

A functional safety assessment method for cooperative
automotive architecture
Citation for published version (APA):
Kochanthara, S., Rood, N., Saberi, A. K., Cleophas, L., Dajsuren, Y., & van den Brand, M. (2021). A functional
safety assessment method for cooperative automotive architecture. Journal of Systems and Software, 179,
110991. Article 110991. https://doi.org/10.1016/j.jss.2021.110991

Document license:
CC BY

DOI:
10.1016/j.jss.2021.110991

Document status and date:
Published: 01/09/2021

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1016/j.jss.2021.110991
https://doi.org/10.1016/j.jss.2021.110991
https://research.tue.nl/en/publications/d7b0a226-7e6c-487f-8b4b-3b123edf20ec

The Journal of Systems & Software 179 (2021) 110991

S
Y
E

i
W
2
f
a
s
d
r
d

t
w
o

✩

(
(
(

b

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

A functional safety assessmentmethod for cooperative automotive
architecture✩,✩✩

angeeth Kochanthara ∗, Niels Rood, Arash Khabbaz Saberi, Loek Cleophas,
anja Dajsuren, Mark van den Brand
indhoven University of Technology, The Netherlands

a r t i c l e i n f o

Article history:
Received 13 September 2020
Received in revised form 17 April 2021
Accepted 25 April 2021
Available online 4 May 2021

Keywords:
Functional safety
Cooperative driving
Platooning
ISO 26262
Automotive software architecture
Safety engineering

a b s t r a c t

The scope of automotive functions has grown from a single vehicle as an entity to multiple vehicles
working together as an entity, referred to as cooperative driving. The current automotive safety
standard, ISO 26262, is designed for single vehicles. With the increasing number of cooperative driving
capable vehicles on the road, it is now imperative to systematically assess the functional safety of
architectures of these vehicles. Many methods are proposed to assess architectures with respect to
different quality attributes in the software architecture domain, but to the best of our knowledge,
functional safety assessment of automotive architectures is not explored in the literature. We present
a method, that leverages existing research in software architecture and safety engineering domains,
to check whether the functional safety requirements for a cooperative driving scenario are fulfilled in
the technical architecture of a vehicle. We apply our method on a real-life academic prototype for a
cooperative driving scenario, platooning, and discuss our insights.

© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
v
p

1. Introduction

Traffic congestion was estimated to cost 305 billion dollars
n 2017 to traffic participants in the United States of America.1

ith continuously increasing urban population (Alvarez et al.,
017), traffic congestion will continue to be an inevitable problem
or the foreseeable future. Around 70% of all goods transported
round the United States are moved by trucks, and the lion’s
hare of the cost for operating trucks comprises fuel costs and
river salary (Trego and Murray, 2010). One potential solution to
educe traffic congestion and such operational costs is cooperative
riving.
Cooperative driving refers to the collective optimization of

he traffic participants’ behavior by sharing information using
ireless communication such as a peer-to-peer network or via
ther actors like the cloud (Ploeg, 2014). Cooperative driving

✩ This work is a part of the i-CAVE research programme (14897 P14-18)
funded by NWO (Netherlands Organisation for Scientific Research), Netherlands.

✩ Editor: Neil Ernst.
∗ Corresponding author.

E-mail addresses: s.kochanthara@tue.nl (S. Kochanthara), n.rood@tue.nl
N. Rood), a.khabbaz.saberi@tue.nl (A.K. Saberi), l.g.w.a.cleophas@tue.nl
L. Cleophas), y.dajsuren@tue.nl (Y. Dajsuren), m.g.j.v.d.brand@tue.nl
M. van den Brand).
1 https://www.smartcitiesdive.com/news/gridlock-woes-traffic-congestion-
y-the-numbers/519959/.
ttps://doi.org/10.1016/j.jss.2021.110991
164-1212/© 2021 The Authors. Published by Elsevier Inc. This is an open access art
can improve traffic efficiency, reduces cost, and increases com-
fort (Davila, 2013; Liang et al., 2015; Pelliccione et al., 2020). It
is one of the 54 trends shaping the technology market, according
to market research.2 In the year 2020 alone, 10.46 million new
ehicles, with some form of cooperative driving capabilities, are
rojected to hit the roads.2,3 With millions of cooperative driving

capable vehicles on roads, the safety of these vehicles needs
urgent attention.4

A majority of the cooperative driving functionalities are
achieved by determining a vehicle’s behavior for optimal traffic
behavior according to the information received from other traffic
participants. Such optimal behaviors are achieved (partially or
fully) using software-controlled steering, acceleration, and brak-
ing (Dajsuren and Loupias, 2019). Therefore, any problem in the
software can lead to catastrophic effects not only to the vehicle
itself but also to other traffic participants. To avoid such events,
cooperative driving systems are designed to operate in case of
failure or fail safely.

The current guidelines to ensure the safety of automotive sys-
tems (and their architecture) are provided by ISO 26262:2018 - a
product development standard for the automotive domain (ISO,
2018). The ISO 26262 standard offers systematic methods from
the safety engineering domain to identify safety requirements.

2 https://go.abiresearch.com/lp-54-technology-trends-to-watch-in-2020.
3 https://bit.ly/volkswagen-includes-nxp-v2x.
4 https://www.sciencedaily.com/releases/2019/05/190519191641.htm.
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jss.2021.110991
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2021.110991&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:s.kochanthara@tue.nl
mailto:n.rood@tue.nl
mailto:a.khabbaz.saberi@tue.nl
mailto:l.g.w.a.cleophas@tue.nl
mailto:y.dajsuren@tue.nl
mailto:m.g.j.v.d.brand@tue.nl
https://www.smartcitiesdive.com/news/gridlock-woes-traffic-congestion-by-the-numbers/519959/
https://www.smartcitiesdive.com/news/gridlock-woes-traffic-congestion-by-the-numbers/519959/
https://go.abiresearch.com/lp-54-technology-trends-to-watch-in-2020
https://bit.ly/volkswagen-includes-nxp-v2x
https://www.sciencedaily.com/releases/2019/05/190519191641.htm
https://doi.org/10.1016/j.jss.2021.110991
http://creativecommons.org/licenses/by/4.0/

S. Kochanthara et al. The Journal of Systems & Software 179 (2021) 110991

A
r

p
d
p
t
t
s
c
t
t
e
e
o
q

f
t
e
d
e
e
2
o
d
M
n
q

o
c
a
(
d
e
(
d
n
1

d
r
a
c
u
m
v

t
p
i
a
f
t
a
o
i
c

2

w
r
d
a

ny automotive software architecture that fulfills these safety
equirements is deemed safe-by-design.

ISO 26262 standard neither considers cooperative driving nor
rescribes methods for architecture assessment. The standard is
esigned for single vehicles and does not include a cooperative
erspective in which a set of vehicles is seen as a single en-
ity (Mallozzi et al., 2019; Nilsson et al., 2013). This can mean
hat a low-risk safety requirement from a single-vehicle per-
pective can have catastrophic effects on other cooperating vehi-
les (Pelliccione et al., 2020). To create a functionally safe archi-
ecture from a cooperative perspective, existing studies have ex-
ended the standard guidelines (Kochanthara et al., 2020; Saberi
t al., 2018) or presented an architecture framework (Pelliccione
t al., 2020). Yet, checking the safety of software architecture
f an existing vehicle for cooperative driving, remains an open
uestion.
ISO 26262 standard does not prescribe methods to assess the

unctional safety of automotive architecture. Many approaches
o assess architectures with respect to quality attributes have
merged in the software architecture domain in the past three
ecades (Babar et al., 2004; Dobrica and Niemela, 2002; Kazman
t al., 1998; Bass et al., 2012; Bengtsson and Bosch, 1998; Sto-
rmer et al., 2003; Bergner et al., 2005; Harrison and Avgeriou,
010). However, only some of these methods are designed for
perational quality attributes like performance (in contrast to
evelopment quality attributes like maintainability) (Bosch and
olin, 1999; Babar et al., 2004). To the best of our knowledge,
one of these methods are designed to assess the operational
uality attribute functional safety of automotive systems.
This paper presents a method to assess the functional safety

f existing automotive architecture for cooperative driving, by
ombining methods from the safety engineering and software
rchitecture domains. Our method has two parts:
i) derive Functional Safety Requirements (FSRs) for cooperative
riving scenarios — an extension of our earlier work (Kochanthara
t al., 2020);
ii) check whether the (technical) software architecture fulfills the
erived functional safety requirements—a combination of tech-
iques (Wu and Kelly, 2004; Preschern et al., 2015; Kazman et al.,
998) adapted from the software architecture domain.
This paper primarily focuses on the design phase (concept

evelopment phase in ISO 26262) and validation of the resultant
equirements in the software architecture in the final product. We
pply our method on the architecture of an academic prototype
apable of cooperative driving. The cooperative driving scenario
sed for demonstration of our method is platooning, in which a
anually driven vehicle is autonomously followed by a train of
ehicles.
The rest of the paper is organized as follows. Section 2 presents

he background relevant to the study. Section 3 describes the
roposed method to derive FSRs and check for their fulfillment
n vehicles’ technical software architecture. Section 4 details the
pplication of the proposed approach on an academic prototype
or the cooperative driving use case, platooning, and interpreting
he results from this case study. Section 5 discusses our implicit
ssumptions, applicability, and scope of our approach. Section 6
utlines related research. Section 7 presents threats to valid-
ty, followed by future research directions in Section 8 and the
onclusion in Section 9.

. Background

In this section, we discuss the three basic concepts upon which
e build the contributions of this paper. First, we outline the
elevant concepts in automotive functional safety. Second, we
iscuss some basics on safety tactics and patterns. Last, we give
brief introduction to the two views of automotive architecture.
2

2.1. Functional safety

Functional safety is defined as ‘‘an absence of unreasonable
risk due to hazards caused by malfunctioning behaviour of E/E
systems’’ (ISO, 2018) where E/E systems refer to electrical and/or
electronic systems. In the automotive domain, functional safety
is defined by two standards: ISO 26262:2018 and ISO 21448 (ISO,
2019), serving complementary purposes. The former focuses on
the hazards caused by the malfunctioning of components of
a system, while the latter does on the hazards resulting from
the functional insufficiency and misuse (ISO, 2018, 2019). ISO
26262 (ISO, 2018) is the current safety standard with its lat-
est revision from 2018. In contrast, ISO 21448 (ISO, 2019), is
currently available as ISO/PAS 21448 specifications with a for-
mal release planned in 2021. The predecessor of these stan-
dards is the broader IEC 61508 standard (IEC, 2010), which
outlines the functional safety guidelines for developing electri-
cal/electronic/programmable electronic systems that are used to
carry out safety functions (IEC, 2010).

