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Multichannel effects in the Efimov regime from broad to narrow Feshbach resonances

T. Secker , D. J. M. Ahmed-Braun, P. M. A. Mestrom , and S. J. J. M. F. Kokkelmans
Eindhoven University of Technology, P. O. Box 513, 5600 MB Eindhoven, The Netherlands

(Received 29 November 2020; accepted 20 April 2021; published 6 May 2021)

We study Efimov physics of three identical bosons with pairwise multichannel interactions for Feshbach
resonances of adjustable width in magnetic field. We find that the two-body multichannel realization of the
interaction can affect the universal Efimov spectrum, especially for resonances of intermediate width. We analyze
two scenarios that are equivalent on the two-body level but differ in their realization in three-body multichannel
spin space. The deviations in the Efimov spectra of these scenarios are caused by trimer states in the closed
interaction channels whose binding energy and coupling strength to the Efimov states depend on the spin
realization. However, in the narrow resonance limit the Efimov spectrum is set by the resonance width parameter
r∗ only and does not depend on the realization in spin space. We find this limit to be even independent of the
interaction potential considered. In the broad resonance limit all excited Efimov trimer energies approach the
ones from the corresponding single-channel system for the scenarios investigated.

DOI: 10.1103/PhysRevA.103.052805

I. INTRODUCTION

As originally analyzed by Efimov, three particles that
interact with resonant pairwise interactions show universal be-
havior independent of the details of the interaction potentials
[1]. Whereas Efimov first analyzed this effect in the context of
nuclear physics, over the past decades ultracold alkali-metal
atoms have proven to be an ideal platform to study Efimov
physics experimentally for Bose gases [2–6], Fermi gases
[7–10], and mixtures [11–19]. In these atomic systems, the
pairwise interaction can be tuned into the resonant regime
close to Feshbach resonances by applying external magnetic
fields [20]. This tunability is a consequence of Zeeman shifts
in the atomic hyperfine states of the individual atoms. Combi-
nations of these internal hyperfine states on the two and three
atom level form the different scattering channels of the system
which are coupled by a multichannel interaction potential
when the atoms approach each other.

The strength of the interaction in the underlying two-body
system can be parametrized by the s-wave scattering length
a in the ultracold regime. The behavior of a near a Feshbach
resonance can then be characterized by a background scat-
tering length abg and a resonance width parameter r∗ [20].
The parameter r∗ is related to the width of the resonance
in magnetic field �B = h̄2/m dμ abg r∗, with m the mass of
the atoms and dμ the magnetic moment of the bound state
associated with the resonance. Large values of r∗ therefore
correspond to narrow Feshbach resonances, whereas small
values correspond to broad ones. The term �B can be deter-
mined from the magnetic-field dependence of a

a(B) = abg

(
1 − �B

B − B0

)
, (1)

where B and B0 denote the magnetic-field strength and the
resonance position in magnetic field, respectively.

The universal Efimov regime is characterized by large
absolute values of the scattering length, which diverges on
resonance (|a| � rvdW), where rvdW = (mC6/h̄2)1/4/2 is the
range associated with the −C6/r6 van der Waals tail of the
atomic interaction. In the universal Efimov regime a single
three-body parameter determines the location of three-body
features, e.g., the binding energies En of an infinite sequence
of weakly bound three-body states, referred to as Efimov
trimers, that emerge successively when the interaction is
tuned to resonance. The binding energies follow the univer-
sal scaling relation, En+1/En = e−2π/s0 with s0 ≈ 1.00624 for
identical bosons [1,21]. The three-body parameter is often
determined by the scattering length value a(0)

− at which the
lowest Efimov trimer state meets the three-body continuum
and leads to an Efimov resonance.

The three-body parameter a(0)
− has been measured for many

species and Feshbach resonances [3–6,22–25]. Surprisingly,
most early experiments for identical bosons found the three-
body parameter to be close to a(0)

− /rvdW ≈ −9 over different
species and Feshbach resonances [4,6,22–25]. Following the
experiments, this universal value of a(0)

− could be theoretically
explained [26–28] relying on single-channel models for the
interaction potential. However, such single-channel models
cannot correctly describe the two-body physics close to nar-
row Feshbach resonances.

For narrow resonances a(0)
− can deviate from the univer-

sal value as has been predicted theoretically [29–36] and
observed experimentally [34,35,37–39]. However, agreement
between theory and experiment has been achieved only in a
few instances [34–36]. The deviation in a(0)

− from the universal
value thus indicates the importance of multichannel effects
for narrow resonances. To represent narrow resonances on
the two-body level simple two-channel models can be used
to correctly account for the resonance width parameter r∗.
Generalizing those models to the three-body case resulted in

2469-9926/2021/103(5)/052805(18) 052805-1 ©2021 American Physical Society

https://orcid.org/0000-0002-0808-1330
https://orcid.org/0000-0002-7223-5525
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.103.052805&domain=pdf&date_stamp=2021-05-06
https://doi.org/10.1103/PhysRevA.103.052805


T. SECKER et al. PHYSICAL REVIEW A 103, 052805 (2021)

studies of a(0)
− as a function of r∗ [29–31,33], as well as of

both r∗ and abg [32]. All those models find a dependence
of a(0)

− on r∗; however, opposite trends for the behavior of
|a(0)

− | have been obtained. On the one hand, |a(0)
− | can increase

with increasing r∗ reaching a narrow resonance limit (r∗ →
∞), where r∗ sets the three-body universal regime as well
as the three-body parameter [29–31] or, on the other hand,
|a(0)

− | can decrease with increasing r∗ [33]. Interestingly both
increasing [34,37] and decreasing [38,39] trends have also
been observed experimentally. One of the major differences
in the models that predict opposite behavior is the way the
two-body multichannel spin structure is generalized to a three-
body multichannel scenario. This indicates the relevance of
an accurate representation of the multichannel spin structure
for the three-atom system. For the decreasing trend of |a(0)

− |
with increasing r∗ observed in Ref. [33] the two two-body
spin channels are directly promoted to two three-body spin
channels, whereas the models with increasing trend of |a(0)

− |
for increasing r∗ [29–33] resemble a system with a two-body
closed channel formed by identical internal spin states of the
individual atoms that we study and extend in this work.

On the two-body level, a symmetric spin channel is in
general either of the form |cc〉 or |cc′〉S = (|cc′〉 + |c′c〉)/

√
2,

with c and c′ labeling the different internal spin states of
the individual atoms. For identical bosons such symmetric
spin channels need to be considered when combined with
even partial wave components of the interaction. In this paper
we analyze both realizations |cc〉 and |cc′〉S for the closed
channel and are thereby extending earlier studies [29–32] to
the |cc′〉S scenario. We consider pairwise separable interac-
tion potentials that have been used to study the dynamics
of the many-body system [40,41] and generalize them to a
multichannel interaction. We find that the realization of the
two-channel model in spin space affects the Efimov spec-
trum in the broad and especially intermediate resonance width
regime, leading to both increasing and decreasing trends of
|a−| depending on the realization, while the narrow resonance
limit can be recovered for r∗ → ∞ in all considered cases.
Additionally, we find the narrow resonance limit to be inde-
pendent of the form of the interaction we consider.

The paper is outlined as follows. In Sec. II, we start with
the analysis of the three-body bound-state equations in mo-
mentum representation for a general multichannel system.
To keep the system clean whilst retaining the multichannel
characteristics, we proceed to analyze a simple two-channel
model in Sec. III, where we restrict ourselves to the case of
separable s-wave interactions and two internal spin states |a〉
and |b〉 per particle. Here, we distinguish between the two
different closed-channel realizations |bb〉 and |ab〉S we men-
tioned earlier. The two-body details are discussed in Sec. IV.
The results of our analysis and a comparison of the differ-
ent closed-channel realizations are presented in Sec. V A.
For the |bb〉 realization they resemble earlier multichannel
studies and allow for an effective field theory description
containing a dimer field [30–32] as we discuss in Appendix
C. In Sec. V B we analyze the narrow resonance limit of
the two realizations. We then conclude in Sec. VI with a
summary of the most important findings and suggestions for
future research.

II. THREE-BODY BOUND STATES IN A MULTICHANNEL
SETTING

For the three-body multichannel model system with sepa-
rable interactions that we want to focus on in Secs. III to V,
we choose to work in a momentum space representation. This
enables us to study Efimov physics by solely considering a
one-dimensional integral equation. Therefore, we outline the
general multichannel version of the three-body bound-state
equations for three identical bosons in momentum space here.
Since we do not yet restrict ourselves to any special kind
of model system, the equations presented should apply to
any short range interaction including those coupled-channels
models, which currently provide the most accurate theoretical
description of the interatomic interaction.

We consider identical bosons with pairwise potentials Vi j

describing the interaction between particles i and j. The
three-body bound-state equation can then be formulated in the
following form [42]:

�i j = Ti j (E )G0(E )(P+ + P−)�i j, (2)

where Ti j (E ) is a generalized two-body transition operator,
G0(E ) is the free three-body Green’s operator, that in the
multichannel context also accounts for the asymptotic ener-
gies of the channels, and where P+ and P− denote the two
cyclic permutation operators. The index (i j) specifies a choice
of a two particle subsystem formed by particles i and j. We
introduce the corresponding system of Jacobi momenta

p = 1

2
(k j − ki ), (3)

q = 1

3
(ki + k j ) − 2

3
kk, (4)

where ki, k j , and kk denote the momentum of particles i,
j, and k, respectively, such that the relative momentum be-
tween particles i and j is now related to p. The particular
choice of the pair (i j) is arbitrary since we are considering
identical bosons. Equation (2) has a solution only when E
is an eigenenergy of the three-body Hamiltonian. The cor-
responding bound-state wave function is then given by � =
(1 + P+ + P−)G0(E )�i j .

