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A B S T R A C T   

Reverse electrodialysis (RED) is an electro-membrane process to harvest renewable energy from salinity gradi
ents. RED process models have been developed in the past, but they mostly assume that only NaCl is present in 
the feedwaters, which results in unrealistically high predictions. In the present work, an existing simple model is 
extended to accommodate the presence of magnesium ions and sulfate in the feedwaters, and potentially even 
more complex mixtures. All power loss mechanisms deriving from the presence of multivalent ions are included 
in the new model: increased membrane electrical resistance, uphill transport of multivalent ions from the river to 
the seawater compartment, and membrane permselectivity loss. This new model is validated with experimental 
and literature data of membrane electrical resistance (at 10 mol. % MgCl2 for the CEMs and 25 mol. % Na2SO4 
for the AEMs), RED stack performance (up to 50 mol. % MgCl2 or Na2SO4 in the feedwaters), and ion transport 
(at 10 mol. % MgCl2 or Na2SO4 in the feedwaters) showing very good agreement between model predictions and 
experimental data. Finally, we showed that the developed model not only describes experimental data but can 
also predict RED performances under a variety of conditions and cross-flow configurations (single-stage with and 
without electrode segmentation, multi-stage in co-current and counter-current mode) and feedwater composi
tions (only NaCl, with Na2SO4, with MgCl2, and with MgSO4). It thus provides a very valuable tool to design and 
evaluate RED process systems.   

1. Introduction 

In the effort to limit global warming and reduce climate change, 
renewable energy plays a key role [1–3]. Among renewable energy 
sources, a promising candidate is salinity gradient energy (SGE), also 
known as blue energy, which is the energy derived from the controlled 
mixing of solutions with different salinities, e.g., river and seawater 
[4–6]. To harvest SGE, reverse electrodialysis (RED) gained prominence 
in recent years, with pilot installations and plans for demonstrations at a 
larger scale [7,8]. As described in Fig. 1, the basic principle of RED 
consists of a stack of cation exchange membranes (CEMs, selective for 
cations) and anion exchange membranes (AEMs, selective for anions), 
piled alternately and separated by feedwater compartments. In the 
feedwater compartments, kept open by non-conductive spacers or by 

patterns on the surface of profiled membranes [9,10], river and seawater 
flow alternately, and the salt gradient across each membrane generates a 
voltage difference [11]. An electrode pair placed at both ends of the 
stack and a redox couple recirculating in the electrode compartments 
allow the conversion of the ionic current flowing through the mem
branes into an electronic current when an external load is connected to 
the electrode and the circuit is closed [12]. 

A major challenge to the adoption of RED as a renewable energy 
source is fouling [13–15]. When harvesting SGE from natural salinity 
gradients, many undesired elements are present in the feedwaters, e.g., 
silica particles, natural organic matter, multivalent ions, and microor
ganisms that cause fouling on the membranes and spacers [14,16–18], 
leading to reduced RED power output [13,14]. Next to organic fouling, 
especially multivalent ions play an important role in RED as their 

* Corresponding author at: Membrane Materials and Processes, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. 
E-mail address: d.c.nijmeijer@tue.nl (K. Nijmeijer).  

Contents lists available at ScienceDirect 

Energy Conversion and Management 

journal homepage: www.elsevier.com/locate/enconman 

https://doi.org/10.1016/j.enconman.2021.114369 
Received 1 March 2021; Accepted 29 May 2021   

mailto:d.c.nijmeijer@tue.nl
www.sciencedirect.com/science/journal/01968904
https://www.elsevier.com/locate/enconman
https://doi.org/10.1016/j.enconman.2021.114369
https://doi.org/10.1016/j.enconman.2021.114369
https://doi.org/10.1016/j.enconman.2021.114369
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enconman.2021.114369&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Energy Conversion and Management 243 (2021) 114369

2

presence results in a reduction of the electromotive force available and 
an increase in the electrical resistance of the membranes [19–23]. The 
reduced electromotive force is the consequence of reduced membrane 
permselectivity and uphill transport. Uphill transport is the spontaneous 
transport of multivalent ions against their concentration gradient (from 
the river to the seawater), while monovalent ions are transported from 
the sea to the river water to balance the charge, maintaining electro
neutrality. It derives from the disparity in electromotive forces produced 
by monovalent ions (higher) and multivalent ions (lower), due to their 
different valences, which have to be equilibrated [23]. Thus, with uphill 
transport, the concentration gradient for monovalent ions is reduced, 
without any energy production, leading to a reduced electromotive force 
[23]. Additionally, multivalent ions have larger radii, charge, and 
dehydration energies [24]. This slows down their transport through the 
membranes and can lead to trapping of multivalent ions in the mem
brane due to electrostatic bridging of the ionic charges with the fixed 
membrane charges [21]. As a consequence the membrane electrical 
resistance increases. 

To estimate RED performance in a wide range of process conditions, 
modeling is a useful tool complementing experimental work. In recent 
years, different approaches were followed to model RED. In the 
frequently developed semi-empirical models the RED stack is repre
sented as an electrical system and only macroscopic parameters (e.g., 
membrane electrical resistance and permselectivity) are taken into ac
count [25–27]. Veerman et al. validated this kind of modeling approach 
for RED in co-flow and counter-flow configurations, showing the bene
fits of electrode segmentation [26]. Simões et al. also investigated the 
effect of electrode segmentation and multi-staging, albeit in the cross- 
flow configuration, showing that higher power densities and energy 
efficiencies are enabled [27,28]. Vermaas et al. used the same approach 
to prove that very high efficiencies (>90%) are possible with RED when 
electrode segmentation and asymmetric flow rates are employed [29]. 
Tedesco et al. extended this modeling approach to RED with brine and 
seawater, including the effect of salt concentration on the membrane 
electrical resistance [25]. 

An alternate approach consists of the use of the Nernst-Planck 
equation coupled with electroneutrality conditions. This allows the 
description of the RED process based on microscopic quantities (e.g., ion 
diffusion coefficients in the solution and in the membrane phase). The 
advantage of this approach is that properties such as the membrane 
resistance and permselectivity are predicted by the model, although this 
may require the use of fitting parameters to correctly describe experi
mental data [30]. Moreover, the approach based on the Nernst-Planck 
equation can take the effect of diffusion boundary layers into account 
as well [31]. Tedesco et al. provided an example of this approach applied 
to RED and electrodialysis quantifying the impact of co-ion transport, 
water transport, and membrane thickness [31–33]. 

Although they provide valuable indications, the downside of these 
models is the assumption that the feeds only contain sodium chloride. 
This results in potentially large overestimation of the power densities 
that can be generated. As such, the development of RED models that take 

into account the presence of multivalent ions in the feedwaters is a major 
step toward more realistic power density predictions. 

Moya used a Nernst-Planck based approach to show that it is possible 
to describe uphill transport within that theoretical framework [34], 
while Honarparvar et al. used the same approach to model electrodial
ysis in the presence of multivalent ions [35]. Culcasi et al. also used a 
Nernst-Planck based approach to model an acid-base flow battery [36]. 
The approaches based on the Nernst-Planck equation are able to 
accommodate the effect of multivalent ions without changes to the un
derlying theory, but correctly describing experimental trends may 
require even more adjustments and fitting than in the case with mono
valent ions only, e.g., for the value of diffusion coefficients inside the 
membrane phase [30]. Additionally, another downside of a Nernst- 
Planck based approach is that for a cross-flow RED configuration a full 
3D model is required, as discretization is needed not only in the flow 
directions, but also along the membrane and compartment thicknesses, 
making it more computationally demanding than a semi-empirical 
model, where discretization is performed only along the flow directions. 

