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Abstract: The timing of discrete-event systems with synchronization is naturally modeled
with canonical multi-rate max-plus linear equations. The main objectives of these models are
to analyze and control the systems. As a system becomes more complex, determining its
canonical model becomes more complicated. Moreover, these systems may change over time
which demands the model to be recalculated. Motivated by the compositional structure of many
systems, we propose operations to determine the canonical model for composing multi-rate max-
plus linear systems. The operations allow efficient (re-)calculation of the canonical models from
constituent canonical models. These models can be utilized to analyze and/or control complex
systems using existing methods.
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1. INTRODUCTION

Discrete-event systems (DESs) are extensively studied in
literature. This research has concentrated on modeling,
analysis and control of complex systems, ranging from
multi-processing systems (e.g. Stuijk et al. (2007)) and
telecommunication systems (e.g. Cruz (1991)) to trans-
portation systems (e.g. Kersbergen et al. (2016)).

The phenomenon of synchronization in DESs is a non-
linear characteristic in classic system theory that can be
modeled as a linear aspect in max-plus algebra (see Bac-
celli et al. (1992)). These DESs with synchronization are
referred to as Max-Plus Linear Systems (MPLSs). Max-
plus algebra provides an opportunity to apply some of the
classical linear system approaches for such systems, such
as model predictive control for MPLSs (De Schutter and
Van den Boom (2001)). Moreover, it facilitates to evaluate
performance properties of a system such as throughput
(Ghamarian et al. (2006)).

Finding a canonical max-plus linear model of a complex
system is a challenging task. Furthermore, a system may
dynamically change from one configuration to another.
Consider a software update for an autonomous vehicle
as an example. The performance of this system must be
guaranteed. For instance, a short delay in the response
time of this system may reduce the reliability of this
system and lead to catastrophic circumstances. Hence,
prior to this update, the performance of the system must
be carefully analyzed and verified. To evaluate and verify
the performance of the system, the canonical-form repre-
sentation of this system is determined. This system has
multiple heterogenous applications mapped onto a het-
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Fig. 1. A system constructed from components S and S′

erogenous distributed shared platform and a wide verity of
sensors and actuators. The applications and resources have
multiple configurations that vary over time. Moreover,
depending on the dynamics of the environment, an applica-
tion might be added or removed. Therefore, these systems
are sophisticated and (re-)calculation of their model is
consequently complicated. Nonetheless, these systems are
likely to be created from simpler components, such as
image filtering applications, object detection applications
and video tracking applications. These components have
their own canonical models and interact with each other
through their inputs and outputs.

A closed-form symbolic formulation reduces the com-
plexity of modeling complex systems, built from simpler
MPLSs, in canonical form. In particular, for a system with
multiple configurations, it is convenient to determine the
canonical-form representation of its actual configuration
based on the canonical model of its components without
flattening. Therefore, we propose a compositional model of
DESs described by canonical max-plus linear equations.

As a running example, Fig. 1 depicts a system with two
components S and S′, characterized by max-plus-linear
equations. S has two input ports, u1 and u2, represented
by two-pronged forks, and two output ports, y1 and y2,
depicted by lollipops. Similarly, u′1 and u′2 are input ports



of S′, and S′ has two output ports y′1 and y′2. Input and
output ports communicate discrete-time signals. These
signals capture the production times of events, not the
data values that are exchanged. In every execution of the
system, called an iteration, the system consumes a fixed
number of samples from each input port and produces
a fixed number of samples on each output. In figures,
sample rates (samples per iteration) greater than one are
annotated above ports. In Fig. 1, annotation 2 above port
y1 gives the sample rate of y1. Hence, these systems are
called Multi-rate Max-Plus Linear Systems (M2PLSs).

Fig. 1 illustrates twoM2PLSs S and S′ producing samples
for each other. Output y1 of S is connected to input u′1
of S′, and output y′1 of S′ is connected to input u1 of
S. Our goal is to compute the canonical model of the
total system from the canonical models of S and S′.
First, the canonical-form representation of CS, which is
a composite model of S and S′ with a connection from y1
to u′1, is determined. From the connection from y1 to u′1
in Fig. 1, it follows that two samples are produced on y1
in every iteration of S, while in every iteration of S′ only
one sample is read from u′1. To handle these unbalanced
rates, first, we synchronize the rates. In this example,
a model of S′ for two iterations is determined, which
consumes two input samples in every execution. After
rate synchronization, the model of CS can be determined
through substitution. Then, the canonical model of CS′

is determined as a composite model of CS after adding a
connection from y′1 to u1.

Our proposed method perceives each system as a black
box with its canonical model. The determined canonical
model abstracting the composite system can be used to an-
alyze or control that composite system. Our compositional
model is an algebraic method that composes M2PLSs
characterized in the canonical form using two operations.
The first operation synchronizes the sample rates of the
systems to be composed. The second operation captures
a connection from an output port to an input port. New
connections may introduce deadlocks. A deadlock is a state
in which a group of components waits for synchronization
among them in a cyclic way. Our method checks such
dependencies in the canonical max-plus linear model of
the system before adding a connection.

