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Available online xxxx been paid to estimating the disturbance topology, i.e., the (spatial) noise correlation structure and the

noise rank in a filtered white noise representation of the disturbance signal. In this work we present

Keywords: an identification method for dynamic networks, in which an estimation of the disturbance topology
System identification precedes the identification of the full dynamic network with known network topology. To this end
Dynamic networks we extend the multi-step Sequential Linear Regression and Weighted Null Space Fitting methods to
Estimation algorithms deal with reduced rank noise, and use these methods to estimate the disturbance topology and the

Least squares

> network dynamics in the full measurement situation. As a result, we provide a multi-step least squares
Topology estimation

algorithm with parallel computation capabilities and that rely only on explicit analytical solutions,
thereby avoiding the usual non-convex optimizations involved. Consequently we consistently estimate
dynamic networks of Box Jenkins model structure, while keeping the computational burden low. We
provide a consistency proof that includes path-based data informativity conditions for allocation of
excitation signals in the experimental design. Numerical simulations performed on a dynamic network

with reduced rank noise clearly illustrate the potential of this method.
© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction The first is identifying the interconnection structure of the nodes
in a dynamic network referred to as network topology detec-

Dynamic networks represent large-scale interconnected sys- tion (Chiuso & Pillonetto, 2012; Materassi & Innocenti, 2010).
tems, and data-driven modeling of dynamic networks has re-  The second is the identification of a specific module in a net-
ceived considerable attention in recent years. These networks can  work, referred to as local module identification. For this problem
be considered as a set of measurable (node) signals intercon-  cJosed-loop identification methods have been generalized to the
nected through linear dynamic systems (the modules), driven by dynamic network situation in Van den Hof, Dankers, Heuberger,
measured external excitation signals and/or unmeasured distur- and Bombois (2013), formulating the local module identification

bance signals. Modeling of these networks plays an important
role in biological systems (Hagmann et al., 2008; Hickman et al.,
2017), economic systems (Materassi & Innocenti, 2010), power
networks (Pagani & Aiello, 2013), and many other fields in science
and engineering. The challenges addressed in identification of
dynamic networks can roughly be divided into three categories.

problem as a multi-input-single-output (MISO) problem. This has
been further extended and generalized in e.g., Dankers, Van den
Hof, Heuberger, and Bombois (2016), Dankers, Van den Hof, Bom-
bois, and Heuberger (2015), Everitt, Galrinho, and Hjalmarsson
(2018), Gevers, Bazanella, and Vian da Silva (2018), Materassi and
Salapaka (2020), Ramaswamy, Bottegal, and Van den Hof (2021),
- Ramaswamy and Van den Hof (2021) and Van den Hof and Ra-
This project has received funding from the European Resegrch Coqncil maswamy (2021). The third challenge is identification of the full

(ERC), Advanced Research Grant SYSDYNET, under the European Union’s Horizon . . - . -
network dynamics (Dankers, 2019; Fonken, Ferizbegovic, & Hjal-

2020 research and innovation programme (Grant Agreement No. 694504). The : .
material in this paper was not presented at any conference. This paper was marsson, 2020; Weerts, Galrinho, Bottegal, Hjalmarsson, & Van

recommended for publication in revised form by Associate Editor Gianluigi den Hof, 2018; Weerts, Van den Hof, & Dankers, 2018b), where
P‘L{"rée“‘) ”“de(; the d';ec“"“ of Editor Torsten Soderstrom. the problem is formulated as the identification of a (structured)
orresponding author. I _ .
E-mail addresses: s.j.m.fonken@tue.nl (SJ.M. Fonken), multi mPUt multi OUtpL,lt (MIMO) model.
k.r.ramaswamy@tue.nl (K.R. Ramaswamy), p.m.j.vandenhof@tue.nl In this baper we W.lll further explore.! the deve.lol)ment of
(P.MJ. Van den Hof). full network identification methods. While dynamic networks
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increase in complexity and size, and measurement data is be-
coming increasingly accessible, there is a strong demand for
accurate and scalable data driven modeling methods. The joint
direct method (Weerts, Van den Hof, & Dankers, 2017; Weerts
et al,, 2018b) predicts all node signals in the network jointly
and achieves consistency and minimum variance properties in
the situation that the network and disturbance topology are
given a priori and the noise can be of reduced rank. However
it strongly relies on solving (constrained) non-convex optimiza-
tion problems, which seriously limits its scalability to larger
networks. There are multi-step convex identification methods
available for full network identification, such as the Sequential
Linear Regression (SLR) (Dankers, 2019), Sequential Least Squares
(SLS) (Weerts et al,, 2018) and extensions of Weighted Null
Space Fitting (WNSF) (Galrinho, Rojas, & Hjalmarsson, 2019) such
as Fonken et al. (2020). Moreover, methods such as the SLR and
SLS allow for splitting the MIMO optimization into multiple linear
regressions, which contributes to a lower computational burden.
The available convex methods are scalable to larger networks, but
are limited to particular model structures of the network, and
additionally, they do not allow for handling reduced rank noise.
Particularly in large-scale network identification, stepping away
from the typical assumption that all disturbance signals have
their own independent noise source, is an appealing situation that
should be supported by an effective estimation algorithm. Han-
dling this situation of reduced-rank noise can substantially reduce
the variance of estimated models. However it also introduces
the problems of estimating the noise rank and noise correlation
structure from data.

All available convex and non-convex methods for network
identification require prior knowledge on the topology (i.e. rank
and spatial correlation structure of the disturbance model). While
in dynamic factor analysis (Deistler, Scherrer, & Anderson, 2015)
attention has been paid to the estimation of noise rank, in predic-
tion error identification this does not appear to be included yet
in the identification algorithms. For situations where the distur-
bance topology information is not readily available, it is attractive
to develop methods that include estimating this information from
data.

The topology estimation literature shows a variety of available
methods to estimate the topology, such as Wiener filter based
methods (Materassi & Innocenti, 2010; Materassi & Salapaka,
2012; Materassi, Salapaka, & Giarre, 2011), Bayesian model se-
lection techniques (Chiuso & Pillonetto, 2012; Shi, Bottegal, &
Van den Hof, 2019; Wasserman, 2000), or methods that infer
the topology from parametric estimates (Bolstad, Van Veen, &
Nowak, 2011; Dankers, Van den Hof, Heuberger, & Bombois,
2012; Yuan, Stan, Warnick, & Gongalves, 2011). While the main
focus of topology detection literature has been on estimating
network topology in the situation of a diagonal disturbance spec-
trum @,(w), extensions towards nondiagonal spectra have been
presented in Bombois and Hjalmarsson (2021), Dimovska and
Materassi (2017) and Veedu and Salapaka (2020). In Veedu and
Salapaka (2020) network topology and the non-zero pattern in
the disturbance spectrum are estimated jointly. In this paper we
assume that we do not know the disturbance topology a priori,
but we assume that the network topology is known e.g., from its
underlying physics, which is commonly the case for engineered
systems. In the situation that the network topology is not known
beforehand, it is possible to use any of the above cited methods to
estimate it. We allow the process noise to be spatially correlated,
i.e. the disturbance spectrum @,(w) is not necessarily diagonal.
Additionally the noise is allowed to be of reduced rank, i.e. @,(w)
can be singular.

The objective is to develop a multi-step convex algorithm that
estimates the disturbance topology and the dynamic modules in
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the network for general model structures including the Box Jenk-
ins (B]) structure, while adhering to computational algorithms
that are scalable, while achieving favorable properties in terms
of low experiment cost, consistency and reduced variance of the
network estimates.

