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A B S T R A C T

Reliability-based design approaches via scenario optimization are driven by data thereby eliminating the need
for creating a probabilistic model of the uncertain parameters. A scenario approach not only yields a reliability-
based design that is optimal for the existing data, but also a probabilistic certificate of its correctness against
future data drawn from the same source. In this article, we seek designs that minimize not only the failure
probability but also the risk measured by the expected severity of requirement violations. The resulting risk-
based solution is equipped with a probabilistic certificate of correctness that depends on both the amount of
data available and the complexity of the design architecture. This certificate is comprised of an upper and lower
bound on the probability of exceeding a value-at-risk (quantile) level. A reliability interval can be easily derived
by selecting a specific quantile value and it is mathematically guaranteed for any reliability constraints having
a convex dependency on the decision variable, and an arbitrary dependency on the uncertain parameters.
Furthermore, the proposed approach enables the analyst to mitigate the effect of outliers in the data set and
to trade-off the reliability of competing requirements.
1. Introduction

Reliability-Based Design Optimization (RBDO) methods seek engi-
neering designs that are both economically profitable and meet the
desired safety and functionality requirements with high probability.
Reliability requirements are generally prescribed as a set of inequality
constraints and define specific conditions beyond which the design
no longer fulfills relevant criterion on its safety and functionality [1–
3]. These constraints depend on random variables describing sources
of uncertainty and on design parameters the analyst can control. For
instance, the geometry of a component must be selected to minimize
manufacturing costs while ensuring a minimum probability of not
exceeding a maximum load level given uncertain material properties.

A traditional approach to solve RBDO problems involves two nested
loops, an outer loop searches for an optimal design whereas an inner
loop evaluates manufacturing costs and failure probabilities of the
optimal candidates [4]. Nested loop methods are often computationally
very demanding because of the time-consuming estimation of the fail-
ure probability. Moreover, the cost of the design and its reliability often
define conflicting objectives and thus, an unconstrained maximization
of the failure probability might lead to expensive solutions [5]. To over-
come these difficulties, numerically efficient and chance-constrained
reformulations of RBDO problems is advisable.

∗ Corresponding author.
E-mail addresses: r.rocchetta@tue.nl (R. Rocchetta), luis.g.crespo@nasa.gov (L.G. Crespo).

A numerically efficient RBDO procedure can be achieved by re-
placing the nested loop with efficient alternatives, such as decoupled
approaches [6], single-loop methods [7–9], or efficient approxima-
tions of the inner loop probabilistic estimation. Single-loop methods
combine the outer loop and inner loop by substituting the reliabil-
ity analysis with an approximation [10] whilst decoupled methods
transform the nested loop optimization in a sequence of deterministic
programs, see e.g., [11,12] for a more detailed discussion. Efficient
reliability assessment methods have been proposed to reduce the com-
putational cost of the inner loop like subset simulation methods [13],
line sampling [14], importance sampling [15], first-order and second-
order reliability methods [4,16–19], multi-fidelity surrogate-modeling
strategies [20–23] and many others [24–26].

Chance-Constrained Programs (CCPs) [27] minimize the cost of
a design while imposing probabilistic constraints defining a mini-
mum acceptable reliability level. CCPs are generally Nondeterministic
Polynomial-time hard (NP-hard), non-convex [28] and, thus, numeri-
cally hard to solve. The intractability of CCPs has motivated researchers
to develop alternative solution techniques, like convexification ap-
proaches based on the Conditional-Value-at-Risk (CVaR). The CVaR
is a coherent risk measure and measures the risk associated with
a design solution by combining the probability of undesired events
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Nomenclature

d ∈ 𝛩 Vector of 𝑛𝑑 design parameters bounded in
a set 𝛩

x ∈ 𝛺 Vector of 𝑛x uncertain factors
𝑓x Joint probability density of x
𝐽 (d) Cost function
 Composite failure domain
 𝑗 Failure domain for requirement 𝑗 = 1, ..., 𝑛𝑔
𝑔𝑗 Reliability performance function for re-

quirements 𝑗 = 1, ..., 𝑛𝑔
𝑤 Worst-case reliability performance function
𝐹𝑤 Cumulative distribution for 𝑤
𝐹𝑤 Empirical cumulative distribution for 𝑤
𝛼 A probabilistic level
𝑉 𝑎𝑅𝛼 Value-at-risk at level 𝛼
𝐶𝑉 𝑎𝑅𝛼 Conditional VaR at level 𝛼
𝑃𝑓 True failure probability for all require-

ments
𝑃𝑓,𝑗 True failure probability for the 𝑗th require-

ment
𝑅 True reliability for all requirements
𝑉 Probability of scenario constraint violation
�̂� Estimator of the reliability
𝑁 Data set of 𝑁 samples of the uncertain

factors
[𝜖, 𝜖] Bounds on the violation probability for all

requirements
[𝜖𝑗 , 𝜖𝑗 ] Bounds on the violation probability for

requirement 𝑗
𝜆 The value-at-risk in a scenario program
𝜌 Parameter weighting the cost of scenario

constraints violations
𝜁 (𝑖) A slack variable for sample 𝑖
𝜁 (𝑖)𝑗 A slack variable for sample 𝑖 and the 𝑗th

requirement
𝛽 Confidence parameter
𝑠⋆𝑁 Number of support scenarios for all require-

ments
𝜈⋆𝑁,𝑗 Number of support scenarios for the 𝑗th

requirement
𝛩 Design space
𝛩𝑉 𝑎𝑅
𝛼 Set of feasible designs for a VaR constraint

at a level 𝛼
𝛩𝐶𝑉
𝛼 Set of feasible designs for a CVaR constraint

at a level 𝛼
𝛩x(𝑖) Set of designs satisfying a constraint im-

posed by 𝑥(𝑖)

𝛩 Set of feasible designs of a scenario pro-
gram

with a measure of the magnitude/severity of these events. CVaR
methods have been broadly used in portfolio optimizations, statistical
machine learning and also in engineering design problems [29,30].
Replacing failure probability constraints with CVaR constraints can
improve the numerical tractability of RBDO programs [31]. In facts,
CVaR constraints are convex for convex reliability functions and offer
control over a portion of the tails of distributions beyond a single
quantile. However, one of the main drawbacks of a CVaR constraint
versus a failure probability constraint is that the former is statistically
2

less stable, i.e., an outlier can significantly change the value of the
estimated CVaR.

In addition to these computational issues with RBDO and CVaR-
based CCPs, the majority of the existing methods rely on a precise
characterization of a probabilistic model, which is used to estimate
failure probabilities and tail expectations. The prescription of a spe-
cific probabilistic model generally involves calibrating a joint Prob-
ability Distribution Function (PDF), a correlation/dependency struc-
ture, and the definition of a good model for the tails. Selecting a
good model of the uncertainty can be challenging, especially for high-
dimensional problems, or when dependencies are unknown, or due to
data scarcity [32,33]. Poorly chosen uncertainty models can lead to de-
signs that grossly under-perform in practice [33] and, in the worst-case,
that are susceptible to severe failures [31,34]. For examples, consider a
probabilistic model that underestimates the tails and a design obtained
by minimizing a CVaR estimated using this probabilistic model. The
optimized design will be likely susceptible to failures of unexpectedly
high magnitude. Another example is the Nataf transformation, often
used in RBDO to map a model of the uncertainty to the standard unit
space. The Nataf transformation entails a specific assumption on the
dependence structure of the uncertain factors [35]. However, under a
lack of data, a specific dependency assumption is hard to justify and
unwarranted because of its biasing effect on the final solution. The
works of R. Lebrun and A. Dutfoy [35,36] present a detailed discussion
on these issues when the Nataf transformation is applied to solve FORM
and SORM problems.

If a lack of data is affecting the analysis, a non-probabilistic model
or a mixture of non-probabilistic and probabilistic models offer a
more robust alternative [37,38]. Evidence theory [39,40], possibility
theory [41], credal sets, fuzzy sets and ambiguity sets theory [42–45],
are some of the most used paradigms for this [46]. Distributionally
robust CCPs have been proposed to identify robust designs that satisfy
probabilistic constraints for a whole set of uncertainty models [47–49].
The authors of [50] present a hybrid reliability optimization method
for handling imprecision via a combination of fuzzy and probabilistic
uncertainty models. Similarly, [51,52] introduced a hybrid time-variant
reliability measure and convex sets characterize the uncertain factors
non-probabilistically whilst [38,53] proposed a set-valued description
of the uncertain factors and a non-probabilistic reliability index for
RBDO. Approaches that integrate CCP with the available data and
without prescribing a model (or a set of modes) for the uncertainty are
just starting to be explored.

Scenario optimization theory offers a powerful mathematical frame-
work to solve CCPs according to data while prescribing generalization
error bounds on the optimized design solutions. Generalization error
bounds, also known as certificates of probabilistic performance, are
computed based on the number of available samples, a confidence level
selected by the analyst, and a statistical measure of the complexity of
the decision. Scenario theory has been extensively studied for convex
optimization programs [54–58] and recently extended to non convex
cases [59–61]. Scenario theory has been applied to tackle prediction,
regression [62], machine learning [63,64], robust design [65], and op-
timal control problems [66]. The use of scenario optimization for RBDO
is fairly new. In [1] the authors developed a Scenario-RBDO framework
to solve convex and non-convex reliability optimization problems. A
powerful prospective certificate of generalization has been proposed
for the resulting design, i.e., an upper bound on the probability of
facing a future, not yet observed, failure with a magnitude greater than
the historically recorded worst-case. However, this result focuses on
extreme cases and a prospective bound on the failure probability was
not provided.

In this work, we extend the approach of [1] to equip solutions
of convex RBDO problems with upper and lower bounds on both the
probability of failure and on the probability of extreme failures. A novel
soft-constrained scenario program for RBDO and risk-based design is
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proposed based on the theoretical results in [67]. In contrast to hard-
constrained programs for which all constraints must be satisfied with
no exceptions, the fulfillment of soft constraints is preferred but not re-
quired. An optimal design is thus prescribed by minimizing a weighted
sum of the cost of the design and penalty terms for constraint violations.
For instance, an optimal design will minimize both the operational costs
of a system and penalty terms associated with the severity of failures.
The proposed scenario program shares similar benefits when compared
to a traditional work of Rockafellar et al. [31] on buffered failure
probabilities and CVaR-based reliability optimization. In contrast to the
CVaR approach, a prospective reliability certificate for the optimized
design can be obtained from the approach printed in this work. This
certificate bounds the probability of exceeding a predefined Value-at-
Risk (VaR) level. This certificate is obtained directly from the available
data and without the need to prescribe a model (or a set of models)
of the uncertainty. Thus, it is exempt from the subjectivity caused
by having to prescribe an uncertainty model from insufficient data.
In contrast to [1], the applicability of these bounds are restricted to
RBDO problems which can be assumed convex in the space of deci-
sion variables. Nonetheless, the prescribed bounds are tighter (more
informative) than the one obtained in [1], thus offering an improved
quantification of the epistemic uncertainty affecting the reliability of
the optimized design.

