018b) where the disturbance term is equivalently written
s H̆0ĕ with H̆0 square.

emma 1 (Weerts et al., 2018b). Consider an L-dimensional distur-
ance process v with rank p. Then the disturbance signals v can be
eordered in such a way that the following unique representations
esult:[
va
vb

]
= H0e = H̆0ĕ with

H0
=

[
H0

a
H0

b

]
, H̆0

=

[
H0

a 0
H0

b − Γ 0 I

]
, ĕ =

[
ĕa
ĕb

]
=

[
e

Γ 0e

]
nd Γ 0

= limz→∞H0
b (z)

(4)

uch that

• H0
a ∈ Rp×p(z) is a monic full rank rational transfer function

matrix;
• H0

b ∈ R(L−p)×p(z) is a stable proper rational transfer function
matrix.

• The covariance matrix of ĕ is given by,

Λ̆0
=

[
I

Γ 0

]
Λ0

[
I

Γ 0

]⊤

=

[
Λ0 Λ0Γ 0⊤

Γ 0Λ0 Γ 0Λ0Γ 0⊤

]
, (5)

where Λ0
∈ Rp×p has rank p.

• If additionally H0
a is minimum phase then H̆0 is monic, stable

and minimum phase. 1 □

he result of the reordering of signals as indicated in the Lemma
s that the first p components of the reordered signal constitute
full rank p process.
We assume that the data generating network satisfies the

ollowing properties.

ssumption 1.

a. The network is well-posed, i.e. all principle minors of
(
I −

G0(∞)
)
are nonzero (Araki & Saeki, 1983).

b. (I − G0)−1 is stable and causal.
c. All elements in G(q) are strictly proper.
d. H0 is stable and has a stable left inverse.
e. H̆0 is square, monic and minimum phase.
f. The topology of G0 and R0, and the non-zero elements of

R0 are fixed and known.
g. The matrix R0 has a block diagonal structure: R0

=

diag(R0
a, R

0
b) in the situation of ordered nodes as meant in

(4).
h. Measurements of all node signals w and all present excita-

tion signals r are available.
i. The standard regularity conditions on the data are satisfied

that are required for consistency results of the prediction
error identification method.2

1 It has recently been pointed out in Cao, Picci, and Lindquist (2021) that
his excluded the situation where the (deterministic) mapping from va to vb is
unstable.
2 See Ljung (1999) page 249. This includes the property that e(t) has bounded
oments of order higher than 4.
3

The two main steps of the identification method that will be
developed in this paper are

• Estimating the disturbance topology, i.e. the noise rank and
the zero pattern in the disturbance model.

• Estimating the dynamical components in the network for
a given network and disturbance topology, while using a
parametric BJ model structure.

In the next section we first focus on the disturbance topology esti-
mation method, followed by the developed identification method
in the section thereafter.

3. Disturbance topology estimation

Before we can use a unique disturbance model that is struc-
tured according to H̆0 in (4), we need to estimate the noise rank
p and we need to be able to reorder the node signals in such a
way that a noise representation as in (4) can be used. This step
is necessary as the unstructured disturbance model H0 is non-
unique in the situation p < L. Therefore the disturbance topology
estimation is performed in two main steps:

• Step 1: Estimating the noise rank, and reordering the signals
to the situation of Lemma 1.

• Step 2: Estimating the structure of the disturbance model
H̆0.

.1. Step 1: Estimating noise rank p and reordering of nodes

For estimating the noise rank p, we are going to estimate the
ovariance matrix Λ̆0(5) of innovation signal ĕ, which through its
ank p can provide us access to the correct noise rank.

An estimate of the covariance matrix is obtained by estimating
high-order (nonparametric) ARX model on the basis of mea-

ured signals w, r , and by using the residual (predictor error) of
his estimated model as an estimate of the white noise term ĕ.

A parametrized ARX model is chosen according to

Ă(q, ζ ) = I + Ă1q−1
+ · · · + Ănq−n (6)

B̆(q, ζ ) = B̆0 + B̆1q−1
+ · · · B̆n−1q−(n−1) (7)

hile all coefficients of Ăk, B̆k are vectorized and collected in the
arameter vector ζ . The one-step-ahead predictor Ljung (1999),
efined as

ˆ (t|t − 1; ζ ) := E{w(t)|wt−1, r t}, (8)

here wt−1 and r t are defined according to wt−1
:= {w(0), w(1),

. . , w(t − 1)} and r t := {r(0), r(1), . . . , r(t)}, is given by

ˆ (t|t − 1, ζ ) =
(
I − Ă(q,ζ )

)
w(t) + B̆(q,ζ )r(t) (9)

= ϕ(t)ζ (10)

ith ϕ(t) composed of the appropriate terms in w and r .
Note that for an actual network with representation G0, H̆0, R0,

he one-step predictor will be given by

ˆ (t|t − 1) =
(
I − (H̆0(q))−1(I − G0(q))

)
w(t) +

+ (H̆0(q))−1R0(q)r(t). (11)

his implies that the polynomial predictor model (9) can only
ccurately approximate the rational filters that are present in
11) if the ARX order n is chosen very high. The ARX model is
stimated according to ζ̂ n

N = argminζ
1
N

∑N
t=1 εT (t, ζ )ε(t, ζ ), with

ε(t, ζ ) = w(t) − ŵ(t|t − 1; ζ ), leading to the analytical solution

ζ̂ n
N =

[
1
N

N∑
ϕ(t)ϕ⊤(t)

]−1 1
N

N∑
ϕ(t)w(t). (12)
t=1 t=1
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ince the network identifiability conditions of Weerts, Van den
of, and Dankers (2018a) are satisfied for the considered model
et, the sample estimate

ˆ :=
1
N

N∑
t=1

ε(t, ζ̂ n
N )ε

⊤(t, ζ̂ n
N ), (13)

will then, under mild regularity conditions, be a consistent esti-
mate of the noise covariance Λ̆0. The rank p of the noise process
can then be estimated through a rank test on Λ̂, e.g., through
a singular value decomposition. Alternatively, other matrix fac-
torizations or information based criteria can be applied for esti-
mating the rank, see e.g., Camba-Méndez and Kapetanios (2009).
When Λ̂ and the estimated rank p̂ < L have been determined, the
L signals can be reordered through a permutation matrix Π such
that the first p̂ components of the permuted noise vector have a
rank p̂ covariance matrix, i.e.

[
Ip̂ 0

]
Π⊤Λ̂Π

[
Ip̂ 0

]⊤ has rank
p̂.

Remark 1. Since the polynomials Ă(ζ ) and B̆(ζ ) are fully
parametrized with independent parameters on each polynomial
entry, the MIMO least squares optimization that leads to the
solution (12) can also be decomposed in L separate linear re-
gressions that minimize the residual εj(t, ζ ) separately for each
j, which is computationally attractive since the computations can
be performed in parallel or sequentially.

Remark 2. The resulting estimation scheme will generally not
provide us with consistent estimates of the ARX model. This is not
only due to the fact that typically the order n of the ARX model
would need to go to infinity, but also to the fact that the solution
for ζ̂ n

N is non-unique in the situation p < L. However, this latter
non-uniqueness does not affect the uniqueness and whiteness of
the residual ε(t, ζ̂ n

N ) since, according to the projection theorem,
every solution for ζ̂ n

N determines the same predictor (Deistler, An-
derson, Filler, Zinner, & Chen, 2010). The estimate Λ̂ is therefore
consistent, i.e. Λ̂ = cov(ĕ) w.p. 1 as n,N → ∞.