To this end we develop a multi-step algorithm to identify
the network dynamics. In the first step the noise rank and the
nonzero pattern in the corresponding disturbance model (noise
shaping filter) are estimated. This is done through a (nonparamet-
ric) high-order ARX model, inspired by the SLR method (Dankers,
2019). Next, this information is used to develop a multi-step
convex algorithm that can accurately identify the dynamics of
the network in the situation of reduced rank noise and for a
very general Box Jenkins model structure, thereby combining
the recently introduced multi-step convex identification methods
SLR (Dankers, 2019) and WNSF (Fonken et al., 2020; Galrinho
et al.,, 2019) and extending them to the described situation.

The paper proceeds with a definition of the considered dy-
namic network setup in Section 2. In Section 3 we present a
new method for estimating the disturbance topology from data,
followed in Section 4 by a multi-step identification algorithm
that exploits the prior estimated disturbance topology. Section 5
presents the consistency analysis of the method, including graph-
based conditions for data informativity. Results of numerical sim-
ulations are provided in Section 6, followed by conclusions in
Section 7. The consistency proofs are collected in Appendix.

2. Dynamic networks

Following the setting of Van den Hof et al. (2013) a dynamic
network is defined by L nodes or internal variables wj(t), j =
1,...,L, that are scalar-valued measured signals. The underly-
ing network is linear time invariant (LTI), and the nodes of the
network can be expressed as

wilt) =Y GU@wit)+ Y RY@n(t) + vi(t), (1

le./\/} kERj
where

e g~ ! the delay operator, i.e. g~ 'w;(t) = wj(t — 1),

e N defines the set of indices of measured node signals w,
| # j, for which G(q) # 0, where Gj(q) is a strictly proper
rational transfer function,

e R; defines the set of indices of measured external excitation
signals 1y, for which R}(q) # 0, where R}(q) is a known
proper rational transfer function,

e vj(t) is unmeasured process noise, where the disturbance
vector v = [v;---v;] " is modeled as a wide sense stationary
stochastic process represented by v(t) = H%gq)e(t). The
e=[e;--- ep]T is a white noise process of dimension p <L
with covariance matrix A® > 0. H%(q) is a rational transfer
function matrix.

The full network expression, with omitted q and t, is

wq 0 G - Gy wq r e
L6 0 G | | P e |
ol g o ofled Ll L
(2)
with the matrix notation given by
w = G’w + R°r + HC, (3a)

w = (I — G°)"Y R + HO%), (3b)
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where we assume that the inverse (I — G°)~! exists and the
network is well-posed, as used in Van den Hof et al. (2013).

In the situation p < L, i.e. when the noise is of reduced rank
or singular, the disturbance model H® is a non-square matrix, i.e.

e HY € RI*P(z) is stable and has a stable left inverse H that
satisfies HTH = I € RP*P;

For a unique representation of reduced rank spectra that can be
used to construct a predictor we can adopt a result from Weerts
et al. (2018b) where the disturbance term is equivalently written
as H% with HO square.

Lemma 1 (Weerts et al., 2018b). Consider an L-dimensional distur-
bance process v with rank p. Then the disturbance signals v can be
reordered in such a way that the following unique representations
result:

|:v“j| = H% = H% with
Up

o_[Hol jo_| Hi O] s_[&]_|¢ (4)
H‘[HE’H_H;J—PO 1" ¢ & ] T e

and I'° = lim,_, . H)(2)

such that

e HY € RP*P(z) is a monic full rank rational transfer function
matrix;

e HY € RU=PP(z) is a stable proper rational transfer function
matrix.

e The covariance matrix of é is given by,
o 17 117" A0 p0pOT
A" = 0 A 0 = T (5)

r r roaA® roa°ro°

where A° € RP*P has rank p. y
o I[f additionally H? is minimum phase then H° is monic, stable
and minimum phase. | O

The result of the reordering of signals as indicated in the Lemma
is that the first p components of the reordered signal constitute
a full rank p process.

We assume that the data generating network satisfies the
following properties.

Assumption 1.

a. The network is well-posed, i.e. all principle minors of (I —
G%(00)) are nonzero (Araki & Saeki, 1983).

(I — G°)~ ! is stable and causal.

. All elements in G(q) are strictly proper.

. I:I0 is stable and has a stable left inverse.

HY is square, monic and minimum phase.

. The topology of G® and R°, and the non-zero elements of

R are fixed and known.

g. The matrix R® has a block diagonal structure: R® =
diag(R‘;, Rg) in the situation of ordered nodes as meant in
(4).

h. Measurements of all node signals w and all present excita-
tion signals r are available.

i. The standard regularity conditions on the data are satisfied

that are required for consistency results of the prediction

error identification method.?

=m0 anT

T It has recently been pointed out in Cao, Picci, and Lindquist (2021) that
this excluded the situation where the (deterministic) mapping from v, to vy is
unstable.

2 See Ljung (1999) page 249. This includes the property that e(t) has bounded
moments of order higher than 4.
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The two main steps of the identification method that will be
developed in this paper are

e Estimating the disturbance topology, i.e. the noise rank and
the zero pattern in the disturbance model.

e Estimating the dynamical components in the network for
a given network and disturbance topology, while using a
parametric BJ model structure.

In the next section we first focus on the disturbance topology esti-
mation method, followed by the developed identification method
in the section thereafter.

3. Disturbance topology estimation

Before we can use a unique disturbance model that is struc-
tured according to H® in (4), we need to estimate the noise rank
p and we need to be able to reorder the node signals in such a
way that a noise representation as in (4) can be used. This step
is necessary as the unstructured disturbance model H° is non-
unique in the situation p < L. Therefore the disturbance topology
estimation is performed in two main steps:

e Step 1: Estimating the noise rank, and reordering the signals
to the situation of Lemma 1.

e Step 2: Estimating the structure of the disturbance model
HO.

3.1. Step 1: Estimating noise rank p and reordering of nodes

For estimating the noise rank p, we are going to estimate the
covariance matrix A%(5) of innovation signal é, which through its
rank p can provide us access to the correct noise rank.

An estimate of the covariance matrix is obtained by estimating
a high-order (nonparametric) ARX model on the basis of mea-
sured signals w, r, and by using the residual (predictor error) of
this estimated model as an estimate of the white noise term eé.

A parametrized ARX model is chosen according to

A((L ’) = I+A1q_1+...+Anq—n )
B(q,¢) = Bo+Biq ' 4+ Byqqg "V o)

while all coefficients of Ak, Bk are vectorized and collected in the
parameter vector ¢. The one-step-ahead predictor Ljung (1999),
defined as

Wt = 15¢) = E{w(t)lw' ", 1), (8)

where w!~! and r! are defined according to w!~! := {w(0), w(1),

.., w(t—1)}and rt = {r(0), r(1), ..., r(t)}, is given by

a(tle —1,¢) = (1= Aq.))w(e) + Blq,¢)r(t) 9
= ¢(t)¢ (10)

with ¢(t) composed of the appropriate terms in w and r.
Note that for an actual network with representation G°, H°, R,
the one-step predictor will be given by

w(tlt — 1) = (I — (HA@) ™' — %) w(t) +
+ (H(q))"R%q)r(t). (11)

This implies that the polynomial predictor model (9) can only
accurately approximate the rational filters that are present in
(11) if the ARX order n is chosen very hilgh. The ARX model is
estimated according to ¢y = arg min, % Y e sT(t, O)e(t, ¢), with
e(t, &) = w(t) — w(t|t — 1; ¢), leading to the analytical solution

) 1d T
= [ﬁ Zw(t)wT(t)] N > etw(t). (12)
t=1 t=1
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Since the network identifiability conditions of Weerts, Van den
Hof, and Dankers (2018a) are satisfied for the considered model
set, the sample estimate

Zat inde (e, fN) (13)
t=1

will then, under mild regularity conditions, be a consistent esti-
mate of the noise covariance A°. The rank p of the noise process
can then be estimated through a rank test on A, e.g., through
a singular value decomposition. Alternatively, other matrix fac-
torizations or information based criteria can be applied for esti-
mating the rank, see e.g., Camba-Méndez and Kapetanios (2009).
When A and the estimated rank p < L have been determined, the
L signals can be reordered through a permutation matrix I7 such
that the first p components of the permuted noise vector have a
rank p covariance matrix, i.e. [l; 0] [TTAM[I; 0]  has rank
D-

Remark 1. Since the polynomials ;\(;) and B(;) are fully
parametrized with independent parameters on each polynomial
entry, the MIMO least squares optimization that leads to the
solution (12) can also be decomposed in L separate linear re-
gressions that minimize the residual (t, ¢) separately for each
Jj,» which is computationally attractive since the computations can
be performed in parallel or sequentially.