In the following we discuss the operators introduced in
Eq. (2) in more detail. We start with the analysis of the
generalized two-body transition operator Ti j (E ). Given the
interaction Vi j , we can use the Lippmann-Schwinger equation
in order to define Ti j [42]

Ti j (E ) = [1 − Vi jG0(E )]−1Vi j . (5)

Ti j (E ) is related to the two-body t operator t (z) by [42]

〈C, c, p, q|Ti j (E )|C′, c′, p′, q′〉
= 〈C, p|t (E − 3q2/4m)|C′, p〉〈c, q|c′, q′〉, (6)

where C and C′ represent any symmetric or antisymmetric
combination of the product of internal states of particles i and
j and where c and c′ represent the spin of particle k.

Since we consider a three-body system of identical bosons,
where each particle i can occupy several internal spin states
labeled by ci, we can define the permutation operators P±
as products of permutation operators Pc

± acting only on
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coordinates and permutation operators Ps
± acting only on in-

ternal states, respectively, such that

P− = Pc
−Ps

−, P+ = Pc
+Ps

+, (7)

where the coordinate permutation operators can be written in
integral form as

Pc
− =

∫
dq′dq|q′ + q/2, q〉〈−q′/2 − q, q′|, (8)

Pc
+ =

∫
dq′dq| − q′ − q/2, q〉〈q′/2 + q, q′|, (9)

with momentum states normalized according to 〈p′|p〉 =
δ(p′ − p). The internal state permutation operators can be
expressed using a summation over all available internal spin
states, such that

Ps
− =

∑
cic j ck

|c j, ck, ci〉〈ck, ci, c j |, (10)

Ps
+ =

∑
cic j ck

|ci, c j, ck〉〈ck, ci, c j |. (11)

The sum of permutation operators can then be written as [43]

P+ + P− = 2
[
PS

i jP+PS
i j + PA

i jP+PA
i j

]
, (12)

where

PS
i j = (1 + Pi j )/2, PA

i j = (1 − Pi j )/2 (13)

are the symmetrization and antisymmetrization operators in
particles i and j and where Pi j is the operator exchanging the
particles in the pair (i j). Equation (12) then follows from the
identity

P− = Pi jP+Pi j . (14)

For identical bosons we need �i j = Pi j�i j such that � is
totally symmetric and therefore Eq. (2) simplifies to

�i j = 2Ti j (E )G0(E )P+�i j . (15)

Using this we can give Eq. (2) in |C, c, p, q〉 representation,
such that

〈C, c, p, q|�i j〉 = 2
∑

C′,C′′c′′

∫
dq′
{ 〈C, p|t (E − 3q2/4m)|C′,−q′ − q/2〉

E − E (C′, c) − (q2 + q′2 + qq′)/m
〈C′, c|Ps

+|C′′, c′′〉〈C′′, c′′, q′/2 + q, q′|�i j〉
}
.

Note how the Green’s function has evaluated to

G0(E )|C, c, p, q〉 = |C, c, p, q〉
E − E (C, c) − p2/m − 3q2/4m

, (16)

where E (C, c) represents the asymptotic energy of the channel |C, c〉. In Appendix A we give more details on how to work out
the elements 〈C′, c|Ps

+|C′′, c′′〉.

III. SEPARABLE MODEL SYSTEMS

To explore possible multichannel effects we proceed with the analysis of a simple model potential, which has a single
separable s-wave component

〈C, p|V |C′, p′〉 = 〈C|v|C′〉ζ (p)ζ ∗(p′) (17)

with form factor ζ and only symmetric spin combinations C and C′. In addition we assume just two internal spin states per
particle, which we label with a and b (ci, c j, ck ∈ {a, b}) and assume a difference in channel energy of εab. Since the interaction
is separable, so is the two-body t operator

〈C, p|t (z)|C′, p′〉 = 〈C|τ (z)|C′〉ζ (p)ζ ∗(p′), (18)

that we work out explicitly for a step-function shaped form factor in the following section. Searching for solutions with zero
total angular momentum, we can then make the ansatz 〈C, c, p, q|�i j〉 = ζ (p)〈C, c, q|φi j〉. Evaluating this ansatz in Eq. (16) and
dividing both sides by ζ (p), we find

〈C, c, q|φi j〉 = 4π
∑

C′,C′′c′′

∫ ∞

0
q′2dq′

∫ 1

−1
du

{
〈C|τ [E − 3q2/4m − E (c)]|C′〉ζ ∗(

√
q′2 + q2/4 + q′qu)ζ (

√
q′2/4 + q2 + q′qu)

E − E (C′, c) − (q2 + q′2 + qq′u)/m

×〈C′, c|Ps
+|C′′, c′′〉〈C′′, c′′, q′|φi j〉

}
, (19)

=
∑
C′c′

∫ ∞

0
q′2dq′〈C, c, q|K|C′, c′, q′〉〈C′, c′, q′|φi j〉, (20)

where we implicitly defined the operator K in the last line. We implement Eq. (19) numerically by replacing the q′ integration
by a summation over a finite q′ grid.
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Applying the relations as presented in Appendix A in order to analyze the elements 〈C′, c|Ps
+|C′′, c′′〉 and dropping the index

in φi j , Eq. (20) can be rewritten into the following matrix form:⎡
⎢⎢⎢⎢⎢⎣

〈aaa|φ〉
〈aba|φ〉
〈bba|φ〉
〈aab|φ〉
〈abb|φ〉
〈bbb|φ〉

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

〈aaa|K|aaa〉 〈aaa|K|aba〉 0 〈aaa|K|aab〉 〈aaa|K|abb〉 0
〈aba|K|aaa〉 〈aba|K|aba〉 0 〈aba|K|aab〉 〈aba|K|abb〉 0
〈bba|K|aaa〉 〈bba|K|aba〉 0 〈bba|K|aab〉 〈bba|K|abb〉 0

0 〈aab|K|aba〉 〈aab|K|bba〉 0 〈aab|K|abb〉 〈aab|K|bbb〉
0 〈abb|K|aba〉 〈abb|K|bba〉 0 〈abb|K|abb〉 〈abb|K|bbb〉
0 〈bbb|K|aba〉 〈bbb|K|bba〉 0 〈bbb|K|abb〉 〈bbb|K|bbb〉

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

〈aaa|φ〉
〈aba|φ〉
〈bba|φ〉
〈aab|φ〉
〈abb|φ〉
〈bbb|φ〉

⎤
⎥⎥⎥⎥⎥⎦,

(21)

where we write out the symmetric spin states in the pair (i j) explicitly as C ∈ {aa, ab, bb}. This equation indicates that even
a model with a single s-wave component and two internal states yields a system with six coupled channels for the Faddeev
component φ.

We want to focus on scenarios that correspond to a two-channel model on the two-body level with open channel P = aa that
is coupled only to a single closed channel Q. For Q we can either choose Q = bb which is of the form |cc〉 or Q = ab which is
of the form |cc′〉S = (|cc′〉 + |c′c〉)/

√
2. For Q = bb we need to set 〈C|v|C′〉 = 0 when C or C′ equals ab to have no coupling to

the ab channel, whereas for Q = ab we need to set 〈C|v|C′〉 = 0 when C or C′ equals bb to have no coupling to the bb channel.
These restrictions on v transfer also to τ (z) as we will see in the following section such that 〈C|τ (z)|C′〉 = 0 when C or C′
equals ab for Q = bb or 〈C|τ (z)|C′〉 = 0 when C or C′ equals bb for Q = ab. Evaluating this in Eq. (19) we find that some of the
elements 〈C, c|K|C′, c′〉 in Eq. (21) equal zero and the three-body equations can be simplified. In particular 〈C, c|K|C′, c′〉 = 0
when C = ab for Q = bb or when C = bb for Q = ab. As a consequence the components 〈aba|φ〉 and 〈abb|φ〉 or 〈bba|φ〉 and
〈bbb|φ〉 have to be identical to zero, respectively.

Considering Eq. (21) for the situation with closed channel Q = bb, we find that the three-body equations involving the open
channel aaa can be further reduced to [〈aaa|φ〉

〈bba|φ〉
]

=
[〈aaa|K|aaa〉 0
〈bba|K|aaa〉 0

][〈aaa|φ〉
〈bba|φ〉

]
(22)

because the elements 〈aaa|K|aab〉 and 〈bba|K|aab〉 vanish when evaluating 〈C|τ (z)|C′〉 in combination with the elements of Ps
+

in Eq. (19). The solution is thus solely determined by the open channel part

〈aaa|φ〉 = 〈aaa|K|aaa〉〈aaa|φ〉. (23)

Since just the open-channel component of the t operator is needed in this equation, we can later on use the Feshbach formalism
[44], which we generalize in Appendix B to an off shell version, to construct an approximate model system, in which the closed
channel is modeled by a separable energy-dependent interaction term added to the open channel. We analyze this model and its
narrow resonance limit in more detail in Sec. V. We note that this model system is similar to the ones discussed in effective field
theory [30–32] and the ones considered for the narrow resonance limit [29,30]. In Appendix C we show that the Q = bb model
can be approximated by the effective field theory models used in [30–32].

