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Summary 

 
Urban traffic network equilibrium models and algorithms have drawn much 

attention in transportation research. Their applications in network planning, transport 

policy evaluations, and traffic management face challenges to address rich behavior 

realisms responding to various supplies. This thesis aims to extend the existing urban 

traffic network equilibrium models and develop efficient solution algorithms based on 

column generation (CG) schemes.  

First, a generalized mean-variance (GMV) metric is proposed for modeling route 

choice. Travel time uncertainty is unavoidable due to several factors (e.g., weather and 

congestion) and affects travelers’ route choice behavior significantly. The proposed 

GMV metric has a more generalized form than those widely used metrics in the literature. 

It can capture the influence of travelers’ on-time arrival probability and schedule delays 

on travelers’ route choice simultaneously. With the GMV metric, a user equilibrium 

(GMVUE) is formulated as a finite-dimensional variational inequality (VI) problem. A 

CG-based solution algorithm is then developed for GMVUE problem. The results 

illustrate that different weight coefficients of the GMV metric result in different flow 

distribution at GMVUE state. With the classic CG technique, more than half OD pairs 

generate less than three paths at equilibrium.  

Second, four tolerance-based strategies are proposed for extending the classic CG 

algorithm to the bounded rational dynamic user equilibrium model (BR-DUE). Due to 

the cognitive limitations, travelers may choose non-optimal paths and/or departure times. 

A tolerance-based minimum disutility path search strategy allows travelers seeking non-

optimal paths and accelerates the CG algorithm by decreasing the size of the path sets. 

Convergence curves of equilibrium models usually become flat when the solutions 

approach the equilibrium state. Self-adjusted convergence threshold strategy adjusts the 

relative convergence threshold dynamically and can decrease the number of dynamic 

network loading during the intermediate iterations. From the temporal dimension, a 

varied temporal resolution strategy tries to assign flows to narrow time regions via 

exploration and exploitation processes. Path search skipping strategy performs path 

search only at potential time intervals and accelerates the CG algorithm by decreasing 

the number of the path searches. With these four strategies, the TBCG algorithm leads 

to significant computation time reductions without the expense of solution quality.  

 Third, the supply-demand dynamics under different first-come-first-served 

(FCFS) mechanisms are suggested and embedded into a BR-DUE problem. Car-sharing 

services (CSS) have received increasing attention in the passenger mobility sector. 

Understanding the complex relations between supply and demand of shared cars (SCs) 
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is a critical step in the evaluation of CSS deployment. However, most studies focused on 

the evaluation of the dynamic supplies. To capture the interactions between them, the 

supply-demand dynamics under four FCFS mechanisms are formulated, namely, No 

waiting FCFS (NW-FCFS), aggregate-FCFS (A-FCFS), disaggregate FCFS (D-FCFS) 

and the VIP membership D-FCFS (VD-FCFS). Theoretically, four mechanisms have the 

same supply-demand dynamics under some conditions. D-FCFS and VD-FCFS 

mechanisms lead to more efficient SC utilization rates compared with other two 

mechanisms. Based on the TBCG algorithm, an adaptive CG algorithm is proposed for 

the BR-DUE problem by incorporating a path expansion strategy. Numerical examples 

demonstrate that different FCFS mechanisms tend to have different supply-demand 

dynamics and that the disaggregate mechanisms are more efficient in satisfying the 

demand of shared cars.  

Lastly, refined spatial-temporal exploration and exploitation strategies are 

suggested to the boundedly rational dynamic activity-travel assignment (BR-DATA) 

problems. BR-DATA endogenously integrates activity-travel scheduling and dynamic 

traffic assignment to determine the interaction between land use transport supplies and 

activity-travel demands of boundedly rational travelers. The combinatorial explosion of 

ATPs involving multi-dimensional choice facets poses severe challenges to the model 

applicability in large networks. The existing DATA problems were confined to small 

networks. Based on the TBCG algorithm, the spatial-temporal exploration and 

exploitation strategies are refined to solve the BR-DATA problem. The spatial 

exploration strategy modifies the tolerance-based minimum disutility path search 

strategy of TBCG algorithm and can search for the non-FIFO ATPs. Temporal 

exploration strategy uses a more flexible criterion to extend the current time regions. 

Regarding the spatial exploitation strategy, it adjusts the original lower bound of the 

relative convergence threshold. Combined with the temporal exploitation strategy, these 

strategies are proved that the solutions derived from the refined TBCG algorithm satisfy 

the BR-DATA user equilibrium condition. The numerical results demonstrate that the 

algorithm has solid scalability and has large gains in computation time without losing 

solution quality.  

In sum, the proposed urban traffic network equilibrium models address various 

aspects of UE models covering STA, DTA, and DATA with the consideration of supply 

uncertainty, bounded rationality, emerging mobility services, and network scalability in 

the respective models. The spatial-temporal exploration and exploitation strategies are 

expected to have broad applications in dynamic traffic assignment problems.  
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1  

Introduction 

 
 

 

1.1 Travel demand analysis 
 

The development of social economies and the expansion of urban scales have increased 

the intensity and scope of passenger mobility. The imbalance between the lagging urban 

mobility supply and increasing travel demand has resulted in severe urban traffic 

problems, such as traffic congestion, imbalance of parking supply and demand, traffic 

safety, emission, and energy consumption. Transportation planning, aiming to achieve 

sustainable transportation conditions, is becoming more and more important. 

Transportation forecasting and management, the keys to a successful transportation 

planning process, usually rely on the development of rigorous travel demand models. 

Over the past decades, the development of travel demand models has been gradually 

shifting from aggregate trip-based models (or so-called four-step models) to disaggregate 

activity-based models (ABMs) (Bhat and Koppelman, 1999; Liao, 2013; Rasouli and 

Timmermans, 2014; Chow and Nurumbetova, 2015; Yang, 2018).  

 The four-step models are best seen within the overall framework of transportation 

system analysis that positions travel demand and network performance procedures as 

determining flow patterns toward equilibrium with input from and feedback to network 

supplies (de Dios Ortúzar and Willumsen, 2011). As the name suggests, four-step models 

consist of trip generation, trip distribution, mode choice, and traffic assignment. 

Specifically, trip generation determines the number of trips generated and attracted by 

each traffic analysis zone. Trip distribution matches the number of exchange trips 

between traffic analysis zones. Mode choice concerns the proportion of trips between 

origins and destinations that use particular transportation modes. As the last step of these 

models, traffic assignment allocates the travel demand to different paths (routes) to 
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achieve a user equilibrium (UE) or system optimal state. If the time dimension is 

considered, the dynamic traffic assignment (DTA) is in place to replicate time-related 

traffic phenomena, such as queue formation, propagation, and dissipation (Lo and Szeto, 

2002; Han et al., 2019). Four-step models are popularly applied for travel demand 

analyses due to the well-defined process. Moreover, the enrichment of survey techniques 

and computing software further promotes the wide use of the four-step models (Boyce 

et al., 1994; McNally, 2007; Yang, 2018). However, trip-based models focus on the long-

term aggregate behavior of travelers and have some limitations, such as ignoring the 

spatial and temporal interrelationship of travelers’ trip chains, misspecification of spatial 

and temporal decisions, and misspecification of travel behavior at the individual level 

(Mcnally et al., 2000). These deficiencies appear most prominent in the inability of 

conventional models to perform adequately in complex policy applications. Driven by 

emerging transportation policies and growing complexity in activity patterns, the focuses 

of travel demand analysis are shifting to microsimulation, disaggregate, ABMs. 

ABM places primary emphasis on activity participation and aims to adopt a holistic 

framework to recognize the complex interactions in activity and travel behavior (Bhat 

and Koppelman, 1999; Mcnally et al., 2000; Rasouli and Timmermans, 2014). 

Consequently, it can represent how policies, developments, and travel demand growth 

impact people’s travel behavior (Bhat and Lawton, 2000). Moreover, the improved 

modeling methodologies, computation capacity, and data collection methods have 

facilitated the explosion of the research about the ABMs. The theoretical concepts of 

ABMs have emerged since the 1970s (Chapin, 1974). Jones (1977) proposed a theory 

that travel is derived from the needs to participate in activities at different space-time 

destinations. In addition, the random utility maximization choice theory (McFadden, 

1978) built the foundation of the approach to activity-travel behavior analysis. According 

to Rasouli and Timmermans (2014), ABMs can be categorized as constraints-based (e.g., 

Jones et al., 1983), econometrics-based (e.g., Bhat et al., 2004), or rule-based approach 

(e.g., Arentze and Timmermans, 2004). Over the past two decades, a great number of 

ABMs have been proposed to capture individuals’ behaviors and improve realism (e.g., 

Zhang, 2006; Prato, 2009). Particularly, at the core of ABM, activity-travel scheduling 

problems have been proposed to address different choice facets (e.g., choice of mode, 

path, location, timing, duration, and activity sequence) of travel behavior involved in 

conducting an activity program (Bowman and Ben-Akiva, 2001; Arentze and 

Timmermans, 2004; Liao et al., 2017). Parallelly, additional considerations, such as 

activity-travel time uncertainty (Sun et al., 2005; Liao et al., 2014), intra-household 

interactions (Bhat and Pendyala, 2005; Ho and Mulley, 2015; Fu and Lam, 2018), and 

space-time constraint (Liao et al., 2013; Chow and Nurumbetova, 2015), have been 

considered to improve the realism.  
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User equilibrium (UE) traffic assignment has been an active area of transportation 

research for many years with most model developments motivated by Wardrop’s first 

principle (Wardrop, 1952; Yang and Bell, 1998; Çolak et al., 2016). At the UE state, no 

user can decrease his/her costs by unilaterally shifting from one path to another. All-or-

Nothing and Incremental Assignment (Fisk, 1980; Sheffi, 1985) are two classical 

methods to distribute the traffic flows in the network. These methods are deterministic 

in nature and assume that the drivers are perfectly rational and have complete knowledge 

of the network. Although the UE models fall short in giving a proper estimate for any 

arbitrary networks, these methods contribute to framing models that approximate the 

decision-making process of the drivers for path choice.  

One class of methods that attempts to do multiple path assignments is stochastic 

user equilibrium (SUE). Daganzo and Sheffi (1977) generalized the UE principle and 

defined the SUE problem to account for uncertainty in travel costs. Since the late 1990s, 

SUE has attracted much research interest and been studied by incorporating different 

discrete choice models, such as multinomial logit models (Zhou et al., 2012; Rasmussen 

et al., 2015), the generalized extreme value type models, and logit kernel models (Wen 

and Koppelman, 2001; Bekhor et al., 2002). SUE models aim to model the variations in 

driver perceptions and are flexible enough to allow drivers to choose paths based on their 

different perceptions (Gupta, 2010). Unlike UE, these models do not assume the drivers 

to have complete knowledge of the network conditions.  

To deal with travel time uncertainty, reliability-based user equilibrium (RUE) 

models quantify uncertainty by different metrics. All these metrics are derived from two 

different approaches, namely, the mean-variance approach and the scheduling approach. 

Jackson and Jucker (1982) proposed the mean-variance metric as the weighted sum of 

the mean and variance of travel time. Aligned with this effort, Lo et al. (2006) factored 

travelers’ different risk attitudes according to their on-time arrival probabilities using the 

concept of travel time budget (TTB) for degradable transport networks. As another 

extension, Chen and Zhou (2010) took the conditional expectation of travel time beyond 

TTB into consideration and suggested a form of mean-excess travel time (METT) that 

combines a buffer time with the tardy time. Regarding the scheduling approach, Small 

(1982) first proposed the classic schedule delay concept based on Vickrey (1969), which 

has been extended to several cases. For instance, Noland and Small (1995) analyzed the 

effects of uncertain travel time and derived the optimized expected utility function for 

both a uniform and an exponential distribution of travel time. To allow for time-

dependent travel time distributions, Bates et al. (2001) proposed another form for the 

expected utility function and argued that the mean-variance approach and scheduling 

approach are approximated for a wide range of distributions. The resultant RUE models 

can capture the influences of path risk attitudes on path choice behavior.  

Evolved from UE, dynamic user equilibrium (DUE) models (Tong and Wong, 

2000; Huang and Lam, 2002; Long et al., 2016) considered the time dimension to 
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enhance the realism of traffic flow propagation. The developments of DUE models came 

along with the simulation-based approaches and analytical approaches. Simulation-

based approaches (Mahut and Florian, 2010; Ben-Akiva et al., 2010) focus on traffic 

dynamics and microscopic flow characteristics, while analytical approaches can be used 

to demonstrate different properties of models and their solutions. Furthermore, the 

analytical formulations include fixed-point problems (Szeto et al., 2011; Han et al., 

2019), mathematical programming models (Daskin, 1985; Carey and Watling, 2012), 

nonlinear complementarity problems (Ban et al., 2008; Han et al., 2011), and variational 

inequality (VI) problems (Lo and Szeto, 2002; Friesz and Han, 2019).  

DUE models assume that travelers have perfect knowledge of traffic conditions 

throughout the whole network and choose paths with the minimum disutilities. 

Nevertheless, this assumption is hard to be realized due to the cognitive limitations of 

travelers. Even if travelers have fully mastered the network information, they would still 

choose non-optimal paths and/or departure times due to factors such as habit and inertia. 

It is argued by Simon (1955, 1957) that people demonstrate bounded rationality (BR) 

behavior and seek satisfactory rather optimal solutions because of limited information 

and limited capability of processing information. In response, the BR of travelers or 

consumers has been incorporated in a number of traffic assignment models (Di and Liu, 

2016). Incorporating departure time choice, Szeto and Lo (2006) introduced the 

tolerance-based DUE problem and discussed its solution characteristics. Based on this 

work, Han et al. (2015) developed a boundedly rational dynamic user equilibrium (BR-

DUE) model with variable tolerances, of which the DUE and tolerance-based DUE are 

special cases. Solution existence and three computational algorithms were proposed 

based on the corresponding VI and differential VI formulations. BR has also been 

incorporated into process models to capture the day-to-day learning behavior and traffic 

flow dynamics (Guo and Liu, 2011; Wu et al., 2013). Di and Liu (2016) provided a 

comprehensive review of theoretical models and empirical evidence of path choice with 

BR and confirmed that travelers do not usually choose the paths with the shortest travel 

times or the lowest disutilities.  

Dynamic activity-travel assignment (DATA) is an extension of the classical DTA 

in the ABM paradigm. The DATA is advantageous in that it simultaneously captures the 

spatial-temporal interdependencies in activity-travel chains of a long-time frame and 

determines the demand-supply interactions at a high level of detail. Whereas, many travel 

demand forecasting systems have integrated ABM and DTA exogenously (e.g., Lin et 

al., 2008; Auld et al., 2016; Yasmin et al., 2017; Xiong et al., 2018; Yang, 2018; Najmi 

et al., 2019) that tend to deliver inconsistent temporal activity-travel patterns (ATPs). 

The formalism of DATA overcomes this shortcoming by representing full ATPs in 

augmented networks. Along this line of work, Lam and Yin (2001) and Lam and Huang 

(2002) were among the earliest attempts to take into account departure time choice and 

time-dependent activity participation in DUE models. Subsequently, several models 
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explicitly incorporated full-day ATPs in the DUE formulations using time-expanded car-

only networks (Ramadurai and Ukkusuri, 2010; Ouyang et al., 2011), PT-only networks 

(Li et al., 2010; Fu and Lam, 2014, 2018), and multimodal networks (Chow and 

Djavadian, 2015). Particularly, Liu et al. (2015) formulated DATA in multi-state 

supernetworks (SNKs) (Liao et al., 2010, 2011, 2012, 2013), which represent the state-

of-the-art for representing multimodal multi-activity trip chains. To characterize the BR 

behavior of travelers, Li et al. (2018) proposed a tolerance-based DATA model. These 

DATA models are sensitive to a broad spectrum of land use transport policies.  

Despite the appealing theoretical developments, most existing traffic network 

equilibrium models were analyzed on predefined path or ATP sets. For example, Szeto 

and Lo (2006) considered 6 paths in a 10-node network and pointed out the necessity of 

path generation as a future research direction. Han et al. (2015) selected 119 paths of the 

Sioux Falls (24-node) network to assess the suggested algorithms to the BR-DUE model. 

Li et al. (2018) enumerated 578 ATPs for two-class travelers from only two residential 

zones in the Nguyen-Dupuis network (13-node). Path or ATP enumeration may be 

possible for some transport networks of special topologies. However, the number of 

possible time-dependent paths may be too large even for small general networks in 

dynamic contexts, and path or ATP enumeration is almost impossible for larger 

networks. Therefore, a method of path generation rather than enumeration is needed.  

 

1.3 Column generation algorithm 
 

Column generation (CG), as a technique to circumvent path enumeration, has been 

widely applied to traffic network equilibrium problems. It should be noted that CG, as a 

decomposition scheme, has also been applied to solve large-scale optimization problems 

(e.g., Smilowitz et al., 2003; Qureshi et al., 2009), which is however beyond the scope 

of this thesis. Path search and network loading are the two most time-intensive 

components in the CG algorithm for traffic network equilibrium models.  

Path search is an important problem in transportation research and applications. 

Dijkstra algorithm (Dijkstra, 1959) and its extensions are the most applied for shortest 

path searches in the literature. In static real road networks, Zhan and Noon (1998) 

provided an evaluation of 15 shortest path algorithms and concluded that one of the 

Dijkstra’s implementations (e.g., Dijkstra, 1959; Fredman and Tarjan, 1987; Cormen et 

al., 2009) might be a worthwhile choice to find a one-to-one or one-to-some shortest 

path. Incorporating travel time reliability, Frank (1969) introduced the concept of reliable 

shortest path problem. The application of advanced traveler information systems 

accelerates the development of the reliable shortest path finding problem in the past 20 

years (Miller-Hooks and Mahmassani, 2003; Nie and Wu, 2009; Chen et al., 2013; 

Srinivasan et al., 2014). The dynamic characteristics of traffic networks require more 

sophisticated approaches. Dean (2004a) presented the label-setting and label-correcting 
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algorithm and analyzed their theoretical properties in first-in-first-out (FIFO) networks. 

Considering waiting behavior, Dean (2004b) discussed several techniques for speeding 

up dynamic programming in time-varying networks. It should be noted that path search 

algorithms are also adapted to solving scheduling problems in ABMs (Ramadurai and 

Ukkusuri, 2011;  Liao et al., 2013).  

Dynamic network loading (DNL) models are designed to represent the propagation 

of traffic over time in traffic networks (Himpe et al., 2016). They can produce network 

performances such as queue length, saturation, time-varying travel speed, the location of 

bottlenecks, and queue formation/dissipation. DNL models can be broadly categorized 

as delay function models (Nie and Zhang, 2005), point-queue models (Huang and Lam, 

2002), the cell transmission model (CTM) (Daganzo, 1997), the link transmission model 

(LTM) (Yperman, 2007), and continuum traffic flow models (Lighthill and Whitham, 

1955), etc. Since performing DNL is a time- and memory-consuming task, a number of 

traffic assignment algorithms were proposed to reduce the number of DNL. For example, 

Lu et al. (2009) proposed a descent direction method and proved this method outperforms 

the method of successive average (MSA). Carey and Ge (2012) compared four 

algorithms and concluded that the route-swapping method (Smith and Wisten, 1995) and 

the simple projection method (Rubio-Ardanaz et al., 2003) converge faster than the MSA 

and the alternating direction method (Lo and Szeto, 2002). Long et al. (2013b) applied 

the extra-gradient method to the DUE problem.  

The CG algorithm can generate paths in an iterative process by combining path 

searches and traffic assignments. As shown in Figure 1.1, the CG algorithm has been 

applied and developed for solving different traffic network equilibrium problems. For 

solving static traffic assignment (STA) problems, Leventhal et al. (1973) developed the 

seminal CG algorithm of path generation and analyzed the solution properties in general 

transport networks. Afterwards, as depicted by orange circles, many applications of this 

algorithmic scheme were focused on UE (Friesz, 1985; Larsson and Patriksson, 1992; 

Lo and Chen, 2000; Chen et al., 2001; Larsson et al., 2004; Florian et al., 2009; Ryu et 

al., 2014; Patriksson, 2015; Chen et al., 2020), RUE and SUE (Bell, 1995; Bell et al., 

1997; Bekhor and Toledo, 2005; Chen et al., 2009, 2010; Nikolova and Stier-Moses, 

2014; Paul et al., 2018; Gentile, 2018). Since 2000, researchers started to apply the CG 

algorithm to solve DUE problems (Han, 2000; Jang et al., 2005; Lu et al., 2009, 2013; 

Long et al., 2013b; Levin et al., 2015; Javani and Babazadeh, 2020) and their extensions 

(Zhou et al., 2008; Zhang, 2009; Zhang et al., 2013) (e.g., dynamic SUE (DSUE) and 

BR-DUE), which are marked with blue circles. The CG algorithm has also been applied 

in three studies of DATA problems (Ramadurai and Ukkusuri, 2011; Ouyang et al., 2011; 

Fu and Lam, 2018) (shown in purple circles), but the network sizes are relatively small. 

These applications do not modify the CG scheme in dynamic contexts.  
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Figure 1.1 Representative studies with applications and developments of the CG.
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Several strategies for balancing path search and network loading have been 

proposed in UE models to address large-scale transport networks (shown in green 

circles). Panicucci et al. (2007) suggested performing a CG procedure (path search) after 

a certain number of iterations rather than at every iteration. It is found that the best value 

of the iteration gap varies between 8 and 12. Aligned with this effort, Di Lorenzo et al. 

(2014) proved that the CG procedure must be applied within a prefixed number of 

iterations to guarantee convergence. The results of computational experiments illustrated 

that their proposed algorithm outperformed other algorithms. Based on this work, 

Galligari and Sciandrone (2017) designed a strategy adjusting the prefixed number for 

each origin and destination (OD) pair. This strategy yielded substantial computational 

time-savings, whilst retaining the global convergence property. However, these 

strategies are only limited to spatial paths.  

 

1.4 Contributions and outline 
 

This thesis embeds several travel behavior mechanisms and mobility services into 

network equilibrium models and develops advanced CG algorithms. First, to investigate 

the impact of travel time uncertainty on path choice behavior, the thesis proposes a 

generalized mean-variance (GMV) metric in the static context and applies an effective 

CG algorithm to solve the corresponding user equilibrium problem. Second, across the 

spatial and temporal dimensions, four tolerance-based strategies for extending the CG 

algorithm to the BR-DUE model are proposed by incorporating BR and dynamics. With 

these strategies, an efficient tolerance-based CG (TBCG) algorithm for BR-DUE is 

developed. Third, as emerging mobility services, one-way car-sharing services (CSS) are 

embedded in the BR-DUE problem with different first-come-first-served (FCFS) 

mechanisms. Algorithmically, a path expansion strategy congruently bridges the 

aggregate-disaggregate analyses and is incorporated in an adaptive CG algorithm. Lastly, 

several strategies of the TBCG algorithm are refined as spatial-temporal exploration and 

exploitation for solving boundedly rational dynamic activity-travel assignment (BR-

DATA) problems in SNKs. The remainder of this thesis is organized as follows. 

Chapter 2 provides the preliminary knowledge of path disutility, network 

equilibrium conditions, and the CG algorithm. The link and path travel times are first 

formulated in traffic networks. In the dynamic context, the path disutility is expressed as 

the weighted sum of path travel time, early or late arrival penalties. Then, UE, DUE, BR-

DUE, and DATA user equilibrium conditions are expressed and the corresponding 

problems are formulated as VI problems. Besides, the properties of the existence and 

uniqueness of their solutions are analyzed. Lastly, the descriptions and run-time 

complexity of the CG algorithm are presented.  
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Figure 1.2 The structure of the thesis. 

 

Chapter 3 investigates the impact of travel time uncertainty on path choice behavior 

in user equilibrium models based on a GMV metric. This model can capture the influence 

of risk attitudes and schedule unpunctuality on path choice using a generalization of 

expected travel time, variance, and expected early or late arrival penalties, of which 

travelers are assumed to minimize the GMV of trips considering a certain on-time arrival 

probability. This chapter establishes the properties of GMV and formulates the GMV-

based user equilibrium (GMVUE) model as a VI problem, for which the existence and 

uniqueness of the solutions are also analyzed.  

Chapter 4 proposes four tolerance-based strategies for extending the CG algorithm 

to the BR-DUE model. Specifically, (i) a tolerance-based minimum disutility path search 

strategy is developed to allow travelers seeking satisfactory paths; (ii) a self-adjusted 

convergence threshold strategy is applied for fast convergence at the intermediate 

iterations; (iii) a varied temporal resolution scheme, combining exploration and 

exploitation, is suggested to assign flows to narrow time regions rather than to the whole 

time horizon; and (iv) a path search skipping strategy is introduced by comparing the 
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lower bound of travel disutility and the minimum disutility between the OD pairs. With 

these strategies, an efficient TBCG algorithm for BR-DUE is developed.  

Chapter 5 formulates the supply-demand dynamics of one-way CSS under different 

FCFS mechanisms and embeds them in a BR-DUE problem. Two disaggregate FCFS 

mechanisms are suggested to improve the utilization of shared cars given the same CSS 

supplies in the discrete-time domain. To accurately capture the choice of CSS in space 

and time, a path expansion strategy is proposed to cope with different waiting times under 

the disaggregate FCFS mechanisms. The path expansion strategy congruently bridges 

the aggregate-disaggregate analyses and is incorporated in an adaptive CG algorithm to 

solve the BR-DUE problem in a bi-modal supernetwork.  

Chapter 6 refines the TBCG algorithm for solving BR-DATA problems in SNKs 

without ATP enumeration. The combinatorial explosion of ATPs involving multi-

dimensional choice facets poses severe challenges to the model applicability in large 

networks. The proposed refined TBCG algorithm employs spatial-temporal exploration 

to allocate activity-travel flows only to potential ATPs in the intermediate assignment 

process. The spatial-temporal exploitation intensifies ATP generation and network 

loading, which results in fewer iterations and substantial speedups compared with the 

original CG algorithm. It is proved that the TBCG algorithm is capable of finding 

solutions that satisfy the BR-DATA user equilibrium conditions.  

Finally, Chapter 7 concludes the thesis by discussing the main conclusions and the 

possible directions for future research. 
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2  

 Preliminaries 

 
 

 

2.1 Introduction 
 

Path travel time has been widely used as the subject of analysis in various traffic network 

equilibrium models (Lo and Szeto, 2002; Chen et al., 2011; Lu et al., 2013; Long et al., 

2016) due to its appealing properties such as Lipschitz continuity, monotonicity, and 

differentiability with respect to traffic flow. Besides travel time, monetary cost, travel 

convenience, travel comfort, and travel safety are also important factors affecting travel 

behavior. Path disutility (or generalized travel cost) usually combines several factors in 

travel scheduling models.  

User equilibrium (UE) or dynamic UE (DUE) state can be reached after long-term 

adaptations by assuming that path disutilities are continuous with respect to path flows 

and travelers choose paths with the minimum disutilities. As two extensions of the DUE 

state, dynamic activity-travel assignment (DATA) UE considers activity participation, 

and boundedly rational DUE (BR-DUE) takes bounded rationality (BR) behavior into 

consideration. For theoretical analysis, these equilibrium states are always formulated as 

different mathematical expressions. Algorithmically, the column generation (CG) 

algorithm provides an efficient framework for solving the network equilibrium models.  

This chapter provides some preliminary knowledge about path disutility, UE and 

its extensions, and the CG algorithm. The remainder of this chapter is organized as 

follows. Section 2.2 provides the formulations of link travel time, path travel time, and 

path disutility. Section 2.3 introduces four different traffic network equilibrium 

conditions and the corresponding variational inequality (VI) problems. The properties of 

the solutions to these problems are also analyzed. Section 2.4 presents the flowchart of 

the traditional CG algorithm.  
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2.2 Path disutility 
 

As a primary factor of trips, path travel time can be expressed as the sum of link travel 

times in the static context.  

 

 𝑡𝑝
𝑟𝑠(𝒇) = 𝑡𝑙1(𝒇) + 𝑡𝑙2(𝒇)+⋯+𝑡𝑙𝑚(𝒇) (2.1) 

 

where 𝒇  is the vector of 𝑓𝑝
𝑟𝑠 , which denotes the path flow on path 𝑝  of origin and 

destination (OD) pair 𝑟𝑠; 𝑙1, 𝑙2, … , 𝑙𝑚 are consecutive links of path 𝑝 = 𝑙1 - 𝑙2 - … - 𝑙𝑚; 

𝑡𝑝
𝑟𝑠(𝒇) is the path travel time of 𝑝; 𝑡𝑙(𝒇) is the travel time on link 𝑙 and can be calculated 

by the Bureau of Public Road (BPR) (U.S. Traffic assignment manual, 1964) link 

performance function  

 

 𝑡𝑙(𝒇) = 𝑡𝑙
0 [1 + 𝛽1 (

𝑢𝑙
𝑒𝑙
)
𝛽2

] ,   𝑙 ∈ 𝐴 (2.2) 

 

where 𝑢𝑙 ,  𝑒𝑙 and 𝑡𝑙
0 are the corresponding traffic flow, link capacity, and free-flow travel 

time respectively; 𝛽1 and 𝛽2 are deterministic parameters.  