2. RELATED WORK

Widespread applications of max-plus linear system theory
have been investigated in the literature. The targets of
this research can be divided into three main purposes: (I)
modeling, (II) performance analysis and (III) control and
optimization. This paper focuses on modeling of compos-
ite max-plus linear systems for the purpose of analysis
and/or control of complex DESs. Although no research
concentrates on the composition of max-plus linear sys-
tems as a generic problem, research often applies max-plus
algebra to model, analyze or control a specific composi-
tional system. For instance, a worst-case response time
analysis for parallel compositions of synchronous systems
was proposed by Aguado et al. (2017). In the following
two paragraphs, two compositional methods for modeling,
analysis and control of specific DESs, namely dataflow
systems and manufacturing systems, are reviewed.

The max-plus semantics of dataflow models is used to
analyze complex hierarchical dataflow models. Skelin and
Geilen (2017) propose a method to evaluate throughput of
hierarchical synchronous dataflow models. Their method
is an extension to the max-plus semantics of synchronous
dataflow models that facilitates throughput analysis of
hierarchical models without flattening them. To design
and predict behavior of complex applications of which
the behavior changes modes with a deterministic, periodic
pattern, a compositional dataflow model was suggested
by Alizadeh Ara et al. (2018). They utilize the max-
plus semantics of dataflow models to model and efficiently
analyze the behavior of complex applications. Although
both of these methods facilitate the analysis of composite
systems, their methods are only useful in their specific
domain and do not treat components as black boxes.

To analyze and control manufacturing systems created
from simpler systems, usually in a serial form, some re-
search focuses on the canonical max-plus linear model of
these systems. For instance, a model for the composition of
manufacturing systems has been proposed by Imaev and
Judd (2008). Their hierarchical model uses canonical max-
plus equations to calculate performance properties of a
system such as machine utilization and work in process.
However, their paper considers only serial composition of
manufacturing systems, where a sequence of jobs passes
from one system to another. Seleim and ElMaraghy (2014)
introduce a max-plus model of manufacturing flow lines.
They suggest a model for merging lines as well as for
serial systems. Their method facilitates analysis for re-
configuring flow lines. However, their method is presented
informally and is specific for their case study.

None of the aforementioned research addresses arbitrary
compositions of MPLSs even in their specific domains,
whereas we propose an algebraic method to find the
canonical model of any arbitrary composition of M2PLSs
as a generic problem.

3. PRELIMINARIES

This section introduces the necessary mathematical pre-
liminaries for this paper. For more detailed information,
see Baccelli et al. (1992) and Heidergott et al. (2005).

3.1 Max-Plus Algebra

For a, b ∈ Rmax = R ∪ {−∞}, the ⊕ and ⊗ operations

are defined as a ⊕ b , max(a, b) and a⊗ b , a + b.
As in linear algebra, the set Rmax with operations can
be extended to vectors in Rn

max and matrices in Rn×m
max ,

where n,m ∈ N. For A,B ∈ Rn×m
max , A ⊕ B is defined

by [A⊕B](i,j) = A(i,j) ⊕B(i,j), where (i, j) denotes the
element of row i and column j of the matrix. To multiply
two matrices A ∈ Rn×m

max and B ∈ Rm×p
max , [A⊗B](i,j) ,⊕m

k=1A(i,k) ⊗B(k,j). The bth power of A ∈ Rn×n
max is

Ab = A⊗. . .⊗A︸ ︷︷ ︸
b

.

3.2 Max-Plus Linear Systems

An important subclass of discrete-event systems for which
only synchronization and delay are the key aspects of exe-
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Fig. 2. The running example, a composite system is created
from two M2PLSs.

cution is called max-plus linear systems. Synchronization
means that an operation waits until all preceding opera-
tions have been completed. This behavior can be modeled
by the ⊕ operation in max-plus algebra. Delay means
that an operation executes in a fixed amount of time,
which is modeled by operation ⊗ in max-plus algebra.
The characteristic equations of max-plus linear systems
are described in canonical form as follows (see Baccelli
et al. (1992) and Heidergott et al. (2005)).

x(k + 1) = A⊗x(k)⊕B⊗u(k) (1)

y(k) = C⊗x(k)⊕D⊗u(k),

where x(k), u(k) and y(k) are discrete-time signals that
represent the production times of states, inputs, and
outputs respectively. A is called the state matrix, B, C
and D are called input, output and feed-through matrices,
respectively.

4. PROBLEM FORMULATION

Let MRS be a set of M2PLSs to be composed, e.g. S and
S′ ∈ MRS. Let U and Y be the sets of inputs and outputs
of the MPLSs. For instance, in Fig. 2, u1, u2, u

′
1, u
′
2 ∈ U .

Ip : MRS → P(U) specifies the set of input identifiers
of each system (e.g. Ip(S) = {u1, u2}), where P(U)
denotes the power set of U . Similarly, Op : MRS →
P(Y ) specifies the set of output identifiers of each system.
These identifiers are annotated below the input and output
ports in the graphical representation. Input and output
ports communicate discrete-time signals with elements
from Rmax. Systems are repeatedly executed during which
they read a fixed number of samples from each input and
produce a fixed number of samples on each output. Such
an execution is called an iteration, which is captured by
one iteration of the canonical equations of the M2PLS.

