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The independence number, coloring number and related pa-
rameters are investigated in the setting of oriented hyper-
graphs using the spectrum of the normalized Laplace opera-
tor. For the independence number, both an inertia–like bound 
and a ratio–like bound are shown. A Sandwich Theorem in-
volving the clique number, the vector chromatic number and 
the coloring number is proved, as well as a lower bound for 
the vector chromatic number in terms of the smallest and the 
largest eigenvalue of the normalized Laplacian. In addition, 
spectral partition numbers are studied in relation to the col-
oring number.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Oriented hypergraphs were introduced by Shi in [36] as a generalization of classical 
hypergraphs in which a plus or minus sign is assigned to each vertex–hyperedge inci-
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dence. Since their introduction, such hypergraphs have received a lot of attention. The 
adjacency and Kirchhoff Laplacian matrices of oriented hypergraphs were introduced by 
Reff and Rusnak [33], while the normalized Laplacian was introduced by Jost together 
and the second author of this paper [19]. It is known that the spectra of these matrices 
encode many qualitative properties of the associated oriented hypergraph, and several 
problems in spectral hypergraph theory arise when trying to generalize the classical spec-
tral results that are known for graphs. We refer the reader to [6,7,11,15,16,22,31–35] for 
a vast — but not complete— literature on the adjacency and Kirchhoff Laplacian ma-
trices for oriented hypergraphs. We refer to [1,19,20,26–29] for some literature on the 
hypergraph normalized Laplacian.

The overall aim of this paper is to bring forward the study of the spectrum of the 
normalized Laplacian of oriented hypergraphs. In particular, this paper investigates its 
relation with parameters that depend on the structural properties of the hypergraphs, 
such as the coloring number and the independence number. While these relations have 
already been partly investigated in [20,26] for the coloring number, to the best of our 
knowledge they have not been yet studied for the independence number. The indepen-
dence number of a hypergraph [39] is the maximum size of a set of vertices such that, 
for each pair of vertices in this set, there is no hyperedge containing both of them. The 
coloring number of a hypergraph was defined by Erdős and Hajnal in 1966 [12] as the 
minimal number of colors needed for coloring the vertices so that, if two vertices are 
contained in a common hyperedge, they receive different colors.

The following two bounds are well-known for the order of an independent set in a 
graph. Let G be a graph with n vertices and adjacency matrix eigenvalues θ1 ≤ . . . ≤ θn. 
The first well-known spectral bound (‘inertia bound’) for the independence number α of 
G is due to Cvetković [10]:

α(G) ≤ min{#{i : θi ≤ 0},#{i : θi ≥ 0}}.

When G is regular, another well-known bound (‘ratio bound’) is due to Hoffman 
(unpublished, see for instance [5]):

α(G) ≤ n
−θ1

θn − θ1
.

In this paper we present the first inertia–like bound and ratio–like bound for the inde-
pendence number of an oriented hypergraph. Both upper bounds involve the eigenvalues 
of the normalized Laplacian and are the analogous of the aforementioned celebrated 
bounds for the adjacency spectrum of a graph. In addition, we study the coloring num-
ber of a hypergraph in relation to the clique number, to the vector chromatic number 
and to the spectral partition numbers of a hypergraph.

This paper is structured as follows. In Section 2 we offer an overview of the basic 
definitions and notations that will be needed throughout this paper. In Section 3 we 
prove a hypergraph–Laplacian version of the inertia bound. Similarly, in Section 4, we 
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show a hypergraph–Laplacian version of the ratio bound. In Section 5 we investigate the 
coloring number and the vector chromatic number of oriented hypergraphs and finally, 
in Section 6, we show that the introduced spectral partition numbers are closely related 
to the coloring number.

2. Preliminary definitions and notations

An oriented hypergraph [36] is a triple Γ = (V, H, ψΓ) such that V is a finite set 
of vertices, H is a finite multiset of elements h ∈ P(V ) \ {∅} called hyperedges, while 
ψΓ : (V, H) → {−1, 0, +1} is the incidence function and it is such that

ψΓ(i, h) �= 0 ⇐⇒ i ∈ h.