We primarily focus on the concept phase (part 3) of the ISO
26262 standard, which outlines the derivation of FSRs and their
allocation to functional architecture components. The concept
phase is executed on an item where an item is defined as ‘‘system
or combination of systems, to which ISO 26262 is applied, that
implements a function or part of a function at the vehicle level’’ (ISO,
2018).

The derivation of functional safety requirements (FSRs) begins
with creating hazardous events. Each hazardous event is a com-
bination of a hazard, an operational mode, and an operational
situation. An example of a hazardous event is a brake failure
(hazard) in eco-driving mode (operational mode) while driv-
ing on a highway (operational situation). The operational modes
and operational situations are derived from natural language
descriptions of intended environments or situations where the
system operates. This natural language description is referred to
as scenario description or scenarios from hereon.

To ensure safety from hazardous events, safety goals are de-
fined. These goals are broad, presenting high-level safety require-
ments. Each safety goal is allocated a score, termed Automotive
Safety Integrity Level (ASIL), of A, B, C, or D, which specify the
importance of achieving the goal (A for least important and D for
most important) during further stages of product development.
The ASILs are calculated based on exposure, controllability, and
severity of each safety goal according to the ISO 26262 guide-
lines (ISO, 2018). Each safety goal is decomposed into one or more
FSRs (ISO, 2018). Each FSR inherits the (maximum) ASIL from the
safety goal(s) it is derived from.

In the literature, there is little consensus on safety require-
ments being functional or non-functional requirements. FSRs are
classified as functional requirements in the safety engineering
domain. However, FSRs are predominantly classified as qual-
ity requirements (non-functional requirements) in the software
architecture domain (Bass et al., 2012).

2.2. Safety tactics and patterns

Architectural tactics encapsulate design decisions that can in-
fluence the behavior of a system with respect to a quality at-
tribute (Bass et al., 2012). Architectural tactics are abstract, do not
impose a particular implementation structure, and can be seen
as recommendations without a prescribed implementation. On
the other hand, architectural patterns are well-defined structured
entities with a prescribed implementation that realize tactics.
This paper employs safety tactics and patterns (Wu and Kelly,
2004; Preschern et al., 2015) which are architectural tactics and
patterns to address safety.

S. Kochanthara et al. The Journal of Systems & Software 179 (2021) 110991

F

Fig. 1. Functional and technical architecture views and their scope, adapted from Broy et al. (2009). Functional and technical architecture are views of the same system
at different architectural abstraction levels, with functional being the highest abstraction level. Runtime model describes system behavior while hardware topology
describes the structure of hardware platform containing electronic control units, sensors, mechanical components, and the buses that interconnect them. Allocation
associates elements of the runtime model with the elements of hardware topology. Runtime model and allocation together form technical software architecture.
2.3. Architecture views

We use the architecture of a system in two contexts: (i) to gen-
erate FSRs from hazardous events by mapping hazardous events
to functional components of the system; (ii) to identify whether
one or more safety tactics are used for the implementation of a
functional component.

The first context needs a functional decomposition view of the
system (ISO, 2018), known as functional architecture view (Broy
et al., 2009; Bucaioni and Pelliccione, 2020; Dajsuren, 2015;
Staron, 2017). In the automotive domain, the functional archi-
tecture view outlines functional composition, functional entities,
their interfaces, interactions, inter-dependencies, behavior, and
constraints in a vehicle (Broy et al., 2009). This view is derived
from the functional viewpoint, which considers the system from
the angle of vehicular functions and their logical interactions from
a black-box perspective (Broy et al., 2009). Note that the scope of
this view is at the system level.

The second context demands more details that are not avail-
able in the functional architecture view but are available in the
technical architecture view (also described as the implemen-
tation view) (Broy et al., 2009; Dajsuren, 2015; Dajsuren and
van den Brand, 2019; Staron, 2017). The technical architecture
view outlines specific software implementation, physical compo-
nents (like electronic and electrical hardware), their relationships,
the allocation of software parts to hardware components, the
dependencies among software and hardware components, and
constraints (Broy et al., 2009). Clearly, there is strong conformity
between the technical architecture view and the functional archi-
tecture view (Broy et al., 2009). A pictorial depiction of these two
architectural views is shown in Fig. 1.

We chose the technical architecture view since it enables
identifying whether one or more safety tactics are implemented,
and this view is readily available, as it is mandatory in automotive
projects (Broy et al., 2009). In contrast, other views might lack
necessary detail or may be outdated. In the rest of this paper,
we discuss the runtime model and allocation part of the tech-
nical architecture view, together termed as technical software
architecture.

3. Methodology

We propose a method that checks whether the technical soft-
ware architecture of a vehicle fulfills the FSRs for cooperative
driving scenarios. The method consists of two parts: (i) derive

SRs for cooperative driving scenarios (see Section 3.1 and Fig. 2),

3

and (ii) check whether the derived FSRs are fulfilled in the techni-
cal software architecture of a vehicle (see Section 3.2 and Fig. 3).

FSRs for cooperative driving shall be implemented in individ-
ual vehicles. The ISO 26262 standard recommends mapping of
FSRs (or breaking down FSRs) to individual system architecture
components (ISO, 2018). Further, such a mapping is crucial given
the complexity and scale of the system. Referring to the existing
solutions from the safety engineering discipline (Hommes, 2012),
the current methods do not map derived FSRs for cooperative
driving scenarios to individual vehicle components (Kochanthara
et al., 2020). Our solution bridges this gap by integrating a co-
operative functional architecture (with its individual components
belonging to the vehicular functional architecture) with the ex-
isting methods to derive FSRs. This step is presented in detail in
Section 3.1.

Next, we check whether the derived FSRs are fulfilled in the
technical software architecture of a vehicle. Our method of as-
sessing the fulfillment of derived FSRs is a combination of tech-
niques adapted primarily from the software architecture domain.
With no existing architecture assessment techniques addressing
the quality attribute of functional safety in the context of au-
tomotive systems, the proposed method takes inspiration from
traditional architecture assessment techniques like ATAM (Bass
et al., 2012; Kazman et al., 1998) and employs the safety tactic
framework (Wu and Kelly, 2004; Preschern et al., 2015, 2013) to
leverage existing architecture knowledge. This part of our method
is presented in Section 3.2.

Alongside functional safety, cyber-security is another area that
is increasingly addressed together with functional safety (Riel
et al., 2018). The scope of our approach is limited to functional
safety and security is out of our scope. Moreover, FSRs are often
fulfilled dedicatedly in hardware or a combination of hardware
and software. Even though the first part of our method associates
FSRs to architecture components at the system level, the second
part of our approach focuses on software. FSRs fulfilled in hard-
ware architecture (hardware topology in Fig. 1) is beyond the
scope of our method.

3.1. Derive FSRs for cooperative driving

The deriving FSRs part of our method needs only a black box
view of individual vehicle functions and interactions among these
functions. Therefore, we use the functional architecture view
for deriving FSRs for cooperative driving. Note that functional
architecture is the overall system architecture (see Fig. 1), which

includes both hardware and software components.

S. Kochanthara et al. The Journal of Systems & Software 179 (2021) 110991

s
n
i
s

Fig. 2. Method to derive FSRs for cooperative driving scenarios. The gray part on the right is the traditional method from ISO 26262 (ISO, 2018), and the black part
on the left is our addition to the traditional approach. System architect represents external entities involved in creating the cooperative architecture.
Fig. 3. Method to check the fulfillment of FSRs in technical architecture.
We extend the traditional method outlined by the ISO 26262
tandard (ISO, 2018) to derive FSRs for cooperative driving sce-
arios. The traditional approach (the concept phase of ISO 26262)
s executed on an individual vehicle as the item. We propose a
imilar approach to be executed on the entire cooperative system
 p

4

in parallel. Fig. 2 presents an overview of the proposed method.
We first outline the traditional method, followed by our prior
work on its extension (Kochanthara et al., 2020) and our new
contribution. For the rest of the paper, we use the term vehicular
erspective for an individual vehicle as a unit under consideration

S. Kochanthara et al. The Journal of Systems & Software 179 (2021) 110991

a

t
n
(

d
d
a
t
w
o
p
d

a
s
p
t
2
i
s
c
m

t
o
f
t
s
w
s
t
n
o
t
i
p
a
g

v
w
t
f
e
I
f
F
2
i
r
t
a
c
a
c
v

t
s
c
a
a
F
p

o
a
i
o
a
c
i
t
t
p
a

3

s
p
F
d
F
p

f
f
i
s

c
h
F
m
F
m
F

nd cooperative perspective for a set of vehicles as a unit under
consideration.

Traditionally, FSRs for a vehicular perspective are derived by
mapping the safety goals for a vehicle on to the individual com-
ponents of the vehicle’s functional architecture. This process of
mapping, also termed safety analysis, captures information on
the malfunctioning of a component that can lead to violation
of a safety goal. Safety analysis is performed using a system-
atic process like fault tree analysis (FTA) (Lee et al., 1985) or
failure mode effect analysis (FMEA) (Stamatis, 2003). To conduct
safety analysis, we need two inputs: (i) the functional architecture
hat captures a system’s decomposition into functional compo-
ents and the interconnection between these components, and
ii) safety goals.

