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Abstract
The KS regularization connects the dynamics of the harmonic oscillator to the dynamics of
bounded Kepler orbits. Using orbit space reduction, it can be shown that reduced harmonic
oscillator orbits can be identified with re-parametrized Kepler orbits by factorizing the KS
map as reduction mapping followed by a chart on the reduced phase space. In this note,
we will show that also other regularization maps can be obtained this way. In particular, we
will show how Moser’s regularization and Ligon–Schaaf regularization are related to KS-
regularization. All regularizations are a result of choosing the right invariants to represent the
reduced phase space, which is isomorphic to T +S3, and a chart on this reduced phase space.
We show how this opens the way to directly reduce the KS transformed Kepler system and
find other regularization maps that are valid for all values of the Keplerian energy similar to
Ligon–Schaaf regularization.

Keywords Geometric reduction · Harmonic oscillator · Kepler problem · Regularization

Mathematics Subject Classification 53D20 · 37J15 · 70H05 · 70H33

1 Introduction

TheKustaanheimo–Stiefel regularization is a well-known regularizing transformation for the
equations of Kepler motion in three-dimensional space. The purpose of this regularization is
to remove the existing singularity at the origin of the coordinate system which corresponds
to collision orbits. Ideas about regularizing this problem go back to Euler who considered
the one-dimensional problem of the collision of two bodies and to Levi-Civita (1906) who
considered the two-dimensional variant. In Kustaanheimo (1964) proposed an extension to
the Levi-Civita regularization in four dimensions based on spinors and this ideawas expanded
upon in Kustaanheimo and Stiefel (1965) by both Kustaanheimo and Stiefel. Later Stiefel
and Scheifele would give a more complete and formal treatment in Stiefel and Scheifele
(1971).
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The full KS-regularization procedure usually consists of three steps. Starting with the
Kepler problem in R

6 one considers a fixed energy surface, applies a time re-scaling, and
applies theKS-map to finally obtain the harmonic oscillator onR8. TheKS-map increases the
number of degrees of freedom by one which is caused by the introduction of a free angle. In
this paper, we will also focus on other regularizations. Often fixing the energy and re-scaling
time is a necessary step.

Although there are many ways to describe the KS transformation using angles (Stiefel
and Scheifele 1971; Ferrer and Crespo 2018), or quaternions (Vivarelli 1983; Waldvogel
2006), we will choose to use reduction of the harmonic oscillator onR8. IdentifyingR8 with
H×H, one can easily make the step to quaternions. The classical KS transformation connects
the Kepler flow on R

6 to the harmonic oscillator flow on R
8 and raises the dimension by

introducing a free angle (Kustaanheimo and Stiefel 1965). Consequently a whole torus of
periodic solutions of the harmonic oscillator corresponds to just one bounded Kepler orbit
under the KS transformation. Orbit space reduction with respect to the S1-action correspond-
ing to this free angle, i.e., the action corresponding to the bilinear relation, will map R

8 to
a six-dimensional manifold embedded in R16. Under this reduction, the harmonic oscillator
flow on the torus reduces to just one circular orbit that can be identifiedwith a boundedKepler
orbit.Wewill show that the six-dimensional reduced phase space is amanifold diffeomorphic
to T +S3 = {(u, v) ∈ R

8 : |u| = 1, 〈u, v〉 = 0, v �= 0} in Sect. 3. To obtain a map fromR
8 to

R
6, i.e., a KS-transformation, we will have to choose an appropriate chart for this manifold.

How to obtain the classical KS-transformation was shown in van der Meer (2015). It will be
introduced in Sect. 2. Note that the role of T +S3 in the regularization of the Kepler problem
became clear through Moser’s regularization (Moser 1958). Kummer (1982) establishes a
relation between Moser’s and KS regularization showing that the "completed" phase space
of the Kepler problem is diffeomorphic to T +S3. Kummer constructs his maps in terms of
"generators" of the group actions involved in the same way as we use the invariants to define
the orbit map.

The reduction will be performed using constructive geometric reduction, or orbit space
reduction, by explicitly constructing an orbit map using a Hilbert basis of invariants for the
S1-action, a method of reduction explained in van der Meer (1985). In this construction,
there is a lot of freedom, many choices will lead to the same result. The possibilities leading
to a chart in which one obtains the Kepler system will be described for the main part in
Sect. 2. Interesting is that Stiefel and Scheifele precede their choice of the map, that was
later called the KS-map, by "for example." Also in many other papers the non-uniqueness
is considered. For instance, in Breiter and Langner (2017), it is shown that one can define a
KS-map using any unit quaternion. We will show that this is related to the SO(3) symmetry
of the Kepler problem which is the reduced action of an SO(3) symmetry of the harmonic
oscillator leaving the harmonic oscillator Hamiltonian and the bilinear relation invariant.
Furthermore, in Ferrer and Crespo (2018), it is mentioned that there are more possibilities
for the bilinear relation.

KS-regularization is just one of the possibilities to regularize the Kepler problem. There is
alsoMoser’s regularization (Moser 1958), based on the stereographic projection of the three-
sphere, and relating the Kepler flow to the geodesic flow, and Ligon–Schaaf regularization
(Ligon and Schaaf 1976) relating the Kepler flow to the flow of the Delaunay Hamiltonian
(see also Cushman and Bates 2015), which is also a re-parametrization of the geodesic flow.
Note that Moser’s map, as well as the Ligon–Schaaf map, are defined on T +S3 ⊂ R

8. Thus,
the dynamics of the obtained systems on R

8 has to be constrained to T +S3 to obtain the
regularized system. In both cases, this constrained flow is not only a re-parametrization of
the geodesic flow but also a re-parametrization of the harmonic oscillator flow. Therefore,
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these regularizations are only different with respect to choosing the invariants for the orbit
map.

In Sect. 4, we will consider Moser’s regularization in the context of orbit space reduction.
In this section, it is shown that Moser’s regularization can be connected to KS-regularization
by a map on the codomain of the orbit map, that is by changing the invariants defining the
orbit map. The obtained relation is similar to the one obtained by Kummer (1982). In both
KS and Moser’s regularization, restriction to an energy level and time re-scaling is part of
the process.

In Sect. 5, we will review the Ligon–Schaaf map (Ligon and Schaaf 1976; Ligon 1973,
2018; Cushman and Duistermaat 1997; Heckman and De Laat 2012; Cushman and Bates
2015). The LS-map uses an energy-dependent version of Moser’s map and maps the Kepler
system to the Delaunay Hamiltonian on T +S3. This regularization has the advantage that it
avoids restriction to an energy level and time re-scaling. However, it has the drawback that
the inverse LS-map contains an angle that is only implicitly defined. The LS-map can also
be put in the framework of reduction and connected to the KS map.