A vertex i is an input for a hyperedge h if ψΓ(i, h) = 1, and an output if ψΓ(i, h) = −1. 
Two vertices i �= j are co-oriented in a hyperedge h if ψΓ(i, h) = ψΓ(j, h) �= 0, and they 
are anti-oriented in h if ψΓ(i, h) = −ψΓ(j, h) �= 0. Given a hyperedge h, we denote by 
hin the set of its inputs and by hout the set of its outputs. Clearly, h = hin ∪ hout.

The degree of a vertex i, denoted deg(i), is the number of hyperedges containing i. 
The size of a hyperedge h, denoted #h, is the number of vertices that are contained in 
h. We say that a hypergraph is d–regular if all vertices have degree d.

Observe that simple graphs can be seen as oriented hypergraphs such that H is a set 
and, for each h ∈ H, there exists a unique i ∈ V that is an input for h and there exists 
a unique j ∈ V that is an output for h. More generally, signed graphs can be seen as 
oriented hypergraphs such that H is a set and each hyperedge has size 2 [33].

Throughout the paper Γ = (V, H, ψΓ) is an oriented hypergraph on n vertices 
{1, . . . , n} and m hyperedges {h1, . . . , hm}. For simplicity, we assume that there are 
no vertices of degree zero.

Given a subset S ⊂ V , we define the sub-hypergraph Γ|S as the triple (S, H|S, ψΓ|S), 
where

H|S := {h ∩ S : h ∈ H}.

The degree matrix of Γ [33] is the n × n diagonal matrix

D = D(Γ) := diag(deg(1), . . . ,deg(n)).

The adjacency matrix of Γ [33] is an n × n matrix A = A(Γ) := (Aij), with entries 
Aii := 0 for each i ∈ V and, for i �= j,

Aij :=#{hyperedges in which i and j are anti-oriented}

− #{hyperedges in which i and j are co-oriented}.
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The normalized Laplacian matrix of Γ [19] is the n × n matrix

L = L(Γ) := Id −D−1A,

where Id is the n × n identity matrix. It is known that L has n real, nonnegative eigen-
values, counted with multiplicity [19]. We denote them by λ1 ≤ . . . ≤ λn. Moreover, by 
the Courant–Fischer–Weyl min–max principle [19, Theorem 36] such eigenvalues are the 
min–max of the Rayleigh quotient, defined for a nonzero function f : V → R by

RQ(f) :=

∑
h∈H

(∑
i∈hin

f(i) −
∑

j∈hout
f(j)

)2

∑
i∈V deg(i)f(i)2 .

In particular,

λ1 = min
f

RQ(f) and λn = max
f

RQ(f).

To prove our theorems, we will use the above characterization of λ1 and λn.

3. Inertia–like bound for the independence number

The independence number α of a graph G is the maximum size of a set of vertices that 
are not pairwise adjacent. The following upper bound, due to Cvetković [10], is a classic 
result in spectral graph theory. Let G be a graph with adjacency spectrum θ1 ≤ . . . ≤ θn. 
Then

α(G) ≤ min{#{i : θi ≤ 0},#{i : θi ≥ 0}}. (1)

The inequality (1) is often referred to as the Cvetković bound or inertia bound. This 
bound was initially shown for the adjacency matrix, but it is easy to see that it holds for 
any weighted adjacency matrix. A variant of the inertia bound has been recently used 
by Huang [18] to prove a long standing conjecture in computer science.

In this section we propose two generalizations of the independence number for ori-
ented hypergraphs and we prove a generalized inertia bound in terms of the eigenvalues 
of the normalized Laplacian. We refer to [2,3,8,9,13,24,25,30,38,39] for references on the 
independence number for classical hypergraphs, with no relation to the spectral prop-
erties. The list is by no mean complete, but it gives a good overview of the work done 
in this direction. Moreover, we refer to [4,37] for a selection of references on the relation 
between the independence number of a graph and the spectra of its associated operators.