Semi-empirical RED models seem promising thanks to the lower 
number of parameters, which can be easily measured or found in liter
ature, and their light computational nature. However, existing RED 
models describing performance with NaCl only need adaptation to 
include the effect of multivalent ions. Ortiz-Martinez et al. presented an 
approach based on the use of the same semi-empirical model developed 
by Veerman et al., but including the membrane electrical resistances 
measured in mixtures of mono- and multivalent ions to include the effect 
of multivalent ions on RED [26,37]. While valid, its limitation lies in the 
absence of permselectivity loss and uphill transport, which both have a 
major impact on power density. Hong et al. also used a semi-empirical 
model and focused on the effect of multivalent ions on the open cir
cuit voltage (OCV) and feedwater conductivity, but uphill transport, 
permselectivity loss, and increase in membrane resistance were not 
taken into account [38]. Therefore, the existing semi-empirical models 
for RED in the presence of multivalent ions are not accounting for all 
power loss mechanisms, but focus on a single one. 

In the present work, a semi-empirical model is derived for RED in a 
cross-flow configuration with mixtures of sodium, magnesium, chloride, 
and sulfate in the feedwaters. This model extends the semi-empirical 
model approach proposed by Veerman et al. [26] and our previous 
work [27] to account for all power loss mechanisms due to the presence 
of multivalent ions: uphill transport, membrane permselectivity loss, 
and increased membrane resistance. The model is validated with RED 
stack experiments with mixtures of sodium chloride and sodium sulfate 
and with mixtures of sodium chloride and magnesium chloride. A 
comparison with experimental literature data on power density loss is 
also presented and shows good agreement between the model pre
dictions and the experimental data. The potential of the model is then 
showcased by comparing RED simulations with sodium chloride and 
with mixtures of mono- and multivalent ions, highlighting their differ
ence and the importance that this tool provides for more realistic pre
dictions of obtainable power densities when using real natural 
feedwaters. 

2. Methods 

2.1. RED model 

The RED model including the effect of sulfate and magnesium was 
derived from the model presented by Simões et al. [27], which in turn 
extended the semi-empirical models of Veerman et al. [26] and Vermaas 
et al. [29]. Where the earlier models describe RED behavior for feed
waters containing only sodium chloride, the present models is extended 
such that it also takes into account the effects of the presence of multi
valent ions. To correctly predict RED performance with mixtures of 
mono- and multivalent ions, the following aspects are taken into account 
in the model: 1) uphill transport of multivalent ions against their 

Fig. 1. Schematic illustration of the working principle of RED.  
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concentration gradient; 2) higher membrane electrical resistance due to 
the larger size of the multivalent ions and the partitioning of current 
between different ionic species (downhill transport); 3) membrane 
permselectivity loss; and 4) change of electrical conductivity of the 
water compartments when more charges are introduced with the salts 
containing multivalent ions. 

2.1.1. Prediction of RED performance 

2.1.1.1. Uphill transport. The voltage produced by the concentration 
gradient across an ion selective membrane can be calculated with the 
modified Nernst equation [26], which includes the effect of membrane 
permselectivity: 

E = α RT
zF

ln
(

γswcsw

γrwcrw

)

(1) 

Where α is the membrane permselectivity [− ], R is the universal gas 
constant [J⋅mol− 1⋅K− 1], T is the absolute temperature [K], z is the ion 
valence [− ], F is the Faraday constant [C⋅mol− 1], γsw and γrw are the 
molar activity coefficients [− ] of sea and river water, and csw and crw are 
the molar ion concentrations [mol⋅L− 1] in sea and river water, respec
tively. Due to higher valence and lower activity coefficients, a gradient 
of multivalent ions generates a voltage difference across an ion exchange 
membrane that is lower than for monovalent ions [23]. To balance these 
two voltages, the monovalent ion gradient is partially consumed to in
crease the multivalent ion gradient, until the two voltages are balanced 
[23]. This process, known as uphill transport, involves the electro
neutral transport of monovalent ions from the high to the low concen
tration side of the membrane, while an equal amount of charge is moved 
from the low to the high concentration side by the movement of 
multivalent ions. 

To include uphill transport in the RED model, the batch model 
developed by Vermaas et al. [23] was converted in the form of equiv
alent circuits. This approach considers the mono- and multivalent ion 
gradients across a membrane as two voltage sources connected in par
allel, where the generator with the largest electromotive force (emf) 
drives a current through the other generator to balance the voltage drop 
in the parallel circuit (Fig. 2). 

The uphill transport current is then calculated as: 

Juphill =
Emono − Emulti

Rmono + Rmulti
(2) 

Where Juphill is the uphill transport current density [A⋅m− 2], Emono 
and Emulti are respectively the emf [V] for the monovalent and multi
valent ions gradients, Rmono and Rmulti are the cell resistances [Ohm⋅m2] 
for the monovalent and multivalent ions, respectively. The sum of the 
resistances in the denominator in Eq. (2) physically represents mono
valent and multivalent ions travelling through the same membrane in 
opposite directions. 

2.1.1.2. Membrane resistance and current partitioning (downhill trans
port). While the circuit in Fig. 2 manages to predict the mono- and 
multivalent ion fluxes through the AEMs and CEMs due to uphill 
transport, it is not suitable to represent the downhill transport, i.e., the 
transport of ions according to their concentration gradient when an ionic 
current is flowing through the system. It is well known that the electrical 
resistance of membranes in a mixture of mono- and multivalent ions is 
higher than what is measured in a solution of monovalent ions only 
[19,21]. However, the parallel connection of two resistors results in an 
equivalent resistance that is smaller than each individual resistor. 
Therefore, if used to predict downhill transport (by closing the circuit 
with an external load), the circuit in Fig. 2 would predict a reduction in 
electrical resistance when multivalent ions are introduced in the system, 
which is incorrect. For this reason, the circuit in Fig. 2 is only used to 
calculate uphill transport, and its solution is superimposed to that of the 
circuit used to calculate downhill transport (Fig. 3) to obtain the overall 
RED performance. 

To predict downhill transport, the current partitioning between 
mono- and multivalent ions needs to be determined. To do so, it is 
necessary to know the membrane selectivity. In RED, membrane selec
tivity is calculated as [21]: 

Pmono
multi =

ERmulti

ERmono
(3) 

Where P is the monovalent over multivalent ion selectivity of the 
membrane [-], and ERmulti and ERmono are the membrane electrical re
sistances [Ohm⋅m2] measured in solutions of only multivalent and only 
monovalent ions, respectively. The selectivity of a membrane between 
two ions can also be calculated for any ion mixture based on the defi
nition of Sata [39]: 

PA
B =

zAJA
zBJB
zAcA
zBcB

=
JA

JB

cB

cA
=

jA

jB

zB

zA

cB

cA
(4) 

Where P is the selectivity of the membrane for ion A (monovalent) 
over ion B (multivalent) [− ], z is the ion valence [− ], J is the ion flux 
[mol⋅m− 2⋅s− 1], Ji = ji/(ziF), c is the ion concentration [mol⋅L− 1], and j is 
the current density [A⋅m− 2]. This definition of membrane selectivity 
expressed in terms of current densities allows the derivation of the 
current partitioning. Membrane selectivity can be calculated from Eq. 
(3) and its value can be used in Eq. (4) to relate the current densities of 
mono- (A) and multivalent (B) ions. The overall current density can then 
be expressed as: 

jTOT = jA + jB = jA

(

1+
1

PA
B

zB

zA

cB

cA

)

(5) 

The fraction of current transported by ion A (sodium for a CEM, 
chloride for an AEM) is then: 

fA =
jA

jTOT
=

1
1 + 1

PA
B

zB
zA

cB
cA

(6) 

In the case of a binary mixture with only two cations and two anions, 
the fraction of current transported by ion B (magnesium for a CEM, 
sulfate for an AEM) becomes: 

Fig. 2. Equivalent circuit used to describe uphill transport of multivalent ions, 
as proposed in [23]. 