In one iteration, example system S reads two samples
from input u1 and one sample from input u2. It produces
two samples on output y1 and one sample on output y2.
Sample rate Sr : U ∪ Y → N gives for each port the
number of samples consumed or produced in one iteration
of a system (e.g. Sr(y1) = 2). Rates are denoted by a
number above the ports. For simplicity, rates of one are
not shown. A vector of samples produced on yi ∈ Op(S)
(consumed from ui ∈ Ip(S)) for any S ∈ MRS, in the
kth iteration of S, is indicated by yi(k) (ui(k)). A vector
of all samples produced (consumed) in the kth iteration

of S is denoted by y(k) (u(k)). For S in Fig. 2, y1(k) =

[y1(2k − 1) y1(2k)]
T

and S produces output vector y(k) =

[y1(2k − 1) y1(2k) y2(k)]
T

during its iteration k.

A connection is an injective partial function OI : Y ↪→ U
that specifies connections from outputs to inputs (e.g.,
OI(y1) = u′1). To prevent a mutual sample dependency
(when output and input samples of two M2PLSs depend
on one another), a number of samples may be initially
available. The number of initial samples on connections
is specified by Is : OI → N0 (e.g., Is(y′1, u1) = 2). This is
shown in the graphical representation with a dot alongside
the number of available samples. At first, these available
initial samples are read and, as a result, produced samples
are consumed with delay.

The problem we address in this paper is the following.
Given the canonical models of two M2PLSs S and S′, a
connection function OI and an initial sample function Is,
we want to obtain the canonical-form M2PLS represen-
tation of the composition of the two systems, where the
matrices of the composite M2PLS are expressed directly
in terms of the matrices A, B, C, D and A′, B′, C ′,
and D′ of the constituent M2PLSs. Note that this two-
component composition enables the composition of an
arbitrary number of components.

A composite system has a canonical model only if the sys-
tem is deadlock-free and consistent. A system is deadlock-
free when there is no mutual dependency between its
samples.

To define consistency of a system, we generalize the def-
initions of repetition vector and consistency for dataflow
graphs of Lee (1991). When a system is executed itera-
tively, the numbers of produced and consumed samples on
the connections must be equal in each iteration. Let ri ∈ N
be the number of times component Si is repeated in each
iteration of the system. The following defines consistency
as the equality of the production and consumption sample
rates on all connections under ri.

∀(yj , ui) ∈ OI : rjSr(yj) = riSr(ui), (2)

where yj and ui denote an output of component Sj and
an input of component Si, respectively.

Definition 1. [Consistency] A composite system built
from components S1, . . . , Sn is consistent if and only if

there is a vector r = [r1 . . . rn]
T

with strictly positive
elements that satisfies (2). The smallest such solution r is
called the repetition vector.

In case no solution for the equations in (2) exists, the
composite system is inconsistent and consequently has
no canonical model. Inconsistency implies that a system
may deadlock or that the delay between producing a
sample and consuming that same sample grows without
a bound. Inconsistent composite systems are therefore not
meaningful. In the remainder, we only consider consistent
compositions. Consistency is not sufficient for deadlock-
freedom though. Also a consistent composite system may
deadlock because of insufficient initial samples on its
connections. A sufficient condition for deadlock-freedom
of the composite system is checked in the derivation of the
canonical-form model of the composition.



5. A COMPOSITIONAL MODEL OF M2PLSs

This section presents an algebraic method for finding the
canonical model of M2PLS compositions. Our method
determines symbolically the canonical max-plus linear
model of a composite system based on the canonical
models of simpler systems from which it is constructed.

Fig. 3 (d) shows a system created from our two example
M2PLSs, S and S′. Output y1 of S is connected to input
u′1 of S′ and y′1 of S′ is connected to u1 of S. S produces
m samples on y1 and consumes m samples from u1, while
m′ samples are consumed from u′1 and produced on y′1 in
system S′ (where m = 2 and m′ = 1 in the earlier concrete
examples). Composite system CS′ can only be consistent
if Sr(y1) = Sr(u′1) and Sr(y′1) = Sr(u1) in the composite
system. So if m 6= m′, we need to synchronize these rates
before composition. Constituents of a composite system
are synchronized and aggregated into a synchronized-rate
model using operation RS specified in Definition 2 (Fig. 3
(a)) in Section 5.1. Next, the connection from y1 to u′1
is realized and the canonical model of CS is determined
using operation IO of Definition 3 (Fig. 3 (b)) in Section
5.2. The second connection is realized by applying again
operation IO to the model of CS (See Fig. 3 (c)).