The link travel time changes over the time of the day. Combined with the time 

dimension, the path travel time can be calculated using the following nested function 

 

 𝑡𝑝
𝑟𝑠(𝑘, 𝒇) = 𝑡𝑙1(𝑘, 𝒇) + 𝑡𝑙2(𝑘 + 𝑡𝑙1 , 𝒇)+⋯+𝑡𝑙𝑚(𝑘 + 𝑡𝑙1 +⋯+ 𝑡𝑙𝑚−1 , 𝒇) (2.3) 

 

where 𝑘 denotes a time interval. The notations is simplified as: 𝑡𝑙1 = 𝑡𝑙1(𝑘, 𝒇), 𝑡𝑙2 =

𝑡𝑙2(𝑘 + 𝑡𝑙1 , 𝒇), …, for short. To keep consistency, the notations attached with 𝑘 refer to 

the same entities incurred by travelers departing during 𝑘 . The link travel times 

associated with integer arrival time 𝑘 are calculated by the following iterative function  

 

 𝑡𝑙(𝑘, 𝒇) = max {𝑡𝑙(𝑘 − 1, 𝒇) − 1 + 𝛽3 (
𝑢𝑙(𝑘)

𝑒𝑙
)

𝛽4

,  𝑡𝑙
0} (2.4) 

 

Eq. (2.4) is a generalized form of the point-queue travel time function (Liu et al., 

2015). When 𝛽3  and 𝛽4  are equal to 1, the travel time function is a special case and 

equivalent to the one proposed by Huang and Lam (2002). The link travel time can also 

be obtained by a link travel time function (Nie and Zhang, 2005) or determined through 

different dynamic network loading methods, such as the cell transmission model 

(Daganzo, 1997) and the link transmission model (Yperman, 2007; Long et al., 2013b).  
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Besides travel time, monetary cost, and penalties of unpunctual trips are important 

considerations for trip scheduling. Travel cost is defined directly from the outcomes such 

as travel time and being early or late (Fosgerau et al., 2010). Travelers hold preferred 

arrival times (PATs) and incur early or late arrival penalties when the actual arrival times 

are less than or exceeding their PATs. Combined with the unpunctual penalties, the path 

disutility is calculated by a piecewise weighted sum as 

 

𝑐𝑝
𝑟𝑠(𝑘, 𝒇)=𝜂1𝑡𝑝

𝑟𝑠(𝑘, 𝒇)+{

𝜂2[𝑘
𝑟𝑠∗−𝜅𝑟𝑠 − 𝑘−𝑡𝑝

𝑟𝑠(𝑘, 𝒇)]  if 𝑘+𝑡𝑝
𝑟𝑠(𝑘, 𝒇)<𝑘𝑟𝑠∗−𝜅𝑟𝑠  

𝜂3[𝑘+𝑡𝑝
𝑟𝑠(𝑘, 𝒇) − 𝑘𝑟𝑠∗−𝜅𝑟𝑠]  if 𝑘+𝑡𝑝

𝑟𝑠(𝑘, 𝒇)>𝑘𝑟𝑠∗+𝜅𝑟𝑠  

0                                                   otherwise                             

 (2.5) 

 

where 𝑐𝑝
𝑟𝑠(𝑘, 𝒇) denotes the path disutility of 𝑝 incurred by travelers departing during 𝑘 

for 𝑟𝑠 ; 𝜂1 , 𝜂2  and 𝜂3  are the unit costs of travel time, early and late arrival time 

respectively.   𝑘𝑟𝑠∗  is the PAT of travelers for 𝑟𝑠 ; [𝑘𝑟𝑠∗ − 𝜅𝑟𝑠,  𝑘𝑟𝑠∗ + 𝜅𝑟𝑠]  is the 

indifferent band of arrival times without unpunctual penalties. Although this piecewise 

linear disutility function is not fully realistic but widely adopted in DUE models (Huang 

and Lam, 2002; Szeto and Lo, 2004; Han et al., 2011).  

 

2.3 UE and its extensions 
 

This subsection provides some preliminary knowledge about the UE, DUE, BR-DUE, 

and DATA problems.  

 

2.3.1 UE conditions 

 

According to Wardrop’s first principle, the flow pattern at a UE state is stated as: for any 

OD pair, all used paths have equal path disutility, while the unused paths have equal or 

higher disutilities. Formally, the conditions can be expressed by a set of complementarity 

conditions:  

 

 
𝑓𝑝
𝑟𝑠∗[𝑐𝑝

𝑟𝑠(𝒇∗) − 𝑐min
𝑟𝑠 (𝒇∗)] = 0,

𝑐𝑝
𝑟𝑠(𝒇∗) ≥ 𝑐min

𝑟𝑠 (𝒇∗),                   
   ∀𝑝 ∈ 𝑃𝑟𝑠, 𝑟𝑠 ∈ 𝑅𝑆 (2.6) 

 

where 𝒇 attached with superscript “∗” refers to a solution that fulfills the UE conditions; 

𝑐min
𝑟𝑠  is the minimal disutility of OD pair 𝑟𝑠; 𝑅𝑆 and 𝑃𝑟𝑠 are the sets of OD pairs and 

paths of 𝑟𝑠 respectively.  

The demand of OD pair 𝑟𝑠, 𝑄𝑟𝑠, is assumed fixed in this thesis. The UE problem 

is to find 𝒇 such that Eq. (2.6) and the following demand conservation and non-negativity 

constraints are satisfied.  
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 ∑
𝑝
𝑓𝑝
𝑟𝑠 = 𝑄𝑟𝑠 , ∀𝑝 ∈ 𝑃𝑟𝑠, 𝑟𝑠 ∈ 𝑅𝑆 (2.7) 

   

 𝒇 ≥ 0 (2.8) 

 

The flow conservation Eq. (2.7) ensures that the demand of any OD pair is equal to 

the sum of the flows on all paths of the same OD pair. The UE problem Eqs. (2.6)-(2.8) 

can be formulated as a finite-dimensional VI problem VI(𝒇, 𝛺0) to find a vector 𝒇∗ such 

that 

 

 (𝒇 − 𝒇∗)𝑇𝒄(𝒇∗) ≥ 0, ∀𝒇 ∈ 𝛺 (2.9) 

   

 𝛺0 = {𝒇| 𝒇 ≥ 0, ∑ 𝑓𝑝
𝑟𝑠

𝑝∈𝑃𝑟𝑠

= 𝑄𝑟𝑠 ,    ∀ 𝑟𝑠 ∈ 𝑅𝑆 } (2.10) 

 

2.3.2 DUE conditions 

 

DUE is an extension of the UE problem that aims to capture dynamic traffic flows and 

serves traffic operational management in the short-term. The DUE condition is stated as 

follows: for each OD pair at each time interval, the path disutilities experienced by 

travelers departing at the same time are equal and minimal. This condition is a dynamic 

version of Wardrop’s first principle and implies that, at DUE, only those time-dependent 

paths between any OD pairs that have the minimal disutilities are used, and those paths 

that are not used must have disutilities higher than or equal to the minimal disutilities; in 

addition, no individual can reduce his/her path disutility by unilaterally adapting the 

departure time and path. Formally, it can be expressed as  

 

 𝑐𝑝
𝑟𝑠(𝑘, 𝒇∗) {

= 𝑐min
𝑟𝑠 (𝒇∗)    if 𝑓𝑝

𝑟𝑠∗(𝑘) > 0

≥ 𝑐min
𝑟𝑠 (𝒇∗)    if 𝑓𝑝

𝑟𝑠∗(𝑘) = 0
          ∀ 𝑝 ∈ 𝑃𝑟𝑠 ,  𝑟𝑠 ∈ 𝑅𝑆,  𝑘 ∈ 𝐾   (2.11) 

 

where 𝐾 is the set of all time intervals.  

The DUE problem is to find 𝒇∗ such that Eq. (2.11) and the following demand and 

non-negativity constraints are satisfied.  

 

 ∑ ∑ 𝑓𝑝
𝑟𝑠(𝑘)

𝑘∈𝐾 𝑝∈𝑃𝑟𝑠

= 𝑄𝑟𝑠     ∀ 𝑟𝑠 ∈ 𝑅𝑆 (2.12) 

   

 𝑓𝑝
𝑟𝑠(𝑘) ≥ 0     ∀ 𝑝 ∈ 𝑃𝑟𝑠 ,  𝑟𝑠 ∈ 𝑅𝑆,  𝑘 ∈ 𝐾 (2.13) 
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The DUE problem Eqs. (2.11)-(2.13) can be formulated as a finite-dimensional VI 

problem VI(𝒇, 𝛺) to find a vector 𝒇∗ such that 

 

 ∑ ∑ ∑𝑐𝑝
𝑟𝑠(𝑘, 𝒇∗)[𝑓𝑝

𝑟𝑠(𝑘) − 𝑓𝑝
𝑟𝑠∗(𝑘)]

𝑘∈𝐾𝑝∈𝑃𝑟𝑠𝑟𝑠∈𝑅𝑆

≥ 0  ∀𝒇 ∈ 𝛺 (2.14) 

   

 𝛺 = {𝒇| 𝒇 ≥ 0, ∑ ∑ 𝑓𝑝
𝑟𝑠(𝑘)

𝑘∈𝐾 𝑝∈𝑃𝑟𝑠

= 𝑄𝑟𝑠,    ∀ 𝑟𝑠 ∈ 𝑅𝑆 } (2.15) 

 

The existence and uniqueness of the solution for DUE depend on the relationship 

between the path disutility functions and the path flows. When the path disutility 

functions are continuous with path flows, the DUE problem has at least one solution, and 

this solution is unique when the Jacobian matrix of the path disutility functions is positive 

definite.  

 

2.3.3 BR-DUE conditions 

 

As aforementioned, BR-DUE models (Han et al., 2015) have attempted incorporating 

BR to reflect that travelers do not necessarily choose paths of the minimum disutilities. 

The condition of BR-DUE is stated as: for each OD pair at each time interval, the 

disutilities experienced by travelers departing at the same time are no larger than the 

minimum value plus a threshold. Formally, it can be expressed as ∀𝑝 ∈ 𝑃𝑟𝑠, 𝑟𝑠 ∈

𝑅𝑆,  𝑘 ∈ 𝐾  

 

 𝑐𝑝
𝑟𝑠(𝑘, 𝒇∗) {

∈ [𝑐min
𝑟𝑠 (𝒇∗),  𝑐min

𝑟𝑠 (𝒇∗) ∙ (1 + 𝜀𝑟𝑠)],  if 𝑓𝑝
𝑟𝑠∗(𝑘) > 0 

≥ 𝑐min
𝑟𝑠 (𝒇∗) ∙ (1 + 𝜀𝑟𝑠),                       if 𝑓𝑝

𝑟𝑠∗(𝑘) = 0
    (2.16) 

 

where 𝜀𝑟𝑠  is the threshold of acceptable relative differences in the travel disutilities 

experienced by travelers of OD pair 𝑟𝑠. It is obvious that Eq. (2.16) is equivalent to Eq. 

(2.11) when 𝜀𝑟𝑠 equals zero, which means that the BR-DUE is a more general form. The 

BR-DUE problem can be formulated as a finite-dimensional VI problem VI(𝒇, 𝛺) (Han 

et al., 2015) to find a vector 𝒇∗ such that 

 

 ∑ ∑ ∑𝑐̃𝑝
𝑟𝑠(𝑘, 𝒇∗)[𝑓𝑝

𝑟𝑠(𝑘) − 𝑓𝑝
𝑟𝑠∗(𝑘)]

𝑘∈𝐾𝑝∈𝑃𝑟𝑠𝑟𝑠∈𝑅𝑆

≥ 0  ∀𝒇 ∈ 𝛺 (2.17) 

   

 𝛺 = {𝒇| 𝒇 ≥ 0, ∑ ∑ 𝑓𝑝
𝑟𝑠(𝑘)

𝑘∈𝐾 𝑝∈𝑃𝑟𝑠

= 𝑄𝑟𝑠,    ∀ 𝑟𝑠 ∈ 𝑅𝑆 } (2.18) 
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where 𝑐̃𝑝
𝑟𝑠(𝑘, 𝒇∗) is formulated as follows 

 

 𝑐̃𝑝
𝑟𝑠(𝑘, 𝒇∗) = max {𝑐𝑝

𝑟𝑠(𝑘, 𝒇∗),  𝑐min
𝑟𝑠 (𝒇∗) ∙ (1 + 𝜀𝑟𝑠)} (2.19) 

 

Han et al. (2015) pointed out that the existence of BR-DUE requires a mapping 

operator, which is a more general form of path disutility functions, to be continuous. This 

condition is weaker than the counterpart of DUE and the solutions are not unique. For 

the discrete time VI(𝒇, 𝛺) problem Eqs. (2.17)-(2.19), the analyses of the existence and 

non-uniqueness of the solutions are presented in Appendix 2.A.  

 

2.3.4 DATA user equilibrium conditions 

 

DATA couples daily activity-travel scheduling and dynamic traffic assignment (DTA) 

in a strong manner by directly assigning flows to activity-travel patterns (ATPs) in multi-

state supernetworks (SNKs) (Liu et al., 2015). In a DATA model, travelers from the same 

home zone (a neighborhood in reality) are segmented by daily activity programs on an 

average day and classes in terms of preference differences. For the sake of convenience, 

travelers having the same activity programs and belonging to the same class are 

categorized as one class. An SNK is created for an OD pair in the DATA model for 

travelers who live in the same home zone and belong to the same class. Under the 

assumption that travelers have the full information and make activity-travel decisions to 

minimize ATP disutility, it is well-founded to claim that an activity-based DUE will be 

reached after long-term adaptations. The ATP flow patterns at equilibrium should satisfy 

the condition that the ATP disutilities experienced by travelers are equal and minimal for 

every combination of home zone and class. This condition implies that, at equilibrium, 

for a class of travelers at a home zone, the used ATPs have the minimum disutility and 

those unused ATPs should have disutilities higher than or equal to the minimum 

disutility. No traveler can reduce his/her ATP disutility by unilaterally adapting the ATP 

and departure time. Formally, the condition is expressed as  

 

 𝑐𝑝
𝑖ℎ(𝑘, 𝒇∗) {

= 𝑐min
𝑖ℎ (𝒇∗),    if 𝑓𝑝

𝑖ℎ∗(𝑘) > 0

≥ 𝑐min
𝑖ℎ (𝒇∗),    if 𝑓𝑝

𝑖ℎ∗(𝑘) = 0
       ∀ 𝑝 ∈ 𝑃𝑖ℎ , 𝑖 ∈ 𝐼, ℎ ∈ 𝐻, 𝑘 ∈ 𝐾   (2.20) 

 

where 𝑐𝑝
𝑖ℎ(𝑘, 𝒇) is the disutility of ATP 𝑝 incurred by travelers of class 𝑖 at home zone ℎ 

departing during time interval 𝑘, and 𝑐min
𝑖ℎ (𝒇) is the minimum disutility; 𝑓𝑝

𝑖ℎ(𝑘) denotes 

the flow on 𝑝 by 𝑖 at ℎ that enters the network during 𝑘 and 𝒇 is the vector of 𝑓𝑝
𝑖ℎ(𝑘); 

𝑃𝑖ℎ and 𝐼 re respectively the ATP set of 𝑖 at ℎ and the set of classes; 𝐻 is the set of home 

zones.  
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Figure 2.1 Flowchart of the traditional CG algorithm. 

 

The DATA problem can be formulated as a finite-dimensional VI problem VI(𝒇, 𝛺) 

for finding a vector 𝒇∗ such that  

 

 ∑∑ ∑ ∑𝑐𝑝
𝑖ℎ(𝑘, 𝒇∗)[𝑓𝑝

𝑖ℎ(𝑘) − 𝑓𝑝
𝑖ℎ∗(𝑘)]

𝑘∈𝐾𝑝∈𝑃𝑖ℎℎ∈𝐻𝑖∈𝐼

≥ 0,       ∀𝒇 ∈ 𝛺 (2.21) 

   

 𝛺 = {𝒇| 𝒇 ≥ 0, ∑ ∑ 𝑓𝑝
𝑖ℎ(𝑘)

𝑘∈𝐾 𝑝∈𝑃𝑖ℎ

= 𝑄𝑖ℎ ,      ∀ ℎ ∈ 𝐻, 𝑖 ∈ 𝐼 } (2.22) 

 

where 𝑄𝑖ℎ is the travel demand of class 𝑖 at ℎ.  

The DATA problem has a similar VI formulation with the DUE problem. The 

conditions of existence and uniqueness of solutions depend on the relationship between 

the ATP disutilities and flows.  

 

2.4 Column generation  
 

To circumvent path enumeration, the CG algorithm has been embedded in the solution 

algorithms for the static traffic assignment (STA) and DTA problems. Specifically, at 

the initialization stage, a non-empty path set for each OD pair is created by the minimum 

disutility path search algorithms. Traffic assignment is performed on the path sets to 

create a snapshot of traffic flow realization, upon which new minimum disutility paths 

will be found and evaluated if being added to the path sets. This process is repeated until 



Chapter 2 

18 

no more new path can be found (Chen et al., 2001; Lu et al., 2009, 2016). The existing 

CG algorithms for STA and DTA have a similar skeleton, as shown in Figure 2.1. The 

CG algorithms for the DTA problem requires a higher magnitude of run-time 

complexities, which are  𝑂(|𝑁| ∙ |𝐴| ∙ |𝐾|)  to conduct path searches and 𝑂(∑ |𝑃𝑟𝑠|𝑟𝑠 ∙

|𝐴′| ∙ |𝐾| ∙ 𝑚1) to load path flows at one iteration, where |𝐴′| is the maximum number of 

links in a path, 𝑚1  is the number of dynamic network loadings,  |𝑁| , |𝐴| , |𝐾| 

and |𝑃𝑟𝑠| denote the numbers of elements in the corresponding sets. Despite effective, 

the majority CG algorithms for STA and DTA have followed a rigid structure and thus 

can be further improved by introducing self-adjustment in the process. 
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3  

A GMVUE Problem under 

Travel Time Uncertainty* 

 
 

 

3.1 Introduction 
 

Travel time uncertainty can be accounted for from two different perspectives: supply 

degradations and travel demand fluctuations. Supply degradations fall within the 

category of exogenous sources and usually cause non-recurrent congestion, while 

demand fluctuations are regarded as endogenous factors and always lead to recurrent 

congestion (Lo et al., 2006; Li et al., 2008a; Chen and Zhou 2010; Li et al., 2011). Being 

the sources of travel time uncertainty, demand and supply aspects interact and affect 

travelers’ path choice behavior significantly (Bates et al. 2001; Lam et al., 2008; Wang 

et al., 2014).  

To capture the effects of travel time uncertainty on travelers’ path choice behavior, 

travel time reliability (TTR) has been extensively studied. For example, Tilahun and 

Levinson (2010) used a computer-administered stated preference survey to estimate the 

value of TTR and explored the tradeoffs that travelers make for path choice. Woodard et 

al. (2017) stated that TTR strongly affects the desirability of paths in the road network. 

Moreover, various empirical studies (Li et al., 2010; Sweet and Chen 2011) have made 

a convincing proposition that TTR plays a key role in travelers’ path choice behavior.  

                                        

* This chapter is based on Wang, D., Liao, F., Gao, Z., Timmermans, H., 2020. A generalized 

mean-variance metric of route choice model under travel time uncertainty. Transportmetrica A: 

Transport Science, 1-30 
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To quantify TTR, various mean-variance approaches and scheduling approaches 

have been proposed with different metrics. For the mean-variance approach, based on 

travel time budget (TTB) and mean-excess travel time (METT), and several other 

models, Tan et al. (2014) examined the Pareto efficiency of traffic equilibria. Mean-

standard deviation indifference curves were introduced to geometrically analyze the risk-

taking behavior of travelers. Assuming that travelers want to minimize the mean and 

standard deviation of travel time, Wang et al. (2014) proposed a general TTR bi-objective 

user equilibrium (UE) model and proved that the model encompasses the single-

objective of the TTB-UE model (Lo et al., 2006) and the late arrival penalized UE model 

(Watling, 2006). Regarding the scheduling approach, based on the “schedule delay” 

paradigm, Watling (2006) defined a new disutility function by adding a schedule delay 

term to the expected travel cost and developed a late arrival penalized UE model. 

Fosgerau and Karlström (2010) proved the equivalence of both approaches and derived 

that the preference parameters in the mean-variance approach depend on the parameters 

in the scheduling approach. Li and Hensher (2013) introduced a rank-dependent utility 

theory model and proposed an attribute-specific extension, where maximizing expected 

utility is a special case. In addition, several approaches based on alternative choice-

making mechanisms, such as prospect theory and regret theory (Chorus 2012; Li and 

Huang 2017), were developed based on TTR.  

To accommodate a variety of path risk attitudes, a generalized mean-variance 

(GMV) metric is proposed for path choice under travel time uncertainty in this chapter. 

GMV uses a form of ‘generalized cost’ structure with individual preferences for the 

associated terms. It can ensure a preferable on-time arrival probability and capture the 

influence of two mutually exclusive schedule delays on travelers’ path choice. Three 

special forms of GMV are presented and the continuity and monotonicity are proved, 

which were only assumed in the previous studies. Due to the non-additivity of GMV, 

two dominance conditions are developed for finding the reliable shortest path. Moreover, 

a GMVUE problem is formulated as a variational inequality (VI) problem and solved by 

an effective traffic assignment algorithm with the column generation (CG) technique.  

The remainder of this chapter is organized as follows. Section 3.2 provides the 

preliminary knowledge of path choice under travel time uncertainty. Section 3.3 

introduces the GMV metric and analyses the corresponding UE model. The properties of 

GMV are also presented and analyzed. Section 3.4 develops a GMV-based traffic 

assignment algorithm for solving the GMVUE problem. Numerical examples are given 

in Section 3.5. Finally, conclusions are provided.  

 

3.2 Preliminaries 
 

This section provides some preliminary knowledge of path choice under travel time 

uncertainty in a transport network 𝐺(𝑁, 𝐴) composed of node set 𝑁 and link set 𝐴.  
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3.2.1 Link and path travel time distribution  

 

Based on the Bureau of Public Road (BPR) link function (Eq. (2.2)), the relationship 

between traffic flow and travel time due to supply degradations (Lo et al., 2006) can be 

established by  

 

 𝑇𝑙(𝑢𝑙 ,  𝑊𝑙) = 𝑡𝑙
0 [1 + 𝛽1 (

𝑢𝑙
𝑊𝑙

)
𝛽2

] ,   𝑙 ∈ 𝐴 (3.1) 

 

where 𝑇𝑙  is the random travel time of link 𝑙 ; 𝑊𝑙  is the corresponding random link 

capacity after degradation.   

By assuming that 𝑊𝑙 is independent of 𝑢𝑙 and follows a uniform distribution, (Lo 

et al., 2006) analytically derived the mean 𝜇𝑙  and standard deviation (SD) 𝜎𝑙  of 𝑇𝑙  as 

follows 

 

 𝜇𝑙 = 𝐸(𝑇𝑙) = 𝑡𝑙
0 + 𝛽1𝑡𝑙

0𝑢𝑙
𝛽2

1 − 𝜃𝑙
1−𝛽2

𝑐𝑙̅
𝛽2(1 − 𝜃𝑙)(1 − 𝛽2)

, ∀𝑙 ∈ 𝐴 
 

(3.2) 

   

 

𝜎𝑙 = √𝑉𝑎𝑟(𝑇𝑙)

= √𝛽1
2(𝑡𝑙

0)2𝑢𝑙
2𝛽2 {

1 − 𝜃𝑙
1−2𝛽2

𝑐𝑙̅
2𝛽2(1 − 𝜃𝑙)(1 − 2𝛽2)

− [
1 − 𝜃𝑙

1−𝛽2

𝑐𝑙̅
𝛽2(1 − 𝜃𝑙)(1 − 𝛽2)

]

2

} , ∀𝑙∈𝐴 
(3.3) 

 

where 𝑐𝑙̅
𝛽2  and 𝜃𝑙𝑐𝑙̅

𝛽2  are the upper and lower bounds of the uniform distribution, 

respectively.  

By assuming that link travel times are statistically independent, the travel time 𝑇𝑝 

of path 𝑝 is the sum of related link travel times along 𝑝, and the mean and SD of 𝑇𝑝 can 

be represented respectively as 

 

 𝜇𝑝 = 𝐸(𝑇𝑝) =  ∑
𝑙∈𝐴
𝜇𝑙𝑥𝑙𝑝 ,   ∀𝑝 ∈ 𝑃

𝑟𝑠  (3.4) 

   

 𝜎𝑝 = √𝑉𝑎𝑟(𝑇𝑝) = √ ∑
𝑙∈𝐴
𝜎𝑙
2𝑥𝑙𝑝 ,   ∀𝑝 ∈ 𝑃

𝑟𝑠 (3.5) 

 

where 𝑥𝑙𝑝  is a 0-1 variable regarding the link-path incidence relationship. 𝑥𝑙𝑝 = 1 

denotes that link 𝑙 is on path 𝑝, and 𝑥𝑙𝑝 = 0 otherwise.  
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Under the above assumptions, when those independent link travel times are added, 

the path travel time tends to be normally distributed according to the Central Limit 

Theorem even if the link travel times are not. Thus,  

 

 𝑇𝑝~𝑁(𝜇𝑝, 𝜎𝑝
2),   ∀𝑝 ∈ 𝑃𝑟𝑠 (3.6) 

 

The Central Limit Theorem is applicable when a path contains many links. The 

assumptions of mutually independent and normally distributed link travel times or 

disutilities offer an alternative (Yin et al., 2004; Fu and Lam 2014), which leads to the 

normal distribution of path travel times or disutilities. To relax the assumptions, for 

example, Seshadri and Srinivasan (2017) relaxed the independence assumption in a 

robust traffic assignment model. Still, these assumptions are widely adopted due to the 

simplicity and analytic properties for path choice, network design, and land use modeling 

(Li et al. 2008a; Chen et al. 2013; Tan et al., 2014; Liao et al., 2014; de Jong and Bliemer 

2015; Sun et al., 2018; Chen et al., 2018). 

 

3.2.2 Travel time budget and mean-excess travel time 

 

Lo et al. (2006) introduced the concept of TTB to relate travel time variability due to 

stochastic link capacity variations to travelers’ risk-averse path choice behavior as  

 

 𝜉𝑝(𝛼) = 𝐸(𝑇𝑝) + 𝛾(𝛼)√𝑉𝑎𝑟(𝑇𝑝) = 𝜇𝑝 + 𝛾(𝛼)𝜎𝑝,   ∀𝑝 ∈ 𝑃
𝑟𝑠 (3.7) 

 

where 𝜉𝑝(𝛼) is the TTB of path 𝑝 required to ensure on-time arrival at confidence level 

𝛼, and 𝛾(𝛼) is a parameter for describing the requirement of punctual arrival. A larger 

value of 𝛼 corresponds to a larger 𝛾(𝛼). The value of 𝜉𝑝(𝛼) can be expressed in relation 

to on-time arrival probability 𝛼:  

 

 𝑃 (𝑇𝑝 ≤ 𝜉𝑝(𝛼)) = 𝑌 (𝜉𝑝(𝛼)) = 𝛼,   ∀𝑝 ∈ 𝑃
𝑟𝑠 (3.8) 

 

where 𝑌(∙) denotes the cumulative distribution function (CDF) of 𝑇𝑝 . Let 𝑋(∙) be the 

CDF of the standard normal distribution. Substituting Eq. (3.7) into Eq. (3.8) gives 

 

 𝛾(𝛼) = 𝑋−1(𝛼)   (3.9) 

 

Alternatively, Shao et al. (2006) assumed that the travel time variations are deduced 

from the daily demand variations, which follow a normal distribution. Based on the 

Central Limit Theorem, they concluded that the path travel time followed a normal 
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distribution and derived the formulation of TTB. Both formulations were developed by 

applying the Central Limit Theorem with the assumption of independent link travel 

times. 
To capture the unreliability aspects of travel time variability, Chen and Zhou (2010) 

considered the tardy time and formulated METT as the following equation.  

 

 ð𝑝(𝛼) = 𝜉𝑝(𝛼) + 𝐸(𝑇𝑝 − 𝜉𝑝(𝛼)|𝑇𝑝 ≥ 𝜉𝑝(𝛼)),   ∀𝑝 ∈ 𝑃
𝑟𝑠 (3.10) 

 

3.3 Formulation 
 

This section first formulates a GMV metric and analyses its properties. Next, the 

corresponding UE model (GMVUE) and VI formulation are proposed.  

 

3.3.1 Generalized mean-variance metric 

 

Under travel time uncertainty, mean travel time (MTT), and travel time variance are two 

important components affecting travelers’ choices. Travelers with different preferable 

on-time arrival probabilities have different attitudes toward travel time variability. For 

example, risk-averse travelers with a large on-time arrival probability perceive that travel 

time uncertainty will lead to a high penalty, and they may pre-assign a larger travel time 

for their trips. However, the early and late trips are undesirable but unavoidable in reality. 

