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Abstract—Real Time Bidding is the process of selling and
buying online advertisements in real time auctions. Real time
auctions are performed in header bidding partners or ad ex-
changes to sell publishers’ ad placements. Ad exchanges run
second price auctions and a reserve price should be set for
each ad placement or impression. This reserve price is normally
determined by the bids of header bidding partners. However, ad
exchange may outbid higher reserve prices and optimizing this
value largely affects the revenue. In this paper, we propose a
deep reinforcement learning approach for adjusting the reserve
price of individual impressions using contextual information.
Normally, ad exchanges do not return any information about
the auction except the sold-unsold status. This binary feedback
is not suitable for maximizing the revenue because it contains
no explicit information about the revenue. In order to enrich the
reward function, we develop a novel reward shaping approach
to provide informative reward signal for the reinforcement
learning agent. Based on this approach, different intervals of
reserve price get different weights and the reward value of
each interval is learned through a search procedure. Using a
simulator, we test our method on a set of impressions. Results
show superior performance of our proposed method in terms of
revenue compared with the baselines.

Index Terms—Real Time Bidding, Reinforcement Learning,
Reward Shaping, Deep Learning.

I. INTRODUCTION

In recent years, Real Time Bidding (RTB) has become
the main platform for trading online advertisements (ads).
Considering its extremely high turnover, most website owners
participate in this business by selling some blocks in their
websites to the advertisers. In display advertising, these blocks
are called ad slots or ad placements. Basically, selling and
buying ad slots are performed through online RTB auctions.
These auctions are performed in ad networks or Ad Exchange
(AdX) markets in real time and the winner of an auction
advertises in corresponding ad slot. The auctions are mainly
second price auctions where the winner pays as much as
the second highest bid. In second price auctions, the website
owner adjusts a reserve price which determines the minimum
price of the ad slot. The final price of sold ad slots is the
maximum of the reserve price and the second highest bid
which is paid to the ad publishers and the ad is shown in
the end user’s browser [1].

When a browser in an end user’s computer loads a website,
each ad slot in the newly viewed webpage generates an
impression. These impressions are the assets to be sold in
RTB auctions. For each impression, an ad request is sent to

ad networks or AdX. Depending on the way of sending the
ad requests, publishers opt either for the waterfall strategy
or Header Bidding (HB) [2]. In the waterfall strategy, the
requests are sent to the ad networks sequentially with separate
reserve prices. In HB, the process of sending the ad requests
to the so called Header Bidding Partners (HBPs) is performed
simultaneously and each HBP returns its bid separately [3].
Normally, HB auctions are first price auctions and no reserve
price is determined for them [4]. In a practical framework used
in business, HB and waterfall strategy are combined where the
publisher, first, sends ad requests to HBPs and receives their
bids. Then, a reserve price is set according to the HBPs bids
and another ad request is sent to an AdX. If AdX’s winner bid
is higher than the highest bid of HBPs, the impression goes
to AdX winner, otherwise, it goes to the HBP winner [5].

In common practice, the highest bid of HBPs is the reserve
price. Reserve price directly determines the revenue and higher
reserve prices may increase the revenue. Since AdX might
outbid higher reserve prices, using highest bid of HBPs as the
reserve price may not be optimal. Therefore, the main problem
of this work is to determine reserve price in impression level
to uplift the revenue of ad publishers. Solving this problem
is difficult in dynamic environments where the distribution of
the bids is unknown. On one hand, if the reserve price is too
high, appropriate bidder would hardly be found. On the other
hand, low reserve prices affect the revenue of the publishers
[6]. Therefore, optimizing the reserve price is an important
task of ad publishers. In this paper, we focus on the problem
of reserve price optimization from publisher’s point of view.

The reserve price could be optimized using optimization
methods if the bid distributions of the advertisers are known.
Nevertheless, RTB environment is highly dynamic and the
publisher has no information about the bids. In other words,
we assume that the publisher does not have access to the AdX
winner bid which is true for most RTB systems. Besides, the
process of adjusting the reserve price can be considered as a
sequential decision making task in a possibly infinite horizon
where in each decision moment, an impression is generated
and a reserve price is determined. In addition, as shown in [5],
the bid values of HBPs and also the winner bid of AdX would
not be predicted well without any information about the end
users and advertisers. These reasons make the problem suitable
for Reinforcement Learning (RL). Since the states and actions
spaces are large and continuous, tabular RL can no longer be



helpful and so we opted for Deep Reinforcement Learning
(DRL) as a proper function approximation method for such a
problem.