In Sect. 6, we will introduce a scaled version, i.e., energy-dependent version, of the
reduction valid for all negative Keplerian energies. Formulating the Kepler Hamiltonian on
R
8 using the KS-map and using the reduction associated with the LS-map, one can obtain the

constrainedDelaunay systemas a reduction of theKepler system. Some alternative reductions
and corresponding regularizations are suggested in Sect. 7, where the positive energy case is
considered as well.

Due to the vast amount of literature about the Kepler problem, we do not pretend to
be complete in our references. For a discussion of references relating reduction and KS
regularization, we refer to van der Meer (2015). In addition to this also Cordani (2003) has
to be mentioned as here also the relation between reduction and KS regularization, and the
role of T +S3 is studied. Nice bibliographies can be found in Cordani (2003), Efstathou and
Sadovskii (2010).

2 The KS transformation and reduction

Let us start this section with the first step in the regularization process, the time re-scaling.
Consider the Kepler Hamiltonian for negative energy

K (x, y) = 1
2 |y|2 − 1

|x | = − 1
2 k2 , k > 0 . (1)

We construct the pre-regularized Hamiltonian

K̂ (x, y) = |x |
k

(
K (x, y) + 1

2
k2

)
+ 1

k
= 1

2k
|x |(|y|2 + k2) . (2)

The energy level K (x, y) = − 1
2k2 corresponds to the energy level K̂ (x, y) = 1

k . The

Hamiltonian vector field corresponding to K̂ is

dx

ds
= 1

k
|x |∂K

∂ y
+

(
K (x, y) + 1

2
k2

)
∂

∂ y

|x |
k

,

dy

ds
= −1

k
|x |∂K

∂x
−

(
K (x, y) + 1

2
k2

)
∂

∂x

|x |
k

.
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On K (x, y) = − 1
2k2, this corresponds to

dx

ds
= 1

k
|x |∂K

∂ y
,
dy

ds
= −1

k
|x |∂K

∂x
.

With
ds

dt
= k

|x | , this is a time re-scaled version, or re-parametrization, of the Kepler vector

field. It is this time re-scalingwhich actuallymakes it possible tomap to a regular systemwhen
using classical regularization. The integral curves of the pre-regularized Hamiltonian vector
field corresponding to K̂ with energy 1

k agree with the integral curves of the Kepler vector
field with energy − 1

2k2. The vector fields are equivalent, but not symplectically conjugate,
as one is a re-parametrization of the other, where the re-parametrization depends on the
variables.

In van der Meer (2015), the KS map was described as a chart for the reduced phase space
obtained by reducing R8 with respect to an S1 action that was related to the bilinear relation.
When one considers the harmonic oscillator on R

8, then the harmonic oscillator reduces to
the pre-regularized Kepler problem (i.e., the Kepler problem after time re-scaling and on a
fixed energy-level) within this chart on the reduced phase space. For sake of completeness,
we will repeat the procedure below and in addition show that the procedure is independent
of the choice of the orbit map.

Consider R8 with coordinates (q, Q). The Hamiltonian for the harmonic oscillator is
H2(q, Q) = 1

2 |q|2 + 1
2 |Q|2, |.| denoting the Euclidean norm on R

4. Furthermore, let
Ξ(q, Q) = (q1Q2−q2Q1)+ (q3Q4−q4Q3). Note that we use the notation of van der Meer
(2015), where for the formulation of the KS-map we followed Cushman and Bates (2015).
The invariants for the flow of Ξ are (see Egea 2007)

s1 = q2
1 + q2

2 s2 = q2
3 + q2

4

s3 = Q2
1 + Q2

2 s4 = Q2
3 + Q2

4

s5 = q1Q1 + q2Q2 s6 = q3Q3 + q4Q4

s7 = q1Q2 − q2Q1 s8 = q3Q4 − q4Q3

s9 = q1q4 − q2q3 s10 = q1q3 + q2q4

s11 = Q1Q4 − Q2Q3 s12 = Q1Q3 + Q2Q4

s13 = q1Q4 − q2Q3 s14 = q1Q3 + q2Q4

s15 = Q1q4 − Q2q3 s16 = Q1q3 + Q2q4 .

The orbit map for the Ξ -action is therefore

τΞ : R8 → R
16; (q, Q) → (s1, . . . , s16) .

The image of τΞ is the Ξ -orbit space, which is obtained by dividing out the S1-action gen-
erated by Ξ , and thus of dimension seven. Restricting to the energy level Ξ(q, Q) = c
then gives the reduced phase space and reduces the dimension to six. Thus, Vc =
τΞ (Ξ−1(c)) , c ∈ R is a Ξ -reduced phase space. Reduced phase spaces are, in gen-
eral, semi-algebraic sets. On the six-dimensional reduced phase space τΞ (Ξ−1(0)), we may
choose the chart

x1 = 2s10 = 2(q1q3 + q2q4) ,

x2 = 2s9 = 2(q1q4 − q2q3) ,

x3 = s1 − s2 = (q2
1 + q2

2 ) − (q2
3 + q2

4 ) ,

123



Reduction and regularization of the Kepler problem Page 5 of 19    32 

Fig. 1 Diagram relating
Ξ -reduction and the KS-map

y1 = 1

s1 + s2
(s14 + s16) = q1Q3 + q2Q4 + Q1q3 + Q2q4

q2
1 + q2

2 + q2
3 + q2

4

,

y2 = 1

s1 + s2
(s13 + s15) = q1Q4 − q2Q3 + Q1q4 − Q2q3

q2
1 + q2

2 + q2
3 + q2

4

,

y3 = 1

s1 + s2
(s5 − s6) = q1Q1 + q2Q2 − q3Q3 − q4Q4

q2
1 + q2

2 + q2
3 + q2

4

. (3)

The expressions in (3) define exactly one of the representations of the KS-transformation.
More precisely, if we define ϕ : R

16 → R
6 to be the map such that ϕ(s1, . . . , s16) =

(x(s), y(s)), then the KS map KS : (q, Q) → (x, y) is KS = ϕ ◦ τΞ (see Fig. 1).
Note that this chart is not a global chart. It is not defined when s1 = s2 = 0, or |q| = 0,

which implies that all si are zero except s3, s4, s11, s12, amongst which we have the relation
s3s4 = s211 + s212.

As we reduced with respect to Ξ we still have a non-trivial H2-action on the reduced
phase space. In order to compute the H2 vector field in the chart, we have to consider the
induced Poisson bracket.