According to ISO 26262 guidelines (ISO, 2018), safety goals are
erived from hazardous events. Hazardous events are found by
ecomposing the scenario description using the hazard analysis
nd risk assessment technique (HARA) (ISO, 2018). This method
o derive FSRs is depicted by part 3 and flows a and d of Fig. 2,
ith a and d acting as inputs to safety analysis. This method
f deriving FSRs from scenario descriptions has been standard
ractice in the automotive domain (ISO, 2018) for at least a
ecade (ISO, 2011).
During safety goal derivation using HARA, each safety goal is

ssigned an ASIL level. The ASIL level is allocated based on the
everity of the damage possible by the hazardous event, and the
robability of exposure and controllability of the vehicle during
he event, according to the metric provided by ISO 26262 (ISO,
018). Each FSR inherits the highest ASIL of the safety goal(s)
t is derived from. An FSR with ASIL ‘D’ indicates that the most
tringent safety measures must be applied to meet the FSR. In
ontrast, ASIL ‘A’ indicates a lower risk and lower level of safety
easures.
In a cooperative system, a safety goal for one vehicle can lead

o an FSR in another vehicle. For example, consider a simple co-
perative driving scenario of one vehicle (follower) autonomously
ollowing another manually-driven vehicle (leader) using vehicle-
o-vehicle communication for coordination. A safety goal in this
etting is: ‘‘the follower shall autonomously accelerate in accordance
ith the acceleration of the leader.’’ Even though the safety goal
eems to belong to the autonomously accelerating component of
he follower, it also maps to the functional architecture compo-
ent(s) of the leader. This safety goal leads to the following FSR
n the acceleration sensing component of the leader:‘‘failure in
he acceleration sensing component of leader shall not communicate
ncorrect acceleration information to the automatic steering com-
onent of the follower’’. Failing to meet this requirement (and its
ssociated safety goal) can potentially lead to a crash. Such safety
oals, however, will only be visible in the cooperative perspective.
In the proposed method, we have one item per individual

ehicle type, and an item for the entire cooperative system of
hich the vehicles are part. A cooperative system can have more
han one type of vehicle (for example, two vehicles with different
unctional architectures forming a cooperative system) and other
ntities like a cloud, enabling cooperative driving capabilities.
n the case of more than one type of vehicle (with different
unctional architectures), each kind of vehicle will form an item.
or each item, except for a cooperative system, the traditional ISO
6262 analysis described above is applicable. We believe that two
tems, as shown in Fig. 2 will generalize to other scenarios that
equire more than two items. Such cases only add replication of
raditional ISO 26262 analysis (see shaded part in Fig. 2) for each
dditional item (i.e., each unique functional architecture). In any
ase, there will only be one cooperative functional architecture
nd thus only a cooperative item. For the rest of this section, we
onsider two items: an individual vehicle (representative of all
ehicle functional architectures) and the cooperative system.
5

We propose that FSRs for a cooperative system are derived
from: (i) safety goals from the vehicular perspective (as in the
traditional method), and (ii) safety goals from the cooperative
perspective. Along these lines, our prior work (Kochanthara et al.,
2020) extended the traditional process to derive safety goals for
the vehicular perspective to the cooperative perspective (anno-
tated as part 2 in Fig. 2) to cover FSRs from both perspectives. This
process partitions the scenario description into vehicle-specific
and cooperation-specific parts. Next, we apply the traditional
safety goal identification steps to the two parts. FSRs from the
vehicular perspective are then derived, as discussed above.

We observed that the cooperative functional architecture
should be built using individual vehicle functional components.
This will preserve the mapping between functional architec-
ture of cooperative system and its implementation view (in
the technical architecture of the vehicles). A cooperative func-
tional architecture is required for safety analysis techniques like
FTA (Lee et al., 1985) to derive FSRs, by mapping safety goals
to components of functional architecture. We propose that the
cooperative functional architecture be built from (i) the functional
architecture of individual vehicles that constitute the cooperative
system and (ii) the cooperative scenario description of the in-
eraction between individual vehicles. With these requirements,
ystem architects can create a functional architecture of the
ooperative system such that the individual components of the
rchitecture are mapped onto the components of the functional
rchitecture of vehicles. This process is labeled as part 1 in
ig. 2; the complete process of deriving FSRs from the cooperative
erspective is shown by the labels 1, 2, b, and c.
In summary, the presented method maps each individual co-

perative driving scenario to a set of FSRs, where each FSR is
ssociated with at least an individual vehicle function, which
n turn is associated with a functional component. Note that a
ne-to-one mapping is suggested for the efficiency of method
nd is not mandatory. Mapping an FSR to multiple functional
omponents is unwise for two reasons: (1) the responsibility
s not clear, therefore implementation may go wrong; and (2)
esting may not be feasible at that level and only integration
esting can assess the achievement of that FSR. In the rest of the
aper, we assume that each FSR can be mapped to a functional
rchitecture component.

.2. Check fulfillment of FSRs

Our method to check for the fulfillment of FSRs in the technical
oftware architecture of individual vehicles is organized in two
hases. Phase one ensures that it is possible to realize all the
SRs by identifying whether there are conflicting FSRs. Phase two
escribes a systematic method to check for the fulfillment of
SRs in the technical architecture. Fig. 3 depicts an outline of the
rocess.
Our method uses both functional and technical views. The

unctional view is used for a sanity check among FSRs for con-
licts. The technical view, in contrast, is used for checking the
mplementation of each vehicular function (and its associated
afety mechanisms) against the corresponding FSRs.
In phase one, we check for conflicting FSRs. Two FSRs are

onflicting if both of them cannot be fulfilled at the same time. A
ypothetical example of conflicting FSRs is:
SR_01: A failure in the actuation sensor shall be indicated by a fault
essage from the sensor.
SR_02: A failure in the actuation sensor shall cease any further
essages from the sensor.
SR_01 and FSR_02 are conflicting requirements: sending a mes-
sage for FSR_01 and not sending any message for FSR_02 for the
same event (failure in the actuation sensor), which cannot be
realized simultaneously.

S. Kochanthara et al. The Journal of Systems & Software 179 (2021) 110991

q
n
F
f
a
(
d
y
t
I
c
o
w
e
g
T

a
d
b
o
c
w
i

o
p
i
K
(
c
i
f
o
t
a
a
s
c
o

o
c
2
o
e
l
a
f
a
i
c
d
d
w
i
e

t
w
t
t
d
b

a

f
s
t
a
s
t
s
s

s
g
s
m
i

4

o
t
i
w
a
l

(
l
c
c
d
s
p
t
f
h

s
d
i
s
T
a
3
a

s
c
a
w
t
b
s
o
r
e
b
d
(
e
a

Comparing every pair of FSRs for conflicts will lead to a
uadratic number of comparisons (if n is the number of FSRs, the
umber of comparisons is n(n − 1)/2 ≈ O(n2)). We compared
SRs that belong to the same functional architecture component
or conflicts. This can reduce the number of comparisons up to
factor of d, where d is the number of functional components

i.e., the number of comparisons can be reduced up to n(n −

)/d ≈ Ω(n2/d)). Such a reduction is possible since safety anal-
sis techniques for deriving FSRs ensure that each FSR belongs
o only one functional component (Lee et al., 1985; Fu, 2018;
SO, 2018). Further, FSRs belonging to a component can have
onflicts among themselves but not with the FSRs belonging to
ther components. For example, in our case study in Section 4,
e derived 31 FSRs across 8 functional components. Comparing
very pair of FSRs would result in 465 comparisons; however,
rouping FSRs based on functional components reduced it to 60.
his process is annotated as Phase 1 in Fig. 3.
The presence of conflicting requirements points to flaw(s) in

ny of the following: (i) the functional architecture, (ii) functional
ecomposition of the scenario, or (iii) the scenario itself. This is
ased on the assumption that the rest of the steps are carried
ut without mistakes. These conflicts need resolution before pro-
eeding. While resolving such conflicts is beyond the scope of this
ork, checking for these conflicts provides a sanity check that it

s possible to meet all FSRs in a given technical architecture.
An FSR may be fulfilled by a safety tactic or a combination

f safety tactics. To identify whether an FSR is fulfilled, we pro-
ose checking the vehicle technical software architecture for the
mplementation of safety tactics (Preschern et al., 2015; Wu and
elly, 2004) that can meet the FSR. This is achieved in two steps:
i) identify a set of safety tactics (hereafter referred to as appli-
able safety tactics) such that the implementation of each tactic,
n itself or in combination with some other tactics in the set, can
ulfill the FSR; and (ii) check whether any feasible combination
f tactics from the applicable safety tactics that are present in
he vehicle technical architecture meets the FSR. Note that, for
n FSR fi and its corresponding functional component ci, the
pplicable safety tactics for fi need to be compared with only the
afety tactics implementations used in the technical architecture
ounter part of ci and its associated safety mechanisms since fi is
nly associated with ci.
Applicable safety tactics for an FSR can be identified based

n the FSR description (by navigation through a tactic hierar-
hy) (Bass et al., 2012; Preschern et al., 2015; Wu and Kelly,
004) or by matching the FSR description to the descriptions
f each tactic (Preschern et al., 2015). Consider the following
xample FSR: ‘‘failure in the acceleration sensing component of
eader shall not communicate wrong acceleration information to the
utomatic steering component of the follower.’’ According to the
irst method—safety tactic hierarchy (Wu and Kelly, 2004)—an
pplicable safety tactic for failure containment using redundancy
s diverse redundancy (Wu and Kelly, 2004). The same tactic
an be identified by matching the FSR description to the tactic
escription (Preschern et al., 2015). For example, the diverse re-
undancy tactic’s description—‘‘introduction of a redundant system
hich allows detection or masking of failures in the specification or

mplementation as well as random hardware failures’’ (Preschern
t al., 2015)—matches the FSR description.
By the end of this two step process of identifying applicable

actics and checking the technical architecture for these tactics,
e will have a list of FSRs that do not have any feasible combina-
ion of tactics implemented. If the list is empty, then the vehicular
echnical architecture fulfills all the FSRs for the given cooperative
riving scenario. Otherwise, the list shows the FSRs that have not
een fulfilled.
As a by-product, for each unfulfilled FSR, we will also have

set of applicable tactics such that some feasible combinations
6

rom this set can fulfill the FSR. These combinations point to a
et of safety patterns since safety patterns are associated with
he safety tactics they implement (Preschern et al., 2015). These
pplicable safety patterns (and applicable tactics) provide the
ystem architects with a set of possible design decisions to realize
he unfulfilled FSRs. Detailed analysis on the applicability of these
afety patterns and trade-off analysis among them is beyond the
cope of our work.
Note that the architecture tactics are not associated with any

afety integrity level. Therefore, whether a tactic can address a
iven ASIL level is a research topic on its own and is beyond the
cope of our work. Our objective for (the second phase of) our
ethod is to identify relevant tactics to see whether they are

mplemented in the technical software architecture.

. Case study

This section presents an application of the proposed method
n a cooperative driving scenario: platooning. First, we describe
he platooning scenario and the functional architecture of an
ndividual vehicle, the two inputs to our proposed method. Next,
e present the results of applying our method to platooning
nd its interpretation. All artifacts generated are available on-
ine (Kochanthara, 2021).