Basically, in RTB auctions, the number of high-valued bids
are less than the number of low-valued bids, because the
bidders place high bids only for valuable impressions, which
is not too much according to RTB historical data. For this
reason, the agent trains a policy that mainly provides low-
valued reserve prices. Although the number of high-valued
bids is lower, they greatly influence the revenue. One way for
solving this issue is to follow the idea of replay memory in
[7]. However, this would not be helpful in our case because
replay memory prevents forgetting and it does not change the
distribution of observed bids while larger bids are of more
importance.

In order to set appropriate high reserve prices, we propose
a novel reward shaping method to learn the reward function
according to the properties of pricing problems in auctions. To
the best of our knowledge, this work is the first to shape and
learn reward function using limited feedback of environment.
Our proposed method extends the sold-unsold feedback of the
RTB environment and assigns a reward vector and a weight
vector for each impression. The inner product of these two
vectors provides the scalar reward value, which is used during
the training. In order to evaluate the method, we develop a
simulator using historical RTB data to generate AdX’s winner
bids. Our contributions in this paper are as follows.

• Modeling the problem of reserve price optimization in
RTB systems based on AdX and HB as DRL.

• Developing a reward shaping approach for pricing prob-
lems in auctions. Our model derives a scalar value for
the reward by extending the binary feedback of RTB
environments. This approach could be used for online
pricing problems in general.

• Developing a simulator for RTB systems based on HB
and AdX using probability density functions in order to
estimate the winner bid of AdX’s auction. The simulation
is made public and can be used for other research.

II. RELATED WORK

Several works in the literature focus on reserve price op-
timization, reward learning for reinforcement learning, rein-
forcement learning for real time bidding and real time bidding
based on HB and AdX. In the following paragraphs, some of
the recent works in each direction are reviewed.

a) Reserve Price Optimization: The impact of the re-
serve price on revenue is studied in [8]. In [9], setting up
the reserve price for second price auctions is optimized by
several empirical algorithms including optimal auction where
the publisher knows bidder’s bid distributions, modeling as
a simple game between a publisher and advertisers, and
algorithms based on Bayes’ rules. In [10], the process of
setting the reserve price in online RTB and offline channels is
studied and the reserve price is set according to the winning
probability of advertisers and valuation of impressions. The
problem of multi-channel RTB is the main topic of some

other works [11], [12]. We focus on setting up the reserve
price in AdX and HB systems where no information about
the bidders is available. This makes our work different from
previous reserve price setting works.

b) RL for RTB: Most of previous works in this direction
model the problem from advertiser side. In [13] deriving
optimal bidding setting for each impression is performed by
DRL in sponsored search auctions, which is quite different
from display advertising. In [14], A3C algorithm is generalized
for multi-objectives in RTB setting to optimize the bidding
process. In [15], RL is used for dynamic pricing in sponsored
search auctions. The problem of allocating impressions to
guaranteed contract or RTB is modeled by multi-agent RL
in [16]. Multi-agent RL is also used to optimize the bidding
strategy of the advertisers [17]. Ordering the ad networks in
the waterfall strategy is another problem in RTB, which is
modeled by RL in [18], [19]. To the best of our knowledge,
no work studied the problem of reserve price optimization in
AdX and HB systems using RL.

c) Reward Learning: Although the reward function is
usually defined by experts, learning reward functions and
reward shaping may show promising improvements of the
performance. In [20], the theoretical implications of potential-
based reward shaping and difference rewards in single objec-
tive multi-agent RL are discussed. In potential-based reward
shaping each state contains a potential which expresses a
preference for the agent [21], and a difference reward is a
shaped reward that quantifies each agent’s individual contri-
bution to a multi-agent system [22]. Application of reward
shaping in spoken dialogue systems is discussed in [23],
where a set of recurrent neural networks are trained to provide
reward. Recently, a reward shaping approach is developed for
robot navigation that learns the reward value by inner product
of observations and weights, where the weights are learned
during a pre-processing step [24]. However, this method is not
applicable on our problem because the provided information
by environment is limited to sold-unsold binary value and
this makes our reward shaping approach different from other
works. The purpose of our algorithm is to enrich the reward
value using impression properties and the highest bid of HBPs.

