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Abstract: Piecewise affine (PWA) systems enable modelling of systems that encompass hybrid
dynamics and nonlinear effects. The aim of this paper is to develop an ILC framework for PWA
systems. A new approach to analyse monotonic convergence is developed for PWA systems.
This is achieved by exploiting the incremental �2-gain leading to sufficient LMI conditions
guaranteeing monotonic convergence. An example confirms the monotonic convergence property
for ILC applied to a mass-spring-damper system with a one-sided spring.

Keywords: Learning Control

1. INTRODUCTION

Iterative learning control (ILC) can achieve high perfor-
mance for systems that perform repetitive tasks (Bristow
et al., 2006; Moore, 2012). The key idea of ILC is to
iteratively determine an input signal that compensates for
an unknown trial-invariant disturbance, e.g., a reference
trajectory. By learning from the error signal observed dur-
ing previous iterations a control input signal is computed
that compensates the trial-invariant disturbance.

A key requirement in ILC is monotonic convergence of
either the sequence of control inputs or the sequence of
error signals. The monotonic convergence property ensures
that large learning transients are avoided for any trial-
invariant disturbance. When analysing an ILC algorithm,
mainly linear time-invariant (LTI) models are considered.
Analysis methods exist for ILC algorithms ranging from
simple P -type ILC setups (Arimoto et al., 1984) to model
inversion based ILC (van Zundert and Oomen, 2018).

Iterative learning control has been extended to classes
of systems beyond LTI systems. Successful applications
of this are, among many others: non-equidistant sampled
systems that lead to a linear periodically time-varying
(LPTV) model (van Zundert and Oomen, 2019); nonlinear
systems, e.g., robotic manipulators (Horowitz et al., 1991);
hybrid systems (Spiegel and Barton, 2019); linear param-
eter varying systems (LPV) (de Rozario et al., 2017).

Piecewise affine (PWA) systems can represent a broad
range of behaviours, including dry friction (Shaw, 1986),
systems with piecewise affine elements such as a one-sided
spring (Heertjes et al., 1997), or linear systems that are in
closed-loop with a hybrid controller, e.g., a reset controller

� This work is part of the research programme VIDI with project
number 15698, which is (partly) financed by the Netherlands Organ-
isation for Scientific Research (NWO).

(Clegg, 1958). Moreover, PWA systems provide accurate
approximations of nonlinear systems (Sontag, 1981).

Some existing nonlinear ILC analysis approaches may be
applicable to the analysis of ILC for PWA systems, for
an overview see, e.g., Xu (2011), but they do not ex-
ploit the specific properties of PWA systems, and fea-
ture some notable limitations. For example, incremental-
output-dissipative systems are guaranteed to converge
when exploiting a P-type ILC with a sufficiently small
gain and assuming a zero-error trajectory is reachable
(Arimoto and Naniwa, 2000; Quintanilla and Wen, 2008).
This includes some PWA systems, but the reachability
assumption is not always practical and the allowable con-
troller class is limited. Monotonic convergence of a broader
class of controllers can be checked via a differential �2-gain
analysis of the mapping of the input sequence from one
trial to the next (Kong and Manchester, 2017). However,
the analysis of this differential �2-gain is dependent on
the trial-invariant disturbance. Hence, guaranteeing mono-
tonic convergence for any trial-invariant disturbance is
not possible. Moreover, this method leads to solving an
infinite-dimensional optimization problem, which is made
tractable through gridding the state space, making the
results local to the grid points rather than global.

Although PWA systems are an important model class for
ILC algorithms, at present analysing monotonic conver-
gence of general ILC algorithms applied to PWA systems is
not addressed. The aim of this paper is to develop a global
monotonic convergence analysis method for a general ILC
setup applied to PWA systems subject to an unknown
trial-invariant disturbance.

The main contribution of this paper is a monotonic conver-
gence analysis method for a general ILC setup applied to a
PWA system subject to an unknown trial-invariant distur-
bance. This analysis method is based on the incremental
�2-gain (van der Schaft, 2016), which is closely related to
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1. INTRODUCTION

Iterative learning control (ILC) can achieve high perfor-
mance for systems that perform repetitive tasks (Bristow
et al., 2006; Moore, 2012). The key idea of ILC is to
iteratively determine an input signal that compensates for
an unknown trial-invariant disturbance, e.g., a reference
trajectory. By learning from the error signal observed dur-
ing previous iterations a control input signal is computed
that compensates the trial-invariant disturbance.

A key requirement in ILC is monotonic convergence of
either the sequence of control inputs or the sequence of
error signals. The monotonic convergence property ensures
that large learning transients are avoided for any trial-
invariant disturbance. When analysing an ILC algorithm,
mainly linear time-invariant (LTI) models are considered.
Analysis methods exist for ILC algorithms ranging from
simple P -type ILC setups (Arimoto et al., 1984) to model
inversion based ILC (van Zundert and Oomen, 2018).