A platoon is a vehicle train in which a manually driven vehicle
referred to as leader) is autonomously closely followed by at
east one vehicle (referred to as follower). In a platoon, vehi-
les coordinate with each other using vehicle-to-vehicle (V2V)
ommunication. Platooning has shown the potential to (i) re-
uce average fuel consumption (Liang et al., 2015); (ii) improve
afety—for example, by preventing rear end collisions by enabling
latoon-wide braking (Pelliccione et al., 2020); and (iii) increase
raffic throughput by increasing average speed and reducing traf-
ic jams. In this case study, the scope of platooning is limited to
ighways and highway interchanges.
We applied the proposed method on a cooperative driving

oftware architecture developed for the i-CAVE project5 that is
eployed on Renault Twizy6 – a small electric vehicle. The vehicle
s fitted with extra sensors and actuators including a complete
oftware stack (hereafter referred to as i-CAVE demonstrator).
he software stack of the i-CAVE demonstrator is deployed on
combination of a real-time computer – an Advantech ARK-
520P7 – that runs the Simulink RealTime operating system and
n Nvidia’s Drive PX2 platform.8
A simplified functional architecture of i-CAVE demonstrator is

hown in Fig. 4a. For simplicity, we present only those functional
omponents that are fundamental to achieve platooning. The
rrows indicate data flow from sensor abstraction to actuator
hile the system as a whole is a closed control loop. Some of
he functional architecture components are grouped to classes
ased on their functionality (as shown in Fig. 4a). For example,
ensor abstraction is a class of components that contain two types
f functional components namely actuation sensors and envi-
onment perceptions sensors. The functional components inside
ach class act as independent entities and do not have data flow
etween them. The functional components of the architecture are
escribed below:
a) Sensor abstraction consists of hardware sensors and their
ncapsulation via its software interfaces. Two classes of sensors
re functionally distinguished: (i) actuation sensors that monitor

5 https://i-cave.nl/.
6 https://www.renault.co.uk/electric-vehicles/twizy.html.
7 https://bit.ly/AdvantechARK-3520P.
8 https://developer.nvidia.com/drive/.

https://i-cave.nl/
https://www.renault.co.uk/electric-vehicles/twizy.html
https://bit.ly/AdvantechARK-3520P
https://developer.nvidia.com/drive/

S. Kochanthara et al. The Journal of Systems & Software 179 (2021) 110991

G
t
(

i
d

p

A
f

Fig. 4. A simplified functional architecture of i-CAVE demonstrator and the platooning architecture (cooperative architecture) derived from it.
vehicle state and dynamic attributes like speed and inertial mea-
surements; (ii) environment perception sensors, like RADAR and
PS, that monitor the vehicle’s external environment and localize
he vehicle on the map.
b) Sensor fusion combines data from different kinds of sensors
to generate information about the vehicle and its surroundings.
The sensor fusion of i-CAVE demonstrator has three functional
components: (i) host tracking that combines location and inertial
measurement data to determine the absolute position of the
vehicle, (ii) vehicle state estimator that combines acceleration
nformation with data from actuation sensors to estimate the
ynamic state of the vehicle, and (iii) target tracking component

that combines data from environment perception sensors like
radar to detect objects and other vehicles in the surroundings of
the vehicle.
(c) V2V communication communicates actuation-related signals
for platooning between a vehicle and its surrounding vehicles.
(d) Vehicle control generates control signals for autonomous ac-
tuation of the vehicle using the information about the state of
the vehicle, its surroundings, and information about the vehicle in
front (received via V2V communication). When manually driven,
this component receives actuation commands from a human
driver.
(e) Actuator is hardware and corresponding software interface for
accelerating, steering, and braking of the vehicle, also known as
drive-by-wire interface. Note that the components to fulfill non-
functional requirements (outside the platooning functionality),
like safety management components, are not shown since they
are not part of basic functional architecture needed to achieve
platooning.

4.1. Derive FSRs for platooning

Following are the steps in the first part of our method, de-
icted in Fig. 2.
Functional decomposition: We decompose the platooning sce-

nario description (also referred to as SD) into five sub-scenarios.

SC-1 A vehicle can join a platoon as a follower after the last
follower.

SC-2 A follower can leave a platoon.
SC-3 A platoon can split into two platoons.
SC-4 Two adjacent platoons can merge into a single platoon.
SC-5 When the leader leaves a platoon, the first follower be-
comes the new leader.

platoon is formed when one vehicle joins another vehicle to

orm a two-vehicle platoon. Eventually, a platoon is disbanded

7

when a vehicle leaves a two-vehicle platoon. The join and leave
actions in a platoon are performed manually by the driver of the
vehicle.

The platooning scenario description is partitioned into 9 func-
tions from the vehicle perspective and 6 functions from the
cooperative perspective. These functions are listed in Table 1.

Hazardous events: Next, we identify hazards relating to these
functions. We use the seven most common guide words from the
automotive domain (no, more, less, as well as, part of, reverse, and
other than) (IEC, 2010) to identify 57 hazards. For example, the
platoon function – ‘‘keep sufficiently safe inter-vehicular distance’’
– with the guide word less creates the hazard – ‘‘keeping less
than sufficiently safe inter-vehicular distance’’ – that can potentially
lead to crash inside a platoon. The list of hazards is available
online (Kochanthara, 2021) and the count of hazards derived from
each function is shown in Table 1.

These 57 hazards (26 from cooperative perspective and 31
from vehicular perspective) when combined with operational
modes (7 from cooperative perspective and 6 from vehicle per-
spective) and operational situations (2 per perspective) resulted
in 340 hazardous events, 140 from vehicle perspective and 200
from cooperative perspective. Note that not every combination of
hazards, operational modes, and operational situations is feasible
and the infeasible combinations are not considered further. An
example of a hazardous event from cooperative perspective is:
‘‘keeping less than sufficiently safe inter-vehicular distance (hazard)
during merge with another platoon (operational mode) on highway
(operational situation)’’.

Safety goals: For each hazardous event, we created a safety goal
to prevent it. We merged similar goals in each perspective to have
14 and 11 safety goals from vehicle and cooperative perspective
respectively. For example, the safety goal ‘‘sufficiently safe inter-
vehicular distance shall be kept regardless of the operational mode
or operational situation of the platoon’’ is formed by combining the
goals derived from 56 hazardous events.

For ASIL allocation to safety goals, we assumed that all vehicles
inside a platoon, except for the leader, cannot rely on a human
driver for fallback in case of any failure. For vehicles joining or
leaving a platoon, during the process of joining and leaving, we
assume a human driver for fallback in case of failures. We have
given the lowest score for controllability in the scenarios pertain-
ing to follower vehicles. Since the leader is human-driven, the
controllability of the leader vehicle is assumed to be the highest.
The highest levels are assigned to the severity if a vehicle or
platoon failure causes a crash since we assumed the speed range
for highways. We assumed different exposure levels based on

scenarios (joining platoon, leaving platoon, splitting of a platoon,

S. Kochanthara et al. The Journal of Systems & Software 179 (2021) 110991

T
H

s
2

c
c
w
t
m
d
o
m
f
(
a
a
w
f
m
f
f
d
f
d
t
t

g
(
v
i
i
c

4

p
l
s
a
F

(
o
c
r
v
a
g
r
F

l
s
t
v
a
c

p
c
d

4

i

o
a
v
t
o
W
F
i
t
o

able 1
azards for functions identified from platooning description.
Cooperative functions Hazard (count)

Keep optimized inter-vehicular distance within a platoon 4
Make place for a vehicle to join 6
Merge with another platoon 4
Split into two platoons 4
Change leader 4
Keep proper distance to the surrounding traffic 4

Vehicle functions Hazard (count)

Autonomously follow the vehicle in front (follower) 3
Keep a proper distance to the surrounding traffic as
part of a platoon (follower)

5

Leading the platoon (leader) 4
Take leader role of platoon 3
Switch from leader to follower role 3
Join platoon (follower) 2
Leave platoon 2
Timely react to the actions of surrounding vehicles
in a platoon

5

Follow traffic indications, signs and rules 4

merging of two platoons, and change of leader in a platoon) and
operational situation (highway or highway-interchange) with the
highest exposure levels in operational scenario highway. There-
fore most of the safety goals are assigned ASIL D. The detailed
list of exposure, controllability, and severity levels assigned and re-
ulting ASIL for each safety goal is available online (Kochanthara,
021).
Cooperative functional architecture: Fig. 4b shows a simplified

ooperative functional architecture for platooning with functional
omponents for platooning as well as the working of vehicles
ithin a platoon at the functional level. The cooperative func-
ional architecture is created by four system architects, who are
echanical engineers involved in the development of i-CAVE
emonstrator with at least a master’s degree and a minimum
f two years of experience in automotive architecture develop-
ent. The cooperative functional architecture contains the same

unctional components as the vehicular functional architecture
see Figs. 4a and 4b), but only the components that are used to
ccomplish the cooperative functions and their interconnections
re used. For example, a design choice of the system architects
as to communicate the information from the vehicle control

unctional unit of the leader to the follower and not to com-
unicate the sensor information between the leader and the

ollower. Thus, in the leader, the sensor abstraction and sensor
usion class of functional components are not used for cooperative
riving functions. Also, these functional components are not used
or leader’s own driving functions since the leader is manually
riven. Therefore, in the cooperative functional architecture, in
he leader block, these components are not shown for leader (see
he leader block at the top of Fig. 4b).

Safety analysis: Finally, FSRs are derived by mapping safety
oals to the functional architectures using fault tree analysis
FTA) (Lee et al., 1985). The FTA generated 16 FSRs from the
ehicle perspective and 15 FSRs from the cooperative perspective.
.e., 31 in total. The count of FSRs for each functional component
s presented in Fig. 5 along with some example FSRs in the second
olumn of Table 2.

.1.1. Interpretation of results
In our case study, the traditional safety analysis (vehicular

erspective) according to ISO 26262, resulted in 16 safety goals
eading to 16 FSRs. While the proposed extension of safety analy-
is resulted in 9 more safety goals and 15 more FSRs, resulting in
total of 25 safety goals and 31 FSRs. The maximum number of
SRs from the vehicular perspective is associated with the vehicle
8

Fig. 5. The 31 FSRs, grouped by associated functional component. The total FSRs
for each group is shown at the end of each stacked bar.

control component (6 FSRs), while in the context of FSRs from the
cooperative perspective, it is the V2V communication component
5 FSRs). Another interesting note is that most of the FSRs (17
ut of 31; 12 from the vehicular perspective and 5 from the
ooperative perspective) is assigned with ASIL D while only a
elatively low number of safety goals (7 out of 25; 6 from the
ehicular perspective and 1 from the cooperative perspective)
s assigned with ASIL D. This difference in ASILs between safety
oals and FSRs is caused by the fact that most functional safety
equirements are related to multiple functional safety goals, and
SRs inherit the highest ASIL of their related safety goals.
Our count of FSRs (31 FSRs from 25 safety goals in total) is

ow compared to industry scenarios in which a similar count of
afety goals are linked to more than 100 FSRs. We believe that
he reduced number of FSRs is related to the simplicity of our
ehicle functional architecture. To give perspective, a reference
rchitecture presented in Serban et al. (2018) has 39 functional
omponents while our simplified architecture has 8.
It is possible to have overlap of FSRs derived from both the

erspectives. That is, the same FSR can be derived as a result of
ooperative and vehicular perspectives. Our case study, however,
id not result in any overlapping FSRs.