d) RTB systems containing AdX and HB: This area is
relatively new and few works study the HB environments.
The failure rate of reserve price in HB and AdX systems is
studied in [25] using survival analysis. The idea of survival
analysis is extended in [5] to increase the reserve price. In
[26], the focus is on optimizing the revenue of AdX. Modeling
as multi-armed bandit is another approach for optimizing the
publisher’s strategy in HB which is explored in [27] and [28].
We develop a novel DRL-based model for optimizing the
reserve price using impression information information.

III. PROBLEM DEFINITION AND METHOD OVERVIEW

The problem is to determine a reserve price for each im-
pression that is sent to AdX. Upon generating an impression,
first, an ad request is sent to HBPs and their bids are received.
Then, another request containing a reserve price is sent to AdX



(a) ζHBPt ≤ ζAdXt

(b) ζHBPt > ζAdXt

Fig. 1: The revenue per reserve price based on the relation
between ζHBPt and ζAdXt .

Publisher

AdX

HBP

HBP

HBP
1

Bidder

Bidder

Bidder

…

…

2

3 4

5

Fig. 2: RTB system based on HB and AdX. The process of
selling impression t is as follows:(1) sending requests to HBPs,
(2) receiving ζHBPt , (3) sending an ad request containing
ζHBPt to AdX, (4) AdX runs an auction among bidders, (5)
receiving a sold-unsold binary value βt.

and the response is a sold/unsold binary value. This system is
shown in Fig. 2.

Let ζHBPt be the highest of all HBPs bids and ζAdXt be the
winner bid of the auction run in AdX for impression t which
is not observable for the publisher due to the blackbox nature
of AdX. According to the values of ζHBPt and ζAdXt , two
situations are possible as illustrated in Figs. 1(a) and 1(b):

(a) ζAdXt ≥ ζHBPt : In this case, the impression goes to the
winner bidder of AdX’s auction.

(b) ζAdXt < ζHBPt : In this case, the impression goes to HBP
that provided the highest bid regardless of the AdX’s
auction. For all values of the reserve price, the revenue
is fixed as shown in Fig. 1(b).

The first situation is the one that optimizing the reserve price
uplifts the revenue. In this case, any reserve price between
ζHBPt and ζAdXt increases the revenue as shown in Fig.
1(a). The reserve price of an impression t is denoted by at.
Although the ζHBPt is usually used as at for AdX’s auction,
higher values may also be outbid by AdX. Upon sending a
request to AdX, it sends back a binary value βt determining the
status of the auction for impression t. This value is one, if the
impression is sold. Otherwise it is zero. Since the reserve price
directly influences the revenue, higher reserve prices where
βt = 1, lead to higher revenue. Therefore, the problem is to
set a reserve price at for an impression t using the feature
vector st. The feature vector st contains the information of
an impression that is sent to the AdX. This feature vector is
elaborated in Section IV-B.

Our proposed method is based on DRL and a variant
of actor-critic policy gradient methods. In this algorithm, a
separate Deep Neural Network (DNN) is trained for each of
the policy and the value functions. The inputs of the policy
and the value networks are the impression information. The
output of the policy network is a probability distribution for the
reserve price and the output of the value network is a value for
the input state. The state is the feature vector corresponding to
an impression and the action is the reserve price. The reward
function R(at, ζ

HBP
t , βt) is obtained by the inner product

of a reward vector ~r(at, ζHBPt , βt) and a weight vector ~w.
Since the only feedback from AdX is βt, our proposed reward
shaping method extends this feedback by assigning varying
priorities for different intervals in the reserve price domain.