If we alternatively fix the closed channel Q to correspond to ab, we find that Eq. (21) can be expressed as⎡
⎢⎣

〈aaa|φ〉
〈aba|φ〉
〈aab|φ〉
〈abb|φ〉

⎤
⎥⎦ =

⎡
⎢⎣

〈aaa|K|aaa〉 〈aaa|K|aba〉 〈aaa|K|aab〉 0
〈aba|K|aaa〉 〈aba|K|aba〉 〈aba|K|aab〉 0

0 〈aab|K|aba〉 0 〈aab|K|abb〉
0 〈abb|K|aba〉 0 〈abb|K|abb〉

⎤
⎥⎦
⎡
⎢⎣

〈aaa|φ〉
〈aba|φ〉
〈aab|φ〉
〈abb|φ〉

⎤
⎥⎦. (24)

Contrary to the realization where Q = bb, this equation indicates that the realization Q = ab results in coupling terms to the
closed channels. Consequently it is no longer possible to describe the model in terms of the Feshbach formalism. As such, the
system does no longer resemble the ones discussed in effective field theory [30–32] and requires a careful analysis in terms of
all four coupled channels as presented in Eq. (24). The results of this analysis will be presented in Sec. V A.

IV. TWO-BODY TRANSITION OPERATOR

In the following we derive the two-body t operator for
the separable system explicitly. As discussed in the previ-
ous section we consider two scenarios: one where the closed
channel Q = bb and one where the closed channel Q = ab.
Both scenarios only involve two two-body channels which
are coupled via the interaction potential. The corresponding
two-body t operators are equivalent when the difference ε

in closed and open channel energy and the interaction and
coupling strengths 〈P|v|P〉, 〈Q|v|Q〉, 〈Q|v|P〉 = 〈Q|v|P〉∗ of

Eq. (17) are identical in both scenarios. For ε we get ε = 2εab

in case of Q = bb and ε = εab in case of Q = ab. According
to Eq. (17) we have a two-body interaction of the form

V =
(

v̄PP v̄PQ

v̄QP v̄QQ

) |ζ 〉〈ζ |
m�

= [v]|ζ 〉〈ζ |, (25)

with potential interaction and coupling strength parameters
v̄PP, v̄QQ, v̄PQ = v̄QP ∈ R. We define the form factor ζ as

〈p|ζ 〉 = ζ (p) =
{

1, p < �,

0, p � �,
(26)
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where � is a momentum cutoff scale. For such an interaction,
the two-body transition operator can be obtained analytically
in a straightforward fashion. Resembling Eq. (5) the two-body
operator is defined as

t (z) = [1 − V g0(z)]−1V, (27)

with g0 the free Green’s function of the two-body system.
Since we are considering the interaction between just two
channels, we can fix the zero energy to equal the asymptotic
energy of the open channel P. By doing so, the asymptotic
energy of the closed-channel Q reduces to the energy differ-
ence ε between the open and closed channel. Consequently,
the free Green’s operator of the two-body system g0(z) can be
expressed as

〈p|g0(z)|p′〉 =
(

(z − p2/m)−1 0
0 (z − ε − p2/m)−1

)
〈p|p′〉.

(28)

Next, the separable interactions allow us to express the t
operator in the following separable form:

t (z) =
(

τPP(z) τPQ(z)
τQP(z) τQQ(z)

)
|ζ 〉〈ζ |, (29)

where the energy dependent terms tCC′ (z) can be computed
explicitly from(

τPP(z) τPQ(z)
τQP(z) τQQ(z)

)
= (1 − [v]〈ζ |g0(z)|ζ 〉)−1[v]. (30)

For step function shaped form factors considered in this sec-
tion, the previous equation can be solved analytically using
the identity∫ �

0
d p

p2

p2
z − p2 + i0

= −� + pzarctanh

(
�

pz

)
(31)

to solve for 〈ζ |g0(z)|ζ 〉.
Here we would like to point out that it is possible to

generalize this method to any finite number of channels and
form factors. Furthermore, the model can be adjusted to match
the low-energy scattering properties of a given system. The
scattering length is then given by

a = 2π2mh̄τPP(0)ζ ∗(0)ζ (0) (32)

and depends on the parameters v̄PP, v̄QQ, v̄PQ = v̄QP and ε,
so that we have a = a(v̄PP, v̄QQ, v̄PQ, ε). We then define the
background scattering length by

abg(v̄PP, v̄QQ, v̄PQ) = lim
ε→∞ a(v̄PP, v̄QQ, v̄PQ, ε), (33)

the resonance energy ε0 by

1/a[v̄PP, v̄QQ, v̄PQ, ε0(v̄PP, v̄QQ, v̄PQ)] = 0, (34)

and the resonance width parameter

r∗ = ∂ε

( m

h̄2a

)∣∣∣
ε=ε0

. (35)

With those definitions we can map any given set of
(abg, r∗, ε0) to a set of system parameters (v̄PP, v̄QQ, v̄PQ).

To analyze the narrow resonance limit of τPP(z) we first use
the Feshbach formalism outlined in Appendix B to approxi-
mate the system. We recognize that the transition matrix is the

only operator in the three-body equation that depends on the
form of the two-body interactions. Following the procedure
as outlined in Appendix B, we find that the transition matrix
element τPP as introduced in Eq. (30) reduces to the following
simple form in the narrow resonance limit:

τ̃PP ≡ τPP(z)

r∗/mh̄
(36)

=
r∗→∞

1

2π2|ζ (0)|2
1

z̃ + ã−1 − √−z̃
, (37)

where we have used system parameters in units of r∗, such
that t̃PP = tPP/(r∗/mh̄), and where we have introduced the
dimensionless scattering length ã = a/r∗ and energy z̃ =
z m r∗2/h̄2. The above expression is valid for arbitrary form
factors ζ and leads to a narrow resonance limit of the Efimov
spectrum which we discuss in detail in Sec. V B. From that
we conclude that the above limit also holds in the general
setting with nonseparable interaction potentials. The t oper-
ator for those general potentials can be expanded in separable
terms, with a single separable term representing the resonant
component [36,45,46]. Only the open-open component of the
resonant term will approach the limit in Eq. (37). All other
terms in the open-open component are finite even on res-
onance in units related to the range of the interaction and
therefore vanish according to Eq. (36) in units of the reso-
nance width parameter r∗ when taking it to infinity.

V. RESULTS

We study the dissociation scattering lengths a(n)
− as well

as the binding energies of the three deepest trimer states for
varying values of the resonance width parameter r∗. To com-
pletely determine the system we fix the threshold difference
on resonance ε0 and the background scattering length abg,
such that we can map the scattering length a to the threshold
difference ε between the open and closed channel. In the
following we denote quantities made dimensionless in units
of the cutoff scale � with a bar. This means that all lengths
are given in multiples of h̄/� and all energies are given in
multiples of �2/m. The length scale h̄/� then indicates the
range of the interaction. We choose ābg = −0.2 to have no
additional bound background dimer states in our model and
set the resonance position to a value of ε̄0 = 1.5 to just have a
single closed channel trimer for Q = ab as will be discussed
below in more detail.

A. Comparison of the Q = bb and Q = ab multichannel
realizations

We start by comparing our results for a(n)
− in the different

closed channel realizations Q = bb and Q = ab for changing
values of r∗. Our results are summarized in Fig. 1(a). Here
we also compare our results to the single-channel result cor-
responding to the interaction [40,48]

V sc = ā

2π2 − 4π ā

|ζ 〉〈ζ |
m�

, (38)

with ā = a�/h̄ the scattering length made dimensionless us-
ing the range of the interaction as defined above. We find
that in the broad resonance limit (r̄∗ → 0) we can recover the
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FIG. 1. We compare the three-body spectra of the systems we have analyzed. The red solid lines correspond to the Q = bb realization,
whereas the blue dashed lines correspond to the Q = ab realization of the system. In both cases the resonance positions are fixed at a threshold
difference of ε̄0 = 1.5 and the background scattering length is fixed to ābg = −0.2. In (a) we show the inverse dissociation scattering lengths
1/a(n)

− of the three most deeply bound trimer states rescaled with the lowest (in absolute value) single-channel dissociation scattering length
asc

− as a function of the resonance width r̄∗. The open circles and diamonds correspond to experimental data [22,23,25,34,37–39,47], where
we rescaled a(0)

− by the universal value of −9.73rvdW [26] and set r̄∗ = r∗/rvdW. The diamonds correspond to very small values of r∗ and have
been shifted by r̄∗ = 0.01 to fit on the plot. The red band indicates the van der Waals universal region up to ±15%. The thin black dashed line
indicates asc

−/abg, while the light gray horizontal lines correspond to the trimer positions of the single-channel system. The vertical gray lines
indicate the resonance widths at which we obtained full Efimov spectra shown in (b)–(d) for r̄∗ = 0.01, 1, 100, respectively. In (b)–(d) we
show the binding energies of the lowest three trimer states (red solid and blue dashed lines) as a function of the inverse scattering length 1/ā.
For better visibility both axes are rescaled as indicated by the axes labels. The thick black line indicates the dimer binding energy which agrees
for both realizations since the t operator is identical. The thin gray lines correspond to the trimer spectrum of the single-channel model, while
the thick gray line corresponds to the single-channel dimer binding energy. In (b) the trimer and dimer lines stop at some positive inverse
scattering length close to 1/ā1/4 = 0.4, since the threshold difference related to this value of the scattering length is zero and we enter a regime
irrelevant for this investigation beyond this point.

single-channel result for all a(n)
− except for the dissociation

scattering length a(0)
− related to the lowest Efimov trimer state

in the Q = ab realization, which still approaches a limiting
value but is lowered in absolute value.

Our finding that a limiting result is approached for broad
resonances is in agreement with earlier studies in effective
field theory [31,32] and is also in line with the results of
multichannel hyperradial calculations using van der Waals
interaction potentials [47]. Also the experimental results for
atomic systems indicated by the blue diamonds in Fig. 1(a)
confirm this behavior [25]. When r̄∗ is increased we find that
|a(n)

− | increases for the Q = bb realization in agreement with
[31,32]. However, for Q = ab we find the opposite behavior
and |a(n)

− | decreases with increasing r̄∗, for moderate values of
r̄∗ < 0.3. This behavior is more in line with the results of [33],

where a lowering in |a(0)
− | was observed when r̄∗ is increased.