.2. Check fulfillment of FSRs

Following are the steps in second part of our method, depicted
n Fig. 3.

Check for conflicts in the derived FSRs: We grouped FSRs based
n their associated functional architecture component. For ex-
mple 9 FSRs belong to the functional architecture component
ehicle control and 3 of them is shown in Table 2 (see details in
he third–fifth row, first and second column). The overall count
f FSRs grouped on associated component is shown in Fig. 5.
ithin each group, we compared the descriptions of each pair of

SRs to identify potential conflicts. We did not find any conflict
n the 8 groups. The complete list of FSRs grouped by func-
ional architecture component and compared pairwise is available
nline (Kochanthara, 2021).
Identify safety tactics for implementing each FSR: For each FSR

we identified a list of applicable safety tactics. We chose the
following 13 safety tactics on which the 15 most widely used
safety patterns build (Preschern et al., 2015; Wu and Kelly, 2004):
simplicity, substitution, sanity check, condition monitoring, compar-
ison, diverse redundancy, replication redundancy, repair, degrada-
tion, voting, override, barrier and heartbeat (Preschern et al., 2015;
Wu and Kelly, 2004).

Each safety tactic has an aim and a description of its scope
(Preschern et al., 2015). For example, the aim of safety tactic

S. Kochanthara et al. The Journal of Systems & Software 179 (2021) 110991

T
F
o

p
d
o
w
a
t
p
F
2

F
F
t
t
C
i
d
a
i
t
F
F
t
s
F
f
o
o

able 2
SRs that are found to be fulfilled in the technical architecture of i-CAVE demonstrator. FSRs in blue cells are derived from cooperative (platooning) perspective and
ther FSRs are derived from vehicle perspective.

FSR Applied tactics Implementation in technical architecture

Environment perception
sensors

Failure of environment
perception sensors shall not
result in the generation of
incorrect information on
distance to the surrounding
vehicles and objects.

Sanity Check, Barrier,
Heartbeat, Condition
Monitoring

Cyclic Redundancy Check (CRC) for messages (sanity check)
and validity time per message (heartbeat) is implemented
in the Environment perception Sensors component while a
watch dog is implemented in the safety management
(condition monitoring). Software interface for each sensor is
implemented independent of each other to protect from
unintended influence between interfaces (barrier).

Actuation sensors External interference shall not
invalidate/corrupt data from
actuation sensors.

Sanity Check CRC and a message counter is implemented

Vehicle control
A failure in vehicle control shall
not cause generation of
incorrect actuation signals

Barrier, Condition
monitoring

Two independent driving modes are implemented in
vehicle control component. One mode generate control
signals (when in follower role) relying on V2V
communication and the other without relying on V2V
communication (barrier). A monitor for checking correct
working of (and switching between) the two modes is
implemented in safety management (condition monitoring).

A failure in vehicle control
shall neither inhibit nor modify
the input from driver to
further pass on.

Simplicity The driver input is bypassed directly to Actuators.

A failure in vehicle control shall
not cause a switch to manual
drive mode while in
platooning mode

Sanity Check, Override,
Condition monitoring

A state machine based method for mode selection and
monitoring is implemented as a part of safety management.

V2V Communication Failure in V2V communication
shall not transmit incorrect
information to or receive
incorrect information from a
vehicle joining or leaving a
platoon.

Heartbeat Heartbeat messages to continuously monitor reliability of
communication channel are implemented in V2V
Communication.
t
t
t
p
o
b
F
F
s
p
u
t
o
t

4

o
I
i
w
p
c
o
a
c

o
f
t

simplicity is to ‘‘avoid failure by keeping a system as simple as pos-
sible’’ and its description is ‘‘Simplicity reduces system complexity.
It includes structuring methods or cutting unnecessary functionality
and organizing system elements or reducing them to their core safety
functionality to eliminate hazards.’’ Preschern et al. (2015).

Applicable tactics for each FSR: To identify whether an im-
lementation of a safety tactic can realize an FSR, the aim and
escription of the safety tactic is matched with the description
f the FSR. Examples of FSRs, safety tactics that match them as
ell as their implementation are presented in Table 2. Table 2
lso shows that the first FSR listed does not match the simplicity
actic (not present in column 3) resulting from the inherent com-
lexity of environment perception sensors. A complete list of the 31
SRs and matched safety tactics is available online (Kochanthara,
021).
Check for safety tactics implementations in technical architecture:

inally, to identify whether the vehicle architecture meets an
SR, we analyzed the implementation of the associated func-
ional architecture component in the technical architecture of
he i-CAVE demonstrator. The technical architecture of the i-
AVE demonstrator is implemented in MATLAB/Simulink. We
nspected the MATLAB code as well as the Simulink state flow
iagram to identify functional architecture components as well
s any associated safety management system. We mapped the
mplementations of these functional architecture components to
he safety tactics identified for each FSR to evaluate whether each
SR is fulfilled by the technical architecture. Table 2 shows the
SRs that are found to be fulfilled in the technical architecture,
he tactics applied from the set of applicable tactics, and how the
pecific combination of applied tactics fulfills the corresponding
SR. Also, an example of FSR that is found to be unfulfilled is: ‘‘A
ailure in Actuator (software interface) should not cause propagation
f incorrect control signals to hardware actuators’’. A complete list

f unfulfilled FSRs is available online (Kochanthara, 2021). e

9

For each functional component, Fig. 5 shows the count of FSRs
hat are realized and not realized from the vehicle as well as
he platooning perspective, respectively. Recall from Section 4.1
hat we derived 16 and 15 FSRs from the vehicle and platooning
erspective, a majority of them relate to vehicle control. Out
f the 16 FSRs for the vehicle perspective, 3 FSR are fulfilled
y the vehicular technical architecture and the remaining 13
SRs are unfulfilled. Likewise, for the cooperative perspective, 3
SRs are fulfilled and the remaining 12 FSRs are unfulfilled. We
howed our results to the four system architects of the i-CAVE
roject. They confirmed that fulfilled FSRs are implemented and
nfulfilled FSRs are not implemented in i-CAVE demonstrator. For
he 25 FSRs unfulfilled by i-CAVE demonstrator, we provide a list
f applicable safety patterns that can act as a starting point for
he next design iteration of the technical architecture.

.2.1. Interpretation of results

Our study shows that the technical architecture meets only 6
ut of 31 FSRs (with all six fulfilled FSRs presented in Table 2).
n our case study, we checked whether FSRs are fulfilled in the
-CAVE demonstrator using 13 safety tactics. The set of tactics
as chosen based on their use in the 15 most widely used safety
atterns (Preschern et al., 2015). It is possible that we might have
lassified some fulfilled FSRs to be unfulfilled since we considered
nly 13 tactics. However, the architects of the i-CAVE project
greed to our findings. This indicates that our classification was
orrect.
Our assessment using these safety tactics showed that, out

f the 15 FSRs from the cooperative perspective, 12 were unful-
illed. Notably, we found almost as many unfulfilled FSRs from
he vehicle perspective as from the cooperative perspective. An
xplanation for this observation relates to the capabilities of the

S. Kochanthara et al. The Journal of Systems & Software 179 (2021) 110991

v
t
e
e
l
o
M
w
t
A
i
t
s
a
o
b
i

c
o
b
c
s
2
t
c
f
i
a
m
o
S
m

g
p
d
s
c
m
b
2
s

5

i
i
B
s

5

t
a
a
a
p
f
p

b
f
a
b
d
e
d
f
p

i
e
a
p
i
c
c
o

f

ehicle behind the i-CAVE demonstrator. The i-CAVE demonstra-
or uses a Renault Twizy9 which is a bare-bones two seater
lectric vehicle. To give perspective, the Renault Twizy is small
nough (2338 mm × 1381 mm) to be used in bicycle lanes, is
ightweight (gross weight of 690 kg) and has a driving range
f up to 51 kilometers. In contrast, Tesla’s entry level vehicle,
odel 3,10 is almost double in dimension, three times in gross
eight, and more than ten times in driving range. As a result,
he i-CAVE demonstrator has limited features and components.
lso, the demonstrator is a work-in-progress being developed
teratively by a multi-domain team. Since some parts of the
echnical architecture were not implemented during our case
tudy, our results merely point to the missing implementations
s unfulfilled FSRs in the vehicle perspective. Future iterations
f the demonstrator11 can use this list of unfulfilled FSRs from
oth the vehicle and the cooperative perspective to improve the
-CAVE technical architecture.

In summary, our case study found unfulfilled FSRs from the
ooperative perspective showing the viability and applicability
f the proposed method. The results of our case study show
etter coverage of safety goals by providing additional FSRs as
ompared to the ISO 26262 process (ISO, 2018). The current
afety engineering methods to derive FSRs are outlined by ISO
6262 standard (ISO, 2018; Nilsson et al., 2013) which lacks
he cooperative perspective. It provided valuable insights in the
ontext of i-CAVE project. In our case study, we found 15 FSRs
rom the cooperative perspective, making up 48% of all FSRs. Yet
t is still a mere illustration of our method. Clearly, replications
re required to verify the generalizability and scalability of our
ethod. Nonetheless, our results corroborate the existing body
f knowledge (Dajsuren and Loupias, 2019; Nilsson et al., 2013;
aberi et al., 2018) in showing that the current safety standard
isses FSRs from the cooperative perspective.
The results of our case study show better coverage of safety

oals by providing additional FSRs as compared to the ISO 26262
rocess (ISO, 2018). The current safety engineering methods to
erive FSRs are outlined by ISO 26262 standard (ISO, 2018; Nils-
on et al., 2013) which lacks the cooperative perspective. In our
ase study, we found 15 FSRs from the cooperative perspective,
aking up 48% of all FSRs. Our results corroborate the existing
ody of knowledge (Dajsuren and Loupias, 2019; Nilsson et al.,
013; Saberi et al., 2018) in showing that the current safety
tandard misses FSRs from the cooperative perspective.

. Discussion

We present a deeper exploration into the proposed method
n terms of implicit assumptions. We describe how our solution
s likely to apply to cooperative driving scenarios in real-life.
elow we discuss the implicit assumptions in our method, the
calability, generalizability, and the scope of our method.

.1. Assumptions

The proposed method borrows some assumptions applicable
o single-vehicle and applies them to cooperative driving. These
ssumptions are derived from the safety engineering domain
s well as the software architecture domain. For example, it is
ssumed that proper functional separation of the system is always
ossible. This results in every FSR being mapped to exactly one
unctional component. Such a functional separation is a standard
ractice in the safety engineering domain and has been followed

9 https://www.renault.co.uk/electric-vehicles/twizy/specifications.html.
10 https://www.tesla.com/model3.
11 https://i-cave.nl/.
10
for at least five decades (Lee et al., 1985). This separation is
also underlined by the product development standard in the
automotive domain—ISO26262 (ISO, 2011, 2018) and automo-
tive architecture frameworks (Broy et al., 2009). Nonetheless,
the applicability of this assumption in cooperative driving is not
established.