IV. DRL METHOD FOR RESERVE PRICE OPTIMIZATION

The process of adjusting the reserve price for each impres-
sion is performed by using a DNN policy that is trained by
DRL. In each decision moment, our proposed method receives
the information of a generated impression and returns the
reserve price for the AdX’s auction.

A. DRL framework

Among DRL approaches, value-based methods like DQN
[29] are not suitable, because the action space is continuous
for our method and there is no guarantee for the convergence
of the value-based method with a continuous action space.
Besides, it is not possible to consider a separate output in
the Q network of DQN for every actions, because there are
numerous actions in continuous space. For these reasons, we
opted for an actor-critic policy gradient method to train the
policy and the value networks.

The policy and the value networks are denoted by
π(at|st, θπt ) and V (st, θ

V
t ) respectively, where at is the action,

st is the state, and θπt and θVt are the parameter sets of
the policy DNN and the value DNN, respectively. These
two DNNs and their parameters are updated using the policy
gradient learning algorithm shown in (1) and (2) [30].

θπt+1 = θπt + α∇θπ ln(π(at|st, θπt ))At (1)



θVt+1 = θVt + α∇A2
t , (2)

where At = A(st, at) = rt+1 + γV (st+1) − V (st) is the
advantage function. This algorithm is called advantage actor-
critic (A2C) [31].

Due to the exploration in the environment, taking some
actions may cause large gradients. Large gradients update the
DNN parameters dramatically which is usually not suitable.
In order to prevent this, we use Proximal Policy Optimization
(PPO) algorithm which clips the gradient to be in a particular
interval [32]. The surrogate objective function of PPO which
is used for updating the policy DNN, is shown in (3).

LCLIP (θπ) = Ê [min(et(θ
π)At, clip(et(θ

π), 1− ε, 1 + ε)At)].
(3)

et(θ
π) =

π(at|st, θπ)

π(at|st, θπold)
, (4)

where, θπold and θπ are the policy parameters before and
after updating, respectively. The clip function clips the gra-
dient if it is larger than 1 + ε or smaller than 1 − ε for a
hyper-parameter ε.

B. State and Action Definition

A state representation corresponding to an impression is the
input of the policy and the value DNNs in the PPO algorithm.
Basically, this state definition could be used in every online
pricing tasks where the relation between revenue and reserve
price is similar to Fig. 1(a). In this work, we focus on setting
the reserve price for impressions in RTB as an example of
pricing in auctions.

Common impression information in RTB systems based on
HB and AdX are URL, size and location of ad slot and time
of generating the impression. Due to GDPR1, user data are
not used in our method. The aforementioned information and
ζHBPt constitute the state st for impression t as shown in (5).

st = (ϕt,Υt, ξt, `t, τt, ζ
HBP
t ), (5)

where ϕt is a unique identifier for the ad slot generating the
impression t, Υt is the URL of the webpage containing the
ad slot, ξt is the size of the ad slot, `t is the location of the
ad slot, τt is the time of sending the ad request and ζHBPt is
the highest bid of HBPs.

The action at is the value of the reserve price which is
obtained from the output of the policy network. Since at is
continuous, the policy network has a single output. Basically,
the policy network provides a continuous probability density
function (PDF) over possible continuous actions. This PDF
is a Gaussian PDF whose mean is directly obtained from the
output of the policy network and its standard deviation is fixed.
The reserve price at is sampled from Gaussian PDF N (µ, σ)
for each impression t, where µ and σ are mean and standard
deviation respectively.

1General Data Protection Regulation, https://gdpr-info.eu/.

V. REWARD SHAPING

AdX receives an ad request containing at and returns βt
to the publisher. The first option for the reward function is
to use this binary value. In this situation, the reward is 1 if
ζHBPt < at ≤ ζAdXt . This reward is not helpful for increasing
the revenue because for all the at between ζHBPt and ζAdXt ,
the reward is the same and the agent can only learn to sell
the impressions in AdX’s auctions rather than optimizing the
revenue.

The second option is to use the revenue of each impression
as the reward function according to Fig. 1(a). The reward
function of this case is shown in (6).