The main contributions of this work can be summarized as follows:

• The proposed method prescribes a design solution by minimizing
a combination of the expected severity of failures (risk) and the
design cost.

• Scenario theory is used to derive upper and lower bounds on
the probability of exceeding a value-at-risk (a quantile) level. A
reliability interval is derived selecting an appropriate VaR level.

• The reliability interval is derived without the need to prescribe
a model for the uncertain parameters according to the available
data only. The width of the interval quantifies the epistemic
uncertainty (for lack of samples) affecting the reliability of a
design.

• The soft-constrained optimization method can be used on any
reliability problem whilst the reliability bounds can be applied
by assuming the convexity of the RBDO problem. The number
of uncertain parameters and the dependency of the reliability
functions on these parameters can be arbitrary.

• The proposed approach can be used to trade-off the design’s cost
against reliability of some or all requirements.

The remainder of this paper is organized as follows: Section 2
presents the mathematical background on RBDO and CVaR approxima-
tion. Section 3 introduces Scenario optimization theory and theoretical
robustness guarantees. In Section 4 the newly proposed scenario RBDO
programs are presented. Section 5 exemplifies the method on an easily
reproducible case study and Section 6 tests the applicability of the
method on two realistic engineering examples. Section 7 closes the
paper with a discussion on the results.

2. Mathematical background

A reliability CCP seeks an optimal design which minimizes a cost
function while constraining the probability of failure below a threshold
level:

𝐝◦ = argmin
𝐝∈𝛩

{

𝐽 (𝐝) ∶ 𝑃𝑓 < 1 − 𝛼
}

, (1)

𝑓 = ∫ (𝐝)
𝑓𝐱(𝐱)𝑑𝐱, (2)

here 0 ≤ 𝛼 ≤ 1 is a target reliability level constraining the failure
robability, 𝐝 is a vector of design parameters constrained in a closed
onvex set 𝛩 ⊂ R𝑛𝑑 , 𝐽 (𝐝) ∶ R𝑛𝑑 → R is a convex cost function, and 𝐝◦ is
3

e

he vector of optimized design parameters. The failure probability 𝑃𝑓 (𝐝)
in Eq. (2) is a multidimensional integral of the uncertainty model, 𝑓𝐱(𝐱),
a joint Probability Density Function (PDF) of uncertain parameters
𝐱 ∈ 𝛺 ⊆ R𝑛𝐱 , computed over the composite failure domain  (𝐝). This
domain is defined as the union of 𝑛𝑔 reliability requirements,

 (𝐝) =
𝑛𝑔
⋃

𝑗=1
 𝑗 (𝐝) (3)

where,

 𝑗 (𝐝) =
{

𝐱 ∈ 𝛺 ∶ 𝑔𝑗 (𝐝, 𝐱) ≥ 0
}

, (4)

are the individual failure regions defined by the reliability functions
𝑔𝑗 ∶ R𝑛𝑑 ×R𝑛𝐱 → R. A design 𝐝 satisfies all requirements for a particular
vector of uncertain variables 𝐱 if 𝑔𝑗 (𝐝, 𝐱) < 0 for all requirements 𝑗 ∈
{1,… , 𝑛𝑔}. Note that 𝛼 = 1 in the optimization program (1) corresponds
to an admissible failure probability equal to zero.

2.1. Chance constraints

The literature considered two types of chance-constraints: joint
probabilistic constraints or individual probabilistic constraints [68,69].
The constraint in program (1) is called a joint chance constraint because
it is composed of individual requirements that must be simultaneously
satisfied with a prescribed probability. The constraint on the joint
failure probability can be equivalently defined as follows:

𝑃𝑓 = P [𝑤(𝐝, 𝐱) ≥ 0] < 1 − 𝛼, (5)

where

𝑤(𝐝, 𝐱) = max
𝑗∈{1,…,𝑛𝑔}

𝑔𝑗 (𝐝, 𝐱), (6)

is the worst-case reliability function. When 𝑤(𝐝, 𝐱) < 0 the design
𝐝 satisfies all the reliability requirements for the uncertainty
realization 𝐱.

Alternatively to a joint chance constraint, each one of the 𝑛𝑔 re-
quirements can be associated to a specific probabilistic threshold 𝛼𝑗 ,
thus defining the individual chance constraints as follows:

𝑃𝑓,𝑗 = P
[

𝑔𝑗 (𝐝, 𝐱) ≥ 0
]

< 1 − 𝛼𝑗 , 𝑗 = 1,… , 𝑛𝑔 , (7)

where 𝑃𝑓,𝑗 are the failure probability for requirement 𝑗 = 1,… , 𝑛𝑔 and
0 ≤ 𝛼𝑗 ≤ 1.

Note that If ∑𝑛𝑔
𝑗=1 𝛼𝑗 ≤ 𝛼, a feasible solution of individual constraints

(7) is also feasible for the joint constraint (5). Hence, joint chance-
constraints are significantly more stringent than individual constraints
because the former must hold together with high probability whilst
individual constraints have to be satisfied with separate probabilistic
levels [70]. Joint probabilistic constraints are better suited to deal
with problems where individual requirements describe a collective
goal, e.g., the overall system reliability must be higher than a prede-
fined threshold level. In contrast, individual constraints can be used
when individual requirements describe separate objectives, e.g., when
minimum reliability levels for the individual components must be
provided.

2.2. Var formulation of the RBDO problem

An equivalent formulation of program (1) is,1

𝐝◦ = argmin
𝐝∈𝛩

{

𝐽 (𝐝) ∶ 𝑉 𝑎𝑅𝛼(𝑤) < 0
}

, (8)

where

𝑉 𝑎𝑅𝛼(𝑤) = inf{𝑤(𝐝, 𝐱) ∈ R ∶ 𝛼 ≤ 𝐹𝑤(𝑤)}

1 The constraint 𝑃𝑓 (𝐝) < 1 − 𝛼 implies P [𝑤(𝐝, 𝐱) ≥ 0] < 1 − 𝛼 which is
quivalent to 𝑉 𝑎𝑅 (𝑤) < 0.
𝛼
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Fig. 1. CDFs of the worst-case performance 𝑤 associated to three feasible designs, i.e., 𝐝 for which 𝑉 𝑎𝑅𝛼 (𝑤) ≤ 0. 𝐝2 is the most reliable but also the design exhibiting the most
severe violations.
is the Value-at-Risk at level 𝛼, i.e., the inverse CDF of the distribution
of 𝑤(𝐝, 𝐱) for a predefined level 𝛼, induced by the design 𝐝 and for
the uncertainty model 𝑓𝐱. Note that (8), differently from (1), imposes
a constraint on the quantile function (a value of 𝑤) rather than on a
probability.

A closed-form expressions for the quantile function is typically not
available in VaR constraints require a numerical evaluation, e.g., using
Monte Carlo Sampling (MCS). Hence, a solution of programs (1) and (8)
is often computationally demanding to obtain because the multidimen-
sional integral 𝑃𝑓 must be estimated several times. Means to evaluate
the failure probability through standard MCS are presented next. Given
a set of 𝑁 samples 𝑁 =

{

𝐱(𝑖)
}𝑁
𝑖=1 drawn from 𝑓𝐱, the integral in (2)

can be approximated by,

𝑃𝑓 (𝐝) =
1
𝑁

𝑁
∑

𝑖=1
𝟏{𝑤(𝑖)≥0}, (9)

where 𝟏{𝑤(𝑖)≥0} is the indicator function for the failure condition
𝑤(𝐝, 𝐱(𝑖)) ≥ 0. Similarly, the empirical Cumulative Distribution Function
(CDF) of 𝑤 is computed by,

𝐹𝑤 (𝑊 ) = 1
𝑁

𝑁
∑

𝑖=1
𝟏{𝑤(𝑖)≤𝑊 }, (10)

from which a VaR at level 𝛼 can be readily computed. This estimates
enable solving programs (1) and (8). Note however that the derivative
discontinuities of these estimates complicate the usage of gradient-
based optimization algorithms. Moreover, a large sample size 𝑁 is
generally required to improve accuracy and convergence of the esti-
mators and an uncertainty model 𝑓𝐱 is a key component in the MCS
procedure.

2.3. Non-convexity of value-at-risk constraints

Let us define the feasibility set of the chance-constrained program
(8), that is, the set of designs satisfying the VaR constraint for a given
𝛼 level, as follows:

𝛩𝑉 𝑎𝑅
𝛼 =

{

𝐝 ∈ 𝛩 ∶ 𝑉 𝑎𝑅𝛼(𝑤) ≤ 0
}

.

A sufficient condition for the set 𝛩𝑉 𝑎𝑅
𝛼 to be a convex is to have a

mapping 𝐝 → 𝑃𝑓 which is quasi-concave [71]. As example, if 𝑤 is a
quasi-convex function in (𝐝, 𝐱) [72] and 𝐱 has a log-concave density 𝑓 ,
4

𝐱

the chance-constraint 𝑃𝑓 < 1 − 𝛼, admits a convex reformulation given
by [71]

log(𝑃𝑓 ) < log(1 − 𝛼).

However, with the exception of log-concave 𝑓𝐱 and a limited class
of functions 𝑤, the set of designs satisfying the VaR constraint is
non-convex. Therefore, chance-constrained optimization problems are
generally non-convex, even when the reliability functions 𝑔𝑗 (𝐝, 𝐱) with
𝑗 = 1,… , 𝑛𝑔 are convex in the design space. This further complicates
the tractability of this type of problems.

2.4. Severity of violations and risk-based design

Besides convexity issues, the constraint in (8) gives no guarantees on
the severity of failures, i.e., the positive values of 𝑤 can be arbitrarily
large. If the value of the worst-case reliability function when 𝑤 > 0 is
a measure of the severity of the reliability violation, the analyst might
want to control not only the failure probability, i.e., the integral over
the right tail of the distribution of 𝑤, but also the shape of the upper
tail of 𝑤. This design principle is also known in the literature as a risk-
based design because both the probabilities of failure events and the
severity of these events are accounted for while optimizing the design.
This risk-based design criterion will be considered below. The severity
of the violation, as measured by the value of 𝑤, is given by

𝜎(𝐝) = E[𝑤(𝐝, 𝐱)|𝑤(𝐝, 𝐱) ≥ 0], (11)

where the severity function 𝜎(𝐝) is the conditional expectation of 𝑤(𝐝, 𝐱)
over the failure region. This concept is depicted in Fig. 1 which shows
an example of chance-constrained reliability problem. The CDFs of 𝑤
for three designs are presented. The designs are feasible according the
VaR constraint because satisfy the probabilistic constraint for the level
𝛼 and 𝐝1 has the highest failure probability. However, 𝐝2 leads to the
most severe violations.