We say that a subset U ⊆ V is independent if #(U ∩ h) ≤ 1 for all h ∈ H. An 
independent set U is a maximal independent set if, for all i ∈ V \ U , U ∪ {i} is not 
independent. Following [39], we define the independence number of Γ as

α(Γ) := max{#U : U ⊆ V independent}.
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Fig. 1. Hypergraph which holds the bound (2) with equality.

Similarly, we say that a subset U ⊆ V is weakly independent if Aij = 0 for all i, j ∈ U . 
We define the weak independence number of Γ as

αw(Γ) := max{#U : U ⊆ V weakly independent}.

Note that, while the independence number α of Γ depends on V and H but not on the 
incidence function ψΓ, the weak independence number αw of Γ also depends on ψΓ.

Next we state our first main result, an inertia–like bound for the hypergraph normal-
ized Laplacian which upper bounds both α and αw.

Theorem 3.1 (Inertia–like bound for the normalized Laplacian of an oriented hypergraph). 
Let Γ be an oriented hypergraph with eigenvalues of the normalized Laplacian matrix 
λ1 ≤ . . . ≤ λn. Then

α(Γ) ≤ αw(Γ) ≤ min{#{i : λi ≤ 1},#{i : λi ≥ 1}}. (2)

Proof. The first inequality in (2) is clear since, if U ⊆ V is independent, then Aij = 0
for all i, j ∈ U , therefore U is also weakly independent.

In order to prove the second inequality, let U ⊆ V be a weakly independent set such 
that #U = αw. Then, the matrix obtained from L by deleting the rows and columns 
corresponding to the vertices in V \ U is the identity matrix of size n − αw and it has 
eigenvalue 1 with multiplicity n − αw. By Cauchy Interlacing Theorem (see for instance 
[[17], Theorem 4.3.17]), this implies that

#{i : λi > 1} ≤ n− αw and #{i : λi < 1} ≤ n− αw.

Therefore,

αw ≤ min{n− #{i : λi > 1}, n− #{i : λi < 1}}
= min{#{i : λi ≤ 1},#{i : λi ≥ 1}}. �

The next example illustrates the sharpness of the upper bound in Theorem 3.1.

Example 3.2. If Γ = (V, H, ψΓ) is such that V = {1, . . . , n} and H = {{1}, . . . , {n}}
(Fig. 1), then clearly λ1 = . . . = λn = 1 and α = αw = n, independently of ψΓ. Thus, 
the bound (2) is sharp.
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4. Ratio–like bound for the independence number

In this section we prove a ratio–like bound for the independence number of an oriented 
hypergraph. For a regular graph Gwith degree k and adjacency spectrum θ1 ≤ . . . ≤ θn =
k, Hoffman [5, p.39] proved the following well-known bound (Hoffman’s ratio bound):

α(G) ≤ n
−θ1

θn − θ1
(3)

and if an independent set U meets (3) then every vertex not in U is adjacent to precisely 
−θ1 vertices of U .

Our next theorem shows a ratio–like bound for the general case of regular oriented 
hypergraphs, and for the eigenvalues of L instead of the eigenvalues of A.

Theorem 4.1 (Ratio–like bound for the normalized Laplacian of an oriented hypergraph). 
Let Γ be a d–regular oriented hypergraph such that #hin = #hout for all h ∈ H. Let 
λ1 ≤ . . . ≤ λn be the eigenvalues of the normalized Laplacian matrix of Γ. Then,

α(Γ) ≤ n
(
1 − 1

λn

)
. (4)

If equality holds, then α(Γ) ≤ n/2 and in particular, if α(Γ) = n/2, it implies that Γ is 
a bipartite graph with α vertices on each side of the bipartition. Moreover, if (4) holds 
with equality and Γ is a graph, then Γ|V \U is a d(n − 2α)/(n − α)–regular graph.

Proof. Let U be a maximal independent set, so that #U = α, and let f : V → R be 
such that

f(i) :=
{
t if i ∈ U,

1 if i ∈ V \ U.