Iterative learning control has been extended to classes
of systems beyond LTI systems. Successful applications
of this are, among many others: non-equidistant sampled
systems that lead to a linear periodically time-varying
(LPTV) model (van Zundert and Oomen, 2019); nonlinear
systems, e.g., robotic manipulators (Horowitz et al., 1991);
hybrid systems (Spiegel and Barton, 2019); linear param-
eter varying systems (LPV) (de Rozario et al., 2017).

Piecewise affine (PWA) systems can represent a broad
range of behaviours, including dry friction (Shaw, 1986),
systems with piecewise affine elements such as a one-sided
spring (Heertjes et al., 1997), or linear systems that are in
closed-loop with a hybrid controller, e.g., a reset controller
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(Clegg, 1958). Moreover, PWA systems provide accurate
approximations of nonlinear systems (Sontag, 1981).

Some existing nonlinear ILC analysis approaches may be
applicable to the analysis of ILC for PWA systems, for
an overview see, e.g., Xu (2011), but they do not ex-
ploit the specific properties of PWA systems, and fea-
ture some notable limitations. For example, incremental-
output-dissipative systems are guaranteed to converge
when exploiting a P-type ILC with a sufficiently small
gain and assuming a zero-error trajectory is reachable
(Arimoto and Naniwa, 2000; Quintanilla and Wen, 2008).
This includes some PWA systems, but the reachability
assumption is not always practical and the allowable con-
troller class is limited. Monotonic convergence of a broader
class of controllers can be checked via a differential �2-gain
analysis of the mapping of the input sequence from one
trial to the next (Kong and Manchester, 2017). However,
the analysis of this differential �2-gain is dependent on
the trial-invariant disturbance. Hence, guaranteeing mono-
tonic convergence for any trial-invariant disturbance is
not possible. Moreover, this method leads to solving an
infinite-dimensional optimization problem, which is made
tractable through gridding the state space, making the
results local to the grid points rather than global.

Although PWA systems are an important model class for
ILC algorithms, at present analysing monotonic conver-
gence of general ILC algorithms applied to PWA systems is
not addressed. The aim of this paper is to develop a global
monotonic convergence analysis method for a general ILC
setup applied to PWA systems subject to an unknown
trial-invariant disturbance.

The main contribution of this paper is a monotonic conver-
gence analysis method for a general ILC setup applied to a
PWA system subject to an unknown trial-invariant distur-
bance. This analysis method is based on the incremental
�2-gain (van der Schaft, 2016), which is closely related to
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(Arimoto and Naniwa, 2000; Quintanilla and Wen, 2008).
This includes some PWA systems, but the reachability
assumption is not always practical and the allowable con-
troller class is limited. Monotonic convergence of a broader
class of controllers can be checked via a differential �2-gain
analysis of the mapping of the input sequence from one
trial to the next (Kong and Manchester, 2017). However,
the analysis of this differential �2-gain is dependent on
the trial-invariant disturbance. Hence, guaranteeing mono-
tonic convergence for any trial-invariant disturbance is
not possible. Moreover, this method leads to solving an
infinite-dimensional optimization problem, which is made
tractable through gridding the state space, making the
results local to the grid points rather than global.

Although PWA systems are an important model class for
ILC algorithms, at present analysing monotonic conver-
gence of general ILC algorithms applied to PWA systems is
not addressed. The aim of this paper is to develop a global
monotonic convergence analysis method for a general ILC
setup applied to PWA systems subject to an unknown
trial-invariant disturbance.

The main contribution of this paper is a monotonic conver-
gence analysis method for a general ILC setup applied to a
PWA system subject to an unknown trial-invariant distur-
bance. This analysis method is based on the incremental
�2-gain (van der Schaft, 2016), which is closely related to
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1. INTRODUCTION

Iterative learning control (ILC) can achieve high perfor-
mance for systems that perform repetitive tasks (Bristow
et al., 2006; Moore, 2012). The key idea of ILC is to
iteratively determine an input signal that compensates for
an unknown trial-invariant disturbance, e.g., a reference
trajectory. By learning from the error signal observed dur-
ing previous iterations a control input signal is computed
that compensates the trial-invariant disturbance.

A key requirement in ILC is monotonic convergence of
either the sequence of control inputs or the sequence of
error signals. The monotonic convergence property ensures
that large learning transients are avoided for any trial-
invariant disturbance. When analysing an ILC algorithm,
mainly linear time-invariant (LTI) models are considered.
Analysis methods exist for ILC algorithms ranging from
simple P -type ILC setups (Arimoto et al., 1984) to model
inversion based ILC (van Zundert and Oomen, 2018).

Iterative learning control has been extended to classes
of systems beyond LTI systems. Successful applications
of this are, among many others: non-equidistant sampled
systems that lead to a linear periodically time-varying
(LPTV) model (van Zundert and Oomen, 2019); nonlinear
systems, e.g., robotic manipulators (Horowitz et al., 1991);
hybrid systems (Spiegel and Barton, 2019); linear param-
eter varying systems (LPV) (de Rozario et al., 2017).