Remark 2. The resulting estimation scheme will generally not
provide us with consistent estimates of the ARX model. This is not
only due to the fact that typically the order n of the ARX model
would need to go to infinity, but also to the fact that the solution
for ¢y is non-unique in the situation p < L. However, this latter
non-uniqueness does not affect the uniqueness and whiteness of
the residual &(t, ¢) since, according to the projection theorem,
every solution for ZN” determines the same predictor (Deistler, An-
derson, Filler, Zinner, & Chen, 2010). The estimate A is therefore
consistent, i.e. A = cov(é) w.p. 1as n,N — oo.

Remark 3. Although a correct estimation of the noise rank p
cannot be guaranteed, consistency results for estimating p would
be possible when applying information-based criteria for rank
estimation, e.g., based on the BIC criterion (Camba-Méndez &
Kapetanios, 2009). In the next steps of our approach it will be
assumed that a correct estimation of p has been obtained.

After reordering the node signals as described above, we can
now adhere to a network representation with a unique distur-
bance model according to the structure in Lemma 1, where H°
can be parametrized by the transfer function matrices H, and Hp.

3.2, Step 2: Estimating the noise correlation structure

In the second step we are going to estimate which entries in
our disturbance model are nonzero. To this end we extend the SLR
method (Dankers, 2019) to the situation of reduced rank noise
and show how the noise correlation structure can be obtained.

3.2.1. Step 2.1: Refining the nonparametric ARX model

With the noise rank p available and the nodes being ordered,
we have gained additional information on HO (4), namely the
last L — p columns are now known. Now, we perform the same
approach of identification using high order ARX modeling as
in the previous step, but by utilizing the known entries in HO,
leading to refined estimates of A(g“N) and B((N). In the analysis
results of Section 5.1 it shown that the known entries in H°
can simply be mapped to known entries in the parametrized
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polynomial é(g), and therefore can simply be taken into account
in the least squares problem (12). In Section 5.1 it is shown that
this leads to consistent estimates ¢y for n, N — oo.

3.2.2. Step 2.2: Predictor model with reconstructed innovation input

In this step we are going to use the estimated nonparametric
ARX model to reconstruct the innovation signal. This allows us to
use the reconstructed innovation signal as a measured input in
the predictor model that will be used for estimating the structure
of the disturbance model.

If there exists a parameter ¢° such that the ARX model
(A(¢9), B(¢°)) captures the dynamics of the network, then it
follows from Weerts et al. (2018b) that

et ¢°) = [r’o} e(t). (14)

We can accordingly decompose &(t, ¢) as

wo- [

while the consistency property of EN” implies that

eq(t, 2,3) —e(t) w.p.1asN — ocoVt,

- (16)
ep(t, &) — IPe(t) w.p. 1asN — ocoVt.

We will refer to (t, f,{}) as the “reconstructed innovation”.
For a network with ordered nodes we evaluate a new one-
step-ahead predictor

wt)t — 1) == E{w(t)|w' ™, rf, e (17)

that includes the innovation signal e!~! := {e(0), (1),

,e(t — 1)} in the expectation. Then it follows that
bt — 1) = Gqw(t) + (H(q) — DE(t) + R(q)r(t), (18)

where
- o HY 0 o HO —1 -0
(H° — e = [ a i|—Ie:|i a ]e:He.
( H)—T° 1 ) H) —T1°
(19)

This motivates the use of the following parametrized predictor
model per node:

wj(tle — 1, n5) =
> Gumywi+ > Hisnea (G + D Rt (20)
leN; seV; keR;j

where the terms G() and H(p ) are parametrized versions of
G° and H° respectlvely, and su(;“N) is an estlmate of the noise
signal e(t). Gu(n) = Y y_, “and Hy(n) = Yp_, Hiq* ar

parametrized as strlctly proper polynomrals of order n, the term
ZkeRj Rjxri(t) is known, the sets A and R; are known from the

topology of G° and R°, and V; defines the set of indices of noise
signals for which noise dynamics is present in the disturbance
model. This leads to an ARX model, like in Step 1, but now with
the reconstructed innovation g4(t, Eﬁ) added as external predictor
input signal, and the coefficients of the unknown polynomials
collected in the parameter vector ». It is our next objective now
to determine the sets V; for j = 1, ..., L. To this end we follow
two approaches namely the structure selection approach and the
Glasso approach, which will be presented next.
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3.2.3. Structure selection
For a particular choice of V; we evaluate the residual
&(t, nN) = wj(t)—wj(t|t —1, )where nN is the estimated pa-

rameter that minimizes the quadratrc criterion Zt 1 s (t, nj),
and that is obtained through an analytical solutron similar to (12).
We test this residual with possible combinations in set V; and
employ model selection techniques such as AIC, BIC and Cross-
validation (CV) on the obtained estimates f;,’},j (Yuan et al,, 2011),
of which the BIC provides a consistent estimate (Kass & Raftery,
1995; Schwarz, 1978). Because we use ARX models to estimate 7,
model selection techniques such as AIC, BIC and CV are convex.
Additionally, since we derive the disturbance topology per node,
we have to test at most 2! possible sets V; for L nodes. This
results in a lower computational burden compared to when we
detect the topology in a MIMO setting, where we would have to
test at most 211 possible sets V; simultaneously for all j (Yuan
et al.,, 2011). However, for large networks these model selection
techniques can still become computationally heavy.

3.2.4. Sparse estimation with Glasso

For each node j, a Glasso (Group Lasso) estimate is computed
by minimizing the following cost function over n; for a fully
parametrized disturbance model with p white noise inputs:

1
H};H 7 Z(wj(f) — W]t — 1, 7)) + 2 - ||77j||2} (21)
t=1

with the one-step-ahead predictor (20), and »; being the vector
of parameters related to the modules Gj for i € Aj, and related
to the modules Hj; for s = 1, ..., p; A; is the tuning parameter
(penalization factor) of Glasso. The tuning of A; is described in
the numerical illustrations in Section 6.

The right hand side of (21) is a mixed [;/l, norm. The Glasso
estimate is a convex extension to lasso that penalizes groups
of estimated parameters (Yuan & Lin, 2006), imposing sparsity
at group level. Within a group, it does not yield sparsity (Bach,
Jenatton, Mairal, Obozinski, et al.,, 2011). If an appropriate pe-
nalization factor is chosen, only the dynamic modules that are
actually present in the data generating network remain while the
non-present terms are forced to 0, thus providing an estimate of
the structure of H.

With either of the methods of Sections Section 3.2.3 or 3.2.4
the structure Vj of the disturbance model can be estimated en-
tirely with convex and thus scalable methods, employing non-
parametric (high-order ARX-) models. This structural information
can be effectively used in the actual estimation of parametric
dynamic models in the next Section.