Fig. 3. Electrical circuit used to model downhill transport in the RED system.  
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fB =
jB

jTOT
= 1 − fA (7) 

While for the case of more complex mixtures, the selectivity of the 
membrane for all counter-ions compared to a reference counter-ion 

needs to be known. 
Through this approach, the current partitioning between ion A 

(monovalent) and B (multivalent) is directly related to the membrane 
selectivity. This approach relies on the definition of selectivity provided 

Fig. 4. Simulated RED configurations: a) single-stage cross-flow RED with unsegmented electrodes; b) single-stage cross-flow RED with four electrode segments in a 
2 × 2 pattern; c) multi-stage RED in co-current mode between two cross-flow stages; and d) multi-stage RED in counter-current mode between two cross-flow stages. 

Fig. 5. Comparison of experimental literature 
data ([19,21]) and model predictions for the 
membrane electrical resistance of CEMs and 
AEMs in mixtures of mono- and multivalent ions. 
For CEMs, measurements were performed in a 
mixture of 90 mol. % NaCl and 10 mol. % MgCl2 
(0.5 M total salt) [21]. For AEMs, measurements 
were performed in a mixture of 75 mol. % NaCl 
and 25 mol. % Na2SO4 (0.5 M total salt) [19]. 
CEMs: 1) CMH_PES: heterogeneous, standard 
membrane (Ralex); 2) CEM type I: homogeneous, 
standard (Fujifilm); 3) CEM T1: homogeneous, 
multivalent-ion permeable (Fujifilm); 4) CMS: 
homogeneous, monovalent-ion selective (Neo
septa). AEMs: 1) AEM type I and 2) AEM type 10: 
homogeneous, standard membranes (Fujifilm); 3) 
AMX: homogeneous, standard membrane (Neo

septa); 4) ACS: homogeneous, monovalent-ion selective membrane (Neosepta).   

Fig. 6. Model predictions and experimental data of the IV and power density curves for the experiments with 100 mol. % NaCl and with the 90 mol. % NaCl + 10 
mol. % MgCl2 mixture. 

D. Pintossi et al.                                                                                                                                                                                                                                 



Energy Conversion and Management 243 (2021) 114369

5

in Eq. (3), which considers the selectivity (PA
B) as a constant. If this 

assumption is not true and the membrane selectivity is largely depen
dent on the composition of the feedwaters (PA

B = f(cA, cB)), the current 
approach is valid, but more data on the dependence of the membrane 
selectivity on the feedwater composition are required. 

The electrical resistance of a membrane in an ionic mixture of mono- 
and multivalent ions is then expressed as: 

EReq = fA∙ERA + fB∙ERB (8) 

Where EReq is the electrical resistance of a membrane in a mixture of 
ion A and B, fA and fB are the current partitioning coefficients for the 
given composition (Eqs. (6) and (7)), and ERA and ERB are the membrane 

electrical resistances measured in solutions containing only counter-ion 
A and B, respectively. Equation (8) assumes a transition between the 
electrical resistances measured with monovalent ions and the electrical 
resistance measured with multivalent ions only which is linearly 
dependent on the current partitioning. For some membranes (e.g., 
monovalent-ion selective CEMs) this is not the case as small amounts of 
multivalent ions result already in a large increase of the effective 
membrane electrical resistance. This issue is further addressed in the 
model validation section of the results and discussion. 

2.1.1.2.1. Membrane permselectivity loss. The apparent membrane 
permselectivity decreases when multivalent ions are present in the 
feedwaters [21,40]. The apparent membrane permselectivity is related 
to the transport of both counter-ions and of co-ions [39]. With larger 

Fig. 7. Model predictions and experimental data of the IV and power density curves for the experiments with 100 mol. % NaCl and with the 90 mol. % NaCl + 10 
mol. % Na2SO4 mixture. 

Fig. 8. Experimentally determined feedwater composition during the stack experiments (light color) and feedwater composition predicted by the model (dark color). 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Comparison of literature data from Moreno et al. [20] (for magnesium ions) and our previous work [19] (for sulfate) with the model prediction for power 
density losses at increasing fraction of multivalent ions in the feedwaters. 
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counter-ions that are more difficult to transport through the membrane, 
the transport of co-ions becomes more significant, resulting in a reduced 
membrane permselectivity. Additionally, multivalent ions may bind to 
the fixed charges inside the membrane and decrease its effective charge 
density [21,41], thus decreasing the membrane permselectivity even 
further. To include these effects in the RED model, empirical fitting of 
experimental OCV and permselectivity data was used. For data on the 
permselectivity loss of CEMs with magnesium, the OCV data presented 
by Moreno et al. [20] were compared to the equilibrium values after 
uphill transport estimated with the batch model of Vermaas et al. [23]. 
The excess OCV loss was attributed to a loss in apparent membrane 
permselectivity following the procedure adopted in our previous study 
on the effect of sulfate on AEMs [19]. For the permselectivity loss of 
AEMs with sulfate, the experimental OCV and permselectivity data from 
our previous study were used [19]. The literature data and fitting 
equations are presented in Appendix A. 

2.1.1.2.2. Conductivity of the feedwaters. Equation (8) (elaborated in 
Section 2.1.1.2) allows the prediction of membrane electrical resistance 
with a mixture of mono- and multivalent ions, but to predict stack re
sistances, the conductivity of the feedwaters needs to be estimated as 
well. To do so, a simple empirical relationship between the electrical 
conductivity of the feedwaters and the total dissolved solids exists 
(provided that all dissolved solids are ionic species) [42]: 

TDS = K∙EC (9) 

Where TDS is the amount of total dissolved solids [g⋅L− 1], K is an 
empirical factor, and EC is the electrical conductivity of the solution 
[mS⋅cm− 1]. Due to the typical feedwater concentrations in RED, K is 
equal to 0.63 [42]. 

2.1.2. Model-based simulations 
The approach elaborated in section 2.1.1 leads to an extended 

version of the model of Simões et al. [27]. A detailed overview of all 
model equations used is reported in Appendix B. 

Most of the validation experiments were performed with a single- 
stage unsegmented RED stack (Fig. 4a). To explore the potential of the 
new cross-flow RED model, three additional configurations were simu
lated and compared (Fig. 4b–d). 