5.1 Rate synchronization

In Fig. 3 (d), connection oi = (y1, u
′
1) ∈ OI between S

and S′ is such that Sr(y1) = m and Sr(u′1) = m′. This
implies that every iteration of S produces m samples on
oi; every iteration of S′ consumes m′ samples from oi.
The models of S and S′ can be synchronized using the
repetition vector of the composite system (Definition 1). In

the example, r = [r r′]
T

with r = m′

gcd(m,m′) , r
′ = m

gcd(m,m′)

and gcd(m,m′) the greatest common divisor of m and
m′. This results in the sample rate rm = r′m′ for both
y1 and u′1. Also the rates of the second connection are
synchronized in this way.

We need a model of an M2PLS after a given number of
iterations. The values of the states after every p iterations
(x(kp + 1) ∈ Rn

max) and every single output sample
produced during these p iterations can be determined
from the values of the states before these p iterations
(x((k − 1)p+ 1)) and all the input samples consumed
during these p iterations. Substituting k + 1 for k in (1)
gives:

x(k + 2) = A⊗x(k + 1)⊕B⊗u(k + 1) (3)

y(k + 1) = C⊗x(k + 1)⊕D⊗u(k + 1).

Substituting x(k + 1) from (1) into (3) and keeping y(k)
from (1) yields the following:
[
x(k + 2)
y(k)

y(k + 1)

]
=

[
A⊗A A⊗B B
C D −∞

C⊗A C⊗B D

]
⊗
[
x(k)
u(k)

u(k + 1)

]
(4)

Equation (4) shows how the states of a system after two
iterations x(k+ 2) and the output samples of the first and
second iterations (y(k) and y(k+1)) can be obtained from
states x(k) and inputs u(k) and u(k + 1) of the system
during these two iterations. This method can be extended
for p iterations of a system. The states after p iterations
(x(k + p)) and outputs from the first iteration (y(k)) up

to the pth iteration (y(k+ p− 1)) can be determined from
states x(k) and inputs u(k) up to u(k + p− 1), (5).




x(k + p)
y(k)

...
y(k + p− 1)


 = M⊗




x(k)
u(k)

...
u(k + p− 1)


 (5)

with M =




Ap Ap−1⊗B · · · B
C D · · · −∞
...

...
. . .

...
C⊗Ap−1 C⊗Ap−2⊗B · · · D


.

To calculate matrices after every p iterations, substituting
p(k − 1) + 1 for k in (5) yields:[

x∗p(k + 1)
y∗p(k)

]
=

[
A∗p B∗p

C∗p D∗p

]
⊗
[
x∗p(k)
u∗p(k)

]
(6)

where

x∗p(k + 1) = x(pk + 1),

y∗p(k)=




y(p(k − 1) + 1)
y(p(k − 1) + 2)

...
y(pk)


, u

∗p(k)=




u(p(k − 1) + 1)
u(p(k − 1) + 2)

...
u(pk)


,

A∗p = Ap, B∗p =
[
Ap−1⊗B Ap−2⊗B . . . A⊗B B

]
,

C∗p =




C
C⊗A

...
C⊗Ap−1


 and

D∗p =




D −∞ −∞ · · · −∞
C⊗B D −∞ · · · −∞

C⊗A⊗B C⊗B D · · · −∞
...

. . .
. . .

. . .
...

C⊗Ap−2⊗B · · · C⊗A⊗B C⊗B D



.

Definition 2. [Synchronized-rate model] AS = RS(S, S′, r)
is an operation taking the canonical models of two

M2PLSs S and S′, and repetition vector r = [r r′]
T

to equalize the production and consumption sample rates
(on the required connections between them). It returns
the canonical model of an M2PLS that is an aggregated
model of S∗r and S′∗r

′
. S∗r and S′∗r

′
are the canonical

models of S after every r iterations and S′ after every r′

iterations and can be determined from (6). Equation (7)
shows the max-plus linear equations of AS.

[
xRS(k + 1)
yRS(k)

]
=

[
ARS BRS

CRS DRS

]
⊗
[
xRS(k)
uRS(k)

]
, (7)

where

xRS(k) =

[
x∗r(k)

x′∗r
′
(k)

]
,yRS(k) =

[
y∗r(k)

y′∗r
′
(k)

]
,

uRS(k) =
[
u∗r(k)u′∗r

′
(k)
]T
,

ARS =

[
A∗r −∞
−∞ A′∗r

′

]
,BRS =

[
B∗r −∞
−∞ B′∗r

′

]
,

CRS =

[
C∗r −∞
−∞ C ′∗r

′

]
and DRS =

[
D∗r −∞
−∞ D′∗r

′

]
.
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AS = RS(S, S′, r) where r = [r r′]T and rm = r′m′ = q

(a) Step1

Fig. 3. Composing two M2PLSs S and S′ by adding two connections stepwise

A∗r, B∗r, C∗r and D∗r are matrices of S after every r

iterations, while A′∗r
′
, B′∗r

′
, C ′∗r

′
and D′∗r

′
are matrices

of S′ after every r′ iterations.