Remark 4. It is possible to add regularization when estimating
the high-order ARX models presented in this section to guarantee
stability of the estimates.

4. Estimating parametric network models

The next step in our identification procedure is
e Step 3: Estimating a parametric network model.

While in Step 1 and 2 high-order (nonparametric) models of
the same model order n are used, and thus providing estimates
with relatively high variance, in this step a parametric model is
estimated from data where we exploit a very flexible Box-Jenkins
model structure. In Step 3 we extend the WNSF method (Galrinho
et al.,, 2019), and its application to dynamic networks in Fonken
et al. (2020), to the reduced rank noise case such that we are able
to obtain parametric models G(6) and H(8). The WNSF is in itself
a three step method that starts with a high-order model before
estimating the parametric model.
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4.1. Step 3.1: Refining the nonparametric model

By fixing the correctly estimated disturbance topology ob-
tained in the previous section we obtain consistent estimates of
n; using one-step-ahead predictor (20) defined in (17), leading
to a high-order ARX model with structured disturbance model.
The conditions for consistency of 7" are derived in Section 5.
By employing the structured dlsturf)ance model we reduce the
variance of r}}}v, while the model order n remains the same.

Using the consistent estimate fy}' , we update the reconstructed
innovation. Subsequently, we again update the high-order ARX
model by replacing sa(gj'fv) with the updated reconstructed in-
novation gg( 77, n (20), and use this updated predictor to re-
estimate 7). T’Yns latter estimate can be seen as the starting
high-order model for the WNSF method. At this point we still
have a high variance on the estimates of n but negligible bias if
model order n throughout all the steps is chosen sufficiently large.
In the next step we reduce the variance by reducing the number
of parameters to estimate, where we will make the step from a
high-order (nonparametric) model to a parametric model.

4.2. Step 3.2: Parametric model estimate
On the basis of the nonparametric model estimate character-

ized by fy}}v we are now going to estimate a parametric model of
the dynamic network by utilizing a Box Jenkins model structure:

}ilq—l 4o g p g™
Gi(q.0) = ; ; —
1+fiq9 +"'+fqu !
1+Cij 71_|_._.+ijc —me¢
Hilg. 6) = — 11— med (22)
1+dlg '+ +dn,g ™
CiSq—1 ot Cfstquc )
I-IjS(q5 9) = l's 1 njls ) N #J
T+ dyq + -+ dng M
that can be rewritten as
L‘l(qs 9) st(q’ 0)
Gi(g.0) = - . Hy(q.0)= . 23)
’ Fig.0) " Dy(q, 0) (

From Gj,(f)};v) and I:Ijs(f]j’-1 ) that are obtained in the previous step
through the predictor (20), we can derive a related estimate of
HO(q) according to (19) leading to H(7) = H(AR) + [r(%n) ,
N
with I"(75) an estimate of the direct feedthrough term Iroof Hp,
and that based on the relation &,(t) = I'°é,(t) from (4), can be

given by

=( Zeb ﬁ))(;iea(ﬁﬁ)sg(ﬁﬁ))_l. (24)
t=1

Following the WNSF approach, we are now going to fit the para-
metric Box Jenkins model to the nonparametric model estimated
from Step 3.1, by solving for 6 in the equations

Fu(0)Gu(fy) — Ly(0) =0,
Djs(0)H;s(y) — Cis(0) = 0.
However, since these equations cannot be solved exactly, an
optimization problem is formulated (Galrinho et al., 2019) that

comes down to minimizing the quadratic residual vector on the
Egs. (25) by solving (in node-wise notation):

QAL i1l (26)

(25)

min |7, —
b
where

£o0
o = [Qg, th} , 27)
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with QF and Q' diagonal matrices with entries

ngﬂ(ﬂ) = [_,Tnxmf [Gjl(n)] inxm,] ,
thﬁ(ﬂ) = [_%xmd[Hjs(n)] Tnxmc] ,

with model orders m;, i € {l, f, c, d} according to (22), the top left
corner of Iyyy iS Imxm and has zeros otherwise, and Taxm[Xii(q)]
is a lower trlangrular Toeplltz matrix where the first column is
[ - x,] with Xia) = 30, xea ™.

The problem (26) is solved in first instance through the ana-
lytical least squares solution

Aol _ (AT An W\ TlATan \»
0, = (" (M )Q;)) Q' (h ) - (29)
However, a parameter estimate with smaller variance can be

achieved if a weighted least squares criterion is applied.> This is
introduced in the next step.

(28)

4.3, Step 3.3: Re-estimation of parametric model

In this step we reduce the variance further by re-estimating
the obtained parametric models G(6) and H(#) defined in (23). For
a statistical optimal solution of (26), instead of the standard least
squares problem (26), a weighted least squares problem should
be solved, where the optimal weight is given by the inverse
of the covariance matrix of the residual ﬁﬁv — Qj(r};;v )Qjo, with
Gjo the actual network coefficients related to node wj. This is
not directly applicable since 910 is unknown. However it can be
shown (Galrinho et al., 2019) that

i, — Q)67 = T8, — ). (30)

with n]f‘o the real network coefficients related to the n-
parametrized ARX model and Tj(#) a block diagonal matrix with
the denominator polynomials as entries

il
T8 (0) = TasalFi(0). a1
T (0) = TaxnlDs(0)].

where T,.x[Xi(q)] is a lower triangular Toeplitz matrix where
the first column is [1 ¥ ... X}, O,HH,]]T with Xi(q) =

T+3002, Xlllciqik-
Result (30) motivates the use of a weighted least estimator
with weighting matrix

W =T O )Py )T (0])
with P;» the covariance matrix of the nonparametric model. This

N . . . .
can be implemented in an iterative scheme according to
ik =

QAL WO QT (R WAL

For consistency of the estimates of parameter vector 6 we refer
to the proof in the WNSF method (Galrinho et al., 2019), with the
actual model orders m; withi = f, [, ¢, d (22) known.

-1 (32)

Remark 5. Because in this final step we correct for the variance
due to the modeling error (30), the final estimate will have a
reduced variance.

3 As an alternative we can consider a weighted least squares criterion to
obtain 91.[,?] (29), with the covariance matrix of the nonparametric model as
weight.
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Throughout the presented steps we split the MIMO optimiza-
tion into L linear regressions that rely on explicit analytical so-
lutions, and that allows for parallel computing. The Algorithm is
given as follows.

Algorithm 1. Algorithm for full network identification in dy-
namic networks, including disturbance topology detection

Inputs: w(t), r(t), R°(q), model orders m;, i € {I, f, c, d}, network
topology.

Output: Disturbance topology, éN.

Disturbance topology detection

1. Estimate noise rank p based on the reconstructed innova-

tion &(t, EN”) (15), and if p < L order the nodes.

2. 2.1 Obtain consistent estimate EN” with least squares so-
lution (36), where the nodes are ordered and by
utilizing the estimated noise rank p.

2.2 Use the reconstructed innovation &4(t, E,(}) as mea-
sured input in the one-step-ahead predictor (20) de-
fined in (17) to estimate the noise correlation struc-
ture. We use

(i) Structure selection with AIC, BIC and CV,
(ii) Glasso,

applied to estimate n]” that is obtained with least
squares solution (37).

Estimating parametric network models

3. 3.1 Refine the nonparametric ARX model and obtain
consistent estimate 7y, with one-step-ahead predic-
tor (20), where the estimated disturbance topology
is fixed and update the reconstructed innovation
to g4(t, ) to re-estimate 7.