The approach followed for each of these configurations is discussed 
below in detail. Membrane, stack, and process parameters were chosen 
to have representative values, similar to the parameters used in the 
previous studies on the effect of electrode segmentation and multi- 
staging in RED (Appendix G) [27,28]. 

a) The single-stage cross-flow RED stack with unsegmented electrode 
(Fig. 4a) was realized by modeling a cross-flow stack (corresponding to 
those supplied by REDstack BV, The Netherlands) with 10 cell pairs and 
an active area of 22 cm × 22 cm. Fujifilm Type 10 AEM and CEM 
(Fujifilm Manufacturing Europe BV, The Netherlands) specifications and 
155 µm spacers (corresponding to spacers from Deukum GmbH, Ger
many) were used for all simulations. Its external load was adjusted for 
maximum power density using an optimization algorithm (Sequential 
Least Squares Programming, SLSQP) for different residence times (10 – 
90 s). For the single-stage RED with unsegmented electrodes, the effect 
of the seawater fraction (ϕsw/(ϕsw +ϕrw), where ϕ is the feedwater flow 
rate [m3⋅s− 1]) was also investigated. A constant residence time (30 s, as 
in [29]) for river water was considered, while varying the seawater 
fraction between 0.05 and 0.95, similarly to the work of Vermaas et al. 
[29]. For simulations involving the seawater fraction, ideal membranes 
(negligible electrical resistance, 100% permselectivity, and not allowing 
any undesired salt or water transport) were considered in addition to 
Fujifilm Type 10. 

b) The single-stage cross-flow RED with segmented (2 × 2) electrodes 
(Fig. 4b) was obtained by modeling a cross-flow stack with 10 cell pairs 
and an active area of 22 cm × 22 cm, where the area is symmetrically 

Fig. 10. Model simulations with variable seawater fraction: a) net power density, b) net energy efficiency, and c) their product as a function of the seawater fraction 
for ideal membranes (with negligible resistance) and for real membranes with and without sulfate present in the feedwaters. For c), only values where both power 
density and energy efficiency are positive are displayed. Fujifilm type 10 membranes were chosen as representative RED membranes. 
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divided into four adjacent square electrode segments. The four inde
pendent external loads were adjusted for overall maximum power 
density (considering the sum of the powers from each electrode 
segment) using SLSQP for residence times in the range 10–90 s. Two 
additional RED configurations were simulated considering multi-stage, 
where the feedwaters leaving a RED stack (first stage) are used to feed 
another RED stack (second stage). 

c) Co-current and d) counter-current multi-stage cross-flow RED 
configurations were considered. Each stage was modeled as a cross-flow 
RED stack equipped with 10 cell pairs, an active area of 22 cm × 22 cm, 
and unsegmented electrodes. For co-current (Fig. 4c), river and seawater 
were fed to the first stage and then sequentially to the second stage. For 
the counter-current (Fig. 4d), seawater was fed to the first stage and then 
to the second stage, while river water was fed into the second stage first 
and then to the first stage. For both co-current and counter-current 
multi-stage RED configurations, the independent external loads for the 
two stages were adjusted to maximize overall power density with 
SLSQP. The overall residence times under consideration for multi-stage 
RED simulations were in the range 20 – 88 s, which implies residence 
times in the 10 – 44 s range for each stage. 

2.2. Model validation experiments 

To validate the model results, experiments with a single-stage cross- 
flow RED stack (configuration a in Fig. 4) were performed adding MgCl2 
and Na2SO4 in the feedwaters. 

2.2.1. RED stack 
A cross-flow stack with an active area of 10 cm × 10 cm (REDstack 

BV, The Netherlands) and titanium mesh electrodes coated with galva
nized Pt (Ti mesh 1.0, Pt coating thickness 2.5 µm, MAGNETO Special 
Anodes BV, the Netherlands) was assembled with ten cell pairs. The 

cross-flow configuration was chosen for its high energy efficiency 
compared to co-flow and reduced pressure drop compared to counter- 
flow [29]. Fujifilm Type 10 CEMs and AEMs (FUJIFILM 
Manufacturing Europe BV, The Netherlands) were separated by gasket- 
integrated spacers with 155 µm thickness (Deukum GmbH, Germany) 
with a polyester woven netting (Saatifil, Saati SpA, Italy). Double CEMs 
were used at both ends of the membrane stack to seal the electrode 
compartments and prevent electrolyte leakage into the feedwaters 
compartments. 

2.2.2. Feedwaters and electrolyte 
Artificial river water (17 mM) and artificial seawater (508 mM) were 

prepared adding sodium chloride (NaCl, 99.5% purity, ESCO, The 
Netherlands) to demineralized water. To evaluate the effect of magne
sium and sulfate, separate runs were performed substituting 10 mol. % 
NaCl both in river and seawater either with sodium sulfate or magne
sium chloride hexahydrate (both > 99% purity, VWR Chemicals, 
Belgium). The pH of the artificial feedwaters was neutral and did not 
change during operation, as water splitting did not occur. The electrode 
rinse solution was made of a mixture of 0.05 M potassium hex
acyanoferrate(II) / 0.05 M potassium hexacyanoferrate(III) (both ≥ 96% 
purity, VWR Chemicals, Belgium) as redox couple and 0.25 M sodium 
chloride as supporting electrolyte. River and seawater were fed to the 
stack with a flow velocity of 1 cm⋅s− 1 in a single-pass configuration (150 
mL min− 1) using peristaltic pumps (Cole-Palmer, Masterflex L/S Digital 
drive, USA). The electrolyte rinse solution was recirculated between the 
electrolyte compartments by a peristaltic pump. To prevent bulging of 
the membrane stack, the electrolyte was kept at a 0.3 bar overpressure 
by means of a diaphragm valve (KNF FDV 30, KNF-Verder BV, The 
Netherlands) placed at the outlet of the electrolyte circuit. Temperature 
and conductivity of the artificial feedwaters were measured before each 
experiment. 

Fig. 11. Simulations with various cross-flow RED configurations (product of efficiency and power density): a) RED performance with single-stage and unsegmented 
electrode. b) RED performance with single-stage and 2 × 2 electrode segmentation. c) RED performance with multi-stage (2 stages) with co-current configuration. d) 
RED performance with multi-stage (2 stages) with counter-current configuration. 

D. Pintossi et al.                                                                                                                                                                                                                                 



Energy Conversion and Management 243 (2021) 114369

8

2.2.3. Electrochemical characterizations and water analyses 
Two stack experiments were performed for model validation. First, 

the RED performance with 100 mol. % NaCl and with mixtures of 90 
mol. % NaCl and 10 mol. % magnesium chloride was evaluated. Second, 
the same experiment was repeated with 100 mol. % NaCl and with 
mixtures of 90 mol. % NaCl and 10 mol. % sodium sulfate. RED per
formance was measured with constant current steps (0 – 5 – 10 – 12.5 – 
15 – 17.5 – 20 – 22.5 – 25 – 30 A⋅m− 2), applied for 10 min each using a 
potentiostat (Iviumstat, Ivium Technologies BV, 

The Netherlands). Water samples were collected from the stack 
outlets after 2 min from the beginning of each current step. The ion 
content of the water samples was analyzed with ion chromatography 
(Metrohm Compact IC Flex 930, Metrohm Nederland, the Netherlands) 
after appropriate dilution to be within the instrument detection limits 
(dilution factors: 70 for river water, 1400 for seawater). 

3. Results and discussion 

To assess the validity of the new RED model, its ability to predict 
membrane electrical resistance in multi-ionic mixtures, RED perfor
mance, and ion transport was evaluated by comparing the obtained 
model results with experimental literature data. Then, validation with 
experimental stack data was performed, including the current parti
tioning between mono- and multivalent ions. Finally, the validated 
model was used to investigate RED performance in a variety of stack and 
flow configurations. 

To validate the model prediction of the membrane electrical resis
tance in mixtures of mono- and multivalent ions, literature data for a 
variety of CEMs (from Rijnaarts et al. [21]) and AEMs (from our previous 
work [19]) were considered. The electrical resistance data in 100 mol. % 
monovalent ions and in 100 mol. % multivalent ions were used to derive 
the membrane selectivity (according to Eq. (3)), which was then used to 
predict the electrical resistance in the mixture of mono- and multivalent 
ions (following Eqs. (4)–(8)). Fig. 5 compares the literature data with the 
model prediction for CEMs in a mixture containing 10 mol. % magne
sium chloride and for AEMs in a mixture containing 25 mol. % sodium 
sulfate. 