Let Vol(U) :=
∑

i∈U deg(i). Then

RQ(f) =
∑

h∈H,h∩U �=∅(t− 1)2

t2
∑

i∈U deg(i) +
∑

i∈V \U deg(i) = Vol(U)(t− 1)2

Vol(U)t2 + Vol(V ) − Vol(U)

= α(t− 1)2

αt2 + n− α
=: φ(t),

which attains its maximum at t = 1 − n
α . Consequently, the largest eigenvalue is such 

that

λn ≥ φ
(
1 − n

α

)
= n

n− α
.

Hence,
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α ≤ n
(
1 − 1

λn

)
.

This proves (4).
If equality holds, then

f(i) :=
{

1 − n
α if i ∈ U,

1 if i ∈ V \ U,

is an eigenfunction with eigenvalue λn = n
n−α . Since Γ is d–regular, this implies that f

is an eigenfunction for A with eigenvalue d(1 − n/(n − α)) = dα/(α− n). Therefore, for 
all i ∈ V \ U ,

∑
j∈U

Aij

(
1 − n

α

)
+

∑
j′∈V \U

Aij′ = dα

α− n
.

Also, since Γ is d–regular and #hin = #hout for all h, we have that, for each i ∈ V \ U , ∑
j∈V Aij = d. Hence,

∑
j′∈V \U

Aij′ = d−
∑
j∈U

Aij

and therefore

−n

α

(∑
j∈U

Aij

)
= dα

α− n
− d = nd

α− n
.

Now, since U is an independent set,
∑
j∈U

Aij = #{h � i : h ∩ U and i anti-oriented in h}

− #{h � i : h ∩ U and i co-oriented in h}.

Therefore

d ≥ #{h � i : h ∩ U and i anti-oriented in h} + #{h � i : h ∩ U and i co-oriented in h}
≥ #{h � i : h ∩ U and i anti-oriented in h} − #{h � i : h ∩ U and i co-oriented in h}

= αd

n− α
,

which implies α ≤ n/2. In particular, if α = n/2, then i and h ∩ U are anti-oriented, 
for all h ∈ H and for all i ∈ V \ U . Clearly, this implies that #hin = #hout = 1 for all 
h, hence Γ is a graph. Moreover, by construction Γ must be a bipartite graph with α
vertices on each side of the bipartition.
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Finally, if we assume that (4) is attained with equality and Γ is a graph, by the above 
calculations we must have that, for all i ∈ V \ U , it holds that

#{h � i : h ∩ U �= ∅} = αd/(n− α) and

#{h � i : h ∩ U = ∅} = d− αd/(n− α) = d(n− 2α)
n− α

.

Hence, the subgraph Γ|V \U is a d(n − 2α)/(n − α)–regular graph. �
The following examples illustrate that the bound (4) from Theorem 4.1 is best possible.

Example 4.2. Let Γ = (V, H, ψΓ) be such that:

• V = {1, 2, 3, 4};
• H = {h1, h2, h3};
• h1 has 1 and 2 as inputs, 3 and 4 as outputs;
• h2 has 1 and 3 as inputs, 2 and 4 as outputs;
• h3 has 1 and 4 as inputs, 2 and 3 as outputs.

Then, Γ is 3–regular and it satisfies the condition of Theorem 4.1. Also, α(Γ) = 1 and 
λ4 = 4/3, implying that

α(Γ) = 1 = n

(
1 − 1

λn

)
.

Therefore, this Γ provides an example of when the bound (4) is sharp.

Example 4.3. Let Γ = (V, H, ψΓ) be such that (Fig. 2):

• V = {1, 2, 3, 4};
• H = {h1, h2, h3};
• h1 has 1 as input and 2 as output;
• h2 has 3 as input and 4 as output;
• h3 has 1 and 2 as inputs, 3 and 4 as outputs.

Then, Γ is 2–regular and it satisfies the condition of Theorem 4.1. Also, α(Γ) = 1 and 
λn = 2, therefore,

α(Γ) = 1 < n

(
1 − 1

λn

)
= 2.

This example shows that the bound (4) cannot be improved by using equality.
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Fig. 2. The oriented hypergraph from Example 4.3.