Piecewise affine (PWA) systems can represent a broad
range of behaviours, including dry friction (Shaw, 1986),
systems with piecewise affine elements such as a one-sided
spring (Heertjes et al., 1997), or linear systems that are in
closed-loop with a hybrid controller, e.g., a reset controller
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(Clegg, 1958). Moreover, PWA systems provide accurate
approximations of nonlinear systems (Sontag, 1981).

Some existing nonlinear ILC analysis approaches may be
applicable to the analysis of ILC for PWA systems, for
an overview see, e.g., Xu (2011), but they do not ex-
ploit the specific properties of PWA systems, and fea-
ture some notable limitations. For example, incremental-
output-dissipative systems are guaranteed to converge
when exploiting a P-type ILC with a sufficiently small
gain and assuming a zero-error trajectory is reachable
(Arimoto and Naniwa, 2000; Quintanilla and Wen, 2008).
This includes some PWA systems, but the reachability
assumption is not always practical and the allowable con-
troller class is limited. Monotonic convergence of a broader
class of controllers can be checked via a differential �2-gain
analysis of the mapping of the input sequence from one
trial to the next (Kong and Manchester, 2017). However,
the analysis of this differential �2-gain is dependent on
the trial-invariant disturbance. Hence, guaranteeing mono-
tonic convergence for any trial-invariant disturbance is
not possible. Moreover, this method leads to solving an
infinite-dimensional optimization problem, which is made
tractable through gridding the state space, making the
results local to the grid points rather than global.

Although PWA systems are an important model class for
ILC algorithms, at present analysing monotonic conver-
gence of general ILC algorithms applied to PWA systems is
not addressed. The aim of this paper is to develop a global
monotonic convergence analysis method for a general ILC
setup applied to PWA systems subject to an unknown
trial-invariant disturbance.

The main contribution of this paper is a monotonic conver-
gence analysis method for a general ILC setup applied to a
PWA system subject to an unknown trial-invariant distur-
bance. This analysis method is based on the incremental
�2-gain (van der Schaft, 2016), which is closely related to

the incremental output-dissipativity property considered
by Arimoto and Naniwa (2000) and the differential L2-
gain property considered by Kong and Manchester (2017).
By exploiting LMI based analysis techniques for PWA sys-
tems this method leads to global guarantees on monotonic
convergence.

This paper is organized as follows. In Section 2, the prob-
lem setup is outlined. In Section 3, an analysis method for
a general ILC setup applied to nonlinear systems is intro-
duced, including elaborating on its connection to existing
methods. In Section 4 the analysis method is exploited
to derive a computationally tractable method to analyse
ILC applied to a PWA system. In Section 5, a numerical
simulation study confirms monotonic convergence. Finally,
in Section 6, conclusions are drawn.

Proofs will be published elsewhere.

1.1 Notation and Definitions

The �2-norm of a discrete-time signal x(k) ∈ Rn, k ∈ Z≥0

is given by ‖x‖2 :=
√∑∞

k=0(x(k))
�x(k). The set of signals

with finite �2-norm are denoted by �2. The truncation of a
signal x on the interval [0, T ) is defined as

x[0,T ](k) =

{
x(k), if 0 ≤ k < T

0, if k ≥ T
(1)

Definition 1.1. (Monotonic convergence towards a
fixed point.) A sequence {Yi}i∈Z≥0

, Yi ∈ X is said to
converge monotonically in the p-norm, p ∈ {1, 2, ...}, to a
unique fixed point Y∞ ∈ X, if there exists a κ ∈ [0, 1) such
that

‖Yj+1 − Y∞‖p ≤ κ‖Yj − Y∞‖p (2)
is satisfied for all Yj ∈ X, j ∈ Z≥0.

2. PROBLEM FORMULATION

2.1 Piecewise Affine Systems

Discrete-time piecewise affine (PWA) systems J of the
form
xJ(k + 1) = AJ

i x
J(k) + aJi +BJ

i u
J(k) if xJ(k) ∈ Ωi

yJ(k) = CJ
i x(k) +DJ

i u(k) if xJ(k) ∈ Ωi

(3)

are considered, with xJ ∈ Rnx the state, uJ ∈ Rnu the
control input, and yJ ∈ Rny the output. The matrices
AJ

i ∈ Rnx×nx , aJi ∈ Rnx , BJ
i ∈ Rnx×nu , CJ

i ∈ Rny×nx ,
DJ

i ∈ Rny×nu , i ∈ {1, ..., p}. Notice that if ai = 0, i ∈
{1, ..., p} the system (3) reduces to a piecewise linear
system. Each of the sets Ωi, i ∈ {1, ..., p} correspond to
a mode of the PWA system such that if x(k) ∈ Ωi at time
k ∈ N then the system’s dynamics at time k are defined
by the i-th affine system given by (Ai, Bi, Ci, Di, ai). The
sets Ωi are polyhedra that are defined by