3.2 Reduce the nonparametric ARX model to a paramet-
ric model and obtain initial estimate @,E,O] by (29).
3.3 Re-estimate @j{i‘“] with (32), where we update the

weighting matrix W;(9])) in each iteration.

We continue to iterate until we have reached the convergence
BIKI _plk=1]
oy~ —6, I

=11
oy~
used in the simulation results in Section 6. In the next Section
we derive the conditions required for consistency of estimates ¢
N IN
and nEV.

criterion < 0.0001. This convergence criterion is also

5. Theoretical analyses

From here on we consider n = n(N) i.e. the model order n
increases as the data length N increases, while with increasing N,
n/N tends to O with a particular rate (Galrinho et al., 2019; Ljung
& Wahlberg, 1992).

_ Next we derive the conditions under which the estimates
¢y and 7, and consequently the reconstructed innovation are
consistent.

5.1. Consistency of E,’J in Step 2.1: Refining the nonparametric model

With the noise rank p available and the nodes ordered we
gained structural information on the unique noise model Ho(q)
(4), namely we know that for the reduced noise rank case p < L
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the last L — p columns in I:IO(q) are [O I]T. Moreover, taking the
inverse of H%(q) does not affect the last L — p columns since

Coo HO)~1 0

HO ! = (H, _ : 33
0 =g Syt 1] 2
As a result the term (H°(q))~1R%(q) in the one-step predictor (11),
has the following structure

< on_ HY)~'R? 0
HO 1RO — ( a a _
HTR= (g = oy RS
with the second block column consisting of known terms only.
This allows in the parametrization of the predictor (9) to replace

the square polynomial B(¢) with a non-square polynomial B(¢),
leading to

(34)

dtlt — 1, ¢) = (I = A@))w(t) + B ()+[Sﬂ (1)

— o(t) + [,Sg} t),

with ¢(t) composed of the appropriate terms in w and ry.
Note that for an actual network with representation G°, H°, R,
the one-step predictor is still given by (11), but now the pre-
dictor model (35) can use the known external excitation 51gnals
rp(t). The ARX model is estimated according to g“N = argmin, N

th] el(t, o)e(t, ), with g(t, 0) = w(t) — w(t|t — 1; ¢), leading

to the analytical solution:
0
[Rg] rb(t)] . (36)

Esz[ Zw(f T(r} Z<p [

Note that Remark 1 holds and therefore predictor (35) can be
decomposed in separate predictors for each node. The conditions
for consistency are formulated in Proposition 1 and the proof is
added in the Appendix.

(35)

Proposition 1 (Consistency EN” ). Consider a dynamic network that
satisfies Assumption 1. Additionally, consider the one-step- ahead
predictor (35). Then the transfer _{uncaon matrices (HO( Nl —
G%(q)) and (H%(q))"" [R(q)" 0] are consistently estimated with
the analytical solution (12), if the following conditions hold:

(1) The external excitation r(t) is uncorrelated to the noise e(t).

(2) The spectral density of k(t) = [ra(t)" w(t)T]T, &, () >0
for a sufficiently high number of frequencies w.

(3) A(q, ¢) and B(q, ¢) are of high order, such that n — oc.

Remark 6. Condition (1) and (2) of Proposition 1 are given for
all signals present in the network. These conditions remain un-
changed when we convert from a MIMO predictor to L linear re-
gressions. Therefore the proof also holds for a predictor assessed
per node.

Proof. See Appendix.

5.2. Consistency of 7y, in Step 3.1: Refining the nonparametric model
A refined nonparametric model is estimated by exploiting the

information on the noise topology in the form of a structured

polynomial model B(»;) for Hjs(»;) in the predictor (20), leading
to the analytical solution

N
ﬁ1’6=[;2¢(t)w } Z«» ) [w(t) = ROr(t)] . (37)
t=1

with ¢(t) composed of the appropriate terms in w and &(7jy).
The conditions for consistency are formulated in Proposition 2.

Automatica 141 (2022) 110295

Proposition 2 (Consistency 7y ). Consider a dynamic network that
satisfies Assumption 1 and Proposition 1, and assume the distur-
bance topology is estimated correctly. Additionally, consider the
one-step-ahead predictor (20) for all j. Then the transfer function
matrices of G°(q) and HO( ) — I are consistently estimated with the
analytical solution 7 ), if the following conditions hold:

(1) For all j, the spectral density @g(w) of k(t) =
[wiag ()T epy(t) ] , satisfies @i (w) > 0 for a sufficiently
high number of frequenczes w.

(2) The data generating system is in the model set, i.e. there exists
a no such that G(q. no) = G°(q) and H(g. no) = H%(q) — I.

Proof. See Appendix.

With consistent estimate 7y, we can update the reconstructed
. . A A N T .
innovation &(t, Afy) = [ed(t, AR)T  ep(t, Af)T]  consistently for
each time stept=1,...,N
e(t, fy) — &(t)
where the innovation is reconstructed per node according to

gj(t, n) = wj(t) — wi(t|t — 1, n) using one-step-ahead predictor
(20).

w.p. 1asN — oo Vt, (38)

Remark 7. Note that Condition (2) of Proposition 2 incorporates
the condition that the noise rank p is chosen correctly, and
the disturbance model is flexible enough to represent the exact
disturbance topology of the network.

Following the line of reasoning in Van den Hof and Ramaswamy
(2020), the spectral conditions in Propositions 1 and 2, which are
actually data informativity conditions, can generically be replaced
by path-based conditions on the graph of the network model set.

5.3. Generic data informativity conditions

Condition (2) of Proposition 1 and Condition (1) of Propo-
sition 2 is a spectral data informativity condition on internal
node signals in w, and it is difficult to interpret it for an exper-
imenter. In this section we replace the spectral condition with
a path-based data informativity condition in a generic sense,*
i.e. independent of the numerical values of the network dynamics.
By doing so we can evaluate if data informativity is satisfied based
on the network and disturbance topology, and the properties of
the external signals. Next we formulate the conditions in terms
of properties and locations of the external signals analogous to
Lemma 1 and Proposition 1 from Van den Hof and Ramaswamy
(2020), by means of vertex-disjoint paths from external signals
to internal node signals, where two paths are vertex-disjoint if
they have no nodes in common, including their start and end
nodes (Van der Woude, 1991). The consequences are illustrated
in a 6-node example.

5.3.1. Vertex-disjoint paths
The generic version of Condition (2) of Proposition 1 is given
in Proposition 3.

Proposition 3. The spectrum condition ®@,.(w) > 0 for «(t) =
[ra(t)" w(t)T]T in Condition (2) of Proposition 1 is generically
satisfied if there are L vertex-disjoint paths from [rb(t)T e(t)T]T
to w(t).

Proof. See Appendix.

4 Genericity is considered in the sense that the corresponding property holds
for almost all models in the model set, possibly excluding a set of measure 0.
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Fig. 1. 6-node dynamic network with reduced rank noise that has rank p = 4,
no r(t) signals are shown. The arrows represent the edges for which Gg #0

and H}? # 0, where the arrows indicated in red are examples of the two
vertex disjoint paths needed to satisfy Proposition 4 for output ws(t). (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Proposition 3 gives a sufficient generic path-based condition
that requires to have external excitation signals at certain lo-
cations in the network, combining data informativity conditions
with identifiability (Van den Hof & Ramaswamy, 2020).

The set V denotes the set of indices of all the disturbing
noise signals, where V) is a subset of V. For the generic condition
for Condition (1) of Proposition 2 we introduce notation eqx,(t),
where X; is the set of indices of all the disturbing noise signals
excluding indices that are already present in set Vj, i.e. Xj = V/V.