To quantify travel time variability, a GMV metric is expressed as  

 

𝑐𝑝
𝑟𝑠=ω1∙𝜇𝑝+[𝜔2(𝛼)∙𝐸 (𝑇𝑝 − 𝜉𝑝(𝛼))

−

⊥ 𝜔3(𝛼)∙𝐸 (𝑇𝑝 − 𝜉𝑝(𝛼))
+

]+𝜔4(𝛼)∙𝜎𝑝     (3.11) 

 

where (𝑇𝑝 − 𝜉𝑝(𝛼))
−

 is the early arrival time defined as max(0, 𝜉𝑝(𝛼) − 𝑇𝑝); (𝑇𝑝 −

𝜉𝑝(𝛼))
+

 is the late arrival time defined as max (0, 𝑇𝑝 − 𝜉𝑝(𝛼)); ⊥ is an operator to 

denote that one and only one component of the two sides is effective; 𝜔1, 𝜔2(𝛼), 𝜔3(𝛼) 

and 𝜔4(𝛼) are collective weight coefficients, and 𝜔𝑖(𝛼) (𝑖=2, 3, 4) denotes a preference 

parameter related to 𝛼.  

Imposing a constraint 𝜔2(𝛼) ∙ 𝜔3(𝛼) = 0, Eq. (3.11) is reduced to  

 

𝑐𝑝
𝑟𝑠=𝜔1∙𝜇𝑝 + 𝜔2(𝛼)∙𝐸 (𝑇𝑝 − 𝜉𝑝(𝛼))

−

+ 𝜔3(𝛼)∙𝐸 (𝑇𝑝 − 𝜉𝑝(𝛼))
+

+𝜔4(𝛼)∙𝜎𝑝 (3.12) 

 

Setting aside the weight coefficients, the first term in Eq. (3.12) is the expectation 

of path travel time. It reflects the value of the average travel time within a long-time 

frame. The second term is the expected travel cost related to early arrival, which can be 
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seen as the opportunity cost of interrupting the prior trip. The third term is the expected 

travel cost of being late, seen as the opportunity cost of interrupting the current trip. The 

last term is the safety margin, which captures the sensitivity to path travel time 

dispersion.  

Regarding the weight coefficients, 𝜔1 and 𝜔4(𝛼) are used to capture the degree of 

importance of MTT and variance to GMV. 𝜔4(𝛼) is set equal 𝜔1𝛾(𝛼) in this chapter to 

illustrate travelers’ different risk attitudes toward travel time uncertainty unless 

otherwise specified. 𝜔2(𝛼) (≤ 0)  and 𝜔3(𝛼) (≥ 0)  are parameters to indicate the 

degrees of attitude toward the early and late arrivals.  

Taken together, Lo et al. (2006) used the sum of the first and fourth terms represents 

the TTB to captures the “reliability aspect” (i.e., travelers arrive at the destination with a 

travel time less than or equal to the TTB). However, travelers may still arrive late with a 

probability (1 − 𝛼), as shown by the red area in Figure 3.1. Therefore, Chen and Zhou 

(2010) introduced an additional term “ 𝜔3(𝛼) ∙ 𝐸 (𝑇𝑝 − 𝜉𝑝(𝛼))
+

” to represent an 

additional safety margin, which is the mean late arrival time beyond the TTB. The 

proposed METT is the conditional expectation of the late trips (red area) and used to 

capture the estimation of travel time for risk-averse travelers. Alternatively, the second 

term “𝜔2(𝛼) ∙ 𝐸 (𝑇𝑝 − 𝜉𝑝(𝛼))
−

” can be seen as the opportunity cost and used to hedge 

against early arrival. Mean-less travel time (MLTT) is the conditional expectation of the 

early trips (green area) for risk-prone travelers. Note that early and late arrivals are 

mutually exclusive, the operator ⊥ in Eq. (3.11) and the condition 𝜔2(𝛼) ∙ 𝜔3(𝛼) = 0 of 

Eq. (3.12) are used to represent either early or late arrival. The statements and extensions 

are expressed by the following remark.  

 
 

Figure 3.1 Illustration of relationships among MLTT, TTB, and METT. 
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Remark 3.1 GMV is a generalized mean-variance metric for path choice under travel 

time uncertainty: 

(i)  GMV is equivalent to the MTT (Hall, 1986) when travelers only concentrate on 

expected travel time, i.e., 𝜔1 = 1 and 𝜔2(𝛼) = 𝜔3(𝛼) = 𝜔4(𝛼) = 0.  

(ii)  GMV is equivalent to TTB (Lo et al., 2006) when travelers factor expected travel 

time and variance into their path choice decision, i.e., 𝜔1 = 1, 𝜔2(𝛼) = 𝜔3(𝛼) = 0 

and 𝜔4(𝛼) = 𝛾(𝛼).  

(iii) GMV is equivalent to METT (Chen and Zhou 2010) when travelers factor the 

reliable aspect of travel time variability (defined by TTB) and the unreliable aspect 

with the proportion of 
1

1−𝛼
 into path choice decision, i.e., 𝜔1 = 1 , 𝜔2(𝛼) = 0 , 

𝜔3(𝛼) =
1

1−𝛼
 and 𝜔4(𝛼) = 𝛾(𝛼).  

(iv) GMV is equivalent to MLTT when travelers factor TTB and the early arrival with 

the proportion of −
1

𝛼
 into path choice decision, i.e., 𝜔1 = 1 , 𝜔2(𝛼) = −

1

𝛼
, 

𝜔3(𝛼) = 0 and 𝜔4(𝛼) = 𝛾(𝛼). 

Proof. See Appendix 3.A. 

 

As illustrated above, MTT, TTB, MLTT, and METT are four special cases of 

GMV. Since TTB and METT were developed by applying the Central Limit Theorem, 

this chapter uses the same theorem.  

 

 

 

Figure 3.2 Monotonicity of MLTT, TTB, and METT. 
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3.3.2 Properties of GMV  

 

Understanding the relationship between GMV and the value components, such as on-

time arrival probability, expected travel time, and SD, is important for evaluating the 

path alternatives. Following the widely assumed condition that path travel times are 

normally distributed, continuity and monotonicity of GMV are obtained below.  

 

Proposition 3.1 (Continuity and monotonicity) 

     (a)  GMV (Eq. (3.12)) is continuous with 𝛼.  

     (b) TTB, METT, and MLTT, three different forms of GMV, are monotonically 

increasing with 𝛼.  

Proof. See Appendix 3.B. 

 

Although Proposition 3.1 is proved by assuming normally distributed path travel 

times, it can be easily obtained that the property of continuity is guaranteed with any 

other continuous distributions. For the monotonicity, as depicted by Figure 3.2, MLTT, 

TTB, and METT are increasing with the increase of on-time arrival probability. The late 

arrival coefficient 𝜔3(𝛼) of METT has a steep increase, which leads to that the value of 

METT (green curve) increases rapidly when 𝛼  approaches 1. Whereas, the value of 

MLTT (blue curve) increases rapidly when 𝛼 is very small.  

 

Corollary 3.1 GMV is non-additive, i.e., the path GMV is not necessarily the sum of the 

associated link GMVs. 

Proof. Based on Remark 3.1 (ii, iii), TTB and METT are two special cases of GMV. 

GMV is non-additive because of the non-additivity of TTB and METT. □ 

 

The non-additivity of GMV leads to the violation of Bellman’s Principle of 

Optimality (Bellman, 1958) and disallows the application of classical shortest 

pathfinding algorithms to search for the minimal GMV path. Dominance-based methods 

(Chen et al. 2013) provide a straightforward way to overcome the non-additive property 

for solving the reliable shortest path problem. Inspired by their work, the following 

GMV-based dominance definitions and conditions are proposed. 

 

Definition 3.1 Let 𝑝1
𝑟𝑗
= 𝑝1

𝑟𝑖⨁𝑝𝑖𝑗  and 𝑝2
𝑟𝑗
= 𝑝2

𝑟𝑖⨁𝑝𝑖𝑗  be two paths from node 𝑟  to 𝑗 

with the same sub-path 𝑝𝑖𝑗; 𝑝1
𝑟𝑖 GMV-based dominates 𝑝2

𝑟𝑖 (denoted by 𝑝1
𝑟𝑖 ≻ 𝑝2

𝑟𝑖) if and 

only if 𝑢1
𝑟𝑗
< 𝑢2

𝑟𝑗
 for any path 𝑝𝑖𝑗 ∈ 𝑃𝑖𝑗  and any node 𝑗 ∈ 𝑁 , where ⨁  is a path 

concatenation operator. 
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Definition 3.2 A path 𝑝1
𝑟𝑖 ∈ 𝑃𝑟𝑖  is a GMV-based non-dominated path, if and only if 𝑝1

𝑟𝑖 

is not dominated by any other path 𝑝2
𝑟𝑖 ∈ 𝑃𝑟𝑖 . 

 

Based on Definition 3.1 and 3.2, the GMV-based principle of optimality is 

presented as follows. 

 

Corollary 3.2 A sub-path of any GMV-based non-dominated path must be a GMV-based 

non-dominated path itself.  

Proof. “Reduction to absurdity” is applied to prove this corollary. Suppose 𝑝2
𝑟𝑖 is a sub-

path of a GMV-based non-dominated path 𝑝2
𝑟𝑗
= 𝑝2

𝑟𝑖⨁𝑝𝑖𝑗  and 𝑝1
𝑟𝑖 ≻ 𝑝2

𝑟𝑖 . Let 𝑝1
𝑟𝑎 =

𝑝1
𝑟𝑖⨁𝑝𝑖𝑎 and 𝑝2

𝑟𝑎 = 𝑝2
𝑟𝑖⨁𝑝𝑖𝑎 , then 𝑐1

𝑟𝑎 < 𝑐2
𝑟𝑎 for any path 𝑝𝑖𝑎 ∈ 𝑃𝑖𝑎 and any node 𝑎 ∈

𝑁 according to Definition 3.1. It is reasonable to assume that 𝑝𝑖𝑎 = 𝑝𝑖𝑗⨁𝑝𝑗𝑎, where 𝑝𝑗𝑎 

denotes any path from node 𝑗  to 𝑎 . Thus, 𝑝1
𝑟𝑎 = (𝑝1

𝑟𝑖⨁𝑝𝑖𝑗)⨁𝑝𝑗𝑎 , 𝑝2
𝑟𝑎 =

(𝑝2
𝑟𝑖⨁𝑝𝑖𝑗)⨁𝑝𝑗𝑎 , and 𝑐1

𝑟𝑎 < 𝑐2
𝑟𝑎  for any path 𝑝𝑗ℎ ∈ 𝑃𝑗ℎ  and any node 𝑎 ∈ 𝑁. In other 

words, (𝑝1
𝑟𝑖⨁𝑝𝑖𝑗) ≻ (𝑝2

𝑟𝑖⨁𝑝𝑖𝑗) = 𝑝2
𝑟𝑗

. This contradicts the precondition that 𝑝2
𝑟𝑗

 is a 

GMV-based non-dominated path. □  

 

Corollary 3.3 The path with the minimal GMV is a GMV-based non-dominated path.  

 

This corollary, combined with Corollary 3.2, can be used to find the path with the 

minimal GMV. From an origin, the GMV-based non-dominated sub-paths are stored and 

extended until the destination is reached. To determine GMV-based non-dominated 

paths in a transport network under uncertainty, mean-variance (M-V) dominance and 

mean-GMV (M-GMV) dominance are proposed as follows. 

 

Proposition 3.2 (M-V dominance) Given 𝛼 and two different paths, 𝑝1
𝑟𝑖 and 𝑝2

𝑟𝑖, of path 

set 𝑃𝑟𝑖, 𝑝1
𝑟𝑖 ≻ 𝑝2

𝑟𝑖  if  𝑝1
𝑟𝑖 and  𝑝2

𝑟𝑖 satisfy either 

 

(a) 𝜇1
𝑟𝑖 ≤ 𝜇2

𝑟𝑖 and 𝑧𝜎1
𝑟𝑖 < 𝑧𝜎2

𝑟𝑖 or 

(b) 𝜇1
𝑟𝑖 < 𝜇2

𝑟𝑖 and 𝑧𝜎1
𝑟𝑖 ≤ 𝑧𝜎2

𝑟𝑖 

where 𝑧 = 𝜔1𝛾(𝛼) + 𝜔2(𝛼)𝛼𝛾(𝛼) − 𝜔3(𝛼)(1 − 𝛼)𝛾(𝛼) +
𝜔2(𝛼)+𝜔3(𝛼)

√2𝜋
𝑒
−(

𝛾(𝛼)

√2
)
2

. 

Proof. See Appendix 3.C. 

 

Proposition 3.3 (M-GMV dominance) Given 𝛼 and two different path 𝑝1
𝑟𝑖, 𝑝2

𝑟𝑖 ∈ 𝑃𝑟𝑖, 

𝑝1
𝑟𝑖 ≻ 𝑝2

𝑟𝑖  if  𝑝1
𝑟𝑖 and  𝑝2

𝑟𝑖 satisfy  𝜇1
𝑟𝑖 ≤ 𝜇2

𝑟𝑖 and 𝑐1
𝑟𝑖 < 𝑐2

𝑟𝑖. 

Proof. See Appendix 3.C. 
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Note that the M-V dominance identified in Proposition 3.3 is different from the 

counterpart in Chen et al. (2013), in which 𝑧 is equal to 𝛾(𝛼). In addition, the M-GMV 

dominance is more effective for identifying the GMV-based non-dominated paths as 

stated by Proposition 3.4.  

 

Proposition 3.4 Given 𝑝1
𝑟𝑖  and 𝑝2

𝑟𝑖 , if 𝑝1
𝑟𝑖  M-V dominates 𝑝2

𝑟𝑖 , then 𝑝1
𝑟𝑖  M-GMV 

dominates 𝑝2
𝑟𝑖.  

Proof. When 𝜇1
𝑟𝑖 ≤ 𝜇2

𝑟𝑖  and 𝑧𝜎1
𝑟𝑖 < 𝑧𝜎2

𝑟𝑖 , 𝑐1
𝑟𝑖 − 𝑐2

𝑟𝑖 =𝜔1(𝜇1
𝑟𝑖 − 𝜇2

𝑟𝑖) + (𝑧𝜎1
𝑟𝑖 − 𝑧𝜎2

𝑟𝑖) <

0 . When 𝜇1
𝑟𝑖 < 𝜇2

𝑟𝑖  and 𝑧𝜎1
𝑟𝑖 ≤ 𝑧𝜎2

𝑟𝑖 , 𝑐1
𝑟𝑖 − 𝑐2

𝑟𝑖 =𝜔1(𝜇1
𝑟𝑖 − 𝜇2

𝑟𝑖) + (𝑧𝜎1
𝑟𝑖 − 𝑧𝜎2

𝑟𝑖) < 0 . 

Therefore, 𝑝1
𝑟𝑖 M-GMV dominates 𝑝2

𝑟𝑖 according to Proposition 3.3. □ 

 

Based on this proposition, some GMV-based dominated paths that are not 

identified under the M-V dominance condition can be discarded when searching the 

minimal GMV path. This conclusion contributes to speeding up the path search process.  

 

3.3.3 Illustrative example 

 

Figure 3.3 depicts a network with one origin and destination (OD) (1, 6) to illustrate the 

different outcomes of TTB, METT, and MLTT. All link travel times are assumed to be 

normally distributed and independent with each other. The means and SDs are attached 

to the respective links. Suppose all travelers are risk-averse and use the same confidence 

level of on-time arrival probability 𝛼 = 0.8.   

According to Remark 3.1 (ii-iv), TTB, METT, and MLTT are obtained by setting 

weight coefficients as [1, 0, 0, 𝛾(𝛼)] , [1, 0, 1 (1 − 𝛼),⁄ 𝛾(𝛼)]  and [1,- 1 𝛼,⁄ 0, 𝛾(𝛼)] 

respectively. Figure 3.4 provides the comparison results, where the 𝑥-axis represents the 

three path choice metrics, and the 𝑦 -axis represents the corresponding values. It is 

postulated that travelers search for paths with optimal values according to certain metrics. 

As shown, different path choice metrics lead to different optimal paths. For example, to 

avoid late arrival, travelers would add a safety margin to ensure their predetermined on-

time arrival probability and choose path 3 with the minimal TTB (11.85). Besides the 

mean-variance of path travel time, travelers may budget their travel costs based on the 

expected travel delay cost, for which METT includes the expected excess delay beyond 

the TTB. Thus, travelers would switch to path 1 to decrease the expected excess delay. 

When travelers use MLTT as the metric, based on the last group of bars in Figure 3.4, 

path 1 is no longer the optimal choice, and travelers would switch to path 4. Similar to 

TTB and METT, MLTT is non-additive. For example, considering path 3 (consisting of 

links (1, 5) and (5, 6)), the MLTTs on links (1, 5) and (5, 6) are 2.53 and 2.97 respectively 

according to Eq. (3.12), but path 3 has a larger MLTT, i.e., 5.82 (greater than the sum of 

2.53 and 2.97).  
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Path NO. Node sequence 

1 1 – 2 – 3 – 6   

2 1 – 2 – 5 – 6  

3 1 – 5 – 6 

4 1 – 4 – 5 – 6 

 

Figure 3.3 A simple network for illustrating different path choice metrics. 

 

 

 

Figure 3.4 The results of different path choice metrics. 

 

3.3.4 Path-based user equilibrium  

 

The path-based approaches have become more common recently in networks with non-

additive link travel costs. In combination, the CG technique (Leventhal et al., 1973) 

makes it possible to address large-scale networks. This chapter proposes a path-based 

user equilibrium model based on GMV. It is assumed that travelers aim to minimize 

GMV to accomplish their trips in traffic networks under uncertainty, and the GMV-based 

UE (GMVUE) is reached after long-term adaptations. The flow pattern at equilibrium is 

stated as: for any OD pair, all the used paths have equal GMV, while the unused paths 

have equal or higher GMVs. Formally, the conditions can be expressed by a set of 

complementarity conditions: 
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𝑓𝑝
𝑟𝑠∗[𝑐𝑝

𝑟𝑠(𝒇∗) − 𝑐min
𝑟𝑠 (𝒇∗)] = 0,

𝑐𝑝
𝑟𝑠(𝒇∗) ≥ 𝑐min

𝑟𝑠 (𝒇∗),                   
   ∀𝑝 ∈ 𝑃𝑟𝑠, 𝑟𝑠 ∈ 𝑅𝑆 (3.13) 

 

Under constraints Eqs. (2.7) and (2.8), the GMVUE problem Eq. (3.13) can be 

formulated as a finite-dimensional VI problem VI(𝒇, 𝛺0) to find a vector 𝒇∗ such that 

 

 (𝒇 − 𝒇∗)𝑇𝒄(𝒇∗) ≥ 0, ∀𝒇 ∈ 𝛺0 (3.14) 

   

 𝛺0 = {𝒇| 𝒇 ≥ 0, ∑ 𝑓𝑝
𝑟𝑠

𝑝∈𝑃𝑟𝑠

= 𝑄𝑟𝑠 ,    ∀ 𝑟𝑠 ∈ 𝑅𝑆 } (3.15) 

 

Proposition 3.5 According to Chen and Zhou (2010), given that 𝒄(𝒇) is non-negative, 

the solution of VI(𝒇, 𝛺0)  is equivalent to the equilibrium solution of the GMVUE 

problem.  

The existence of solutions to VI(𝒇, 𝛺0) requires that 𝒄(𝒇) is a continuous function 

of 𝒇, and 𝛺0  is a compact closed convex set. For the GMVUE problem, the second 

requirement is satisfied for the linear demand constraints and non-negativity constraints 

depicted in Eq. (3.15). Note that the schedule delay (𝑇𝑝 − 𝜉𝑝(𝛼))
− and (𝑇𝑝 − 𝜉𝑝(𝛼))

+ 

are random variables, which are discontinuous at several points. However, it is found 

below that the GMV formulation is continuous with the link traffic flows.  

 

Proposition 3.6 The GMV established in Eq. (3.12) is continuous with link flows. 

Proof. See Appendix 3.D.  

 

Since link flow is the sum of all path flows using this link, the continuity of GMV 

to path flows is guaranteed with the incorporation of Proposition 3.6. Thus, there exists 

at least one solution to VI(𝒇, 𝛺0). The uniqueness requires that the Jacobian matrix of 

𝒄(𝒇) is positive definite, which, however, cannot be guaranteed.  

 

3.4 Solution algorithm 
 

In this section, a solution algorithm to the GMVUE problem is proposed. To address a 

real transportation network under travel time uncertainty, the algorithm integrates a 

GMV-based shortest path algorithm, a CG scheme, and MSA. Although the MSA with 

the predetermined sequence of step size may suffer slow convergence, it has been widely 

used in traffic assignment problems (Fu and Lam 2014; Levin et al. 2015) due to its 

simplicity and the forced convergence property.  
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Algorithm 3.1 (GMVSP) Search for a path with the minimal GMV 

Step 1. Initialization 

    Create a path 𝑝𝑙
𝑟𝑟 from 𝑟 to itself, and set 𝜇𝑙

𝑟𝑟 = 0, (𝜎𝑙
𝑟𝑟)2 = 0, and 𝑐𝑙

𝑟𝑟 = 0. Add 𝑝𝑙
𝑟𝑟 into 

label-vector 𝑃𝑟𝑟 and a list of candidate labels SE. 

Step 2. Label selection 

    Take label 𝑝𝑙
𝑟𝑖∈𝑃𝑟𝑖 at node 𝑖 from SE in a first-in-first-out order. If 𝑆𝐸=∅, then go to Step 4. 

Step 3. Path extension 

For every outgoing link ℓ of chosen node 𝑖 (𝑗 denotes a successor node of 𝑖) 

        Step 3.1. Generate a new label 𝑝𝑙
𝑟𝑗
∈ 𝑃𝑟𝑗. Set 𝜇𝑙

𝑟𝑗
= 𝜇𝑙

𝑟𝑖 + 𝜇ℓ, (𝜎𝑙
𝑟𝑗
)2 = (𝜎𝑙

𝑟𝑗
)2 + 𝜎ℓ

2 and 

𝑐𝑙
𝑟𝑗
= 𝜔1𝑐𝑙

𝑟𝑗
+ 𝑧𝜎𝑙

𝑟𝑗
. 

        Step 3.2. If 𝑝𝑙
𝑟𝑗
∈ 𝑃𝑟𝑗 is acyclic, then go to Step 3.3; otherwise, scan the next link. 

        Step 3.3. If 𝑝𝑙
𝑟𝑗

 is an M-GMV non-dominated path, insert 𝑝𝑙
𝑟𝑗

 into 𝑃𝑟𝑗 and SE, and remove 

all paths M-GMV dominated by 𝑝𝑙
𝑟𝑗

 from 𝑃𝑟𝑗 and SE. 

End for. 

Return to Step 2. 

Step 4. Determine the GMV-based shortest path 𝑝𝑙
𝑟𝑠 and stop. 

 

 

 

Figure 3.5 Flowchart of GMV-based traffic assignment algorithm. 

 

As illustrated in Section 3.3, GMV is non-additive since the GMV of a path is not 

necessarily the sum of the GMVs of the associated links. To overcome this difficulty, a 

bi-criteria label-correcting method (Liao et al., 2014) is adopted to find a reliable path 

with the minimal GMV. The algorithm for solving the GMV-based shortest path problem 

is hereafter referred to as GMVSP, and the detailed steps are described above. 

Accordingly, the GMV-based traffic assignment algorithm has two loops (Figure 3.5). 

The outer loop is for updating the path sets (left-hand side of Figure 3.5). For each outer 

loop iteration 𝑛, the GMVSP algorithm is adopted to generate GMV-based shortest paths 
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for each OD pair and to update the path set using the CG technique. Next, the method of 

successive average (MSA) is used to assign traffic flows on the updated paths, which 

resides in the inner loop to solve the GMVUE model.   

A gap function is defined to measure the convergence of MSA:  

 

 𝐺𝑎𝑝(𝒇𝑑) =
[𝒄(𝒇𝑑) − 𝒄min(𝒇

𝑑)]𝑇𝒇𝑑

𝒄min(𝒇
𝑑)𝑇𝒇𝑑

 (3.16) 

 

where 𝒄min(𝒇
𝑑) = (… , 𝑐min

𝑟𝑠 (𝒇𝑑), … ) is the minimal GMV of all OD pairs. Note that if 

the UE conditions are satisfied, the above gap function is less than a predefined 

convergence tolerance 𝜀 (𝜀 > 0). The detailed steps are given by the GMVUE algorithm.  

In the solution algorithm, path extensions and flow assignments are the most time-

consuming components for large-scale networks. For the path searches, the run-time 

complexity of GMVSP with the Fibonacci heap is 𝑂(|𝐴||𝑃| + |𝑁|Log(|𝑁|)), where |𝐴| 

and |𝑁|  are the numbers of network links and nodes respectively, and |𝑃|  is the 

maximum number of non-dominated paths associated with a node. The value of |𝑃| is 

smaller using M-GMV dominance condition than the M-V dominance condition 

according to Proposition 3.4. Regarding the flow updating, it should be noted that MSA 

is performed twice flow assignments (Step 3.2 and 3.3) at each iteration. 

 

Algorithm 3.2 (GMVUE algorithm) Determine the flow patterns at equilibrium 

Step 0. Initialization 

    Given 𝛼 and 𝜀, set 𝑛 = 0 and 𝒇𝒏 = 0. For OD pair (r, s), let 𝑃0
𝑟𝑠 = ∅ be the initial set of used 

paths. 

Step 1. (CG) Update path set for each OD pair 

For each OD pair (r, s) 

            Call GMVSP to search the minimal GMV path 𝑝𝑙
𝑟𝑠. If 𝑝𝑙

𝑟𝑠 ∉ 𝑃𝑛
𝑟𝑠, then set 𝑃𝑛

𝑟𝑠 = 𝑃𝑛
𝑟𝑠 ∪

{𝑝𝑙
𝑟𝑠}, 𝑓𝑙

𝑟𝑠 = 0 and 𝒇𝒏 = [𝒇𝒏;  𝑓𝑙
𝑟𝑠]. 

End for. 

Step 2. (Stopping criterion) If 𝑃𝑛
𝑟𝑠 = 𝑃𝑛−1

𝑟𝑠 , then stop; otherwise, continue. 

Step 3. (MSA) Update path flow 

    Step 3.0. Initialization. Set inner loop iteration index 𝑑 = 1 and feasible path flow vector 

𝒇𝑑 = 𝒇𝑛. 

    Step 3.1. Update the GMV vector 𝑐𝑟𝑠(𝒇𝑑) for each OD pair (r, s). 

    Step 3.2. Perform all-or-nothing assignment on the basis of path GMV 𝑐𝑟𝑠(𝒇𝑑), yielding 

auxiliary path flows, (𝒇̅𝑑)
𝑟𝑠

, for each OD pair (r, s). 

    Step 3.3. For each OD pair (r, s), calculate new path flows (𝒇𝑑+𝟏)
𝑟𝑠
= (𝒇𝑑)𝑟𝑠 +

[(𝒇̅𝑑)
𝑟𝑠
− (𝒇𝑑)𝑟𝑠]/𝑑. 

    Step 3.4. Check the stopping criterion of MSA. If 𝐺𝑎𝑝(𝒇𝑑) < 𝜀, set 𝒇𝒏 = 𝒇
𝑑 and 𝑛 = 𝑛 +

1, and go to Step 1; otherwise, set 𝑑 = 𝑑 + 1, and go to Step 3.1. 
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3.5 Numerical examples 
 

This section presents two numerical examples to illustrate GMVUE. The first example 

is adopted for illustrating detailed results. The second example presents the convergence 

results in a relatively large traffic network. The solution algorithm is run on a personal 

computer with an Intel(R) Core(TM) i7-6700 3.40 GHz CPU and 8.00 GB RAM. The link 

performance uses the BPR function with 𝛽1 = 1, 𝛽2 = 4 on all the links. As a new 

special form of GMV, MLTT is focused on in this section and the corresponding weight 

coefficients equal [1, −1/𝛼 , 0, 𝛾(𝛼)] . Moreover, 𝜀 = 10−5  and 𝛼 = 0.9  unless 

otherwise explained.  

 

3.5.1 Example 1: six-node network 

 

The small-scale test network (Figure 3.6) is adopted from Shao et al. (2006), which has 

two OD pairs, six nodes, seven links, and four paths. The link number, capacity, and 

degradable parameter are shown near the links. The demands for OD pairs (1, 3), (2, 4) 

are 15 and 40 units respectively. Although the uniqueness of the solutions to the VI 

problem cannot be guaranteed, it is found the flow patterns at the equilibrium states are 

stable with multiple random start points. The steady state is reached after 0.19 second of 

computation time on average. Based on the above setting, Figure 3.7 shows the 

convergence curves of the MSA. As seen, the path MLTTs and flows fluctuate greatly at 

the first 15 iterations and converge to a steady state gradually. The fluctuations during 

the convergence course is a common issue in MSA applications (Carey and Ge, 2012). 

At the steady state, travelers of OD pair (1, 3) are concentrated on path 1 and disfavor 

path 2 (flow curve is coincident with the 𝑥-axis) due to a higher MLTT of path 2. For 

OD pair (2, 4), paths 3 and 4 possess the same MLTT (25.07), and the traffic flows on 

both paths are 31.11 and 8.89 respectively. These results are consistent with the GMVUE 

conditions and constraints in Eqs. (3.13)-(3.15).   