Consider C∞(R8,R) with standard Poisson bracket { , }. When we consider an orbit
map like τΞ then such a map induces a bracket on C∞(R16,R) given by { f (s), g(s)}R16 =
{ f (s(q, Q)), g(s(q, Q))}. This makes the orbit mapping into a Poisson map, that is,

{ f ◦ τΞ , g ◦ τΞ } = { f , g}R16 ◦ τΞ ,

for f , g smooth functions onR16. Note that functions f ◦τΞ are the functions invariant under
the Hamiltonian flow of the function Ξ .

In the same way, the coordinate chart ϕ is a Poisson map,

{ f , g}R6 ◦ ϕ = { f ◦ ϕ, g ◦ ϕ}R16 .

Consequently ϕ ◦ τΞ is a Poisson map. Because the standard Poisson structure is non-
degenerate, in this case Poisson is equivalent to symplectic.

The reduced vector field for the harmonic oscillator given by H2 can now be given in
terms of the induced Poisson bracket

{x1, H2} = 2|x |y1 ,

{x2, H2} = 2|x |y2 ,

{x3, H2} = 2|x |y3 ,

{y1, H2} = −2
H2

|x |2 x1 − 2
Ξ

|x |2 (s15 − s13) ,

{y2, H2} = −2
H2

|x |2 x2 − 2
Ξ

|x |2 (s14 − s16) ,

{y3, H2} = −2
H2

|x |2 x3 − 2
Ξ

|x |2 (s8 − s7) , (4)
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which on Ξ = 0 and H2 = 1 is precisely two times the pre-regularized (time-re-scaled)
Kepler vector field corresponding to K̂ as given by (2), with k = 1. Because of the factor
two, the coordinates x , y are the physical coordinates of theKepler problem up to a re-scaling.
Its orbits are re-parametrizations of the Kepler orbits on the level set K (x, y) = − 1

2 and are
the image of harmonic oscillator orbits on the reduce phase space τΞ (Ξ−1(0)).

The factorization of the KS-map defined in (3) can be obtained for any choice of a basis
of invariants defining the orbit map τΞ for the Ξ -action.

Consider a diffeomorphism δ : R16 → R
16; (s1, . . . , s16) → (δ1(s), . . . δ16(s)). Then

the coordinate chart on the image of δ becomes ϕδ such that ϕδ ◦ δ = ϕ. Consequently
ϕδ ◦ δ ◦ τΞ (q, Q) = ϕ ◦ τΞ (q, Q) = (x(q, Q), y(q, Q)) on Ξ−1(0).

Note that any diffeomorphismon the target space of the orbitmap provides a neworbitmap
and that all possible orbit maps are obtained this way. In general, one will reduce with respect
to a compact group action, in which case one may choose a Hilbert basis of homogeneous
polynomials.

Remark 1 From the above, it is clear that KS maps are not unique. On can apply an arbitrary
symplectic diffeomorphism to R

8 such that the composition of this map with the KS map
gives another representation of the KS map, which can be factorized through the reduction
map and chart as before.

The group of symplectic diffeomorphisms that are linear and leave Ξ and H2 invariant is
SO(4). When we consider SO(3) ⊂ SO(4), we obtain KS-maps with an arbitrary defining
vector as in Breiter and Langner (2017).

If we choose linear symplectic diffeomorphisms that leave H2 invariant, we obtain a KS
map with a changed bilinear relation, which explains the remark in Ferrer and Crespo (2018)
concerning the possibility of multiple choices for the bilinear relation.

3 The 4-reduced phase space

In this section, we will determine the nature of the reduced phase space for the Ξ -action
which is given by τΞ (Ξ−1(0)) . Note that the representation of the image of the orbit map
τΞ depends on the choice of invariants one needs to construct the orbit map. However, all
representations are diffeomorphic.

Introduce the following set of Ξ invariants as in van der Meer (2015).

K1 = 1

2
(−s1 − s3 + s2 + s4) , L1 = −s7 + s8 ,

K2 = −s9 − s11 , L2 = s14 − s16 ,

K3 = −s10 − s12 , L3 = s15 − s13 ,

Ξ = s7 + s8 , H2 = 1

2
(s1 + s2 + s3 + s4) , (5)

and

2U1 = −(s5 + s6) , V1 = 1

2
(s1 + s2 − s3 − s4) ,

U2 = s10 − s12 , V2 = s14 + s16 ,

U3 = s9 − s11 , V3 = s13 + s15 ,

U4 = 1

2
(s1 − s2 − s3 + s4) , V4 = s5 − s6 . (6)
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We have the following relations

U 2
1 + U 2

2 + U 2
3 + U 2

4 = H2
2 − Ξ2 ,

V 2
1 + V 2

2 + V 2
3 + V 2

4 = H2
2 − Ξ2 ,

U1V1 + U2V2 + U3V3 + U4V4 = 0 , (7)

and

V1U2 − U1V2 + H2K3 − L3Ξ = 0 , V2U3 − U2V3 + H2L1 − K1Ξ = 0 ,

V1U3 − U1V3 + H2K2 − L2Ξ = 0 , V3U4 − U3V4 + H2L3 − K3Ξ = 0 ,

V1U4 − U1V4 + H2K1 − L1Ξ = 0 , V4U2 − U4V2 + H2L2 − K2Ξ = 0 . (8)

Consider the invertible linear map

δ(s) = (U (s), V (s), L(s), K (s), H2(s),Ξ(s)) (9)

defined by the relations in (5) and (6). Furthermore, let J0 = {(q, Q) ∈ R
8|Ξ(q, Q) =

0, (q, Q) �= 0}. Note that in view of relations (7) and the additional relation |K |2 +
|L|2 = H2

2 + Ξ2, we see that (q, Q) = (0, 0) is in one-to-one correspondence with
(U , V , L, K , H2, Ξ) = (0, 0, 0, 0, 0, 0). Thus, the reduced phase space δ ◦ τΞ (Ξ−1(0))
consists of more than one symplectic leaf, the origin being one of them.

The space given by Eqs. (7), with H2 = h and Ξ = 0 fixed is T h S3
h . Furthermore, define

M0 = δ ◦ τΞ (J0) , (10)

that is, M0 is the Ξ -reduced phase space corresponding to Ξ = 0 without the origin.

Theorem 1

(i) M0 is in (U , V )-space given by the equations |U |2 = |V |2 and < U , V >= 0, (U , V ) �=
(0, 0).

(ii) M0 is diffeomorphic to T 1S3
1 × R>0.

(iii) M0 is diffeomorphic to T +S3.

Proof (i) In view of relations (8) and (7), we can express the invariants K ,L , and H2 in
U , V provided Ξ = 0 and H2 �= 0, that is, (U , V ) �= (0, 0). It follows that we may
represent M0 as a subspace of (U , V )-space given by the equations |U |2 = |V |2 and
< U , V >= 0, (U , V ) �= (0, 0).