2.5. CVaR approximation

CVaR, also known as expected shortfall or superquantile, has been
used to approximate the chance constraint in (8) when the uncertainty
models 𝑓𝐱(𝐱) are continuous. CVaR is defined as [73]:

𝐶𝑉 𝑎𝑅𝛼(𝑤) = 1 1
𝐹−1(𝜏)𝑑𝜏, (12)
1 − 𝛼 ∫𝛼 𝑤
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Fig. 2. Design spaces for the original chance constraint (red) and its convex relaxation
(blue).

and for continuous distributions, 𝐶𝑉 𝑎𝑅𝛼(𝑤) is an expectation over a
‘portion’ of the upper tail of the distribution of 𝑤, i.e., 𝐶𝑉 𝑎𝑅𝛼(𝑤) =
E[𝑤|𝑤 ≥ 𝑉 𝑎𝑅𝛼(𝑤)]. Note the similarity between the CVaR and the
severity metric 𝜎(𝐝). The former coincides with the severity 𝜎 when the
integration domain is defined over the composite failure region.2 The
CVaR may be non-negative for designs that satisfy the chance constraint
in (8). On the other hand, thanks to the non-decreasing inverse CDF we
have:

∫

1

𝛼
𝐹−1
𝑤 (𝜏)𝑑𝜏 > 𝑉 𝑎𝑅𝛼(𝑤), (13)

and, thus, a 𝐶𝑉 𝑎𝑅𝛼(𝑤) ≤ 0 implies 𝑉 𝑎𝑅𝛼(𝑤) ≤ 0. Hence, if a design 𝐝
satisfies a CVaR constraint at level 𝛼 it also satisfies the constraint in
(8).

A CVaR-constrained approximation of program (8) is defined as
follows:

𝐝◦ = argmin
𝐝∈𝛩

{

𝐽 (𝐝) ∶ 𝐶𝑉 𝑎𝑅𝛼(𝑤) ≤ 0
}

. (14)

Note that when the reliability functions 𝑔 are convex3 in 𝐝, the con-
straint 𝐶𝑉 𝑎𝑅𝛼(𝑤) ≤ 0 gives the following convex inner approximation
of the feasibility set 𝛩𝑉 𝑎𝑅

𝛼 [74],

𝛩𝐶𝑉
𝛼 = {𝐝 ∈ 𝛩 ∶ 𝐶𝑉 𝑎𝑅𝛼(𝑤) ≤ 0} ⊆ 𝛩𝑉 𝑎𝑅

𝛼 .

Thus, a CVaR-constrained program is a convex program when the
cost and reliability functions are convex in the design space. This
convexification of the design space makes (14) conservative because a
feasible designs of VaR program might not be feasible in (14). Hence,
this formulation guarantees a conservative result in terms of failure
probability, see e.g., [31].

Fig. 2 illustrate the feasible and infeasible design space of programs
(8) and (14) for the linear reliability function 𝑤 = 𝑑1 + 𝑥1 − 𝑑2𝑥2 with
𝛼 = 0.1 and 𝛼 = 0.9. Notice that the feasible design space 𝛩𝐶𝑉

𝛼 of
program the CVaR-constrained program is contained by the feasibility
set 𝛩𝑉 𝑎𝑅

𝛼 of program (8). Moreover, even for a linear 𝑤 the feasible
space 𝛩𝑉 𝑎𝑅

𝛼 can result non-convex, e.g., the complement set of the VaR
infeasible domain for 𝛼 = 0.1 shown in red color at the top right corner
is non-convex.

For continuous distributions the conditional expectation coincides
with the CVaR. In the general case, however, 𝐶𝑉 𝑎𝑅𝛼(𝑤) is not equal
to an average of outcomes greater than 𝑉 𝑎𝑅𝛼(𝑤) and an estimator
obtained by averaging a fractional number of scenarios might result
in discontinuities [34]. This complicates the solution of program (14)

2 𝐶𝑉 𝑎𝑅𝛼(𝑤) is equal to 𝜎(𝐝) for a probabilistic level 𝛼 = 1−𝑃𝑓 because, by
definition, 𝑉 𝑎𝑅1−𝑃𝑓

(𝑤) = 0.
3 This implies that 𝑤 is also convex as the maximum operator preserves

convexity.
5

when gradient-based solvers are employed. A continuous sampling-
based estimator of the CVaR can be obtained as a weighted average
of a conditional expectation and VaR [34].

Program (14) has, however, some drawbacks:

1. CVaR estimation is sensitive to the uncertainty model 𝑓𝐱, espe-
cially in the tails regions.

2. A CVaR constraint can be very stringent and the convex inner
approximation of 𝛩𝑉 𝑎𝑅

𝛼 might potentiality be empty.
3. For a non-convex function 𝑤 in 𝐝, a CVaR constraint is only

convex in the space of 𝐱.

In the next sections, we will provide background on Scenario optimiza-
tion theory and a novel soft-constrained scenario program for RBDO
and risk-based design proposed by the authors. This new methods
can be used to overcome the first and second drawbacks of CVaR-
constrained programs like (14). Similarly to CVaR methods, scenario
programs are convex in the space of 𝐱. In contrast with traditional
method however, a model 𝑓𝐱 is not required to solve scenario opti-
mizations. Furthermore, the proposed soft-constrained scenario RBDO
program always admits a feasible design (its feasibility set is always
non-empty).

3. Scenario theory

Let us first outline the common structure used in scenario theory.
Consider the probability space (𝛺,F,P), where 𝛺 is an event space
equipped with a 𝜎-algebra F and a stationary probability measure
P [65]. In practice, the probability P is unknown and only a data
set 𝑁 =

{

𝐱(𝑖)
}𝑁
𝑖=1 ∈ 𝛺𝑁 containing 𝑁 independent and identically

distributed (IID) realization of the uncertain parameters is available and
it belongs to the Cartesian product of the event space, (𝛺𝑁 ,F𝑁 ,P𝑁 ),
also equipped with a 𝜎-algebra and the 𝑁-fold probability measure
P𝑁 = P×P×⋯×P (N-times). A scenario optimization program (𝑁 )
is a technique for obtaining solutions to CCPs based on a sample of the
constraints. Each realization 𝐱(𝑖) ∈ 𝑁 is a scenario.

3.1. Scenario RBDO with joint constraints

A scenario RBDO program with joint constraints can be defined as
follows:
𝐝⋆ = argmin

𝑑

{

𝐽 (𝐝) ∶ 𝐝 ∈ 𝛩𝐱(𝑖) , 𝐱(𝑖) ∈ 𝑁
}

, (15)

where

𝛩𝐱(𝑖) =
{

𝐝 ∈ 𝛩 ∶ 𝑤(𝐝, 𝐱(𝑖)) ≤ 0
}

,

is the set of feasible designs induced by the 𝑖th scenario constraint and
𝛩 =

⋂𝑁
𝑖=1 𝛩𝐱(𝑖) is the feasibility set for the scenario program with all

the constraints in place. The set 𝑁 defines 𝑁 deterministic constraints
which approximate a joint chance constraint in classical CCPs providing
that the scenarios are realizations of the underlying uncertainty. As
such, the scenarios might be obtained from available measurements
(so no uncertainty model is needed), or they might be obtained from
MCS. Differently from chance constrained programs like (8), the failure
probability is replaced by 𝑁 deterministic constraints on 𝑤, i.e., the set
of feasible designs of (15) is comprised of design points for which the
empirical failure probability is zero.

3.2. Scenario RBDO with individual constraints

The 𝑁 scenario constraints in (15) offer a samples-based refor-
mulation of the joint probabilistic constraint in Eq. (5). Analogously,
individual chance constraints can be rewritten via an extended version
of the scenario approach as described in [75]. Consider the following
scenario RBDO program with multiple requirements:

𝐝⋆ = argmin
{

𝐽 (𝐝) ∶ 𝐝 ∈
𝑁
⋂

𝛩𝑗
𝐱(𝑖)

, 𝑗 = 1..., 𝑛𝑔

}

, (16)

𝐝 𝑖=1
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where

𝛩𝑗
𝐱(𝑖)

=
{

𝐝 ∈ 𝛩 ∶ 𝑔𝑗 (𝐝, 𝐱(𝑖)) ≤ 0
}

,

s the feasibility set defined by the 𝑖th scenario for the requirement 𝑗th.
Notice that the feasibility set in (15) can be equivalently defined as
𝛩𝐱(𝑖) =

⋂𝑛𝑔
𝑗=1 𝛩

𝑗
𝐱(𝑖)

.

3.3. Basic assumptions and definitions

A scenario program may provide a feasible solution for a CCP but
uch solution is likely sub-optimal, and especially for a small sized
ata set 𝑁 [76]. Nonetheless, an exact solution for CCPs can be
nly obtained when 𝑓𝐱 is known with certainty. This only occurs
symptotically when 𝑁 → ∞ and, therefore, exact solutions to CCPs
re generally unavailable in practice. Most importantly, scenario op-
imization programs lead to design solutions that are optimal for the
vailable data while rendering probabilistic guarantees which reflect
he lack of knowledge on the underlying P. Scenario-based probabilistic

guarantees, also known as prospective-reliability certificates, assess
how well optimal designs 𝐝⋆ performs against unseen samples drawn
rom the same data generating process [55]. These robust guarantees
re formally derived from a few basic assumptions and definitions. For
ompleteness sake, the most important concepts are presented next.

ssumption 1 (Existence and Uniqueness).The optimal design 𝐝⋆ solution
of (𝑁 ) exists and is unique for every data sequence 𝑁 Existence of
the solution may be lost when 𝐽 (𝐝) improves as 𝐝 drifts away toward
infinity in some directions [57]. This behavior can be prevented by
confining optimization to a compact domain 𝛩. If multiple optimal so-
lutions exist in 𝛩 a tie-break rule can be implemented, e.g. selecting the
solution with minimum 𝑤 among the set of equally suitable candidates
(and possibly optimizing additional convex functions in 𝐝).

Definition (Violation Probability). The probability

𝑉 (𝐝⋆) = P
[

𝐱 ∈ 𝛺 ∶ 𝐝⋆ ∉ 𝛩𝐱
]

, (17)

is called violation probability. Given a reliability parameter 𝜖 ∈ [0, 1], a
design 𝐝⋆ is called 𝜖-robust (or 𝜖-feasible) if 𝑉 (𝐝⋆) ≤ 𝜖, [58]. An 𝜖-robust
solution will comply with the requirements induced by new scenarios
with probability no less than 1 − 𝜖. Means for evaluating 𝜖 according
to the convexity of (15) are given in [55,58,60]. If the feasibility set is
defined as in (15), 𝑉 (𝐝⋆) coincides with the true failure probability of
𝐝⋆.