 

 

 

OD 

pair 
Path 

Link 

sequence 
𝑡𝑙
0 

(1, 3) 1 1 22 

 2 2 - 5 - 6 25 

(2, 4) 3 4 - 5 - 7 17 

 4 3 25 

 

Figure 3.6 The test network. 
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(a) Path flow 

 
(b) Path MLTT 

Figure 3.7 Convergence curves of the path flows and GMVs. 

 

To illustrate the impact of on-time arrival probability on traffic flow, Figure 3.8 

presents the equilibrium results of OD pair (1, 3) under different OD demands and 

different 𝛼 , of which (a)-(b) and (c)-(d) correspond to 17 and 40 units of demand 

respectively (both are set arbitrarily for illustration purpose). As shown in Figure 3.8 (a), 

all travelers choose path 1 when 𝛼 < 0.6. If 𝛼 is increased over 0.6, several flows on path 

1 switch to path 2. When there are 40 units of demand, traffic flows are assigned to paths 

1 and 2 under different 𝛼. When 𝛼 is relatively small (less than 0.4), there are more 

travelers choosing path 1 to avoid the penalty caused by travel delays. When 𝛼 is larger 

than 0.4, the traffic flow on path 2 is greater than that on path 1. These curves depicted 

in Figure 3.8 are consistent with the GMVUE conditions.  

MLTT, TTB, and METT, as three special cases of GMV, take both expected travel 

time and travel time variance into consideration. Figure 3.9 shows the different 

equilibrium flows on path 1 under these metrics when the demand of OD pair (1, 3) is 

equal to 17 and 40 units respectively, where the left-hand side red dashed line denotes 

the total demand and the right-hand side denotes the half demand for reference purpose. 

Most travelers with high on-time arrival probability will choose paths with a small mean 

and variance of path travel time when the demand is small. Since the mean and variance  
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              (a) path flow under 17 units of demand   (b) path MLTT under 17 units of demand 
 

 
 

              (c) path flow under 40 units of demand   (d) path MLTT under 40 units of demand 

Figure 3.8 Equilibrium results under different on-time arrival probabilities. 

 

 

 

Figure 3.9 Travel flows on path 1 under different path choice metrics. 
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of travel time in path 1 are smaller than those of path 2, travel flows concentrate on path 

1 under MLTT, TTB, and METT. When the demand increases to 40, traffic congestion 

occurs. Some travelers on path 1 shift to path 2 to avoid high penalties due to congestion. 

Fewer travelers choose path 1 under these criteria. The results are consistent with Eqs. 

(3.2) and (3.3), which indicates that traffic congestion results in a large mean and 

variance of path travel time.  

 

3.5.2 Example 2: Anaheim network 

 

This example uses a real network in the City of Anaheim (USA) to illustrate the 

effectiveness and present the sensitivity analysis of the proposed GMV-based traffic 

assignment algorithm. This network consists of 416 nodes, 914 links, and 1406 OD pairs. 

The network topology, link capacities, free-flow travel times, and original OD demands 

are obtained from http://www.bgu.ac.il/~bargera/tntp/. The demands are enlarged two 

times from the original demands to produce congestion effects. To analyze the 

uncertainty of this network, 𝜃𝑙 is obtained by linear projecting the length of link 𝑙 to the 

interval [0.5, 0.9]. The algorithm is coded in PYTHON programming language and takes 

about 495.6 seconds to reach the GMVUE state (note that PYTHON is an interpreting 

programming language; the running time can be considerably reduced using a compiling 

programming language), where traffic assignments account for most of the running time 

due to its slow convergence process. 

 

 

 

Figure 3.10 Convergence curve of the proposed algorithm. 

http://www.bgu.ac.il/~bargera/tntp/
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(a) Travel costs of various OD pairs. 

 
(b) Travel flow proportions of various OD pairs. 

Figure 3.11 Comparisons of travel cost and flow under different metrics. 

 

After new paths are generated, considerable flows shift from the existing paths to 

the new ones at the first few inner iterations due to small 𝑑. Hence, the first five inner 

iterations are excluded after new paths are generated, and the convergence curve is 

depicted in Figure 3.10. As shown, the curve consists of several fluctuations. When the 

result of the current outer iteration (see Figure 3.5) approaches the equilibrium solution, 

new paths have similar MLTTs as those used paths. As shown, fewer iterations are 

needed to achieve the equilibrium state. This conclusion is demonstrated by the 

decreasing distances between two adjacent peaks. Overall, the gap decreases to a small 

value within a few iterations and then move downwards slowly due to the nature of MSA.  

To compare the path choice outcomes of MLTT, TTB, and METT, the values of 

MLTT are first sorted ascendingly and show the MLTT values of 1000 OD pairs in red 

(Figure 3.11 (a)). Correspondingly, the values of TTB and METT of the same OD pairs 

are shown in orange and blue respectively. Regarding the flow comparison, the common 

paths of each OD pair under different path choice metrics are found and the proportions 
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of the path flows to corresponding OD demands are calculated. For a clear presentation, 

the travel flow proportions of only 100 OD pairs are depicted in Figure 3.11 (b). It can 

be seen that at the equilibrium state, the travel costs and flows of the three metrics are 

different across OD pairs. Note that TTB is bounded by MLTT and METT despite the 

fluctuations of TTB and METT in Figure 3.11 (a). This result is consistent with the 

definitions of the metrics.  

 

 
 

Figure 3.12 Distribution of the number of paths for the Anaheim network. 

 

 

 

Figure 3.13 Numbers of paths with different on-time probabilities. 
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For further comparisons, the distributions of the numbers of paths per OD pair 

under different criteria are plotted in Figure 3.12. It shows that the number of paths of 

the OD pairs is primarily concentrated in the first four groups, with very few OD pairs 

having more than seven paths at equilibrium. In particular, with the MLTT criterion, 

about 65% of OD pairs use no more than three paths, while the percentage is around 55% 

for TTB. Although the numbers of the identified paths may also be affected by the 

congestion level, the results indicate that the CG scheme takes effects for identifying the 

relevant paths for traffic assignment. Also, the analyses further confirm that different 

criteria result in different path choice results.  

The degree of supply uncertainty could be reduced by intelligent transportation 

system applications, for example, emerging traffic management measures and operations 

strategies. An example is that the lower bounds of the uniform distributions of capacities 

are increased due to the deployment of connected vehicles. To demonstrate the influence 

of these changes on TTR, 𝛼 is adopted as the criterion to quantify TTR and set as 0.6 

initially, and then 𝜃𝑙(∀𝑙) is increased by 1%, 5% and 10% respectively. Figure 3.13 

shows the on-time probability 𝛼 of the paths after the capacity improvement. As shown, 

the values of 𝛼 of most paths increase, indicating that the TTR of travelers is improved. 

Moreover, the rightward shift of the histograms illustrates that TTR gains more 

improvement with a higher 𝜃𝑙. Taking Figure 3.13 (b) for example, although 𝜃𝑙 increases 

by only 5%, the improvement of TTR is significant: 81.8% of the paths have TTR within 

the range [0.7, 0.9]. It is also found that there are a few paths with TTR lower than 0.6. 

This outcome is caused by the fact that the generated paths for a minority of OD pairs 

are different and also have different means and variances. Based on the numerical results, 

it can be concluded that capacity improvements in the transport network improve TTR.  

 

3.6 Conclusions 
 

This chapter proposed a GMV metric for path choice under travel time uncertainty and 

developed a GMVUE in a transport network. Instead of focusing solely on expected 

travel time, the GMVUE model is capable of factoring travel time variance, early arrival, 

or late arrival into path choice considerations. As illustrated, GMV has a more 

generalized form than several currently widely used metrics, such as MTT, TTB, and 

METT. This chapter also analyzed some properties of GMV, including continuity and 

non-additivity. Continuity is satisfied without the assumption of normal and independent 

distributions. To overcome non-additivity, GMV-based dominance definitions and 

conditions were established and used to search for the reliable shortest paths. The 

GMVUE model was formulated as a VI problem. The existence and uniqueness of the 

solutions to the VI problem were also discussed. With the incorporation of a bi-criteria 

label-correcting algorithm, MSA, and CG technique, an effective traffic assignment 

algorithm without path enumeration was developed to solve the GMVUE model for real 
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networks. As illustrated in the numerical examples, different weight coefficients result 

in different GMV forms and traffic flow assignment schemes.  

As observed above, the running time of the CG algorithm was too long even for 

small general static networks, not to mention in the dynamic context. The next chapter 

will incorporate the temporal dimension and the bounded rationality behavior and 

introduce several strategies to accelerate the CG algorithm. As the primary goal is to 

speed up the CG algorithm in the dynamic contexts, the uncertainty component is not 

considered in the following chapters.  
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4  

The TBCG Algorithm to the 

BR-DUE Problem* 

 
 
 

4.1 Introduction 
 

As a relaxation of the assumption of perfect rationality, the concept of bounded 

rationality (BR) was proposed by Simon (1955, 1957) to capture the irrationality of 

people’s decision-making. BR was first introduced to traffic modeling by Mahmassani 

and Chang (1987) and then widely applied in the transportation area. For example, Sivak 

(2002) founded that BR underlined the development of many of the early, common-sense 

countermeasures for traffic safety problems. As an extension of the classical Wardrop’s 

user equilibrium (UE), boundedly rational UE (Han and Timmermans, 2006; Di et al., 

2013; Di et al., 2013) embedded BR in the static traffic assignment (STA) problems. In 

the dynamic context, the tolerance-based dynamic UE (DUE) problem was introduced 

by Szeto and Lo (2006). The theoretical properties, including existence and continuity 

theory, were developed by Han et al. (2015). However, the numerical studies of the few 

existing boundedly rational DUE (BR-DUE) models were performed on predefined path 

sets in small networks (10-node network and Sioux Falls network). For the application 

of the BR-DUE models to larger networks, a method with path generation is needed.  

                                        

* This chapter is based on Wang, D., Liao, F., Gao, Z., Timmermans, H., 2019. Tolerance-based 

strategies for extending the column generation algorithm to the bounded rational dynamic user 

equilibrium problem. Transportation Research Part B: Methodological 119, 102–121. 
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In a static transport network, Leventhal et al. (1973) proposed the column 

generation (CG) algorithm to find minimum disutility paths and add them to path sets 

along with the iterations. Since Leventhal et al. (1973), the CG algorithm has been 

applied for solving various traffic assignment problems (Friesz, 1985; Chen et al., 2009; 

Zhang et al., 2013; Levin et al., 2015). Parallelly, several strategies have been proposed 

to yield substantial computational time-savings. For example, Panicucci et al. (2007) and 

Di Lorenzo et al. (2014) suggested performing the path search process within a prefixed 

number of iterations, which can then be changed according to a dynamic adjustment 

mechanism proposed by Galligari and Sciandrone (2017). However, these strategies are 

limited to static contexts.  

Considering both BR and the temporal dimension, this chapter develops a 

tolerance-based CG (TBCG) algorithm to solve the BR-DUE problem. Four tolerance-

based strategies extending the CG algorithm are proposed across the spatial and temporal 

dimensions. First, a tolerance-based minimum disutility path search strategy is proposed 

to seek satisfactory paths. Second, a self-adjusted convergence threshold strategy is 

adopted to perform pseudo-equilibrium assignments at the intermediate iterations. Third, 

a varied temporal resolution scheme combing temporal exploration and exploitation is 

designed to assign flows to narrow time regions rather than to the whole-time horizon. 

Lastly, a path search skipping strategy is developed to perform path searches when 

necessary. With these spatial and temporal strategies, the TBCG algorithm efficiently 

finds the BR-DUE solutions. 

The remainder of this chapter is organized as follows. Section 4.2 introduces the 

tolerance-based strategies for extending the CG algorithm to solve the BR-DUE problem. 

Numerical examples are given in Section 4.3 to assess the effectiveness of the proposed 

TBCG algorithm. Finally, conclusions are provided. 

 

4.2 Tolerance-based column generation for BR-DUE model 
 

This section presents four strategies covering both the spatial and temporal dimensions 

to extend the CG algorithm to solve BR-DUE (Eq. (2.16)). Thereafter, the TBCG 

algorithm is proposed and the algorithmic flowchart and pseudo-code are presented. In 

this chapter, the point queue method (Huang and Lam, 2002; Zhou and Taylor, 2014) is 

applied for modeling traffic flow propagation. To illustrate the mechanisms of the TBCG 

algorithm, a small case is used for detailing the key descriptions. To keep consistency, 

the notations used above attached with 𝑛  refer to the same entities at iteration  𝑛 . 

Furthermore, a potential time-dependent path set (PTPS) is created to store certain path 

and departure time pairs having the potentials to be the BR-DUE solutions. The PTPS at 

iteration 𝑛 of 𝑟𝑠 is denoted by 𝛷𝑛
𝑟𝑠 = {(𝑝, 𝑘)}. 
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4.2.1 Tolerance-based strategies 

 

As path search and network loading constitute the most time-intensive components in a 

CG algorithm for traffic assignment, improving and balancing these two components are 

crucial for accelerating the algorithm. When considering the temporal dimension, time 

discretization is needed to solve the dynamic traffic assignment (DTA) problems in the 

discrete domain, since there is no known method for solving complex time-continuous 

models analytically. As indicated in Huang and Lam (2002), the length of one unit of 

time interval should be set small enough so that the discrete DTA model approximates 

its continuous counterpart. As travelers choose departure times and paths simultaneously, 

a smaller time interval leads to a large multiplier increase of the choices compared to the 

static UE, which aggravates the burden of computation. In addition, to solve BR-DUE, 

BR should be included in the path search and network loading components. To address 

these issues, the following strategies are suggested, particularly to be applied at the 

intermediate iterations 

(i) a tolerance-based minimum disutility path search (TBMDPS) strategy is applied 

to allow for BR and reduce the number of path flow variables; 

(ii) self-adjusted convergence thresholds are used to ensure fast convergences; 

(iii) for temporal exploration, the temporal resolution is set stationary to explore the 

potential time region of BR-DUE; regarding temporal exploitation, the temporal 

resolution is dynamically set high to meet the required convergence precision; 

(iv) a path search skipping strategy is adopted to decrease the number of path 

searches. 

 

4.2.1.1 Tolerance-based minimum disutility path search 

 

In the dynamic context, time-dependent paths with the minimum disutility can be found 

by dynamic programming (Dean, 2004; Liao, 2017). When the newly generated path 𝑝̅ 

with disutility 𝑐𝑝̅
𝑟𝑠(𝑘, 𝒇𝒏) satisfying Eq. (4.1) does not belong to the path set 𝑃𝑛

𝑟𝑠 of 𝑟𝑠 at 

iteration 𝑛, 𝑝̅ is added to 𝑃𝑛
𝑟𝑠. A similar criterion is widely used in the CG algorithm for 

the DUE problem (Lu et al., 2009, 2016).  

 

 𝑐min
𝑟𝑠 (𝒇𝒏) − 𝑐𝑝̅

𝑟𝑠(𝑘, 𝒇𝒏) ≥ 0 (4.1) 

 

In contrast to adding a new path with the minimum disutility to the path set, strategy 

(i) compares 𝑐𝑝̅
𝑟𝑠(𝑘, 𝒇𝒏) and the minimum disutility of paths in 𝑃𝑛

𝑟𝑠 . Only path 𝑝̅ with 

extra disutility losses larger than a threshold is added to the path set, as shown in Eq. 

(4.2), where  𝜖𝑟𝑠  is a relative indifference threshold of travelers of the origin and 

destination (OD) pair 𝑟𝑠 toward path switch. This condition is consistent with the travel 

behavior of BR. Specifically, in a long-term equilibrium process, travelers depart from 
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their origins at preferred time intervals and travel on preferred paths. Despite the 

existence of paths with similar or even smaller disutilities, they may prefer the familiar 

paths due to the inertial to adapt. The travelers switch paths only if the new ones lead to 

extra less disutility. Note that strategy (i) is OD related and will degenerate into Eq. (4.1) 

if 𝜖𝑟𝑠 is equal to zero.  

 

 𝑐min
𝑟𝑠 (𝒇𝒏) − 𝑐𝑝̅

𝑟𝑠(𝑘, 𝒇𝒏) ≥ 𝜖𝑟𝑠 ∙ 𝑐min
𝑟𝑠 (𝒇𝒏) (4.2) 

 

Let 𝐶𝑖̅(𝑘) denotes the minimum disutility of arriving at node 𝑖 and time interval 𝑘, 

𝑡𝑖̅𝑗
𝑛(𝑘)  the arrival time at 𝑗  and 𝑐𝑖̅𝑗

𝑛(𝑘)  the disutility of traversing link (𝑖, 𝑗)  when 

departing from 𝑖 during 𝑘 at iteration 𝑛, 𝐹𝑗
𝑖(𝑡𝑖̅𝑗

𝑛(𝑘)) is a two-tuple vector recording the 

preceding link and interval. The pseudo-code of the TBMDPS at iteration 𝑛 is presented 

in Algorithm 4.1, which delivers the best worst-case run-time complexity.  

 

Remark 4.1 Strategy (i) accelerates the CG algorithm by decreasing the size of the path 

sets. The size of the path sets in DTA models plays a major role in the computation time 

due to the large path expansion factor accounting for time-dependency. Specifically, the 

size of the time-dependent paths of DTA is ∑ |𝑃𝑟𝑠| ∙𝑟𝑠 |𝐾| (Huang and Lam, 2002; Long 

et al., 2016). This value is decreased to ∑ (|𝑃𝑟𝑠| − 𝑚2) ∙𝑟𝑠 |𝐾| if 𝑚2 paths are discarded 

due to the TBMDPS. The larger the value of |𝐾|, the larger decrease it incurs. The path 𝑝̅ 

satisfying Eq. (4.2), generated by the TBMDPS, is called an acceptable path. The input 

parameters of this algorithm are flexible to be linked with iteration-related variables, 

which make it possible to combine with the temporal strategies.  

 

Algorithm 4.1 (TBMDPS) a tolerance-based minimum disutility path search 

Input: 𝑐𝑖̅𝑗
𝑛(𝑘) and 𝑡𝑖̅𝑗

𝑛(𝑘), ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾  

Initially, set 𝐶𝑖̅(𝑘) = ∞ and 𝐶𝑟̅(𝑘) = 0, ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑁\{𝑟}; 𝑘 = 1.  

while 𝑘 ≤ |𝐾| 

        for any (𝑖, 𝑗) ∈ 𝐴 

                if 𝐶𝑗̅(𝑡𝑖̅𝑗
𝑛(𝑘)) < 𝐶𝑖̅(𝑘) + 𝑐𝑖̅𝑗

𝑛(𝑘) and 𝑡𝑖̅𝑗
𝑛(𝑘) ≤ |𝐾| 

                        𝐶𝑗̅(𝑡𝑖̅𝑗
𝑛(𝑘)) = 𝐶𝑖̅(𝑘) + 𝑐𝑖̅𝑗

𝑛(𝑘) 

                        𝐹𝑗
𝑖 (𝑡𝑖̅𝑗

𝑛(𝑘)) =< (𝑖, 𝑗), 𝑘 >  

                End 

        End 

        𝑘 = 𝑘 + 1 

End 

for all 𝑠 satisfying 𝑟𝑠 ∈ 𝑅𝑆 

        backtrack the optimal paths 𝑝̅ through 𝐹𝑗
𝑖 (𝑡𝑖̅𝑗

𝑛(𝑘)) 

        if the disutility on 𝑝̅ satisfies Eq. (4.2) and 𝑝̅ ∉ 𝑃𝑛
𝑟𝑠, add 𝑝̅ to 𝑃𝑛

𝑟𝑠 

End 
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4.2.1.2 Self-adjusted convergence thresholds 

 

Convergence curves depicted by the gap functions of DUE models usually become flat 

when the solutions approach the equilibrium (Lo and Szeto, 2002; Long et al., 2013b). 

Using a fixed small convergence threshold would lead to long computation times at the 

intermediate iterations. To allow for BR and drive the intermediate steps fast, strategy 

(ii) concerns the self-adjusted convergence thresholds, formulated in Eq. (4.3).  

 

 𝑐𝑝
𝑟𝑠(𝑘, 𝒇𝒏) − 𝑐min

𝑟𝑠 (𝒇𝒏) ≤ 𝜀𝑛
𝑟𝑠∙𝑐min

𝑟𝑠 (𝒇𝒏) (4.3) 

 

where 𝜀𝑛
𝑟𝑠  is the relative convergence threshold of travelers between OD pair 𝑟𝑠  at 

iteration 𝑛 toward time change.  

For each OD pair rs, Eq. (4.3) has a similar form to the BR-DUE condition, but the 

difference lies in the fluctuating convergence threshold 𝜀𝑛
𝑟𝑠 with reference to iteration 𝑛. 

Based on the relationship between the acceptable path  𝑝̅  generated from strategy (i) 

and 𝑃𝑛
𝑟𝑠, 𝜀𝑛

𝑟𝑠 is changed differently in the following two cases.  

 

Case (1): At least one acceptable path does not belong to the current path set, i.e. ∃ 𝑝̅ ∉

𝑃𝑛
𝑟𝑠.  

In this case, some traffic flows are more likely to shift to the new paths. To ensure 

fast convergence, the value of the convergence threshold increases by the following 

formula 

 

 𝜀𝑛+1
𝑟𝑠 = min (

1

𝜗1
∙ 𝜀𝑛

𝑟𝑠,  𝜀max 
𝑟𝑠 ) (4.4) 

 

where 𝜗1 ∈ (0, 1) is a parameter for scaling and 𝜀max
𝑟𝑠  is the maximum convergence 

tolerance for 𝑟𝑠 . Eq. (4.4) uses 𝜀max
𝑟𝑠  as the upper bound to prevent the unrestricted 

increase of 𝜀𝑛+1
𝑟𝑠 .  

 

Case (2): All acceptable paths fall within the current path set, i.e. ∀ 𝑝̅ ∈ 𝑃𝑛
𝑟𝑠. 

In this case, the traffic flows have converged to a state, in which all used paths 

belong to 𝑃𝑛
𝑟𝑠  with 𝜀𝑛

𝑟𝑠. To obtain a more precise assignment, 𝜀𝑛+1
𝑟𝑠  is decreased as below 

 

 𝜀𝑛+1
𝑟𝑠 = max(𝜗1 ∙ 𝜀𝑛

𝑟𝑠,  𝜀𝑟𝑠) (4.5) 

 

where 𝜀𝑟𝑠 is used as a lower bound to ensure a required tolerance.  

 

Remark 4.2 Strategy (ii) accelerates the CG algorithm by decreasing the number of 

network loadings. A larger 𝜀𝑛
𝑟𝑠 ensures faster convergence at iteration 𝑛. When no new 
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path is generated, 𝜀𝑛
𝑟𝑠 is decreased until a required convergence threshold to obtain a BR-

DUE solution.  

 

4.2.1.3 Temporal exploration and exploitation 

 

The challenge in DTA mainly stems from the path extension in the temporal dimension. 

The previous CG algorithms for DTA assign flows to the generated paths across the 

whole-time horizon with a fixed time resolution. This strategy concerns the varied time 

resolutions for temporal exploration and exploitation. 

 

Temporal exploration 

Suppose that an acceptable path 𝑝̅ is found by strategy (i) at iteration 𝑛. It may be the 

case that not all time intervals for 𝑝̅ are potential for the traffic assignment, especially 

when the time intervals fall at the beginning or the end of the time horizon. The temporal 

exploration is adopted to find the potential time intervals and add the corresponding time-

dependent paths to PTPS. Specifically, given path 𝑝 ∈ 𝑃𝑛
𝑟𝑠, if there are time-dependent 

paths (𝑝, 𝑘) for ∀𝑘 ∈ 𝐾 satisfying Eq. (4.3) and falling out of 𝛷𝑛
𝑟𝑠, add (𝑝, 𝑘) to 𝛷𝑛

𝑟𝑠 and 

assign the flows to them. Usually, the neighboring time intervals of 𝑘 are likely to be 

potential. This process is conducted until no new time-dependent path satisfies Eq. (4.3).  

 

Temporal exploitation 

A higher temporal resolution of DTA means that the traffic flows are propagated more 

accurately. The side-effects of high temporal resolution are the increase in the size of 

time-dependent paths and the need of a long flow propagation process, and thus 

dramatically more computation time is required. It is well known that the traffic flows 

are assigned to a small proportion of continuous time regions rather the full time horizon 

in transport networks with bottlenecks. Based on this notion, the TBCG algorithm starts 

from a low temporal resolution to ensure converging to a satisfactory equilibrium result 

at a considerable speed and ends up with a high temporal resolution to meet the required 

criterion.  

The temporal resolution at iteration 𝑛 is denoted by ∆𝑛, and ∆ is used as a lower 

bound of ∆𝑛. Whether to decrease ∆𝑛 or not depends on the relationship between the 

acceptable path 𝑝̅ and 𝑃𝑛
𝑟𝑠, which is similar to the two cases above. In Case (1), ∆𝑛 is 

kept the same as the last iteration. When falling within Case (2), temporal exploitation is 

adopted before decreasing  𝜀𝑛
𝑟𝑠 . If  ∆𝑛> Δ , temporal exploitation is trigged by the 

following formula 

 

 ∆𝑛+1= max(⌊𝜗2 ∙ ∆𝑛⌋,  ∆) (4.6) 
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where  𝜗2 ∈ (0, 1)  is a resolution parameter, ⌊∙⌋  is an integer-floor operator. Besides 

transforming the link attributes (e.g., link capacity and free flow travel time) in relation 

to ∆𝑛+1, each time-dependent path (𝑝, 𝑘) in 𝛷𝑛
𝑟𝑠 is replaced by (𝑝, 𝑘′) for ∀𝑘′ satisfying 

𝑘′ ∙ ∆𝑛+1∈ [𝑘, 𝑘 + 1) ∙ ∆𝑛 and the corresponding flow 𝑓𝑝
𝑟𝑠(𝑘) are divided into ∆𝑛/∆𝑛+1 

parts equally and spread to each (𝑝, 𝑘′). If ∆𝑛= Δ, the spatial exploitation is performed 

by decreasing 𝜀𝑛
𝑟𝑠 as shown in Eq. (4.5).  

Regarding temporal exploration, it is a process of extending the time dimension of 

PTPS from several time intervals. Comparatively, strategy (i) can be regarded as spatial 

exploration, which is a process to add new acceptable paths to  𝑃𝑛
𝑟𝑠  for temporal 

exploration. Traffic flows are assigned based on the updated PTPS and the unused paths 

are removed from 𝑃𝑛
𝑟𝑠. Although the path set 𝑃𝑛

𝑟𝑠 may be contracted after one time of 

traffic assignment, the removed time-dependent paths have higher disutilities, which 

guarantees the occurrence of Case (2). 

 

Remark 4.3 Strategy (iii) is performed from a low temporal resolution, which 

accelerates the original CG algorithm by decreasing the size of the path set. For example, 

when the resolution at iteration 𝑛 is twice the required one, i.e., ∆𝑛= 2 ∙ ∆, half the time-

dependent paths may be used to assign traffic flows. Among them, only the time-

dependent paths satisfying Eq. (4.3) are added to PTPS according to the temporal 

exploration. The exploitation procedure leads to a decrease of ∆𝑛  and 𝜀𝑛
𝑟𝑠 , which 

guarantees that the TBCG algorithm converges to a state of BR-DUE with the required 

temporal resolution and convergence tolerance.  

 

4.2.1.4 Minimum disutility path search skipping 

 

This strategy suggests that the TBCG algorithm performs the TBMDPS only at the time 

intervals that may generate acceptable paths. Whereas, the classical CG algorithm for 

DTA (Lu et al., 2009) finds the path with the minimum disutility at every departure time 

interval at every iteration. Note that the minimum disutility of paths with zero flow of 𝑟𝑠 

at 𝑘, denoted as 𝑐𝑟𝑠(𝑘, 𝟎), is the lower bound at 𝑘 for 𝑟𝑠. Whether or not to allocate 

traffic flows to interval 𝑘 at iteration 𝑛 depends on the relationship between 𝑐𝑟𝑠(𝑘, 𝟎) 

and the minimum disutility of 𝑟𝑠 , 𝑐min
𝑟𝑠 (𝒇𝒏). If 𝑐

𝑟𝑠(𝑘, 𝟎) <  𝑐min
𝑟𝑠 (𝒇𝒏), interval 𝑘  is a 

potential candidate and path search is performed. In contrast, it is impossible to assign 

traffic flows to the paths at 𝑘  if 𝑐𝑟𝑠(𝑘, 𝟎)  ≥  𝑐min
𝑟𝑠 (𝒇𝒏) ∙ (1 + 𝜀𝑛

𝑟𝑠 ). In other words, 

interval 𝑘 satisfying Eq. (4.7) means that the traffic flows are more likely to concentrate 

on the existing time-dependent paths. Hence, there is no need for path search at this 

interval at iteration 𝑛. The remaining intervals with 𝑐𝑟𝑠(𝑘, 𝟎) falling between  𝑐min
𝑟𝑠 (𝒇𝒏) 

and  𝑐min
𝑟𝑠 (𝒇𝒏) ∙ (1 + 𝜀𝑛

𝑟𝑠)  may be assigned with traffic flows and path searches are 

conducted.  
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Table 4.1  Comparison of the CG algorithms for different UE models 

 Reference 

Path Search  Network Loading 
Temporal         

resolution Search method 
Search frequency 

per iteration 

 Loading 

method 

Convergence 

threshold 
Accuracy 

UE 
Chen et al., 2011;  

Ryu et al., 2016. 

minimum cost 

path search 
once  static fixed 𝜀 − 

DUE 
Zhou et al., 2008;  

Lu et al., 2013. 

minimum cost 

path search  

for each time 

interval         

 

 

dynami

c 
fixed Δ & 𝜀 fixed 

BR-

DUE 
current chapter TBMDPS      

for intervals dis-

satisfying Eq. (4.7) 
 

dynami

c 
self-adjusted Δ & 𝜀𝑟𝑠 varied 

 

 𝑐min
𝑟𝑠 (𝒇𝒏) ∙ (1 + 𝜀𝑛

𝑟𝑠) < 𝑐𝑟𝑠(𝑘, 𝟎) (4.7) 

 

where 𝟎 is a zero-flow vector.  