5. Coloring number and Sandwich Theorem

In this section we introduce the concepts of coloring number, clique number and 
vector chromatic number of an oriented hypergraph with the aim to prove a Sandwich 
Theorem type of result involving these parameters. We refer the reader to [14] for the 
basic background on these parameters for the graph case, and to [23] for the Sandwich 
Theorem for the graph case.

A proper k–coloring of the vertices of an oriented hypergraph Γ is a function f : V →
{1, . . . , k} such that, for each hyperedge h, if i �= j are both in h, then f(i) �= f(j). The 
coloring number (or chromatic number) χ = χ(Γ) is the minimal k such that there exists 
a proper k–coloring of the vertices of Γ.

Similarly, we define the clique number ω = ω(Γ) as the size of the largest U ⊂ V such 
that for any i �= j ∈ U it holds that {i, j} ⊂ h for some h ∈ H. Note that if Γ is a graph, 
then the clique number is just the size of the largest clique of Γ.

We adapt the concept of vector chromatic number of a graph [21] to the setting of 
oriented hypergraphs as follows. We define the vector chromatic number of an oriented 
hypergraph Γ χv = χv(Γ) as the minimal k for which there exists an assignment of unit 
vectors ui ∈ Rn to each vertex i ∈ V , such that

〈ui,uj〉 = − 1
k − 1 (5)

whenever i �= j ∈ h for some h ∈ H.
Now we are ready to prove a Sandwich Theorem for the clique number, vector chro-

matic number and coloring number of an oriented hypergraph.

Theorem 5.1. [Sandwich Theorem] For any oriented hypergraph Γ,

ω(Γ) ≤ χv(Γ) ≤ χ(Γ).

Proof. In order to prove the inequality on the left hand side, assume by contradiction 
that χv ≤ ω − 1 and let U ⊂ V be a clique of size ω. By definition of vector chromatic 
number, for any pair of vertices i �= j in U , 〈ui, uj〉 = −1/(χv − 1). Therefore, from the 
assumption that χv ≤ ω − 1, it follows that
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‖
∑
i∈U

ui‖2 =
∑
i∈U

‖ui‖2 +
∑

i�=j in U

〈ui,uj〉 = ω + 2
(
ω

2

)(
− 1
χv − 1

)
≤ − −ω

ω − 2 < 0,

which is a contradiction.
In order to prove the inequality on the right hand side observe that, since χ ≤ n, by 

Lemma 4.1 in [21] there exist χ unit vectors û1, . . . , ûχ ∈ Rn satisfying

〈ûi, ûj〉 = − 1
χ− 1 whenever 1 ≤ i �= j ≤ χ.

Now, for each coloring class Cl of Γ, let ui := ûl if i ∈ Cl. Then, u1, . . . , un are unit 
vectors that satisfy (5). Therefore χv ≤ χ. �

Our next main result (Theorem 5.3) presents a lower bound for the vector chromatic 
number of an oriented hypergraph in terms of the smallest and the largest eigenvalue of 
the normalized Laplacian matrix. First we prove a preliminary result that we will need.

Lemma 5.2. If v1, . . . , vn ∈ Rn, then

λ1 ≤
∑

i,j

√
deg(i)
deg(j)Lij〈vi,vj〉∑

i ‖vi‖2 ≤ λn.

Proof. Note that the Chung Laplacian L := D
1
2LD− 1

2 is a symmetric matrix that has the 
same spectrum as L. Since L is symmetric, as a consequence of the Min–Max Principle 
we have that

λ1 ≤
∑

i,j Lij〈vi,vj〉∑
i ‖vi‖2 ≤ λn

for each v1, . . . , vn ∈ Rn. Hence,

λ1 ≤
∑

i,j

√
deg(i)
deg(j)Lij〈vi,vj〉∑

i ‖vi‖2 ≤ λn. �
Now we are ready to prove the lower bound for the vector chromatic number.

Theorem 5.3. Let Γ be an oriented hypergraph with eigenvalues of the normalized Lapla-
cian matrix λ1 ≤ . . . ≤ λn. Then,

χv(Γ) ≥ λn − λ1

min{λn − 1, 1 − λ1}
.