Definition (Set of Support Constraints, or Support Set). A support set
 ⊆ 𝑁 is a k-tuple  = {𝐱(𝑖1),… , 𝐱(𝑖𝑘)} for which the solutions of
scenario program () and program (𝑁 ) are identical. The set 
is of minimal cardinality when the removal of any of its elements
makes the optimum of () different than the optimum of (𝑁 ).
The cardinality of the set of support constraints 𝑠⋆𝑁 = || defines
the complexity of the solution and is a random quantity because it
deepens on the random data set 𝑁 . Note that for convex optimization
programs, 𝑠⋆𝑁 is capped by the dimension of the design space 𝑛𝑑 , i.e., the
omplexity of a convex program is a-priori upper bounded. This can be
erived from a basic argument using Helly’s Theorem, [54]. A scenario
rogram generally admits several support sets and the set with the
mallest complexity renders the best prospective reliability bounds. If

individual scenario constraints are adopted as in program (16), a
et of support constraints for individual requirements is denoted by
𝑗 whilst its dimension by 𝜈⋆𝑁,𝑗 = |𝑗 |. Notice that 𝑗 is a collection
f scenarios that when individually removed from a constraint on
equirement 𝑗, improves the solution of the scenario program. The
upport set of (15) can be equivalently written as  =

⋃𝑛𝑔
𝑗=1 𝑗 [75].
6

s

Assumption 2 (Non-degeneracy). For any positive integer 𝑁 ∈ N0 and
data set 𝑁 , the solution of the scenario program (𝑁 ) coincides
ith probability 1 with the solution of () Non-degeneracy is a mild
ssumption for convex programs since support constraints are always
ctive constraints (but the converse does not always remain true).
n the general non-convex case however,  might include non-active
onstraints. For instance, the removal of a single non-active constraint
an yield a new optimum having a smaller cost [1].

efinition (Prospective-reliability). The probability

(𝐝⋆) = P
[

𝐱 ∈ 𝛺 ∶ 𝑤(𝐝⋆, 𝐱) < 0
]

, (18)

is called prospective-reliability, i.e., the true reliability of 𝐝⋆. When con-
straints are defined as in (15), an 𝜖-robust solution is at least (1 −
𝜖)-reliable.

Samples-based estimators of the violation probability are inherently
stochastic, as they depend on the random set of scenarios 𝑁 . Never-
heless, it is proven that for convex scenario programs,4 the distribution
f 𝑉 (𝐝⋆) is dominated by a Beta distribution [55]. This result offers a
ay to monitor the robustness of the optimized design, i.e., an upper
ound on 𝑉 (𝐝⋆) which quantifies the epistemic uncertainty arising from
lack of asymptotic convergence. However, a design solution of (15)
ust make the empirical failure probability based on the scenarios in
𝑁 equal to zero. As such, limiting design architectures might either
ake (15) infeasible, or yield to overly-high cost values. In the next

ection, we adopt the constraints relaxation strategy proposed by [67]
o overcome these issues.

. The proposed methods for risk-based and reliability-based de-
ign: the soft-constrained scenario approach

In a previous work of the authors [1], a scenario approach to RBDO
as proposed to identify a design which minimizes the 𝛼 percentile of

he worst-case reliability function, i.e., a program enforcing a constraint
𝑎𝑅𝛼(𝑤) ≤ 𝛾 where 𝛾 is a scalar cost to be minimized. Selecting
n 𝛼 = 1, a certificate of robustness against extreme cases has been
btained [1] as follows:

[𝑤(𝐝⋆, 𝐱) ≥ 𝛾⋆] ≤ 𝜖(𝑠⋆𝑁 ),

here 𝛾⋆ is the maximum value of the worst-case reliability function
n correspondence of the optimum. This certificate ensures that, for any
ew scenario 𝐱, the probability that 𝐝⋆ will face a failure of magnitude
reater than a worst-case given by 𝛾⋆ = max𝑖 𝑤(𝐝⋆, 𝐱(𝑖)) is, at worst,
(𝑠⋆𝑁 ). This is a powerful certificate of generalization which applies to
he design solution of any scenario RBDO problem without restrictions
n the functional form of 𝑤 in the design space. However, the optimized
⋆ is not controllable by the designers and, thus, the certificate does not
rovide guarantees on the failure probability P[𝑤(𝐝⋆, 𝐱) ≥ 0]. Moreover,
nly an upper bound on the violation probability was prescribed by the
revious approach.

In contrast with [1], the new approach proposed in this work
dentifies an optimal design that minimizes a tail expectation (expected
agnitude of failures) rather than 𝑉 𝑎𝑅𝛼(𝑤). Moreover, the new sce-
ario RBDO formulation provides an upper and lower bounds on the
robability P[𝑤(𝐝⋆, 𝐱) ≥ 𝜆], where 𝜆 a value-at-risk selected by the
nalysts. For instance, a 𝜆 = 0 can be selected to obtain a lower and
n upper bond on the probability of failure of 𝐝⋆. The lower and upper
ounds are guaranteed to hold for convex scenario programs and, thus,
e restrict the applicability of the approach to functions 𝑤(𝐝, 𝐱) and

osts 𝐽 (𝐝) that are convex in 𝐝. Thus, this can be used to prescribe
tronger certificates (tighter epistemic bounds) on the probability of
acing extreme cases, 𝜆 > 0, or on the probability of failure, 𝜆 = 0.

4 Under the existence, uniqueness and non-degeneracy assumptions for any
tationary P and 𝑁 independent 𝐱.
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4.1. Scenario RBDO with joint soft constraints

Consider the scenario program:

⟨𝐝⋆, 𝜻⋆⟩ = argmin
𝐝∈𝛩
𝜁≥𝜆

{𝐽 (𝐝) + 𝜌
𝑁
∑

𝑖=1

(

𝜁 (𝑖) − 𝜆
)

∶

𝑤(𝐝, 𝐱(𝑖)) ≤ 𝜁 (𝑖), 𝑖 = 1,… , 𝑁}

, (19)

here 𝜻 ∈ R𝑁 is a vector of slack variables associated to the 𝑁 scenario
onstraints, 𝜌 > 0 is a constant value used to penalize designs for which
(𝐝, 𝐱(𝑖)) is positive, and 𝜆 ∈ R is a value-at-risk level which define a

ower bound on the slack variables. Program (19) with 𝜆 = 0 seeks
design which minimizes a weighted sum of the 𝐽 (𝐝) and individual

eliability violations. This implies a reduction in both the empirical
ailure probability and in the severity of the violations as measured by
(𝐝) in (11).

For 𝜆 = 0 all the non-zero terms in the vector 𝜻⋆ correspond to
cenarios falling into the failure region. The magnitude of 𝜁⋆(𝑖) > 0 is
n indicator of the severity of the reliability violation, i.e., scenarios for
hich 𝜁 (𝑖) = 𝑤(𝐝, 𝐱(𝑖)). In contrast, a 𝜆 ≠ 0 defines a program that seeks
n optimal design which minimizes a combination of cost and violation
f the constraints 𝑤 ≤ 𝜆. Hence, a 𝜆 < 0 means that program (19)
s imposing a more stringent constraint that 𝑤 ≤ 0 on each scenario.
onversely, 𝜆 > 0 indicates a program that relaxes the requirements
iolation.

Note that the penalty terms in (19) enable the analyst to trade-off
he empirical failure probability and the severity of point failures. It
an be conveniently used to:

• Identify RBDO designs that are infeasible when the 𝑤 ≤ 0 are
enforced as hard constraints.

• Shape the tail of the distribution of 𝑤 falling into the failure
domain.

• Trade-off reliability and cost by tuning 𝜌. When 𝜌 → ∞ the
program goes back to the original formulation in (15), for which
the constraints are hard.

.2. Scenario RBDO with individual soft constraints

Program (19) weights all the reliability requirements equally. How-
ver, there might be requirements whose violation is more serious. For
nstance, the stability of a control system is regarded as more important
han the need for a small control effort. To this end, we proposed a
odified version of program (19) with multiple constraints:

⟨𝐝⋆, 𝜻⋆⟩ = argmin
𝐝,𝜻

{𝐽 (𝐝) +
𝑛𝑔
∑

𝑗=1
𝜌𝑗

𝑁
∑

𝑖=1
(𝜁 (𝑖)𝑗 − 𝜆𝑗 ) ∶

𝑔𝑗 (𝐝, 𝐱(𝑖)) ≤ 𝜁 (𝑖)𝑗 , 𝑗 = 1,… , 𝑛𝑔 , 𝑖 = 1,… , 𝑁,

𝐝 ∈ 𝛩, 𝜁 (𝑖)𝑗 ≥ 𝜆𝑗 , 𝑗 = 1,… , 𝑛𝑔 , 𝑖 = 1,… , 𝑁}

, (20)

where the elements of the vector 𝝆 ∈ R𝑛𝑔 weight the magnitude of
violations for individual requirements and a 𝜆𝑗 < 0 can be selected to
tighten or relax the individual reliability requirements. Differently from
(19), the terms 𝜌𝑗 in program (20) can be used exercise a certain degree
of control over individual failure modes and weight the 𝑛𝑔 requirements
differently.

4.3. Prospective-reliability bounds

The work of [67] provides a way to quantify the prospective-
reliability of (19), which is an optimization program with soft scenario
constraints.

Assumption 3 (Non-accumulation). For every 𝐝 ∈ 𝛩, it holds that P[𝐱 ∈
𝛺 ∶ 𝑤(𝐝, 𝐱) = 𝑎] = 0, where 𝑎 is a scalar value. This assumption is
generally satisfied when the scenario do not accumulate, i.e., when the
7

uncertain factors 𝐱 admit a probability density function. g
heorem 1. Under Assumptions 1 and 3 and for any probability space
nd stationary P it holds that:
𝑁 [𝜖(𝑠⋆𝑁 ) ≤ 𝑉 (𝐝⋆) ≤ 𝜖(𝑠⋆𝑁 )] ≥ 1 − 𝛽 (21)

here 𝜖(𝑠⋆𝑁 ) and 𝜖(𝑠⋆𝑁 ) are lower and upper bounds on the violation
robability 𝑉 (𝐝⋆) = P[𝑤(𝐝⋆, 𝐱) ≥ 𝜆], 𝛽 ∈ [0, 1] is a confidence parameter
hose value is set by the user, and 𝑠⋆𝑁 = || is the number of support
onstraints for the optimal solution of the scenario program (19).

roof. See proof for Theorems 2 and 4 in [67]. The proof are given
or the case of optimization over Euclidean spaces and applies mutatis
utandis to the present more general setup presented to solve RBDO
roblems where 𝜆 is introduced.

The means to evaluate the bounds of the violation probability in
21) are given below. The set of support constraints  accounts for
iolated constraints, 𝜁⋆(𝑖) > 𝜆, and active constraints, 𝑤(𝐝⋆, 𝐱(𝑖)) = 𝜆,

so follows:

 =
{

𝐱 ∈ 𝑁 ∶ 𝑤(𝐝⋆, 𝐱) ≥ 𝜆
}

, (22)

For 𝜆 = 0 the violation probability 𝑉 (𝐝⋆) coincides with the true fail-
ure probability 𝑃𝑓 (𝐝⋆) which is unknown because the data-generating
mechanism from which the scenarios were drawn is also unknown. The
true probability 𝑓𝐱 can be only known asymptotically when an infinite
number of scenarios are collected, and this is never the case in practice.