(ii) Again considering Eq. (7), setting H2 = h > 0, in (U , V , H2) space we obtain T h S3
h ×R

given by |U |2 = |V |2 = h2 and < U , V >= 0, (U , V ) �= (0, 0), h ∈ R>0. By the
transformation (U , V )− > (U/H2, V /H2), we obtain T 1S3

1 × R>0.
(iii) We follow an approach similar to the one in Kummer (1982). Let

δ̃(s) = (u(s), v(s), L(s), K (s), H2(s),Ξ(s)) , (11)

with u = U
H2

, and v = V . Then it easily follows that the reduced phase space M0 is

diffeomorphic to T +S3, that is, the reduced phase space δ ◦ τΞ (J0) is diffeomorphic to
T +S3, the tangent bundle to the unit three sphere minus its zero section. 
�

Consequently the reduced phase space τΞ (Ξ−1(0)) has a stratification into the H2 level
sets T h S3

h .
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Let { , }U ,V denote the Poisson bracket on (U , V )-space induced by the standard Poisson
bracket on (q, Q)-space. It has structure matrix

(
A 2H2 I4

−2H2 I4 A

)
with A = 2

⎛
⎜⎜⎝

0 −K3 −K2 −K1

K3 0 −L1 L2

K2 L1 0 L3

K1 −L2 −L3 0

⎞
⎟⎟⎠ , (12)

with I4 the 4× 4 identity matrix. If H2 �= 0, one can express K , L, H2 in terms of U and V
using the relations (7) and (8) this gives a bracket on R8 in the coordinates (U , V ).

As in Theorem (1), M0 is the Ξ = 0 reduced phase space inR8, with coordinates (U , V ),
given by the equations |U |2 − |V |2 = 0 and < U , V >= 0. Let { , }M0 denote the
constrained bracket, or Dirac bracket Dirac (1950), obtained by constraining the standard
Poisson bracket on (U , V )-space to M0. The following theorem states that the restriction of
the standard Poisson bracket on R

8 to the image of the orbit map, seen as a manifold in R
8,

i.e., the constrained bracket, is the same as the bracket induced by the orbit map.

Theorem 2 { , }U ,V = 2H2{ , }M0 .

Proof Using the formula for the Dirac bracket

{F |M0, G|M0}M0 = {F, G}U ,V − �2
i, j=1{F, Fi }U ,V ci j {Fj , G}U ,V , (13)

with F1(U , V ) = |U |2−|V |2, F2(U , V ) =< U , V > and ci j the inverse of the matrix given
by {Fi , Fj }U ,V , the result follows by straightforward computation. Note that the (U , V )-
bracket is induced by the standard bracket when using coordinates (q, Q). 
�
Remark 2 In van der Meer and Cushman (1986), the idea of constrained normalization was
introduced in order to normalize perturbed Kepler systems, which were mapped to systems
on T +S3 by Moser’s regularization, by a normalization procedure on the ambient space R8

in a way that had a natural restriction to T +S3. Theorem 2 shows that a normalization on the
domain of the orbit map, equivariant with respect to the Ξ -action, reduces to a constrained
normalization on the image of the orbit map in a natural way by the induced bracket.

Remark 3 Note that the map δ ◦ τΞ can also be described in terms of quaternions. If q and
Q denote quaternions with the usual base 1, i, j, k, and with the usual definitions of the
quaternion product, quaternion conjugate, norm and inverse, then

δ ◦ τΞ (q, Q) =
( 12 (q̄iq − Q̄i Q), q̄i Q,−q̄ Q, 1

2 (q̄iq + Q̄i Q), 1
2 |q|2 + 1

2 |Q|2, 1
2 |q|2 − 1

2 |Q|2) =
((0, U4,−U3, U2), (−Ξ, V4,−V3, V2), (U1, L1, L2, L3), (0, K1, K2, K3), H2, V1) .(14)

In this, we can recognize the KS1-map q̄iq as defined in Breiter and Langner (2017) as well
as the SO(3)-momentummapping (q̄i Q, 1

2 |q|2+ 1
2 |Q|2, 1

2 |q|2− 1
2 |Q|2) (see van derMeer

et al. 2016).

4 Moser’s regularization

In this section, we will reveal the connection between KS and Moser’s regularization. We
will show that they are connected by a linear mapping on the target space of the orbit map.
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Fig. 2 Diagram involving
Moser’s map

Moser’s regularization Moser (1958) connects the Kepler flow to the geodesic flow on S3.
More precisely, Moser’s regularization map maps T +S3 = {(u, v) ∈ R

8 : |u| = 1, 〈u, v〉 =
0, v �= 0} to R

6 in such away that the pre-regularized Kepler Hamiltonian K̂ maps to the
Hamiltonian |v|. The orbits of one system are mapped to the orbits of the other system when
restricted to the proper energy surface. Note that the system with Hamiltonian |v| still has
to be re-scaled in order to obtain the lift of the geodesic flow on S3 to T +S3 (Cushman and
Bates 2015).

In van der Meer (2015), Moser’s regularization Moser (1958) was discussed in the frame-
work of reduction following ideas of (Kummer 1982, 1985). In the following, we will give a
more extensive treatment showing that there is a direct relation with the KS-regularization,
again following the ideas in Kummer (1982). The key is in the diffeomorphism relating the
reduced phase space with T +S3.

Note that Moser’s regularization map maps T +S3 to R
6, that is, is a coordinate chart for

this representation of the Ξ -reduced phase space. This chart is constructed by lifting the
stereographic projection of S3 to the tangent bundle. Also the KS map is a coordinate chart
on the reduced phase space. They are related through the map δ̃ given in (11) as will be shown
below.

In the basic set of Ξ invariants given by (U , V , L, K , H2, Ξ), we have that the KS-chart
becomes

2x1 = U2 − K3 , y1 = V2

V1 + H2
,

x2 = U3 − K2 , y2 = V3

V1 + H2
,

x3 = U4 − K1 , y3 = V4

V1 + H2
. (15)

Theorem 3 The coordinate chart ϕδ̃ , with δ̃ given by (11), is Moser’s regularization map (see
Fig. 2).

Here δ̃ is essentially Kummer’s map as introduced in Kummer (1982).