Proof. Let u1, . . . , un be unit vectors on which the vector chromatic number is attained, 
i.e.
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〈ui,uj〉 = −1
χv − 1

whenever i �= j ∈ h for some h ∈ H. Let f : V → R be an eigenfunction corresponding 
to the smallest eigenvalue λ1 and let vi := f(i)ui, for i = 1, . . . , n. Then, by Lemma 5.2,

λn ≥
∑n

i,j=1

√
deg(i)
deg(j)Li,j〈vi,vj〉∑n
i=1 ‖vi‖2

=

∑
i�=j

√
deg(i)
deg(j)Li,jf(i)f(j)〈ui,uj〉∑

i f(i)2 + 1

= −1
χv − 1

∑
i�=j f(i)f(j)

√
deg(i)
deg(j)Li,j∑

i∈V f(i)2 + 1

= −1
χv − 1

∑n
i,j=1 f(i)f(j)

√
deg(i)
deg(j)Li,j∑

i∈V f(i)2 + χv

χv − 1

= −1
χv − 1λ1 + χv

χv − 1 ,

which implies that χv ≥ λn−λ1
λn−1 . A similar argument gives χv ≥ λn−λ1

1−λ1
. �

The following result is a direct consequence of Theorem 5.1 and Theorem 5.3.

Corollary 5.4. For any oriented hypergraph Γ,

χ(Γ) ≥ λn − λ1

min{λn − 1, 1 − λ1}
.

We finish this section with some examples that discuss the tightness of the bound 
from Theorem 5.3.

Example 5.5. Let Γ be an oriented hypergraph on n nodes and one single hyperedge 
containing all vertices. Then, χ = n, λ1 = 0 and, by [27, Theorem 1], λn = n. Therefore, 
by Theorem 5.1 and Theorem 5.3, it holds that

n = χ(Γ) ≥ χv(Γ) ≥ λn − λ1

min{λn − 1, 1 − λ1}
= n.

Observe that for this Γ both inequalities become equalities, providing an example of 
when the bound in Theorem 5.3 is attained.

Example 5.6. Let Γ = (V, H, ψΓ) be such that (Fig. 3):

• V = {1, 2, 3};
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Fig. 3. The oriented hypergraph from Example 5.6.

• H = {h1, h2, h3};
• h1 has 1 as input and 2 as output;
• h2 has 1 as input and 3 as output;
• h3 has 1, 2 and 3 as inputs.

Then, χv(Γ) = 3, λ3 = 3/2 and λ1 = 1/2. Hence,

χv(Γ) = 3 >
λ3 − λ1

min{λ3 − 1, 1 − λ1}
= 2.

Therefore, the inequality in Theorem 5.3 cannot be improved by using equality.

6. Spectral partition numbers

Finally, in this section we introduce the spectral partition numbers of an oriented 
hypergraph and show that they strictly relate to the coloring number discussed in Sec-
tion 5.

Given λ ≥ 0, we define the spectral partition number of an oriented hypergraph N≥(λ)
(respectively N≤(λ)) as the smallest k such that there exists a k–partition V = V1� . . .�
Vk of the vertex set with

λ1(Γ|Vl
) ≥ λ (respectively λmax(Γ|Vl

) ≤ λ) for all l = 1, . . . , k.

Note that N≥(λ) is well defined for λ ≤ 1 and it is nondecreasing in λ. Conversely, N≤(λ)
is well defined for λ ≥ 1 and it is nonincreasing in λ. Thus, both N≥(λ) and N≤(λ) reach 
their maxima at λ = 1.

The following result shows that N≥(1) = N≤(1) and, in addition, it relates the spectral 
partition numbers with the coloring number.

Proposition 6.1. For any oriented hypergraph, N≥(1) = N≤(1) ≤ χ. For graphs, N≥(1) =
N≤(1) = χ.
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Fig. 4. The oriented hypergraph from Example 6.2.