Theorem 1 for 𝜆 = 0 provides bounds on the true failure probability,
given by

𝑃𝑓 (𝐝⋆) ∈
[

𝜖(𝑠⋆𝑁 ), 𝜖(𝑠⋆𝑁 )
]

,

nd, equivalently, on the prospective-reliability as follows:

(𝐝⋆) ∈
[

1 − 𝜖(𝑠⋆𝑁 ), 1 − 𝜖(𝑠⋆𝑁 )
]

,

here 𝜖(𝑘) = max{0, 1−𝑡(𝑘)}, 𝜖(𝑘) = 1−𝑡(𝑘) and [𝑡, 𝑡] are the two solutions
a polynomial equation in 𝑡 (see Theorem 4 in [67]):

B𝑁 (𝑡; 𝑘) −
𝛽
2𝑁

𝑁−1
∑

𝑖=𝑘
B𝑖(𝑡; 𝑘) −

𝛽
6𝑁

4𝑁
∑

𝑖=𝑁+1
B𝑖(𝑡; 𝑘) = 0, (23)

where B𝑁 (𝑡; 𝑘) =
(𝑁
𝑘

)

𝑡𝑁−𝑘 is the binomial expansion. Eq. (23) has two
eros when 𝑘 = 0, 1,… , 𝑁 −1. For a case 𝑘 = 𝑁 , consider the following
olynomial equation in 𝑡:

−
𝛽
6𝑁

4𝑁
∑

𝑖=𝑁+1
𝑖(𝑡; 𝑘) = 0, (24)

q. (24) admit one solution, which is 𝑡(𝑁). The corresponding lower
bound in this case is zero. As such, the prospective range of failure
probabilities is [max{0, 1 − 𝑡(𝑁)}, 1].

The bounds [𝜖, 𝜖] are applicable to any convex scenario program,
for any value of 𝑁 , and the width of the interval quantifies the lack of
data uncertainty affecting 𝑑⋆. Fig. 3 displays the prospective bounds on
𝑉 (𝐝⋆) computed for 𝛽 = 10−8 and for an increasing number of scenarios
and support constraints. For a fixed 𝑁 and 𝛽 the bounds [𝜖, 𝜖] are
oth strictly increasing with the solution’s complexity 𝑠⋆𝑁 . Furthermore,
otice that the width of the bounding interval decreases as 𝑁 increases.
his is due to the lower lack of data uncertainty associated with a
ecision taken using a large data set. For instance, consider a data set
f very small size 𝑁 and a scenario solution for which 𝑠⋆𝑁 = 𝑁 . The
rospective-reliability bounds on 𝑅(𝐝⋆) will result close to a vacuous
nterval [0,1]. In contrast, for 𝑁 → ∞ and 𝑠⋆𝑁 = 𝑁 , the lower bounds
n the reliability 𝑅(𝐝⋆) will converge to 1. Differently, when 𝑁 → ∞
nd 𝑠⋆𝑁 = 0 the upper bound on the reliability converge to 0. More in
eneral, by increasing the available scenarios the width of the interval
ill progressively decrease and converge to the true reliability value

𝑠⋆𝑁
iven by the ratio lim𝑁→∞ 𝑁
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Table 1
Description of the proposed algebraic test cases adapted form [1,19,77], the baseline designs, the lower and upper bounds and the DGMs.

Case 1 [77] Case 2 [19] Case 3 [1]

DGM 𝑥1 ∶  (0, 1) 𝑥1 , 𝑥2 ∶  (0, 1.2) 𝑥1 ∶  (0, 1)
𝑥2 ∶  (0, 2) 𝛴1,2 = −0.9 𝑥2 ∶  (0, 2)

𝐱 ∈ R2 R2 R2

𝑔1 = −𝑑1 + 𝑥1 + 5𝑑2𝑥2 − 2𝑑3(𝑥1 − 𝑥2)2 −𝑑1 − 𝑑4
2 (𝑥1 − 𝑥2)4 +

(𝑥1 − 𝑥2)
√

2

𝑥2
𝑑1

+
𝑥1
𝑑2

− 𝑑3

𝑔2 = −𝑑1(1 − 𝑥2) + 𝑑2𝑥21 − 𝑑3𝑥31 −𝑑1 − 𝑑4
2 (𝑥1 − 𝑥2)4 −

(𝑥1 − 𝑥2)
√

2
𝑑1𝑥1 −

𝑥2
𝑑2

− 𝑑3

𝑔3 = – −𝑑3(𝑑4𝑥1 − 𝑥2) −
5.682𝑑2
√

2
− 2.2 –

𝑔4 = – −𝑑3(𝑥2 − 𝑑4𝑥1) −
5.682𝑑2
√

2
− 2.2 –

𝑔 ∈ R2 R4 R2

𝐝𝑏𝑙 [2.5, 0.2, 0.06] [0.2, 0.8801, 1, 6] [1, 1, 1]
𝐿𝑏 [0.5,−2,−0.3] [−0.5, 0.1, 1, 5] [0.5, 0.5, 0.5]
𝑈𝑏 [4, 2, 0.3] [0.5, 2, 2, 7] [2, 2, 2]
𝑑 ∈ R3 R4 R3
Fig. 3. The bounds [𝜖, 𝜖] computed for different 𝑁 , 𝑠⋆𝑁 and for a confidence 𝛽 = 10−8.

The violation probability of individual requirements incurred by the
solution to (19) or (20) is studied next. In this case we have:

𝑉𝑗 (𝐝⋆) = P[𝑔𝑗 (𝐝⋆, 𝐱) ≥ 𝜆𝑗 ] (25)

Notice that 𝑉𝑗 coincides with the true (but unavailable) failure probabil-
ity for requirement 𝑗 when 𝜆𝑗 = 0. A certificate of prospective-reliability
is obtained for 𝑉 via Eqs. (23) and (24):

𝑉𝑗 (𝐝⋆) ∈ [𝜖(𝜈⋆𝑁,𝑗 ), 𝜖(𝜈
⋆
𝑁,𝑗 )]

where 𝜈⋆𝑁,𝑗 is the number of support constraints for requirement 𝑗
contained in the support set

𝑗 =
{

𝐱 ∈ 𝑁 ∶ 𝑔𝑗 (𝐝⋆, 𝐱) ≥ 𝜆𝑗
}

The scenarios in 𝑗 define constraints for requirement 𝑗 is violated,
for instance, the scenarios for which 𝐱 ∈ 𝑗 (𝐝⋆) given a 𝜆𝑗 = 0. A
scenario in 𝑗 gives a contribution 𝜁 (𝑖)𝑗 > 0 to the objective function
in program (20) and, if removed, inevitably improves the objective
function. Note that if a VaR level is selected such that 𝜆 = 𝜆𝑗 for
all 𝑗 = 1,… , 𝑛𝑔 , then the sum of individual violation probabilities is
∑𝑛𝑔

𝑗=1 𝑉𝑗 ≥ 𝑉 and ∑𝑛𝑔
𝑗=1 𝜈

⋆
𝑁,𝑗 ≥ 𝑠⋆𝑁 . In other words, the probability of the

event 𝑤 ≥ 𝜆 is equal to the (union) probability of the events 𝑔𝑗 ≥ 𝜆
minus the (intersection) probability of multiple failures. The equality
sign holds if none of the scenarios fall in the intersection between
failure regions, or if the individual failure regions are disjoint. If a
VaR level is selected such that 𝜆 ≤ min𝑗=1,…,𝑛𝑔 𝜆𝑗 , the joint violation
probability is 𝑉 ≥ 𝑉 for all 𝑗. In fact, if a random 𝐱 leads to a
8

𝑗

failure event 𝑔𝑗 ≥ 𝜆𝑗 , then also the joint failure 𝑤 ≥ 𝜆 occurs. The
interested reader is reminded to [75] for further discussions on an
extended version of convex scenario approaches with multiple chance
constraints and sets of support constraints.

5. Case studies

The proposed approaches are tested on three RBDO problems hav-
ing multiple, competitive, algebraic performance functions. Table 1
presents the reliability functions, the dimensionality of the problems,
the baseline designs 𝐝𝑏𝑙, the lower and upper bounds on the design
space and the Data-Generating Mechanisms (DGM). For these simple
examples a low dimensional uncertainty space is selected to ease the
visualization of the results, however, for scenario programs the dimen-
sion 𝑛𝐱 is inconsequential [66]. Notice that the reliability functions are
convex functions in 𝑑 but not in 𝐱. The optimization problem seeks a
reliable designs 𝐝⋆ constrained in [𝐿𝑏, 𝑈𝑏] so that a convex cost function
𝐽 (𝐝) =

∑𝑛𝑑
𝑖=1(𝑑𝑖+𝑑

2
𝑖 ) is minimized. The MATLAB’s fmincon optimizer and

the ‘sqp’ algorithm are the numerical tools used to solve the problem.
The baseline designs are arbitrarily selected for comparison and used
as initial guesses for the solver.

For each test case we consider two sets of scenarios, 103 and 106 ,
obtained from the stationary DGMs. The set with 𝑁 = 103 is the
only one used for the optimization routines. This represent real-life
problems where only a limited number of data points is available to
tackle optimization tasks. Differently, the set with 𝑁 = 106 scenarios is
considered unavailable for the optimization and only used to validate
the prospective bounds [𝜖, 𝜖], introduced in Section 4.3. This is done
by estimating the ‘true’ 𝑉 (𝐝⋆) and 𝑉𝑗 (𝐝⋆) with high accuracy which
must lay with the prospective bounds with high confidence 𝛽 and
independently from the stationary probability P generating the data.

5.1. Results for CVaR constrained program (14)

The CVaR constrained optimization in Eq. (14) is used to solve
the RBDO problems. A level 𝛼 = 0.85 is selected to constrain the
probability of failure to the acceptable level 𝑃𝑓 < 0.15. A Gaussian
mixture model with five normal densities is fitted to 103 and used
to estimate the CVaR constraint on 𝑤. Table 2 compares the reliability
performances of the baseline design, 𝐝𝑏𝑙, and the optimized 𝐝◦ resulting
from the CVaR constrained program. The design cost 𝐽 , the failure
probability and the risk of extremes measured by the 𝐶𝑉 𝑎𝑅0.95(𝑤) are
presented as figures of merit. The CVaR constrained program yields
designs that, compared to the baseline, are generally cheaper, more
reliable and are characterized by a lower risk of facing extreme failures.
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Table 2
Comparison between the reliability-costs of 𝐝𝑏𝑙 , and the optimal designs 𝐝◦ and 𝐝⋆
resulting from programs (14) and (19), respectively.

Performance Case 1 Case 2 Case 3

Design 𝐝𝑏𝑙 𝐝◦ 𝐝⋆ 𝐝𝑏𝑙 𝐝◦ 𝐝⋆ 𝐝𝑏𝑙 𝐝◦ 𝐝⋆
program – (14) (19) – (14) (19) – (14) (19)

𝐽 9.05 0.72 0.82 45.9 37.8 38.1 6 12.78 15.38
𝐶𝑉 𝑎𝑅0.95(𝑤) 8.82 1.64 1.85 12.1 5.0 5.0 4.34 2.31 2.01
𝑃𝑓 0.337 0.606 0.423 0.67 0.28 0.10 0.61 0.234 0.186

Fig. 4. The top panel: The worst-case performance 𝑤(𝐝⋆ , 𝐱), solid blue line, and 𝜻⋆,
green line, from 103 . The bottom panel: A comparison between empirical CDFs with
the results of program (19).