Proof Recall that Moser’s map μ : R8 → R
6; (u, v) → (x, y) is given by

x1 = (|v| + v1)u2 − u1v2 , y1 = (|v| + v1)
−1v2 ,

x2 = (|v| + v1)u3 − u1v3 , y2 = (|v| + v1)
−1v3 ,

x3 = (|v| + v1)u4 − u1v4 , y3 = (|v| + v1)
−1v4 . (16)

It is based on the inverse stereographic projection of R3 on S3 ⊂ R
4. Let R0 = {(u, v) ∈

R
8 : v1 + |v| �= 0}. Then μ is a diffeomorphism of T +S3 ∩ R0 with inverse

u = [|x |(1 + |y|2)]−1(−2〈x, y〉, (1 + |y|2)x − 2〈x, y〉y) ,

v = (
1

2
|x |(1 − |y|2), |x |y) . (17)
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We have, using (8), Ξ = 0, and H2 = |V | = |v|
x1 = U2 − K3 = U2 − K3 + L3Ξ

H2
= U2 + V1U2 − U1V2

H2
= (|v| + v1)u2 − u1v2, (18)

x2 = U3 − K2 = U3 − K2 + L2Ξ

H2
= U3 + V1U3 − U1V3

H2
= (|v| + v1)u3 − u1v3 ,

x3 = U4 − K1 = U4 − K1 + L1Ξ

H2
= U4 + V1U4 − U1V4

H2
= (|v| + v1)u4 − u1v4 ,

y1 = V2

V1 + H2
= v2

v1 + |v| ,

y2 = V3

V1 + H2
= v3

v1 + |v| ,

y3 = V4

V1 + H2
= v4

v1 + |v| , (19)

which proves the theorem. 
�
The map (U , V ) → (u, v) given by u = U

H2
, v = V considerably messes up the Poisson

structure on the image of δ ◦ τΞ (Ξ−1(0)). However, we have

{Ui , H2} = −2Vi , {Vi , H2} = 2Ui , i = 1, . . . , 4 ,

which does not change when (U , V ) is replaced by (u, v). By construction, the Ξ -reduced
H2 flow leaves T +S3 invariant. On T +S3 the Ξ -reduced H2 flow corresponds to the flow
of |v| as follows from the second relation in (7). Like in Sect. 3, we have that the flow of |v|
in the induced bracket on T +S3 is equal to the constrained flow of |v| with respect to the
standard Poisson structure onR8 ⊃ T +S3. Thus Moser’s map relates the reduced H2 flow to
the Kepler flow. The reduced H2 flow is on T +S3 a re-parametrization of the geodesic flow,
while on S3

H2
× S3

H2
it gives a double Hopf-fibration (see van der Meer et al. (2016)).

Remark 4 The H2 invariants on the Ξ -reduced phase space are generated by the Li and Ki .
It is well known that, by the KS-map, the Li corresponds to the angular momentum vector
for the Kepler system and the Ki corresponds to the Runge–Lenz or eccentricity vector. In
view of the formulas (8) on (U , V )-space, we find the H2 invariants Mi j = Ui Vj − U j Vi ,
i, j = 1, 2, 3, 4, i �= j . On (u, v) space, we find the H2 invariants mi j = uiv j − u jvi ,
i, j = 1, 2, 3, 4, i �= j . Here the M1 j , m1 j corresponds to the eccentricity vector and the
Mi j , mi j , i > 1 corresponds to the angular momentum vector, in the chart relating the
harmonic oscillator to the Kepler system. For this, we have to restrict to H2 = 1 and Ξ = 0.
Thus, the group of linear symplectic transformations on (q, Q) space leaving H2 and Ξ

invariant is SO(4). According to Sect. 2, such a map does change the KS-map but leaves
the Kepler vector field unchanged. Note that this SO(4) action is not the lift of an SO(4)
action on the configuration space. If the action is restricted to the SO(3) action, given by the
angular momentum vector the class of KS-maps is obtained that was considered in Breiter
and Langner (2017).

5 Ligon–Schaaf regularization

The Ligon–Schaaf regularizationwas introduced in Ligon and Schaaf (1976), based on Ligon
(1973), and further studied in (Ligon 2018; Cushman and Duistermaat 1997; Heckman and
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De Laat 2012; Cushman and Bates 2015). Like the Moser regularization, the Ligon–Schaaf
regularization is based on the stereographic projection. It maps R6 to T +S3, relating the
Kepler Hamiltonian for negative energy to the Delaunay Hamiltonian constrained to T +S3,
which in turn is a re-parametrization of the geodesic flow. The advantage of the Ligon–Schaaf
map is that it does not restrict to a single Kepler energy level, but incorporates the Kepler
energy in the map. It directly relates the Delaunay Hamiltonian and the Kepler Hamiltonian
and avoids time re-scaling. This section is mainly a review based on the above cited literature.
However, the factorization of the LS-map is a bit different then the one in Cushman and Bates
(2015) because we want to establish the LS-map, or rather the inverse of the LS-map, as a
chart for the reduced phase space. That is we have to make sure that everything is expressed
in the Ξ invariants used for Moser’s map.

The LS-map ΦL S is given by

ΦL S(x, y) = (ξ, η) = (sin(ζ )A + cos(ζ )B,−1

k
cos(ζ )A + 1

k
sin(ζ )B) , (20)

with − 1
2 k2 the Kepler Hamiltonian. Here A, B are the k-dependent components of a repre-

sentation of Moser’s map (see Heckman and De Laat 2012) and T +(S3 − p) is T +S3 minus
the pole used for the stereographic projection in the construction of Moser’s map.

Let P− = {(x, y) ∈ R
6|K (x, y) < 0 , x �= 0}. In Cushman and Duistermaat (1997), we

find the following statement which we give here as a proposition.

Proposition 1 The LS-map ΦL S is completely determined by the following properties:

(i) ΦL S is an analytic diffeomorphism from P− onto T +(S3 − p),
(ii) ΦL S is a canonical transformation,

(iii) If γK is a solution of the Kepler system in P−, then Φ ◦ γK is a solution of the Delaunay
vector field in T +S3,

(iv) J = J̃ ◦ Φ, where J and J̃ are the respective SO(4) momentum mappings on P− and
T +S3.

Consider Moser’s map as given by (17). Using 1
2 |y|2 − 1

|x | = − 1
2 , we may rewrite this as

u = (−〈x, y〉, x

|x | − 〈x, y〉y) ,

v = (1 − |x ||y|2, |x |y) , (21)

where |u| = |v| = 1, < u, v >= 0. Using the scaling x → k2x , y → k−1y, K → k−2K ,
t → k3t , ω → kω as formulated in Heckman and De Laat (2012) to be able to handle
arbitrary negative energy surfaces for the Kepler problem, i.e., introduce the scaling map ρ

by ρ(x, y) = (x̃, ỹ), with x̃ = k2x , ỹ = 1
k y, then the energy surface K (x, y) = − 1

2 k2 is
transformed to K (x̃, ỹ) = − 1

2 . The scaled version ofMoser’s map becomesμ−1◦ρ(x, y) =
(û, v̂), with

û = u(x̃, ỹ) = (−k〈x, y〉, x

|x | − 〈x, y〉y) = (ku1, u2, u3, u4) = û(u) ,

v̂ = v(x̃, ỹ) = (1 − |x ||y|2, k|x |y) = (v1, kv2, kv3, kv4) = v̂(v) . (22)

Note that, if K (x̃, ỹ) = − 1
2 , we have |û| = |v̂| = 1, < û, v̂ >= 0.