 

Remark 4.4 Strategy (iv) accelerates the CG algorithm by decreasing the number of path 

searches. For the traditional CG algorithm, |𝐾| times of path searches are needed to find 

the potential paths. This value will decrease to |𝐾𝑛| − 𝑚3 when 𝑚3 intervals satisfy Eq. 

(4.7), where 𝐾𝑛 is the set of time intervals corresponding to Δ𝑛. 

 

Table 4.1compares the CG algorithms for UE, DUE and BR-DUE models in terms 

of path search and network loading. The “cost” refers to generalized travel cost, which 

may be linked to one or multiple factors. As presented, the temporal resolution is listed 

after both path search and network loading as it is implicated in both processes. 

Compared with the CG algorithm for UE and DUE, the TBCG algorithm for BR-DUE 

has merits of self-adjustment without sacrificing accuracy at the final iteration. 

Regarding the spatial accuracy, the OD-related parameter 𝜀𝑟𝑠 has the ability to reflect 

the heterogeneity of trips, while 𝜀 in this table is a convergence threshold for UE and 

DUE. When 𝜀𝑟𝑠 ∙ 𝑐min
𝑟𝑠 (𝒇𝒏) equals 𝜀, TBCG algorithm has the same spatial accuracy as 

the CG algorithms for UE and DUE. 

 

4.2.2 Tolerance-based column generation algorithm 

 

The above four strategies extend the original CG algorithm from different aspects. 

Considering the run-time of the TBCG algorithm, time complexity analysis is described 

as follows. When the recursive formulations (Dean, 2004a) are used to search for the 

tolerance-based minimum disutility paths, the run-time complexity is 𝑂(|𝑁| ∙ |𝐴| ∙ |𝐾|) 

at one iteration. The path search skipping strategy and temporal resolution scheme are 

developed to decrease the value of |𝐾|. The dynamic network loading phase consumes 

𝑂(∑ |𝑃𝑟𝑠|𝑟𝑠 ∙ |𝐴′| ∙ |𝐾| ∙ 𝑚1) run-time in the worst case to load path flows according to 

Section 2.4. The TBMDPS strategy decreases ∑ |𝑃𝑟𝑠|𝑟𝑠 , the fluctuating convergence  
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Figure 4.1 Flowchart of the TBCG algorithm. 

 

threshold strategy decreases 𝑚1 , and the temporal resolution scheme decreases  |𝐾|. 

Conversely, the number of iterations may increase due to the changing temporal 

resolution. Thanks to the strategy of self-adjusted convergence thresholds, the TBCG 

algorithm can converge to an equilibrium state with fewer network loadings overall.  

Accordingly, the TBCG algorithm has three loops as depicted in Figure 4.1. As 

shown within the blue box, the outer loop is for updating  𝑃𝑛
𝑟𝑠 , enhancing ∆𝑛  or 

decreasing 𝜀𝑛
𝑟𝑠. When new paths 𝑝 are generated at iteration 𝑛, which means that some 

flows will shift to these paths, a large 𝜀𝑛
𝑟𝑠 ensures fast convergence. When no new path 

is generated and the result at the current iteration has converged at a low temporal 

resolution, the temporal exploitation procedure is performed to enhance ∆𝑛. Whether or 

not to exit the outer loop also depends on 𝜀𝑛
𝑟𝑠. If 𝜀𝑛

𝑟𝑠 = 𝜀𝑟𝑠, the algorithm has converged 

to a BR-DUE state with the required convergence tolerance at the highest temporal 

resolution; then, the outer loop is exited. Otherwise, traffic flows are assigned repeatedly 

by decreasing 𝜀𝑛
𝑟𝑠. The inner loop denotes the temporal exploration procedure. Given a 

path set, all potential time intervals are added by alternately performing traffic 

assignment and temporal exploration. Besides, another loop is implicit in the traffic 

assignment algorithm to obtain a path flow pattern. It is noteworthy that the CG 
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algorithms generally converge in small numbers of outer iterations and do not enumerate 

all paths.  

The proposed four strategies significantly revise the CG algorithm for speeding-up 

but do not modify the property of convergence. That is, if the convergence conditions of 

the original CG algorithm are satisfied, the TBCG algorithm can also converge to a BR-

DUE state. This conclusion is presented as follows.  

 

Theorem 4.1. The tolerance-based strategies in the TBCG algorithm maintain the 

convergence property of the CG algorithm.   

Proof. See Appendix 4.A.  

 

Incorporating the proportional swap system (Smith, 1984; Guo et al., 2017) for 

traffic assignment, the convergence of the TBCG algorithm is concluded as Corollary 

4.1. 

 

Corollary 4.1 The TBCG algorithm is convergent if the path disutility is a monotone 

function of path flows. 

Proof. See Appendix 4.B.  

 

Corollary 4.1 states the convergence of the TBCG algorithm under the 

monotonicity assumption. Besides the proportional swap system, other algorithms and 

convergence conditions can be embedded into the TBCG algorithm. For example, the 

convergence conditions of the self-adaptive projection method and proximal point 

method (Han et al., 2015) rely on pseudo-monotonicity and semi-strictly quasi-

monotonicity respectively. However, the path disutility is not a monotone function with 

respect to the path flow in general (Huang and Lam, 2002). Compared with other 

algorithms for traffic assignment, the route-swapping algorithm, a form of the 

proportional swap system, forces the path flow sequence to converge to a feasible state 

even without the monotonicity assumption (Mounce and Carey, 2011). The iterative 

sequence can be viewed as an evolutionary process of flow pattern from one 

disequilibrium state to an equilibrium or local stable state. To measure the convergence 

of this algorithm, a relative gap function is defined as Eq. (4.8). The pseudo-code of the 

TBCG algorithm is presented in Algorithm 4.2.  

 

𝑅𝑒𝑔𝑎𝑝(𝑘, 𝒇𝒏) = max {
𝑐𝑝
𝑟𝑠(𝑘, 𝒇𝒏) − 𝑐min

𝑟𝑠 (𝒇𝒏)

𝑐min
𝑟𝑠 (𝒇𝒏)

}   ∀ 𝑝∈{ 𝑖 | 𝑓𝑖
𝑟𝑠(𝑘) > 0, 𝑟𝑠 ∈ 𝑅𝑆 } (4.8) 

 

The proposed four strategies in the TBCG algorithm target spatial and temporal 

exploration and exploitation to generate the most relevant path sets and time ranges that 

are fed into the route-swapping algorithm. The intrinsic feature of the route-swapping 
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algorithm is shifting flows from time-dependent paths with high disutilities to low 

disutility paths. A BR-DUE state is achieved through iterative path generation and path-

flow swapping processes provided that the flow adjustment parameters meet the 

convergence conditions (Nagurney and Zhang, 1997). The parameter setting and initial 

solution are two essential elements affecting the convergent flow patterns. According to 

Appendix 2.A, it is likely that different inputs result in non-unique BR-DUE solutions. 

To measure the distance between two different BR-DUE solutions  𝒇1
∗  and  𝒇2

∗ , the 

Euclidean distance can be adopted as 𝐸(𝒇1
∗ , 𝒇2

∗) = ‖𝒇1
∗ − 𝒇2

∗‖ℓ2 , where ‖∙‖ℓ2  is a ℓ2-

norm operator. To measure how good a BR-DUE solution is, the system cost, defined as 

the inner product of path flow and cost vectors, gives a yardstick. These two measures 

of distance have large implications for traffic prediction and control. 

 

Algorithm 4.2 TBCG algorithm 

Step 1: (Initialization)  

        Set 𝑛 = 1, 𝒇𝟏 = 𝟎 and initial ∆1, 𝜀1
𝑟𝑠, 𝜖𝑟𝑠, 𝑐𝑟𝑠(𝑘, 𝟎), 𝑃1

𝑟𝑠 and 𝛷1
𝑟𝑠, ∀𝑟𝑠 ∈ 𝑅𝑆, 𝑘 ∈ 𝐾𝑛. 

Step 2: (Traffic assignment)  

        Step 2.1: Assign flows on 𝛷𝑛
𝑟𝑠. 

        Step 2.2: If ∃(𝑝, 𝑘) satisfies Eq. (4.3) and (𝑝, 𝑘) ∉ 𝛷𝑛
𝑟𝑠 , 𝛷𝑛

𝑟𝑠 = (𝑝, 𝑘) ∪ 𝛷𝑛
𝑟𝑠  and return 

Step 2.1;  

        otherwise, go to Step 3.  

Step 3: (Path search) 

 For 𝑟𝑠 ∈ 𝑅𝑆: 

     Step 3.1: Find 𝑘̃ dissatisfying Eq. (4.7) and 𝐾 = {𝑘̃}. 

 For 𝑘̃ ∈ 𝐾: 

Step 3.2: Search for acceptable paths 𝑝̅ by the TBMDPS.  

 End for 

 End for 

Step 3.3: If ∀𝑝̅ ∈ 𝑃𝑛
𝑟𝑠, continue; otherwise, update 𝑃𝑛

𝑟𝑠, 𝛷𝑛
𝑟𝑠 and go to Step 3.6. 

Step 3.4: If ∆𝑛= ∆, continue; otherwise, perform Eq. (4.6), update 𝐾𝑛, 𝒇𝒏, 𝛷𝑛
𝑟𝑠 and go to 

Step 3.6.  

Step 3.5: If 𝜀𝑛
𝑟𝑠 = 𝜀𝑟𝑠, go to Step 4; otherwise, decrease 𝜀𝑛

𝑟𝑠 by Eq. (4.5) and go to Step 

3.6. 

Step 3.6: Set 𝑛 = 𝑛 + 1 and go to Step 2. 

Step 4: (Termination) Stop the algorithm and obtain the BR-DUE solution.  

 

 
Figure 4.2 A two-node network of three parallel links. 
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Table 4.2 The path flows and disutilities at each iteration  

Iter. 𝜀𝑛
𝑟𝑠 Item  Path 

Time intervals 

1  2  3  4  5  

0  0.2 Disutility 1 1.20  1.20  1.20  1.80  2.40  

1  0.2 
Path flow 1 90.94  9.06  0  —  —  

Disutility 1 4.35  5.20  5.60  6.00  6.40  

2  0.2 

Path flow 1 42.38  0  0  —  —  

 2 28.81  28.81  —  —  —  

Disutility 1 1.97 

 

 

  

 2.32  2.72  3.12  3.52  

 2 1.66  1.92  2.32  2.80  3.40  

Iter.  𝜀𝑛
𝑟𝑠 Item  Path 

Time intervals 

1 2 3 4 5 6 7 8 9 10 

3  0.2 

Path flow 1 23.21 17.31 0 0 0 0 — — — — 

 2 16.43 16.43 16.43 10.21 — — — — — — 

Disutility 1 1.62 1.93 2.03 2.23 2.43 2.63 2.83 3.03 3.23 3.43 

 2 1.64 1.68 1.73 1.94 2.14 2.34 2.54 2.80 3.10 3.40 

4  0.1 

Path flow 1 27.90 7.58 1.16 0 0 0 — — — — 

 2 21.12 21.12 21.12 0 — — — — — — 

Disutility 1 1.72 1.83 1.83 2.03 2.23 2.43 2.63 2.83 3.03 3.23 

 2 1.67 1.73 1.80 1.99 2.19 2.39 2.59

  

2.80 3.10 3.40 

(—: not exist in the PTPS) 

 

4.2.3 A case for illustrating tolerance-based strategies 

 

These strategies are illustrated in a two-node network of three parallel links connecting 

one OD pair (Figure 4.2). The link free flow times and capacities are given near the links. 

The link travel time is calculated by Eq. (2.4), of which 𝛽3 and 𝛽4 are equal to 0.2 and 1 

respectively. The targeted time interval range is from 1 min to 10 min. Other parameters 

are set as: 𝑄𝑟𝑠 = 100, 𝜗1 = 0.5, 𝜗2 = 0.5, ∆= 1 minute, 𝜂1 = 0.2 $/min, 𝜂2 = 0.1 $/

min, 𝜂3 = 0.3 $/min, 𝑘𝑟𝑠∗ = 10 min, 𝜅𝑟𝑠 = 2 min, 𝜀𝑟𝑠 = 𝜖𝑟𝑠 = 0.1, 𝜀max
𝑟𝑠 = 0.2. For 

initialization, ∆1= 2  min,  𝜀1
𝑟𝑠 = 2 , 𝛷1

𝑟𝑠 = {(1, 1), (1, 2), (1, 3)} , 𝑃1
𝑟𝑠 = {1}  and 

𝑐𝑟𝑠(𝑘, 𝟎)  (𝑘 = 1,2,⋯ ,5)  are set as presented in Table 4.2. Besides the equilibrium 

results at each iteration after running the TBCG algorithm, the table exhibits the changes 

of the relative convergence threshold and temporal resolution.  

At the first iteration, no time-dependent path satisfies Eq. (4.3) after reassigning 

path flows on 𝛷1
𝑟𝑠, and the TBMDPSs are performed at all time intervals due to the large 

minimum disutility (4.35). As a result, path 2 is found and added to 𝑃1
𝑟𝑠. To illustrate the 

process of each strategy more intuitively, the second iteration is presented using a 

timeline with time intervals shown above and path IDs on the left-side hand (Figure 4.3). 

The travel disutilities and flows at each interval are listed below the timeline. Moreover, 
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the current PTPS is displayed by the red segments; the new time-dependent paths 

satisfying Eq. (4.3) are displayed with yellow segments, and time intervals satisfying Eq. 

(4.7) are marked with rightward arrows. To explain strategy (iv), 𝑐𝑟𝑠(𝑘, 𝟎) is repeated 

after each time interval in Figure 4.3(b).   

At the second iteration, the time-dependent paths (2, 1) and (2, 2) have the 

minimum disutility (1.60) and fall out of 𝛷2
𝑟𝑠 as shown in Figure 4.3 (a). Consequently, 

both paths are added into 𝛷2
𝑟𝑠  during the temporal exploration. Then, the traffic 

assignment is implemented with the updated 𝛷2
𝑟𝑠 and the path disutilities are depicted in 

Figure 4.3 (b). Since the relative difference between the lower bound at interval 5 (2.40) 

and the minimum disutility (1.66) is larger than 𝜀2
𝑟𝑠, time interval 5 is skipped when 

performing the TBMDPS. Afterwards, the temporal exploitation is triggered by 

decreasing ∆2 since no new path is generated. Figure 4.3 (c) presents the path disutilities, 

flows, and PTPS under the new temporal resolution.  

 

 

 

Figure 4.3 Three strategies at the second iteration. 
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The traffic assignment and path search are conducted alternately at the last two 

iterations, in which 𝜀3
𝑟𝑠 is decreased at iteration 3 and the required equilibrium state is 

reached at the fourth iteration. It should be noted that path 3 has the same minimum 

disutility as path 2 (1.60 shown in Figure 4.3 (a)) since both paths have the same free 

flow time. As shown in Table 4.2, the minimum disutility at the last iteration is 1.67. 

Path 3 cannot be identified through the path search, which demonstrates the difference 

between the classic shortest path algorithm and the TBMDPS.  

 

4.3 Numerical examples 
 

This section presents numerical examples to assess the proposed TBCG algorithm for 

BR-DUE. Three aspects are concerned: the influence of the TBMDPS, the results of 

TBCG algorithm for DUE and BR-DUE, and the improvements due to the strategies. 

The solution algorithm is run on a personal computer with an Intel(R) Core(TM) i7-6700 

3.40 GHz CPU and 8.00 GB RAM. The parameters are set as 𝜗1 = 0.5 and 𝜗2 = 0.5; 

∆= 1 minute; penalty coefficients 𝜂1 = 6.4 $/h , 𝜂2 = 3.9 $/h  and 𝜂3 = 15.21 $/

h; 𝑘𝑟𝑠∗ = 9 am and 𝜅𝑟𝑠 = 0.1 h; the time period is from 8 am to 12 pm; 𝜀𝑟𝑠 = 𝜖𝑟𝑠 = 0.1 

and 𝜀1
𝑟𝑠 = 𝜀max

𝑟𝑠 = 0.2 unless otherwise explained. The link travel times are calculated 

by Eq. (2.4).  

 

4.3.1 Example 1: six-node network 

 

The six-node test network (Shao et al., 2013) is adopted for illustrating the effects of 

strategy (i) on path generation and the different solutions to the TBCG algorithm for 

DUE and BR-DUE. As shown in Figure 4.4, this network has two OD pairs, six nodes, 

seven links, and four paths.  

 

 

A path defined by a 

sequence of nodes 

Path 1: 1-5-6-3 

Path 2: 1-3 

Path 3: 2-5-6-4 

Path 4: 2-4 

 

Figure 4.4 The test network. 
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               (a) Path disutility when 𝜖𝑟𝑠 = 0.1                       (b) Path flow when 𝜖𝑟𝑠 = 0.1 

 
                (c) Path disutility when 𝜖𝑟𝑠 = 0                         (d) Path flow when 𝜖𝑟𝑠 = 0  

Figure 4.5 Equilibrium solution for BR-DUE 

 

To illustrate the difference derived from the TBMDPS strategy, the demands for 

OD pairs (1, 3), (2, 4) are set as 1600 and 0 units respectively. Figure 4.5 indicates that 

the TBCG algorithm results in different equilibrium solutions compared with the 

traditional CG algorithm. As shown in Figure 4.5 (a) and (b), only path 1 is found and 

used for BR-DUE assignment. Recall that only the paths satisfying Eq. (4.2) are added 

to the path set. Path 2 does not satisfy this condition, although its disutility is smaller 

than path 1 in several intervals. This conclusion is deduced from Figure 4.5 (c) and (d), 

where two paths are generated and have non-zero path flows when 𝜖𝑟𝑠 is equal to zero. 

When the demand for OD pairs (1, 3) and (2, 4) increase to large values, such as 

𝑄13 = 104 and 𝑄24 = 8000, traffic congestion occurs in this network. Some travelers 

depart early and shift paths to avoid late arrival penalty. Taking OD pair (1, 3) for 

example, in Figure 4.5 (b), travelers are assigned to the time period [9.3 am, 9.6 am] on 

path 1 when the OD demand is small, while this period shifts to [8.7 am, 9.3 am] on path 

1 and path 2 as depicted in Figure 4.6 (d). Moreover, the equilibrium solution of the 

TBCG algorithm for BR-DUE model is different from that of the DUE. At the steady 

state of DUE, disutilities of used time-dependent paths are equal for the same OD pair  



Chapter 4 

56 

 
                    (a) Path disutility for DUE                                  (b) Path flow for DUE 

 
                    (c) Path disutility for BR-DUE                           (d) Path flow for BR-DUE 

Figure 4.6 Equilibrium solutions for BR-DUE and DUE. 

 
and the unused time-dependent paths have larger disutilities. These results are consistent 

with the DUE condition as depicted in Figure 4.6 (a) and (b). Regarding the BR-DUE, 

disutilities of the used time-dependent paths for the same OD pair are different and no 

larger than the critical values defined by Eq. (4.3), which are shown with the red dashed 

line in Figure 4.6 (c). Figure 4.6 indicates that the TBCG algorithm is capable of solving 

the BR-DUE problem. 

 

4.3.2 Example 2: the Nguyen and Dupuis network 

 

This example assesses the impact of the strategies (ii) - (v) on the improvement of the 

CG algorithm under different tolerances. For a fair comparison, the CG algorithms with 

and without these strategies both use the TBMDPS to generate paths. As depicted in 

Figure 4.7, this network (Long et al., 2013b; Li et al., 2018) has 13 nodes and four OD 

pairs including (1, 2), (1, 3), (4, 2), and (4, 3) with different traffic demand of 15360, 

5120, 5120 and 8960 respectively. The link free flow times and capacities are marked 

near the corresponding links. The temporal resolution is initialized to Δ1 = 2 and 𝜗2 =

0.1  in this example. For the route-swapping process, the step-size rule 𝜌 ∙ (1 +
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𝛽5𝑚4)/⌊1 + 𝑚5/2000⌋ is adopted, where 𝜌 = 0.1 ensures a steady convergence, 𝑚4 

denotes the number of temporal exploitations, 𝛽5 is a re-scaling factor, and 𝑚5 is the 

number of path flow reassignments at each outer iteration.  

The TBCG algorithm generates paths for traffic assignment driven by the tolerance-

based travel behavior. The number of generated paths at BR-DUE is far less than that by 

path enumeration, which significantly decreases the size of time-dependent paths. Figure 

4.8 presents a comparison of the number of paths derived from the TBCG algorithm and 

path enumeration. It shows the effectiveness even when traffic demand is large in this 

example.  

 

 
Figure 4.7 The Nguyen and Dupuis network. 

 

 

 
 

Figure 4.8 Comparison of the number of paths.  

4

2

3

2

8

6

5

6

0

1

2

3

4

5

6

7

8

9

(1, 2) (1, 3) (4, 2) (4, 3)

T
h

e 
n

u
m

b
er

 o
f 

p
at

h
s

OD pairs in the Nguyen and Dupuis network

Path generation Path enumeration



Chapter 4 

58 

Table 4.3  Improvements of different strategies on CG algorithm 

Strategies   Items 
𝜀𝑟𝑠 

0.05 0.06 0.07 0.08 0.09 0.10 

CG algorithm 

without 

strategy (ii)- 

(iv) 

Number of path searches 722 722 722 722 722 722 

Number of network loadings 1855 1338 1217 1116 1103 931 

Computation time (s) 298.57 234.41 190.30 174.61 167.19 139.28 

Strategy (ii) 
Number of network loadings 1125 1000 866 907 737 687 

Computation time (s) 191.11 161.75 139.91 141.67 120.75 118.62 

Strategy (iii) 

Number of network loadings 2270 

 

1847 

 

1531 

 

1082 

 

986 

 
854 

Computation time (s) 182.34 150.28 118.73 90.03 79.82 69.20 

Speedup factor 1.64 1.56 1.60 1.94 2.09 2.01 

Strategy (iv) Number of path searches 567 573 575 576 573 578 

TBCG 

algorithm 

Number of path searches 672 674 669 668 670 673 

Number of network loadings 861 707 687 686 651 608 

Computation time (s) 108.98 82.34 77.53 76.56 72.02 63.80 

Speedup factor 2.74 2.85 2.45 2.28 2.32 2.18 

Table 4.4 Effects of the parameters of the TBCG algorithm 

Parameters for comparison 
CG algorithm 

Computation 

time (s) 

TBCG algorithm 

Speedup 

factor Δ1 𝜗2 ∆ 𝜀max 
𝑟𝑠  𝜖𝑟𝑠 

Number of  

network 

loadings 

Number of  

path 

searches 

Computation 

time (s) 

1 0.5 0.5 0.2 0.1  697 1336 162.60 2.95 

2 0.5 0.5 0.2 0.1 479.85 614 1215 96.37 4.98 

4 0.5 0.5 0.2 0.1  584 1137 48.69 9.85 

4 0.125 0.5 0.2 0.1  656 851 96.80 4.96 

4 0.25 0.5 0.2 0.1 479.85 638 1042 79.62 6.03 

4 0.5 0.5 0.2 0.1  584 1137 47.46 10.11 

4 0.5 0.5 0.2 0.1 479.85 584 1137 47.46 10.11 

4 0.5 1 0.2 0.1 182.05 614 594 40.01 4.55 

4 0.5 2 0.2 0.1 98.16 644 325 36.70 2.67 

2 0.5 1 0.15 0.1  870 653 83.76 1.97 

2 0.5 1 0.2 0.1  608 673 63.80 2.58 

2 0.5 1 0.25 0.1 
164.68 

754 674 99.71 1.65 

2 0.5 1 0.3 0.1 507 695 59.49 2.77 

2 0.5 1 0.35 0.1  424 707 52.92 3.11 

2 0.5 1 0.4 0.1  374 709 47.05 3.50 

2 0.5 1 0.2 0.05  651 650 72.53 2.49 

2 0.5 1 0.2 0.1  608 673 63.80 2.83 

2 0.5 1 0.2 0.15 
180.51 

608 673 64.30 2.81 

2 0.5 1 0.2 0.2 635 677 64.87 2.78 

2 0.5 1 0.2 0.25  508 614 50.76 3.56 

2 0.5 1 0.2 0.3  599 712 57.90 3.12 

(Fixed parameter: 𝜗1 = 0.1, 𝜀𝑟𝑠 = 0.1. The parameter values in bold are the focus of attention.) 



The TBCG Algorithm to the BR-DUE Problem 

59 

Table 4.3 shows the numbers of path searches, network loadings, and computation 

times of the CG algorithms with and without strategies (ii) - (iv) under a series of 

tolerances 𝜀𝑟𝑠. Compared with the CG algorithm without these strategies, strategy (ii) 

takes fewer network loadings and computation time to obtain the equilibrium results. 

More than 20 seconds are saved, although the differences in computation times decrease 

with the increase of 𝜀𝑟𝑠. Strategy (iii) increases the number of network loadings for some 

𝜀𝑟𝑠. However, it gains more than 1.5 times speedup in computation time due to reduced 

time-dependent paths when ∆𝑛= 2 minutes. Strategy (iv) skips around 150 tolerance-

based path searches. Incorporating all strategies, the TBCG algorithm improves the CG 

algorithm in all aspects, leading to speedup factors larger than 2.  

To demonstrate the effects of the spatial and temporal parameters of the four 

strategies, other parameters are fixed and the results are shown in Table 4.4. As shown 

in the first block, a larger Δ1 leads to less dynamic network loadings and path searches, 

and hence a larger speedup factor. 𝜗2 impacts the occurrences of leaps from ∆1  to ∆. 

Although more leaps are needed when 𝜗2 increases, the number of dynamic network 

loadings and computation time decrease. The reason is that decreasing ∆𝑛 may generate 

new paths, which needs more path flow assignments to reach a new equilibrium state. ∆ 

is related to the convergence precision. Decreasing ∆ results in dramatic increases in the 

computation time of the CG algorithm, compared with the TBCG algorithm. 𝜀max 
𝑟𝑠  and 

𝜖𝑟𝑠 are related to the path flow assignment and path search process respectively. Larger 

𝜀max 
𝑟𝑠  ensures the route-swapping algorithm to achieve the stop criterion with fewer 

iterations. However, this comes at the expense of current precision, as it may need extra 

iterations to generate new paths and perform path flow reassignments (e.g.  𝜀max 
𝑟𝑠 =

0.25). When 𝜖𝑟𝑠 taking a small value, more paths may satisfy Eq. (4.2) and be added to 

the path set for traffic assignment. As demonstrated, the TBCG algorithm obtains 

speedup factors significantly larger than 2 with most of the parameter setups.  

 

4.3.3 Example 3: larger networks 

 

The properties of path disutility function (Eq. (2.5)) make the projection-based 

algorithms used in, for example, Chen et al. (2001) and Long et al. (2013b), ineffective 

for DTA in large networks. This subsection uses larger networks, i.e., Sioux Falls 

network, Eastern Massachusetts (EMA) network, Anaheim network, and Chicago-

Sketch network to illustrate the effectiveness of the TBCG algorithm in terms of 

computation time and the number of dynamic network loadings. The Sioux Falls network 

consists of 24 nodes and 76 links, the EMA network has 74 nodes and 258 links, the 

Anaheim network contains 416 nodes and 914 links, and the Chicago-Sketch network 

has 933 nodes and 2950 links. The network topology and OD demands are obtained from 

http://www.bgu.ac.il/~bargera/tntp/. Some data transformation is performed on the free-

flow travel times and link capacities to fit the randomly selected OD pairs. Compared 

http://www.bgu.ac.il/~bargera/tntp/
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with the settings of example 2, the same step-sizes are adopted in the route-swapping 

process except for 𝜌. The small demand result in a larger 𝜌 (0.5) in this example to ensure 

an acceptable convergence. Other settings remain the same as example 2.  

As an illustration of the convergence process, Figure 4.9 shows the convergence 

curves of the original CG algorithm and the TBCG algorithm in the Anaheim network 

with 1406 OD pairs. As depicted, the CG algorithm generates new paths only when the 

relative gap is less than 0.1, and it takes 38 path flow reassignments. For the TBCG 

algorithm, new path generation and temporal exploitation occur after 16 and 30 path flow 

reassignments respectively. Note that both processes are performed in a low temporal 

resolution. Moreover, the TBCG algorithm needs less path flow reassignments to 

converge to BR-DUE. A low temporal resolution guarantees faster convergence per 

iteration and a larger convergence threshold ensures fewer path flow reassignments, 

which lead to 2.14 speedup factor compared to the original CG algorithm.  