For both CEMs and AEMs, the model predictions are in good agree
ment with the literature data. Despite the more complex nature of ion 
transport in heterogeneous membranes (Ralex CMH_PES), the model 
prediction for the Ralex membrane is also good. The monovalent-ion 
selective CEM (Neosepta CMS) shows a large deviation from the 
model, which underestimates its electrical resistance. The Neosepta CMS 
membrane is designed to limit the transport of multivalent cations by 
size exclusion. The difference between of the model values and the 
experimental values indicates that even small fractions of magnesium 
result in a large increase in membrane resistance due to its difficulty in 
moving through the membrane and possibly due to trapping of the large 
ion in the membrane. This would suggest that for CEMs with a high 
monovalent over multivalent ion selectivity the approach described in 
Eqs. (3)–(8) results in inaccurate predictions. However, the RED model 
can still be used for these membranes provided that more experimental 
data on the behavior of their electrical resistance in mixtures of mono- 
and multivalent ions are collected. To demonstrate this point, another 
example is described in Appendix D. This examples shows that, although 
the selectivity value calculated with Eq. (3) may not describe the reality, 
Eqs. (4)–(8) are still valid, provided that a corrected value for the 
selectivity is considered (Fig. D1 in Appendix D). 

For AEMs, the model delivers a good prediction even for the 
monovalent-ion selective Neosepta ACS. This is explained by the smaller 
increase in membrane resistance that sulfate induces for AEMs 
compared to the increase induced by magnesium for CEMs [19]. 

The proposed approach clearly enables the accurate prediction of 
membrane electrical resistance in mixtures of mono- and multivalent 
ions for standard grade membranes and, with additional data, also for 
monovalent-ion selective CEMs. 

Validation of the model predictions of membrane resistance with 
experimental data is the key to predict current partitioning and RED 
stack performance, where the effect of feedwater conductivity, uphill 
transport and decreased permselectivity also come into play. To validate 
the prediction of RED performance, two stack experiments were per
formed adding first 10 mol. % MgCl2 and then 10 mol. % Na2SO4 to both 
feedwaters. 

Fig. 6 shows the IV-curves and power density curves for the RED 
experiments with MgCl2. To describe the RED behavior, the obstruction 
factor (accounting for the extra resistance from the non-conductive 
spacers, Eqs. B(7) and B(8) in the Appendix B) was adjusted as fitting 
factor to the data measured for the run with 100 mol. % NaCl. With that 
value fixed, only the feedwater composition was then changed to 
describe the data for the run with 10 mol. % MgCl2 in both feedwaters. 

Both the IV-curve and the power density curve calculated according 
to the model show good agreement with the experimental data. This is a 
first indication that the stack electrical resistance, including the feed
water conductivities and membrane resistances, and emf, including 
uphill transport and permselectivity loss, are correctly predicted in the 
presence of magnesium chloride.The stack electrical resistance is 
dominated by the conductivity of the river water [43], which accounts 
for more than half of the overall resistance (slope of the IV-curve). 
Replacing an equal molar amount of NaCl with MgCl2 increases the 
river water conductivity, while the presence of magnesium chloride in 
both feedwaters increases the resistance of the CEMs. These two oppo
site trends need to be correctly embedded in the model for an accurate 
RED performance prediction. Therefore, the agreement between model 
and experimental data indicates that not only the membrane resistances 
but also the feedwater conductivities are correctly predicted when 
multivalent ions are added to the feedwaters. For the power density, the 
OCV has a major role since the power density is proportional to the 
squared OCV (Eqs. (B37) in Appendix B). Therefore, a good agreement 
between model predictions and experimental data indicates that the 
decrease in OCV when magnesium chloride is added to the feedwaters is 
correctly predicted by the model through uphill transport and permse
lectivity loss. 

Fig. 7 shows similar results obtained for the run with 10 mol. % 
Na2SO4 added to both feedwaters. 

Also in this case, the agreement between experimental data and 
model predictions is good. It can be noted that the relative impact of 
sulfate on RED performance is lower than that of magnesium, due to the 
smaller permselectivity loss and electrical resistance increase [19]. The 
smaller electrical resistance and higher power density for the run 
without multivalent ions (100 mol. % NaCl, solid lines and circles) in 
Fig. 7 compared to Fig. 6 is likely due to air bubbles trapped in the spacer 
during the stack experiments illustrated in Fig. 6. The results from the 
stack experiments with magnesium ions or sulfate added to the feed
waters prove the ability of the model to describe RED performance in the 
presence of multivalent ions. 

The last step of the model validation is the comparison of feedwater 
compositions measured during the stack experiments, at OCV and at the 
maximum power point (m.p.p.) with the model predictions (Fig. 8). This 
evaluates the ability of the model to predict uphill transport and current 
partitioning. Ion and water transport through the membranes determine 
the ion concentrations in the feedwaters. With multivalent ions present 
in the feedwaters, salt transport happens also under OCV conditions due 
to uphill transport, which redistributes mono- and multivalent ions 
across the membranes. Additionally, when current is applied, both 
mono- and multivalent ions can act as charge carriers, therefore it is 
important to correctly predict the current fraction transported by each 
ion, as this affects the composition of the feedwaters and in turn feed
water conductivity. 

Clearly, there is very good agreement between the model predictions 
and the experimental data, both for OCV and the m.p.p.. The similarity 
in power density indicates the realistic inclusion of uphill transport in 
the model, while the correct prediction of the feedwater compositions at 
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m.p.p. validates the current partitioning described in Eqs. (3)–(8). 
Now that the ability of the model to include all power loss mecha

nisms induced by multivalent ions is verified, a comparison of predicted 
model power losses for increasing fractions (up to 50 mol. %) of mag
nesium ions and sulfate with literature data was performed (Fig. 9). The 
experimental data from Moreno et al. [20] and our previous work [19] 
were used and compared to the model predictions obtained in the pre
sent work [20]. 

It should be noted that OCV data from the same datasets were used to 
derive the empirical fit of permselectivity loss, therefore the comparison 
of predicted power density losses with the ones reported in these works 
only validates uphill transport, increased membrane electrical resistance 
and the increase in feedwater conductivity in the presence of multiva
lent ions. Nevertheless, the agreement between model and literature 
data is good. Even at molar fractions of magnesium ions and sulfate 
significantly higher than those considered in the validation experiments, 
experimental data and model predictions almost coincide. The only 
exception is 50 mol. % of magnesium, where the experimental power 
density loss exceeds the model prediction. This is likely because at such 
high magnesium concentrations, the increase in membrane electrical 
resistance due to trapping of the magnesium ions inside the membrane 
starts to become more dominant, as shown by Moreno et al. [20]. 

The validated RED model including the effect of sulfate and mag
nesium ions has the potential to deliver more accurate predictions of 
obtainable power densities and to help in the design of up-scaled RED 
systems. It can now be used to predict the actual RED performance under 
realistic conditions. Fig. 10 shows the behavior of net power density, net 
energy efficiency, and their product as a function of the seawater frac
tion. Variations in the seawater fraction were used in the past to show 
that RED can achieve very high efficiencies, albeit considering only ideal 
membranes [29]. The product is chosen as a useful RED performance 
indicator as it accounts for both the power density and the energy effi
ciency granting them an equal weight. 