Proposition 4. The spectrum condition @¢(w) > 0 for k(t) =
T 77T . . s .
[wwj)(t) e(vj)(t) ] in Condition (1) of Proposition 2 is gener-
ically satisfied if there are Cardinal{Nj} vertex-disjoint paths from

T 717
[T(f) (?{Xj](f) ] to w{'/\[j}(t).

Proof. See Appendix.

Proposition 4 gives a sufficient generic path based condition
that requires external excitation signals at certain locations such
that @;(w) > 0 for a sufficiently high number of frequencies.

Remark 8. If we want to identify only the jth row of the network
(or only part of the network), we can consider the predictor
in Proposition 2 only for node j and satisfy the conditions in
Propositions 2 and 4 for node j.

Next we elaborate the vertex-disjoint path conditions by
means of an example where a network is subject to reduced rank
noise.

5.3.2. Reduced rank noise example

We consider a 6-node network that satisfies Assumption 1
and is subject to reduced rank noise of rank p = 4 shown in
Fig. 1. This 6-node example is additionally used in the simulations
in Section 6, and is further defined in Appendix E. The nodes
are ordered such that the first p nodes are subject to full rank
noise. Moreover, we assume the disturbance topology is correctly
estimated.

The goal of this example is to elaborate on the path-based data
informativity conditions given in Propositions 3 and 4. To be more
specific, we show which external excitation signals are sufficient
in order to satisfy the spectral Condition (2) in Proposition 1 and
Condition (1) in Proposition 2. In the example we have external
noise signals e(t) = [eq(t) e4(t)]T and external excitation
signals ri(t), for simplicity we assume R° contains elements that
are either O or 1.

In order to satisfy Proposition 3, we require L = 6 vertex-
disjoint paths from [ry(t)" e(t)T]T to w(t). The first p =
4 nodes, denoted by wy(t), are excited by the noise e(t); we
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therefore require at least L — p = 2 external excitation sig-
nals ri(t) on the last 2 nodes wy(t) = [ws(t) ws(t)]T, ie.
rp(t) = [r5(t) rs(t)]T with R, = I € R?**2, Therefore we
satisfy PropositiTon 3 since we have 6 ¥ertex—disjoir1t paths from
[e()T m(0)T] to [wa(t)T  wy(t)T] .

To show how Proposition 4 is satisfied, we first consider
output node ws(t) = Gs1(n)wi(t) + G35(71)w5(t)T—|— Hzy(n)ea(t) +
Has(n)es(t), that has winy)(t) = [wi(t) ws(t)] and epy)(t) =
[ez(t) E'3(t)]T. We need Cardinal{N3} = 2 vertex-disjoint paths
from [r(t)T e(Xj}(t)T]T to wny)(t). There already exist 2 vertex
disjoint paths from ejx,(t) = [ei(t) e4(t)]T to winy)(t). This
shows that Proposition 4 is satisfied by the two vertex disjoint
paths from e;(t) — w4(t) and from e4(t) — wg(t) — ws(t) as
indicated in red in Fig. 1. If we apply the same reasoning to the
other nodes we see that for node

o wq(t) with win,y(t) = wy(t), there exists a vertex-disjoint
path from e;(t) — wy(t).

o wy(t) with wins,y(t) = ws(t), there exists a vertex-disjoint
path from es3(t) — ws(t).

o wy(t) with w1 (t) = wy(t), there exists a vertex-disjoint
path from es(t) — ws(t) — wy(t)

o ws(t) with wing(£) = [wi(t)  we(t)]’, there exist 2 vertex-
disjoint paths from eq(t) — wi(t) and from e4(t) —
wg(t).

o we(t) with wias)(t) = ws(t), there exists a vertex-disjoint
path from e3(t) — ws(t).

In order to satisfy Proposition 4 we therefore do not require
additional external excitation signals ry(t).

Consequently, in order to identify the full network for the
given example, it is sufficient to add external signals ry(t) =
[r5(t) r5(t)]T with R, = I € R?*? that satisfies Proposition 3.

6. Numerical simulations

In this section we show the results of different steps in Algo-
rithm 1. We assume R® = I, and consider the system given in
Fig. 1 and Appendix E.

For the simulation study we use normally distributed zero
mean white external signals, where {r(t)} has a variance of 5
and the vector of e-signals has variances {0.1, 0.2, 0.3, 0.4}. We
simulate the nodes according to w(t) = (I—G°)~1(R%r(t)+H%(t))
and perform M = 100 Monte Carlo runs over five data lengths
logarithmically spaced between 300 and 50000. For each of the
data lengths N a specific value of the model order n is chosen
according to n = 10, 20, 30, 40, 40, for increasing values of N.
The actual model orders m;,i € {l,f, c,d} can be derived from
Appendix E.

Next we describe the noise rank estimation results of step 1
of Algorithm 1.

6.1. Rank p and ordering of the nodes

In order to obtain the noise rank p we perform a rank test
(singular value decomposition) on covariance matrix A (13).
For data length N = 300, the singular values averaged over
the 100 Monte Carlo runs are
svd(Ay) = [0.37 0.26 0.21 0.06 2.13-107% 1.96-1077],
where we see that the last two singular values are close to zero.
As data length increases the last two values converge even closer
to zero. For N = 50000 we obtain the following averaged singular
values
svd(Ay) = [0.59 0.40 0.39 0.10 4.04-10~" 1.24.107"3],
showing that a clear gap between the fourth and fifth singular
value points to a correct rank estimate of 4.
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Finally with the noise rank p available we can reorder the
nodes such that [I, 0] 17T A [I, 0]T has rank p.

Next we show the disturbance topology detection results of
step 2 of Algorithm 1.

6.2. Topology estimation of the disturbance model

For the topology detection we are interested in which indices
belong in set V; for all j, where the indices indicate where the
edges are located in the disturbance model. We evaluate the
performance of the topology detection by evaluating the trade-
off between overestimating and underestimating the number of
edges, that is typically used in receiver operating characteristic
(ROC) curves (Hajian-Tilaki, 2013).

If an edge is present in both the data generating disturbance
and the estimated disturbance topology, we count this edge as a
true positive (TP). If an edge is present in the estimated distur-
bance topology but does not exist in the data generating system,
we count this edge as a false positive (FP). Additionally we let
Pos indicate the total number of existing edges and Neg indicates
the total number of non-existing edges in the disturbance model.
The ROC curve plots the true positive rate (TPR) versus the false
positive rate (FPR), with

P FP
TPR= —, FPR= —,
Pos Neg

where FPR = 0 and TPR = 1 represented by the point (0, 1),
indicates the topology is perfectly reconstructed. We evaluate the
closeness to the point (0, 1) by utilizing the distance function

FPR2 + (1 — TPR)?, (40)

(39)

dis =

For the structure selection procedure we test all possible com-
binations in set V; and employ AIC, BIC and CV. For AIC we use

1lo Vi (L)) + i1 (41)
) S\ Vin My N’
with np, the number of estimated parameters for node j and

N

1
Vi) =+ D& ), V- (42)

t=1

For BIC we use
N log(vm(f;;‘N )) + N(log(27) + 1) + ny, log(N). 43)

From these simulations we select set V; that gives the smallest

AIC or BIC value. For the CV we split the data Z¥ = Z(VZ®) in a

training set Z(V of length 2(N + 1) and obtain the estimates for

the different combinations in set V; according to

A(1 .

it = argminVj, (n;, Z), (44)
n

With the validation set Z(), that contains the remaining data of
length N = (N + 1), we minimize objective function

N@)
1
~(1) (2 ~(1)y2
Viu (i, 29 = 17 D el i) (45)
t=1

and select the set V; that gives the smallest root mean squared
error (RMSE)

RMSE; = \/V;, (V). ). (46)

For Glasso we fully parametrize the disturbance model, using the
known topology of G° and fixed R® = I. We inspect all elements
of the disturbance model matrix that is parametrized with the
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Fig. 2. dis as a function of N, averaged over the Monte Carlo runs.