Remark 3. Although a correct estimation of the noise rank p
cannot be guaranteed, consistency results for estimating p would
e possible when applying information-based criteria for rank
stimation, e.g., based on the BIC criterion (Camba-Méndez &
apetanios, 2009). In the next steps of our approach it will be
ssumed that a correct estimation of p has been obtained.

After reordering the node signals as described above, we can
ow adhere to a network representation with a unique distur-
ance model according to the structure in Lemma 1, where H̆0

an be parametrized by the transfer function matrices Ha and Hb.

.2. Step 2: Estimating the noise correlation structure

In the second step we are going to estimate which entries in
ur disturbance model are nonzero. To this end we extend the SLR
ethod (Dankers, 2019) to the situation of reduced rank noise
nd show how the noise correlation structure can be obtained.

.2.1. Step 2.1: Refining the nonparametric ARX model
With the noise rank p available and the nodes being ordered,

e have gained additional information on H̆0 (4), namely the
ast L − p columns are now known. Now, we perform the same
pproach of identification using high order ARX modeling as
n the previous step, but by utilizing the known entries in H̆0,
eading to refined estimates of Ă(ζ̂ n

N ) and B̆(ζ̂ n
N ). In the analysis

esults of Section 5.1 it shown that the known entries in H̆0

an simply be mapped to known entries in the parametrized
 G

4

olynomial B̆(ζ ), and therefore can simply be taken into account
n the least squares problem (12). In Section 5.1 it is shown that
his leads to consistent estimates ζ̂ n

N for n,N → ∞.

.2.2. Step 2.2: Predictor model with reconstructed innovation input
In this step we are going to use the estimated nonparametric

RX model to reconstruct the innovation signal. This allows us to
se the reconstructed innovation signal as a measured input in
he predictor model that will be used for estimating the structure
f the disturbance model.
If there exists a parameter ζ 0 such that the ARX model

Ă(ζ 0), B̆(ζ 0)) captures the dynamics of the network, then it
ollows from Weerts et al. (2018b) that

(t, ζ 0) =

[
I

Γ 0

]
e(t). (14)

e can accordingly decompose ε(t, ζ ) as

(t, ζ ) =

[
εa(t, ζ )
εb(t, ζ )

]
(15)

hile the consistency property of ζ̂ n
N implies that

εa(t, ζ̂ n
N ) → e(t) w.p. 1 asN → ∞∀t,

b(t, ζ̂ n
N ) → Γ 0e(t) w.p. 1 asN → ∞∀t.

(16)

e will refer to ε(t, ζ̂ n
N ) as the ‘‘reconstructed innovation’’.

For a network with ordered nodes we evaluate a new one-
tep-ahead predictor

ˆ (t|t − 1) := E{w(t)|wt−1, r t , et−1
} (17)

hat includes the innovation signal et−1
:= {e(0), e(1),

· · , e(t − 1)} in the expectation. Then it follows that

ˆ (t|t − 1) = G0(q)w(t) + (H̆0(q) − I)ĕ(t) + R0(q)r(t), (18)

here

H̆0
− I)ĕ =

([ H0
a 0

H0
b − Γ 0 I

]
− I

)
ĕ =

[
H0

a − I
H0

b − Γ 0

]
e= H̄0e.

(19)

his motivates the use of the following parametrized predictor
odel per node:

ŵj(t|t − 1, ηj) =∑
∈Nj

Gjl(ηj)wl +
∑
s∈Vj

H̄js(ηj)εas (ζ̂
n
N ) +

∑
k∈Rj

Rjkrk, (20)

here the terms G(η) and H̄(η) are parametrized versions of
0 and H̄0 respectively, and εa(ζ̂ n

N ) is an estimate of the noise
ignal e(t). Gjl(η) =

∑n
k=1 g

jl
k q

−k and H̄js(η) =
∑n

k=1 h
js
k q

−k are
arametrized as strictly proper polynomials of order n, the term
k∈Rj

Rjkrk(t) is known, the sets Nj and Rj are known from the
opology of G0 and R0, and Vj defines the set of indices of noise
ignals for which noise dynamics is present in the disturbance
odel. This leads to an ARX model, like in Step 1, but now with

he reconstructed innovation εa(t, ζ̂ n
N ) added as external predictor

nput signal, and the coefficients of the unknown polynomials
ollected in the parameter vector η. It is our next objective now
o determine the sets Vj for j = 1, . . . , L. To this end we follow
wo approaches namely the structure selection approach and the

lasso approach, which will be presented next.
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.2.3. Structure selection
For a particular choice of Vj we evaluate the residual

j(t, η̂n
Nj
) := wj(t)− ŵj(t|t −1, η̂n

Nj
) where η̂n

Nj
is the estimated pa-

rameter that minimizes the quadratic criterion 1
N

∑N
t=1 ε2

j (t, ηj),
nd that is obtained through an analytical solution, similar to (12).
e test this residual with possible combinations in set Vj and

mploy model selection techniques such as AIC, BIC and Cross-
alidation (CV) on the obtained estimates η̂n

Nj
(Yuan et al., 2011),

of which the BIC provides a consistent estimate (Kass & Raftery,
1995; Schwarz, 1978). Because we use ARX models to estimate η,
model selection techniques such as AIC, BIC and CV are convex.
Additionally, since we derive the disturbance topology per node,
we have to test at most 2L possible sets Vj for L nodes. This
results in a lower computational burden compared to when we
detect the topology in a MIMO setting, where we would have to
test at most 2L2−L possible sets Vj simultaneously for all j (Yuan
et al., 2011). However, for large networks these model selection
techniques can still become computationally heavy.

3.2.4. Sparse estimation with Glasso
For each node j, a Glasso (Group Lasso) estimate is computed

by minimizing the following cost function over ηj for a fully
parametrized disturbance model with p white noise inputs:

min
ηj

{
1
2

N∑
t=1

(wj(t) − ŵj(t|t − 1, ηj))
2
+ λj · ∥ηj∥2

}
(21)

with the one-step-ahead predictor (20), and ηj being the vector
of parameters related to the modules Gji for i ∈ Nj, and related
to the modules H̄js for s = 1, . . . , p; λj is the tuning parameter
(penalization factor) of Glasso. The tuning of λj is described in
the numerical illustrations in Section 6.

The right hand side of (21) is a mixed l1/l2 norm. The Glasso
estimate is a convex extension to lasso that penalizes groups
of estimated parameters (Yuan & Lin, 2006), imposing sparsity
at group level. Within a group, it does not yield sparsity (Bach,
Jenatton, Mairal, Obozinski, et al., 2011). If an appropriate pe-
nalization factor is chosen, only the dynamic modules that are
actually present in the data generating network remain while the
non-present terms are forced to 0, thus providing an estimate of
the structure of H̄ .

With either of the methods of Sections Section 3.2.3 or 3.2.4
the structure Vj of the disturbance model can be estimated en-
tirely with convex and thus scalable methods, employing non-
parametric (high-order ARX-) models. This structural information
can be effectively used in the actual estimation of parametric
dynamic models in the next Section.

Remark 4. It is possible to add regularization when estimating
the high-order ARX models presented in this section to guarantee
stability of the estimates.