R(at, ζ
HBP
t , βt) =


ζHBPt at < ζHBPt

at βt = 1 and at ≥ ζHBPt

ζHBPt βt = 0 and at ≥ ζHBP
(6)

This reward function is also not very useful for increasing
the revenue because the trained agent prefers to take reserve
prices close to ζHBPt to ensure that the βt is one and the
revenue is higher than ζHBPt . In other words, the agent learns
to set at slightly higher than ζHBPt which is most probably
outbid by AdX’s auction but it affects the revenue. Since there
is no information about ζAdXt and this value is variable for
different impressions, the DRL agent learns to set at in an
interval where βt is most likely one. As shown in section
VI, the number of large ζAdXt is small and setting a large at
increases the risk of not being sold by AdX’s auction.

In order to increase the revenue by setting larger at, we
develop a novel reward shaping approach inspired from [24].
Although setting larger reserve prices increases the risk of
being unsold, the total revenue could be increased. Unlike [24],
in our work, the only feedback from the environment is βt
and there is no more information to generate a reward vector.
Following the fact that larger at may lead to higher revenue,
the main objective of the reward shaping is to assign proper
weight to larger at. To achieve that, the interval between ζHBPt

and ζmax which is the average of all ζAdXt in the training, is
divided into n equal sub-intervals and a particular weight wj
for j ∈ {1, ..., n} is assigned to the interval j. Vector ~w ∈ W
contains the weights wj and W is the space of candidate
weights vectors. Vector ~r(at, ζHBPt , βt) assigns a reward rt,j
to each interval j. Let D be the set of possible definitions
for reward function and d ∈ D be a strategy of defining
~r(at, ζ

HBP
t , βt). For example, setting at as rt,j if at is in

interval j and setting zero for other entries of ~r(at, ζHBPt , βt),
is a possible strategy. Assuming interval zero for values
smaller than ζHBPt and interval n + 1 for values larger than
ζmax, the inner product of vectors ~w = (w0, w1, ..., wn+1) and
~r(at, ζ

HBP , βt) = (rt,0, rt,1, ..., rt,n+1) provides the reward
value for each impression as shown in (7).

R(at, ζ
HBP , βt) = ~r(at, ζ

HBP , βt) · ~w. (7)

By fine-tuning the definitions of ~r(at, ζHBP , βt) and the
values of weight vector ~w, the agent could utilize the learned

https://gdpr-info.eu/


reward function and train a suitable policy. Algorithms 1 and
2 show our proposed method.

Algorithm 1 DRL using Learned Reward
Input: A set of impressions Itrain, number of different weight
vectors and reward definitions T , reward definitions D and space of
candidate weights vectors W
Output: Policy Network π(at|st, θπt )

1: Initialize all the entries of best weights vector ~w with zero
2: d← none, p← 0 {d: best reward definition, p:maximum total

reward by summing up the reward of impressions}
3: t← 0
4: ν ← number of impressions in Itrain for training, e.g. 3× 105

5: repeat
6: ~wc, dc ← GetCandidateParameters(W,D)
7: π(at|st, θπt ) = PPOAgent(Itrain, ν, ~wc, dc)
8: Find pc =

∑
t∈Itrain R(at, ζ

HBP
t , βi)

9: if pc > p then
10: p← pc, d← dc, ~w ← ~wc

11: end if
12: t← t+ 1
13: until t ≥ T
14: return PPOAgent(Itrain, ν, ~w, d)

Algorithm 2 PPOAgent
Input: A set of impressions Itrain, number of impressions ν,
weight vector ~w, reward definition d
Output: Policy Network π(at|st, θπt )

1: Initialize π(at|st, θπt ) and V (st, θ
V
t ) networks

2: i← 0
3: repeat
4: Select an impression t ∈ Itrain
5: Set at according to π(at|st, θπt )
6: Find ~r(at, ζHBPt , βt) according to d
7: R(at, ζ

HBP
t , βt)← ~r(at, ζ

HBP
t , βt) · ~w

8: Update θπ and θV according to (3) and (2)
9: i← i+ 1

10: until i ≥ T
11: return π(at|st, θπt )

Algorithm 1 works as follows: line 1 initializes the best
weight vector with zero. Line 2 initializes the best reward
definition and the best total reward, and line 4 defines the
number of impressions for training. We consider ν = 3× 105

as the method converges and overfitting is also prevented.
Line 6 provides candidate weights and reward definition based
on a black box optimization method. This method could be
as simple as line search among some candidate values or
more sophisticated methods like Bayesian optimization. Line
7 trains the PPO agent with candidate weights and reward
definition, and line 8 finds the total expected revenue by using
the policy of line 7. If the performance is improved, the best
weights and reward definition are updated in line 10.