 

 
(a) Convergence of the CG algorithm 

 
(b) Convergence of the TBCG algorithm 

Figure 4.9 Convergence of two algorithms 
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Table 4.5 Performance of the TBCG algorithm 

Network 

Demand 

(*original 

demand) 

OD 

pairs 

Number of network loadings  Computation time (s) 

 CG 

algorithm 

TBCG 

algorithm 

Reductions 

(%) 

CG 

algorithm 

TBCG 

algorithm 

Speedup 

factor 

Sioux 

Falls 

1 
50 870 777 10.69 279.73 146.14 1.91 

100 1232 875 28.98 1165.24 476.72 2.44 

2 
50 1294 827 36.09 520.4 262.76 1.98 

100 1620 1197 26.11 1565.71 730.63 2.14 

EMA 

10 
100 219 193 11.87 712.55 359.05 1.98 

200 545 509 6.61 2160.49 1060.17 2.04 

20 
100 309 231 25.24 546.01 272.86 2.00 

200 386 303 21.50 1799.14 823.95 2.18 

Anaheim 

1 1406 74 57 22.97 3116.79 1459.8 2.14 

10 
200 149 78 47.65 807.25 304.84 2.65 

400 121 79 34.71 1247.66 612.33 2.04 

20 
200 323 193 40.25 2334.37 980.02 2.38 

400 318 172 45.91 6236.97 2769.73 2.25 

Chicago

-Sketch 

20 
600 112 77 31.25 13940.34  7004.20  1.99 

1000 216 142 34.26 28363.46  13833.80  2.05 

50 
200 112 72 35.71 3824.29 1810.8 2.11 

400 163 93 42.94 9432.38 4438.74 2.13 

100 
100 162 96 40.74 2941.28 1203.57 2.44 

200 188 90 52.13 5990.14 1937.03 3.09 

 
Figure 4.10 Comparison between two traffic assignment algorithms. 
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Table 4.5 provides the number of dynamic network loadings and the computation 

times required for both the original CG algorithm and the TBCG algorithm to achieve 

the BR-DUE. For different network configurations, the demands are enlarged from the 

original demands to produce congestion effects. It shows that the TBCG algorithm 

outperforms the original CG algorithm in terms of both indicators. The speedup factors 

of computation time are ranged from 1.91 to 3.09. In combination with example 2, it can 

be concluded that the speedup factors are significant and quite stable.   

As an example to illustrate the flexibility of the TBCG algorithm, the self-adaptive 

projection method that is positioned in Han et al. (2015) with weak convergence 

condition and fast convergence is embedded into the TBCG scheme and compared with 

the route-swapping based TBCG algorithm. For a fair comparison, the same gap function 

shown in Eq. (4.8) is adopted in the EMA network with randomly selected 100 OD pairs. 

As depicted in Figure 4.10, the route-swapping based TBCG algorithm converges to a 

stable state with around 180 path flow reassignments crossing two major fluctuations, 

which manifest path generation and temporal exploitation. Regarding the self-adaptive 

projection based TBCG algorithm, the relative gap is still large after 200 path flow 

reassignments although it decreases steadily. The total computation times are 413.17s 

for the route-swapping based algorithm and 672.72s for the self-adaptive projection-

based algorithm respectively. Thus, the route-swapping based TBCG algorithm performs 

better in this example.  

 

4.4 Conclusions  
 

This chapter proposed four tolerance-based strategies to extend the CG algorithm for 

solving the BR-DUE problem. By incorporating the characteristics of BR, the strategies 

combine the spatial-temporal exploration and exploitation of flow patterns for finding 

the BR-DUE solutions. It is notable that the four strategies maintain the convergence 

property of the CG algorithm. In particular, under the monotonicity assumption of the 

path disutility, the proposed TBCG algorithm is convergent. As illustrated in the 

numerical examples, the four strategies overall accelerate the original CG algorithm and 

reduce the numbers of path searches and dynamic network loadings. The TBCG 

algorithm is more efficient due to the smaller size of the path sets at most iterations.  

Based on the TBCG algorithm, several extensions are worthy of investigation. First, 

the travel mode in this chapter is limited to private cars. Car-sharing services under the 

initiatives of sharing mobility can be embedded in the BR-DUE model and solved by the 

TBCG algorithm. Second, as travelers have different preferences, heterogeneity should 

be considered in the traffic assignment models as well. Lastly, as travel can be 

conceptualized as the derived demand from conducting activities at the destinations, the 

TBCG algorithm will be applied and further developed to address path generation and 
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personalized network formation in multi-state supernetwork models that are dedicated to 

activity-based travel demand analysis. 
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5  

Analysis of FCFS Mechanisms 

in One-way CSS* 

 
 

 

5.1 Introduction 
 

Car-sharing services (CSS) receive increasing attention in the passenger mobility sector 

(Ferrero et al., 2018; Illgen and Höck, 2019). Without the necessity of car-ownership, 

CSS show potential solutions to tackle traffic congestion, reduce parking spaces, mitigate 

CO2 emission, and save travel costs. According to Hampshire and Sinha (2011), more 

than four private cars (PCs) may be removed from the roads with the increase of one 

human-driven shared car (SC). Unlike the traditional car-renting services that have a full-

day or multi-day time frame, CSS usually focus on short-term trips in urban 

environments. Based on the way of disposing of the SCs at the destinations, business-to-

customer CSS typically have three categories: round-trip based (Ciari et al., 2013; Heilig 

et al., 2018), one-way station-based (Kaspi et al., 2014; Hu and Liu, 2016), and free-

floating (Weikl and Bogenberger, 2015; Balac et al., 2017). Round-trip-based CSS 

require travelers to start and end the services at the same stations. As a more flexible 

service, one-way CSS (either station-based or free-floating) can be returned at any 

designated parking locations, which makes CSS attractive to travelers.  

                                        

* This chapter is based on Wang, D., Liao, F., 2021. Analysis of first-come-first-served 

mechanisms in one-way car-sharing services. Transportation Research Part B: Methodological, 

147, 22-41.  
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Responding to the growing interest in CSS, many studies have emerged to 

investigate the travel preferences and demand of CSS in general or specific categories. 

The pricing structure, access and egress time, personal attitudes, social influence, travel 

satisfaction, etc., are found to be key factors affecting travelers’ decision to adopt CSS 

(Efthymiou et al., 2013; Balac et al., 2017; Becker et al., 2017; Rotaris et al., 2019; Zhou 

et al., 2020a, 2020b). Travel demand analyses are essential for the efficient deployment 

of CSS. Typically, the travel demand analyses rely on network-based equilibrium 

analyses and microsimulations to couple travel patterns and traffic flows. Network-based 

equilibriums (Atmani et al., 2014; Li et al., 2018) offer valuable comparison points of 

aggregate travel choices and flow patterns for CSS demand management. Alternatively, 

microsimulations have been applied to capture the microscopic behavior and demand 

patterns given CSS supplies. The paradigm of activity-based modeling has also been 

applied to investigate the detailed usage patterns of CSS when given service 

configurations (e.g., Heilig et al., 2018; Giorgione et al., 2019).  

In parallel, a number of studies have been dedicated to managing supplies through 

deployment and operational strategies. For free-floating CSS, Weikl and Bogenberger 

(2013) introduced several relocation strategies and developed an integrated two-step 

model for optimal vehicle positioning and relocation. Nourinejad and Roorda (2014) 

proposed a dynamic optimization-simulation model for one-way car-sharing operations 

to capture the tradeoff between vehicle relocations and fleet size. Fan (2014) developed 

a multi-stage stochastic linear programming model to optimize the strategic allocation of 

SCs in space. For one-way CSS, Xu et al. (2018) suggested a mixed-integer nonlinear 

and nonconvex programming model to maximize the profit of car-sharing operators by 

determining the fleet size, trip pricing, vehicle relocations, and passenger assignment. 

Based on this work, Xu and Meng (2019) took dynamic vehicle relocation and nonlinear 

charging profile into consideration. To achieve better supply-demand alignment, Ströhle 

et al. (2019) explored the potentials of spatial and temporal customer flexibility under 

offline and online optimization. Illgen and Höck (2019) provided a comprehensive 

review of vehicle relocation problems in one-way CSS and concluded that a tradeoff 

among fleet size, relocation effort, and the service level is needed for efficient operations.  

It should be noted that the above review concentrates on CSS facilitated by human-

driven vehicles, given that such CSS have been deployed in many cities and will remain 

in the near future. Understanding the complex relations between the supply and demand 

of SCs is a critical step in the evaluation of CSS deployment and operational strategies. 

Similar to any public or third-party services, whether a traveler is served or not by CSS 

depends on the supply-demand dynamics at the service locations. However, most supply-

oriented models (Weikl and Bogenberger, 2013; Fan, 2014; Boyaci et al., 2015; Chang 

et al., 2017; Xu et al., 2018; Ströhle et al., 2019; Xu and Meng, 2019) focused on the 

evaluation of the dynamic supplies subject to the constraints that the demands need to be 

satisfied, rather than the explicit supply-demand interactions.  
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Comparatively, less attention has been paid to the queueing mechanisms of CSS. 

Given that CSS only serve a niche market at this moment, the queueing phenomenon 

may not exist in some operational areas due to the low user acceptance and demand. 

However, the SC shortage may emerge at some CSS locations because of the unevenly 

distributed demand in space and time, especially during peak hours. In case the demand 

at a CSS location is not satisfied, the queue of CSS travelers may cumulate. To avoid 

waiting, some travelers may give up the car-sharing trip or move to other CSS locations. 

Hence, the demand of SCs is modified. The service mechanisms of treating the queues 

when supply insufficiency arises have significant impacts on the usage of SCs and the 

efficiency of CSS operations. Amongst, first-come-first-served (FCFS) (or broadly 

referred to as first-in-first-out (FIFO)) principle, restricting that travelers arriving first 

are served first, has been a widely used principle. Smartphone-based CSS applications 

facilitate the implementation of the FCFS principle in response to real-time service 

queries. For the same reason, it seems less problematic in disaggregate microsimulations 

with high time resolutions to address the queueing effects. However, it is notoriously 

difficult to analyze the supply-demand interactions and FCFS principle in aggregate 

network-based equilibrium studies in the discrete-time domain.  

As an important component in CSS, the FCFS principle has only been weakly 

addressed in a few studies. Specifically, Clemente et al. (2013) characterized the one-

way car-sharing process by six main phases, where the FCFS principle underlies the 

rental and use phases. However, the proposed discrete-event simulation approach did not 

provide detailed descriptions similar to other microsimulations. Levin et al. (2017) 

assumed that CSS travelers were served in an FCFS order if multiple travelers were 

waiting at the same location. However, the supply-demand dynamics under the FCFS 

principle were not explicitly formulated. The optimization model proposed by Chang et 

al. (2017) coped with the FCFS principle by several time-order constraints. A limitation 

is that the underlying queuing mechanism is not captured in the event of a supply 

shortage. Li et al. (2018) suggested an FCFS mechanism and modeled the CSS supply-

demand interactions. However, the mechanism is based on a weak assumption that CSS 

travelers arriving at a location during the same interval would wait together until the 

demand is satisfied by incoming SCs. This assumption holds only when the unit of one 

time interval in the model system is extremely small.  

This chapter aims to formulate and compare different FCFS mechanisms of one-

way CSS, of which the first two were suggested in the literature and the latter two are 

suggested in this chapter. The FCFS mechanisms concern situations in which travelers 

wish to take SCs at a CSS location with a supply shortage. With the focus on short-term 

supply-demand interactions, only user-based relocations are considered in the one-way 

CSS. No waiting FCFS (NW-FCFS) is a naive mechanism supposing that travelers 

immediately leave the location by taking other transport modes if no SC is available 

(Chang et al., 2017). Aggregate FCFS (A-FCFS) mechanism adopts the assumption from 
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Li et al. (2018) that considers travelers arriving at a CSS location during the same interval 

as an aggregate unit. The aggregate unit is served immediately if the supply of SCs is 

sufficient. Otherwise, the travelers in this aggregate unit would wait and be served 

together until the stock is replenished. In that sense, SC stock and shortage may co-exist. 

Disaggregate FCFS (D-FCFS) mechanism relaxes the assumption of the second by 

allowing a part of travelers to use the SCs as long as the stock exists and other travelers 

to be served successively as the stock is continuously replenished. Consequently, SC 

stock and shortage exist exclusively at a CSS location. VIP (very important person)  

membership D-FCFS (VD-FCFS) mechanism further introduces the VIP services, in 

which the VIP travelers are allowed to jump the queue. For each mechanism, the supply-

demand dynamics are formulated and the utilization rates at CSS locations are 

determined. To study the effects of different FCFS mechanisms and provide insightful 

comparisons, the mechanisms are embedded in a boundedly rational dynamic user 

equilibrium (BR-DUE) model in a bi-modal (PC and SC) transport network. Numerical 

examples demonstrate that different FCFS mechanisms tend to have different supply-

demand dynamics and that the latter two mechanisms are more efficient in satisfying the 

SC demand. Under the VD-FCFS mechanism, ordinary travelers have to depart earlier 

for using SCs to escape from the competition with VIP travelers. There is a saturation 

point in the share of VIP travelers, beyond which VIP services would not benefit.  

The remainder of the chapter is organized as follows. Section 5.2 presents the basic 

assumptions of the one-way CSS in a space-time bi-modal supernetwork. Section 5.3 

formulates four variants of FCFS mechanisms and the supply-demand dynamics of SCs. 

Section 5.4 discusses BR-DUE conditions and properties. Moreover, a path expansion 

strategy is proposed for calculating the path disutilities associated with the suggested 

FCFS mechanisms. Numerical examples are given in Section 5.5 to illustrate the 

essential ideas of the proposed model. Finally, conclusions are provided in Section 5.6.  

 

5.2 Basic assumptions and network representation 
 

Given the focus of analyzing FCFS mechanisms at CSS locations, the car-sharing trips 

are studied in a bi-modal transport network. The network-based equilibrium model is 

chosen because it provides useful comparison points (holding other conditions 

unchanged) under different mechanisms. To convey the essential ideas, the following 

assumptions are made. 

(1)  The travelers make commuting trips in a bi-modal transport network during peak 

hours, for which the energy supply by fuel or electricity is not a concern. The bi-

modal refers to PC and SC, which share the physical road network.  

(2)  All travelers’ own PCs and have access to SCs depending on the availability. The 

origins and destinations are in the PC network. Transfer in terms of parking or 

picking-up is needed for switching the modes.  
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(3)  Travelers demonstrate bounded rationality (BR) behavior and seek satisfactory 

choices of departure time, mode, and path in the bi-modal transport network. 

Travelers adapt the choices in a long-term process to achieve user equilibrium. 

(4)  Limited SCs are deployed in the study area under the same FCFS mechanism. A 

traveler needs to wait for an incoming SC when there is a supply shortage. Since 

the travelers do not know exactly when and how many SCs will come to the CSS 

location at the moment of arriving, the waiting time before the traveler accessing 

one SC is treated as an unknown. 

(5)  Parking a PC may involve parking fees at a certain location while parking an SC 

is free at all CSS locations. One SC serves one person per trip; thus, ride-sharing 

by multiple travelers is not considered.  

Following the multi-state supernetwork (SNK) representation (Liao et al., 2010, 

2013), a bi-modal supernetwork 𝑆𝑁𝐾(𝑁,𝐴) is considered, where 𝑁 and 𝐴 denote the 

sets of locations and links respectively. According to the concept of vehicle state, a road 

network is copied into two networks, in which traversing a link represents the physical 

mobility by a specific mode. The sub-networks are interconnected by transition links, 

representing the transfer between the two modes at CSS locations. The bi-modal 

supernetwork endogenously embeds mode choice into path choice. Figure 5.1 gives an 

example of trip representation, in which G is the traditional road network. Travel links 

(PC link set 𝐴𝑃𝐶  in red and SC link set 𝐴𝑆𝐶 in green) and transition links (𝐴𝑇𝑆 in blue) 

are two different types of links. 𝑟 and 𝑠 are nodes representing the origin and destination 

(OD) respectively; node 𝑏 is a CSS location. As depicted in this figure, the path from 𝑟 

to 𝑠 going through the blue links denotes a trip that the traveler picks up a PC at 𝑟 and 

drives to 𝑏, then takes an SC to the destination 𝑠, and finally egresses the SC. For the 

sake of convenience, picking up PC at 𝑟 and parking at 𝑏 are not shown in Figure 5.1.  

This trip can be extended in a 2-D space-time representation as depicted by Figure 

5.2, in which shapes of circle, square, and diamond denote locations for origin (𝑟), 

transfer node (𝑏), and destination (𝑠) respectively. To keep consistency, directed links in 

the same colors denote the same type of links, i.e., red for travel by PC, blue for transition 

links, and green for travel by SC. To exhibit transition states, locations 𝑟′, 𝑏′ and 𝑠′ are 

copies of 𝑟, 𝑏 and 𝑠 respectively to denote the completion of switching modes. Dummy 

links in blue are created to denote picking up or parking PC or SC in Figure 5.2. The 

thick (highlighted) directed links together form one specific space-time trip that a traveler 

leaves home during time interval 1 and picks up a PC during 𝑡1 , arrives at transfer 

location 𝑏 during 𝑡2, then transfers until the end of time interval 𝑡3, drives by SC to 

destination 𝑠 during 𝑡4, and egresses the SC during 𝑡5. Other space-time trips can also be 

represented in Figure 5.2. For example, the thin directed links form two alternative space-

time trips by PC and SC respectively.  
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Figure 5.1 Bi-modal supernetwork representation. 

 

 
 

Figure 5.2 Example of 2-D space-time supernetwork. 

 

5.3 FCFS mechanisms 
 

FCFS is a service management principle that processes queuing requests 

chronologically. With the FCFS principle in CSS, travelers who come first are served 

first. In the context of discrete-time domain, this section discusses four typical variants 

of FCFS mechanisms, namely, NW-FCFS, A-FCFS, D-FCFS, and VD-FCFS. The latter 

two are proposed to relax the strong assumption from Li et al. (2018). Given CSS location 

𝑎 and time interval 𝑘, 𝑆𝑎(𝑘), 𝐷𝑎(𝑘), ℎ𝑎(𝑘), and 𝑔𝑎(𝑘) are used to denote the supply, 

demand, stock, and shortage of SCs at 𝑎 at the end of time interval 𝑘, respectively. Let 

𝑢𝑎(𝑘) denote the arrival flow that completes SC trips at 𝑎 during 𝑘, 𝑣𝑎(𝑘) the arrival 
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flow that requests to use SCs, 𝑧𝑎(𝑘, 𝑤) the flow arriving at 𝑎 during 𝑘 and served after 

waiting time 𝑤, and 𝜆𝑎(𝑘, 𝑤) the proportion of travelers who arrive at 𝑎 during 𝑘 and 

are served after waiting 𝑤 time intervals. For the convenience of analysis, ℎ𝑎(0) is set 

as the initial distribution of SC, 𝑆𝑎(0) = ℎ𝑎(0) , and 𝐷𝑎(0) = 𝑢𝑎(0) = 𝑣𝑎(0) =

𝑔𝑎(0) = 0. For each FCFS mechanism, the supply-demand interactions are analyzed 

below to determine whether travelers’ requests of SCs are served and how long the 

travelers need to wait (if served).  

 

5.3.1 NW-FCFS mechanism 

 

Chang et al. (2017) assumed that travelers are either served due to a sufficient SC supply 

or seek alternative modes immediately to avoid waiting. This assumption results in an 

imaginative phenomenon that the queue is dismissed right away and no waiting time is 

involved, referred to as NW-FCFS. Given a time interval 𝑘 ≥ 1, the supply is the sum 

of existing stock and newly added SC supply. Since unserved travelers do not opt to wait 

for incoming SCs, there is no shortage under this mechanism. Thus, the demand is equal 

to the incoming SC requests. While the shortage is forced to reset to zero, the stock is 

equal to the surplus supply. The supply-demand dynamics under the NW-FCFS 

mechanism are formulated as 

 

 𝑆𝑎(𝑘) = ℎ𝑎(𝑘 − 1) + 𝑢𝑎(𝑘),      𝑎 ∈ 𝑁, 𝑘 ∈ 𝐾 (5.1) 

   

 𝐷𝑎(𝑘) = 𝑣𝑎(𝑘) (5.2) 

   

 ℎ𝑎(𝑘) = max{0, 𝑆𝑎(𝑘) − 𝐷𝑎(𝑘)} (5.3) 

   

 𝑔𝑎(𝑘) = 0 (5.4) 

 

The zero waiting time results in Eq. (5.5).  

 

 𝑧𝑎(𝑘, 𝑤) = {
min{𝐷𝑎(𝑘), 𝑆𝑎(𝑘)} , 𝑤 = 0          
0,                                          otherwise    

 (5.5) 

 

5.3.2 A-FCFS mechanism 

 

The A-FCFS mechanism treats travelers arriving at a CSS location during the same 

interval as an aggregate unit that is served before other units who arrive during a later 

interval (Li et al., 2018). When there is a sufficient SC supply, travelers in the same 

aggregate unit are served immediately; otherwise, they would wait together for the 

replenishment of SCs.  
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Compared with the NW-FCFS mechanism, the A-FCFS mechanism has the same 

supply formulation but a different demand formulation due to possible queues at the CSS 

locations. As queueing is allowed, the demand exists until being satisfied. The demand 

is an accumulation of the incoming SC requests and the shortage at the end of the 

previous time interval. The SC stock is formulated in a neat form as the non-negative 

difference between the accumulation of SC arrivals and the served SC requests. The SC 

shortage equals the accumulation of unserved travelers. The supply-demand dynamics 

under the A-FCFS mechanism are formulated as 

 

 𝐷𝑎(𝑘) = 𝑔𝑎(𝑘 − 1) + 𝑣𝑎(𝑘) (5.6) 

   

 ℎ𝑎(𝑘) = ℎ𝑎(0) +∑𝑢𝑎(𝜏)

𝑘

𝜏=0

−∑𝑣𝑎(𝜏)

𝑡̂

𝜏=0

 (5.7) 

   

 𝑔𝑎(𝑘) = {
∑ 𝑣𝑎(𝜏)

𝑘

𝜏=𝑡̂+1

,     𝑆𝑎(𝑘) < 𝐷𝑎(𝑘)

0,                        otherwise           

 (5.8) 

 

where 𝑡̂ is the maximum time interval until the cumulative SC requests are served by the 

cumulative SCs at the end of interval 𝑘 , formulated as  𝑡̂ = argmax
𝑡

{∑ 𝑣𝑎(𝜏)
𝑡
𝜏=0 ≤

ℎ𝑎(0) + ∑ 𝑢𝑎(𝜏)
𝑘
𝜏=0 , 𝑡 ≤ 𝑘}. With the definition of 𝑡̂, ∑ 𝑣𝑎(𝜏)

𝑡̂
𝜏=0  in Eq. (5.7) denotes 

the SC requests served by 𝑘 and ∑ 𝑣𝑎(𝜏)
𝑘
𝜏=𝑡̂+1  in Eq. (5.8) is the number of travelers that 

have not been served. Under the A-FCFS mechanism, the potential waiting time and the 

flow served during 𝑘 + 𝑤 are expressed as Eqs. (5.9)-(5.10) respectively. 

 

 𝑤𝑎(𝑘) = argmin
𝑡

{𝐷𝑎(𝑘) ≤ ℎ𝑎(𝑘 − 1) +∑𝑢𝑎(𝜏)

𝑡

𝜏=𝑘

} − 𝑘 (5.9) 

   

 𝑧𝑎(𝑘, 𝑤) = {
𝑣𝑎(𝑘),              𝑤 = 𝑤𝑎(𝑘) 
0,                      otherwise    

 (5.10) 

 

5.3.3 D-FCFS mechanism 
 

In reality, SC stock and shortage exist exclusively at a CSS location. When travelers 

arrive at a CSS location during the same time interval, a proportion of the travelers can 

use the SCs if there is an insufficient SC stock, while other travelers will be served by 

incoming SCs. Rather than considering travelers arriving during the same interval as an 

aggregate unit, the D-FCFS mechanism enables CSS to serve them during different time 

intervals, no later than the time point starting to serve travelers who arrive later.  
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The supply and demand formulations under the D-FCFS mechanism remain the 

same as Eqs. (5.1) and (5.6) respectively. However, the disaggregation of travelers results 

in different formulations of the SC stock and shortage as  

 

 ℎ𝑎(𝑘) = max{0, 𝑆𝑎(𝑘) − 𝐷𝑎(𝑘)} (5.11) 

   

 𝑔𝑎(𝑘) = max{0, 𝐷𝑎(𝑘) − 𝑆𝑎(𝑘)} (5.12) 

 

where ℎ𝑎(𝑘) ∙ 𝑔𝑎(𝑘) = 0 holds ∀𝑎, 𝑘. With the D-FCFS mechanism, travelers arriving 

at 𝑎 during 𝑘 may be served at different time intervals. As a specific traveler cannot be 

identified from the flow, the potential waiting time cannot be formulated for a specific 

traveler. The first traveler is served when the demand at the end of interval 𝑘 − 1 is fully 

met and there is a surplus supply. The last traveler is served when the current demand is 

fully satisfied by the current or any future supply. Mathematically, the minimum and 

maximum potential waiting times are expressed respectively as 

 

 𝑤𝑎, min(𝑘) = argmin
𝑡

{𝐷𝑎(𝑘 − 1) < 𝑆𝑎(𝑘 − 1) +∑𝑢𝑎(𝜏)

𝑡

𝜏=𝑘

} − 𝑘 (5.13) 

   

 𝑤𝑎, max(𝑘) = argmin
𝑡

{𝐷𝑎(𝑘) ≤ ℎ𝑎(𝑘 − 1) +∑𝑢𝑎(𝜏)

𝑡

𝜏=𝑘

} − 𝑘 (5.14) 

 

For travelers arriving at 𝑎 during 𝑘 + 1, the earliest time being served is expressed 

by   

 

𝑘 + 1 + 𝑤𝑎, min(𝑘 + 1) = argmin
𝑡

{𝐷𝑎(𝑘) < 𝑆𝑎(𝑘) + ∑ 𝑢𝑎(𝜏)

𝑡

𝜏=𝑘+1

}         

                                       = argmin
𝑡

{𝐷𝑎(𝑘) < ℎ𝑎(𝑘 − 1) +∑𝑢𝑎(𝜏)

𝑡

𝜏=𝑘

}

≥ 𝑘 + 𝑤𝑎, max(𝑘)            

 (5.15) 

 

where 𝑘 + 𝑤𝑎, max(𝑘) is the maximum service time for travelers arriving at 𝑎 during 𝑘. 

The second equation holds due to the definition of the SC supply in Eq. (5.1). The 

inequality in the third line means that travelers arriving later are not served earlier, which 

is consistent with the FCFS principle.   

Under the D-FCFS mechanism, travelers arriving during the same interval are 

divided into several groups and served with different waiting times. The quantification 

of the number of CSS recipients in each group, 𝑧𝑎(𝑘, 𝑤), can be distinguished into two 
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circumstances. If 𝑤𝑎, min(𝑘) = 𝑤𝑎, max(𝑘) , all travelers arriving during 𝑘  are served 

simultaneously and 𝑧𝑎(𝑘, 𝑤)  is expressed by Eq. (5.10). Otherwise, 𝑤𝑎, min(𝑘) <

𝑤𝑎, max(𝑘) , 𝑧𝑎(𝑘, 𝑤)  is calculated based on where 𝑤  is located within 

[𝑤𝑎, min(𝑘), 𝑤𝑎, max(𝑘)]. If 𝑤 = 𝑤𝑎, min(𝑘), the SC supply at 𝑎 at the end of 𝑘 + 𝑤 serves 

the travelers arriving at 𝑎  earlier than the beginning of 𝑘  first and then a group of 

travelers arriving at 𝑎  during 𝑘 . When 𝑤  falls between 𝑤𝑎, min(𝑘)  and 𝑤𝑎, max(𝑘), all 

arrival SCs during interval range (𝑘 + 𝑤𝑎, min(𝑘), 𝑘 + 𝑤𝑎, max(𝑘)) are used for serving 

those travelers arriving during 𝑘. If 𝑤 = 𝑤𝑎, max(𝑘), the remainder travelers are served. 

In sum, 𝑧𝑎(𝑘, 𝑤) is formulated as  

 

 𝑧𝑎(𝑘, 𝑤)=

{
 
 
 
 

 
 
 
 
ℎ𝑎(𝑘 − 1) + ∑ 𝑢𝑎(𝜏)

𝑘+𝑤

𝜏=𝑘

– 𝑔𝑎(𝑘 − 1),    𝑤 = 𝑤𝑎, min(𝑘)                         

𝑢𝑎(𝑘+𝑤),                                                     𝑤 ∈ (𝑤𝑎, min(𝑘), 𝑤𝑎, max(𝑘)) 

𝑣𝑎(𝑘) − ∑ 𝑧𝑎(𝑘, 𝜏)

𝑤𝑎, max(𝑘)−1

𝜏=𝑤𝑎, min(𝑘)

,                   𝑤 = 𝑤𝑎, max(𝑘)                         

0,                                                                    otherwise                                   

 (5.16) 

 

The above three FCFS mechanisms have different expressions of 𝑧𝑎(𝑘, 𝑤), but a 

common expression of the proportion of travelers arriving during 𝑘 and being served at 

𝑎 after waiting for 𝑤 intervals. The proportion is denoted by 𝜆𝑎(𝑘, 𝑤) and formulated as  

 

 𝜆𝑎(𝑘, 𝑤) =
𝑧𝑎(𝑘, 𝑤)

𝑣𝑎(𝑘)
 (5.17) 

 

Node arriving flow 𝑣𝑎(𝑘)  is reset to max {𝑣𝑎(𝑘), 𝜊}  in the algorithmic 

implementations to ensure the denominator larger than zero, where 𝜊 is a very small 

positive number satisfying 𝜊 → 0+.  