4. Estimating parametric network models

The next step in our identification procedure is

• Step 3: Estimating a parametric network model.

While in Step 1 and 2 high-order (nonparametric) models of
the same model order n are used, and thus providing estimates
with relatively high variance, in this step a parametric model is
estimated from data where we exploit a very flexible Box–Jenkins
model structure. In Step 3 we extend the WNSF method (Galrinho
et al., 2019), and its application to dynamic networks in Fonken
et al. (2020), to the reduced rank noise case such that we are able
to obtain parametric models G(θ ) and H(θ ). The WNSF is in itself
a three step method that starts with a high-order model before
estimating the parametric model.
5

4.1. Step 3.1: Refining the nonparametric model

By fixing the correctly estimated disturbance topology ob-
tained in the previous section we obtain consistent estimates of
ηj using one-step-ahead predictor (20) defined in (17), leading
to a high-order ARX model with structured disturbance model.
The conditions for consistency of η̂n

jN
are derived in Section 5.

By employing the structured disturbance model we reduce the
variance of η̂n

jN
, while the model order n remains the same.

Using the consistent estimate η̂n
jN
, we update the reconstructed

innovation. Subsequently, we again update the high-order ARX
model by replacing εa(ζ̂ n

jN
) with the updated reconstructed in-

novation εa(η̂n
jN
) in (20), and use this updated predictor to re-

estimate ηj. This latter estimate can be seen as the starting
high-order model for the WNSF method. At this point we still
have a high variance on the estimates of η but negligible bias if
model order n throughout all the steps is chosen sufficiently large.
In the next step we reduce the variance by reducing the number
of parameters to estimate, where we will make the step from a
high-order (nonparametric) model to a parametric model.

4.2. Step 3.2: Parametric model estimate

On the basis of the nonparametric model estimate character-
ized by η̂n

jN
we are now going to estimate a parametric model of

the dynamic network by utilizing a Box Jenkins model structure:

Gjl(q, θ ) =
ljl1q

−1
+ · · · + ljlmlq

−ml

1 + f jl1 q−1 + · · · + f jlmf q
−mf

,

Hjj(q, θ ) =
1 + c jj1q

−1
+ · · · + c jjmc q

−mc

1 + djj1q−1 + · · · + djjmdq−md
,

Hjs(q, θ ) =
c js1 q

−1
+ · · · + c jsmc q

−mc

1 + djs1q−1 + · · · + djsmdq−md
, s ̸= j

(22)

that can be rewritten as

Gjl(q, θ ) =
Ljl(q, θ )
Fjl(q, θ )

, Hjs(q, θ ) =
Cjs(q, θ )
Djs(q, θ )

. (23)

From Gjl(η̂n
jN
) and H̄js(η̂n

jN
) that are obtained in the previous step

through the predictor (20), we can derive a related estimate of

H0(q) according to (19) leading to H(η̂n
N ) = H̄(η̂n

N ) +

[
I

Γ (η̂n
N )

]
,

with Γ (η̂n
N ) an estimate of the direct feedthrough term Γ 0 of H0

b ,
and that based on the relation ĕb(t) = Γ 0ĕa(t) from (4), can be
given by

Γ (η̂n
N ) =

( 1
N

N∑
t=1

εb(η̂n
N )ε

⊤

a (η̂
n
N )

)( 1
N

N∑
t=1

εa(η̂n
N )ε

⊤

a (η̂
n
N )

)−1
. (24)

ollowing the WNSF approach, we are now going to fit the para-
etric Box Jenkins model to the nonparametric model estimated

rom Step 3.1, by solving for θ in the equations

jl(θ )Gjl(η̂n
N ) − Ljl(θ ) = 0 ,

Djs(θ )Hjs(η̂n
N ) − Cjs(θ ) = 0.

(25)

However, since these equations cannot be solved exactly, an
optimization problem is formulated (Galrinho et al., 2019) that
comes down to minimizing the quadratic residual vector on the
Eqs. (25) by solving (in node-wise notation):

min
θj

∥η̂n
jN − Qj(η̂n

jN )θj∥2 (26)

where

Qj(η) =

[
Q g
j 0

h

]
, (27)
0 Qj
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ith Q g
j and Q h

j diagonal matrices with entries

Q g jl
j (η) =

[
−Tn×mf [Gjl(η)] Īn×ml

]
,

hjs
j (η) =

[
−Tn×md [Hjs(η)] Īn×mc

]
,

(28)

ith model orders mi, i ∈ {l, f , c, d} according to (22), the top left
orner of Īn×m is Im×m and has zeros otherwise, and Tn×m[Xji(q)]
s a lower triangular Toeplitz matrix where the first column is
xji0 · · · xjin−1

]⊤

with Xji(q) =
∑

∞

k=0 x
ji
kq

−k.
The problem (26) is solved in first instance through the ana-

ytical least squares solution

ˆ [0]
jN

=
(
Q⊤

j (η̂n
jN )Qj(η̂n

jN )
)−1Q⊤

j (η̂n
jN )η̂

n
jN . (29)

owever, a parameter estimate with smaller variance can be
chieved if a weighted least squares criterion is applied.3 This is
ntroduced in the next step.

.3. Step 3.3: Re-estimation of parametric model

In this step we reduce the variance further by re-estimating
he obtained parametric models G(θ ) and H(θ ) defined in (23). For
a statistical optimal solution of (26), instead of the standard least
squares problem (26), a weighted least squares problem should
be solved, where the optimal weight is given by the inverse
of the covariance matrix of the residual η̂n

jN
− Qj(η̂n

jN
)θ0

j , with
θ0
j the actual network coefficients related to node wj. This is
not directly applicable since θ0

j is unknown. However it can be
shown (Galrinho et al., 2019) that

η̂n
jN − Qj(η̂n

jN )θ
0
j = Tj(θ0

j )(η̂
n
jN − ηn0

j ), (30)

with ηn0
j the real network coefficients related to the η-

parametrized ARX model and Tj(θ ) a block diagonal matrix with
the denominator polynomials as entries

T g jl
j (θ ) = Tn×n[Fjl(θ )],

T hjs
j (θ ) = Tn×n[Djs(θ )],

(31)

where Tn×n[Xji(q)] is a lower triangular Toeplitz matrix where
the first column is

[
1 xji1 · · · xjim 0n−m−1

]⊤

with Xji(q) =

1 +
∑

∞

k=1 x
ji
kq

−k.
Result (30) motivates the use of a weighted least estimator

with weighting matrix

Wj = T−1
j (θ0

j )(Pη̂njN
)−1T−T

j (θ0
j )

with Pη̂njN
the covariance matrix of the nonparametric model. This

can be implemented in an iterative scheme according to

θ̂
[k+1]
jN

=(
Q⊤

j (η̂n
jN )Wj(θ̂

[k]
jN

)Qj(η̂n
jN )

)−1Q⊤

j (η̂n
jN )Wj(θ̂

[k]
jN

)η̂n
jN .

(32)

For consistency of the estimates of parameter vector θ we refer
to the proof in the WNSF method (Galrinho et al., 2019), with the
actual model orders mi with i = f , l, c, d (22) known.

Remark 5. Because in this final step we correct for the variance
due to the modeling error (30), the final estimate will have a
reduced variance.