For instance consider Case 1, the optimized 𝐝◦ results substantially
cheaper compared to the baseline, from 9.05 to 0.72, and shows an
overall mitigation of the risk, from 𝐶𝑉 𝑎𝑅0.95(𝑤) = 8.2 to only 1.64.
However, the optimizer was unable to find a design with the required
reliability level 𝑃𝑓 < 0.15. This is due to the over-conservativism
induced by a hard constraint on the conditional value-at-risk which led
to an empty set of feasible design 𝛩𝐶𝑉

𝛼=0.85, i.e., designs that satisfy the
constraint 𝐶𝑉 𝑎𝑅0.85 ≤ 0.

5.2. Results for 𝜆 = 0

Program (19) with 𝜆 = 0 is used to amend for the deficiencies of
program (14). A violation of a scenario constraints occurs when 𝜁 (𝑖) > 0,
that is, the 𝑖th scenario fails to comply with at least one of the reliability
requirements 𝑔𝑗 . A high violation cost 𝜌 = 100 is selected to maximize
the reliability of the design. Fig. 4 presents the optimized vector of
slack variables 𝜻⋆ (green solid line) and 𝑤(𝐝⋆, 𝐱(𝑖)) (blue solid line)
for the scenarios 𝐱(𝑖) ∈ 103 and in correspondence of the optimum
design 𝐝⋆. The empirical CDF of 𝑤(𝐝⋆, 𝐱(𝑖)) is presented in the bottom
panel and compared to the result of the CVaR program (dashed line)
and the baseline design (dotted line). It can be observed that for each
𝜁 (𝑖) > 0 the corresponding reliability violation is 𝑤(𝐝, 𝐱(𝑖)) = 𝜁 (𝑖) and
thus, as expected, the proposed method minimizes a combination of
𝐽 (𝐝) and the integral of 𝑤 in the failure region expressed as a sum of 𝜁 (𝑖).
Table 4 presents the reliability performances of the designs 𝐝⋆ obtained
via the proposed scenario program. The designs 𝐝⋆ result slightly more
costly but for a gain in reliability when compared to program (14), and
greatly improves the reliability compared to 𝐝𝑏𝑙. Most importantly, the
proposed scenario program for RBDO always has a feasible solution.
Furthermore, a certificate of prospective-reliability can be obtained for
𝐝⋆.

Table 3 presents the results of the prospective-reliability analysis
for 𝐝⋆, that is, a certificate of robustness against future (yet unseen)
scenarios. The prospective-reliability of 𝐝⋆ depends on the number of
active and violated constraints, see Eq. (21), which results 𝑠⋆

103
= 105

for Case 2. For a confidence parameter 𝛽 = 10−8 (almost certainty) this
leads to a prospective-reliability interval 𝑅(𝐝⋆) ∈ [0.821, 0.9468] and
to a range of prospective failure probabilities 𝑃𝑓 (𝐝⋆) ∈ [𝜖, 𝜖]. This is
a powerful result which assures that the ‘true’ failure probability will
9

Fig. 5. Trade-off between cost 𝐽 (𝐝⋆) and prospective-reliability bounds [𝜖, 𝜖] for Case
1.

result at worst 0.1788 and not better than 0.0532, hence informing
the analyst on the robustness of 𝐝⋆ against the uncertainty affecting
the DGM (due limited availability of data). An accurate estimator of
the violation probability 𝑉 (𝐝⋆) is obtained using the set 106 , which
coincides with 𝑃𝑓 (𝐝⋆) for 𝜆 = 0, and results contained within the
bounds prescribed by scenario theory.

The prospective bounds are analogously obtained for the individual
requirements and verified using the set 106 for all the other case
studies leading to similar results. As example consider Case 1, the total
number of support scenarios results 𝑠⋆

103
= 423 leading to a prospec-

tive bound 𝑉 (𝐝⋆) ∈ [0.322, 0.527], which includes the ‘true’ failure
probability 𝑉 (𝐝⋆) = 0.3995. Concerning the individual requirements,
the estimators of the true failure probability are 0.117 and 0.282 for
requirement one and two, respectively. Both lay within the prospective
ranges [𝜖1, 𝜖1] = [0.069, 0.206] and [𝜖2, 𝜖2] = [0.207, 0.396] obtained for
127 and 𝜈⋆𝑁,2 support scenarios, respectively. Notice that the prospective
bounds always result 𝜖(𝑠⋆𝑁 ) ≤

∑𝑛𝑔
𝑗=1 𝜖(𝜈

⋆
𝑁,𝑗 ) and 𝜖(𝑠⋆𝑁 ) ≥

∑𝑛𝑔
𝑗=1 𝜖(𝜈

⋆
𝑁,𝑗 ).

5.3. Cost-reliability trade-off and 𝜌 selection

Selecting a suitable value for the violation cost 𝜌 can be challenging
as it is difficult to forecast its impact on the design’s failure probability.
The designers might want to solve program (19) for different values of
𝜌 and obtain a set of designs which compromise between costs 𝐽 (𝐝⋆)
and failure probability bounds according to Eq. (23). Fig. 5 presents the
resulting trade-off between design’s robustness (the reliability-bounds,
red area) and its cost (blue dashed line). The figure is obtained for 50
distinct values of 𝜌, a confidence parameter 𝛽 = 10−8 and for case study
1 with 𝜆 = 0. Since the bounds are obtained by a repeated application
of Eq. (23), the confidence that 𝜖(𝑠⋆

103
) ≤ 𝑉 (𝐝⋆) ≤ 𝜖(𝑠⋆

103
) for all 50

values is 1–50 ⋅ 𝛽, [67].
The numerical results for six values of 𝜌 are presented in Table 4.

The design’s costs, the number of support scenarios 𝑠⋆𝑁 (samples in the
failure region), and the prospective-reliability bounds are compared.
As an example focus on Case 3. The designer might want to select a
𝜌 which leads to a compromise reliability bounded in [0.3,0.5] and a
cost 𝐽 (𝐝⋆) = 8.89. Alternatively, an higher cost of 𝐽 (𝐝⋆) = 15.1 for an
improved reliability 𝑃𝑓 (𝐝⋆) ∈ [0.11, 0.28] might be the most suitable
choice.

5.3.1. Results for 𝜆 ≠ 0 and increasing 𝑁
Scenario program in Eq. (19) is tested on Case 3 for six values of 𝜆 ∈

[−1.5,+1.5] and for six values of 𝑁 ∈ [50, 5000]. Fig. 6 summarize the
results of the analysis where the 𝑥-axis display the values of 𝜆 and the
𝑦-axis the probability of violation. The prospective range of violation
probabilities for the joint requirement 𝑤(𝐝, 𝐱) < 𝜆 are displayed in the
top panel whilst individual requirements 𝑔𝑗 (𝐝, 𝐱) < 𝜆 are presented
in the bottom panels. It can be observed that small 𝜆 values lead to
wider scenario bounds on P[𝑤(𝐝⋆, 𝐱) ≥ 𝜆]. For instance 𝜆 = −1.5 leads
to a (random) number of support constraints 𝑠⋆ = 639, which leads
103
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Table 3
Prospective-reliability bounds and ‘true’ reliability for all requirements and individual requirements estimated with 106 . Results for the optimized
𝐝⋆ solutions of program (19) with 𝜆 = 0.

Robustness All requirements

𝛽 = 10−8 Case 1 Case 2 Case 3

𝑠⋆103 423 105 186
𝑅 0.6005 0.892 0.788
[1 − 𝜖, 1 − 𝜖] [0.473, 0.678] [0.821, 0.9468] [0.725, 0.885]

Robustness Individual requirements

𝛽 = 10−8 Case 1 Case 2 Case 3

𝜈⋆103 ,𝑗 [127, 296] [0, 1, 56, 48] [81, 108]
𝑃𝑓,1 ∈ [𝜖1 , 𝜖1] 0.117 ∈ [0.069, 0.206] 0.001 ∈ [0, 0.022] 0.093 ∈ [0.037,0.148]

𝑃𝑓,2 ∈ [𝜖2 , 𝜖2] 0.282 ∈ [0.207, 0.396] 0.001 ∈ [0, 0.025] 0.123 ∈ [0.055,0.183]

𝑃𝑓,3 ∈ [𝜖3 , 𝜖3] – 0.053 ∈ [0.021, 0.116] –

𝑃𝑓,4 ∈ [𝜖4 , 𝜖4] – 0.048 ∈ [0.016, 0.104] –
Table 4
Trade-off between the prospective-reliability bounds and cost of the design 𝐝⋆ for six values of the cost parameter 𝜌.

Cost-reliability Case 1 Case 2 Case 3

trade-off 𝐽 𝑠⋆103 [𝜖, 𝜖] 𝐽 𝑠⋆103 [𝜖, 𝜖] 𝐽 𝑠⋆103 [𝜖, 𝜖]

𝜌 = 0.001 0.742 510 [0.40,0.61] 33.7 719 [0.61,0.80] 2.74 819 [0.72,0.89]
𝜌 = 0.01 0.800 439 [0.33,0.54] 37.5 227 [0.14,0.32] 8.89 405 [0.30,0.50]
𝜌 = 0.05 0.819 425 [0.32,0.53] 38.1 129 [0.07,0.21] 13.7 209 [0.13,0.30]
𝜌 = 0.1 0.819 425 [0.32,0.53] 38.1 117 [0.06,0.19] 15.1 191 [0.11,0.28]
𝜌 = 0.5 0.823 423 [0.32,0.53] 38.1 107 [0.05,0.18] 15.3 187 [0.11,0.27]
𝜌 = 1 0.823 423 [0.32,0.52] 38.1 106 [0.05,0.18] 15.3 187 [0.11,0.27]
c
𝐝

F
t
p
s
r
d
t
q
𝑃

to a certificate P[𝑤(𝐝⋆, 𝐱) ≥ −1.5] ∈ [0.533, 0.734]. In contrast, the
number of support constraints for 𝜆 = 1.5 is only 𝑠⋆

103
= 40 and, thus,

a tighter prospective certificate P[𝑤(𝐝⋆, 𝐱) ≥ 1.5] ∈ [0.0122, 0.0932] can
be obtained. In other words, no more than 9.32% of the unobserved
scenarios will result in a worst-case performance 𝑤 ≥ 1.5 in corre-
spondence of the design 𝐝⋆ optimized with 𝜆 = 1.5. Intuitively, the
tighter bounds on 𝜆 = 1.5 are due to the weaker statement on the
tails of 𝑤. Differently, the probabilistic statement P[𝑤(𝐝⋆, 𝐱) ≥ −1.5] is
‘stronger’ as it is made on a wider portion of the tail of 𝑤. However, it is
also less guaranteed and results in wider prospective bounds. A similar
trend can be observed for the violation probabilities 𝑉1(𝐝⋆) and 𝑉2(𝐝⋆)
for the individual requirements. To check the validity of the scenario
bounds, the ‘true’ violation probability P[𝑤(𝐝⋆, 𝐱) ≥ 𝜆] is estimated over
the larger set of scenarios 106 . The estimators of the true violation
probability are displayed in Fig. 6 by red marked lines and, for any 𝜆,
it results within the bounds prescribed by scenario theory.