Ωi = {x ∈ Rn|Eix+ εi ≥ 0} (4)

with Ei ∈ Rd×nx , εi ∈ Rd. The intersection of the
interiors of each two polyhedra is empty, i.e., int(Ωi) ∩
int(Ωj) = ∅ for all i �= j, i, j ∈ {1, ..., p} and the polyhedra
span the complete state-space, i.e., ∪iΩi = Rnx . In case
of discontinuities on the boundaries of the polyhedra,
wellposedness of the solutions is ensured by changing some
of the inequalities in (4) to strict inequalities, i.e., (Ei)

jx−
(εi)

j < 0 such that the intersection of two polyhedra is
empty, i.e., Ωi ∩ Ωj = ∅ (Borrelli et al., 2017).

m y
u

ks dkf

Fig. 1. Mass-spring-system with one-sided spring

2.2 Applications

Piecewise affine systems that can be written in the form (3)
are relevant for a wide variety of applications, for instance:

• systems subject to dry friction, see, e.g., Shaw (1986),
• mechanical systems that include one-sided springs,
see, e.g., Heertjes et al. (1997),

• linear systems that are in closed-loop with a hybrid
controller such as a reset controller, see, e.g., Clegg
(1958).

Next, it is shown how a mechanical system that includes
a one-sided spring can be described by a PWA system.

Example 2.1. The mass-spring-damper system depicted
in Fig. 1 is considered. This system can be modelled with
the following equation of motion

m
d2

dt2
ȳ(t) + d

d

dt
ȳ(t) + ksȳ(t) + F (ȳ(t)) = ū(t) (5)

where ȳ(t) denotes the position, ū(t) denotes the control
input, and the parameters m, d and ks denote the mass,
damping coefficient, and spring constant of the linear
spring, respectively. The one-sided spring is described by

F (ȳ) =

{
kf ȳ if ȳ ≤ 0

0 if ȳ > 0.
(6)

This system can be described by two linear mass-spring-
damper systems that switch when ȳ = 0, when ȳ ≤ 0
the stiffness of the spring is ks + kf and when ȳ > 0
the stiffness of the spring is ks. In state-space form this
is can be described by the following system with state

x̄ :=
[
ȳ ˙̄y

]�
,

˙̄x =

{
A1x̄+Bū if Ex̄ ≥ 0

A2x̄+Bū if Ex̄ < 0

ȳ = Cx̄

(7)

with

A1 =

[
0 1

− d

m
−ks + kf

m

]
, A2 =

[
0 1

− d

m
−ks
m

]
,

B =

[
0
1

]
, C = [1 0] , E = [−1 0]

(8)

The output of the system is sampled with a constant
sampling interval h, i.e.,

y(k) = ȳ(hk), k ∈ N, (9)

and the digital control input, u(k), is connected to the
analog world by a zero-order-hold device, i.e.,

ū(t) = u(k), if t ∈ [hk, (k + 1)h). (10)

For simplicity it is assumed that the transition between
contact and separation of the one-sided spring only takes
place at the sampling instances. This allows for a dis-
cretization of each of the individual modes leading to a
discrete-time PWA system of the form (3) with 2 modes
defined by the following matrices
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Fig. 2. ILC setup.

AJ
i = eAih, BJ

i = A−1
i (eAih − I)B, CJ

i = C,

DJ
i = 0, E1 = −E2 = E, εi = 0

(11)

for i ∈ {1, 2}.
This shows that a mechanical system with a one-sided
spring is described by a PWA system of the form (3).

2.3 What about ILC for PWA systems?

ILC applied to LTI systems ILC can lead to high
performance gains, when systems are performing repeating
tasks. The ILC setup considered in this paper depicted in
Fig. 2. This setup is given by

yj = Juj − d, (12)

where J denotes a system that can represent either an
open-loop or closed-loop system. The system performs
trials with a finite length of Nl ∈ N. The index j ∈
Z≥0 denotes the j-th trial. The control input and output
at trial j are denoted by uj(k) ∈ Rnu , nu ∈ N and
yj(k) ∈ Rny , ny ∈ N, respectively. Moreover, a trial-
invariant disturbance d, e.g., a desired reference, is present,
leading to the error

ej(k) = yj(k)− d(k). (13)

The key idea of ILC is to minimize the error ej by learning
from past data. To achieve this the observed error ej and
control input uj during trial j are used to determine the
control input uj+1 for task j+1. One of the most common
ILC update laws is of the following form,

uj+1 = Quj + Lej , (14)

where Q and L are LTI discrete-time filters.

When designing the ILC update law (14), typically the aim
is to achieve convergence of the sequence of control inputs
{uj}j∈Z≥0

. To avoid large learning transients, monotonic
convergence is desired (Bristow et al., 2006). A well-known
result to analyse monotonic convergence in the 2-norm of
the ILC setup (12), with J an LTI system, is checking if
the condition,

‖Q− LJ‖2 < 1 (15)

is satisfied, see e.g., Moore et al. (1992).