To synchronize S and S′ of the running example of Fig. 2,
AS = RS(S, S′, [1 2]T ) is computed (see Fig. 3 (a)). First,
the model of S′ for two iterations is calculated from (6):

A′∗2 = A′⊗A′ =

[
4 −∞
5 1

]
⊗
[
4 −∞
5 1

]
=

[
8 −∞
9 2

]
,

B′∗2 =
[
A′⊗B′ B′

]
=

[
8 6 4 2
9 7 5 3

]
,

C ′∗2 =

[
C ′

C ′⊗A′
]

=




[
5 1
2 −∞

]

[
5 1
2 −∞

]
⊗
[
4 −∞
5 1

]


=




5 1
2 −∞
9 2
6 −∞


 ,

and D′∗2 =

[
D′ −∞

C ′⊗B′ D′
]

=




5 3 −∞ −∞
2 −∞ −∞ −∞
9 7 5 3
6 4 2 −∞


.

The synchronized-rate model in canonical form of this
example is depicted in Fig. 4, where ε = −∞. For the
purpose of illustration, the top left 4 × 4 matrix in this
figure denotes ARS ,

ARS =




2 −∞ −∞ −∞
4 2 −∞ −∞
−∞ −∞ 8 −∞
−∞ −∞ 9 2


.

5.2 IO Connection

After synchronizing and aggregating the canonical mod-
els of two systems S and S′, using operation RS of
Definition 2, the connection io = (y1, u

′
1) is added to

the canonical model of AS (Fig. 3 (b)). To formulate
adding connections in general, consider that a connection
oi = (y1, u1) ∈ OI with Sr(y1) = Sr(u1) = m is added
to the model of S ∈ MRS, such that Is(oi) = i, with

AS

y2

y1

y′2

2

=

2

u1

u2

u′2

2

u′1

2

2

y′1

2




x1(k + 1)
x2(k + 1)
x′1(2k + 1)
x′2(2k + 1)
y1(2k − 1)
y1(2k)
y2(k)

y′1(2k − 1)
y′2(2k − 1)
y′1(2k)
y′2(2k)







2 ε ε ε ε ε 2 ε ε ε ε
4 2 ε ε 2 1 4 ε ε ε ε
ε ε 8 ε ε ε ε 8 6 4 2
ε ε 9 2 ε ε ε 9 7 5 3
3 1 ε ε 1 ε 3 ε ε ε ε
4 2 ε ε 2 1 4 ε ε ε ε
2 ε ε ε ε ε 2 ε ε ε ε
ε ε 5 1 ε ε ε 5 3 ε ε
ε ε 2 ε ε ε ε 2 ε ε ε
ε ε 9 2 ε ε ε 9 7 5 3
ε ε 6 ε ε ε ε 6 4 2 ε







x1(k)
x2(k)

x′1(2k − 1)
x′2(2k − 1)
u1(2k − 1)
u1(2k)
u2(k)

u′1(2k − 1)
u′2(2k − 1)
u′1(2k)
u′2(2k)




Fig. 4. The synchronized-rate model of the example

y1 ∈ Op(S) and u1 ∈ Ip(S). To determine the canonical
model considering this connection, the inputs and outputs
of S are divided into two groups. Let u1 and y1 be the
input and the output to be connected. Therefore, y1(k)
is the vector of produced samples on this connection oi,
while u1(k) indicates the vector of consumed samples from
oi. Let the vector of the rest of the samples produced on
the other connections be y2(k). Likewise, let the vector of
the rest of the input samples be u2(k). According to this
notation, the system equations can be rewritten as follows:

x(k + 1) = A⊗x(k)⊕B1⊗u1(k)⊕B2⊗u2(k) (8)

y1(k) = C1⊗x(k)⊕D1,1⊗u1(k)⊕D1,2⊗u2(k)

y2(k) = C2⊗x(k)⊕D2,1⊗u1(k)⊕D2,2⊗u2(k)

After adding connection oi, y1 and u1 are no longer an
output and input of the composite component. Therefore,
the values of these vectors should be captured in terms
of other signals and eliminated from the canonical model
of the composite system. For this purpose, in general,
we follow two strategies: (I) eliminating those produced
samples consumed within an iteration and (II) saving those
produced samples that are not consumed in the same
iteration in auxiliary vectors called augmented states. The
problem is divided into two cases: (I) the number of initial
samples i on the connection is less than the u1 and y1
sample rates m and (II) i ≥ m.



In case 0 ≤ i < m, some of the produced outputs are
consumed within the same iteration. For the system to be
deadlock-free, no (earlier) outputs should depend on some
of the (later) inputs. Then it is sufficient if the open loop
matrix looks like:

x(k + 1)
y1a(k)
y1b(k)
y2(k)


=



A B1a B1b B2

C1a D1a,1a −∞ D1a,2

C1b D1b,1a D1b,1b D1b,2

C2 D2,1a D2,1b D2,2


⊗



x(k)
u1a(k)
u1b(k)
u2(k)