The prospective ranges [𝜖(𝑠⋆𝑁 ), 𝜖(𝑠⋆𝑁 )] for different sample sizes 𝑁
re displayed by the blue areas in Fig. 6 where a lighter color indicates
lower availability of samples 𝑁 . As expected, the bounds get tighter

or higher 𝑁 and always include the violation probability estimate (red
arked lines). Tighter bounds are due to the increasing knowledge on

he underlying P generating the data. Finally, note that the prospective
anges of violation probabilities coincides with the ranges of failure
robabilities for 𝜆 = 0. In general, these bounds might be slightly
ifferent from the one obtained in Section 5.2 since 𝑠⋆𝑁 is a random
umber which depends on the available 𝑁 .

.4. Trade reliability of individual requirements program (20)

In some cases, only a subset of reliability requirements is considered
f vital importance for the health state of a system whilst other require-
ents are considered less relevant. It is therefore of practical interest

o prescribe design solutions that reliability well-reflects these different
eights. To this end, we test scenario optimization program (20) with

ndividual soft constraints to solve Case 3. For the sake of this analysis,
e assume an expert considers the second reliability requirement (𝑔2)

o be less stringent than requirement one (𝑔1). Further, we assume
hat the designer wishes to prescribe a 𝐝⋆ having individual failure
10

robabilities which are at least 𝑃𝑓,1 < 0.2 and 𝑃𝑓,2 < 0.5 and a budget
onstraint 𝐽 < 10 is also imposed on the design. A set of design solutions
⋆ is obtained using program (20) for a grid of equally spaced (𝜌1, 𝜌2)

and for a scenario set of size 𝑁 = 200. The result is a set of trade-
off designs, which compromise between the minimization of 𝐽 (𝐝) and
the total cost of violations for the individual reliability requirements,
i.e., 𝜌𝑗

∑𝑁
𝑖=1 𝜁

(𝑖)
𝑗 .

Fig. 7 summarizes the result of this analysis. The set of pairs (𝜌1, 𝜌2)
which led to feasible designs in accordance with the requirements
𝑃𝑓,1(𝐝⋆) < 0.2, 𝑃𝑓,2(𝐝⋆) < 0.5, and 𝐽 (𝐝⋆) < 10 is highlighted in red.
our values of (𝜌1, 𝜌2) are selected (highlighted by black arrows) and
he resulting designs have the lowest costs, the lowest individual failure
robabilities for the requirements one and two, and a compromise
olution, respectively. Table 5 presents their costs and prospective-
eliability scores. The solution having lowest 𝑃𝑓 coincides with the
esign minimizing 𝑃𝑓,2. As expected, higher values of 𝜌1 (𝜌2) lead
o better reliability performance for the first (second) reliability re-
uirement. For instance, the design with the lowest 𝑃𝑓,1 results in
̂𝑓,1 = 30∕200 ∈ [𝜖1, 𝜖1], 𝑃𝑓,2 = 46∕200 ∈ [𝜖2, 𝜖2] for the individual

requirements estimates, 𝑃𝑓 = 72∕200 ∈ [𝜖, 𝜖] for the overall failure
probability, and in a cost of 9.95 monetary units. Differently, the
most economical solutions only cost 7.85 but, in turn, it is inferior
in terms of reliability performance, e.g., 𝑃𝑓 = 94∕200. Because of the
competitiveness between overall reliability and cost, as well as between
individual reliability requirements, the set of pairs (𝜌1, 𝜌2) highlighted
in red defines a 3-dimensional Pareto’s front in the space of 𝑃𝑓,1, 𝑃𝑓,2
and 𝐽 .

6. Testing on two real-world examples

We apply the proposed method to optimize the cost and expected
severity of two realistic engineering examples. In the first problem,
we optimize the design of an aircraft lateral motion controller. This
problem includes 13 uncertain variables and 16 design parameters.
In the second examples, we optimize the design of a 72-bar multi-
story space truss and the problem includes 78 uncertain factors and 18
design parameters. This last example has a relatively large number of
design parameters and uncertain factors. It is used to demonstrate the
scalability of the proposed method to realistic engineering problems
for which only a black-box computational model of the system and
experimental data about uncertain material proprieties are available.
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Fig. 6. Prospective-reliability bounds on 𝑉 (𝐝⋆) and individual 𝑉𝑗 (𝐝⋆) for six sizes 𝑁 and 𝜆 ∈ [−1.5,+1.5]. The ‘true’ violation probability approximated via the set 106 is displayed
by red marked lines.
Table 5
The performance of the designs, of program (20), leading to the best reliability, the best cost and a compromise between the two. Solution are selected among the one fulfilling
the conditions 𝑃𝑓,1(d⋆) < 0.2, 𝑃𝑓,2(d⋆) < 0.5 and 𝐽 (d⋆) < 10.

𝑠⋆200 𝜈⋆200,1 𝜈⋆200,2 𝐽 (d⋆) [𝜖, 𝜖] [𝜖1 , 𝜖1] [𝜖2 , 𝜖2]

Best 𝑃𝑓 and 𝑃𝑓,1 72 30 46 9.957 [0.169,0.588] [0.0375,0.3536] [0.0821,0.4498]
Best cost 𝐽 94 39 60 7.857 [0.255,0.692] [0.0618,0.4090] [0.1270,0.5265]
Best 𝑃𝑓,2 64 37 28 9.967 [0.141,0.547] [0.0563,0.3971] [0.0322,0.3408]
Compromise 81 35 49 9.143 [0.203,0.632] [0.0508,0.3849] [0.0913,0.4667]
6.1. Design of an aircraft lateral motion controller

The soft-constrained RBDO program, proposed in Eq. (19), is used
to optimize the reliability of an aircraft lateral motion controller.
The dynamics of the system is defined by the following state–space
model [78]:

�̇�(𝑡) = 𝐀(𝐱)𝐬(𝑡) + 𝐁(𝐱)𝐮(𝑡), (26)

where 𝐮(𝑡) ∈ R2, is the controller input vector defining the rudder
and aileron deflections and 𝐬(𝑡) ∈ R4, is a state vector representing
the aircraft blank angle and its derivative, the sideslip angle, the yaw
rate. The matrices 𝐀 and 𝐁 in Eq. (26) are determined from a vector 𝐱
containing 𝑛 = 13 uncertain aircraft motion parameters. The elements
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𝑥

of the aircraft state matrices are given by:

𝐴(𝐱) =

⎛

⎜

⎜

⎜

⎜

⎝

0 1 0 0
0 𝐿𝑝 𝐿𝛽 𝐿𝑟

𝑔∕𝑉 0 𝑌𝛽 −1
𝑁�̇� (𝑔∕𝑉 ) 𝑁𝑝 𝑁𝛽 +𝑁�̇�𝑌𝛽 𝑁𝑟 −𝑁�̇�

⎞

⎟

⎟

⎟

⎟

⎠

,

𝐵(𝐱) =

⎛

⎜

⎜

⎜

⎜

⎝

0 0
0 𝐿𝛿𝑎
𝑌𝛿𝑟 0

𝑁𝛿𝑟 +𝑁�̇�𝑌𝛿𝑟 𝑁𝛿𝑎

⎞

⎟

⎟

⎟

⎟

⎠

.

Table 6 presents the mean value for the uncertain parameters 𝐱.
The goal of this problem is to identify a reliable state feedback

controller that stabilizes the system by achieving a target decay rate
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Table 6
The 13 uncertain parameters affecting the aircraft motion [79] and their nominal values. Scenarios are generated from a normal distributions with mean 𝜇𝐱 and cov 0.3.
𝐱 𝐿𝑝 𝐿𝛽 𝐿𝑟 𝑔∕𝑉 𝑌𝛽 𝑁�̇� 𝑁𝑝 𝑁𝛽 𝑁𝑟 𝐿𝛿𝑎 𝑌𝛿𝑟 𝑁𝛿𝑟 𝑁𝛿𝑎

𝜇𝐱 −2.93 −4.75 0.78 0.086 −0.11 0.1 −0.042 2.601 −0.29 −3.91 0.035 −2.5335 0.31
Fig. 7. The set of suitable (𝜌1 , 𝜌2) to achieve a 𝑃𝑓,1 < 0.2, 𝑃𝑓,2 < 0.5 and 𝐽 < 10 for
Case 3, the red area. Markers display the designs leading to minimum 𝑃𝑓 (𝐝⋆), 𝑃𝑓,1(𝐝⋆),
𝑃𝑓,2(𝐝⋆), and 𝐽 (𝐝⋆) within the set of suitable (𝜌1 , 𝜌2).

𝛾 > 0. A decay rate 𝛾 = 0.1 is considered. A sufficient condition for the
existence of such a controller requires finding a matrix 𝑊 (𝐝) ∈ R4×2

and a symmetric positive definite matrix 𝑃 (𝐝) ∈ R4×4 satisfying the
following convex quadratic performance criterion:

𝐠(𝐝, 𝐱) = 𝐀(𝐱)𝐏(𝐝) + 𝐏(𝐝)𝐀𝑇 (𝐱)
+𝐁(𝐱)𝐖𝑇 (𝐝) +𝐖(𝐝)𝐁𝑇 (𝐱) + 2𝛾𝐏(𝐝) ≼ 0

where ≼ denotes negative semi-definite matrices, 𝐠 ∈ R4×4 is a square
matrix, and the elements of the matrices 𝐏(𝐝) and 𝐖(𝐝) are defined by a
18 dimensional design vector 𝐝. A controller 𝐝 that achieves the desired
decay rate for a scenario 𝐱 if

𝑤(𝐝, 𝐱) = 𝛬𝑚𝑎𝑥[𝐠(𝐝, 𝐱)] ≤ 0,

where 𝛬𝑚𝑎𝑥[⋅] denotes the maximum eigenvalue of 𝐠.
A candidate design solution was proposed in the Ref. [79] as the

result of a sequential design procedure. We adopt this design as the base
line solution. By assuming the uncertain factors normally distributed
with mean values given in Table 6 and coefficient of variation 0.3,
the baseline design results in a high failure probability of 𝑃𝑓 = 0.54.
We now compare the baseline against a design obtained via the pro-
posed soft-constrained scenario program in Eq. (19). We first assume
𝑁 = 300 samples of 𝐱 are available to optimize 𝐝 via the following
soft-constrained scenario RBDO program:

min
𝐝,𝜻

𝑇 𝑟[𝐏] + 𝜌
𝑁
∑

𝑖=1
𝜁 (𝑖) ∶

𝑠.𝑡. 𝐏(𝐝) ≽ 𝜃𝐼

𝑤(𝐝, 𝐱(𝑖)) ≤ 𝜁 (𝑖), 𝑖 = 1,… , 300

𝜁 (𝑖) ≥ 0, 𝑖 = 1,… , 300

where 𝑇 𝑟[⋅] is the trace operator and 𝜃 is a small value ensuring positive
definiteness of 𝐏(𝐝). We select a high cost of violations to give more
importance to a minimize the risk rather than the trace of the matrix.
This yield an optimal design with zero violations and 𝑠⋆ = 0. This
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300
means that the slack variables result 𝜁 (𝑖),⋆ = 0 for all 𝑖 = 1,… , 300 and
the estimate of the failure probability results 𝑃𝑓 (𝐝⋆) = 0.