Proof. We first prove the inequality for the general case of oriented hypergraphs. As 
shown in [26], the sum of the eigenvalues of a hypergraph equals the number of vertices. 
Therefore, given a k–partition V = �lVl,

λ1(Γ|Vl
) ≥ 1 for all l ⇐⇒ λ1(Γ|Vl

) = . . . = λmax(Γ|Vl
) = 1 for all l

⇐⇒ λmax(Γ|Vl
) ≤ 1 for all l

⇐⇒ L(Γ|Vl
) = Id for all l

⇐⇒ A(Γ|Vl
) = 0,

where 0 is the all–zero matrix of corresponding size. Since a vertex partition given by 
coloring classes always satisfies A(Γ|Vl

) = 0, this shows that N≥(1) = N≤(1) ≤ χ.
For the case of graphs, we known that A(Γ|Vl

) = 0 if and only if Γ|Vl
has no edges, 

therefore in this case the partition V = �lVl gives a partition into coloring classes, 
implying that N≥(1) = N≤(1) = χ. �

The following example shows that the equality N≥(1) = N≤(1) = χ does not hold for 
general oriented hypergraphs.

Example 6.2. Let Γ be an oriented hypergraph with vertices {1, 2, 3} and hyperedges 
{h1, h2} such that h1 has 1 as input and 2 as output, while h2 has 1 and 2 as inputs and 
3 as output (Fig. 4). Then,

• λ1(Γ|{1,2}) = λ2(Γ|{1,2}) = λ1(Γ|{1}) = λ1(Γ|{2}) = λ1(Γ|{3}) = 1;
• λ1(Γ|{1,3}) = λ1(Γ|{2,3}) = 1 − 1√

2 ;
• λ2(Γ|{1,3}) = λ2(Γ|{2,3}) = 1 + 1√

2 ;
• λ1(Γ) = 0, λ2(Γ) = 1; λ3(Γ) = 2

and it holds that χ(Γ) = 3 > 2 = N≤(1) = N≥(1).

Our next result lower bounds both spectral partition numbers in terms of the smallest 
and largest eigenvalues of the normalized Laplacian matrix of an oriented hypergraph Γ.

Theorem 6.3. Let Γ be an oriented hypergraph with eigenvalues of the normalized Lapla-
cian matrix λ1 ≤ . . . ≤ λn. Then, for any λ ≥ 0,
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N≤(λ) ≥ λn − λ1

λ− λ1
and N≥(λ) ≥ λn − λ1

λn − λ
.

Proof. We focus on showing the first inequality, since the second one follows by an 
analogous argument. Let k := N≤(λ) and let V = V1 � . . . � Vk a k–partition such that 
λ1(Vl) ≥ λ for all l = 1, . . . , k. We use the notation i ∼ j (respectively i � j) provided 
i, j ∈ V belong to the same Vm (respectively i, j ∈ V belong to different sets of the 
k–partition).

Let u1, . . . , uk be the vertices of a (k − 1)–dimensional regular simplex centered at 0
in Rn. Then, 〈ul, up〉 = −1/(k − 1) whenever p �= m. Let f be an eigenfunction for λn

and, given i ∈ V , let vi := f(i) · um provided i ∈ Vm. Then,

λ1 ≤
∑

i,j∈V f(i)f(j)
√

deg(i)
deg(j)Lij〈ui,uj〉∑

i∈V f(i)2‖ui‖2

= − 1
k − 1

∑
i�j fifj

√
deg(i)
deg(j)Lij∑

i∈V f2
i

+

∑
i∼j fifj

√
deg(i)
deg(j)Lij∑

i∈V f2
i

= − 1
k − 1

∑
i,j fifj

√
deg(i)
deg(j)Lij∑

i∈V f2
i

+ k

k − 1

∑
i∼j fifj

√
deg(i)
deg(j)Lij∑

i∈V f2
i

≤ − 1
k − 1λn + k

k − 1λ

which implies that k ≥ (λn − λ1)/(λ − λ1). �
Example 6.4. Consider the same oriented hypergraph Γ as in Example 6.2. Then,

λn − λ1

min{λn − 1, 1 − λ1}
= 2 = N≤(1) = N≥(1).

Therefore, Γ provides an example for which the bounds from Theorem 6.3 are sharp.
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