,

(9)

where y1 is split into y1a and y1b and u1 into u1a and
u1b such that y1a is the output that is produced and
immediately consumed by input u1b within an iteration.
Input u1a initially consumes the initial samples on the
connection. After the first iteration, u1a reads the later
samples produced by y1b in the previous iteration. To
ensure deadlock-freedom, it suffices if submatrix D1a,1b =
−∞(m−i)×(m−i), which is an (m− i)× (m− i) matrix
with −∞ entries. D1a,1b describes the dependency of
y1a(k) on u1b(k). It is not feasible to consider u1b(k) =
y1a(k) because these two are waiting for one another, at
the same time. This mutual dependency between u1b(k)
and y1a(k) introduces deadlock in the system. From (9),

y1a(k) = [C1a D1a,1a D1a,2]⊗ [x(k) u1a(k) u2(k)]
T

and
as a result of u1b(k) = y1a(k), the following equations are
true:


x(k)
u1a(k)
u1b(k)
u2(k)


=



I −∞ −∞
−∞ I −∞
C1a D1a,1a D1a,2

−∞ −∞ I


⊗
[
x(k)
u1a(k)
u2(k)

]
, (10)

where I is a max-plus identity matrix with zeros on the
main diagonal and −∞ elsewhere. Substituting the right-
hand side of (10) for [x(k) u1a(k) u1b(k) u2(k)]T in (9)
yields:


x(k + 1)
y1a(k)
y1b(k)
y2(k)


=



A B1a B1b B2

C1a D1a,1a −∞ D1a,2

C1b D1b,1a D1b,1b D1b,2

C2 D2,1a D2,1b D2,2


⊗



I −∞ −∞
−∞ I −∞
C1a D1a,1a D1a,2

−∞ −∞ I


⊗
[
x(k)
u1a(k)
u2(k)

]
=




A⊕B1b⊗C1a B1a⊕B1b⊗D1a,1a

C1a D1a,1a

C1b⊕D1b,1b⊗C1a D1b,1a⊕D1b,1b⊗D1a,1a

C2⊕D2,1b⊗C1a D2,1a⊕D2,1b⊗D1a,1a

B2⊕B1b⊗D1a,2

D1a,2

D1b,2⊕D1b,1b⊗D1a,2

D2,2⊕D2,1b⊗D1a,2


⊗
[
x(k)
u1a(k)
u2(k)

]
(11)

Given that the value of y1a(k) is already incorporated in
x(k + 1), y1b(k) and y2(k) in (11), its corresponding (the
second) row is removed from (11), which results in:
[
x(k + 1)
y1b(k)
y2(k)

]
=

[
A⊕B1b⊗C1a B1a⊕B1b⊗D1a,1a

C1b⊕D1b,1b⊗C1a D1b,1a⊕D1b,1b⊗D1a,1a

C2⊕D2,1b⊗C1a D2,1a⊕D2,1b⊗D1a,1a

B2⊕B1b⊗D1a,2

D1b,2⊕D1b,1b⊗D1a,2

D2,2⊕D2,1b⊗D1a,2

]
⊗
[
x(k)
u1a(k)
u2(k)

]

(12)

To capture the values of the newly added initial samples
on connection oi and y1b, let χ(k + 1) ∈ Ri

max be
a new augmented state vector indicating the values of
the remaining samples after iteration k. In iteration k,
u1a reads the values of remaining samples from iteration
k − 1 which is χ(k). After iteration k, vector y1b(k)
produces samples which are not consumed in iteration
k; thus, χ(k + 1) = y1b(k). Consequently, χ(k + 1) and
χ(k) can be substituted for y1b(k) and u1a(k) in (12),
respectively. These substitutions yield the following results
describing CS, which is the canonical model of S after
adding connection oi = (y1, u1).

[
xIO(k + 1)
yIO(k)

]
=

[
AIO BIO

CIO DIO

]
⊗
[
xIO(k)
uIO(k)

]
, (13)

where

xIO(k)=[x(k) χ(k)]
T
, uIO(k)=u2(k), yIO(k)=y2(k),

AIO=

[
A⊕B1b⊗C1a B1a⊕B1b⊗D1a,1a

C1b⊕D1b,1b⊗C1a D1b,1a⊕D1b,1b⊗D1a,1a

]
,

BIO=

[
B2⊕B1b⊗D1a,2

D1b,2⊕D1b,1b⊗D1a,2

]
,

CIO = [C2⊕D2,1b⊗C1a D2,1a⊕D2,1b⊗D1a,1a]

and DIO = D2,2⊕D2,1b⊗D1a,2.

In case i ≥ m, no samples are consumed in the same
iteration in which they are produced. Therefore, the sys-
tem after adding the connection is deadlock-free. Thus, in
contrast to the previous case, the condition D1a,1b = −∞
is not necessary. The canonical model of S is described as
follows:

x(k + 1)
y1a(k)
y1b(k)
y2(k)


=



A B1a B1b B2

C1a D1a,1a D1a,1b D1a,2

C1b D1b,1a D1b,1b D1b,2

C2 D2,1a D2,1b D2,2


⊗



x(k)
u1a(k)
u1b(k)
u2(k)


.