3 As an alternative we can consider a weighted least squares criterion to
btain θ̂

[0]
jN

(29), with the covariance matrix of the nonparametric model as
weight.
 (

6

Throughout the presented steps we split the MIMO optimiza-
tion into L linear regressions that rely on explicit analytical so-
lutions, and that allows for parallel computing. The Algorithm is
given as follows.

Algorithm 1. Algorithm for full network identification in dy-
namic networks, including disturbance topology detection

Inputs: w(t), r(t), R0(q), model orders mi, i ∈ {l, f , c, d}, network
opology.
utput: Disturbance topology, θ̂N .
isturbance topology detection

1. Estimate noise rank p based on the reconstructed innova-
tion ε(t, ζ̂ n

N ) (15), and if p < L order the nodes.
2. 2.1 Obtain consistent estimate ζ̂ n

N with least squares so-
lution (36), where the nodes are ordered and by
utilizing the estimated noise rank p.

2.2 Use the reconstructed innovation εa(t, ζ̂ n
N ) as mea-

sured input in the one-step-ahead predictor (20) de-
fined in (17) to estimate the noise correlation struc-
ture. We use

(i) Structure selection with AIC, BIC and CV,
(ii) Glasso,

applied to estimate η̂n
jN

that is obtained with least
squares solution (37).

Estimating parametric network models

3. 3.1 Refine the nonparametric ARX model and obtain
consistent estimate η̂n

N with one-step-ahead predic-
tor (20), where the estimated disturbance topology
is fixed and update the reconstructed innovation
to εa(t, η̂n

N ) to re-estimate η̂n
N .

3.2 Reduce the nonparametric ARX model to a paramet-
ric model and obtain initial estimate θ̂

[0]
N by (29).

3.3 Re-estimate θ̂
[k+1]
jN

with (32), where we update the
weighting matrix Wj(θ̂

[k]
jN

) in each iteration.

We continue to iterate until we have reached the convergence

criterion ∥θ̂
[k]
N −θ̂

[k−1]
N ∥

∥θ̂
[k−1]
N ∥

< 0.0001. This convergence criterion is also

used in the simulation results in Section 6. In the next Section
we derive the conditions required for consistency of estimates ζ̂ n

jN
and η̂n

jN
.

5. Theoretical analyses

From here on we consider n = n(N) i.e. the model order n
increases as the data length N increases, while with increasing N ,
/N tends to 0 with a particular rate (Galrinho et al., 2019; Ljung
Wahlberg, 1992).
Next we derive the conditions under which the estimates

ˆ n
N and η̂n

N , and consequently the reconstructed innovation are
onsistent.

.1. Consistency of ζ̂ n
N in Step 2.1: Refining the nonparametric model

With the noise rank p available and the nodes ordered we
ained structural information on the unique noise model H̆0(q)
4), namely we know that for the reduced noise rank case p < L
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he last L−p columns in H̆0(q) are
[
0 I

]⊤. Moreover, taking the
inverse of H̆0(q) does not affect the last L − p columns since

(H̆0)−1
=

[
(H0

a )
−1 0

−
(
H0

b − Γ 0
)
(H0

a )
−1 I

]
. (33)

s a result the term (H̆0(q))−1R0(q) in the one-step predictor (11),
has the following structure

(H̆0)−1R0
=

[
(H0

a )
−1R0

a 0
−

(
H0

b − Γ 0
)
(H0

a )
−1R0

a R0
b

]
, (34)

ith the second block column consisting of known terms only.
his allows in the parametrization of the predictor (9) to replace
he square polynomial B̆(ζ ) with a non-square polynomial B(ζ ),
eading to

ˆ (t|t − 1, ζ ) =
(
I − Ă(ζ )

)
w(t) + B(ζ )ra(t) +

[
0
R0
b

]
rb(t)

= ϕ(t)ζ +

[
0
R0
b

]
rb(t),

(35)

ith ϕ(t) composed of the appropriate terms in w and ra.
Note that for an actual network with representation G0, H̆0, R0,

he one-step predictor is still given by (11), but now the pre-
ictor model (35) can use the known external excitation signals
b(t). The ARX model is estimated according to ζ̂ n

N = argminζ
1
N∑N

t=1 εT (t, ζ )ε(t, ζ ), with ε(t, θ ) = w(t) − ŵ(t|t − 1; ζ ), leading
to the analytical solution:

ζ̂ n
N =

[
1
N

N∑
t=1

ϕ(t)ϕ⊤(t)
]−1 1

N

N∑
t=1

ϕ(t)
[
w(t) −

[
0
R0
b

]
rb(t)

]
. (36)

ote that Remark 1 holds and therefore predictor (35) can be
ecomposed in separate predictors for each node. The conditions
or consistency are formulated in Proposition 1 and the proof is
dded in the Appendix.

roposition 1 (Consistency ζ̂ n
N ). Consider a dynamic network that

atisfies Assumption 1. Additionally, consider the one-step-ahead
redictor (35). Then the transfer function matrices (H̆0(q))−1(I −
0(q)) and (H̆0(q))−1

[
R0
a(q)

⊤ 0
]⊤ are consistently estimated with

he analytical solution (12), if the following conditions hold:

(1) The external excitation r(t) is uncorrelated to the noise e(t).
(2) The spectral density of κ(t) =

[
ra(t)⊤ w(t)⊤

]⊤, Φκ (ω) > 0
for a sufficiently high number of frequencies ω.

(3) Ă(q, ζ ) and B(q, ζ ) are of high order, such that n → ∞.

emark 6. Condition (1) and (2) of Proposition 1 are given for
ll signals present in the network. These conditions remain un-
hanged when we convert from a MIMO predictor to L linear re-
ressions. Therefore the proof also holds for a predictor assessed
er node.

roof. See Appendix.

.2. Consistency of η̂n
N in Step 3.1: Refining the nonparametric model

A refined nonparametric model is estimated by exploiting the
nformation on the noise topology in the form of a structured
olynomial model B(ηj) for H̄js(ηj) in the predictor (20), leading
o the analytical solution

ˆ
n
N =

[
1
N

N∑
t=1

ϕ(t)ϕ⊤(t)
]−1 1

N

N∑
t=1

ϕ(t)
[
w(t) − R0r(t)

]
. (37)

ith ϕ(t) composed of the appropriate terms in w and ε(η̂n
N ).

The conditions for consistency are formulated in Proposition 2.
 f

7

Proposition 2 (Consistency η̂n
N ). Consider a dynamic network that

satisfies Assumption 1 and Proposition 1, and assume the distur-
bance topology is estimated correctly. Additionally, consider the
one-step-ahead predictor (20) for all j. Then the transfer function
matrices of G0(q) and H̆0(q) − I are consistently estimated with the
nalytical solution η̂n

N (37), if the following conditions hold:

(1) For all j, the spectral density Φκ̄ (ω) of κ̄(t) :=[
w{Nj}(t)

⊤ e{Vj}(t)
⊤
]⊤, satisfies Φκ̄ (ω) > 0 for a sufficiently

high number of frequencies ω.
(2) The data generating system is in the model set, i.e. there exists

a η0 such that G(q, η0) = G0(q) and H̄(q, η0) = H̆0(q) − I .

roof. See Appendix.