This induces a scaling map

ρ̂ : T +S3 → T1S3 × R>0; (u, v) → (û, v̂, k) , (23)
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with (û, v̂) given by (22). We have μ−1 ◦ ρ = ρ̂ ◦ μ−1.
In the LS-map in (20), we now have to choose

A(x, y) = û(x, y) = (−k〈x, y〉, x

|x | − 〈x, y〉y) ,

B(x, y) = v̂(x, y) = (1 − |x ||y|2, k|x |y) ,

ζ(x, y) = k < x, y >= −û1 . (24)

Because we are following van der Meer (2015) in our choice of the Moser-map, our formulas
differ slightly from the map in Cushman and Duistermaat (1997). However, one can still
follow the arguments in Cushman and Duistermaat (1997) to show that this map is actually
the LS-map.

Wemay now unravel the LS-map in a sequence ofmaps like in Cushman andBates (2015).
First the inverse of Moser’s map μ−1 followed by scaling map ρ̂. Then the rotation Rû1 over
the angle ζ = −û1. Combining the last two of these maps gives

Rû1 ◦ ρ̂ : T +S3 → T1S3 × R>0; (u, v) → (ξ̂ , η̂, k) . (25)

Next consider
ψ̂ : T1S3 × R>0 → T +S3; (ξ̂ , η̂, k) → (ξ, η) . (26)

As the components of the LS-map are functions of Moser’s variables (u, v), we may also
introduce

Ψ : T +S3 ⊂ R
8 → T +S3 ⊂ R

8 : (u, v) → (ξ, η) , (27)

given by ψ̂ ◦ Rû1 ◦ ρ̂. Then

ΦL S = Ψ ◦ μ−1 = ψ̂ ◦ Rû1 ◦ ρ̂ ◦ μ−1 , (28)

which is illustrated in Fig. 3.
The inverse LS-mapΦ−1

L S (see Ligon 2018) now provides a chart for T +S3 → R
6. Follow-

ing (Cushman and Duistermaat 1997), this mapping maps the Delaunay Hamiltonian to the
Kepler problem and is symplectic only if ζ(x, y) = k < x, y >. That is the LS-regularization
has the advantage that it directly relates not the pre-regularized Kepler Hamiltonian, but the
actual Kepler Hamiltonian, to the Delaunay Hamiltonian

D(ξ, η) = −1

2

1

|η|2 ,

on T +S3. Note that we actually have to consider the constrained vector field of D on T +S3.
Following Cushman and Bates (2015), one obtains that the constrained Delaunay flow

on T +S3 is a re-parametrized version of the geodesic flow on T +S3. Note that this re-
parametrization can actually be obtained by a symplectic map as the scaling factor is a
function of the energy. In this construction, the Ξ -reduced vector field corresponding to D
using the orbit map Ψ ◦ δ̃ ◦ τΞ (Ξ−1(0)) maps to the Kepler vector filed through the chart
given by the inverse LS-map.

For completeness, we will give the inverse LS-mapΦ−1
L S . We may writeΦ−1

L S as a function
of (u, v) on the Ξ -reduced phase space δ̃ ◦ τΞ (Ξ−1(0)). One can find the inverse LS-map in
Ligon (2018). We have to adjust for our choice of representing Moser’s map. The LS-map
can be seen as the composition of two maps. The first is the parametrized version of Moser’s
map given by ρ̂ ◦ μ−1, the second the rotation in (u, v) space given by Rû1 . The inverse
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Fig. 3 Diagram relating Moser’s
map and the LS-map

Fig. 4 Commutative diagram
involving the KS- and LS-map

therefore consists of the inverse rotation followed by the inverse of the scaled Moser’s map.
The inverse of ρ̂ ◦ μ−1 is given by

x = − 1

k2
((1 + v1)u − u1v) , y = k

(1 + v1)
v . (29)

Writing ΦL S(x, y) = (ξ, η), the inverse of the rotation Rû1 is given by

u = −ξ sin(ζ ) + η

|η| cos(ζ ) , v = ξ cos(ζ ) + η

|η| sin(ζ ) . (30)

Substituting (30) in (29) gives

x = |η|2
(

−ξ(
η1

|η| + sin(ζ )) + η

|η| (ξ1 + cos(ζ ))

)

= |η|(ξ1η − η1ξ) − |η|2ξ sin(ζ ) + η|η| cos(ζ ) ,

y = ξ cos(ζ ) + η
|η| sin(ζ )

|η|
(
1 + ξ1 cos(ζ ) + η1

|η| sin(ζ )
) . (31)

Here we have used the fact that k = 1
|η| . In Ligon (2018), there is an extensive list of relations.

Our formulas differ in some signs from the formulas in this paper due to choices made in the
stereographic projection. Note that the angle ζ is now defined implicitly through the relation
ζ = ξ0 sin(ζ ) − η0

|η| cos(ζ ) Ligon (2018).
If one chooses (ξ, η) as invariants defining the orbit map, then again the Ξ -reduced phase

space is T +S3, and (31) defines a symplectic chart on the reduced phase space. In Fig. 4, a
diagram is given showing the relation between the KS-map and the Ligon–Schaaf map. We
have a reduction to T +S3 using Ligon–Schaaf variables, where the inverse LS-map gives a
chart on this representation of T +S3.

6 Reducing the KS-transformed Kepler system

When one considers the LS-regularization, then the following features make it different.
The Kepler Hamiltonian is directly related to the Delaunay Hamiltonian on T +S3, no pre-
regularized Kepler Hamiltonian is needed and no time re-scaling. In the Ligon–Schaaf
regularization, the Keplerian energy, or actually the Keplerian Hamiltonian, is introduced
as a scaling factor for the coordinates.
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In order to understand the role of the Ligon–Schaaf map in the reduction procedure, recall
the role of the Keplerian energy in the construction of the pre-regularized Kepler Hamiltonian
in Sect. 2 and how it relates to the harmonic oscillator.