Similarly, the second part of our method relies on two as-
sumptions: (i) it is possible to map functional components to
implementations in the technical software architecture; and (ii)
every FSR can be fulfilled by a combination of safety tactics.
Our first assumption comes from the architecture frameworks
in the automotive domain (Broy et al., 2009). The assumption
about safety tactics stems from the architecture domain, which
considers safety tactics as design primitives, and architectures
are formed by the combination of design primitives (Bass et al.,
2012). Mature architecture assessment methods like ATAM also
rely on this assumption, albeit in the context of tactics for the
quality attributes they focus on Kazman et al. (1998) and Bass
et al. (2012). Nonetheless, the applicability of this assumption in
the automotive domain is not established.

5.2. Applicability

Our case study presents a simplified version of real-life coop-
erative driving use-cases. In real-life, the proposed method should
work on a bigger scale and apply to cooperative driving systems
with various entities. The potential factors limiting the scala-
bility and generalizability of a method include the complexity
of the system, heterogeneity of participating systems (e.g., dif-
ferent types of vehicles (car and truck) and/or vehicles from
different manufacturers), and inclusion of entities other than par-
ticipating vehicles, like the cloud, to enable cooperative driving
functionalities.

Scalability: Our method is modular, which means that it is
likely to scale to complex systems. The method uses two levels
of abstraction at the architecture level. The functional architec-
ture view separates functionalities such that each component
performs one unique function and collectively performs a cooper-
ative driving function. This ensures that the safety requirements
for cooperative driving functions can be allocated to individual
vehicular components without entering into their implemen-
tation details. In the second part of the method, all the FSRs
pertaining to one component are assessed against their imple-
mentation details. Segregation of safety requirements pertaining
to each component and handling each component separately,
ensures the applicability of our approach to complex systems.

Heterogeneity: The functional architecture view acts as a black
ox separating functional components and interaction among
unctional components from their implementation, making our
pproach agnostic of vehicle type and brand. As a result, we
elieve that our approach can assess the safety of cooperative
riving systems that involves different kinds of vehicles (for
xample, platoon containing both trucks and cars) as well as
ifferent automotive brands (for example, platoon containing cars
rom BMW and GM) as long as the functional architectures of the
articipating entities are provided.
Entities other than vehicles: Entities enabling cooperative driv-

ng functionalities can be beyond participating vehicles. One such
xample is cloud communication. The cooperative architecture
nd corresponding item definition in the first phase of our ap-
roach are specifically introduced to ensure that all the entities
nvolved in enabling cooperative functionalities are systemati-
ally considered in the safety analysis. For example, in the use
ases that include cloud communication, the cloud will be a part
f the cooperative architecture.
Fail-operational and fail-safe designs: Our work is designed

or cooperative systems irrespective of their operational design

https://www.renault.co.uk/electric-vehicles/twizy/specifications.html
https://www.tesla.com/model3
https://i-cave.nl/

S. Kochanthara et al. The Journal of Systems & Software 179 (2021) 110991

d
o
m
s
p

6

c
i
a
r
t

6

f
t
t
r
e
b
b
u
t

o
N
a
t
t
a
f
G
a
o
m

o
o
2
(
p
m
(
(

f
a
i
t
a
r
2
a
f
c
m
r
t
t
b
p
i

omain and whether they are designed to be fail-operational
r fail-safe (Hasan, 2020; Sawade et al., 2018). The proposed
ethod is generic for both fail-operational as well as fail-safe
ystems. Our method ensures that both cooperative and vehicular
erspectives are covered while deriving FSRs.

. Related work

The proposed method has two parts: (i) deriving FSRs for
ooperative driving and (ii) check whether each FSR is fulfilled
n the technical software architecture of the vehicle. These two
spects are addressed separately in the literature, and the related
esearch primarily stems from two domains: software architec-
ure and safety engineering.

.1. Software architecture

A variety of architecture assessment techniques has emerged
rom the software architecture research community in the past
hree decades. These architecture assessment techniques assess
he ‘‘goodness’’ (Bass et al., 2012) of an architecture(s) with
espect to some property (or a set of properties). Such prop-
rties are termed as quality attributes. Quality attributes can
e divided into two broad categories: operational (e.g. relia-
ility, performance) and development (e.g. maintainability, re-
sability) (Bosch and Molin, 1999). This paper focuses on func-
ional safety as an operational quality attribute.

The software architecture assessment techniques proposed for
perational quality attributes (Babar et al., 2004; Dobrica and
iemela, 2002) mainly use mathematical modeling & analysis
nd scenarios of system operation (also known as scenario-based
echniques) to uncover whether the architecture achieves the in-
ended quality attributes sufficiently (Bengtsson et al., 2004). The
ssessment techniques that use mathematical modeling mainly
ocus on reliability and performance as quality attributes (Roy and
raham, 2008). Some studies have shown that these techniques
re not scalable and hence not suitable for complex systems
f systems like cooperative driving systems that are built by
ultiple inter-disciplinary teams (Roy and Graham, 2008).
The prominent scenario-based architecture assessment meth-

ds for operational quality attributes are the Architecture Trade-
ff Analysis Method (ATAM) (Kazman et al., 1998; Bass et al.,
012), Scenario-Based software Architecture Re-engineering
SBAR) (Bengtsson and Bosch, 1998), Software architecture Com-
arison Analysis Method (SCAM) (Stoermer et al., 2003), Do-
ain Specific software Architecture comparison Model (DoSAM)

Bergner et al., 2005), and Pattern-Based Architecture Reviews
PBAR) (Harrison and Avgeriou, 2010).

PBAR is designed for light weight evaluation, primarily per-
ormed on small projects with some case studies on projects with
t most 10 developers (Harrison and Avgeriou, 2010, 2013). It
s not suitable for evaluation of complex safety-critical systems
hat we assess in this paper (Harrison and Avgeriou, 2010). SCAM
nd DoSAM are designed for comparing different architectures
ather than assessing an individual architecture (Stoermer et al.,
003; Bergner et al., 2005). These methods grades each of the
rchitectures under comparison on a normalized scale, typically
rom 0 to 100, and use this to characterize the fitness of a
andidate architecture in contrast to others. SBAR is an iterative
ethod for re-engineering of architectures for functionality based

e-design (Bengtsson and Bosch, 1998) including for architectures
hat might not properly separate functional concerns. We assume
hat the automotive architectures for our analysis are designed
ased on separation of functional concerns since this is a standard
ractice in the automotive domain, enforced by safety engineer-
ng (ISO, 2011, 2018). Moreover, SBAR suggests scenario-based
11
techniques for development quality attributes and simulation
based assessment for operational quality attributes (Dobrica and
Niemela, 2002). In contrast we consider scenario-based methods
for the operational quality attribute functional safety.

ATAM is the most mature and widely used architecture assess-
ment method in practice (Bass et al., 2012). ATAM, in its current
form, is primarily used to analyze trade off among different
quality attributes and to identify stress points and sensitivity
points in the architecture under assessment. ATAM facilitates
usage of existing knowledge in the form of tactics, which we take
inspiration from and reuse in our proposed method.

ATAM considers six quality attributes, however, functional
safety is not one of them (Bass et al., 2012). Note that case stud-
ies of ATAM’s application to safety critical domains like avionic
systems (Barbacci et al., 2003) do not stress safety as a pri-
mary quality attribute either. Even though ATAM provides some
methods for scenario elicitation, it does not provide a systematic
method for scenario decomposition to generate requirements for
individual architecture components. This is crucial in the systems
of systems context, since a scenario may lead to a multitude of
requirements affecting different systems which are to interact
with each other to perform the intended action(s).

In summary, within the field of software architecture, none
of the software architecture assessment methods that we found
are applicable for analyzing the functional safety of cooperative
automotive systems.

6.2. Safety engineering

Now, we present related research on the application of safety
engineering concepts in automotive software and system evalua-
tion. We primarily present related research on (i) identifying FSRs
in automotive settings and (ii) methods to check or ensure that a
technical architecture realizes FSRs.

Identifying FSRs: Studies on deriving FSRs largely focused on
the perspective of individual vehicle as a system while just a
few explored the perspective of a set of vehicles as a system.
Studies to derive FSRs from the vehicle perspective present dif-
ferent mechanisms to generate safety goals and map these to
the functional architecture using safety analysis methods. For
instance, Beckers et al. (2014) presents a model-based method
to define FSRs given safety goals while Abdulkhaleq et al. (2017)
uses system theory for safety analysis.

Studies on cooperative driving systems try to replicate the
mechanisms from an individual vehicle perspective. For example,
Oscarsson et al. (2016) uses system theory for the safety analysis
from the perspective of set of vehicles as a system. Another study
proposed an alternative safety analysis technique, using possible
accidents as a starting point to identify FSRs (Stoltz-Sundnes,
2019). Our study closely follows the study by Saberi et al. (2018)
in deriving FSRs from cooperative driving scenarios.

Checking or ensuring architecture realizes FSRs: Studies on a
single vehicle perspective use many different approaches to en-
sure that systems satisfy FSRs. One approach uses an architecture
description language for safety verification (Cuenot et al., 2014).
Martin et al. (2020) uses architecture patterns to incorporate FSRs
in the design phase. Sljivo et al. (2020) presents a methodology
for fulfillment of FSRs at design time using design patterns and
contracts. Other approaches use formal methods to verify that
systems satisfy FSRs, although the solutions do not scale (Althoff
and Dolan, 2014; Bhatti et al., 2016; Mallozzi et al., 2016).

Ensuring fulfillment of FSRs as part of a cooperative system
is challenging (Pelliccione et al., 2020). A majority of works on
cooperative systems proposes a reference architecture from a
system of systems viewpoint (Pelliccione et al., 2020). Some other

S. Kochanthara et al. The Journal of Systems & Software 179 (2021) 110991

s
o
a

c
d
f
a

7

a
c
a

r
s
i
s
e
t
t
s
a

s
t
t
i
e
t
s

W
o
s
W

D

c
t

R

A

A

A

B

olutions look at specific architecture components in specific co-
perative scenarios, thereby missing high-level insights (Dajsuren
nd Loupias, 2019).
To the best of our knowledge these studies, with their scope of

omplete system architecture, focus on fulfilling FSRs during the
esign phase. This paper, in contrast, focuses on checking for the
ulfillment of FSRs on existing architectures or when designing
rchitectures.