Glasso estimates (21). If element Hji(7jy) of the disturbance model
matrix contains nonzero Glasso estimates we say this element
contains dynamics, and therefore an edge is present and i € V.
To prevent arbitrary small Glasso estimates are seen as dynamics
we define a tolerance, where the Glasso estimates are nonzero
if the I, norm of these estimates is larger than 10~3. The choice
to include the estimates of Gj(n) in the penalization is due to
the implementation of Glasso (Boyd, Parikh, & Chu, 2011). For
good estimates on the disturbance topology, we utilize the known
topology of G° and deal with known R°r(t) signals appropriately.

Tuning of A; is done via a grid based search similar to the
CV structure selection. First we select a grid A¥™ = {0, 25,
50, ..., 2000} containing A; values to test. For each grid point we
estimate 7% using Glasso, from where the topology is derived
by inspecting the disturbance model for dynamics as mentioned
before, and fix the topology H]‘-g”d per node. Next we apply CV

using topology I-Ijg”d and estimate the RMSE;. The grid point with
the lowest RMSE; is selected as the A; value. Repeating the tuning
procedure over a number of runs gives the minimally required
value for A;. The tuning procedure is applied to all nodes for the
different data lengths N.

Fig. 2 shows the topology detection results, with the distance
averaged over 100 Monte Carlo runs. The BIC is a consistent infor-
mation criterion (Kass & Raftery, 1995; Schwarz, 1978), meaning
that the estimated disturbance topology will converge to the
actual topology if N — oo. However, as can be seen in the results
in Fig. 2, the full convergence of the BIC procedure is not reached
for the given data lengths. Until the BIC procedure converges
to the actual disturbance topology, it tends to underestimate
the number of edges that are actually present, therefore the
mismatch in the distance function is caused by not detecting all
the TP’s. The AIC is not a consistent information criterion, but
has a faster convergence rate compared to the BIC (Zhang, 1993).
The AIC tends to overestimate the number of edges, meaning the
mismatch is caused by detecting the FP’s. The CV is comparable to
AIC but has a slower convergence rate. Finally the Glasso seems
to have the best of both AIC and BIC. However, these results
heavily depend on the selected tuning parameter A, where it is
not guaranteed that a suitable A\ exists.

Next we show the parametric estimation results of step 3 of
Algorithm 1, where we fix the estimated disturbance topology.
Based on the results in Fig. 2 we have fixed the correctly esti-
mated disturbance topology obtained with Glasso for N = 50000,
where TPR = 1 and FPR = 0.

6.3. Estimating the parametric model

Next we present the results of the estimation of the parametric
model. Because Algorithm 1 is consistent we have a negligible
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Fig. 3. MSE between éN and 6 as function of sample size, averaged over the
Monte Carlo runs, obtained with Algorithm 1 with R® = I, where subscript {t}
indicates the use of the true (unknown) white noise as a predictor input instead
of the reconstructed innovation.
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Fig. 4. MSE between ?)N and 6p as function of sample size, averaged over
T
the Monte Carlo runs, obtained with Algorithm 1 with R® = [0 RgT] and

R, = I € R**2, where subscript {t} indicates the use of the true (unknown)
white noise as a predictor input instead of the reconstructed innovation.

bias and the mean squared error (MSE) represents the variance.
For the simulations we use the correct estimated disturbance
topology from the previous steP Additionally, for Step 3.2 of
Algorithm 1, we compute the 9 % in (29) ) using the covariance
matrix of the nonparametric model as weighting. Figs. 3 and 4
present the sample MSE that is computed according to MSE(N) =

& Zi] H éN,C — 6 2, where c indicates the Monte Carlo run and

Ov.c the final estimate (32). In Fig. 3 we use R° = [ in the
e

data generating network, and in Fig. 4 we use R® = [0 RgT]

with R, = I e R?**? according to Section 5.3.2. The solid
lines represent Algorithm 1 where the estimates are obtained
using the reconstructed innovation as input. The dotted lines
represent Algorithm 1 where we use the realization of the actual
noise e(t) as input, indicated by subscript {t}. The results for the
whole network are shown, while using L linear regressions. Both
simulations shown in Figs. 3 and 4, typically perform k = 6
iterations for data length N = 300 in (32). As the data length
N increases the number of iterations performed decreases, where
for N = 50000 the simulations typically perform k = 2 iterations.
The MSE(N) improvement after the iterations is shown in Table 1.
From Table 1 we can derive that we benefit most from iterating
k in the final step of Algorithm 1 if we do not have full excitation
on the network with R® = I.

In Figs. 3 and 4 we see convergence between the solid and
dotted lines as the data length N increases. This indicates that as
data length N increases the reconstructed innovation converges
to the actual noise. Furthermore all MSE results continue to
converge towards zero which is in line with the consistency proof.
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Table 1
MSE improvement:

. . 2
M 6w — 6o ||2 . DY H(J,(Vl)c — 6o H over k iterations.

N 300 1078 3873 13916 50000
RR=1 16-102 51.-10° —-12.-10°% —-19.1077 3.7-10°%
RO=1 043 0.26 0.15 0.07 0.01

The results of this simulation study support the consistency
proof and we consistently estimate the B] model structure, while
employing a row-wise optimization.

7. Conclusions

In this paper we present a multi-step least squares method
for network identification, that can handle reduced rank noise
with low computational burden. We follow a step wise procedure
where we first extend the SLR identification method to detect the
disturbance topology, and thereafter extend the WNSF method
to consistently identify networks of general model structure,
including a BJ model structure. For a B] network, usually a non-
convex MIMO identification method is needed. In this paper, we
show that we identify the BJ network using analytical solutions.
Simulation results indicate that we can identify the disturbance
topology of the given network with low error if the data length N
is sufficiently large. We show that the presented method is con-
sistent, and provide path based data informativity conditions, that
guides where to allocate external excitation signals for the exper-
imental design. Considering large networks subject to correlated
and/or reduced rank noise, the presented method is promising
due to its scalability and low variance results.

Appendix A. Proof of Proposition 1

Consider the prediction error for the predictor w(t|t — 1,¢)
from (35):

S(t,§)=1f)(t)— Wt — 1, ¢) = A w(t) — B )r(t), (A1)
= A )w(t) — B(¢)r(t) — [0 R;,T] r(t).
With the data generating system (1) given as
w(t) = (A°)Br(e) + (A°) (W), A2)
with A° = (H°)~'(1 = 6°), B® = (H°)~'R°
we can rewrite the prediction error as
e(t, ¢) = (A" — AA(L))w — (B® — AB(¢))r (A3)

with AA(¢) = A° — A(¢) and AB(¢) = B® — B(¢). Then with (A.2)

it follows that
&(t, £) = AB(C)r — AA(C)w + @,

and since the second block column of B(;) is fixed and known, it
follows that AB(¢)r = AB(¢)re. We now proceed by evaluating
the jth component

gj(t,¢) = ABj(¢)rq

where A;\j(g) and AB;j(¢) are the rows of matrices A;\(g) and
AB(¢) belonging to node j.
The consistency proof consists of two steps:

(A4)

— AA(D)w + &, (A5)

(1) Show that the objectlve function is bounded from below
by the noise variance® Vi(¢) = ]Ee (t,¢) = cru where the

minimum is achieved for A;\j(g) =0and AB](C) =
(2) Show that the global minimum is unique.