Algorithm 2 starts with initializing π(at|st, θπt ) and
V (st, θ

V
t ). Then the PPO algorithm is performed in lines 4

to 9 and the reward value is yielded using d and ~w. Finally,
the policy π is returned from the algorithm to be used for
setting the reserve price.

VI. RTB SIMULATOR

Interacting with an RTB system is the best way to train
the agent. However, it would affect the revenue of the ad
publisher, because the agent needs to explore the environment
by taking non-optimal actions. For this reason, using real
environment for training and evaluating the method is not
practical and we opt for developing an RTB simulator to
provide the opportunity of exploration for the agent. In order
to develop a simulator, ζAdXt needs to be generated.

As mentioned before, AdX provides no information about
ζAdXt while this value is crucial for determining whether
a reserve price is outbid. We use RTB historical data that
contains the information shown in (5) and βt in order to
estimate ζAdXt for each impression t.

For generating ζAdXt , we use ζHBPt and βt that are included
in the historical data. The historical data is from an RTB
system based on HB and AdX where ζHBPt is used as at.
According to the value of βt, we can conclude that ζAdXt is
larger than ζHBPt if βt = 1. For these impressions, AdX is
winner and ζHBPt is a lower bound for ζAdXt . Therefore, we
use ζHBPt for all t where βt = 1 to generate ζAdXt .

For this purpose, first, all the impressions with βt = 1 are
retrieved. Second, these impressions are grouped based on the
values of features ϕt, Υt, ξt, `t and τt to obtain a list of ζHBPt

for each set of features. Third, for each set of aforementioned
features, a PDF is drawn using the list of ζHBPt . The histogram
of ζHBPt for four randomly selected features sets are shown
in Fig. 3. We tested some PDFs including skew-normal, half
normal and Beta distributions. The fitted curves using Beta
distribution are shown in Fig. 3. We fit a Beta distribution for
each features set and ζAdXt is sampled from corresponding
distribution for each impression.

Figs. 3 shows the PDF of ζHBPt when either AdX or
HBPs are the winner. Figs. 3(a), 3(b) and 3(c) correspond to
feature sets that are roughly rare and the number of observed
impressions for them is low. In contrast, Fig. 3(d) depicts the
histogram of a frequent feature set. The fitted PDF curves are
not visible, because the area under the PDF is one and they are
very close to the horizontal line. We do not scale the figure
to show the curves because the number of impressions are
not visible by scaling. Fig. 3(d) illustrates that the number of
impressions that goes to AdX is far more than the impressions
that goes to HBPs. This shows the importance of setting
optimal reserve prices.

VII. EXPERIMENTS AND RESULTS

A set of impressions containing the features URL, slot id,
time, size, location of ad slot, ζHBPt and βi is used to evaluate
the method. This historical data is obtained from our industrial
partner and ζAdXt is added to it by using the simulator
presented in Section VI. Before explaining the baselines and
the results, the details of the implementation is elaborated.

A. Configuration of the method

The policy and value DNNs are two separate networks and
each has two hidden layers of 64 nodes. In order to capture
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Fig. 3: The distributions of ζHBPt for four different sets of features.

the information of previously set reserve prices as time series
information, LSTM cells are used in the hidden layers. Our
exploratory experiments show superior performance of using
LSTM layers. Learning rate is set to 0.001.

The weights vector ~w is a set of positive integer numbers.
Since each run takes around twenty minutes, it is possible
to test different candidate weights in reasonable time. A set
of integer numbers is also considered to learn the number
of intervals n. By running algorithm 1 on candidate weights
and intervals, n = 3 and ~w = (1, 1, 10, 4, 1) provide better
performance and higher total reserve price.