With consistent estimate η̂n
N we can update the reconstructed

nnovation ε(t, η̂n
N ) =

[
εa(t, η̂n

N )
⊤ εb(t, η̂n

N )
⊤
]⊤ consistently for

ach time step t = 1, . . . ,N

(t, η̂n
N ) → ĕ(t) w.p. 1 asN → ∞∀t, (38)

here the innovation is reconstructed per node according to
j(t, η) = wj(t) − ŵj(t|t − 1, η) using one-step-ahead predictor
20).

emark 7. Note that Condition (2) of Proposition 2 incorporates
he condition that the noise rank p is chosen correctly, and
he disturbance model is flexible enough to represent the exact
isturbance topology of the network.

Following the line of reasoning in Van den Hof and Ramaswamy
2020), the spectral conditions in Propositions 1 and 2, which are
ctually data informativity conditions, can generically be replaced
y path-based conditions on the graph of the network model set.

.3. Generic data informativity conditions

Condition (2) of Proposition 1 and Condition (1) of Propo-
ition 2 is a spectral data informativity condition on internal
ode signals in w, and it is difficult to interpret it for an exper-
menter. In this section we replace the spectral condition with
path-based data informativity condition in a generic sense,4

.e. independent of the numerical values of the network dynamics.
y doing so we can evaluate if data informativity is satisfied based
n the network and disturbance topology, and the properties of
he external signals. Next we formulate the conditions in terms
f properties and locations of the external signals analogous to
emma 1 and Proposition 1 from Van den Hof and Ramaswamy
2020), by means of vertex-disjoint paths from external signals
o internal node signals, where two paths are vertex-disjoint if
hey have no nodes in common, including their start and end
odes (Van der Woude, 1991). The consequences are illustrated
n a 6-node example.

.3.1. Vertex-disjoint paths
The generic version of Condition (2) of Proposition 1 is given

n Proposition 3.

roposition 3. The spectrum condition Φκ (ω) > 0 for κ(t) =

ra(t)⊤ w(t)⊤
]⊤ in Condition (2) of Proposition 1 is generically

atisfied if there are L vertex-disjoint paths from
[
rb(t)⊤ e(t)⊤

]⊤

o w(t).

roof. See Appendix.

4 Genericity is considered in the sense that the corresponding property holds
or almost all models in the model set, possibly excluding a set of measure 0.
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Fig. 1. 6-node dynamic network with reduced rank noise that has rank p = 4,
o r(t) signals are shown. The arrows represent the edges for which G0

ji ̸= 0
and H0

ji ̸= 0, where the arrows indicated in red are examples of the two
vertex disjoint paths needed to satisfy Proposition 4 for output w3(t). (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Proposition 3 gives a sufficient generic path-based condition
that requires to have external excitation signals at certain lo-
cations in the network, combining data informativity conditions
with identifiability (Van den Hof & Ramaswamy, 2020).

The set V denotes the set of indices of all the disturbing
noise signals, where Vj is a subset of V . For the generic condition
for Condition (1) of Proposition 2 we introduce notation e{Xj}(t),
where Xj is the set of indices of all the disturbing noise signals
excluding indices that are already present in set Vj, i.e. Xj = V/Vj.

Proposition 4. The spectrum condition Φκ̄ (ω) > 0 for κ̄(t) =

w{Nj}(t)
⊤ e{Vj}(t)

⊤
]⊤ in Condition (1) of Proposition 2 is gener-

cally satisfied if there are Cardinal{Nj} vertex-disjoint paths from
r(t)⊤ e{Xj}(t)

⊤
]⊤ to w{Nj}(t).

roof. See Appendix.

Proposition 4 gives a sufficient generic path based condition
hat requires external excitation signals at certain locations such
hat Φκ̄ (ω) > 0 for a sufficiently high number of frequencies.

emark 8. If we want to identify only the jth row of the network
or only part of the network), we can consider the predictor
n Proposition 2 only for node j and satisfy the conditions in
ropositions 2 and 4 for node j.

Next we elaborate the vertex-disjoint path conditions by
eans of an example where a network is subject to reduced rank
oise.

.3.2. Reduced rank noise example
We consider a 6-node network that satisfies Assumption 1

nd is subject to reduced rank noise of rank p = 4 shown in
ig. 1. This 6-node example is additionally used in the simulations
n Section 6, and is further defined in Appendix E. The nodes
re ordered such that the first p nodes are subject to full rank
oise. Moreover, we assume the disturbance topology is correctly
stimated.
The goal of this example is to elaborate on the path-based data

nformativity conditions given in Propositions 3 and 4. To be more
pecific, we show which external excitation signals are sufficient
n order to satisfy the spectral Condition (2) in Proposition 1 and
ondition (1) in Proposition 2. In the example we have external
oise signals e(t) =

[
e1(t) . . . e4(t)

]⊤ and external excitation
ignals rk(t), for simplicity we assume R0 contains elements that
re either 0 or 1.
In order to satisfy Proposition 3, we require L = 6 vertex-

isjoint paths from
[
rb(t)⊤ e(t)⊤

]⊤ to w(t). The first p =

nodes, denoted by w (t), are excited by the noise e(t); we
a

8

herefore require at least L − p = 2 external excitation sig-
als rk(t) on the last 2 nodes wb(t) =

[
w5(t) w6(t)

]⊤, i.e.
rb(t) =

[
r5(t) r6(t)

]⊤ with Rb = I ∈ R2×2. Therefore we
satisfy Proposition 3 since we have 6 vertex-disjoint paths from[
e(t)⊤ rb(t)⊤

]⊤ to
[
wa(t)⊤ wb(t)⊤

]⊤.
To show how Proposition 4 is satisfied, we first consider

output node w3(t) = G31(η)w1(t) + G35(η)w5(t) + H32(η)e2(t) +

H33(η)e3(t), that has w{N3}(t) =
[
w1(t) w5(t)

]⊤ and e{V3}(t) =[
e2(t) e3(t)

]⊤. We need Cardinal{N3} = 2 vertex-disjoint paths
from

[
r(t)⊤ e{Xj}(t)

⊤
]⊤ to w{N3}(t). There already exist 2 vertex

disjoint paths from e{Xj}(t) =
[
e1(t) e4(t)

]⊤ to w{N3}(t). This
shows that Proposition 4 is satisfied by the two vertex disjoint
paths from e1(t) → w1(t) and from e4(t) → w6(t) → w5(t) as
indicated in red in Fig. 1. If we apply the same reasoning to the
other nodes we see that for node

• w1(t) with w{N1}(t) = w4(t), there exists a vertex-disjoint
path from e2(t) → w4(t).

• w2(t) with w{N2}(t) = w5(t), there exists a vertex-disjoint
path from e3(t) → w5(t).

• w4(t) with w{N4}(t) = w2(t), there exists a vertex-disjoint
path from e3(t) → w5(t) → w2(t)

• w5(t) with w{N5}(t) =
[
w1(t) w6(t)

]⊤, there exist 2 vertex-
disjoint paths from e1(t) → w1(t) and from e4(t) →

w6(t).
• w6(t) with w{N3}(t) = w3(t), there exists a vertex-disjoint

path from e3(t) → w3(t).

In order to satisfy Proposition 4 we therefore do not require
additional external excitation signals rk(t).

Consequently, in order to identify the full network for the
given example, it is sufficient to add external signals rb(t) =[
r5(t) r6(t)

]⊤ with Rb = I ∈ R2×2 that satisfies Proposition 3.

6. Numerical simulations

In this section we show the results of different steps in Algo-
rithm 1. We assume R0

= I , and consider the system given in
Fig. 1 and Appendix E.