(14)

As a result of i initial samples on connection oi, the first

part of the produced samples y1a(k) ∈ R(m−mod(i,m))
max

on connection oi is read in iteration k + b i
mc by u1b,

where mod(i,m) is the remainder of the division of i
by m. The rest of the produced samples in iteration k

(y1b(k) ∈ Rmod(i,m)
max ) is consumed by u1a(k+d i

me). There-

fore, y1a(k) = u1b(k + b i
mc) and y1b(k) = u1a(k + d i

me).
To be able to formulate and include y1a(k) = u1b(k+b i

mc)
in the canonical-form representation, b i

mc new augmented
state vectors called χ1a(k), χ2a(k), . . . , χ(b i

m c−1)a(k),

χb i
m ca(k) ∈ R(m−mod(i,m))

max are defined. Likewise, d i
me

new augmented state vectors χ1b(k), . . . , χ(d i
m e−1)b(k),

χd i
m eb(k) ∈ Rmod(i,m)

max are added to address y1b(k) =

u1a(k+d i
me). To capture the delay between the production

and consumption of the samples, the relations between
vectors are defined as follows:




χ1a(k + 1)
χ2a(k + 1)

...
χ(b i

m c−1)a(k + 1)

χb i
m ca(k + 1)

u1b(k)




=




y1a(k)
χ1a(k)

...
χ(b i

m c−2)a(k)

χ(b i
m c−1)a(k)

χb i
m ca(k)




and (15)






χ1b(k + 1)
χ2b(k + 1)

...
χ(d i

m e−1)b(k + 1)

χd i
m eb(k + 1)

u1a(k)




=




y1b(k)
χ1b(k)

...
χ(d i

m e−2)b(k)

χ(d i
m e−1)b(k)

χd i
m eb(k)



. (16)

Let’s define χa1(k) =
[
χ1a(k) χ2a(k) . . . χ(b i

m c−1)a(k)
]T

and χa(k) =
[
χa1(k) χb i

m ca(k)
]T

; likewise, χb1(k) =[
χ1b(k) . . . χ(d i

m e−1)b(k)
]
T , χb(k) =

[
χb1(k) χd i

m eb(k)
]
T .

Thus, from (15) and (16) the following equations are true:

χa(k + 1)=

[
y1a(k)
χa1(k)

]
and χb(k + 1)=

[
y1b(k)
χb1(k)

]
. (17)

Substituting y1a(k) from (14) results in:

χa(k+1)=

[
C1a ε D1a,1b ε D1a,1a D1a,2

ε I ε ε ε ε

]
⊗




x(k)
χa1(k)
u1b(k)
χb1(k)
u1a(k)
u2(k)




=

[
C1a ε D1a,1b ε D1a,1a D1a,2

ε I ε ε ε ε

]
⊗




x(k)
χa1(k)
χb i

m ca(k)

χb1(k)
χd i

m eb(k)

u2(k)




=

[
C1a [ε D1a,1b] [ε D1a,1a] D1a,2

ε [I ε] ε ε

]
⊗



x(k)
χa(k)
χb(k)
u2(k)


, (18)

where ε = −∞; similarly, substituting y1b(k) from (14)
yields:

χb(k+1)=

[
C1b [ε D1b,1b] [ε D1b,1a] D1b,2

ε ε [I ε] ε

]
⊗



x(k)
χa(k)
χb(k)
u2(k)


 .

(19)

Adding χa(k + 1) from (18) and χb(k + 1) from (19) to
the left-hand side of (14) and eliminating y1a(k), y1b(k),
u1a(k) and u1b(k), which are captured by χa(k + 1),
χb(k + 1), χb(k) and χa(k), respectively, from (14) yields
the following results describing the canonical model of S
after adding connection (y1, u1).[

xIO(k + 1)
yIO(k)

]
=

[
AIO BIO

CIO DIO

]
⊗
[
xIO(k)
uIO(k)

]
, (20)

where

xIO(k)=[x(k) χa(k) χb(k)]
T
,

uIO(k)=u2(k), yIO(k)=y2(k),

AIO=




A [ε B1b] [ε B1a][
C1a

ε

] [
ε D1a,1b

I ε

] [
ε D1a,1a

ε ε

]

[
C1b

ε

] [
ε D1b,1b

ε ε

] [
ε D1b,1a

I ε

]



,BIO=




B2[
D1a,2

ε

]

[
D1b,2

ε

]


,

CIO=
[
C2 [ε D2,1b] [ε D2,1a]

]
and DIO=D2,2.

In the special case when mod(i,m) = 0, all produced
samples in an iteration are consumed in one iteration.

This results in empty vectors y1b(k) and u1a(k) and
y1a(k) = y1(k) and u1a(k) = u1(k); therefore, (13) and
(20) become simpler.

Definition 3. [IO composite model] CS = IO(S, oi,m, i)
is an operation taking a canonical model of system S, a
connection oi = (y1, u1) with Sr(y1) = Sr(u1) = m and
i representing the number of initial samples on oi, and
returning the canonical model CS which is a composite
model after adding connection oi to S. If 0 ≤ i < m,
the CS model can be calculated from (13); otherwise,
from (20). In the former equation, the condition D1a,1b =
−∞(m−i)×(m−i) is sufficient to ensure deadlock-freedom.