. Threats to validity

Our proposed method and the findings from the case study
re susceptible to threats relating to human participation and
hoice of techniques. Below, we present potential threats and our
ttempts at mitigating them.
Cognitive bias: Several steps of our proposed method and the

elated case study rely on the expert opinions of architects. This
tep may have resulted in cognitive bias (Zalewski et al., 2017)
n relation to human judgment. To mitigate this threat, for every
tep that required human judgment, we consulted at least three
xperts (in addition to the first two authors), who performed
he steps independently. For example, (i) the cooperative func-
ional architecture was created from the vehicle architecture and
cenario descriptions, in consultation with four expert system
rchitects, independently (ii) two of the authors independently

checked for conflicts among FSRs; and (iii) The validity of the
afety goals depends on the decomposition of a scenario descrip-
ion to functions. The decomposition of the scenario description
o functions was validated by the third author, who is an expert
n functional decomposition with over five years of industry
xperience in the functional safety domain and a participant in
he development of the automotive industry’s functional safety
tandards ISO 26262 and ISO 21448.
Technical bias: To generate FSRs, we chose fault tree analy-

sis (Lee et al., 1985) as the safety analysis technique. The choice
of other techniques, like failure mode effect analysis (Stamatis,
2003), may influence the outcome. We need empirical studies to
check whether the choice of safety analysis technique introduces
differences in findings.

Choice of safety tactics: In our case study, we checked whether
the FSRs are fulfilled in the i-CAVE demonstrator using 13 safety
tactics. The safety tactics are chosen based on their use in the 15
most widely used safety patterns (Preschern et al., 2013, 2015).
This list of safety tactics is not complete and defines the scope of
our case study.

8. Future work

Our work is an initial step in the direction of functional safety
assessment for cooperative driving. This section presents poten-
tial future directions.

Cyber-security alongside functional safety: Cyber-security is a
prominent directions to explore in cooperative driving alongside
functional safety. The connected nature of cooperative driving in-
creases the potential attack surfaces and can compromise the sys-
tem’s functional safety. Integral approaches that consider safety
and security together are a potential future research direction.

Hardware topology: Functional safety is often achieved via
hardware architecture or a combination of hardware and soft-
ware. The second part of our method focused only at the software
level. Extending the second part of the approach to address func-
tional safety requirements that are fulfilled specifically in hard-
ware topology and the combination of hardware and software is
the logical next step of the proposed approach.

ASILs for safety tactics: Currently, safety tactics are not associ-

ated with ASIL levels. This means that, from the current taxonomy

12
of safety tactics, we can only conclude whether a tactic addresses
an FSR rather than whether it addresses the FSR at the specific
level of ASIL. Augmenting safety tactics with ASILs is a potential
future research direction. This will allow prioritizing FSRs based
on the risk associated with them. This may also be a step towards
a trade-off analysis where each FSR can be traded off with other
requirements based on the risk associated.

Alternative architecture abstraction levels: Currently, the second
part of our approach, checking fulfillment of FSRs, uses the tech-
nical architecture view. It can be argued that a higher level of
architecture abstraction than the technical architecture view can
be used instead. We plan to evaluate this in the future.

Finally, our method adapts existing solutions for addressing
functional safety in the context of cooperative driving scenarios.
Alternative methods to check for unfulfilled FSRs will be an
interesting direction to explore.

9. Conclusion

This paper investigated whether the architecture of a single
vehicle meets the functional safety requirements for cooperative
driving. We proposed a method to ensure that an automotive
architecture is functionally safe to operate in given scenarios. The
proposed method derives functional safety requirements for a
cooperative driving scenario and checks whether they are ful-
filled in the technical architecture of a vehicle. The method is
a combination of methods adapted from the safety engineering
and software architecture domains. We show the usability of
our method for a cooperative driving scenario, platooning, on a
real-life academic prototype, resulted in uncovering functional
safety requirements that were not fulfilled by the software ar-
chitecture. Our method is motivated by and reinforces the notion
that functional safety should not be an afterthought in the de-
sign of automotive architectures rather be used for defining the
architecture of the automotive system.

CRediT authorship contribution statement

Sangeeth Kochanthara: Conceptualization, Methodology, In-
vestigation, Writing - original draft, Writing - review & editing.
Niels Rood: Conceptualization, Investigation, Validation, Writing
- original draft. Arash Khabbaz Saberi: Resources, Methodol-
ogy, Validation. Loek Cleophas: Conceptualization, Methodology,

riting - review & editing, Supervision. Yanja Dajsuren:Method-
logy, Writing - review & editing, Supervision, Funding acqui-
ition. Mark van den Brand: Conceptualization, Methodology,
riting - review & editing, Supervision, Funding acquisition.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

eferences

bdulkhaleq, A., Wagner, S., Lammering, D., Boehmert, H., Blueher, P., 2017.
Using STPA in compliance with ISO 26262 for developing a safe architecture
for fully automated vehicles. arXiv preprint arXiv:1703.03657.

lthoff, M., Dolan, J.M., 2014. Online verification of automated road vehicles
using reachability analysis. IEEE Trans. Robot. 30 (4).

lvarez, P., Lerga, I., Serrano, A., Faulin, J., 2017. Considering congestion costs
and driver behaviour into route optimisation algorithms in smart cities. In:
International Conference on Smart Cities. Springer, pp. 39–50.

abar, M.A., Zhu, L., Jeffery, R., 2004. A framework for classifying and comparing
software architecture evaluation methods. In: 2004 Australian Software
Engineering Conference. Proceedings. IEEE.

http://arxiv.org/abs/1703.03657
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb2
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb2
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb2
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb3
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb3
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb3
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb3
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb3
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb4
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb4
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb4
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb4
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb4

S. Kochanthara et al. The Journal of Systems & Software 179 (2021) 110991

B

B

B

B

B

B

B

B

B

B

C

D

D

D

D
D

F

H

H

H

H

I

I

I

I

K

K

K

L

L

M

M

arbacci, M., Clements, P.C., Lattanze, A., Northrop, L., Wood, W., 2003. Using
the Architecture Tradeoff Analysis Method (ATAM) to Evaluate the Software
Architecture for a Product Line of Avionics Systems: A Case Study. Tech. Rep.,
Carnegie-mellon Univ Pittsburgh PA Software Engineering Inst.

ass, L., Clements, P., Kazman, R., 2012. Software Architecture in Practice.
Addison-Wesley Professional.

eckers, K., Côté, I., Frese, T., Hatebur, D., Heisel, M., 2014. Systematic derivation
of functional safety requirements for automotive systems. In: (SafeComp).
Springer.

engtsson, P., Bosch, J., 1998. Scenario-based software architecture reengi-
neering. In: Proceedings. Fifth International Conference on Software Reuse.
IEEE.

engtsson, P., Lassing, N., Bosch, J., van Vliet, H., 2004. Architecture-level
modifiability analysis (ALMA). J. Syst. Softw. 69 (1–2).

ergner, K., Rausch, A., Sihling, M., Ternité, T., 2005. Dosam–domain-specific soft-
ware architecture comparison model. In: Quality of Software Architectures
and Software Quality. Springer.

hatti, Z.E., Roop, P.S., Sinha, R., 2016. Unified functional safety assessment of
industrial automation systems. IEEE Trans. Ind. Inf..

osch, J., Molin, P., 1999. Software architecture design: evaluation and trans-
formation. In: Proceedings ECBS’99. IEEE Conference and Workshop on
Engineering of Computer-Based Systems. IEEE.

roy, M., Gleirscher, M., Kluge, P., Krenzer, W., Merenda, S., Wild, D., 2009.
Automotive architecture framework: Towards a holistic and standardised
system architecture description. IEEE Comput. 42 (12).

ucaioni, A., Pelliccione, P., 2020. Technical architectures for automotive systems.
In: (ICSA). IEEE.

uenot, P., Ainhauser, C., Adler, N., Otten, S., Meurville, F., 2014. Applying model
based techniques for early safety evaluation of an automotive architecture
in compliance with the ISO 26262 standard.

ajsuren, Y., 2015. On the Design of an Architecture Framework and Quality
Evaluation for Automotive Software Systems (Ph.D. thesis). Department of
Mathematics and Computer Science, Eindhoven University of Technology.

ajsuren, Y., van den Brand, M. (Eds.), 2019. Automotive Systems and Software
Engineering: State of the Art and Future Trends. Springer International
Publishing.

ajsuren, Y., Loupias, G., 2019. Safety analysis method for cooperative driving
systems. In: (ICSA). IEEE.

avila, A., 2013. Report on fuel consumption. SARTRE, Deliverables.
obrica, L., Niemela, E., 2002. A survey on software architecture analysis

methods. IEEE Trans. Softw. Eng. 28 (7).
u, Y., 2018. Fault Injection Mechanisms for Validating Dependability of

Automotive Systems (Master’s thesis). Eindhoven University of Technology.
arrison, N., Avgeriou, P., 2010. Pattern-based architecture reviews. IEEE Softw.

28 (6).
arrison, N.B., Avgeriou, P., 2013. Using pattern-based architecture reviews to

detect quality attribute issues-an exploratory study. In: Transactions on
Pattern Languages of Programming III. Springer.

asan, S., 2020. Fail-Operational and Fail-Safe Vehicle Platooning in the Presence
of Transient Communication Errors (Ph.D. thesis). Mälardalen University.

ommes, Q.V.E., 2012. Review and Assessment of The ISO 26262 Draft Road
Vehicle-Functional Safety. Tech. Rep., SAE Technical Paper.

EC, 2010. IEC Functional Safety and IEC 61508. Standard, International
Electrotechnical Commission.

SO, 2011. ISO 26262: 2011 - Road Vehicles – Functional Safety. Standard,
International Organization for Standardization.

SO, 2018. ISO 26262: 2018 - Road vehicles – Functional safety. Standard,
International Organization for Standardization.