ILC for PWA systems When considering a PWA system
such as the mass-spring-damper system with one-sided-
spring, the ILC update law can be designed in a similar
fashion, evaluating condition (15) for both modes which
will be referred to as J1 and J2.

Next, an ILC update law (14) with Q and L filters is
designed such that

‖Q− LJ1‖�2 = 0.9793 and ‖Q− LJ2‖�2 = 0.9877, (16)

thereby satisfying (15) for each individual mode. Clearly,
when applying ILC to each of the individual modes the
ILC update law would lead to monotonic convergence of
the sequence of control inputs. However, when applying
these Q and L filters to the PWA system J convergence of
the sequence of control inputs is not achieved. In Fig. 3
and Fig. 4, the norm of the control input and error at each

0 5 10 15 20

Trial number j

100

105

1010

‖u
j
‖ 2

Fig. 3. Norm ‖uj‖2 when applying ILC to a mass-spring-
damper system with a one-sided spring. This norm is
increasing indicating that convergence is not achieved.
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Fig. 4. Error norm ‖ej‖2 when applying ILC to a mass-
spring-damper system with a one-sided spring. This
norm is not converging towards a fixed value, indicat-
ing convergence is not achieved.
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Fig. 5. Position output y at trial 20 ( ). The reference is
depicted in black ( ). The position at trial 20 clearly
is not converged towards the reference

trial are presented when the trial-invariant disturbance is
given by a 4-th order reference. Clearly, convergence is not
achieved. Moreover, evaluating the position of the mass at
trial 20, depicted in Fig. 5, indicates that the position is
not converging towards the desired reference.

From these results it is clear that the traditional mono-
tonic convergence conditions for linear systems cannot
be directly exploited for PWA systems. This is in part
because of the state-dependent mode switching leading to
iteration-varying switching times. This is one of challenges
in deriving conditions for monotonic convergence of ILC
applied to a PWA system.

This leads to the problem addressed in this paper: devel-
oping a framework for monotonic convergence analysis of
the sequence of control inputs {uj}j∈Z≥0

of the ILC setup
(12) where J represents a PWA system of the form (3).

3. ILC FOR PWA SYSTEMS

In this section, conditions for monotonic convergence of
the ILC setup (12) are derived. The conditions derived in
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for i ∈ {1, 2}.
This shows that a mechanical system with a one-sided
spring is described by a PWA system of the form (3).

2.3 What about ILC for PWA systems?

ILC applied to LTI systems ILC can lead to high
performance gains, when systems are performing repeating
tasks. The ILC setup considered in this paper depicted in
Fig. 2. This setup is given by

yj = Juj − d, (12)

where J denotes a system that can represent either an
open-loop or closed-loop system. The system performs
trials with a finite length of Nl ∈ N. The index j ∈
Z≥0 denotes the j-th trial. The control input and output
at trial j are denoted by uj(k) ∈ Rnu , nu ∈ N and
yj(k) ∈ Rny , ny ∈ N, respectively. Moreover, a trial-
invariant disturbance d, e.g., a desired reference, is present,
leading to the error

ej(k) = yj(k)− d(k). (13)

The key idea of ILC is to minimize the error ej by learning
from past data. To achieve this the observed error ej and
control input uj during trial j are used to determine the
control input uj+1 for task j+1. One of the most common
ILC update laws is of the following form,

uj+1 = Quj + Lej , (14)

where Q and L are LTI discrete-time filters.

When designing the ILC update law (14), typically the aim
is to achieve convergence of the sequence of control inputs
{uj}j∈Z≥0

. To avoid large learning transients, monotonic
convergence is desired (Bristow et al., 2006). A well-known
result to analyse monotonic convergence in the 2-norm of
the ILC setup (12), with J an LTI system, is checking if
the condition,

‖Q− LJ‖2 < 1 (15)

is satisfied, see e.g., Moore et al. (1992).

ILC for PWA systems When considering a PWA system
such as the mass-spring-damper system with one-sided-
spring, the ILC update law can be designed in a similar
fashion, evaluating condition (15) for both modes which
will be referred to as J1 and J2.

Next, an ILC update law (14) with Q and L filters is
designed such that

‖Q− LJ1‖�2 = 0.9793 and ‖Q− LJ2‖�2 = 0.9877, (16)

thereby satisfying (15) for each individual mode. Clearly,
when applying ILC to each of the individual modes the
ILC update law would lead to monotonic convergence of
the sequence of control inputs. However, when applying
these Q and L filters to the PWA system J convergence of
the sequence of control inputs is not achieved. In Fig. 3
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trial are presented when the trial-invariant disturbance is
given by a 4-th order reference. Clearly, convergence is not
achieved. Moreover, evaluating the position of the mass at
trial 20, depicted in Fig. 5, indicates that the position is
not converging towards the desired reference.