The opposite trends observed for net power density (Fig. 10a) and 
net energy efficiency (Fig. 10b) determine the shape of the curves in 
Fig. 10c, with the power density peaking at intermediate seawater 
fractions (>0.5), while the efficiency peaks at low seawater fractions 
(<0.1). While ideal membranes provide a very high and optimistic 
prediction of the RED performance (peaking at a seawater fraction equal 
to 0.3 with a value of 75.8%⋅W⋅m− 2), the inclusion of the behavior of 
real membranes shows already a more realistic prediction of the RED 
performance (peaking at a seawater fraction of 0.2 with a maximum 
value of 34.2%⋅W⋅m− 2). The shift of the product peak to lower seawater 
fractions is due to the different evolution of the net power density, which 
is more sensitive to the seawater fraction in the range 0.3 – 0.8 when 
ideal membranes are considered. In the same way, including the effect of 
multivalent ions (peaking at a seawater fraction of 0.18 with a value of 
24.2%⋅W⋅m− 2) gives an even more realistic estimation of the actual RED 
performance when using real feedwaters. As such, this model not only 
helps predicting realistic RED performance, but can also be used to 
choose optimum process conditions to achieve maximum performance. 

The influence of the presence of multivalent ions on RED perfor
mance in a variety of different flow configurations, is presented in 
Fig. 11. For all configurations, four feedwater compositions were 
considered: NaCl only, a mixture with NaCl and 30 mol. % Na2SO4, a 
mixture with NaCl and 30 mol. % MgCl2, and a mixture with NaCl and 
30 mol. % MgSO4. 

For all feedwaters compositions, a single stage with electrode seg
mentation (Fig. 11b) yields the best performance, with increasing ben
efits at increasing residence times. Similarly, multi-stage configurations 
(Fig. 11 c and d) outperform the single-stage unsegmented configuration 
at high residence times. Even though multi-staging yields the same 
(gross) energy efficiency of the segmented configurations, the higher 
pumping losses (two stacks against one) result in a lower value of the 
product between net power density and net energy efficiency (Fig. 11, 
Figs. E1 and E2 in Appendix E). The advantage of the segmented 

electrode and multi-stage configurations derives from the possibility to 
tune the external load to the locally available emf and stack electrical 
resistance, as discussed by Simões et al. [27,28]. However, when 
considering the presence of multivalent ions, particularly magnesium, 
the relative advantage of segmentation or multi-staging is reduced and 
this results in a larger relative loss of power density and efficiency 
(Fig. F1 in Appendix F). This is the case as uphill transport occurring 
near the river water inlet reduces the available emf. Additionally, the 
loss in membrane permselectivity in the presence of multivalent ions 
further reduces the available emf. These emf losses result in decreased 
inhomogeneity of the emf between inlet (high emf) and outlet (low emf), 
an aspect that segmentation and multi-staging address resulting in an 
increase in power density and efficiency. 

Clearly the presented model now allows predicting RED perfor
mances and evaluating operational conditions for realistic situations 
taking into account the complex effects of the presence of multivalent 
ions on RED performance when using natural feedwaters. With addi
tional experimental selectivity and permselectivity data, the model can 
easily be extended to more complex, multi-component ionic mixtures as 
well (as shown in Appendix C for a CEM exposed to a ternary mixture). 
Future work should focus on the validation of the presented model with 
multi-ionic mixtures mimicking the composition of real feedwaters. 
Additionally, the model could be further improved by describing the loss 
of membrane permselectivity in the presence of multivalent ions not 
with an empirical fit as in the current formulation, but by developing a 
quantitative description derived from theory, similar to the equations 
developed to describe the increase in membrane resistance. 

4. Conclusion 

This work presents a model to predict RED performance taking into 
account the influence of the presence of magnesium and sulfate ions on 
power production with RED. The presence of multivalent ions results in 
loss in power due to several effects that are now included in the model. 
Uphill transport is accounted for in balancing two voltage sources, the 
increased membrane resistance is introduced based in experimental 
resistance and selectivity data, the membrane permselectivity loss is 
introduced by empirical fitting of experimental data, and the change in 
conductivity of the feedwaters is introduced based on the relationship 
between the total concentration of charged solids in the solutions and 
their electrical conductivity. Validation with experimental and litera
ture data was performed and confirmed that the model effectively de
scribes RED performance in the presence of sulfate or magnesium ions. 
Simulation of RED in various flow configurations and with a variety of 
feedwater compositions shows the importance of designing RED pro
cesses with the complexity of natural feedwaters in mind. Simulated 
RED behavior in the presence of 30 mol. % MgSO4 drastically differs 
from the simulated behavior for feedwaters containing only NaCl. In 
particular, the advantages of electrode segmentation and multi-staging 
are mitigated by multivalent ions as the inhomogeneity of the electro
motive force is reduced by uphill transport and permselectivity loss. The 
developed model is not only able to describe experimental data but can 
also predict RED performances at specific process conditions and as such 
provides a very valuable tool to design and evaluate RED process 
systems. 
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Appendix 

A. Fitting of experimental data for the permselectivity loss factor 

To include the permselectivity loss in the RED model, fitting of experimental data was performed. Data for RED experiments with magnesium ions 
were taken from Moreno et al. [20], while data for sulfate were taken from our previous study [19]. It should be noted that data with magnesium ions 
are not available for the same CEM (Fujifilm CEM Type 10), but only for the similar Fujifilm CEM Type I, which has a slightly lower starting 
permselectivity. The permselectivity loss is expected to be similar for the two membranes, as is the case for CEM type I and CEM T1 based on the data 
from Moreno et al. [19]. For the sulfate study, data are available for the same AEM used in the present study (Fujifilm AEM type 10). 

The OCV data reported in the literature are compared with the expected equilibrium values after uphill transport, as estimated using the model 
developed by Vermaas et al. [23]. The difference is then entirely attributed to a loss in permselectivity (accounted for in the permselectivity loss factor 
K) for the membrane under investigation (Table A1). 

Fitting of the permselectivity loss factor as a function of the multivalent ion fraction is performed with linear interpolation for sulfate, while for 
magnesium ions a second-degree polynomial is used for fractions below 25 mol. % and linear interpolation is used for fractions higher than 25 mol. %. 
Fig. A1 illustrates the experimental and fitting values for the permselectivity loss factors. 

Fig. A1. Permselectivity loss factor Literature values (dark red) and fitting values (dark blue) for the perm
selectivity loss factor. 

Table A1 
Permselectivity loss data calculated from the literature OCV data in [19,20].  

Multivalent ion Multivalent ion fraction [− ] Permselectivity loss factor K [− ] 

Mg2+ 0 0 
0.1 0.15 
0.25 0.24 
0.5 0.26 

SO4
2− 0 0 

0.1 0.02 
0.25 0.06 
0.5 0.10  
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B. RED model including magnesium and sulfate 

The membrane monovalent over multivalent ion selectivities for the CEM and AEM (P [− ]) are calculated based on the membrane electrical 
resistances measured with monovalent and multivalent ions only [21]: 

PNa
Mg =

RMg
CEM

RNa
CEM

(B1)  

PCl
SO4 =

RSO4
AEM

RCl
AEM

(B2) 

Where Rx is the membrane electrical resistance [Ohm⋅m2] measured in a solution containing x as counter-ion. 
The current partitioning factor represents the fraction of the total current carried by the transport through the membrane of a certain ion. The 

current partitioning factors for magnesium, sodium, sulfate and chloride are calculated as follows. 

fMg =
1

1 + 0.5∙PNa
Mg∙cNa

cMg

(B3)  

fNa = 1 − fMg (B4)  

fSO4 =
1

1 + 0.5∙PCl
SO4∙

cCl
cSO4

(B5)  

fCl = 1 − fSO4 (B6) 

Where c is the molar concentration of the ions in the seawater side [mol⋅L− 1], and the factor 0.5 derives from the ratio of the ion valences. 
The river and seawater resistances are calculated as follows: 

Rrw =
1

Aopen
∙

drw

ECrw
(B7)  

Rsw =
1

Aopen
∙ dsw

ECsw
(B8) 

Where 1/Aopen is the spacer shadow factor [− ] accounting for the presence of the non-conductive spacers in the feedwater compartments (Aopen is 
the fraction of the active area not occupied by the spacer) and for the non-ohmic component of the feedwaters resistance, d is the inter-membrane 
spacing [m], and EC is the solution conductivity [S⋅m− 1] calculated according to Eq. (8) of the main text. 