The value of |a(0)
− | corresponding to the lowest trimer state in

the Q = ab realization even keeps decreasing when r̄∗ reaches
large values and converges to limr̄∗→∞ a(0)

− = abg. This indi-
cates that the lowest trimer state in the Q = ab realization is
in this limit no longer related to the Efimov spectrum close to
the resonance and has in fact purely closed-channel character,
as will be discussed in the following section. Note that due to

a(ε) ≈ abg − h̄2/mr∗

ε0 − ε
(39)

all a(ε) for fixed ε will be mapped to abg in the narrow reso-
nance limit. In this limit (r̄∗ → ∞) we also find dissociation
scattering lengths related to Efimov states that scale linearly
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TABLE I. Values of ā(n)
− e−nπ/s0 or ā(n)

− e−(n−1)π/s0 as well as a(n+1)
− /a(n)

− and κ (n)
∗ a(n)

− of the three lowest trimer states for values of r̄∗ equal
to 0.01, 1, and 100 that correspond to Figs. 1(b)–1(d). Note that for the case Q = ab and r̄∗ = 100 we use ā(n)

− e−(n−1)π/s0 since the trimer with
n = 1 corresponds to the lowest Efimov trimer.

Q = bb Q = ab

r̄∗ n ā(n)
− e−nπ/s0 a(n+1)

− /a(n)
− κ (n)

∗ a(n)
− ā(n)

− e−nπ/s0 a(n+1)
− /a(n)

− κ (n)
∗ a(n)

−

0.01 0 5.59 21.2 1.75 3.85 24.4 1.26
0.01 1 5.21 22.4 1.53 4.97 22.7 1.51
0.01 2 5.14 1.51 4.95 1.51

r̄∗ n ā(n)
− e−nπ/s0 a(n+1)

− /a(n)
− κ (n)

∗ a(n)
− ā(n)

− e−nπ/s0 a(n+1)
− /a(n)

− κ (n)
∗ a(n)

−

1 0 11.0 25.4 1.35 0.88 75.1 0.81
1 1 12.3 22.9 1.50 2.92 23.4 1.46
1 2 12.4 1.50 3.01 1.50

r̄∗ n ā(n)
− e−nπ/s0 a(n+1)

− /a(n)
− κ (n)

∗ a(n)
− ā(n)

− e−(n−1)π/s0 a(n+1)
− /a(n)

− κ (n)
∗ a(n)

−

100 0 1.08 × 103 26.5 1.28 0.21 5.04 × 103 0.23
100 1 1.26 × 103 23 1.49 1.05 × 103 26.6 1.28
100 2 1.3 × 103 1.5 1.23 × 103 1.48

with r∗ for both realizations Q = bb and Q = ab. We discuss
this limit in more detail in Sec. V B.

In Figs. 1(b)–1(d) we show some trimer spectra for in-
creasing values of r∗. From these spectra we extract the
dissociation scattering length a(n)

− as well as the wave number
κ

(n)
∗ = −√|En|m/h̄ related to the trimer binding energy on

resonance and collect our results in Table I. The spectra may
be most easily understood starting from the narrow resonance
spectrum given in Fig. 1(d). In Fig. 1(d) we identify the
closed-channel trimer as the one that is most deeply bound in
the plot in the Q = ab realization. Close to the point where
the dimer state merges with the three-body continuum we
find a shrunken version of a universal Efimov trimer spectrum
for both realizations Q = bb and Q = ab. The thin gray lines
give the single-channel Efimov spectrum for comparison. As
mentioned earlier the size of the Efimov trimer spectrum is
set by r∗, which is the dominating length scale in the narrow
resonance limit. Therefore, the size of the Efimov spectrum
increases when r∗ decreases as can be seen from Fig. 1(c). In
this intermediate resonance width regime where r̄∗ ∼ 1 devi-
ations between the different realizations Q = bb and Q = ab
get pronounced, since the excited trimer states in the Q = ab
realization start to couple to and get repelled by the lowest
closed-channel trimer state. This causes the first and second
excited trimer states to be shifted to higher energies as com-
pared to the energies of the two lowest Efimov trimer states
in the Q = bb realization. Due to the coupling to the open-
channel (aaa) Efimov trimers the closed-channel (aba and
aab) trimer acquires an open-channel component. We note
that in the Q = bb realization it is not possible to couple to
closed-channel trimer states, as is indicated by Eq. (23). For
even broader resonances our results are shown in Fig. 1(b).
There the lowest trimer state in the Q = ab realization adopts
Efimov character, while the first and second excited trimer
energies are matching with the ones of the Q = bb realization
as well as with the single-channel result.

We also compare to experimental results in Fig. 1(a).
We find that almost all experimentally measured values of

a(0)
− lie between the predictions of the Q = bb and Q = ab

realizations, when rescaled according to the description in
the caption of Fig. 1(a). This is promising since interpolat-
ing between the Q = bb and Q = ab interaction potentials
while also properly adjusting εab provides us with a contin-
uous mapping between the two limiting realizations we study.
Therefore, also the spectra should be continuously deformed
into each other covering part of the area between the models,
which contains the experimental values. This indicates that
in the realistic situation a model including both realizations
Q = bb and Q = ab needs to be applied to represent the
atomic spin structure correctly. We note that in a realistic
system usually both |cc〉 and |cc′〉S type channels are involved
in the multichannel interaction [36].

B. Narrow resonance limit

For the Q = bb realization we can immediately see from
Eq. (23) that the trimer energies depend only on the three-
body open channel component 〈aaa|φ〉. For the Q = ab
realization, on the other hand, the coupling terms 〈aaa|K|aba〉
and 〈aaa|K|aab〉 prevent this. However, these coupling terms
vanish in the narrow resonance limit when expressed in units
related to the width parameter r∗, because the separation
in threshold energy is Ẽ (aba) − Ẽ (aaa) = ε̃ ∝ r̄∗2. There-
fore, G0 has a suppressing effect ∝1/r̄∗2, which cancels the
leading-order diverging behavior of τ̃PQ(z) ∝ √

r̄∗ in the cou-
pling terms 〈aaa|K|aba〉 and 〈aaa|K|aab〉. In conclusion we
find that in the narrow resonance limit Eq. (23) can be used
to solve for three-body bound-state energies in both real-
izations Q = bb and Q = ab. Since the scaling behavior of
τ̃PQ(z) ∝ √

r̄∗ holds in general, the above reasoning is also
true for realistic interactions including the full spin structure
of the three-atom system. We thus conclude that the above
limit holds in the narrow resonance limit for any multichannel
interaction potential.

By applying the reduction given in Eq. (37) and by chang-
ing to the scaled momenta q̃ = qr∗/h̄, we find that q = h̄q̃/r∗
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FIG. 2. Efimov spectrum in the narrow resonance limit. The
purple (gray) lines indicate the five lowest Efimov trimer binding
energies, whereas the thick black line indicates the ground-state
dimer binding energy. The binding energies are shown for varying
values of inverse scattering length. All quantities are given in units
related to r∗ (see Sec. IV) and are rescaled as indicated by the axes
labels for better visibility.

approaches a value of zero in the low-energy and narrow
resonance limit. We can therefore simplify the expression of
the integral kernel as presented in Eq. (19) by replacing the
argument in the form factors ζ by the value at zero momentum
ζ (0). The ζ (0) terms cancel with the ones contained in τ̃PP(z)
[compare Eq. (37)]. Consequently, the three-body wave func-
tion of any model with separable interactions can be expressed
as

〈aaa, q̃|φ〉 ≈
r∗→∞

4π

∫
dq̃′ q̃′〈aaa, q̃′|φ〉

2π2q̃
(− q̃2

z + ã−1 − q̃z
)

× ln

(−Ẽ + q̃′2 + q̃2 − q̃′q̃
−Ẽ + q̃′2 + q̃2 + q̃′q̃

)
, (40)

where the absence of form factors has allowed us to
carry out the angular integration explicitly and where q̃z =√

3q̃2/4 − Ẽ .
As we have found a straightforward expression Eq. (40) for

the three-body bound-state equation in the narrow resonance
limit, we can proceed with the computation of the dimension-
less Efimov spectrum. In Fig. 2 we present our results for the
Efimov spectrum in the narrow resonance limit. In addition
we extract the dissociation scattering length a(n)

− up to n = 3
as well as the wave number κ

(n)
∗ related to the trimer binding

energy on resonance. Our results are collected in Table II.
In agreement with Refs. [30,48–51], we find in the nar-

row resonance limit that the dissociation scattering length of

TABLE II. Values of ã(n)
− e−nπ/s0 as well as a(n+1)

− /a(n)
− and κ (n)

∗ a(n)
−

for the four lowest Efimov trimers in the narrow resonance limit.

n ã(n)
− e−nπ/s0 a(n+1)

− /a(n)
− κ (n)

∗ a(n)
−

0 10.90 26.48 1.28
1 12.72 22.98 1.49
2 12.88 22.71 1.51
3 12.90 22.70 1.51

FIG. 3. Narrow resonance limit of the closed-channel (aba and
aab) trimer binding energies relative to the closed-channel dimer
binding energy with respect to the closed-channel threshold, which in
the narrow resonance limit coincides with the resonance position ε̄0.
The gray line indicates the value ε̄0 = 1.5 that we set the resonance
position to throughout our analysis of the multichannel system with
varying values of r̄∗.

the ground state a(0)
− scales as a(0)

− /r∗ � −10.90216, whereas
highly excited trimer states (n � 1) approach a scaling
a(n)

− e−nπ/s0/r∗ � −12.9. In addition, we recognize the uni-
versal scaling laws a(n+1)

− /a(n)
− ≈ −22.7 and κ

(n)
∗ a(n)

− ≈ 1.51,
which are typical for Efimov spectra.