Theorem 1 is used to derive the following certificate of probabilistic
performance for the optimize design:

P300[0 ≤ 𝑃𝑓 (𝐝⋆) ≤ 0.038] ≥ 1 − 10−4

This certificate ensures a failure probability bounded in [0, 0.038] with
a high degree of confidence (the right-hand side of the equation). This
ensures that the design 𝐝⋆ will achieve the desired decay rate 𝛾 at least
96.2% of the times. This certificate of probabilistic performance holds
independently from the true distribution of the uncertain data and is
data-dependent because computed based on the availability of the 300
samples. We estimated the true probability of failure and it results in
𝑃𝑓 = 0.0087. This verifies the validity of the upper and lower bounds
and shows that the proposed soft-constrained program substantially
improved the reliability of the controller.

6.2. Design of a 72-bar four level skeletal tower

In the next engineering example, the weight of 72 bar multi-
story space truss structure must be minimized while ensuring a high-
reliability performance. The problem was solved using deterministic
optimization methods, see e.g. [80,81], however, deterministic ap-
proaches only focused on the minimization of the weight and not on the
reliability. Differently, RBDO approaches have been proposed to mini-
mize both the failure probability and weight, see e.g., [82,83]. None of
the reviewed works proposed a reliability-based nor a risk-based design
without prescribing a model for the uncertainty.

Fig. 8 presents the geometry of the structure. The 72 bars are
categorized into 16 groups and the design vector 𝑑 = [𝐴1,… , 𝐴16]
defines the 16 cross-sectional areas to be minimized. The objective
is to minimize the weight of the structure that is proportional to
the structure’s volume and its cost. The unit material density is 0.1
[lb/in.2]. Reliability requirements are imposed on the displacement
of the nodes and maximum tension and compression stresses. The
maximum displacement for the nodes top four nodes is ± 0.25 [in.] for
x, y and z directions, the maximum allowable stress for all members
is ± 25 [ksi] (the same in tension and compression), the range of
acceptable cross-sectional design areas varies from 0.1 [in.2] to 4.0
[in.2]. We combined the two load cases presented in [80] for a total
of six loads components affecting the nodes 1 to 4. We consider the
modulus of elasticity and the loads to be uncertain and only 𝑁 samples
of them are available to optimize the structure’s weight and reliability.
The samples of the 72 Young’s modulus are drawn from a normal
distribution with a mean 104 [ksi] and standard deviation of 102 [ksi].
The samples of the loads are obtained from normal distributions with
mean −5 [kips] on the vertical z-component and +5 [kips] in the x
and y directions [80]). A standard deviation of 0.5 [kips] is assumed
for the loads. The modified version of this problem includes 𝑛𝑥 = 78
random variables 𝑛𝑑 = 16 design parameters, and 𝑛𝑔 = 84 reliability
requirements (72 on the maximum allowable stress and 12 maximum
displacements).

Soft-constrained scenario solutions to this design problem is ob-
tained using Eq. (19) and selecting a cost of violations 𝜌 = 105 and
for 3 number of sample 𝑁 = 100, 𝑁 = 200 and 𝑁 = 500. We
assume the system response can be only evaluated using a black-box
model and assume convexity of the volume function and the reliability
performance functions. Table 7 presents the designs resulting from the
proposed soft-constrained scenario RBDO approach and compares their
performance to four deterministic designs and three RBDO designs. As
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Table 7
The cross sectional areas, weight and reliability performance of four deterministic designs, six RBDO designs (3 from literature and 3 proposed in this paper). See [82, Table 7]
for more detailed description on the deterministic designs acronyms.

Literature This work

Design Deterministic RBDO

Area Members HSPO [82] SAHS [84] PSO [84] TLBO [80] C-[85] E-[85] aeDE [83] (𝑁 = 100) (𝑁 = 200) (𝑁 = 500)

𝐴1 1–4 1.857 1.86 1.7427 1.906 3.18 3.199 11.49 3.408 3.7094 3.999
𝐴2 5–12 0.505 0.521 0.5185 0.506 1.48 1.486 2.88 0.833 0.912 0.8409
𝐴3 13–16 0.1 0.1 0.1 0.1 0.33 0.33 1.61 0.1 0.1 0.1
𝐴4 17–18 0.1 0.1 0.1 0.1 0.1 0.10 1.61 0.1 0.1 0.1
𝐴5 19–22 1.255 1.271 1.3079 1.262 2.6 3.2 7.2 2.467 2.69 1.804
𝐴6 23–30 0.503 0.509 0.5193 0.511 1.58 1.599 1.98 0.833 0.91 1.38
𝐴7 31–34 0.1 0.1 0.1 0.1 0.1 0.119 1.62 0.1 0.1 0.1
𝐴8 35–36 0.1 0.1 0.1 0.1 0.1 0.136 1.62 0.1 0.1 0.1
𝐴9 37–40 0.496 0.485 0.5142 0.532 1.61 1.70 1.62 1.45 1.62 2.074
𝐴10 41–48 0.506 0.501 0.5464 0.516 1.65 1.63 3.55 0.837 0.1 1.092
𝐴11 49–52 0.1 0.1 0.1 0.1 0.1 0.1 1.62 0.1 0.1 0.1
𝐴12 53–54 0.1 0.1 0.1095 0.1 0.1 0.1 1.62 0.1 0.1 0.12
𝐴13 55–58 0.1 0.168 0.1615 0.156 0.637 0.37 1.62 0.439 0.478 0.251
𝐴14 59–66 0.524 0.584 0.5092 0.549 1.581 1.606 1.62 0.852 0.935 0.782
𝐴15 67–70 0.4 0.433 0.4967 0.409 0.1 0.534 1.62 0.697 0.741 0.459
𝐴16 71–72 0.534 0.520 0.5619 0.569 0.116 0.802 1.62 0.892 0.928 0.823

Weight [lb] 369.65 380.6 381.9 379.6 913.47 972.8 1974 634.89 690.15 710.04
𝑃𝑓 1 1 1 1 0.017 0 0 0.02 0.005 0.006
𝐶𝑉 𝑎𝑅0.95(𝑤) 1.18 0.76 0.77 0.77 −0.0017 −0.26 −0.60 −0.0189 −0.1119 −0.034
Function count 125 000 13 742 n.a. 19 709 n.a. n.a. 993 600 10 885 21 064 25 333
[𝜖, 𝜖], 𝛽 = 10−4 – – – – – – – [0,0.164] [0,0.074] [0,0.0395]
Fig. 8. The geometry of the low-weight 72-bar multi-story space truss.
Source: Figure adapted from [81]
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a figure of merit, we present the resulting weight of the structure, its
empirical failure probability, its risk measured by the conditional value-
at-risk, 𝐶𝑉 𝑎𝑅0.95(𝑤), and the computational cost of the optimization
(expressed as an average number of function evaluations). Determin-
istic designs result in lower costs and are highly unreliable whilst
reliability-based designs are reliable but expensive. In contrast with
the reviewed results, the proposed soft-constrained design achieved a
good compromise between cost and reliability and is equipped with an
epistemic interval on its failure probability, see the last row of Table 7.
This certificate guarantees a minimum probabilistic level of safety and
reflects the availability of data when the design was introduced. If
more samples are collected, a more informative and accurate reliability
certificate can be prescribed. However, note that the number of avail-
able scenarios has a significant impact on the computational cost of
the analysis and the manufacturing cost of the structure. This can be
regarded as drawbacks of the proposed method and will be discussed
in the next section.

6.3. Summary and discussion on the computational cost and limitations of
the proposed method

We demonstrated the applicability of the proposed approach for
risk- and reliability-based design on three easily reproducible analytical
examples, and two realistic engineering problems. Table 7 compares the
computational cost of our method (in function counts) with the cost of
deterministic optimizers and RBDO procedures taken from literature.
Note that the reliability function must be evaluated 𝑁 times for each
iteration of the soft-constrained method, one for each scenario con-
straint. Moreover, the relaxation terms 𝜻 expand the design space with
𝑁 additional dimensions. Hence, our method achieves a satisfactory
numerical efficiency when a small number of scenario constraints are
available. In this case, the number of function counts is comparable to
deterministic optimization methods. Conversely, it may be difficult to
apply the proposed approach when many samples are available, i.e., big
data sets, and when the reliability function 𝑔 is numerical costly to
evaluate (such as a finite element code or CFD simulator). Note that
reliability functions g are treated as black-box models in this work
and convexity in the design space is assumed for the formal derivation
of the reliability bounds. Hence, the high computational cost of the
model 𝑔, its convexity in 𝑑, and the high dimensionality of the design
space limit the applicability of the proposed approach. However, the
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dimensionality of the state–space defining 𝑔 should not be regarded as
a limiting factor. In facts, a reliability function defined by a large state–
space can be relatively easy to compute, e.g., for quasi-static and linear
models. In these cases, the scenario approach offers a very effective way
of tackling RBDO problems.

A solution to these problems can be to replace the computationally
expensive model 𝑔 with a low-fidelity convex approximation of it, like
a reduced-order model also known as an emulator. If the number of
scenarios is very large, a subset of the data set containing the worst-
case scenarios may be considered. However, the worst-case scenarios
may change for different 𝐝 and this would require periodically update
the list of worst-case candidates while optimizing the design. These can
be regarded as possible targets for a future research direction.

7. Conclusions

The approach proposed in [1], which is applicable to RBDO prob-
lems having reliability functions depending arbitrarily on 𝑑, yields a
probabilistic certificate of performance for the optimal design. This
certificate is an upper bound on the probability of the system exhibiting
severe failures for future data. This paper extends the developments
therein by providing tighter bounds when the RBDO program can
be assumed convex. A new scenario program with soft constraints is
proposed and the method can be used to identify reliable designs that
minimize a weighted combination of system cost and risk without pre-
scribing a model for the uncertainty. Without relaxing the constraints
a scenario optimization program might not admit a solution. Multiple
weighting factors have been proposed to control the importance of
minimizing the cost over the risks of facing severe failure for dif-
ferent failure modes. Strong model assumptions are often needed to
define probability distributions given insufficient data. As such, this
practice might lead to RBDO and risk-based designs that significantly
underperform in practice. Avoiding the prescription of a model for the
uncertainty makes the resulting design exempt from the subjectivity
induced by such a practice. Recent results from scenario theory are used
in this work to prescribe bounds on the true reliability of a design and,
in general, on the probability of the design facing failures of magni-
tudes exceeding a predefined value-at-risk threshold. These ranges of
probabilities, called prospective-reliability bounds, hold independently
of the underlying data-generating mechanism (for any probability dis-
tribution consistent with the data), non-asymptotically (for any number
of samples 𝑁), and given mild assumptions on the uncertainty. This
probabilistic certificate of performance offers a powerful robustness and
safety monitoring tool which reveals the current state of knowledge
and uncertainty. This is an invaluable tool for analysts which can
be conveniently used to support better decision-making and prescribe
designs for which reliability and robustness are certifiable.

Replication package: The data and scripts for the numerical analysis
are publicly available at the GitHub repository: https://github.com/
Roberock/ScenarioRBDO.
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