For the simulation study we use normally distributed zero
mean white external signals, where {r(t)} has a variance of 5
and the vector of e-signals has variances {0.1, 0.2, 0.3, 0.4}. We
simulate the nodes according to w(t) = (I−G0)−1(R0r(t)+H0e(t))
and perform M = 100 Monte Carlo runs over five data lengths
logarithmically spaced between 300 and 50000. For each of the
data lengths N a specific value of the model order n is chosen
according to n = 10, 20, 30, 40, 40, for increasing values of N .
The actual model orders mi, i ∈ {l, f , c, d} can be derived from
Appendix E.

Next we describe the noise rank estimation results of step 1
of Algorithm 1.

6.1. Rank p and ordering of the nodes

In order to obtain the noise rank p we perform a rank test
(singular value decomposition) on covariance matrix Λ̂ (13).
For data length N = 300, the singular values averaged over
the 100 Monte Carlo runs are
svd(Λ̂N ) =

[
0.37 0.26 0.21 0.06 2.13 · 10−8 1.96 · 10−9

]
,

where we see that the last two singular values are close to zero.
As data length increases the last two values converge even closer
to zero. For N = 50000 we obtain the following averaged singular
values
svd(Λ̂N ) =

[
0.59 0.40 0.39 0.10 4.04 · 10−13 1.24 · 10−13

]
,

showing that a clear gap between the fourth and fifth singular
value points to a correct rank estimate of 4.
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Finally with the noise rank p available we can reorder the
nodes such that

[
Ip 0

]
Π⊤Λ̂Π

[
Ip 0

]⊤ has rank p.
Next we show the disturbance topology detection results of

tep 2 of Algorithm 1.

.2. Topology estimation of the disturbance model

For the topology detection we are interested in which indices
elong in set Vj for all j, where the indices indicate where the
dges are located in the disturbance model. We evaluate the
erformance of the topology detection by evaluating the trade-
ff between overestimating and underestimating the number of
dges, that is typically used in receiver operating characteristic
ROC) curves (Hajian-Tilaki, 2013).

If an edge is present in both the data generating disturbance
nd the estimated disturbance topology, we count this edge as a
rue positive (TP). If an edge is present in the estimated distur-
ance topology but does not exist in the data generating system,
e count this edge as a false positive (FP). Additionally we let
os indicate the total number of existing edges and Neg indicates
he total number of non-existing edges in the disturbance model.
he ROC curve plots the true positive rate (TPR) versus the false
ositive rate (FPR), with

PR =
TP
Pos

, FPR =
FP
Neg

, (39)

here FPR = 0 and TPR = 1 represented by the point (0, 1),
ndicates the topology is perfectly reconstructed. We evaluate the
loseness to the point (0, 1) by utilizing the distance function

dis =

√
FPR2 + (1 − TPR)2, (40)

For the structure selection procedure we test all possible com-
binations in set Vj and employ AIC, BIC and CV. For AIC we use

1
2
log

(
VjN (η̂

n
jN )

)
+

npj

N
, (41)

ith npj the number of estimated parameters for node j and

jN (η̂
n
jN ) =

1
N

N∑
t=1

εj(t, η̂n
jN )

2. (42)

or BIC we use

∗ log
(
VjN (η̂

n
jN )

)
+ N(log(2π ) + 1) + npj log(N). (43)

rom these simulations we select set Vj that gives the smallest
IC or BIC value. For the CV we split the data ZN

= Z (1)Z (2) in a
raining set Z (1) of length 2

3 (N + 1) and obtain the estimates for
he different combinations in set Vj according to

ˆ
(1)
jN

= argmin
η

VjN (ηj, Z (1)), (44)

ith the validation set Z (2), that contains the remaining data of
ength N (2)

=
1
3 (N + 1), we minimize objective function

VjN (η̂
(1)
jN

, Z (2)) =
1

N (2)

N(2)∑
t=1

εj(t, η̂
(1)
jN

)2, (45)

and select the set Vj that gives the smallest root mean squared
error (RMSE)

RMSEj =

√
VjN (η̂

(1)
jN

, Z (2)). (46)

For Glasso we fully parametrize the disturbance model, using the
known topology of G0 and fixed R0

= I . We inspect all elements
of the disturbance model matrix that is parametrized with the
9

Fig. 2. dis as a function of N , averaged over the Monte Carlo runs.

Glasso estimates (21). If element Hji(η̂N ) of the disturbance model
matrix contains nonzero Glasso estimates we say this element
contains dynamics, and therefore an edge is present and i ∈ Vj.
o prevent arbitrary small Glasso estimates are seen as dynamics
e define a tolerance, where the Glasso estimates are nonzero

f the l2 norm of these estimates is larger than 10−3. The choice
o include the estimates of Gjl(η) in the penalization is due to
he implementation of Glasso (Boyd, Parikh, & Chu, 2011). For
ood estimates on the disturbance topology, we utilize the known
opology of G0 and deal with known R0r(t) signals appropriately.

Tuning of λj is done via a grid based search similar to the
V structure selection. First we select a grid λ

grid
j = {0, 25,

0, . . . , 2000} containing λj values to test. For each grid point we
stimate η̂

grid
j using Glasso, from where the topology is derived

y inspecting the disturbance model for dynamics as mentioned
efore, and fix the topology Hgrid

j per node. Next we apply CV
sing topology Hgrid

j and estimate the RMSEj. The grid point with
he lowest RMSEj is selected as the λj value. Repeating the tuning
rocedure over a number of runs gives the minimally required
alue for λj. The tuning procedure is applied to all nodes for the
ifferent data lengths N .
Fig. 2 shows the topology detection results, with the distance

veraged over 100 Monte Carlo runs. The BIC is a consistent infor-
ation criterion (Kass & Raftery, 1995; Schwarz, 1978), meaning

hat the estimated disturbance topology will converge to the
ctual topology if N → ∞. However, as can be seen in the results
n Fig. 2, the full convergence of the BIC procedure is not reached
or the given data lengths. Until the BIC procedure converges
o the actual disturbance topology, it tends to underestimate
he number of edges that are actually present, therefore the
ismatch in the distance function is caused by not detecting all

he TP’s. The AIC is not a consistent information criterion, but
as a faster convergence rate compared to the BIC (Zhang, 1993).
he AIC tends to overestimate the number of edges, meaning the
ismatch is caused by detecting the FP’s. The CV is comparable to
IC but has a slower convergence rate. Finally the Glasso seems
o have the best of both AIC and BIC. However, these results
eavily depend on the selected tuning parameter λ, where it is
ot guaranteed that a suitable λ exists.
Next we show the parametric estimation results of step 3 of

lgorithm 1, where we fix the estimated disturbance topology.
ased on the results in Fig. 2 we have fixed the correctly esti-
ated disturbance topology obtained with Glasso for N = 50000,
here TPR = 1 and FPR = 0.

.3. Estimating the parametric model

Next we present the results of the estimation of the parametric
odel. Because Algorithm 1 is consistent we have a negligible
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Fig. 3. MSE between θ̂N and θ0 as function of sample size, averaged over the
onte Carlo runs, obtained with Algorithm 1 with R0

= I , where subscript {t}
ndicates the use of the true (unknown) white noise as a predictor input instead
f the reconstructed innovation.