Having analyzed the trimer spectrum in the open three-
body channel aaa in the narrow resonance limit, we are left
with the narrow resonance limit analysis of the closed-channel
trimer spectrum for the Q = ab realization. In the narrow
resonance limit (r∗ → ∞) we find that τ̄PQ(E − 3q2/4m) →
0 for all E considered. It follows that the coupling terms
〈aaa|K|aba〉, 〈aaa|K|aab〉, 〈aba|K|aaa〉, 〈aab|K|abb〉, and
〈abb|K|aba〉 vanish. We can therefore analyze the closed-
channel components aba and aab separately, which leads to
the following system of equations:[〈aba|φ〉

〈aab|φ〉
]

=
[〈aba|K|aba〉 〈aba|K|aab〉
〈aab|K|aba〉 0

][〈aba|φ〉
〈aab|φ〉

]
,

(41)

The system consists of two particles in spin state |a〉 and one
particle in spin state |b〉 and is therefore equivalent to a system
of two identical bosons (B) and a distinguishable particle (X)
(see also Appendix C). The Efimov scaling laws on reso-
nance for such a BBX system are determined by s0 ≈ 0.41370
[48,52]. We find our system in agreement with those results,
when setting abg = 0 with s0 = 0.415 that we determined
from the scaling of the ground to first excited Efimov trimer
energy on resonance.

However, since we fixed ε̄0 = 1.5 the closed-channel sys-
tem we consider here has a dimer binding energy of ε0 with
respect to the closed-channel threshold in the limit r∗ → ∞.
In Fig. 3 we show the closed-channel trimer spectrum in
the narrow resonance limit with respect to the open-channel
threshold as a function of the resonance position ε̄0. We ob-
serve that for increasing ε̄0 the trimer binding energy increases
and more trimer states are getting bound. However, to keep
the analysis for the coupled case as simple as possible, we
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have chosen the resonance position ε0 such that we just have
a single nonuniversal closed-channel trimer state near the
open-channel threshold in the limit of zero coupling to the
open channel. Hence we have fixed the resonance position to
ε̄0 = 1.5 in Fig. 1.

For completeness we note that the closed-channel spectrum
related to the remaining part

〈abb|φ〉 = 〈abb|K|abb〉〈abb|φ〉 (42)

is equivalent to the closed-channel one we just discussed,
when abg is set to zero [compare Eqs. (C54) and (C57) in
Appendix C]. Since the abb threshold energy lies ε0 higher
in energy as the aba threshold for ε = ε0 also the trimer spec-
trum needs to be shifted to higher energies by the threshold
difference ε0. Since the trimer binding energy Ē < 1.5 for
ε̄0 = 1.5 the abb closed-channel trimer is located above the
aaa threshold in the considered system. This is confirmed by
our calculations that show only a single background trimer
state in the narrow resonance limit.

VI. CONCLUSION AND OUTLOOK

We present a multichannel version of the three-body
bound-state equations in momentum space. In order to probe
multichannel effects we analyze two different three-body
realizations of an interaction that on the two-body level
leads to a standard two-channel model for Feshbach reso-
nances with separable s-wave interactions. The two models,
that correspond to the different realizations, differ only in
the combination of single-particle spins employed for the
closed channel of the two-body model. Realistic full coupled-
channels models for atomic s-wave interactions include
symmetric spin combinations of the form |cc〉 and |cc′〉S for
the closed channels. We analyze the three-body bound-state
spectrum for either a purely |cc〉 or a purely |cc′〉S realization
of the closed channel for various values of the resonance
width and are thereby going beyond earlier studies [29–32]
related to the |cc〉 scenario. We find that the realization of

the interaction in spin space can strongly affect the Efimov
spectrum for intermediate resonance widths. Therefore, our
findings suggest that in this regime a full multichannel model
is needed to identify the three-body parameter for identical
bosonic alkali-metal atoms correctly. Additionally we find
that trimers related to the closed channels can appear in the
|cc′〉S realization. Contrary to the regime of intermediate res-
onance width, we find that both the |cc〉 as well as the |cc′〉S

configurations reduce to the same narrow resonance limit of
the Efimov spectrum. In this limit, the three-body dissociation
scattering lengths a(n)

− scale linearly with the resonance width
parameter r∗. We derive this limiting behavior by analyzing
the three-body bound-state equation. We find that the narrow
resonance limit is independent of the interaction potential
used. For the scenarios investigated and in the broad reso-
nance limit the excited Efimov states appear to be independent
of the closed channel configuration and agree with predictions
from the corresponding single-channel model.

Our model can be extended by adding more separable
terms even with higher partial wave components to represent
the long-range van der Waals tail of the atomic interactions
correctly. Studying such a class of models with only two
internal spin states could help to understand the effects leading
to van der Waals universality in the multichannel system and
might lead to a better understanding of the robustness of van
der Waals universality for Feshbach resonances with interme-
diate resonance widths. For completeness we note that in a
realistic system the channels |cc′〉S can be such that both c and
c′ are different from the incoming channel [36]. However, to
realize this situation a third internal state on the single atom
level would be required.
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APPENDIX A: PERMUTATION OPERATORS AND SPIN PROJECTION

We can split Ps
+ in four components, by introducing the operators PS and PA, which project the state onto either the symmetric

or antisymmetric spin combinations of particle i and j. We find that

PSPs
+PS = PSPs

−PS =: PSS, (A1)

PAPs
+PA = PAPs

−PA =: PAA, (A2)

PSPs
+PA = −PSPs

−PA =: PSA, (A3)

PAPs
+PS = −PAPs

−PS =: PAS. (A4)

We define the symmetric and antisymmetric spin bases as

|c′ � c′′, c〉 = |c′〉1 ⊗ |c′′〉2 ⊗ |c〉3 + |c′′〉1 ⊗ |c′〉2 ⊗ |c〉3√
2(1 + δc′c′′ )

, (A5)

|c′ ∧ c′′, c〉 = |c′〉1 ⊗ |c′′〉2 ⊗ |c〉3 − |c′′〉1 ⊗ |c′〉2 ⊗ |c〉3√
2

. (A6)
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One can then work out the expressions for PSS , PAA, PAS , and PSA explicitly

PSS|c � c′, c′′〉 = 1

2
√

1 + δcc′
(
√

1 + δc′′c|c′′ � c, c′〉 +
√

1 + δc′′c′ |c′′ � c′, c〉), (A7)

PAA|c ∧ c′, c′′〉 = 1

2
(|c′′ ∧ c, c′〉 − |c′′ ∧ c′, c〉), (A8)

PAS|c � c′, c′′〉 = 1

2
√

1 + δcc′
(|c′′ ∧ c, c′〉 + |c′′ ∧ c′, c〉), (A9)

PSA|c ∧ c′, c′′〉 = 1

2
(
√

1 + δc′′c|c′′ � c, c′〉 −
√

1 + δc′′c′ |c′′ � c′, c〉). (A10)

APPENDIX B: TRANSITION MATRIX FOR THE bb-CHANNEL CONFIGURATION

The two-body t operator can be defined as

t (z) = V + V g(z)V, (B1)

where g(z) = (z − H )−1 is the Green’s operator related to the relative two-body Hamiltonian. This implies that the open channel
component of the transition operator tPP(z) can be expressed as

tPP(z) = VPP(1 + gPPVPP + gPQVQP ) + VPQ(gQPVPP + gQQVQP ). (B2)

In order to simplify this expression we derive an operator version of the Feshbach formalism to eliminate the contributions gQP,
gPQ, and gQQ in Eq. (B2); we apply the definition g(z)(z − H ) ≡ 1, such that we find

gQQ = g0
QQ + gQPVPQg0

QQ, (B3)

with g0
QQ(z) = (z − HQQ)−1 and

VPQgQP = gPQVQP = gPPWPP, (B4)

where we have introduced the operator WPP = VPQg0
QQ(z)VQP. Substituting Eqs. (B3) and (B4) into Eq. (B2), we obtain

tPP(z) = (VPP + WPP )[1 + gPP(VPP + WPP )]. (B5)

We recognize that Eq. (B5) looks like a single-channel transition operator where the open channel interaction potential VPP has
been replaced by an effective interaction VPP + WPP.