 

5.3.4 VD-FCFS mechanism 

 

The VD-FCFS mechanism adds privilege service to the D-FCFS mechanism. VD-FCFS 

mechanism allows VIP members who pay an extra VIP membership fee to jump the 

queue. Depending on the service industry, pricing policy, and equity considerations, 

various privilege services exist. This mechanism concerns two traveler classes (VIP and 

ordinary) and allows VIP travelers to be served ahead of ordinary travelers who are 

already waiting in the queue. Although VIP travelers may be served earlier than ordinary 

travelers, the FCFS principle is maintained when a queue of VIP travelers exists.  



Analysis of FCFS Mechanisms in One-way CSS 

75 

The demand and shortage of SCs have distinctions between the two classes of 

travelers. To keep consistency, the notations used above attached with superscripts “V” 

and “O” refer to the same entities for VIP and ordinary travelers respectively (wildcard 

∗∈ {V, O}); and notations without any superscripts denote the summation of both classes 

of travelers. Under the VD-FCFS mechanism, the total SC supply has the same 

formulation as Eq. (5.1). The demand, stock, and shortage of SCs are formulated as 

 

 𝐷𝑎
∗(𝑘) = 𝑔𝑎

∗(𝑘 − 1) + 𝑣𝑎
∗(𝑘) (5.18) 

   

 ℎ𝑎(𝑘) = max{0, 𝑆𝑎(𝑘) − 𝐷𝑎
V(𝑘) − 𝐷𝑎

O(𝑘)} (5.19) 

   

 𝑔𝑎
V(𝑘) = max{0, 𝐷𝑎

V(𝑘) − 𝑆𝑎(𝑘)} (5.20) 

   

 𝑔𝑎
O(𝑘) = {

𝐷𝑎
O(𝑘),                            𝐷𝑎

V(𝑘) ≥ 𝑆𝑎(𝑘)                 

𝐷𝑎(𝑘) − 𝑆𝑎(𝑘),            𝐷𝑎(𝑘) ≥ 𝑆𝑎(𝑘) > 𝐷𝑎
V(𝑘)

0,                             otherwise                             

 (5.21) 

 

Eqs. (5.18)-(5.20) have similar expressions with the corresponding terms under the 

D-FCFS mechanism. Eq. (5.21) shows that the SC shortage of VIP travelers is satisfied 

before that of ordinary travelers.  

The waiting times and the served flow of VIP travelers, which are not affected by 

ordinary travelers, are formulated as Eqs. (5.22)-(5.24) for completeness.  

 

 𝑤𝑎, min
V (𝑘) = argmin

𝑡
{𝐷𝑎

V(𝑘 − 1) < 𝑆𝑎(𝑘 − 1) +∑𝑢𝑎(𝜏)

𝑡

𝜏=𝑘

} − 𝑘 (5.22) 

   

 𝑤𝑎, max
V (𝑘) = argmin

𝑡
{𝐷𝑎

V(𝑘) ≤ ℎ𝑎(𝑘 − 1) +∑𝑢𝑎(𝜏)

𝑡

𝜏=𝑘

} − 𝑘 (5.23) 

   

 𝑧𝑎
V(𝑘, 𝑤)=

{
 
 
 
 

 
 
 
 
ℎ𝑎(𝑘 − 1)+∑ 𝑢𝑎(𝜏)

𝑘+𝑤

𝜏=𝑘

− 𝑔𝑎
V(𝑘 − 1),     𝑤 = 𝑤𝑎, min

V (𝑘)                        

𝑢𝑎(𝑘+𝑤),                                                     𝑤 ∈ (𝑤𝑎, min
V (𝑘),𝑤𝑎, max

V (𝑘)) 

𝑣𝑎
V(𝑘) − ∑ 𝑧𝑎

V(𝑘, 𝜏)

𝑤𝑎, max
V (𝑘)−1

𝜏=𝑤𝑎, min
V (𝑘)

,                  𝑤 = 𝑤𝑎, max
V (𝑘)                        

0,                                                                    otherwise                                 

 (5.24) 
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Different from the above, ordinary travelers arriving at 𝑎 during interval 𝑘 begin to 

be served if two clusters of SC requests are served and a surplus supply exists. The first 

cluster is the demand of both classes of travelers at the end of interval 𝑘 − 1, 𝐷𝑎(𝑘 − 1), 

while the second is the inflow of cumulative VIP travelers from the beginning of 𝑘 to the 

end of 𝑘+𝑤, ∑ 𝑣𝑎
V(𝜏)𝑘+𝑤

𝜏=𝑘 . Any VIP travelers arriving between the beginning of 𝑘 and 

the end of 𝑘+𝑤 jump the queue and delay the CSS for ordinary travelers. Similarly, the 

maximum potential waiting time depends on the inflow of cumulative VIP travelers from 

the beginning of 𝑘, the SC shortage of VIP travelers at the end of 𝑘 − 1, and the ordinary 

demand at the end of 𝑘. Hence, the bounded potential waiting times and served flow of 

ordinary travelers are  

 

 𝑤𝑎,min
O (𝑘)= argmin

𝑡
{𝐷𝑎(𝑘 − 1)+∑𝑣𝑎

V(𝜏)

𝑡

𝜏=𝑘

< 𝑆𝑎(𝑘 − 1)+∑𝑢𝑎(𝜏)

𝑡

𝜏=𝑘

} − 𝑘 (5.25) 

   

      𝑤𝑎,max
O (𝑘)=argmin

𝑡
{𝐷𝑎

O(𝑘)+𝑔𝑎
V(𝑘 − 1)+∑𝑣𝑎

V(𝜏)

𝑡

𝜏=𝑘

≤ℎ𝑎(𝑘 − 1)+∑𝑢𝑎(𝜏)

𝑡

𝜏=𝑘

} − 𝑘 (5.26) 

   

 𝑧𝑎
O(𝑘, 𝑤)=

{
 
 
 
 

 
 
 
 
ℎ𝑎(𝑘– 1)+ ∑ 𝑢𝑎(𝜏)

𝑘+𝑤

𝜏=𝑘

–𝑔𝑎
O(𝑘– 1)–𝑔𝑎

V(𝑘– 1)– ∑ 𝑣𝑎
V(𝜏)

𝑘+𝑤

𝜏=𝑘

,  𝑤=𝑤𝑎, min
O (𝑘)      

max(𝑢𝑎(𝑘+𝑤)–𝑔𝑎
V(𝑘+𝑤–1)– 𝑣𝑎

V(𝑘+𝑤), 0) , 𝑤 ∈ (𝑤𝑎, min
O (𝑘), 𝑤𝑎, max

O (𝑘)) 

𝑣𝑎
O(𝑘) − ∑ 𝑧𝑎

O(𝑘, 𝜏)

𝑤𝑎, max
O (𝑘)−1

𝜏=𝑤𝑎, min
O (𝑘)

,                              𝑤 = 𝑤𝑎, max
O (𝑘)                         

0,                                                                                 otherwise                                   

 (5.27) 

 

For VIP travelers, the served flow formulated as Eq. (5.24) has a similar form with 

Eq. (5.16). The served flow of ordinary travelers, formulated as Eq. (5.27), is subject to 

the served flow of VIP travelers. Both classes of travelers have the same formulation of 

𝜆𝑎
∗ (𝑘, 𝑤) as 

 

 𝜆𝑎
∗ (𝑘, 𝑤) =

𝑧𝑎
∗(𝑘, 𝑤)

𝑣𝑎
∗(𝑘)

 (5.28) 

 

As seen above, under the four FCFS mechanisms, the supply-demand dynamics of 

SCs have different outcomes. Although the formulations are centered at user-based 

relocations, operator-based relocations of human-driven or autonomous SCs can also be 

incorporated into the supply-demand dynamics with modifications in 𝑢𝑎(𝑘) and 𝑣𝑎(𝑘). 

The following remarks are made regarding the relationships among the four FCFS 

mechanisms.  
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Remark 5.1 Given the same SC requests under the four FCFS mechanisms, the supply 

has the same formulation, but the demand is satisfied at different levels. The NW-FCFS 

mechanism avoids waiting time at the expense of possible demand loss. The co-existence 

of SC stock and shortage under the A-FCFS mechanism has a negative influence on the 

waiting time and utilization rate. Comparatively, SCs under the D-FCFS and VD-FCFS 

mechanisms can be used more efficiently. When the length of one time interval is 

sufficiently small, the A-FCFS mechanism approximates the D-FCFS mechanism. The 

VD-FCFS mechanism degenerates into the D-FCFS mechanism when there is only one 

traveler class.  

 

Remark 5.2 The choices of SCs are reflections of the supply-demand dynamics and 

different at most cases across the FCFS mechanisms. However, when certain admissible 

conditions are met, the choices tend to be consistent. It is obvious that 𝑆𝑎(𝑘) ≥ 𝐷𝑎(𝑘) is 

an admissible condition among the NW-FCFS, A-FCFS, and D-FCFS mechanisms. 

When 𝑆𝑎(𝑘) < 𝐷𝑎(𝑘), A-FCFS and D-FCFS mechanisms have the same supply-demand 

dynamics under the condition that there exists a 𝑡  less than 𝑘  satisfying ℎ𝑎(0) +

∑ 𝑢𝑎(𝜏)
𝑘
𝜏=0 = ∑ 𝑣𝑎(𝜏)

𝑡
𝜏=0 . The condition indicates that the arriving SCs before the end 

of 𝑘 can exactly serve the SC requests at an interval before 𝑘. Since the equation is hard 

to be fulfilled, D-FCFS outperforms A-FCFS in general. The supply-demand dynamics 

and admissible conditions under the four mechanisms are illustrated in Appendix 5.A.  

 

5.4 Incorporation of FCFS mechanism in a BR-DUE model 
 

This section first presents the link in a bi-modal supernetwork. Next, to address the 

different waiting times under the D-FCFS and VD-FCFS mechanisms, a path expansion 

strategy is proposed to express the path disutility.  

 

5.4.1 Link disutility  

 

As shown in Section 5.2, transition and travel links are two link types in the bi-modal 

supernetwork. Their link disutilities are discussed separately.  

 

Transition links 

Transition links connect the same nodes of different vehicle states to denote the process 

of parking/picking-up a PC or SC. The disutility of a transition link can be simply 

expressed as  

 

 𝑐𝑙(𝑘) = 𝜂4 ∙ 𝜓𝑙(𝑘) + 𝜂5 ⋅ 𝜙𝑙(𝑘),      ∀ 𝑘 ∈ 𝐾, 𝑙 ∈ 𝐴𝑇𝑆 (5.29) 
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where 𝑐𝑙(𝑘) is the link disutility incurred by travelers that enter link 𝑙 during 𝑘, 𝜓𝑙(𝑘) 

and 𝜙𝑙(𝑘)  are the location- and time-dependent transition time and monetary cost 

respectively; 𝜂4 and 𝜂5 are the disutility coefficients of transition time and monetary cost 

respectively.  

In addition to Eq. (5.29), the last transition link disutility 𝑐𝑙(𝑘) is added with an 

unpunctual term 𝑐̃𝑙(𝑘′) to capture early and late arrivals.  

 

 𝑐̃𝑙(𝑘′) = {
𝜂2 ∙ [𝑘

𝑟𝑠∗  − 𝜅𝑟𝑠 − 𝑘′],     if 𝑘′ < 𝑘𝑟𝑠∗ − 𝜅𝑟𝑠

𝜂3 ∙ [𝑘
′ − 𝑘𝑟𝑠∗ − 𝜅𝑟𝑠],      if 𝑘′ > 𝑘𝑟𝑠∗ + 𝜅𝑟𝑠

0,                                          otherwise              

  ∀ 𝑙 ∈ 𝐴𝑇𝑆, 𝑟𝑠 ∈ 𝑅𝑆 (5.30) 

 

where 𝑘′ is the arrival time at destination 𝑠. The unpunctual formulation (Eq. (5.30)) is 

consistent with Eq. (2.2).  

 

Travel links 

Travel links connect different nodes in the same sub-networks. Travel time and monetary 

expenses are considered in the link disutility. Particularly, for the start link of an SC trip, 

as shown in Section 5.3, travelers at a CSS location may experience waiting. For an 

ordinary traveler, the disutility of the start link of an SC trip is expressed as a weighted 

sum as 

 

 𝑐𝑙(𝑘) = 𝜂6 ⋅ 𝑤 + 𝜂7 ⋅ ℊ𝑙(𝑘 + 𝑤),      𝑘 ∈ 𝐾, 𝑙 ∈ 𝐴𝑆𝐶 (5.31) 

 

where link 𝑙 is the first link of an SC trip, 𝑤 is the waiting time for travelers arriving at 

the entry node of 𝑙 during 𝑘, 𝜂6 denotes the disutility coefficient of waiting time, 𝜂7 is 

the disutility coefficient of travel time by SC, the linear price of using SC is implicitly 

indicated by 𝜂7, and ℊ𝑙(∙) is a travel time operator.   

Let 𝑐0 be the average VIP membership fee per trip. The disutility of the start link 

of an SC trip for a VIP traveler is expressed as 

 

 𝑐𝑙
V(𝑘) = 𝜂6 ∙ 𝑤 + 𝜂7 ∙ ℊ𝑙(𝑘 + 𝑤) + 𝜂8 ⋅ 𝑐0,      𝑘 ∈ 𝐾, 𝑙 ∈ 𝐴𝑆𝐶 (5.32) 

 

where 𝜂8 denotes the disutility coefficient of monetary cost for the VIP membership fee 

per trip.  

For the subsequent SC links, no waiting time is needed. The disutility of these SC 

links has a similar formulation with the PC link disutility presented by Eq. (5.33), except 

for the disutility coefficient of link travel time by PC (𝜂1).  

 

 𝑐𝑙(𝑘) = 𝜂1 ∙ ℊ𝑙(𝑘),      𝑘 ∈ 𝐾, 𝑙 ∈ 𝐴𝑃𝐶  (5.33) 
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Remark 5.3 Several traffic flow propagation models, for example, the point-queue 

system (Huang and Lam, 2002), the delay-function-based link model (Nie and Zhang, 

2005), and the link transmission model (Yperman, 2007), can be employed to establish 

the travel time operator ℊ𝑙(∙). The main factors affecting travel times are link flows and 

capacities. As the physical roads are shared by PCs and SCs, ℊ𝑙(∙) is determined by the 

link flows of PCs and SCs.  

 

5.4.2 Path disutility, path expansion, and BR-DUE model 

 

By combining the disutilities of transition links, PC links, and SC links, the path disutility 

is calculated as the summation of the associate link disutilities as   

 

 𝑐𝑝
𝑟𝑠(𝑘,  𝒇) = ∑∑𝛿𝑝𝑙𝑘

𝑟𝑠 (𝜏) ∙ 𝑐𝑙(𝜏)

𝜏∈𝐾𝑙∈𝐴

,      ∀ 𝑟𝑠 ∈ 𝑅𝑆, 𝑝 ∈ 𝑃𝑟𝑠, 𝑘 ∈ 𝐾 (5.34) 

 

where 𝛿𝑝𝑙𝑘
𝑟𝑠 (𝜏) is a 0-1 indicator variable, 𝛿𝑝𝑙𝑘

𝑟𝑠 (𝜏) = 1 if travelers of 𝑟𝑠 depart during 𝑘 

via path 𝑝 and arrive at the entry node of link 𝑙 during 𝜏 and 𝛿𝑝𝑙𝑘
𝑟𝑠 (𝜏) = 0 otherwise.  

Note that the link-path incidence variable 𝛿𝑝𝑙𝑘
𝑟𝑠 (𝜏) is often used in the literature to 

force that travelers departing during the same interval are bundled all the time on a path. 

Due to the aggregate property, the path disutility under the A-FCFS mechanism can be 

derived from Eq. (5.34). However, under the D-FCFS and VD-FCFS mechanisms, the 

travelers may wait for different times, as formulated in Section 5.3. In this situation, a 

path is extended into several time-expanded paths, which have the same source nodes 

but are split at the CSS location due to different waiting times. The travelers having the 

same waiting time for SCs are assigned to the same expanded path, and hence the 

disutility of each expanded path can still be obtained in the way of Eq. (5.34). Taking all 

expanded paths together, the weighted sum is applied to derive the path disutility as  

 

 𝑐𝑝
𝑟𝑠(𝑘,  𝒇) = ∑𝜛𝑝𝑗(𝑘) ∙ 𝑐𝑝𝑗

𝑟𝑠(𝑘,  𝒇)

𝑝𝑗

,      ∀𝑟𝑠 ∈ 𝑅𝑆, 𝑝 ∈ 𝑃𝑟𝑠 , 𝑘 ∈ 𝐾 (5.35) 

 

where 𝑝𝑗  denotes an expanded path of path 𝑝 ,  𝑐𝑝𝑗
𝑟𝑠(𝑘,  𝒇) is the disutility of 𝑝𝑗 , and 

𝜛𝑝𝑗(𝑘) is the proportion of travelers. The expanded paths enable the disaggregation of 

aggregate choice of SCs. 

Figure 5.3 illustrates the path expansion of the highlighted space-time path in 

Figure 5.2 under the D-FCFS mechanism. After parking PCs at 𝑏, the travelers arrive at 

𝑏′ during 𝑡3 and request SCs. Due to SC shortage, travelers may wait from 𝑤𝑏′,min(𝑡3) 

to 𝑤𝑏′,max(𝑡3) intervals to be served. Based on the different waiting times, the path is 
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transformed into several expanded paths. The number of expanded paths equals the 

number of different waiting time intervals. In this example, three time-expanded paths 

are generated. For the left-most expanded path, travelers arrive at 𝑏′ and wait 𝑤𝑏′,min(𝑡3) 

intervals. The proportion of travelers on this expanded path, 𝜛𝑝1(𝑘) , equals 

𝜆𝑏′(𝑡3, 𝑤𝑏′,min(𝑡3)). Travelers on the middle and right-most expanded paths wait 𝑤 and 

𝑤𝑏′,max(𝑡3)  intervals, and the corresponding proportions are 𝜆𝑏′(𝑡3, 𝑤)  and 

𝜆𝑏′(𝑡3, 𝑤𝑏′,max(𝑡3)), respectively. Traveler on these expanded paths finish their trips 

during 𝑡7, 𝑡8, and 𝑡9, respectively.  

Under the VD-FCFS mechanism, VIP and ordinary travelers have different SC link 

disutilities. Path expansion can also be used to calculate the path disutilities for VIP and 

ordinary travelers respectively.  

 

Remark 5.4 Eq. (5.35) is a generalized form of path disutility after one-time path 

expansion. It can be extended to calculate path disutility including multiple SC trips in a 

trip chain. In that case, multiple path expansions are needed at different CSS locations. 

The travelers are divided and assigned to the expanded paths whenever path expansion 

is triggered at a CSS location. The proportion of travelers on each expanded path equals 

the product of 𝜆𝑎(𝜏, 𝑤), ∀𝑎. It is easy to show that the sum of the proportions of all 

expanded paths equals 1 based on Eqs. (5.17) and (5.28).  

 

To model travel choices more realistically, the BR behavior is embedded in a DUE 

model. The BR-DUE condition is stated as: for each OD pair, the disutilities experienced 

by travelers fall within an acceptable range (Han et al., 2015). Formally, the condition 

can be expressed as Eq. (2.16). The corresponding variational inequality (VI) problem 

VI(𝒇, 𝛺) of this condition can be formulated as Eqs. (2.17)-(2.19).  

 

 

Figure 5.3 Illustration of path expansion. 
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The point queue method is adopted in the discrete-time domain for dynamic 

network loading and the route-swapping algorithm for flow reassignments (Huang and 

Lam, 2002). Eq. (2.18) indicates that the feasible set 𝛺 is a compact closed convex set. 

The solutions to VI(𝒇, 𝛺) problem Eqs. (2.17)-(2.19) exist if 𝑐𝑝
𝑟𝑠(𝑘, 𝒇) is continuous with 

path flow 𝒇. When 𝑆𝑎(𝑘) ≥ 𝐷𝑎(𝑘), ∀𝑎, the continuity can be guaranteed according to 

Eqs. (5.29)-(5.35). Otherwise, the continuity may not be satisfied due to the non-

separable SC supply-demand dynamics (the discontinuity is illustrated in Appendix 5.B). 

Coincidentally, the disutility tolerances due to the BR behavior soften the effects of 

discontinuity and contribute to the existence of BR-DUE solutions. According to Han et 

al. (2015), the solution to VI(𝒇, 𝛺) problem Eqs. (2.17)-(2.19) is not unique.  

 

Remark 5.5 Remark 5.1 indicates that the D-FCFS and VD-FCFS mechanisms overall 

lead to more efficient usage of SCs than the A-FCFS mechanism. In the context of BR, 

the derived benefit at the BR-DUE state may be less obvious, especially when the length 

of one time interval is small. Due to the indifferent band of disutility in Eq. (2.16), 

travelers may not be sensitive to the disutility loss due to less waiting time. Consequently, 

the effects of disaggregating the SC requests during the same interval may be attenuated.  

 

5.4.3 Path expansion strategy in a column generation algorithm 

 

In the bi-modal supernetwork, a path choice encompasses the choice of departure time, 

mode, and path. As a result of the high choice dimensions, the number of possible time-

dependent paths may be huge. To circumvent path enumeration, a column generation 

(CG) scheme is adapted to solve the BR-DUE problem. The recursive formulations of 

path disutilities (Dean, 2004; Liao, 2016) are applied in a space-time supernetwork for 

the path search. To speed up the intermediate iterations, the spatial-temporal exploitation 

and exploration strategies suggested in Chapter 4 are simplified. Furthermore, under the 

D-FCFS and VD-FCFS mechanisms, the path expansion strategy (Eq. (5.35)) is 

integrated into the CG scheme. The adaptive CG algorithm differs in three aspects 

compared with the one suggested by Chapter 4. First, the spatial exploration strategy of 

adjusting 𝜀𝑛
𝑟𝑠 up dynamically is discarded to reduce the number of intermediate network 

loadings. The refined adjustment of convergence thresholds can reduce the side-effects 

due to the discontinuity of path disutility. Second, the supply-demand dynamics of SCs 

need to vary with the temporal resolutions. Third, the path expansion strategy is 

embedded in network loadings to calculate the weighted path disutility.   

The required temporal and spatial resolutions at the BR-DUE states are denoted by 

∆ and 𝜀𝑟𝑠, which are the minimum length of one time interval and the minimum relative 

convergence threshold of 𝑟𝑠 respectively. Within the current temporal resolution ∆𝑛, the 

following criterion is used to measure the convergence of the traffic assignment process.  
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 𝑅𝑒𝑔𝑎𝑝(𝑘, 𝒇𝒏) ≤ 𝜀𝑛
𝑟𝑠,      𝑟𝑠 ∈ 𝑅𝑆 (5.36) 

 

where 𝑅𝑒𝑔𝑎𝑝(𝑘, 𝒇𝒏) is the relative gap to measure the convergence of the solution 

algorithm and calculated by Eq. (4.8). 

The spatial-temporal exploitation strategies are used to adjust ∆𝑛  and 𝜀𝑛
𝑟𝑠 . As 

shown in Table 5.1, when no new path is found at iteration 𝑛, the spatial exploitation is 

triggered by decreasing 𝜀𝑛
𝑟𝑠. If 𝜀𝑛

𝑟𝑠 equals 𝜀𝑟𝑠, the temporal exploitation is performed by 

decreasing ∆𝑛 . Without the exploration strategies, the spatial-temporal exploitation 

strategies alone can still ensure the proposed CG algorithm to converge to a solution with 

reduced computation times compared to the original CG. 

Under the D-FCFS and VD-FCFS mechanisms, the path expansion strategy is used 

to record the expanded path inflows and outflows for calculating 𝜛𝑝𝑗(𝑘) in Eq. (5.35). 

Denote the inflow of time-dependent path (𝑝, 𝑘) by 𝑓𝑝
𝑟𝑠(𝑘) and the outflow of expanded 

path (𝑝𝑗 , 𝑘) by 𝑓𝑝𝑗
𝑟𝑠(𝑘) (𝑗 = 1, 2, … , ℎ) through the dynamic network loading, where ℎ is 

the number of expanded paths. 𝜛𝑝𝑗(𝑘) is calculated as 

 

 𝜛𝑝𝑗(𝑘) =
𝑓𝑝𝑗
𝑟𝑠(𝑘)

𝑓𝑝
𝑟𝑠(𝑘)

 (5.37) 

 

The pseudo-codes of the adaptive CG algorithm with simplified strategies are 

shown by Algorithm 5.1 below. The algorithm starts with the parameter initialization 

and then equilibrates path flows in Step 2. Incorporating the path expansion strategy, 

𝜛𝑝𝑗(𝑘)  is derived from the dynamic network loading process and 𝑐𝑝
𝑟𝑠(𝑘,  𝒇𝒏)  is 

calculated according to Eqs. (5.34)-(5.35). Flow 𝒇𝒏 is equilibrated on the current path set 

𝑃𝑛
𝑟𝑠  based on 𝑐𝑝

𝑟𝑠(𝑘,  𝒇𝒏) until Eq. (5.36) is satisfied. Step 3 adopts a tolerance-based 

minimum disutility path search to incorporate the travel behavior of BR. Step 4 lists three 

different stopping criteria. The first one detects whether a path already exists in the 

current path set and the latter two refer to the spatial-temporal exploitation processes. 

The algorithm is terminated when these criteria are satisfied simultaneously.  

 

Table 5.1 The spatial-temporal exploitation strategies 

Strategy Condition Operation 

Spatial exploitation 
no new path is found  

at iteration 𝑛 
𝜀𝑛+1
𝑟𝑠 = max(𝜗1 ∙ 𝜀𝑛

𝑟𝑠,  𝜀𝑟𝑠) 

Temporal exploitation 
no new path is found  

& 𝜀𝑛
𝑟𝑠 = 𝜀𝑟𝑠 

∆𝑛+1= max(⌊𝜗2 ∙ ∆𝑛⌋,  ∆) 

Note: 𝜗1, 𝜗2 ∈ (0, 1) are scaling parameters and ⌊∙⌋ is an integer-floor operator. 
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Algorithm 5.1 Adaptive CG algorithm  

Step 1: Initialization 

        Set iteration number 𝑛 = 1, 𝒇𝑛 = 𝟎 and initial ∆𝑛, 𝜀𝑛
𝑟𝑠 and 𝑃𝑛

𝑟𝑠, ∀𝑟𝑠 ∈ 𝑅𝑆. 

Step 2: Traffic assignment  

        Calculate path disutility 𝑐𝑝
𝑟𝑠(𝑘,  𝒇𝒏) through path expansion strategy and equilibrate path 

flows 𝒇𝒏  

        on 𝑃𝑛
𝑟𝑠 by a route-swapping algorithm such that Eq. (5.36) is met.   

Step 3: Tolerance-based minimum disutility path search 

Search for acceptable paths 𝑝̅ satisfying 𝑐min
𝑟𝑠 (𝒇𝒏) − 𝑐𝑝̅

𝑟𝑠(𝑘, 𝒇𝒏) ≥ 𝜖
𝑟𝑠 ∙ 𝑐min

𝑟𝑠 (𝒇𝒏), where 

𝜖𝑟𝑠 denotes the relative indifference threshold of 𝑟𝑠 toward path-switching.  

Step 4: Stopping criteria 

Step 4.1: If ∀𝑝̅ ∈ 𝑃𝑛
𝑟𝑠, continue; otherwise, update 𝑃𝑛

𝑟𝑠 = 𝑃𝑛
𝑟𝑠 ∪ 𝑝̅ and go to Step 4.4. 

Step 4.2: If 𝜀𝑛
𝑟𝑠 = 𝜀𝑟𝑠 , continue; otherwise, the spatial exploitation is triggered by 

decreasing 𝜀𝑛
𝑟𝑠, update 𝒇𝒏 and go to Step 4.4.  

Step 4.3: If ∆𝑛= ∆, go to Step 5; otherwise, the temporal exploitation is triggered by 

decreasing ∆𝑛 and go to Step 4.4. 

Step 4.4: Set 𝑛 = 𝑛 + 1 and go to Step 2. 

Step 5: Termination  

Stop the algorithm and obtain the BR-DUE solution. 