From these results it is clear that the traditional mono-
tonic convergence conditions for linear systems cannot
be directly exploited for PWA systems. This is in part
because of the state-dependent mode switching leading to
iteration-varying switching times. This is one of challenges
in deriving conditions for monotonic convergence of ILC
applied to a PWA system.

This leads to the problem addressed in this paper: devel-
oping a framework for monotonic convergence analysis of
the sequence of control inputs {uj}j∈Z≥0

of the ILC setup
(12) where J represents a PWA system of the form (3).

3. ILC FOR PWA SYSTEMS

In this section, conditions for monotonic convergence of
the ILC setup (12) are derived. The conditions derived in

this section employ the incremental �2-gain and are ap-
plicable to general nonlinear discrete-time plants J . First,
it is proven that when the incremental �2-gain is smaller
than 1, the sequence of control inputs is monotonically
convergent. Next, it is shown that if the ILC update law is
linear and time-invariant the incremental �2-gain is inde-
pendent of the unknown trial-invariant disturbance. This
allows for an analysis that is independent of the unknown
disturbance.

3.1 Assumptions

First, the following assumptions are imposed on the ILC
setup.

Assumption 3.1. The ILC update law only has access
to the error and input signal of the previous trial.

Assumption 3.2. The trial-invariant disturbance d is
unknown.

Assumption 3.3. The initial state x(0) of the PWA
system J is zero for each trial.

3.2 ILC Setup for PWA systems

The ILC setup as depicted in Fig. 2 is considered. The
ILC update law is given by (14) with causal linear filters
Q and L that can be written in state space form as follows

Q :

{
xQ(k + 1) = AQxq(k) +BQu(k)

yQ = CQxq(k) +DQu(k),
(17)

L :

{
xL(k + 1) = ALxL

j (k) +BLe(k)

yL = CLxL(k) +DLe(k),
(18)

where xQ ∈ RnQ

, nQ ∈ N, xL ∈ RnL

, nL ∈ N are the
states of Q and L, respectively. The outputs of Q and L
are denoted by yQ ∈ Rm, yL ∈ Rm, respectively.

3.3 The incremental �2-gain

As observed in Section 2 the �2-gain does not guarantee
monotonic convergence for ILC applied to a PWA systems.
Next, the incremental �2-gain is exploited to derive guar-
antees for monotonic convergence of the ILC setup (12).

The incremental �2-gain is defined as follows.

Definition 3.4. (Incremental �2-gain (van der Schaft,
2016, Definition 2.1.5)) The input-output map G : �2 →
�2 is said to have incremental �2-gain if there exists a
constant γ ≥ 0 such that

‖(Gua)[0,T ] − (Gub)[0,T ]‖2 ≤ γ0‖ua
[0,T ] − ub

[0,T ]‖2, (19)

for all T ∈ Z≥0, u
a, ub ∈ �2. Furthermore, the incremental

�2-gain γ is defined as the infimum of all such γ0.

The incremental �2-gain is a property that expresses the
contraction, in terms of the �2-norm, between all possible
trajectories with respect to each other. Where the �2-gain
expresses contraction merely to a single trajectory.

To derive a condition that guarantees monotonic conver-
gence of the sequence of control inputs the mapping U ,
depicted in Fig. 6 is exploited. This is the mapping from
the control input at trial j, uj , to the control input at trial
j + 1, uj+1, i.e.,

uj+1 = U(uj , d) = Quj + L(Juj − d) (20)

J
uj yj ej

d

Q

L

uj+1U

−

Fig. 6. Mapping from the control input at trial j to the
control input at trial j + 1

Exploiting the incremental �2-gain of the mapping U the
following result is obtained.

Theorem 3.5. Consider the ILC setup (12) with J a
PWA system (3), trial-invariant disturbance d ∈ �2 and
ILC update law given by (14). Then, the sequence of
control inputs, {uj}j∈Z≥0

, resulting from this ILC setup,
convergences monotonically in the 2-norm if the incremen-
tal �2-gain of the corresponding mapping U , given by (20),
is smaller than 1.

Note that in general the incremental �2-gain of U depends
on d, but to guarantee convergence for all possible d a
criterion independent of d is desired. Choosing L to be a
linear time invariant mapping leads to such a result, given
by the following.

Theorem 3.6. Consider the mapping U with PWA sys-
tem J and linear filters Q and L. Then, the incremental
�2-gain of U is independent of the disturbance d.

The result of Theorem 3.6 and Theorem 3.5 allows to
analyse the monotonic convergence property of the ILC ap-
plied to a PWA system independent of the trial-invariant
disturbance d.

Remark 3.7. The incremental �2-gain of LTI systems is
equivalent to the �2-norm (van der Schaft, 2016, Chapter
8). Hence, when considering LTI systems Theorem 3.5
reduces to the well-known condition (15).

4. COMPUTATIONALLY TRACTABLE ANALYSIS

In this section, a computationally tractable approach is
derived to check the condition presented in Theorem 3.5.
This approach will consist of checking a set of linear matrix
inequalities (LMIs).