Proceeding with the analysis of Eq. (B5), we introduce the uncoupled transition operator tPP
unc, defined as

t unc
PP = VPP + VPPg0t unc

PP , (B6)

such that we can rewrite Eq. (B5) as

tPP = t unc
PP + (1 + VPPg0

PP

)
WPP[1 + gPP(VPP + WPP )]. (B7)

Equation (B7) can be simplified through the application of the single resonance approximation. Under this approximation, the
resolvent operator g0

QQ can be replaced by its dominant contribution, such that g0
QQ ≈ (E − Eb)−1 |φQ〉 〈φQ|, with closed channel

bound state |φQ〉 and binding energy Eb. Substituting this form of this Green’s function into the definition of the potential operator
WPP, Eq. (B7) reduces to

tPP =t unc
PP + 1

(E − Eb)

(
1 + VPPg0

PP

)
VPQ |φQ〉 〈φQ|VQP[1 + gPP(VPP + WPP )]. (B8)

Using the resolvent equation for gPP = g0
PP + g0

PPWPPgPP [which can be derived from the expression for gPP analogous to
Eq. (B3) in combination with Eq. (B4)] the last term can be rewritten as follows:

〈φQ|VQP[1 + gPP(VPP + WPP )] = 〈φQ|VQP
{
1 + g0

PPVPP + g0
PPWPP[1 + gPP(VPP + WPP )]

}
. (B9)

Replacing the g0
QQ by the approximation we used earlier in the first WPP of the last line we arrive at an equation, which we can

solve for

〈φQ|VQP[1 + gPP(VPP + WPP )] = (E − Eb) 〈φQ|VQP
(
1 + g0

PPVPP
)

E − Eb − 〈φQ|VQPg0
PPVPQ |φQ〉 , (B10)

such that we find

tPP = t unc
PP +

(
1 + VPPg0

PP

)
VPQ |φQ〉 〈φQ|VQP

(
1 + g0

PPVPP
)

E − Eb − 〈φQ|VQPg0
PPVPQ |φQ〉 (B11)
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= t unc
PP +

[
1 + VPP

(
g0 + g0t unc

PP g0
)]

VPQ |φQ〉 〈φQ|VQP
[
1 + (g0 + g0t unc

PP g0
)
VPP
]

E − Eb − 〈φQ|VQP
(
g0 + g0t unc

PP g0
)
VPQ |φQ〉 , (B12)

where we replaced the Green’s functions g0
PP with the identity

g0
PP = g0 + g0t unc

PP g0. (B13)

We can now use the separable interaction to explicitly get

t unc
PP = τ unc

PP |ζ 〉〈ζ | (B14)

with

τ unc
PP = v̄PP

m� − v̄PP〈ζ |g0|ζ 〉 . (B15)

The interaction strength v̄PP is then related to the background scattering length

v̄PP = ābg

2π2 + ābg〈ζ |g0(0)|ζ 〉 ≡ ābg

2π2
�. (B16)

Note that the bar indicates quantities made dimensionless in units of � as introduced in the beginning of Sec. V. We define
ξ (z) = 〈ζ |g0(z)|ζ 〉 and have that tPP = τPP|ζ 〉〈ζ |, since |ζ 〉 also appears in VPQ, and find

τPP = τ unc
PP +

{
1 + vPP

[
ξ (z) + ξ (z)τ unc

PP ξ (z)
]}

vPQ 〈ζ |φQ〉 〈φQ|ζ 〉 vQP
{
1 + [ξ (z) + ξ (z)τ unc

PP ξ (z)
]
vPP
}

z − Eb − 〈φQ|ζ 〉 vQP
[
ξ (z) + ξ (z)τ unc

PP ξ (z)
]
vPQ 〈ζ |φQ〉 (B17)

= τ unc
PP +

[
1 + vPP

(
ξ + ξ 2τ unc

PP

)]2|vPQ 〈ζ |φQ〉 |2
z − Eb − (ξ + ξ 2τ unc

PP

)|vPQ 〈ζ |φQ〉 |2 . (B18)

In this final form tPP is solely determined by v̄PP, v̄PQ, and Eb, which can be related to abg [Eq. (B16)] and r∗ by considering
the z → 0 limit

ā = 2π2τ̄PP(0)|ζ (0)|2 = ābg + 2π2|ζ (0)|2ḡ2/�2

−Ēb − ξ̄ (0)ḡ2/�
, (B19)

such that we arrive at

ḡ ≡ |vPQ 〈ζ |φQ〉 | = �√
2π2r̄∗|ζ (0)|

. (B20)

Fixing ã = ā/r̄∗ and ābg we can find Ēb in the narrow resonance limit

−Ēb =
r̄∗→∞

1

r̄∗ã
+ ξ̄ (0)ḡ2/�. (B21)

We replace −Ēb by this expression in τ̄PP and change to units determined by r∗, that we indicate by a tilde. We have z̄ = z̃/r̄∗2

and therefore z̄ → 0 in the narrow resonance limit. This leads us to

τ̃PP ≡ τ̄PP/r̄∗ (B22)

= τ̄ unc
PP /r̄∗ + 1

2π2|ζ (0)|2r̄∗2

1 + O(
√−z̄)

z̄ + 1
r̄∗2 ã + {ḡ2

[
ξ̄ (0) + ξ̄ (0)2τ̄ unc

PP (0) − ξ̄ (z̄) − ξ̄ (z̄)2τ̄ unc
PP (z̄)

]} (B23)

= τ̄ unc
PP /r̄∗ + 1

2π2|ζ (0)|2r̄∗2

1 + O(
√−z̄)

z̄ + 1
r̄∗2 ã + [−√−z̄+O(

√−z̄
2
)

r̄∗
] (B24)

=
r̄∗→∞

1

2π2|ζ (0)|2
1

z̃ + ã−1 − √−z̃
. (B25)

In the first step we consider the numerator in the second term of Eq. (B18). We replaced ξ̄ by the limiting expression ξ̄ (z̄) ≈
2π2

√−z̄|ζ (0)| + ξ̄ (0) for small
√−z̄. With that we Taylor expanded the numerator around

√−z̄ = 0. The zeroth-order term is
then simply the z̄ → 0 limit [2π2|ζ (0)|2r̄∗2]−1. In the second step we consider the term [...] and proceed similarly to arrive at
the lowest-order term in

√−z̄. We have that τ̄ unc
PP /r̄∗ → 0 in the narrow resonance limit and rewrite z̄ = z̃/r̄∗2. With that we can

take the limit r̄∗ → ∞ in the final step. Equation (B25) corresponds to Eq. (37) as presented in the main text.
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APPENDIX C: SECOND QUANTIZATION

We derive the second quantized form of the Q = bb and Q = ab realization of the three-body systems considered to be able
to relate them to the Hamiltonians commonly considered in effective field theories. The notation we use in this section deviates
from the one in the main text with α = (i, σ ) we now label a base |i〉|σ 〉 in the single particle Hilbert space H1, where σ labels
the internal or spin degrees of freedom and i a base in configuration space.

1. Creation and annihilation operators

We have the bosonic annihilation and creation operators aα and a†
α with

[aα, a†
β ] = δαβ,

[aα, aβ ] = 0,

[a†
α, a†

β ] = 0. (C1)

The operators aα and a†
α act on the symmetric part of Fock space PSHF

HF =
⊕

N

HN
1

by

aα|0〉 = 0 (C2)

and

a†
α1

. . . a†
αN

|0〉 = 1√
N!

∑
p∈�(N )

Pp|α1 . . . αN 〉, (C3)

with �(N ) the permutation group of N elements and Pp the permutation operator related to the permutation p. The projector on
the totally symmetric subspace is defined as

PN
S = 1

N!

∑
p∈�(N )

Pp. (C4)

2. Kinetic energy and interaction potential

The kinetic-energy operator T acts on a single particle as

T1b =
∑
αβ

〈α|T |β〉|α〉〈β|, (C5)

with 〈α|T |β〉 = 〈iα| − h̄2�/2m + Eσα
)|iβ〉δσασβ

. The interaction potential V acts on two particles as

V2b =
∑

α1α2β1β2

〈α1α2|V |β1β2〉|α1α2〉〈β1β2|, (C6)

with 〈α1α2|V |β1β2〉 = 〈iα1 iα2 |Vσα1 σα2 ,σβ1 σβ2
|iβ1 iβ2〉. For three particles restricting to the fully symmetric subspace we have the

kinetic-energy operator

T3bP3
S = (T 1

1b + T 2
1b + T 3

1b

)
P3

S

= 1

2
(1 + P+ + P−)(1 + P23)T 1

1bP3
S

=
∑
αβ

3!

2
〈α1|T |β1〉δα2β2δα3β3P3

S |α〉〈β|P3
S

=
∑
αβ

1

2
〈α1|T |β1〉δα2β2δα3β3 a†

α1
a†

α2
a†

α3
|0〉〈0|aβ1 aβ2 aβ3

=
∑
αβ

〈α|T |β〉a†
αaβ, (C7)

052805-12



MULTICHANNEL EFFECTS IN THE EFIMOV REGIME … PHYSICAL REVIEW A 103, 052805 (2021)

with P23 the permutation exchanging particles 2 and 3 and α a shorthand notation for the three indices (α1α2α3). The interaction
term then is

V3bP3
S = (V 23 + V 31 + V 12)P3

S

= 1

2
(1 + P+ + P−)(1 + P23)V 23P3

S

=
∑
αβ

3!

2
〈α1α2|V |β1β2〉δα3β3P3

S |α〉〈β|P3
S

=
∑
αβ

1

2
〈α1α2|V |β1β2〉δα3β3 a†

α1
a†

α2
a†

α3
|0〉〈0|aβ1 aβ2 aβ3

=
∑

α1α2β1β2

1

2
〈α1α2|V |β1β2〉a†

α1
a†

α2
aβ1 aβ2 . (C8)

3. Q = bb and Q = ab realization

We consider a model with two internal states per particle σ ∈ {a, b}. We find that

T3bP3
S =

∑
i j

[〈i| − h̄2�/2m + Ea| j〉a†
i a j + 〈i| − h̄2�/2m + Eb| j〉b†

i b j], (C9)

with ai = a(i,a) and bi = a(i,b). Furthermore, we restrict to an interaction term which reduces to a simple two-channel model on
the two particle subspace.

a. Explicit representations of the field operators

There is a unitary transformation

U : P3
SH3

1 → [
P3

S,aaaH3
1,a

]⊕ [H1,b ⊗ (P2
S,aaH2

1,a

)]⊕ [H1,a ⊗ (P2
S,bbH2

1,b

)]⊕ [P3
S,bbbH3

1,b

]
(C10)

connecting the representations of the field operator algebra. It is defined naturally by

a†
αa†

βa†
γ |0〉 �→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a†
iα

a†
iβ

a†
iγ
|0〉 for σα = σβ = σγ = a,

a†
iα

a†
iβ

b†
iγ
|0〉 for σα = σβ = a and σγ = b,

a†
iα

b†
iβ

b†
iγ
|0〉 for σα = a and σβ = σγ = b,

b†
iα

b†
iβ

b†
iγ
|0〉 for σα = σβ = σγ = b.