Theorem 1. [Canonical model of a composite system]
Given two M2PLSs S and S′ in canonical form with b
connections between them. To determine the canonical-
form representation of a composite system fabricated from
those, first the consistency of the composite system is
checked and its repetition vector r is calculated (see Defi-
nition 1). Then, operation RS (Definition 2) is performed
to synchronize the sample rates on connections between
those M2PLSs. Finally, operation IO (Definition 3) is
performed b times to find the canonical model after adding
the b connections. Each step takes the calculated model of
the pervious step and information of a new connection.

It is worth returning to the running example. After syn-
chronizing and aggregating two systems, the canonical
synchronized-rate model of AS was computed and shown
in Fig. 4. The next step, as shown in Fig. 3 (b), is adding
the connection from y1 to u′1 in Fig. 2 with Is(y1, u

′
1) = 0.

Thus, the canonical model of the composite system after
adding this connection can be calculated from (13). This
is a special case and y1a(k) = y1(k) and u′

1a(k) = u′1(k).
The condition D1a,1b = −∞2×2 is satisfied. Thus,

(ARS)IO = ARS ⊕BRS1 ⊗CRS1 =




2 ε ε ε
4 2 ε ε
11 12 8 ε
12 13 9 2


,

(BRS)IO = BRS2 ⊕BRS1 ⊗DRS1,2 =



ε ε 2 ε ε
2 1 4 ε ε
9 5 11 6 2
10 6 12 7 3


,

(CRS)IO=CRS2 ⊕DRS2,1 ⊗CRS1 =




2 ε ε ε
8 6 5 1
5 3 2 ε
12 10 9 2
9 7 6 ε


 ,

and (DRS)IO = DRS2,2 ⊕DRS2,1 ⊗DRS1,2 =




ε ε 2 ε ε
6 ε 8 3 ε
3 ε 5 ε ε
10 6 12 7 3
7 3 9 4 ε


.

These matrices describe the canonical model of CS in
Fig. 2. This model in turn is used to compute the canonical
model of CS′ as it is conveyed in Fig. 3 (c). According
to Definition 3, CS′ = IO(CS, (y′1, u1), 2, 2) which is
determined from (20). As a result of mod(i,m) = 0,
y′

1a(k) = y′
1(k) and u1a(k) = u1(k). Since b i

mc = 1, then
χa(k + 1) = χ1a(k + 1) = y′

1(k) and χa(k + 1) = u1(k).



For this special case,

((ARS)IO)IO=

[
(ARS)IO (BRS)IO1
(CRS)IO1 (DRS)IO1,1

]
=




2 ε ε ε ε ε
4 2 ε ε 2 1
11 12 8 ε 9 5
12 13 9 2 10 6
8 6 5 1 6 ε
12 10 9 2 10 6



,

where, as an example, (CRS)IO1 is a matrix constructed

from the second and third rows of (CRS)IO indicating the
interplay between y′1 and x.

((BRS)IO)IO=

[
(BRS)IO2
(DRS)IO1,2

]
=

[
2 4 11 12 5 9
ε ε 6 7 ε 4
ε ε 2 3 ε ε

]T
,

((CRS)IO)IO =
[
(CRS)IO2 (DRS)IO2,1

]
=

[
2 ε ε ε ε ε
5 3 2 ε 3 ε
9 7 6 ε 7 3

]

and ((DRS)IO)IO = (DRS)IO2,2 =

[
2 ε ε
5 ε ε
9 4 ε

]
.

In contrast to the shown model in Fig. 2, the above
calculated model, which is in the canonical form, can be
utilized to control and analyze the system. For instance,
the matrices are used to evaluate the throughput and
latency of the system by adopting the method of Geilen
et al. (2020).

6. CONCLUSION

In this paper, an algebraic compositional model of
M2PLSs in canonical form was introduced. The proposed
method can find the canonical model of any system con-
structed from canonical-form representations of M2PLSs.
A check for consistency of the composite system, which
is a necessary condition for a system to be modeled, and
two operations were explained, (I) rate synchronization
and (II) IO composition. The first operation synchronizes
the rates of two M2PLSs on connections between them
and aggregates the two systems into one system, while
the latter operation computes the canonical model of a
composite system after adding an IO connection. Having a
deadlock-free composite system is a necessary condition for
the second operation. A sufficient condition for deadlock-
freeness is given.

One use of the proposed method is that it facilitates
(re-)calculating canonical models of reconfigurable as well
as of composite systems. Consider a system with multiple
configurations, of which the model dynamically changes.
To evaluate its performance properties, or to control the
system, its canonical model should be (re-)determined for
every configuration. Changes from one configuration to
another might only appear in a part of the system. Saving
M2PLSs in a repository and (re-)computing the compo-
sitional model of the system based on its configuration,
instead of determining the canonical model from scratch,
may considerably reduce the cost of modeling.

As future work, we aim to adopt the proposed method
to design and analyze video processing pipelines. This
method will be used to reason about performance prop-
erties of complex streaming applications with multiple

configurations. This will simplify the quality and resource
management of these applications.
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