SO, 2019. ISO/PAS 21448: 2019 - Road vehicles — Safety of the intended
functionality. Standard, International Organization for Standardization.

azman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., Carriere, J., 1998.
The architecture tradeoff analysis method. In: Proceedings. Fourth IEEE
International Conference on Engineering of Complex Computer Systems.
IEEE.

ochanthara, S., 2021. A case study on iso 26262 extension for connected driv-
ing. GitHub repository https://github.com/SangeethNila/casestudy_ISO26262_
extension_connected_driving.

ochanthara, S., Rood, N., Cleophas, L., Dajsuren, Y., van den Brand, M.,
2020. Semi-automatic architectural suggestions for the functional safety of
cooperative driving systems. In: (ICSA-C). IEEE.

ee, W.-S., Grosh, D.L., Tillman, F.A., Lie, C.H., 1985. Fault tree analysis, methods,
and applications a review. IEEE Trans. Reliab. 34 (3).

iang, K.-Y., Mårtensson, J., Johansson, K.H., 2015. Heavy-duty vehicle platoon
formation for fuel efficiency. Trans. Intell. Transp. Syst..

allozzi, P., Pelliccione, P., Knauss, A., Berger, C., Mohammadiha, N., 2019.
Autonomous vehicles: State of the art, future trends, and challenges. In:
Automotive Systems and Software Engineering. Springer.

allozzi, P., Sciancalepore, M., Pelliccione, P., 2016. Formal verification of the
on-the-fly vehicle platooning protocol. In: (SERENE). Springer.
13
Martin, H., Ma, Z., Schmittner, C., Winkler, B., Krammer, M., Schneider, D.,
Amorim, T., Macher, G., Kreiner, C., 2020. Combined automotive safety and
security pattern engineering approach. Reliab. Eng. Syst. Saf..

Nilsson, J., Bergenhem, C., Jacobson, J., Johansson, R., Vinter, J., 2013. Functional
Safety for Cooperative Systems. Tech. Rep., SAE Technical Paper.

Oscarsson, J., Stolz-Sundnes, M., Mohan, N., Izosimov, V., 2016. Applying
systems-theoretic process analysis in the context of cooperative driving. In:
(SIES).

Pelliccione, P., Knauss, E., Ågren, S.M., Heldal, R., Bergenhem, C., Vinel, A., Brun-
negård, O., 2020. Beyond connected cars: A systems of systems perspective.
Sci. Comput. Program. 191.

Ploeg, J., 2014. Analysis and design of controllers for cooperative and automated
driving.

Preschern, C., Kajtazovic, N., Kreiner, C., 2015. Building a Safety Architecture
Pattern System. In: EuroPLoP ’13, ACM.

Preschern, C., Kajtazovic, N., Kreiner, C., et al., 2013. Catalog of safety tactics
in the light of the IEC 61508 safety lifecycle. In: Proceedings of VikingPLoP
2013 Conference.

Riel, A., Kreiner, C., Messnarz, R., Much, A., 2018. An architectural approach to
the integration of safety and security requirements in smart products and
systems design. CIRP Ann. 67 (1), 173–176.

Roy, B., Graham, T.N., 2008. Methods for Evaluating Software Architecture: A
Survey. School of Computing TR 545.

Saberi, A.K., Barbier, E., Benders, F., van den Brand, M., 2018. On functional safety
methods: A system of systems approach. In: (SysCon). IEEE.

Sawade, O., Schulze, M., Radusch, I., 2018. Robust communication for cooperative
driving maneuvers. IEEE Intell. Transp. Syst. Mag. 10 (3), 159–169.

Serban, A., Poll, E., Visser, J., 2018. A standard driven software architecture for
fully autonomous vehicles. In: (ICSA-C).

Sljivo, I., Uriagereka, G.J., Puri, S., Gallina, B., 2020. Guiding assurance of
architectural design patterns for critical applications. J. Syst. Archit..

Stamatis, D.H., 2003. Failure Mode and Effect Analysis: FMEA from Theory to
Execution. Quality Press.

Staron, M., 2017. Automotive software architectures. Automot. Softw. Archit..
Stoermer, C., Bachmann, F., Verhoef, C., 2003. SCAM: The Software Architecture

Comparison Analysis Method. Tech. rep., Carnegie-mellon Univ Pittsburgh PA
Software Engineering Inst.

Stoltz-Sundnes, M., 2019. Stpa-inspired safety analysis of driver-vehicle
interaction in cooperative driving automation.

Trego, T., Murray, D., 2010. An analysis of the operational costs of trucking.
In: Transportation Research Board 2010 Annual Meetings CD-ROM, Vol. 18,
Washington, DC, p. 20.

Wu, W., Kelly, T., 2004. Safety tactics for software architecture design. In:
(COMPSAC). IEEE.

Zalewski, A., Borowa, K., Ratkowski, A., 2017. On cognitive biases in architecture
decision making. In: (ECSA). Springer.

Sangeeth Kochanthara is a Ph.D. candidate in the Software Engineering and
Technology group at the Eindhoven University of Technology, the Netherlands.
His research focuses on functional safety, architecture assessment, and formal
verification in the context of automotive systems. He graduated his masters with
gold medal from Indraprastha Institute of Information Technology, Delhi (IIITD),
India. He has worked at Research Centre in Real-Time and Embedded Computing
Systems, Porto, Portugal and Program Analysis group at IIITD.

Niels Rood Master Program in Computer Science and Engineering at Technical
University of Eindhoven (TU/e) in The Netherlands. In 2019 he graduated within
the Software Engineering and Technology Research Group on Functional Safety
Analysis and Safety Pattern Application on i-CAVE. He is currently pursuing a
Professional Doctorate in Engineering (PDEng) in Software Technology at TU/e.

Arash Khabbaz Saberi was born on 27-04-1988 in Tehran, Iran. After finishing
B.Sc. in 2010 at Shahid Beheshti University in Tehran, Iran, he studied Master
Program of Embedded Systems at Technical University of Eindhoven (TU/e) in
The Netherlands. In 2013 he graduated within the Systems Control group on
Control Relevant MIMO Parametric Identification. In 2015, he completed the
Professional Doctorate in Engineering (PDEng) in Automotive System Design at
TU/e. From 2015 he started a Ph.D. project at TU/e in collaboration with the
Integrated Vehicle Safety (IVS) Department of TNO, of which the results are
presented in this dissertation. Since 2015 he is employed at TNO, IVS.

Loek Cleophas is an assistant professor in the Software Engineering Technology
(SET) cluster at Eindhoven University of Technology (TU/e) and a research
fellow at Stellenbosch University, South Africa. He obtained his doctorate in
computer science and engineering at TU/e. He is also managing director of
the Dutch research school on programming and algorithmics (IPA).His research
has varied from model-driven virtualization of high-tech systems, to generating
efficient algorithm toolkits based on algorithm taxonomies, mainly for pattern

http://refhub.elsevier.com/S0164-1212(21)00088-1/sb5
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb5
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb5
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb5
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb5
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb5
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb5
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb6
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb6
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb6
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb7
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb7
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb7
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb7
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb7
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb8
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb8
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb8
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb8
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb8
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb9
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb9
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb9
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb10
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb10
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb10
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb10
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb10
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb11
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb11
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb11
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb12
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb12
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb12
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb12
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb12
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb13
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb13
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb13
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb13
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb13
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb14
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb14
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb14
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb15
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb15
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb15
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb15
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb15
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb16
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb16
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb16
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb16
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb16
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb17
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb17
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb17
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb17
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb17
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb18
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb18
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb18
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb19
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb20
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb20
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb20
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb21
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb21
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb21
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb22
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb22
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb22
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb23
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb23
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb23
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb23
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb23
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb24
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb24
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb24
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb25
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb25
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb25
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb26
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb26
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb26
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb27
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb27
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb27
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb28
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb28
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb28
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb29
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb29
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb29
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb30
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb30
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb30
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb30
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb30
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb30
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb30
https://github.com/SangeethNila/casestudy_ISO26262_extension_connected_driving
https://github.com/SangeethNila/casestudy_ISO26262_extension_connected_driving
https://github.com/SangeethNila/casestudy_ISO26262_extension_connected_driving
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb32
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb32
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb32
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb32
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb32
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb33
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb33
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb33
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb34
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb34
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb34
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb35
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb35
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb35
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb35
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb35
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb36
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb36
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb36
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb37
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb37
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb37
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb37
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb37
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb38
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb38
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb38
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb39
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb39
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb39
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb39
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb39
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb40
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb40
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb40
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb40
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb40
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb41
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb41
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb41
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb42
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb42
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb42
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb44
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb44
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb44
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb44
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb44
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb45
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb45
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb45
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb46
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb46
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb46
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb47
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb47
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb47
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb48
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb48
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb48
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb49
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb49
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb49
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb50
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb50
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb50
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb51
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb52
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb52
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb52
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb52
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb52
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb53
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb53
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb53
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb55
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb55
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb55
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb56
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb56
http://refhub.elsevier.com/S0164-1212(21)00088-1/sb56

S. Kochanthara et al. The Journal of Systems & Software 179 (2021) 110991

m
a
i
t
G
w

Y
g
g
t
a
s
(
s
a
s

atching on text and trees. More recent work focuses on analyzing models
nd large collections of models and extracting variability and commonality
nformation from them, and on consistency of models. He worked in industry in
he Netherlands and the USA, and at universities in South Africa, Sweden, and
ermany, on research funded by various national and international projects as
ell as by industrial partners.

anja Dajsuren is a program director of the PDEng Software Technology pro-
ram and assistant professor at the Software Engineering and Technology (SET)
roup, Eindhoven University of Technology (TU/e). Prior to her Ph.D. research in
he area of automotive software architecture and engineering field, she worked
s a scientist and senior scientist for half a decade working on various advanced
oftware development projects at the Philips Research Lab, NXP Semiconductors
former Philips Semiconductors), and Virage Logic. She is currently working on
ystem/software architecture, safety and quality related topics of autonomous
nd cooperative driving vehicles as well as cooperative-intelligent transport
ystems.
14
Mark van den Brand is a full professor of Software Engineering and Technology
in the Department of Mathematics and Computer Science, and a visiting
professor at Royal Holloway, University of London. His current research activities
are on model driven engineering, domain specific languages, meta-modeling,
model management, digital twins, and automotive software engineering. His
research is industry inspired; he works with most of the high-tech companies
in the Eindhoven (The Netherlands) region. He has been an invited lecturer and
keynote speaker at various conferences, workshops and doctoral schools. He
was and is member of PCs on workshops and conferences related to software
engineering, language engineering, rewriting, reverse engineering, and software
maintenance. He initiated the special issues of Science of Computer Program-
ming devoted to academic software development (Experimental Software and
Toolkits), and since 2007 has been guest editor of six of these. He is on
the editorial board of the journals Science of Computer Programming, Open
Computer Science, and Computer Languages (COLA). He is Editor-in-Chief of the
Journal on Automotive Software Engineering. He is deputy Editor-in-Chief of
platinum open access journal JOT.

	A functional safety assessment method for cooperative automotive architecture
	Introduction
	Background
	Functional safety
	Safety tactics and patterns
	Architecture views

	Methodology
	Derive FSRs for cooperative driving
	Check fulfillment of FSRs

	Case study
	Derive FSRs for platooning
	Interpretation of results

	Check fulfillment of FSRs
	Interpretation of results

	Discussion
	Assumptions
	Applicability

	Related work
	Software architecture
	Safety engineering

	Threats to validity
	Future work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	References

