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Clinical problem

Replacement of a severely dysfunctional heart valve remains the only
viable option for the majority of patients with valvular heart disease,
and the choice of the best suitable prosthesis is based on the patient’s
anatomy, pathology, and comorbidities.1 Heart valve replacement via
open-heart surgery with temporary cardiac arrest has been the stan-
dard of care for decades but is not always applicable to elderly or high-
risk patients. In this context, transcatheter valve replacement (TVR)
strategies have evolved in recent years and provide an alternative
treatment option for inoperable, high-risk, but now also intermediate-
and low-risk patients.1 However, despite this tremendous evolution in
the field, the heart valve prostheses currently utilized in TVR
approaches (i.e. bioprostheses) are prone to continuous degeneration
and still lack the ability to grow, self-repair, and regenerate, thus mak-
ing them not suitable for younger patients.1 Hence, the combination of
TVR with tissue-engineered heart valves (TEHVs) with self-repair and
remodelling properties may provide a next-generation solution that
can be implanted via minimally invasive techniques and will subse-
quently integrate in the heart of the patients.1 These intrinsic regenera-
tion properties will allow TEHVs to grow with the patient, adjust to
the dynamic environment, and eliminate the reoperation risks, thus
providing a lifelong, durable solution for paediatric and elderly patients.

Large heterogeneity of the
implanted tissue and subsequent
remodelling response

Despite the huge potential of such next-generation valve substitutes,
the technical and regulatory complexity, as well as the control of the
in vivo remodelling processes remain major translational challenges lim-
iting TEHVs clinical translation. Additionally, it has recently been
shown that there is a large variability in the preclinical outcomes of

TEHV remodelling.1 Factors like the in vitro culture method, the use of
xenogeneic material, cell seeding, scaffold type, valve design, and im-
plantation method lead to heterogeneity of the implanted tissue.1

Other factors such as inter- and intra-subject differences in the growth
and remodelling response between animals and ultimately patients,
also contribute to the observed variability in the (pre)clinical out-
comes. One study demonstrated that substantial leaflet-to-leaflet vari-
ability is observed in regard to the degree of scaffold degradation and
leaflet thickness, as can be seen in Figure 1.2 Given that the differences
in (epi)genetic and environmental factors are rather small in pre-
clinical studies, the variability in outcome is expected to be even larger
in the clinical setting. Therefore, an in-depth mechanistic understanding
of how such differences arise is mandatory in order to reliably develop
TEHVs that are predictable with regard to remodelling outcomes and
the associated functionality.

Solution: computational modelling
and the rise of personalized
medicine

To successfully translate TEHVs to the clinic, a systematic approach is
needed to identify TEHV design criteria. The integration of in silico
computational modelling (CM) tools with experimental studies is cru-
cial to obtain a mechanistic understanding of the multi-level phenom-
ena that occur after TEHVs implantation.3 Only when the in vivo
remodelling process of TEHVs is understood from a mechanistic point
of view, the currently observed variability can be reduced or even
eliminated.3 It is important to note that the optimal TEHV is not de-
fined only by its design but also by the anatomical correspondence,
adaptation to patient-specific haemodynamic loading, and anticipation
of the presence of comorbidities in the patient which might affect
the regenerative capacity. To this end, patient-specific therapies are
becoming increasingly popular (i.e. personalized medicine), as new
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inter-patient differences that might affect functional remodelling of
TEHVs are discovered on a regular basis.4 Nevertheless, CM has the
potential to explain their influence, adjust for these differences and
may therefore play a central role in the development of patient-
specific TEHVs.

Mechanical factors heavily
influence tissue-engineered heart
valve functionality and remodelling

Mechanical factors have a large influence on the performance, integra-
tion, and adaptation of TEHVs in the host.5 Cells repopulating the
heart valves after implantation are subjected to haemodynamic param-
eters such as pressure, shear forces, and stretch and are known to re-
spond and adapt to these forces to maintain homeostasis in healthy
valve tissues.5 These cellular responses are also crucial for functional
remodelling of TEHVs towards native-like valve tissue as they, for ex-
ample, control extracellular matrix remodelling, tissue compaction and
growth factor excretion and inhibition.3,6 On the other hand, cells can
also transform into pathologically activated phenotypes (e.g. M1 mac-
rophages and myofibroblasts), under non-physiological (mechanical)
conditions,5 like hypertension or aberrant tissue stretch.5 These patho-
logical stimuli may induce a chronical inflammatory state, which causes

maladaptive remodelling of TEHVs for example leading to excessive
leaflet thickening and calcification (Figure 2). Understanding of how me-
chanical stimuli affect the remodelling response of cells and tissues is
therefore crucial to understand how functional (adaptive) remodelling
of TEHVs may be established.

Inter- and intra-patient differences
influence remodelling of
tissue-engineered heart valves

Mechanical parameters can vary between patients or even between
different heart valve leaflets. Inter-patient variability is often observed
in blood pressure, annulus size, and stiffness.7 Intra-patient variabilities
are also found in heart valves such as asymmetry in the leaflet size and
composition.8 Inter- and intra-patient variations affect the mechanical
behaviour of heart valve leaflets and may induce a heterogeneous spa-
tial distribution of stresses and strains.8 These mechanical stimuli evoke
a response from the valvular interstitial cells, and subsequently either
physiological homeostasis or a maladaptive inflammatory state is
reached.1 Therefore, mechanistic understanding of how inter- and
intra-patient differences affect remodelling could indicate how TEHVs
adopt a functional remodelling response instead of maladaptive
remodelling (Figure 2).