In order to learn reward definition d, the definitions showed
in Table I are tested. These definitions are mainly based on the
value of reserve price and the lower bound of each interval. For
each of them, all the rt,j are zero except the one corresponding
to the interval containing at. Formally speaking, let lj be the
lower bound of interval j. Based on this definition, l1 and
ln+1 are ζHBPt and ζmax respectively. If lj ≤ at < lj+1,
then rt,j is not zero, otherwise it is zero. Similarly, rt,0 is not
zero if at < l1 and rt,n+1 is not zero if at > ln+1. Among
the definitions shown in Table I, the reward definition with
index 5 is selected for learning the policy since it has the best
performance. Fig. 4 shows the reward based on the reserve
price. The intervals for n = 3 is also shown in this figure.

rt,j =


at − ζHBPt at < l1

βt(at − ζHBPt ) lj ≤ at ≤ lj+1,

s.t. j ∈ {1, ..., n}
ζmax − at at > ζmax

(8)

The first term of (8) is a negative value to penalize reserve
prices lower than ζHBPt . Similar penalty is assigned for very
large reserve prices. The second term is a positive reward if the
reserve price is outbid in AdX’s auction. Otherwise, the reward
is zero and this is determined by the value of βt. If βt = 1,
the positive reward is the distance between at and ζHBPt . As
an example, assume that n = 3, ~w = (1, 1, 10, 4, 1), ζHBPt =
0.09, ζmaxt = 0.27 and βt = 1. The lower bounds of intervals
are (l1, l2, l3, l4) = (0.09, 0.15, 0.21, 0.27). The reward vector
for at = 0.22 is ~r(at, ζHBPt , βt) = (0, 0, 0, 0.13, 0) and the
reward value is ~w · ~r = 0.65.

Fig. 4: The selected reward function when n = 3.

TABLE I: Candidate Reward Definitions D. If at is not in
interval j, rt,j is zero.

Index rt,j if lj ≤ at < lj+1 rt,j if at < ζHBPt rt,j if at > ζmax

1 c > 0 (c is fixed) c > 0 c > 0
2 c > 0 −c where c > 0 −c where c > 0
3 at −at −at
4 at − lj at − ζHBPt ζmaxt − at
5 βt(at − ζHBPt ) at − ζHBPt ζmaxt − at

B. Baselines and Metrics

Our proposed method with learned reward is denoted by
DRL-LR. Each test data contains 10000 impressions with
ζAdXt > ζHBPt because for other impressions the winner is
HBP regardless of the value of at. Moreover, ζAdXt is larger
than a fixed threshold in order to evaluate the method on
valuable impressions which can highly affect the revenue. For
smaller ζAdXt , the impressions mainly goes to HBPs and the
difference in revenue is negligible. The result of applying our
proposed approach is compared with the following baselines.

• H3-2: This approach is a heuristic method. Based on this
method, the interval between ζHBPt and ζmaxt is divided
into n = 3 equal sub-intervals and at = l2 is the reserve
price. This approach is tested for all lj , j ∈ {1, ..., n+1}
and j = 2 works better than the others.

• H5-3: This is similar to H3-2 where n = 5 and j = 3.
• DRL-DA: This approach trains a DRL agent with discrete

actions. The intervals and the definitions of n and lj are
the same as our proposed method. However, there are n
discrete actions where each one corresponds to a fixed



reserve price. The values of lj , j ∈ {1, ..., n} represent
the set of possible actions. In our experiments, n is 3.

• DRL-RTB: This approach is a DRL approach which its
reward function is defined by (6). The other parameters
and configuration of the method is the same as DRL-LR.

• SA-PM: This method is proposed in [5] which is based
on survival analysis and prediction models. Although in
[5] the bids and AdX responses are based on predicted
values, we use historical data.

The metrics that used to compare different baselines are as
follows.

•
∑
t ζ
AdX
t : This is the sum of all AdX’s winner bids which

is considered as an upper bound for the revenue.
•
∑
t ζ
HBP
t : This is the sum of the highest bids of HBPs

for all impressions.
•
∑
t at: This value shows the revenue of each algorithm.