Fig. 4. MSE between θ̂N and θ0 as function of sample size, averaged over

he Monte Carlo runs, obtained with Algorithm 1 with R0
=

[
0 R0⊤

b

]⊤

and

b = I ∈ R2×2 , where subscript {t} indicates the use of the true (unknown)
hite noise as a predictor input instead of the reconstructed innovation.

ias and the mean squared error (MSE) represents the variance.
or the simulations we use the correct estimated disturbance
opology from the previous step. Additionally, for Step 3.2 of
lgorithm 1, we compute the θ̂

[0]
jN

in (29) using the covariance
atrix of the nonparametric model as weighting. Figs. 3 and 4
resent the sample MSE that is computed according to MSE(N) =
1
M

∑M
c=1

θ̂N,c − θ0
2

, where c indicates the Monte Carlo run and
θ̂N,c the final estimate (32). In Fig. 3 we use R0

= I in the

data generating network, and in Fig. 4 we use R0
=

[
0 R0⊤

b

]⊤

ith Rb = I ∈ R2×2 according to Section 5.3.2. The solid
ines represent Algorithm 1 where the estimates are obtained
sing the reconstructed innovation as input. The dotted lines
epresent Algorithm 1 where we use the realization of the actual
oise e(t) as input, indicated by subscript {t}. The results for the
hole network are shown, while using L linear regressions. Both
imulations shown in Figs. 3 and 4, typically perform k = 6
terations for data length N = 300 in (32). As the data length
increases the number of iterations performed decreases, where

or N = 50000 the simulations typically perform k = 2 iterations.
he MSE(N) improvement after the iterations is shown in Table 1.
rom Table 1 we can derive that we benefit most from iterating
in the final step of Algorithm 1 if we do not have full excitation
n the network with R0

= I .
In Figs. 3 and 4 we see convergence between the solid and

otted lines as the data length N increases. This indicates that as
ata length N increases the reconstructed innovation converges
o the actual noise. Furthermore all MSE results continue to
onverge towards zero which is in line with the consistency proof.
10
Table 1
MSE improvement:
1
M

∑M
c=1

θ̂N,c − θ0
2

−
1
M

∑M
c=1

θ̂
(1)
N,c − θ0

2
over k iterations.

N 300 1078 3873 13916 50000

R0
= I 1.6 · 10−3 5.1 · 10−5

−1.2 · 10−6
−1.9 · 10−7 3.7 · 10−8

R0
b = I 0.43 0.26 0.15 0.07 0.01

The results of this simulation study support the consistency
proof and we consistently estimate the BJ model structure, while
employing a row-wise optimization.

7. Conclusions

In this paper we present a multi-step least squares method
for network identification, that can handle reduced rank noise
with low computational burden. We follow a step wise procedure
where we first extend the SLR identification method to detect the
disturbance topology, and thereafter extend the WNSF method
to consistently identify networks of general model structure,
including a BJ model structure. For a BJ network, usually a non-
convex MIMO identification method is needed. In this paper, we
show that we identify the BJ network using analytical solutions.
Simulation results indicate that we can identify the disturbance
topology of the given network with low error if the data length N
is sufficiently large. We show that the presented method is con-
sistent, and provide path based data informativity conditions, that
guides where to allocate external excitation signals for the exper-
imental design. Considering large networks subject to correlated
and/or reduced rank noise, the presented method is promising
due to its scalability and low variance results.

Appendix A. Proof of Proposition 1

Consider the prediction error for the predictor ŵ(t|t − 1, ζ )
from (35):

ε(t, ζ ) = w(t) − ŵ(t|t − 1, ζ ) = Ă(ζ )w(t) − B̆(ζ )r(t),

= Ă(ζ )w(t) − B(ζ )ra(t) −
[
0 R⊤

b

]⊤ rb(t).
(A.1)

ith the data generating system (1) given as

(t) = (Ă0)−1B̆0r(t) + (Ă0)−1ĕ(t),

with Ă0
= (H̆0)−1(I − G0), B̆0

= (H̆0)−1R0
(A.2)

we can rewrite the prediction error as

ε(t, ζ ) =
(
Ă0

− ∆Ă(ζ )
)
w −

(
B̆0

− ∆B̆(ζ )
)
r (A.3)

ith ∆Ă(ζ ) = Ă0
− Ă(ζ ) and ∆B̆(ζ ) = B̆0

− B̆(ζ ). Then with (A.2)
t follows that

(t, ζ ) = ∆B̆(ζ )r − ∆Ă(ζ )w + ĕ, (A.4)

nd since the second block column of B̆(ζ ) is fixed and known, it
ollows that ∆B̆(ζ )r = ∆B(ζ )ra. We now proceed by evaluating
he jth component

j(t, ζ ) = ∆Bj(ζ )ra − ∆Ăj(ζ )w + ĕj, (A.5)

here ∆Ăj(ζ ) and ∆Bj(ζ ) are the rows of matrices ∆Ă(ζ ) and
B(ζ ) belonging to node j.
The consistency proof consists of two steps:

(1) Show that the objective function is bounded from below
by the noise variance5 V̄j(ζ ) := Ēε2

j (t, ζ ) ≥ σ 2
ĕj
, where the

minimum is achieved for ∆Ăj(ζ ) = 0 and ∆B̆j(ζ ) = 0.
(2) Show that the global minimum is unique.

5 E refers to the generalized expectation operator lim 1 ∑N E.
N→∞ N t=1
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.1. Consistency proof step (1)

With (A.2) substituted into (A.5), the expression for εj(t, ζ )
ecomes

Bj(ζ )ra − ∆Ăj(ζ )
(
(Ă0)−1B̆0r + (Ă0)−1ĕ

)
+ ĕj (A.6)

rom which, due to the fact that ∆Ăj(ζ ) is strictly proper and
and e are uncorrelated, it follows that ĕj is uncorrelated with

the remaining terms in the expression. As a result, the objective
function is given by

V̄j(ζ ) = Ē
[(

∆Bj(ζ )ra − ∆Ăj(ζ )w
)2]

+ σ 2
ĕj
, (A.7)

from which we can infer that V̄j(ζ ) ≥ σ 2
ĕj

with equality for

∆Ăj(ζ ) = 0 and ∆Bj(ζ ) = 0.

A.2. Consistency proof step (2)

For the second step we show that the minimum is unique,
by showing that V̄j(ζ ) = σ 2

ĕj
implies ∆Ăj(ζ ) = 0 and ∆Bj(ζ ) =

0. With (A.7) and by applying Parseval’s theorem, V̄j(ζ ) = σ 2
ĕj

implies

1
2π

∫ π

−π

∆x⊤(ejω, ζ )⊤Φκ (ω)∆x(e−jω, ζ )dω = 0, (A.8)

with ∆x⊤
=

[
∆Bj(ζ ) −∆Ăj(ζ )

]
and κ =

[
r⊤
a w⊤

]⊤.
By Condition (2) the spectral density Φκ (ω) is positive definite.