Figure 1 Leaflet-to-leaflet variability for tissue-engineered heart valve scaffold degradation and leaflet thickness. Figure was adapted and reprinted
from Fioretta et al.2 under the Creative Commons license 4.0 and with permission from the authors.
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In addition to mechanical parameters, there are also systemic effects
which might affect TEHV remodelling in patients, such as comorbidities
which may significantly affect the remodelling capacity of the cells in
TEHVs.8

Computational modelling can be
used to rationally optimize tissue-
engineered heart valve design

CM is utilized to optimize the design of TEHVs in all steps of the clinical
translation from bench to bedside, as visualized in Figure 4. First, models
are used to study how (mechanical) stimuli affect the remodelling re-
sponse of (single) cells in vitro.9 This can be expanded to understand
how a functional remodelling response can be provoked in a tissue
in vitro in either a static condition or a bioreactor, where the tissue is of-
ten subjected to multiple stimuli in concert.9 Finally, models are used in
in vivo studies, to predict the remodelling potential of a TEHV towards
native-like tissue.3 As it often occurs that several pathways or stimuli
will have competing or synergistic influences on cell or tissue behaviour,
models can aid in understanding how these processes cooperate to de-
fine the final remodelling response of a cell or tissue.9

For all steps from bench to bedside, a model could be made
prior to the experiment, which aids to define hypotheses or
defines how the TEHV should be designed. Besides this, retro-
spective models can be made, to explain unexpected findings.

Both the simulations prior and after an experiment can be used
to optimize the design of the TEHV, as for example done previ-
ously by Emmert et al. where the geometry of TEHV was sub-
stantially improved as visualized in Figure 3.3,6 Optimization
algorithms should therefore be developed to enable the im-
provement of the valve design within a predefined set of suit-
able parameter ranges.

Computational modelling can
analyse the effect of inter- and
intra-patient differences on the
remodelling of tissue-engineered
heart valves

Computational models, which describe the remodelling response of a
TEHV, are often able to incorporate patient-specific input parameters.
If a maladaptive remodelling response is predicted to arise, either the
design of the TEHV could be optimized or patients with these specific
conditions are not recommended to use this TEHV. It is possible that
there is no design that will suit the majority of the patients, or that a pa-
tient has an exceptional cardiovascular signature. In that case, patient-
specific treatments could be developed, where the TEHV is tailored to
each specific case. Initiatives like the digital patient roadmap and the
Virtual Physiological Human provide frameworks to integrate multiple

Figure 2 Adaptive vs. maladaptive remodelling in heart valve implants. Figure was adapted and reprinted from Fioretta et al.1 with permission from authors.
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computational models to study the human body and are of great im-
portance for the development of these patient-specific treatments.4

Using computational modelling
reduces trial and error in
pre-clinical and clinical studies

CM would enable investigators to scale down the trial and error
phase in preclinical studies, obtaining scientific results at reduced
labour cost and animal sacrifice. In silico designed TEHVs have
shown sustainable long-term performance in a translational sheep
model as predicted by computational solutions,3 indicating the
relevance of an integrated bioengineering approach. CM can be
implemented at any stage of clinical translation—from TE implant
design and parameter evaluation to predicting therapy outcomes
in (pre)clinical trials and beyond.

Recently, a clinical trial in Japan showed promising results following
implantation of tissue-engineered vascular grafts as cardiac conduits in
children.10 However, a follow-up trial in the USA was halted, after evi-
dence of stenosis was observed within 8 months of implantation. By
simulating the adaptation of the graft in silico, CM could explain the de-
velopment of stenosis observed in the trials, as well as predict its spon-
taneous resolution via inflammation-driven graft remodelling—which

was later confirmed experimentally. This evidence substantiates the
importance of CM in cardiovascular tissue engineering and its ability to
reduce trial and error within the preclinical development and valida-
tion of such technologies.

How computational modelling
should be incorporated in ISO
guidelines

Current regulatory requirements for cardiovascular implants outlined
by ISO 5840 guidelines are suboptimal for tissue-engineered devices,
as they do not consider their regenerative and growth potential.1 The
regulations are set to be revised, once the clinical translation of TEHV
is achieved. Including in silico clinical trials as part of the updated guide-
lines would support the evaluation of the devices and facilitate quality
assurance. Importantly, models should be properly validated in order
to contribute successfully to clinical translation.4

Implementing CM as a pre-requisite in the ISO testing standards to
study maladaptive remodelling responses could systematically raise
clinical performance of next-generation TEHV. On top of that,
by implementing CM the safety of TEHV will be increased significantly,
as suboptimal TEHV designs are avoided by predicting success or
failure.

Figure 3 Example of rational design optimization of tissue-engineered heart valve geometry, to reduce radial compression of scaffold material.
Figure was reprinted from Motta et al.6 under the Creative Commons license 4.0 and with permission from the authors.
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Models as pre-requisite for clinical
translation would improve
treatment efficacy

In summary, next-generation TEHVs are eagerly awaited in the field,
and provide hope for future heart valve replacement therapies, in par-
ticular for the young and children. To date, efficient clinical translation
has been slower than anticipated due to several technical challenges.1

Advancements in CM have consolidated it as an increasingly valuable
tool with great potential to revolutionize TEHV design and evaluation.
In silico strategies could help to carry out safe clinical translation of TE
cardiovascular implants, as well as improve treatment efficacy and
long-term performance through the simulation of treatment
outcomes.
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Figure 4 Examples of added value of computational modelling in each step of clinical translation of tissue-engineered heart valve (TEHV) from
bench to bedside. In silico models can attribute to mechanistic understanding of in vitro and in vivo studies. Subfigure of TEHV performance was
reprinted from Motta et al.6 under the Creative Commons license 4.0 and with permission from the authors.
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