For ease of notation, the considered PWA system consist
of two modes, i.e., p = 2 with the line ExJ = 0 defining
the hyperplane splitting the state space in Ω1 and Ω2.
Moreover linear dynamics are considered, i.e., a1, a2 = 0.
However, note that the results in this section can easily be
extended to the general PWA system (3).

4.1 Incremental �2-gain for state-space systems

To analyse the incremental �2-gain of the mapping U ,
first define its state-space form. Using the state x :=[
xJ�

(xL)� (xQ)�
]�

∈ Rn, n = nJ+nL+nQ, the system

U is written in the state-space form

xj(k + 1) =

{
A1xj(k) +B1uj(k) if Ex ≥ 0

A2xj(k) +B2uj(k) if Ex < 0,

uj+1(k) =

{
C1xj(k) +D1uj(k) if Ex ≥ 0

C2xj(k) +D2uj(k) if Ex < 0
,

(21)
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with

Ai =




AJ
i O O

BLCJ AL O
O O AQ


 ,Bi =




BJ
i

BL
i D

J

BQ


 ,

Ci =
[
DLCJ

i CL CQ
]
,Di = DLDJ

i +DQ, E = [E 0 0] .
(22)

For a state-space system of the form (21) the incremental
�2-gain is defined as

Definition 4.1. (Incremental �2-gain for state-space sys-
tem (van der Schaft, 2016, Definition 8.2.8)) Consider a
state-space system of the form (21), with input space, Rnu ,
output space Rny , and state space Rn. The system (21) has
incremental �2-gain ≤ γ if there exists a function, called
the incremental storage function,

S : Rn × Rn → R+ (23)

such that
S(x1(T ), x2(T ))− S(x1(0), x2(0)) ≤

T∑
k=0

γ2‖u1(k)− u2(k))‖2 − ‖y1(k)− y2(k)‖2
(24)

for all T ∈ Z≥0, and for all pairs of input signals
u1, u2 : [0, T ] → Rnu and all pairs of initial conditions
x1(0), x2(0) ∈ Rnx , with resulting pairs of state and output
trajectories x1, x2 : [0, T ] → Rnx , y1, y2 : [0, T ] → Rny .

Without loss of generality that an incremental stor-
age function S(x1, x2) satisfies the symmetry property
S(x1, x2) = S(x2, x1), and S(0, 0) = 0.

This reduces the problem of checking the incremental �2-
gain of the mapping U to finding a storage function S such
that (23) and (24) are satisfied for γ ∈ [0, 1).

4.2 Linear Matrix Inequalities

In order to find an incremental storage function S such
that (23) and (24) are satisfied for γ ∈ [0, 1), define
a piecewise quadratic storage function (Ferrari-Trecate
et al., 2002) of the form

S(xa, xb) =

{[
xa

xb

]�
Pij

[
xa

xb

]
if Eix

a ≥ 0, Eix
b ≥ 0

(25)
with Pij ∈ R2n×2n, i, j ∈ {1, 2}, E1 = E, and E2 = −E.

Exploiting the storage function (25), the result of Theorem
3.5 can be converted into sufficient LMI based conditions.
Three S-procedure relaxations (Yakubovich, 1997) are
utilized to obtain the following result:

Theorem 4.2. Consider the ILC setup (12) with J a
PWA system (3), trial-invariant disturbance d ∈ �2 and
ILC update law given by (14). Moreover, consider the
corresponding system U given by (21) with Am, Bm, Cm,
Dm, m ∈ {1, 2}. Then, the sequence of control inputs
{uj}j∈Z≥0

of the ILC setup is monotonically convergent
if the following LMI conditions hold for γ ∈ [0, 1)

Pij − E�
ijWijEij � 0, (26a)[

A
�
ijPklAij − Pij + C

�
ijTCij A

�
ijPklBij + C

�
ijTDij

∗ B
�
ijPklBij + D

�
ijTDij − γ

2
T

]
+

[
E

�
ijUijklEij + A

�
ijE

�
klVijklEklAij A

�
ijE

�
klVijklEklBij

∗ B
�
ijE

�
klVijklEklBij

]
≺ 0,

(26b)

for all i, j, k, l ∈ {1, 2}, with Uijkl,Wij , Vijkl ∈ R2n×2n

with only nonnegative entries, and where

Amn =

[
Am O
O An

]
, Bmn =

[
Bm O
O Bn

]
, Cmn =

[
Cm O
O Cn

]
,

Dmn =

[
Dm O
O Dn

]
, Emn =

[
Em O
O En

]
, T =

[
1 −1
−1 1

]

with m,n ∈ 1, 2.

Standard convex optimization tools can be utilized to
find matrices Pij , i, j ∈ {1, 2} that satisfy the conditions
of Theorem 4.2. Hence, this leads to a computationally
tractable method to check monotonic convergence of the
sequence of control inputs of an ILC algorithm applied to
a PWA system.