(C11)

b. Q = bb realization

First we consider the case〈
iα1 iα2

∣∣Vσα1 σα2 ,σβ1 σβ2

∣∣iβ1 iβ2

〉 = 0 ∀ [(
σα1σα2

) �= (aa) or (bb)
]
or
[(

σβ1σβ2

) �= (aa) or (bb)
]

(C12)

such that we have

V3bP3
S =

∑
i1i2 j1 j2

1
2

[〈i1i2|Vaa,aa| j1 j2〉a†
i1

a†
i2

a j1 a j2 + 〈i1i2|Vbb,bb| j1 j2〉b†
i1

b†
i2

b j1 b j2

+ 〈i1i2|Vbb,aa| j1 j2〉b†
i1

b†
i2

a j1 a j2 + 〈i1i2|Vaa,bb| j1 j2〉a†
i1

a†
i2

b j1 b j2

]
. (C13)

It is easy to show that there is no coupling between the subspaces spanned by

|i jk〉S
aaa ∼ a†

i a†
j a

†
k |0〉, |i jk〉S

abb ∼ a†
i b†

jb
†
k|0〉 (C14)

and

|i jk〉S
bbb ∼ b†

i b†
jb

†
k|0〉, |i jk〉S

aab ∼ a†
i a†

j b
†
k|0〉. (C15)

We can rewrite the Hamiltonian acting in the aaa and abb channels as

H = Haaa,aaa + Habb,aaa + Haaa,abb + Habb,abb, (C16)

with

Haaa,aaa =
∑

i j

[
1

2
〈i1|Ta| j1〉δi2 j2δi3 j3 + 1

2
〈i1i2|Vaa,aa| j1 j2〉δi3 j3

]
a†

i1
a†

i2
a†

i3
|0〉〈0|a j1 a j2 a j3 , (C17)
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Habb,abb =
∑

i j

[
1

2
〈i1|Ta| j1〉δi2 j2δi3 j3 + 〈i2|Tb| j2〉δi1 j1δi3 j3 + 1

2
〈i2i3|Vbb,bb| j2 j3〉δi1 j1

]
a†

i1
b†

i2
b†

i3
|0〉〈0|a j1 b j2 b j3 , (C18)

Habb,aaa =
∑

i j

[
1

2
〈i2i3|Vbb,aa| j2 j3〉δi1 j1

]
a†

i1
b†

i2
b†

i3
|0〉〈0|a j1 a j2 a j3 , (C19)

Haaa,abb =
∑

i j

[
1

2
〈i2i3|Vaa,bb| j2 j3〉δi1 j1

]
a†

i1
a†

i2
a†

i3
|0〉〈0|a j1 b j2 b j3 , (C20)

where we again introduced i as a shorthand for the three indices (i1i2i3). We get

Haaa,aaa = (
T 1

a + T 2
a + T 3

a + V 23
aa,aa + V 31

aa,aa + V 12
aa,aa

)
P3

S,aaa, (C21)

Habb,abb = (1 + P23,abb)
∑

i j

(
1

2
〈i1|Ta| j1〉δi2 j2δi3 j3 + 〈i2|Tb| j2〉δi1 j1δi3 j3 + 1

2
〈i2i3|Vbb,bb| j2 j3〉δi1 j1

)
|i〉abbabb〈 j|(1 + P23,abb)/2

= (1 + P23,abb)

(
1

2
T 1

a + T 2
b + 1

2
V 23

bb,bb

)
(1 + P23,abb)/2

= (
T 1

a + T 2
b + T 3

b + V 23
bb,bb

)
(1 + P23,abb)/2, (C22)

Habb,aaa =
√

3(1 + P23,abb)
∑

i j

[
1

2
〈i2i3|Vbb,aa| j2 j3〉δi1 j1

]
|i〉abbaaa〈 j|P3

S,aaa

=
√

3V 23
bb,aaP3

S,aaa, (C23)

Haaa,abb =
√

2
√

6P3
S,aaa

∑
i j

[
1

2
〈i2i3|Vaa,bb| j2 j3〉δi1 j1

]
|i〉〈 j|(1 + P23,abb)/2

= 1√
3

(1 + P+,aaa + P−,aaa)(1 + P23,aaa)
∑

i j

[
1

2
〈i2i3|Vaa,bb| j2 j3〉δi1 j1

]
|i〉〈 j|(1 + P23,abb)/2

= 1√
3

(1 + P+,aaa + P−,aaa)V 23
aa,bb(1 + P23,abb)/2, (C24)

when representing the model on H3
1,a ⊕ H1,a ⊗ H2

1,b, where the indices aaa and abb of the operators P+, P−, and P23 indicate
the subspaces they are acting on and P23,abb = 1a ⊗ P2

S,bb.
In the following we approximate the Hamiltonian Habb,abb by introducing a dimer field. For that we introduce relative r and

center-of-mass coordinates R for the two particles in the b state with positions r2 and r3. We assume the following form of
the interaction V 23

bb,bb = 1r1 ⊗ 1R ⊗ V r
bb,bb with ψE a bound eigenstate fulfilling (−h̄�r/m + V r

bb,bb)ψE = EψE . We introduce the

projector PψE onto the state ψE such that we can restrict Habb,abb to Habb,abbPψE = PψE Habb,abb = HψE

abb,abb. The coupling term
then acts on a state φ as [PψE V 23

bb,aaψ](r1, r2, r3) = ψE (r2 − r3)
∫

dr χ∗(r)φ[r1, (r2 + r3)/2 + r, (r2 + r3)/2 − r] with χ∗(r) =
[ψ∗

EVbb,aa](r). With that we can approximate the total Hamiltonian by

Haaa,aaa = (
T 1

a + T 2
a + T 3

a + V 23
aa,aa + V 31

aa,aa + V 12
aa,aa

)
P3

S,aaa, (C25)

Habb,abb ≈ (
T 1

a + Td + E
)
PψE , (C26)

Habb,aaa ≈
√

3PψE V 23
bb,aaP3

S,aaa, (C27)

Haaa,abb ≈ 1√
3

(1 + P+,aaa + P−,aaa)V 23
aa,bbPψE , (C28)

with Td = −h̄2�R/4m. By rewriting the projector

PψE (1 + P23,abb)/2 = (1 + P23,abb)/2
∑
i jk̃

〈i2i3|ψE , k̃〉〈ψE , k̃| j2 j3〉δi1 j1 |i〉abbabb〈 j|(1 + P23,abb)/2 (C29)

=
∑
i jk̃

[
1

2
〈i2i3|ψE , k̃〉〈ψE , k̃| j2 j3〉δi1 j1

]
a†

i1
b†

i2
b†

i3
|0〉〈0|a j1 b j2 b j3 (C30)
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=
∑

kk̃

a†
k

(∑
i2i3

[
1√
2
〈i2i3|ψE , k̃〉b†

i2
b†

i3

])
|0〉〈0|ak

(∑
j2 j3

[
1√
2
〈ψE , k̃| j2 j3〉b j2 b j3

])
(C31)

=
∑

kk̃

a†
kd†

k̃
|0〉〈0|akdk̃, (C32)

with k̃ labeling a base in R we can single out the dimer field operator dk̃ . We find

Haaa,aaa =
∑

i j

[
1

2
〈i1|Ta| j1〉δi2 j2δi3 j3 + 1

2
〈i1i2|Vaa,aa| j1 j2〉δi3 j3

]
a†

i1
a†

i2
a†

i3
|0〉〈0|a j1 a j2 a j3 , (C33)

Habb,abb =
∑
i jk̃ p̃

[〈i|Ta| j〉δk̃ p̃ + 〈k̃|Td | p̃〉δi j + Eδi jδk̃ p̃

]
a†

i d†
k̃
|0〉〈0|a jdp̃, (C34)

Habb,aaa =
∑
ik̃ j

[
1√
2
〈χ, k̃| j2 j3〉δi j1

]
a†

i1
d†

k̃
|0〉〈0|a j1 a j2 a j3 , (C35)

Haaa,abb =
∑
i j p̃

[
1√
2
〈i2i3|χ, k̃〉δi1 j

]
a†

i1
a†

i2
a†

i3
|0〉〈0|a j1 dp̃, (C36)

or

H =
∑

i j

〈i|Ta| j〉a†
i a j +

∑
i1i2 j1 j2

1

2
〈i1i2|Vaa,aa| j1 j2〉a†

i1
a†

i2
a j1 a j2

+
∑
k̃ p̃

〈k̃|Td + E | p̃〉d†
k̃
dp̃ +

∑
k̃ j1 j2

[
1√
2
〈χ, k̃| j1 j2〉

]
d†

k̃
a j1 a j2 + H.c., (C37)

which is the Hamiltonian usually considered in effective field theory.

c. Q = ab realization

As a next example we consider the case

〈
iα1 iα2

∣∣ 〈σα1σα2

∣∣− 〈σα2σα1

∣∣
√

2
V

∣∣σβ1σβ2

〉− ∣∣σβ2σβ1

〉
√

2

∣∣iβ1 iβ2

〉 = 〈iα1 iα2

∣∣V Aσ

σα1 σα2 ,σβ1 σβ2

∣∣iβ1 iβ2

〉 = 0 (C38)

and 〈
iα1 iα2

∣∣ 〈σα1σα2

∣∣+ 〈σα2σα1

∣∣√
2 + 2δα1α2

V

∣∣σβ1σβ2

〉+ ∣∣σβ2σβ1

〉
√

2 + 2δβ1β2

∣∣iβ1 iβ2

〉 = 〈iα1 iα2

∣∣V Sσ

σα1 σα2 ,σβ1 σβ2

∣∣iβ1 iβ2

〉
, (C39)

with 〈
iα1 iα2

∣∣V Sσ

σα1 σα2 ,σβ1 σβ2

∣∣iβ1 iβ2

〉 = 0 ∀ [(σα1σα2 ) �= (aa) or (ab)] or [(σβ1σβ2 ) �= (aa) or (ab)] (C40)

and no coupling between the symmetric and antisymmetric spin components. We then have