Therefore Eq. (A.8) holds only for ∆x⊤
= 0 which is satisfied

by Condition (3). The global minimum of V̄j(ζ ) is thus unique for
Ăj(ζ ) = Ă0

j and
[
Bj(ζ ) R̄j

]
= B̆0

j , with R̄j = 0 for j = 1, . . . , p
and R̄j is a row of Rb for j = p + 1, . . . , L. □

Appendix B. Proof of Proposition 2

For ease of notation we start with the MIMO notation of the
one-step-ahead predictor (20)

ŵ(t|t − 1, η) = G(η)w + Rr + H̄(η)εa(ζ̂ n
N ), (B.1)

From Proposition 1 we know ζ̂ n
N is consistent, therefore

ε(ζ̂ n
N ) → ĕ w.p. 1 asN → ∞∀t, (B.2)

and we can rewrite the one-step-ahead predictor as

ŵ(t|t − 1, η) = G(η)w + Rr + H̄(η)e (B.3)

Considering the data generating system in (1) the residual be-
comes
ε(t, η) = w(t) − ŵ(t|t − 1, η)

= ∆G(η)w + H0e − H̄(η)e

= ∆G(η)w + ∆H̄(η)e +

[
I

Γ 0

]
e,

(B.4)

where ∆G(η) = G0
− G(η), and ∆H̄(η) =

[
∆H̄a(η)
∆H̄b(η)

]
, with

∆H̄a(η) = H̄0
a − H̄a(η), with H̄a = Ha− I and ∆H̄b(η) = H̄0

b − H̄b(η),
with H̄b = Hb − Γ .

The residual per node is written as

εj(t, η) =

∑
l∈Nj

∆Gjl(η)wl +
∑
s∈Vj

∆H̄js(η)es + ĕj, (B.5)

where ∆Gjl(η) = G0
jl − Gjl(η) is an element of matrix ∆G(η), and

∆H̄js(η) is an element of matrix ∆H̄(η).
The consistency proof consists of two steps
11
(1) Show that the objective function is bounded from below
by the noise variance V̄j(θ ) := Ēε2

j (t, θ ) ≥ σ 2
ĕj
, where the

minimum is achieved for ∆Gjl = 0 and ∆H̄js = 0.
(2) Show that the global minimum is unique.

Step 1 By using the property that all ∆G- and ∆H̄-terms are
strictly proper, it follows from (B.5) that

V̄j(η) = Ē
[(∑

l∈Nj

∆Gjl(η)wl +
∑
s∈Vj

∆H̄js(η)es
)2]

+ σ 2
ĕj (B.6)

and V̄j(η) ≥ σ 2
ĕj

with equality for ∆Gjl = 0 and ∆H̄js = 0 for all
l ∈ Nj and s ∈ Vj.
Step 2 Showing that the minimum is unique is done by showing
that V̄j(η) = σ 2

ĕj
implies ∆Gjl = 0 and ∆H̄js = 0 for all l ∈ Nj and

s ∈ Vj. With (B.6) and by applying Parseval’s theorem, V̄j(ζ ) = σ 2
ĕj

implies

1
2π

∫ π

−π

∆x⊤(ejω, η)⊤Φκ̄ (ω)∆x(e−jω, η)dω = 0, (B.7)

ith ∆x⊤
=

[
∆Gjl∈Nj ∆H̄js∈Vj

]
and κ̄ =

[
w⊤

{Nj}
e⊤

{Vj}

]⊤

.
By Condition (1) the spectral density Φκ̄ is positive definite.

herefore Eq. (B.7) holds only for ∆x⊤
= 0. The Parseval’s

heorem shows the global minimum of V̄j(η) is unique for Gjl(η) =
0
jl and H̄js(η) = H̆0

js − Ijs by Condition (2). □

ppendix C. Proof of Proposition 3

The vector signal κ is written as

=

[
ra
w

]
=

[
I 0 0
Jwa Jwb Jwe

]
  

J

[ra
rb
e

]
(C.1)

ith Jwa, Jwb, Jwe appropriate transfer function matrices. Since
=

[
r⊤
a r⊤

b e⊤
]⊤ is persistently exciting, i.e. Φρ(ω) ≥ 0 for

ll ω, it follows from Lemma 1 in Van den Hof and Ramaswamy
2020) that κ is persistently exciting if and only if matrix J has
ull row rank. Since full row rank of J is equivalent to a full
ow rank of [Jwb Jwe], the result of Proposition 1 in Van den Hof
nd Ramaswamy (2020) then shows the equivalence with the
ondition that there are L vertex disjoint paths from the inputs
f [Jwb Jwe], i.e. rb and e, to its outputs, i.e. w. □

ppendix D. Proof of Proposition 4

Similar to the line of reasoning in the proof of Proposition 3,
he vector signal κ̄ is written as

¯ =

[
w{Nj}

e{Vj}

]
=

[
Jwr Jwx Jwv

0 0 I

]
  

J̄

⎡⎣ r
e{Xj}

e{Vj}

⎤⎦ (D.1)

with Jwr , Jwx, Jwv appropriate transfer function matrices. Since

ρ̄ =

[
r⊤ e⊤

{Xj}
e⊤

{Vj}

]⊤

is persistently exciting, i.e. Φρ̄(ω) ≥

0 for all ω, it follows from Lemma 1 in Van den Hof and Ra-
maswamy (2020) that κ̄ is persistently exciting if and only if
matrix J̄ has full row rank. Since full row rank of J̄ is equivalent to
a full row rank of [Jwr Jwx], the result of Proposition 1 in Van den
Hof and Ramaswamy (2020) then shows the equivalence with the
condition that there are Cardinal{Nj} vertex disjoint paths from

the inputs of [Jwr Jwx], i.e. r and e{Xj}, to its outputs, i.e. w{Nj}. □
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ppendix E. System used in simulations

In the simulation results in Section 6 we use the data generat-
ng network of which the graph is represented in Fig. 1. The data
enerating transfer functions G and H are given by

=

⎡⎢⎣
0 0 0 G14 0 0
0 0 0 0 G25 0

G31 0 0 0 G35 0
0 G42 0 0 0 0

G51 0 0 0 0 G56
0 0 G63 0 0 0

⎤⎥⎦, (E.1)

with the elements of Gjl

G14 =
0.38q−1

+0.24q−2

1−1.35q−1+0.54q−2 , G25 =
0.20q−1

1−1.30q−1+0.60q−2 ,

31 =
0.39q−1

1−0.80q−1+0.20q−2 , G35 =
0.16q−1

1−1.23q−1+0.51q−2 ,

42 =
−0.30q−1

1−0.60q−1+0.20q−2 , G51 =
−0.60q−1

1+0.45q−1+0.12q−2 ,

56 =
−0.22q−1

1−1.22q−1+0.46q−2 , G63 =
−0.11q−1

1−1.49q−1+0.62q−2 ,

(E.2)

nd

=

⎡⎢⎣
H11 0 0 H14
0 H22 0 0
0 H32 H33 0
0 H42 0 H44
0 H52 H53 0
0 H62 0 H64

⎤⎥⎦, (E.3)

ith noise rank p = 4 and elements

11 =
1+0.52q−1

1+0.41q−1 , H14 =
0.41q−1

1−0.56q−1 ,

22 =
1+0.44q−1

1+0.35q−1 , H32 =
−0.56q−1

1−0.40q−1 ,

33 =
1−0.20q−1

1+0.43q−1 , H42 =
0.26q−1

1−0.62q−1 ,

44 =
1+0.52q−1

1+0.45q−1 , H52 =
0.49q−1

1−0.49q−1 ,

53 =
1+0.66q−1

1+0.51q−1 , H62 =
1+0.24q−1

1+0.53q−1 ,

64 =
−0.56q−1

1−0.56q−1+0.21q−2 ,

(E.4)

here Γ 0
=

[
0 0 1 0
0 1 0 0

]
.
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