5. APPLYING ILC TO A MASS-SPRING-DAMPER
SYSTEM WITH A ONE-SIDED SPRING

In this section, ILC is applied to the mass-spring-damper
system with a one-sided spring as described in Section 2.

The PWA system describing this system is governed by
(11) and (8) with mass m = 1 [kg], damping coefficient
d = 1 [N·m/s], spring constant of the linear spring ks = 1
[N/m], and spring constant of the one-sided spring kf = 1
[N/m], the system is sampled with a sample time h = 0.01
[s].

The ILC update law is given by (14), (17), (18). The filters
Q and L are designed such that condition (15) is satisfied
for the two LTI systems that define the two modes, leading
to the following matrices

AQ = 0.5, BQ = 1, CQ = 0.5, DQ = 0

AL =

[ −1.987 2.547 0
−0.7721 0.99 0
−0.3062 0 0.5

]
, BL =

[
140.3
36.28
14.39

]

CL = [−106.8 0 174.3] , DL = 5017

(27)

Note that by this design the incremental �2-gain of the
mapping U where J is an LTI system without the one-
sided spring is smaller than 1. Moreover, the incremental
�2-gain of the mapping U where J is an LTI system where
the one-sided spring is replaced by a linear spring is smaller
than 1. Hence, in the situations where the system does not
change modes this automatically guarantees monotonic
convergence.

To check if the ILC update law yields global monotonic
convergence, i.e, considering the state dependent mode
changes, the results of Theorem 4.2 are exploited. It is
confirmed that there exist matrices Pij , i, j ∈ {1, 2} and
a constant γ ∈ [0, 1) for which the LMIs (26a) and
(26b) are satisfied. Hence, the sequence of control inputs
{uj}j∈Z≥0

converges monotonically in the 2-norm for any
trial-invariant disturbance d.

This is confirmed through simulations where a 4-th order
reference signal is applied as a trial-invariant disturbance.
In Fig. 7, the norm ‖uj − u∞‖2 is depicted. From this
figure, it can be observed that the sequence of input signals
{uj}j∈Z≥0

is monotonically convergent toward u∞. In Fig.
8 the error norm ‖ej‖2 indicates a high performance
improvement. Moreover, in Fig. 9, the position at various
trials is depicted together with the reference. From this
figure, it is observed that the time instance of switching
between the two modes varies each iteration.
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sequence of control inputs of an ILC algorithm applied to
a PWA system.

5. APPLYING ILC TO A MASS-SPRING-DAMPER
SYSTEM WITH A ONE-SIDED SPRING
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system with a one-sided spring as described in Section 2.
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Note that by this design the incremental �2-gain of the
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sided spring is smaller than 1. Moreover, the incremental
�2-gain of the mapping U where J is an LTI system where
the one-sided spring is replaced by a linear spring is smaller
than 1. Hence, in the situations where the system does not
change modes this automatically guarantees monotonic
convergence.

To check if the ILC update law yields global monotonic
convergence, i.e, considering the state dependent mode
changes, the results of Theorem 4.2 are exploited. It is
confirmed that there exist matrices Pij , i, j ∈ {1, 2} and
a constant γ ∈ [0, 1) for which the LMIs (26a) and
(26b) are satisfied. Hence, the sequence of control inputs
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converges monotonically in the 2-norm for any
trial-invariant disturbance d.

This is confirmed through simulations where a 4-th order
reference signal is applied as a trial-invariant disturbance.
In Fig. 7, the norm ‖uj − u∞‖2 is depicted. From this
figure, it can be observed that the sequence of input signals
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is monotonically convergent toward u∞. In Fig.
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improvement. Moreover, in Fig. 9, the position at various
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figure, it is observed that the time instance of switching
between the two modes varies each iteration.
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Fig. 7. Norm ‖uj − u∞‖2 when applying ILC to a
mass-spring-damper system with one-sided spring.
This norm is decreasing, thereby confirming mono-
tonic convergence of the sequence of control inputs
{uj}j∈Z≥0

.
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Fig. 8. Error norm ‖ej‖2 when applying ILC to a mass-
spring-damper system with one-sided spring.
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Fig. 9. Position output y at trials: 0 ( ), 1 ( ), 3 ( ),
5 ( ), and 20 ( ). The reference is depicted in
black ( ). The zoom in this figure highlights the
time instants of switching between the two modes that
varies each iteration.

6. CONCLUSION
In this paper, a framework is developed to analyse the
monotonic convergence property of ILC applied to PWA
systems, opening up the possibility to apply ILC to a wide
variety of applications. The analysing method exploits the
incremental �2-gain to determine if the mapping from the
control input at trial j to the control input at trial j +
1 is a contraction mapping, thereby guaranteeing mono-
tonic convergence in the 2-norm. This result is exploited
to derive LMI conditions that guarantee monotonic con-
vergence, leading to a computationally tractable analysis
approach. A simulation example of a mass-spring-damper
system with one-sided spring confirms the results.
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