V3bP3
S =

∑
i1i2 j1 j2

1

2

[〈i1i2|Vaa,aa| j1 j2〉a†
i1

a†
i2

a j1 a j2 + 〈i1i2|Vaa,ab| j1 j2〉a†
i1

a†
i2

a j1 b j2 + 〈i1i2|Vaa,ba| j1 j2〉a†
i1

a†
i2

b j1 a j2

+〈i1i2|Vab,aa| j1 j2〉a†
i1

b†
i2

a j1 a j2 + 〈i1i2|Vba,aa| j1 j2〉b†
i1

a†
i2

a j1 a j2

+〈i1i2|Vab,ab| j1 j2〉a†
i1

b†
i2

a j1 b j2 + 〈i1i2|Vab,ba| j1 j2〉a†
i1

b†
i2

b j1 a j2

+〈i1i2|Vba,ab| j1 j2〉b†
i1

a†
i2

a j1 b j2 + 〈i1i2|Vba,ba| j1 j2〉b†
i1

a†
i2

b j1 a j2

]
(C41)

=
∑

i1i2 j1 j2

1

2

[〈i1i2|Vaa,aa| j1 j2〉a†
i1

a†
i2

a j1 a j2 + (〈i1i2|Vaa,ab| j1 j2〉 + 〈i2i1|Vaa,ba| j2 j1〉)a†
i1

a†
i2

a j1 b j2

+ (〈i1i2|Vab,aa| j1 j2〉 + 〈i2i1|Vba,aa| j2 j1〉)a†
i1

b†
i2

a j1 a j2

+ (〈i1i2|Vab,ab| j1 j2〉 + 〈i1i2|Vab,ba| j2 j1〉 + 〈i2i1|Vba,ab| j1 j2〉 + 〈i2i1|Vba,ba| j2 j1〉)a†
i1

b†
i2

a j1 b j2

]
(C42)

=
∑

i1i2 j1 j2

1

2

[〈i1i2|Vaa,aa| j1 j2〉a†
i1

a†
i2

a j1 a j2 + 2〈i1i2|Vaa,ab| j1 j2〉a†
i1

a†
i2

a j1 b j2 + 2〈i1i2|Vab,aa| j1 j2〉a†
i1

b†
i2

a j1 a j2
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+ (2〈i1i2|Vab,ab| j1 j2〉 + 2〈i1i2|Vab,ba| j2 j1〉)a†
i1

b†
i2

a j1 b j2

]
(C43)

=
∑

i1i2 j1 j2

1

2

[〈i1i2|V Sσ

aa,aa| j1 j2〉a†
i1

a†
i2

a j1 a j2 +
√

2〈i1i2|V Sσ

aa,ab| j1 j2〉a†
i1

a†
i2

a j1 b j2 +
√

2〈i1i2|V Sσ

ab,aa| j1 j2〉a†
i1

b†
i2

a j1 a j2

+ (〈i1i2|V Sσ

ab,ab| j1 j2〉 + 〈i1i2|V Sσ

ab,ab| j2 j1〉
)
a†

i1
b†

i2
a j1 b j2

]
. (C44)

We can rewrite the Hamiltonian acting in the aaa, aab, and abb channels as

H = Haaa,aaa + Haab,aaa + Haaa,aab + Haab,aab + Habb,aab + Haab,abb + Habb,abb, (C45)

with

Haaa,aaa =
∑

i j

[
1

2
〈i1|Ta| j1〉δi2 j2δi3 j3 + 1

2
〈i1i2|V Sσ

aa,aa| j1 j2〉δi3 j3

]
a†

i1
a†

i2
a†

i3
|0〉〈0|a j1 a j2 a j3 , (C46)

Haab,aab =
∑

i j

[
1

2
〈i3|Tb| j3〉δi1 j1δi2 j2 + 〈i1|Ta| j1〉δi2 j2δi3 j3 + 1

2
〈i1i2|Vaa,aa| j1 j2〉δi3 j3

+ 1

2

(〈i2i3|V Sσ

ab,ab| j2 j3〉 + 〈i2i3|V Sσ

ab,ab| j3 j2〉
)
δi1 j1

]
a†

i1
a†

i2
b†

i3
|0〉〈0|a j1 a j2 b j3 , (C47)

Habb,abb =
∑

i j

[
1

2
〈i1|Ta| j1〉δi2 j2δi3 j3 + 〈i2|Tb| j2〉δi1 j1δi3 j3 + 1

2

(〈i1i2|V Sσ

ab,ab| j1 j2〉 + 〈i1i2|V Sσ

ab,ab| j2 j1〉
)
δi3 j3

]
a†

i1
b†

i2
b†

i3
|0〉〈0|a j1 b j2 b j3 ,

(C48)

Haab,aaa =
∑

i j

[
1√
2
〈i2i3|V Sσ

ab,aa| j2 j3〉δi1 j1

]
a†

i1
a†

i2
b†

i3
|0〉〈0|a j1 a j2 a j3 , (C49)

Haaa,aab =
∑

i j

[
1√
2
〈i2i3|V Sσ

aa,ab| j2 j3〉δi1 j1

]
a†

i1
a†

i2
a†

i3
|0〉〈0|a j1 a j2 b j3 , (C50)

Habb,aab =
∑

i j

[
1√
2
〈i1i2|V Sσ

ab,aa| j1 j2〉δi3 j3

]
a†

i1
b†

i2
b†

i3
|0〉〈0|a j1 a j2 b j3 , (C51)

Haab,abb =
∑

i j

[
1√
2
〈i1i2|V Sσ

aa,ab| j1 j2〉δi3 j3

]
a†

i1
a†

i2
b†

i3
|0〉〈0|a j1 b j2 b j3 . (C52)

This leads us to

Haaa,aaa = (
T 1

a + T 2
a + T 3

a + V 23
aa,aa + V 31

aa,aa + V 12
aa,aa

)
P3

S,aaa, (C53)

Haab,aab = (1 + P12,aab)
∑

i j

[
1

2
〈i3|Tb| j3〉δi1 j1δi2 j2 + 〈i1|Ta| j1〉δi2 j2δi3 j3 + 1

2
〈i1i2|V Sσ

aa,aa| j1 j2〉δi3 j3

+ 1

2

(〈i2i3|V Sσ

ab,ab| j2 j3〉 + 〈i2i3|V Sσ

ab,ab| j3 j2〉
)
δi1 j1

]
|i〉aabaab〈 j|(1 + P12,aab)/2 (C54)

= (1 + P12,aab)

[
1

2
T 3

b + T 1
a + 1

2
V Sσ ,12

aa,aa + 1

2
V Sσ ,23

ab,ab (1 + P23,aab)

]
(1 + P12,aab)/2 (C55)

=
[

T 1
a + T 2

a + T 3
b + V Sσ ,12

aa,aa + (1 + P12,aab)
1

2
V Sσ ,23

ab,ab (1 + P23,aab)

]
(1 + P12,aab)/2, (C56)

Habb,abb = (1 + P23,abb)
∑

i j

[
1

2
〈i1|Ta| j1〉δi2 j2δi3 j3 + 〈i2|Tb| j2〉δi1 j1δi3 j3

+ 1

2

(〈i1i2|V Sσ

ab,ab| j1 j2〉 + 〈i1i2|V Sσ

ab,ab| j2 j1〉
)
δi3 j3

]
|i〉abbabb〈 j|(1 + P23,abb)/2 (C57)

=
[

T 1
a + +T 2

b + T 3
b + (1 + P23,abb)

1

2
V Sσ ,12

ab,ab (1 + P12,abb)

]
(1 + P23,abb)/2, (C58)

Haab,aaa =
∑

i j

[
1√
2
〈i2i3|V Sσ

ab,aa| j2 j3〉δi1 j1

]√
6/

√
2(1 + P12,aab)|i〉aabaaa〈 j|P3

S,aaa (C59)
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=
√

3√
2

(1 + P12,aab)V Sσ ,23
ab,aa P

3
S,aaa, (C60)

Haaa,aab =
∑

i j

[
1√
2
〈i2i3|V Sσ

aa,ab| j2 j3〉δi1 j1

]
2
√

3P3
S,aaa|i〉aaaaab〈 j|(1 + P12,aab)/2 (C61)

= 1√
6

(1 + P+ + P−)(1 + P12,aaa)V Sσ ,23
aa,ab (1 + P12,aab)/2, (C62)

Habb,aab =
∑

i j

[
1√
2
〈i1i2|V Sσ

ab,aa| j1 j2〉δi3 j3

]
(1 + P23,abb)|i〉abbaab〈 j|(1 + P12,aab)/2 (C63)

= (1 + P23,abb)
1√
2

V Sσ ,12
ab,aa (1 + P12,aab)/2, (C64)

Haab,abb =
∑

i j

[
1√
2
〈i1i2|V Sσ

aa,ab| j1 j2〉δi3 j3

]
(1 + P12,aab)|i〉abbabb〈 j|(1 + P23,abb)/2 (C65)

= (1 + P12,aab)
1√
2

V Sσ ,12
aa,ab (1 + P23,abb)/2. (C66)

Note that, even when the couplings between the channels are of separable form, it is not straightforward to rewrite this
Hamiltonian in terms of a dimer field. However, since we can interpret our results in terms of couplings to a closed-channel
trimer state, maybe the introduction of a trimer field could lead to a good approximation.
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