With the membrane selectivities (Eqs. B(1) and (B2)), current partitioning factors (Eqs. (B3)–(B6), and the resistances of the water compartments, 
the cell resistance [Ohm⋅m2] can be calculated: 

Rcell = Rblank +Ncp
(
Rrw +Rsw + fMgRMg

CEM + fNaRNa
CEM + fSO4RSO4

AEM + fClRCl
AEM

)
(B9) 

Where Rblank is the blank resistance [Ohm⋅m2] accounting for the resistances of the electrodes and sealing CEM, and Ncp is the number of cell pairs 
[− ]. 

The electromotive force (emf) for the different ions can be calculated using the modified Nernst equation and including the permselectivity loss 
factors (K [− ]): 

EMg = Ncp
(
1 − Kloss

CEM

)
αCEM

RT
2F

ln
(

γMg
sw cMg

sw

γMg
rw cMg

rw

)

10)  

ENa = Ncp
(
1 − Kloss

CEM

)
αCEM

RT
F

ln
(

γNa
sw cNa

sw

γNa
rw cNa

rw

)

11)  

ESO4 = Ncp
(
1 − Kloss

AEM

)
αAEM

RT
2F

ln
(

γSO4
sw cSO4

sw

γSO4
rw cSO4

rw

)

12)  

ECl = Ncp
(
1 − Kloss

AEM

)
αAEM

RT
F

ln
(

γCl
swcCl

sw

γCl
rwcCl

rw

)

13)  

ETOT = ENaCl = ENa +ECl 14) 

Where α is the membrane permselectivity [− ], R is the universal gas constant [J⋅mol− 1⋅K− 1], T is the absolute temperature [K], F is the Faraday 
constant [C⋅mol− 1], γsw and γrw are the molar activity coefficients [− ] of sea and river water, and csw and crw are the ion concentrations [mol⋅L− 1] in sea 
and river water, respectively. The molar activity coefficients are estimated with the three-characteristic-parameter correlation (TCPC) model of Ge 
et al. [44]. The overall emf is taken equal to that of sodium chloride (Eq. S14). When uphill transport balances the potentials of mono- and multivalent 
ions, this choice has no influence. However, for a small region of the active area close to the river water inlet, where the two potentials are not 
balanced, this choice for the total potential means considering the highest of the two electromotive forces (emfs), but this may result in only a small 
overestimation of the total current. Due to uphill transport, the emf of monovalent and multivalent ions is equal, with the exception of the region close 
to the river water inlet where uphill transport occurs and the two emfs are not balanced yet. In this region, the highest emf is considered to calculate 
downhill transport. 

The overall current density for downhill transport is determined by the external load voltage (Uload [V]): 
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jTOT = jNa + jMg = jCl + jSO4 =
ETOT − Uload

Rcell
15) 

This formulation ensures continuity of the current across the CEMs and AEMs, while allowing for different partitioning of the current between 
monovalent and multivalent cations and anions. The downhill current densities (j [A⋅m− 2]) for each ion are calculated using the current partitioning factors: 

jMg = fMg∙jTOT =
jTOT

1 + 0.5∙PNa
Mg∙cNa

cMg

16)  

jNa = fNa∙jTOT = jTOT − jMg 17)  

jSO4 = fSO4∙jTOT =
jTOT

1 + 0.5∙PCl
SO4∙

cCl
cSO4

18)  

jCl = fCl∙jTOT = jTOT − jSO4 19) 

To obtain the overall salt transport, the uphill transport current densities (Eq. (2) from the main text) need to be considered as well: 

jMg
uphill =

ENa − EMg

RNa
CEM + RMg

CEM
20)  

jNa
uphill = − jMg

uphill 21)  

jSO4
uphill =

ECl − ESO4

RCl
AEM + RSO4

AEM
22)  

jCl
uphill = − jSO4

uphill 23) 

The ion fluxes (J [mol⋅m− 2⋅s− 1]) from the sea to the river water compartment are obtained from the downhill and uphill current densities, together 
with an osmotic transport term: 

JMg =
jMg + jMg

uphill

2F
+ 2∙DMg

(
cMg

sw − cMg
rw

)

lm
24)  

JNa =
jNa + jNa

uphill

F
+ 2∙DNa

(
cNa

sw − cNa
rw

)

lm
25)  

JSO4 =
jSO4 + jSO4

uphill

2F
+ 2∙DSO4

(
cSO4

sw − cSO4
rw

)

lm
26)  

JCl =
jCl + jCl

uphill

F
+ 2∙DCl

(
cCl

sw − cCl
rw

)

lm
27) 

Where D are the diffusion coefficients through the membrane [m2⋅s− 1], lm is the membrane thickness [m], and the factor 2 in the osmotic transport 
term derives from diffusion taking place through both the AEM and CEM. DNa is assumed to be equal to DCl and their value is taken from our previous 
work [2]. DMg and DSO4 are taken from literature [36]. 

The osmotic water transport term [m⋅s− 1] as formulated by Veerman et al. [26] is given by: 

JH20 = − 2∙DH2O

( ∑
saltsci

sw −
∑

saltsci
rw

)

lm

MWH2O

ρH2O
28) 

Where MWH2O is the molecular weight of water [kg⋅mol− 1] and ρH2O is the density of water [kg⋅m− 3]. 
The change in ion concentrations within the stack active area can be related to the ion and water fluxes, yielding the following partial differential 

equations (assuming river water flowing along the x direction, while seawater flows along the y direction): 

dcMg
sw

dy
= − W

(
JMg

ϕsw
− cMg

sw
JH2O

ϕsw

)

29)  

dcNa
sw

dy
= − W

(
JNa

ϕsw
− cNa

sw
JH2O

ϕsw

)

30)  

dcSO4
sw

dy
= − W

(
JSO4

ϕsw
− cSO4

sw
JH2O

ϕsw

)

31)  

dcCl
sw

dy
= − W

(
JCl

ϕsw
− cCl

sw
JH2O

ϕsw

)

32)  

dcMg
rw

dx
= L

(
JMg

ϕrw
− cMg

rw
JH2O

ϕrw

)

33)  

dcNa
rw

dx
= L

(
JNa

ϕrw
− cNa

rw
JH2O

ϕrw

)

34) 
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dcSO4
rw

dx
= L

(
JSO4

ϕrw
− cSO4

rw
JH2O

ϕrw

)

35)  

dcCl
rw

dx
= L

(
JCl

ϕrw
− cCl

rw
JH2O

ϕrw

)

36) 

Where W and L are the width and length of the stack active area [m], and ϕ is the flow rate of the feedwaters [m3⋅s− 1]. The active area is discretized 
into a 500 × 500 grid, and the PDEs (Eqs. (B29)–(B36)) are solved with the Forward Euler method using the inlet concentrations as boundary 
conditions. The power, power density (net and gross), energy efficiency (net and gross), and thermodynamic efficiency are calculated from the ob
tained concentration matrices equal to our previous work [27]. 

Briefly, the power [W] is calculated as follows: 

P = E∙I =
E2

Rstack
37) 

Where E is the electromotive force [V], I is the current [A], and Rstack is the stack resistance [Ω]. The net power is obtained by subtracting the 
pumping losses, while the power density is obtained by dividing it by the total membrane area (CEMs area + AEMs area). 