By a re-scaling of time, the orbits of the Kepler Hamiltonian for negative energy − 1
2 k2,

k > 0, were obtained as the re-parametrized orbit of the pre-regularized Hamiltonian

K̂ (x, y) = |x |
k

(K (x, y) + 1

2
k2) + 1

k
= 1

2k
|x |(|y|2 + k2)

on (T ∗
R
3, ω̃).

Using the KS-map, we have

|x | = q2
1+q2

2+q2
3+q2

4 , |y|2 = Q2
1+Q2

2+Q2
3 + Q2

4

q2
1 + q2

2 + q2
3 + q2

4

− ((q1Q2−q2Q1)+(q3Q4−q4Q3))
2

(q2
1 + q2

2 + q2
3 + q2

4 )
2

.

Furthermore,
Ξ(q, Q) = (q1Q2 − q2Q1) + (q3Q4 − q4Q3) .

One finds that the KS-map maps the pre-regularized Kepler Hamiltonian to

KS∗ K̂ = 1

2k
(k2(q2

1 + q2
2 + q2

3 + q2
4 ) + (Q2

1 + Q2
2 + Q2

3 + Q2
4)) ,

when restricted to J0.
Taking k = 1 the H2(q, Q) = 1

2 |q|2 + 1
2 |Q|2 = 1 level corresponds to K̂ = 1 and

K = − 1
2 .

Wewill start with considering the relation between the KS-map and the LS-map for k = 1.
Using the KS-map, we may, provided Ξ = 0, rewrite the Kepler Hamiltonian as

K̄ (q, Q) = K ◦ KS(q, Q) = 1

2

|Q|2
|q|2 − 1

|q|2 . (32)

When we use the orbit map

δ ◦ τΞ : R8 → R
16 : (q, Q) → (U , V , K , L, H2, Ξ) ,

the Hamiltonian on the image becomes

K̄ (q, Q) = 1

2

|Q|2
|q|2 − 1

|q|2 = 1

2

H2 − V1

H2 + V1
− 1

H2 + V1
, (33)

where H2 = |V |. Restricting to H2 = 1, Ξ = 0, then we have that

1

2

H2 − V1

H2 + V1
− 1

H2 + V1
= −1

2

1

H2
2

, (34)

where the functions on the right- and left-hand side are equivalent provided we restrict to
H2 = 1 and |q| �= 0. The reduced phase space for the orbit map δ ◦ τΞ is M0, as given in
(10). M0 considered as a manifold inR8, with coordinates (U , V ), is diffeomorphic to T +S3.
There exists a mapping (U , V ) → (ξ, η), where (ξ, η) are given by the LS-map with k = 1,
mapping M0 to T +S3. More precisely, we have Ψ −1

L S ◦ ψ ◦ δ̃ ◦ τΞ = KS, with δ̃ given by
(11) and ψ given by (27).

Rewriting the Delaunay Hamiltonian

D(ξ, η) = −1

2

1

|η|2 ,
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in terms of (q, Q) coordinates, we obtain

−1

2

1

|η(q, Q)|2 = −1

2

1

H2
2 (q, Q)

= K̄ (q, Q) ,

that is, the Delaunay Hamiltonian corresponds to the Kepler Hamiltonian, provided we are
on the energy levels Ξ = 0, H2 = 1, and K = − 1

2 .

Remark 5 To obtain the inverse LS-map for k = 1, we have to rotate (U , V ), using the
harmonic oscillator flow, over an angle depending on the position, such that the speed of
the Delaunay flow matches the speed of the Kepler flow. According to Cushman and Bates

(2015) in the scaling
ds

dt
= k

|x | , the new timescale s is the eccentric anomaly. Furthermore,

ζ = − < x, y >= −e sin(s), and s − e sin(s) = t − τ , where τ is a time related to the
periapse passage.

Thus, the rotation in the LS-map makes the total rotation time of the Delaunay vector field
equal to that of the Kepler vector field.

Remark 6 The intertwining of the SO(4) momentum mappings, that plays a role in the LS-
map, is immediate. The expressionsUi Vj −U j Vi , i, j = 1, . . . , 4, i �= j , generate the SO(4)
momentum map on (U , V ) space and correspond to the (K , L) variables, which in van der
Meer (2015) were shown to correspond to the SO(4) symmetry of the Kepler problem.

In order to bring the Keplerian energy into the reduction process consider

H2,k(q, Q) = k2(q2
1 + q2

2 + q2
3 + q2

4 ) + (Q2
1 + Q2

2 + Q2
3 + Q2

4) .

H2,k = 1 corresponds to K̂ = 1
k and K = − 1

2 k2. H2,k can be obtained from H2 by the scaling

q → kq , Q → Q, H2 → H2,k , ω → kω. More precisely set q̃ = kq and Q̃ = Q, then
H2,k(q, Q) = H2(q̃, Q̃). Note that through the KS-map this gives us the scaling x → k2x ,
y → k−1y, that is, if we set, as before, x̃ = k2x , and ỹ = 1

k y, then we obtain the scaling
also used in the Ligon–Schaaf regularization. Set

k = √−2K =
√

−|y|2 + 2

|x | =
√

−|Q|2
|q|2 + 2

|q|2 . (35)

When this is substituted in H2,k , then H2,k becomes identically equal to 1. Thus, H2 drops
out of the discussion. In stead of H2, we introduce K̄ (q, Q) as an invariant and consider the
orbit map

τ̄Ξ : R8 → R
16; (q, Q) → (ξ, η, K̄ , K , L, Ξ) ,

with ξ , η the Ligon–Schaaf variables as in Sect. 5. Then the reduced phase space for Ξ = 0
is, as before, T +(S3 − p), where the pole of the sphere has to be left out as it is the image
of |q| = 0. The reduced system corresponding to K̄ (q, Q) is now the Delaunay system with
Hamiltonian− 1

2
1

|η|2 . As the Ligon–Schaafmap is a symplectic mapwith standard symplectic

forms onR8 andR6, the actual reduced system is the Delaunay system constrained to T +S3.
If for instance we consider on R

8 the system with Hamiltonian − 1
2

1
|ξ |2|η|2−<ξ,η>2 , then this

system leaves T +S3 invariant and the correspondingHamiltonian flow is on T +S3 equivalent
to the constrained flow of the Delaunay Hamiltonian.
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7 Alternative reduction and regularization

The final chart is symplectic by construction when on T +S3 we take the constrained induced
bracket. Also all brackets on the reduced phase space can be computed using the Poisson
bracket on (q, Q) space where we have the standard symplectic form. Therefore, we may
relax the condition that the symplectic form on the ambient space of T +S3 is the standard one,
which means that also other reductions might be considered. We might for instance perform
the reduction on R

8 with coordinates (q̃, Q̃). Because we use (q̃, Q̃) instead of (q, Q), our
scaling is introduced in all mappings. We obtain the invariants s̃(s) = s(q̃, Q̃)

s̃ = (k2s1, k2s2, s3, s4, ks5, ks6, ks7, ks8, k2s9, k2s10, s11, s12, ks13, ks14, ks15, ks16) .