Since, the second highest bid of AdX is unknown for the
agent, the revenue is considered as the sum of reserve
prices for all impressions. Note that this value is obtained
from policy network if βt = 1, Otherwise at = ζHBPt .

• %at : This value is the performance ratio, measured by∑
t at/

∑
t ζ
AdX
t .

C. Results

Table II shows the results of performing different algorithms
on Itest1 and Itest2 . Each of these two sets contains 10000
randomly selected impressions of a particular day. The policy
network is trained on the Itrain containing the impressions of
another day. This policy network is evaluated by applying on
the impressions of the next two days. Hence, Itrain, Itest1 and
Itest2 correspond to three consecutive days. The results show
that the policy network works well in determining the reserve
prices for the impressions of coming days.

TABLE II: Results of applying different algorithms

Test Data Algorithm
∑
t ζ
HBP
t

∑
t at

∑
t ζ
AdX
t %at

DRL-LR 1527.23 73.57%
H3-2 1315.82 63.38%

Itest1 H5-3 628.00 1430.96 2075.86 68.93%
DRL-DA 1315.82 63.38%
DRL-RTB 1437.20 69.23%

SA-PM 986.88 47.54%
DRL-LR 1521.77 73.67%

H3-2 1305.82 63.22%
Itest2 H5-3 599.32 1420.92 2065.43 68.79%

DRL-DA 1305.82 63.22%
DRL-RTB 1414.03 68.46%

SA-PM 955.09 46.24%

As shown in table II, DRL-LR outperform all the other
algorithms in terms of revenue. Based on these results, the
performance of DRL-DA and H3-2 are the same, because the
trained policy always takes the lower bound of interval 2 as
the reserve price which is the same as H3-2. This shows that
discrete actions work no better than heuristics.

In order to evaluate the reserve price of individual impres-
sions, the difference between at and ζAdXt for the impressions
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Fig. 5: Comparing individual reserve prices of different meth-
ods. In order to smooth the graph, average of 50 reserve prices
is plotted.
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Fig. 6: Box plot of reserve prices for different baselines.

Itest1 is calculated and plotted in Fig. 5. These differences are
averaged over every 50 impressions in order to have smoother
graphs. The differences between at of DRL-LR and ζAdXt is
closer to zero than other algorithms and this shows closer to
optimal reserve prices obtained by our proposed method.

The box plot of reserve prices of different approaches
together with the ζHBPt and ζAdXt are shown in Fig. 6. Based
on this figure, the median, lower quartile and upper quartile
of reserve prices obtained by our proposed method are higher
than the same parameters for the other baselines. In fact,
not only the aggregated revenue of our proposed method is
higher than the aggregated revenue of other baselines, but also
individual reserve prices of our method are closer to ζAdXt .

VIII. CONCLUSION AND FUTURE WORK

In this paper, a DRL-based approach is presented for adjust-
ing the reserve price of AdX’s auctions in RTB systems based
on HB and AdX. In order to improve learning and enrich the
reward function, a novel reward shaping method is developed
for defining the reward function. Moreover, a simulation using
historical HB bids is built to derive the winner bids of AdX
auction. Using the data obtained from simulation show that
the revenue of an ad publisher may increase dramatically by
applying our proposed method.

The main limitation of our work is lack of AdX’s auction
data. Typically, AdX provides aggregated revenue per hour or
per day and there is no information about the revenue of single



impressions. If the distributions of the bidders are known,
the problem could be solved by optimal auction algorithms.
Besides, if the winner bids of AdX are available, optimization
methods including DRL can use real data and the theoretical
performance is more aligned with real performance. However,
not only there is no information of bidder’s distributions, but
also the exact bids of winners are unknown. We manage this
limitation by developing a simulator in this paper.

As future work, we aim to enhance the performance by
improving the quality of the policy network. One possible
approach is to make the weight vector more dynamic and
embed different objectives in it. In other words, exploring the
possibility of defining a dynamic weight vector that assigns
different weights for different impressions is an interesting
future direction. One other direction for future research is to
consider social welfare and learn policies in a multi-agent RTB
system including advertisers, HBPs and AdX.
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