The energy efficiency is calculated as follows: 

ηenergy = 100∙ P
ΔGin

38) 

Where ΔGin is the Gibbs free energy of mixing [J] of the two feedwaters calculated based on the compositions at the inlet. The net energy efficiency 
is obtained by using the net power in the efficiency calculations. 

C. Model extension to ternary mixtures 

The developed model can be easily extended to more complex mixtures as well. To illustrate this, a similar approach is followed for a ternary 
mixture and the equations are derived below (only for a CEM exposed to three generic cations A, B, and C, the same equations would apply to an AEM). 
All symbols and units in this derivation are consistent with the derivation presented in Appendix B. 

The selectivities based on membrane electrical resistance are: 

PA
B =

RB
CEM

RA
CEM

(C1)  

PA
C =

RC
CEM

RA
CEM

(C2) 

While the selectivities as defined in Eq. (4) of the main text are: 

PA
B =

jA

jB

zB

zA

cB

cA
(C3)  

PA
C =

jA

jC

zC

zA

cC

cA
(C4) 

The total current can be expressed as: 

jTOT = jA + jB + jC = jA

(

1+
1

PA
B

zB

zA

cB

cA
+

1
PA

C

zC

zA

cC

cA

)

(C5) 

The fraction of current transported by ion A is then: 

fA =
jA

jTOT
=

1
1 + 1

PA
B

zB
zA

cB
cA
+ 1

PA
C

zC
zA

cC
cA

(C6) 

The fractions of current transported by ion B and C can be calculated from jA and Eqs. C(3) and C(4): 

fB =
jB

jTOT
=

jA
PA

B

zB
zA

cB
cA

jTOT
(C7)  

fC =
jC

jTOT
=

jA
PA

C

zC
zA

cC
cA

jTOT
(C8)  

D. Membrane electrical resistance model predictions 

The example of Neosepta CMS shown in the main text shows that for CEMs having a relatively high selectivity (sodium over magnesium), e.g. 
monovalent-ion selective membranes, the approach described in Eqs. (3)–(8) of the main text does not deliver an accurate prediction of the membrane 
electrical resistance in mixtures of monovalent and multivalent ions. This derives from the major increase in electrical resistance that even small 
fractions of magnesium ions produce for these membranes. 

Avci et al. provided electrical resistance data for a Fujifilm CEM-80050 (a highly cross-linked membrane developed for RED applications with 
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brines and seawater) at increasing fractions of magnesium ions in the test solutions [45]. Based on their data, the membrane selectivity is calculated to 
be 7.9 (Eq. (3) in the main text). Fig. D1 shows a comparison of the experimental data with the prediction made using Eqs. (4)–(8) of the main text 
using a selectivity value equal to 7.9. The observed trends are very different, with magnesium ions producing a much higher electrical resistance 
increase at low fractions than predicted by the model. 

To verify if the inconsistency between the results and the model derives from an invalid assumption in the model (e.g., non-constant selectivity), Eqs. 
(4)–(8) from the main text were used to fit the experimental data. Interestingly, a constant selectivity value can fit the experimental data (Fig. D1), but it is 
very different from what Eq. (3) (main text) would suggest. The fitted selectivity value of 0.79 (<1) indicates that magnesium ions increase the resistance 
as if it was the preferential charge carrier. The data from Avci et al. [45] suggest that the proposed model would still be valid even for monovalent-ion 
selective membranes, provided that extra data are gathered to verify membrane electrical resistance and current partitioning predictions. 

E. Unsegmented / segmented 2 × 2 / multi-stage RED 

Fig. E1 shows the net power density results of the RED simulations for the four flow connfigurations. 

Fig. D1. Experimental membrane electrical resistance for a Fujifilm CEM 80,050 (from Avci et al. [9]) (dark red markers) compared to the model predictions 
obtained for selectivity equal to 7.9 (dark blue dashed line) and 0.79 (grey dashed line). (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 

Fig. E1. Simulations with various cross-flow RED configurations (net power density): a) RED performance with single-stage and unsegmented electrode. b) RED 
performance with single-stage and 2 × 2 electrode segmentation. c) RED performance with multi-stage (2 stages) with co-current configuration. d) RED performance 
with multi-stage (2 stages) with counter-current configuration. 
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Fig. E2 depicts the net energy efficiency trends for the four flow configurations. 
F. Relative power density loss with 30 mol. % sulphate 

Fig. F1 displays the relative power density loss for the four different flow configurations. 

Fig. E2. Simulations with various cross-flow RED configurations (net energy efficiency): a) RED performance with single-stage and unsegmented electrode. b) RED 
performance with single-stage and 2 × 2 electrode segmentation. c) RED performance with multi-stage (2 stages) with co-current configuration. d) RED performance 
with multi-stage (2 stages) with counter-current configuration. 

Fig. F1. Relative power density loss as a function of residence time for the different cross-flow configurations when comparing 100 mol. % NaCl in the feedwaters 
with a mixture containing 70 mol. % NaCl and 30 mol. % Na2SO4. 
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G. List of model parameters  

Parameter Symbol Value Unit Evaluation procedure 

Width of the active area W 0.22 m Known stack parameter 
Length of the active area L 0.22 m Known stack parameter 
Compartment thickness d 155 × 10− 6 m Known stack parameter 
AEM permselectivity αaem 94.5 % Literature data [27] 
CEM permselectivity αcem 94.7 % Literature data [27] 
AEM electrical resistance, 100 mol. % 

NaCl 
RCl

AEM  1.8 × 10− 4 Ω⋅m2 Measurement in a six-compartment cell at 0.5 M NaCl, according to literature 
procedure [46] 

AEM electrical resistance, 100 mol. % 
Na2SO4 

RSO4
AEM  3.4 × 10− 4 Ω⋅m2 Measurement in a six-compartment cell at 0.5 M NaCl, according to literature 

procedure [46] 
CEM electrical resistance, 100 mol. % 

NaCl 
RNa

CEM  3.3 × 10− 4 Ω⋅m2 Measurement in a six-compartment cell at 0.5 M NaCl, according to literature 
procedure [46] 

CEM electrical resistance, 100 mol. % 
MgCl2 

RMg
CEM  

11.0 × 10− 4 Ω⋅m2 Measurement in a six-compartment cell at 0.5 M NaCl, according to literature 
procedure [46] 

Open area (used to calculate the 
resistance of the feedwaters as in 
[8]) 

Aopen  0.61 (Na2SO4 stack exp), 
0.37 (MgCl2 stack exp) 

– The initial value is 0.55, corresponding to the open area of the spacer netting 
(according to its specifications). The value is then adjusted based on I-V data measured 
for 100 mol. % NaCl. 

Average water diffusion coefficient 
(through the membranes) 

DH2O 1.5 × 10− 10 m2⋅s− 1 Literature data [27] 

Monovalent ion diffusion coefficient 
(through the membranes) 

DNa, DCl 6.5 × 10− 12, 6.5 × 10− 12 m2⋅s− 1 Literature data [27] 

Multivalent ion diffusion coefficient 
(through the membranes) 

DMg, 
DSO4 

3.3 × 10− 12 m2⋅s− 1 The ratio between the diffusion coefficient of monovalent and divalent ions is taken 
from [36] and applied to the values from [27]. 

Membrane thickness lm 125 × 10− 6 m Manufacturer specifications 
Blank resistance Rblank 4 × 37.5 × 10− 4 Ω⋅m2 The extra CEM sealing the electrolyte compartment determines most of the blank 

resistance. Therefore, the value was take to be four times that reported in [27], since 
the active area is approximately ¼. 

Pressure drop coefficient KΔP 0.1945 Pa⋅s Literature data [27]  
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