The s̃ define again a set of Ξ -invariants which we may use to define a Ξ -orbit
map, which we indicate by τ̃Ξ . Previously we changed from s invariants to invariants
(K (s), L(s), U (s), V (s), H2(s),Ξ(s)) given by (5) and (6). If we do the same for s̃, we
obtain

Ũ (q, Q) = U (s̃(q, Q)) = U (q̃, Q̃) , Ṽ (q, Q) = V (s̃(q, Q)) = V (q̃, Q̃) ,

K̃ (q, Q) = K (s̃(q, Q)) = K (q̃, Q̃) , L̃(q, Q) = L(s̃(q, Q)) = L(q̃, Q̃) ,

H̃2(q, Q) = H2(s̃(q, Q)) = H2(q̃, Q̃) = H2,k(q, Q) , Ξ̃(q, Q)=Ξ(s̃(q, Q))=Ξ(q̃, Q̃) ,

where Ũ1 = kU1, Ṽ2 = kV2, Ṽ3 = kV3, Ṽ4 = kV4, H̃2 = H2,k , Ξ̃ = kΞ . Furthermore, k is
present in Ũ2, Ũ3, Ũ4 and Ṽ1. Thus, Ũ and Ṽ are different from the scaledMoser variables. As
H2,k becomes identically 1, we introduce K̄ as an invariant. Furthermore, we use Ξ instead
of Ξ̃ . Consider the orbit map

τ̃Ξ : R8 → R
16; (q, Q) → (Ũ , Ṽ , K̃ , L̃, K̄ , Ξ) .

Relations (7) and (8) still hold for the variables (Ũ , Ṽ , K̃ , L̃, H̃2, Ξ̃ ) . That is, the reduced
phase space for Ξ = 0 is the six dimensional manifold T 1S3

1 ×R<0 in (Ũ , Ṽ , K̄ )-space. By
introducing

ρ̄ : T1S3 × R<0 → T +S3 : (Ũ , Ṽ , K̄ ) → (Ū , V̄ ) , (36)

with Ū = Ṽ and V̄ = 1
k Ũ we obtain the orbit map

τ̄Ξ : R8 → R
16; (q, Q) → (Ū , V̄ , K̃ , L̃, K̄ , Ξ) .

The reduced phase space for Ξ = 0 is the six-dimensional manifold T +(S3 − p) in (Ū , V̄ )-
space. In terms of (q, Q) coordinates, we have for the Delaunay Hamiltonian

D(Ū (q, Q), V̄ (q, Q)) = −1

2

1

|V̄ (q, Q)|2 = K̄ (q, Q) ,

that is, the Delaunay system on T +S3 is the reduced KS-transformed Kepler system with
Hamiltonian K̄ (q, Q).

The chart we have to consider on T +S3 is a modification of the chart for the Moser
regularization.

x1 = 1

k

(
(|Ū | + Ū1)V̄2 − V̄1Ū2

)
, y1 = k

(
(|Ū | + Ū1)

−1Ū2
)

,

x2 = 1

k

(
(|Ū | + Ū1)V̄3 − V̄1Ū3

)
, y2 = k

(
(|Ū | + Ū1)

−1Ū3
)

,
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x3 = 1

k

(
(|Ū | + Ū1)V̄4 − V̄1Ū4

)
, y3 = k

(
(|Ū | + Ū1)

−1Ū4
)

, (37)

where k = 1
|V̄ | .

A similar result can be obtained by simplifying the LS-reduction. Consider the diffeomor-
phism given by (23)

ρ̂ : T +S3 → T1S3 × R>0; (u, v, k) → (û, v̂)

followed by the map ρ̄ given in (36). We have the reduction mapping

ρ̄ ◦ ρ̂ ◦ δ̃ ◦ τ̃Ξ : R8 → T +S3 ⊂ R
8; (q, Q) → (ξ̂ , η̂) . (38)

Consequently on the image of the reduction mapping given by (38), we have the chart given
by the inverse of ρ̄ ◦ ρ̂ ◦ μ−1.

The Hamiltonian system with Hamiltonian

K̄ (q, Q) = K ◦ KS(q, Q) = 1

2

|Q|2
|q|2 − 1

|q|2
reduces to the Delaunay Hamiltonian system on T +S3 given by

D(ξ̂ , η̂) = −1

2

1

|V̄ |2 ,

where now (Ū , V̄ ) = ρ̄ ◦ ρ̂(u, v). The Delaunay system in the above chart maps to the Kepler
system.

We replaced the factor ψ̂ ◦ Rû1 ◦ ρ̂ of the LS-map by ρ̄ ◦ ρ̂ obtaining yet another reduction
map and another representation of T +S3. The map R

8, (Ū , V̄ ) → R
6, (x, y) is again the

chart on T +S3 in which we obtain the Kepler system. Like for the LS-map in Sect. 6 in this
case the reduction to (Ū , V̄ ) variables gives a regularization for all negative energy levels of
the Kepler system.

Furthermore, if we choose Ū = Ṽ , and V̄ = kŨ the reduced Hamiltonian will become
− 1

2 |V̄ |2. Note that in this case we may replace the reduced Hamiltonian− 1
2 |V̄ |2 on T +S3 by

− 1
2 (|V̄ |2|Ū |2− < V̄ , Ū >2). As a consequence, the normalization and analysis of perturbed

Keplerian systems as in van der Meer and Cushman (1986); van der Meer (1988); Cushman
(1992) seems to apply for arbitrary negative Keplerian energy. This will be subject of further
research.

To obtain results for positive Keplerian energy, we may adapt our invariants in a way
similar to Kummer (1982); Ligon (2018). Again choose invariants s̃ but take

k = √
2K

and replace k2 by −k2. Then our relations for Ũ , and Ṽ become

< Ũ , Ṽ > = 0 ,

−Ũ 2
1 + Ũ 2

2 + Ũ 2
3 + Ũ 2

4 = 1 ,

Ṽ 2
1 − Ṽ 2

2 − Ṽ 2
3 − Ṽ 2

4 = 1 . (39)

With the additional map Ū = Ṽ , and V̄ = kŨ one gets the reduced systemwith Hamiltonian
1
2 (−V̄ 2

1 + V̄ 2
2 + V̄ 2

3 + V̄ 2
4 ) on the reduced phase space T + H3 given by (39).
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