5 E refers to the generalized expectation operator limy_, o % Zf; E
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A.1. Consistency proof step (1)

With (A
becomes

ABj(g )ra -

.2) substituted into (A.5), the expression for &(t, ¢)

AAj(;)((AO)—léOr n (AO)—lé) +8 (A6)

from which, due to the fact that AAJ-(;) is strictly proper and
r and e are uncorrelated, it follows that & is uncorrelated with
the remaining terms in the expression. As a result, the objective
function is given by

7(0) = B[ (4B — Ak w) ] + o2,

from which we can infer that \_/j(;“) > aé with equality for
AAj(Z) =0 and ABj(¢) = 0.

(A7)

A.2. Consistency proof step (2)

For the second step we show that the minimum is unique,
by showing that Vi(¢) = aé implies AAj(¢) = 0 and AB;(¢) =
0. With (A.7) and by applying Parseval’s theorem, \_/j(;“) = aé?
implies '

i .
@ (w)Ax(e7?”, £)dw = 0,

X', )" (A.8)

2
with Ax™ = [AB(¢) —AA()] andx =[r] w']".

By Condition (2) the spectral den51ty @, (w) is positive definite.
Therefore Eq. (A.8) holds only for Ax™ = 0 which is satisfied
by Condition (3). The global minimum of V;(¢) is thus unique for
Ai(¢) = A? and [Bi(¢) Rj | =B, withR =0forj=1,....p
andI_Q] 1sarowobe forj=p+1,...,L. O

Appendix B. Proof of Proposition 2

For ease of notation we start with the MIMO notation of the
one-step-ahead predictor (20)

d(tlt — 1.) = Gl)w + Rr + H(nea(£3). (B.1)
From Proposition 1 we know ¢! is consistent, therefore

e(f,(,‘) — ¢ w.p.lasN — coVt, (B.2)
and we can rewrite the one-step-ahead predictor as

wt|t — 1, n) = G(n)w + Rr + H(n)e (B.3)

Considering the data generating system in (1) the residual be-
comes

&(t, n) = w(t) — w(t|t — 1,n)
= AG(n)w + H% — H(n)e

(B.4)
- I
= AG(n)w + AH(n)e + |:F°] e,
- AH, (n)] -
where AG = G — G and AH = , with
here AG(n) = (n). () [AHb(n) _
AH,(n) = H? —Hy(n), with H, = H,—1I and AH,(n) = H® —Hy(n),
with H, = H, — I.
The residual per node is written as
n) =) AGi(n)wi+ ) _ AHg(n)es +§;, (B5)

leN; seV;

where AGj(n) = G0 Gji(n) is an element of matrix AG(#), and

AHJS( ) is an element of matrix AH(n).
The consistency proof consists of two steps
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(1) Show that the objective function is bounded from below
by the noise variance Vj(0) := Ee’(t,0) > oé, where the
minimum is achieved for AG; = 0 and AHj; = 0.

(2) Show that the global minimum is unique.

Step 1 By using the property that all AG- and AH-terms are
strictly proper, it follows from (B.5) that
2
) ] + aézj

=&[ (D At + Y Afty(es
and \_/j(n) > og with equality for AG; = 0 and AI:IJ-S = 0 for all

leN; seV;
leNjand s € V.
Step 2 Showing that the minimum is unique is done by showing
that Vi(n) = oé implies AGy = 0 and AHj;; =0 for all [ € Aj and
s € V;. With (B.6) and by applying Parseval’s theorem, \_/j(g) = oé

implies

(B.6)

T jo
o= Ax (A

e(w)Ax(e 7, n)dw = 0, (B.7)

.
with Ax" = [AGje; AI:IJ-SGVJ.] and k = [w{TNj} e{TvJ_}]

By Condition (1) the spectral density @i is positive definite.
Therefore Eq. (B.7) holds only for Ax" 0. The Parseval's
theorem shows the global minimum of \_/j(r;) is unique for Gj(n) =

and H]s(n) = — I;s by Condition (2). O

]s
Appendix C. Proof of Proposition 3

The vector signal « is written as

] [1 o o]l
K= w| |Jwa Jwb  Juwe reb
J

with Jua, Jwb» Jwe apjpropnate transfer function matrices. Since
p=[r] ©f e"] is persistently exciting, ie. ®,(w) > 0 for
all w, it follows from Lemma 1 in Van den Hof and Ramaswamy
(2020) that « is persistently exciting if and only if matrix J has
full row rank. Since full row rank of J is equivalent to a full
row rank of [J,p Juel, the result of Proposition 1 in Van den Hof
and Ramaswamy (2020) then shows the equivalence with the
condition that there are L vertex disjoint paths from the inputs
of [Jub Juwel, i.6. 1, and e, to its outputs, i.e. w. O

(C.1)

Appendix D. Proof of Proposition 4

Similar to the line of reasoning in the proof of Proposition 3,
the vector signal i is written as

.
__|wiy | [ Jwr Jux Jwe
K_[ewj}]_[o I i

e
with Jur, Jwxs Juv approprlate transfer function matrices. Since

J
p = [rT e{x,) W)J is persistently exciting, i.e. ®5(w) >
0 for all w, it follows from Lemma 1 in Van den Hof and Ra-
maswamy (2020) that i is persistently exciting if and only if
matrix J has full row rank. Since full row rank of J is equivalent to
a full row rank of [J,,; Jux], the result of Proposition 1 in Van den
Hof and Ramaswamy (2020) then shows the equivalence with the
condition that there are Cardinal{\j} vertex disjoint paths from
the inputs of [J, Jux], i.e. 7 and e(x;, to its outputs, i.e. winj- O

(D.1)
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Appendix E. System used in simulations
In the simulation results in Section 6 we use the data generat-

ing network of which the graph is represented in Fig. 1. The data
generating transfer functions G and H are given by

0 0 0Gg 0 O
0 0 0 0 Gy O
|60 0 0c o0
G=17 Gpp 0 0 0 0 |° (E.1)
G5y 0 0 0 0 Gsg
0 0Gg 0 0 0
with the elements of Gj
_0.38¢'40.24¢72 0.20q~!
Gia = 1-1.35¢ 140542’ Gos = 1-1.30q-140.60g—2 "’
_ 0.39¢! _ 0.16g!
Gy = 1-0.80q—1-+0.20g—2’ G35 = 1-1.23¢-140.51g=2° (E.2)
Gpr = —0.30q~! Ger — —0.60g~! ’
42 = 12060q-140.20q-2° 51 = 170.45¢-140.12¢-2°
_ —0.22q ! _ —0.11q"!
Gse = 1-1.22¢~140.460—2 Ge3 = 1-1.49¢-140.62¢2°
and
Hi1 0 0 Hyg
0 Hp 0 O
_ 0 H3p Hzz O
H=| , Hip 0 Hy |° (E.3)
0 Hez 0 Hes
with noise rank p = 4 and elements
_ 140.52q7! _ 041¢7!
Hip = 140411’ His = 1-0.56q1°
_ 1+40.44¢7" _ —0.56q~"
Hzp = 140.35¢1° H3 = 1-0.40q-1°
_1-0.20q~"! _ 0.26g7!
H3; = 1+0.43¢—1° Ha = 1-0.629~1° (E.4)
Houa — 1+0.52¢~! He, — 0.49¢~! ’
44 = 13045410 52 = 1°0.49¢-1°
_ 1+0.66q~! _ 1+0.24q7!
Hs3 = 14051 1° Heg, = 140531’
_ —0.56q!
Heq = 1-0.56q—140.21g=2°
0 0 01O
where '’ = .
|:0 1 0 0
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