 

Remark 5.6 The essence of the path expansion strategy lies in flow separation and 

tracking during the dynamic network loadings. The time-expanded paths can be 

seamlessly integrated with the path generation process of the CG scheme. Given 

temporal resolution Δ𝑛 at intermediate iteration 𝑛, the time complexities for path search 

and network loading are 𝑂(|𝑅𝑆| ∙ |𝐴| ∙ |𝐾𝑛|)  and 𝑂(∑ |𝑃𝑟𝑠|𝑟𝑠 ∙ |𝐴′| ∙ |𝐾𝑛| ∙ 𝑚1) 

respectively. When SC supplies are insufficient, the value of 𝑚1  and the number of 

intermediate iterations may increase significantly, which prolongs the computation time. 

 

5.5 Numerical examples 
 

This section presents two numerical examples to illustrate the supply-demand dynamics 

and BR-DUE solutions under different FCFS mechanisms. The supply-demand 

dynamics and average waiting times are first compared in a six-node network. Next, the 

Sioux Falls network is used to run sensitivity tests and elaborate on the VD-FCFS 

mechanism. The solution algorithm is coded in MATLAB and run on a personal 

computer with an Intel(R) Core(TM) i5-7300U 2.60 GHz CPU and 8.00 GB RAM. The 

time horizon falls within [7:00 am, 10:00 am]. Based on the parameter setup by Chapter 

4, Parameters are set as 𝜂1 = 6.4, 𝜂2 = 3.9, 𝜂3 = 15.21, 𝜂4 = 3.0, 𝜂5 = 1, 𝜂6 = 3.5, 

𝜂7 = 8.2, and 𝜂8 = 1 in either one unit of disutility per hour (h) or dollar ($) (see Section 

5.4), the preferred arrival time (PAT) to 9:00 am, 𝜅𝑟𝑠 = 0.1  h in Eq. (5.30), the 

percentage of VIP members to 20%, the average VIP membership fee for one trip 𝑐0 =
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0.2 $, 𝜀𝑟𝑠 = 0.1, 𝜖𝑟𝑠 = 0.01, 𝜗1 = 𝜗2 = 0.5, Δ = 1 min, 𝜀1
𝑟𝑠 = 0.2 and Δ1 = 2 min in 

the adaptive CG algorithm.  

 

5.5.1 Example 1: six-node network 

 

Figure 5.4 is a six-node, seven-link network with two OD pairs, i.e., (1, 3) and (2, 6). 

Both OD pairs have 3000 travelers. The numbers given near each link are the 

corresponding link free-flow travel times and capacities respectively. The SC stocks at 

nodes 1, 4, and 6 are initialized to 600, 400, and 200, and the parking fees at nodes 3, 4, 

and 6 are set to 3 $, 1 $, and 2 $, respectively. The four FCFS mechanisms are examined 

in the BR-DUE model and the results are presented below.  

The average running time of the solution algorithm is 23.12 s under the four FCFS 

mechanisms. The maximum running time difference is less than 3 s between the NW-

FCFS and VD-FCFS mechanisms. Each path is represented by a sequence of nodes in 

Table 5.2. As shown, paths 3 and 6 are bi-modal and involve transfer at nodes 6 and 4 

respectively. Figure 5.5 depicts the equilibrium solutions of OD pair (1, 3) under 

different FCFS mechanisms. The thick and thin curves are used to denote the path flows 

and disutilities respectively. The SC travelers on path 2 (thick blue curves) depart earlier 

than PC travelers on path 1 (thick green curves), although the disutility coefficient of 

travel time by PC is smaller than that by SC. The reason is that the PC parking fee induces 

a part of travelers to switch to SC. Since the SC supply is less than the demand, travelers 

have to depart earlier (around 7:40 am by SC); otherwise, departing later may be 

associated with a large penalty due to the shortage of SCs. Without waiting, travelers on 

path 3 under the NW-FCFS (thick red curve in Figure 5.5 (a)) increase steeply at around 

8:10 am. Figure 5.5 (b) and (c) show similar curves of flow patterns and disutilities under 

the A-FCFS and D-FCFS mechanisms due to a small value of Δ and the tolerance band 

in BR (see Remark 5.5). However, with VIP travelers under the VD-FCFS mechanism,  

 

 

 

Figure 5.4 The six-node network. 
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Table 5.2 Path specification  

OD Path ID Sequence of nodes 

(1, 3) 

Path 1  1 - (PC) - 3 

Path 2 1 - (SC) - 3 

Path 3 1 - (PC) - 5 - (PC) - 6 - (SC) - 3 

(2, 6) 

Path 4 2 - (PC) - 5 - (PC) - 6 

Path 5 2 - (PC) - 4 - (PC) - 6 

Path 6 2 - (PC) - 4 - (SC) - 6 

 

 
     (a) NW-FCFS mechanism                                          (b) A-FCFS mechanism 

 
       (c) D-FCFS mechanism                                          (d) VD-FCFS mechanism 

Figure 5.5 BR-DUE solutions of OD pair (1, 3) under different FCFS mechanisms. 

 
different curves of path flows and disutilities are observed. As depicted by Figure 5.5 

(d), both VIP and ordinary travelers have the same disutilities (the thin green curve 

coincides with the thin green dashed curve) and temporal flow distributions on path 1. 

For travelers using SCs, the temporal flow distribution of ordinary travelers is ahead of 

that of VIP travelers. The reason is that VIP travelers pay VIP membership fees to avoid 

early departure or long waiting. At the BR-DUE state, the disutilities of used time-

dependent paths are no larger than the maximum acceptable disutilities (grey dashed 

lines). These results meet the BR-DUE user equilibrium condition in Eq. (2.16).  
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            (a) NW-FCFS mechanism                                     (b) A-FCFS mechanism 

 
              (c) D-FCFS mechanism                                      (d) VD-FCFS mechanism 

Figure 5.6 The dynamic supply and demand of SCs at node 6.      

 

Node 6 is both the destination of OD pair (2, 6) and a transfer location for travelers 

of OD pair (1, 3).  Thus, node 6 has more intense supply-demand interactions than other 

nodes. Figure 5.6 focuses on the evolutions of SC supply-demand dynamics of node 6 at 

the BR-DUE state. The demand (red solid curve) under the NW-FCFS mechanism 

increases to 600 at around 8:45 am (area 𝑎 in Figure 5.6 (a)), and then the 600 travelers 

use SCs without waiting. These travelers departed from node 1 at around 8:00 am 

together. In Figure 5.6 (b) and (c), there are two intersections (marked with ‘*’) of the 

demand and supply curves during [8:30 am, 8:40 am]. Since the demands are less than 

the supplies before the intersections, travelers can use the SCs directly. Subsequently, 

the demands start to accumulate. These travelers wait for the incoming SCs by travelers 

of OD pair (2, 6). However, the two demand curves have different inflection points. The 

value of the inflection point in Figure 5.6 (b) (area b) is around 50 and the value in area 

c is 0 in Figure 5.6 (c). The reason is that some travelers can use the inadequate supply 

under the D-FCFS mechanism, while all the travelers have to wait until the demand being 

satisfied under the A-FCFS mechanism. That is, SCs under the D-FCFS mechanism can 

be used more efficiently. Figure 5.6 (d) draws the supply-demand curves under the VD-

FCFS mechanism. As depicted, the ordinary SC travelers depart earlier than the VIP 

travelers. The privilege service allows VIP travelers to depart late for using SCs.  
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Table 5.3 Average waiting time (min) of travelers at node 6 

Formula # SCs NW-FCFS A-FCFS D-FCFS 
VD-FCFS 

VIP ordinary 

∑ ∑ 𝑤 ∙ 𝑓𝑝𝑗(𝑘)𝑘𝑝𝑗

∑ 𝑓𝑝𝑗(𝑘)𝑝𝑗

 

120 0 7.50 4.66 2.70 2.86 

600 0 4.50 3.92 2.00 2.67 

1200 0 3.63 2.67 1.67 2.35 

2400 0 3.00 2.41 0.54 1.70 

 

 
(a) 8:30 am and 9:00 am as the PATs for OD pairs (1, 3) and (2, 6) respectively 

 
(b) 9:00 am and 8:30 am as the PATs for OD pairs (1, 3) and (2, 6) respectively 

 

Figure 5.7 Effects of 𝜅𝑟𝑠 on BR-DUE solutions of OD pair (1, 3).  

 

To further illustrate the effects of the four mechanisms, the average waiting time of 

travelers at node 6 with different SC supplies is presented in Table 5.3. For the formula 

of average waiting time, the numerator is a sum of the waiting time of travelers and the 

denominator is a sum of flow. Suppose that the SC supplies are 0.1, 0.5, 1, and 2 times 

the initial stocks specified above, respectively. The NW-FCFS mechanism has no 

waiting time. Compared to the A-FCFS mechanism, as expected, the D-FCFS and VD-
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FCFS mechanisms have less average waiting time. For example, D-FCFS results in 38% 

less waiting time as opposed to A-FCFS when the number of SCs is 120. VIP travelers 

wait even less time as a return of the VIP membership fee. It is interesting to note that 

under the VD-FCFS mechanism, ordinary travelers have less average waiting time than 

those under the D-FCFS mechanism. The reason is that ordinary travelers depart earlier 

to avoid the competition with VIP traveler. Expectedly, with the increase of SC supply, 

travelers have less average waiting time. For example, the waiting time of the VIP 

travelers under the VD-FCFS mechanism decreases from 2.70 min to 0.54 min. As seen, 

the average waiting times are relatively short (most are less than 5 min). As a matter of 

fact, in a bi-modal network, the travelers would switch to PC when the waiting time is 

long. In principle, the average waiting time and vacancy rate are negatively correlated. 

Sufficient SC supply comes along with less waiting time but probably a high vacancy 

rate. Whereas, insufficient SC supply leads to longer waiting times but fewer vacancies. 

As the SC supply is insufficient in general in Table 5.3, it is found the largest gap of SC 

vacancy rate across all FCFS mechanisms is less than 4%.  

Figure 5.7 shows the BR-DUE solutions of OD pair (1, 3) with different PATs 

under the D-FCFS mechanism. Expectedly, travelers with earlier PAT depart from home 

earlier. For example, as depicted by flow patterns of path 2 (thick blue curves), the 

earliest departure time is about 7:10 am when 𝜅13  equals 8:30 am, and this value 

increases to 7:40 am when 𝜅13 equals 9:00 am. Different from the path disutility curves 

(thin red curves) in Figure 5.5 (c) and Figure 5.7 (b), interestingly, the path disutility 

curve has two valleys in Figure 5.7 (a). The first valley appears at around 7:35 am. At 

this point, 200 travelers on path 3 can use the SCs at node 6. If more travelers want to 

use SCs, they need to wait for the incoming SCs from OD pair (2, 6) at this CSS location. 

Travelers departing later have less waiting time and thus smaller path disutility. At 

around 8:10 am, the path disutility begins to increase due to the late arrival penalty. 

Moreover, larger values of 𝜅13 lead to later departure times of travelers on path 3 (thick 

red curves in Figure 5.5 (c) and Figure 5.7 (b)) and hence later arrival times at transfer 

location 6. Consequently, the travelers can use the SCs relocated from node 4 by travelers 

of OD pair (2, 6) besides the initial stock. The illustration is consistent with the wider 

non-zero flow regions in Figure 5.5 (c) and Figure 5.7 (b).  

 

5.5.2 Example 2: Sioux Falls network 

 

The Sioux Falls network (24 nodes and 76 links) (Figure 5.8) is used to assess the effects 

of SC use price and VIP fee under the most comprehensive mechanism – VD-FCFS. 

Incorporating the land use map from http://www.siouxfalls.org/Planning, the network is 

divided into the city center and suburban area, where home zones (residential 

neighborhoods), work locations, and CSS locations (stations) are placed at the nodes. An 

OD pair is formed by a home zone and a randomly selected work location. Compared 

http://www.siouxfalls.org/Planning
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with the traditional network, the bi-modal supernetwork has a larger scale due to the 

extension of vehicle states (Section 5.2). The demands of these OD pairs are randomly 

generated from 2000 to 3000. Data transformations are performed on the free-flow travel 

times and link capacities to fit the selected OD pairs (see Appendix 5.C). The SC stocks 

at work locations are set to zero. For other CSS locations, the numbers of SCs are 

initialized as 400 and 200 in the city center and suburban area respectively. PCs are 

allowed to park at CSS locations with different parking fees, which are set to 3 $ and 1 

$ at nodes in the city center and suburban area respectively.  

Figure 5.9 shows the convergence curve of the solution algorithm. There are two 

major peaks around 30 and 80 iterations respectively. The first peak occurs when new 

paths are generated and the second one appears when the spatial resolution is adjusted 

(referring to spatial exploitation). Afterwards, the relative gap (Eq. (4.8)) gradually 

decreases. The gap only changes when the flows shifted in the adjustment process are 

large enough to change the values of the maximum and minimum path disutilities. In this 

example, the solution algorithm needs 435 iterations and takes 570.30 s to satisfy the 

stopping criterion. For reference, the running time is only 93 s with 95 iterations if SC is 

not considered as a mode alternative. The slow equilibrium process is mainly caused by 

the dynamic SC supply-demand interactions at the intermediate iterations when SC 

supply is insufficient.  

 

 
 

Figure 5.8 The transport network of Sioux Falls. 
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Figure 5.9 Convergence of the adaptive CG algorithm.  

 
 

 
(a) #SCs at work locations when use price is 4  (b) #SCs at other CSS locations when use price is 4 

 
(c) #SCs at work locations when use price is 8.2  (d) #SCs at other CSS locations when use price is 8.2 

 

Figure 5.10 Number of SCs in different areas. 
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(a) Effect of SC use price 

 
(b) Effect of the VIP membership fee  

Figure 5.11 Effects of the parameters. 

 

To show the effects of SC use price on the dynamic distribution of SCs, the 

evolutions of the number of SCs in different areas are depicted with two SC use prices. 

As shown in Figure 5.10, the red and blue solid curves denote the number of SCs at work 

locations in the city center and the suburban area respectively; the dashed curves 

represent the numbers at other CSS locations. Subgraphs (a, c) show the numbers of SCs 

at work locations, while subgraphs (b, d) show the numbers at other CSS locations.. 

Through the dynamic changes, it can be observed the effects of SC use price. Specifically, 

in Figure 5.10 (b), both dashed curves decrease to zero before 9:00 am when the price is 

4 $/h, meaning that all SCs are chosen. When the price is increased to 8.2 $/h, Figure 

5.10 (d) shows that 1400 SCs are used at CSS locations (excluding work locations) and 

the other 1000 SCs are not. On the one hand, it indicates that fewer travelers choose SC 

after the price is increased. On the other hand, although the SC use price is larger than 

that of PC, the PC parking fee still induces 3.87% of the trips by SC.  

Figure 5.11 shows the influences of SC use price and VIP membership fee on the 

BR-DUE results respectively. With the increase of SC use price, the modal share of SC 
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decreases from 1 to 0. When the price is smaller than 4 $/h, all SCs are used; whereas, 

no one chooses SC when the price is higher than 36 $/h. If the price falls within [4 $/h, 

12 $/h], CSS can still attract a large proportion of travelers to use SCs. When the price 

falls within [16 $/h, 32 $/h], the proportion is stable around 0.2. Figure 5.11 (b) shows 

the relation between the proportion of VIP SC travelers and the VIP membership fee per 

month. VIP membership fee per month is calculated by considering two trips per day and 

30 days per month on average. Increased VIP membership fee per month results in a 

nonlinear decrease in the proportion of VIP SC travelers. It is unexpected to find that the 

proportion is 0.26 other than 1 when no VIP membership fee is needed. An explanation 

is that given the same SC supply, the benefits of VIP privilege are diminishing as the 

proportion of VIP travelers increases. When the VIP fee is larger than 30 $, no one will 

pay the high fee to acquire the privilege.  

Based on the results of the two examples, it can be concluded that FCFS 

mechanisms have significant effects on the supply-demand dynamics and travel choices 

at BR-DUE states. Comparatively, the SC usages under the D-FCFS and VD-FCFS 

mechanisms are more efficient when the supply is insufficient. The reduction in SC trip 

costs and VIP membership fees can attract more people to shift from PC to SC and 

subscribe to VIP services. To use SCs in the presence of VIP travelers, ordinary travelers 

have to depart earlier. There is a saturation point in the share of VIP travelers, beyond 

which no travelers want to be VIP travelers even if the membership fee is extremely low.  

 

5.6 Conclusions  
 

CSS are expected to be prevalent due to the low cost, flexibility, and comfortability. This 

chapter formulated and analyzed the supply-demand dynamics of CSS under four FCFS 

mechanisms. Travelers under the NW-FCFS mechanism are assumed to either be served 

or seek an alternative mode immediately to avoid waiting. The A-FCFS mechanism 

supposes that travelers arriving at a CSS location during the same interval are served 

simultaneously. The D-FCFS mechanism treats travelers as disaggregate units and 

enables serving them during different time intervals. Based on the D-FCFS mechanism, 

the VD-FCFS mechanism allows VIP members to jump the queue. These FCFS 

mechanisms have been compared in a BR-DUE model given the same SC supplies. 

Numerical examples demonstrated that D-FCFS and VD-FCFS are more efficient in 

regulating the usages of SCs than NW-FCFS and A-FCFS.  

This chapter adopts a modified CG algorithm for solving the BR-DUE problem in 

a bi-modal transport network. As another extension, the next chapter will improve the 

tolerance-based CG algorithm to solve the boundedly rational dynamic activity-travel 

assignment user equilibrium problem. 
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6  

The Refined TBCG Algorithm 

for BR-DATA* 

 
 

  

6.1 Introduction 
 

Dynamic traffic assignment (DTA) is a core component for many transportation network 

analysis problems and has been widely applied due to the capacity of modeling complex 

traffic flow phenomena (Ukkusuri et al., 2012). Focusing on sequences or patterns of 

activity behavior, activity-based model (ABM) derives travel demand from activity 

participation and activity behavior patterns (Bhat and Koppelman, 1999) and is 

advantageous in that it can capture the short-term disaggregate behavior of travelers. As 

an endogenous integration of DTA and ABM, dynamic activity-travel assignment 

(DATA) (Liu et al., 2015) determines the demand-supply interactions at a high level of 

detail without losing the interdependency of activity-travel chains and draw much 

attention in recent years (Li et al., 2010; Liu et al., 2016, 2020; Fu and Lam, 2014, 2018; 

Li et al., 2016a, 2016b, 2018; Li and Liao, 2020).  

However, no DATA model has hitherto exhibited applicability to networks of real 

sizes. Even in the three DATA models (Ramadurai and Ukkusuri, 2011; Ouyang et al., 

2011; Fu and Lam, 2018) applying the original column generation (CG) scheme, the  

                                        

* This chapter is based on Wang, D., Liao, F., Gao, Z., Rasouli, S., Huang, H.J., 2020. Tolerance-

based column generation for boundedly rational dynamic activity-travel assignment in large-scale 

networks. Transportation Research Part E: Logistics and Transportation Review 141, 102034. 
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corresponding algorithms still fall short of tackling large scale networks. The major 

reasons are as follows. First, the number of potential activity-travel patterns (ATPs) 

encounters combinatorial explosion due to the high choice dimensions involved in 

conducting an ordinary activity program, such as choice of mode, path, location, timing, 

duration, and activity sequence. This fact renders the DATA models vulnerable to the 

curse of dimensionality. Second, the DATA models usually concentrate on a one-day 

time frame (which is essential to capture the trip chaining behavior) rather than a short 

period, which further enlarges the scale of the problem in the temporal dimension. Third, 

due to time window constraints at the activity locations and multiple activity-travel link 

attributes, the ATP disutilities are not consistent with the time first-in-first-out (FIFO) 

principle. It means that there is no efficient polynomial-time algorithm for searching the 

minimum disutility ATPs (MDAs). Lastly, the temporal resolution needs to be high to 

replicate the real-time network dynamics for supply management. For these reasons, the 

existing DATA problems were confined to small networks, such as a triangle network 

(e.g., Lam and Yin, 2001), a four-node diamond network (e.g., Fu and Lam, 2014; Liu 

et al., 2015), and the 13-node Nguyen-Dupuis network (e.g., Li et al., 2018).  

In view of the above challenges, a few studies recognized the necessity of obviating 

ATP enumeration and extended the current small-sized networks to larger networks. 

Based on Algorithm B (Dial, 2006), Ramadurai and Ukkusuri (2011) made an extension, 

Algorithm B-Dynamic, in a DATA model. Although this algorithm does not need to store 

or enumerate ATPs, the notion of bushes (stored as nested maps in terms of data 

structure) is used as implicit expressions of ATPs. In Algorithm B-Dynamic, the number 

of bushes may explode and therefore, as stated by the authors, the algorithm in the 

proposed form was incapable of simulating large-scale networks. In addition, the 

augmented networks lack a valid representation of activity-travel behavior. Ouyang et 

al. (2011) developed an activity-time-space network expansion approach to solve the 

DATA problem. This approach reconstructs the activity-time-space network by 

extending nodes in the temporal dimension and connecting them with different types of 

links. Following this study, Fu and Lam (2018) considered travelers’ joint activity-travel 

choices in DATA problems, which were transformed into static traffic assignment (STA) 

models and solved by the original CG algorithm. Chow and Djavadian (2015) examined 

the first/last mile problem of multimodal trips in constrained mixed logit models of 

activity schedule choice. Nevertheless, their study did not consider traffic flow 

characteristics. These approaches are pure applications of the original CG scheme to 

generate spatial ATPs without any treatments of the temporal dimension.  

Despite four novel strategies proposed in Chapter 4, the tolerance-based CG 

(TBCG) has limitations to address DATA problems. First, the tolerance-based minimum 

disutility path search algorithm is not applicable in non-FIFO networks; second, the 

lower bounds of the self-adjusted convergence thresholds result in local optimal 

solutions; third, the fixed temporal exploration criterion restricts proper adjustments of 



The Refined TBCG Algorithm for BR-DATA 

95 

the feasible time regions; fourth, the combined temporal strategies are inefficient for 

addressing long-time frames of the DATA problems.  

Therefore, this chapter aims to develop an improved CG algorithm in response to 

the modeling challenges in DATA. Based on the TBCG proposed in Chapter 4, the 

spatial-temporal exploration and exploitation strategies are refined to solve boundedly 

rational DATA (BR-DATA) problems. To that end, general forms of temporal and 

spatial strategies are suggested. Recursive formulations in varying space-time 

supernetworks are developed to generate time-dependent ATPs under space-time 

constraints. With these refinements, the solutions derived from the refined TBCG 

algorithm are proved to satisfy the BR-DATA user equilibrium conditions. It can be 

shown that the proposed algorithm can be applied to larger networks with less 

computation time compared with the original CG algorithm.  

The remainder of this chapter is organized as follows. Section 6.2 introduces the 

multi-state supernetwork representation and the equilibrium condition of BR-DATA 

problems. Section 6.3 discusses the refined spatial-temporal strategies and gives a formal 

proof of the correctness of the TBCG algorithm. Section 6.4 illustrates the proposed 

algorithm in numerical examples. Finally, conclusions are provided in Section 6.5.  

 

6.2 BR-DATA model 
 

This section first presents the space-time supernetwork representation of ATPs and 

formulates the ATP disutilities. Next, the BR-DATA user equilibrium condition and the 

corresponding variational inequality (VI) problem are discussed. In what follows, the 

existence of solutions to the BR-DATA problem under several assumptions is analyzed.  

 

6.2.1 Supernetwork representation 
 

A car-only unimodal multi-state supernetwork (SNK) 𝑆𝑁𝐾(𝑁, 𝐴) composes of location 

set 𝑁 and link set 𝐴. 𝐴𝑃𝐶  and 𝐴𝐴𝑇 are two sets of private car travel links and transaction 

links in SNK. It is noteworthy that every episode of activity participation is expressed in 

the form of a transaction link, which facilitates the congruent representation of multi-

dimensional choice facets. Typically, home zones at the first and last activity states in 

SNK form an origin and destination (OD) pair, which is referred to as SNKOD. The path 

of an SNKOD defines an ATP, detailing the choice of path, activity location, and activity 

sequence. For convenience, path and ATP are interchangeably used hereafter. 

Incorporating a set of time intervals 𝐾, 𝑆𝑁𝐾𝑇(𝑁, 𝐴, 𝐾) is used to denote the space-time 

supernetwork, in which choice facets related to timing and duration are further 

represented. 

 



Chapter 6 

96 

 
 

Figure 6.1 SNK representation (left) and space-time ATP representation (right).  

 

As depicted on the left-hand side of Figure 6.1, the four-state supernetwork 

provides a spatial representation of ATPs, in which a pentagon represents the traditional 

transport network 𝐺, the vertices are locations of home (H), work (W) and shopping (S) 

denoted as ℎ, 𝑤, and 𝑠 respectively, and the directed links refer to activity participation. 

To exhibit activity state transitions, location 𝑤′ and 𝑠′ are copies of 𝑤 and 𝑠 respectively 

to denote the completion of activities. Location ℎ′ is a copy of ℎ to denote the completion  

of the activity program. The path consisting of red and blue links from ℎ to ℎ′ denotes 

the ATP that travelers leave ℎ by car to work at 𝑤, then go shopping at 𝑠, and finally 

return to ℎ′. This ATP can be extended to a 2-D space-time representation in the discrete-

time domain on the right-hand side of Figure 6.1, in which shapes of circle, square, and 

diamond denote locations for home, work, and shopping respectively. Some shapes are 

filled in yellow if the corresponding locations are traversed as a part of the ATP. To keep 

consistency, links in both subfigures with the same colors correspond to the same type 

of links, i.e., red for travel links and blue for transaction links. The directed colored links 

together form one specific space-time ATP, in which travelers leave ℎ  during time 

interval 1 and arrive at 𝑤 during time interval 𝑡1, and go for shopping during 𝑡2, then do 

shopping at 𝑠 between 𝑡3 and 𝑡4, and finally return to ℎ′ during 𝑡5. All other spatial-only 

and space-time ATPs can also be represented in Figure 6.1; for example, the black 

directed links form an alternative space-time ATP.  

 

6.2.2 ATP disutility 

 

Four types of disutilities, including travel disutility, activity disutility, parking disutility, 

and home-stay disutility, are considered and formulated as follows.  
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Travel disutility 

Travel time is one of the main factors of travel disutility as other factors are highly 

correlated with travel time, such as monetary expense and cumulated crowding 

discomfort. For simplicity, travel link disutility is defined as 

 

 𝑐𝑙
𝑖TD(𝜏) = 𝜆1

𝑖 ∙ 𝑡𝑙(𝜏),      ∀𝑖 ∈ 𝐼,  𝑙 ∈ 𝐴𝑃𝐶 , 𝜏 (6.1) 

 

where 𝑐𝑙
𝑖TD(𝜏) is the travel disutility incurred by class 𝑖 arriving at link 𝑙 during time 

interval 𝜏, 𝑡𝑙(𝜏) is the travel time of link 𝑙 during 𝜏, and 𝜆1
𝑖  is the travel time disutility 

coefficient of 𝑖. 𝑡𝑙(𝜏) can be calculated by Eq. (2.4).   

 

Activity disutility 

The time window constraints at activity locations restrict travelers to perform activities 

within a specific time range. If travelers arrive at activity transaction link 𝑙 too early, they 

need to wait until the activity location opening time 𝑡𝑙
o. If the arrival time falls within the 

time windows, travelers can carry out the activity directly but have to finish the activity 

no later than the closing time 𝑡𝑙
e. If the arrival time is later than 𝑡𝑙

e, the activity cannot be 

conducted at the location, i.e., waiting is irrelevant. Formally, the waiting time at 𝑙 during 

time interval 𝜏, 𝑡𝑙
W(𝜏), is expressed by  

 

 𝑡𝑙
W(𝜏) = {

𝑡𝑙
o − 𝜏,      if 𝜏 < 𝑡𝑙

o             

0,                otherwise         
 (6.2) 

 

In Eq. (6.2), 𝑡𝑙
W(𝜏)  is a nonnegative integer when 𝑡𝑙

o  and 𝜏  are integers. For 

activities without time window constraints, 𝑡𝑙
W(𝜏) =0, ∀𝜏 . To enhance behavioral 

realism, activity duration is considered as a choice facet. According to Liao (2016), the 

duration choice in the individual activity-travel scheduling problem is a positive integer 

and can be represented in a bipartite network. Let 𝑡𝑙
D(𝜏) denote the duration for travelers 

who begin the activity on link 𝑙 during 𝜏, for all 𝑖 ∈ 𝐼, 𝑙 ∈ 𝐴𝐴𝑇  and time 𝜏, it should fall 

within the minimum and the maximum duration, i.e.,   𝑡𝑙
D(𝜏) ∈ [𝜎min

𝑙  , 𝜎max
𝑙 ] . For 

travelers arriving at the activity locations too late, the activity duration 𝑡𝑙
D (𝜏 + 𝑡𝑙

W(𝜏)) 

may be less than 𝜎min
𝑙 . In this case, the travelers receive a disutility penalty due to the 

late arrival. In sum, the activity disutility is formulated as  

 

𝑐𝑙
𝑖AD(𝜏)=𝜆2

𝑖 ∙ 𝑡𝑙
W(𝜏) + 𝜆3

𝑖 ∙ 𝑈𝑙 (𝜏+𝑡𝑙
W(𝜏)) + 𝜆4

𝑖 ∙ max {𝜎min
𝑙 − 𝑡𝑙

D (𝜏+𝑡𝑙
W(𝜏)) , 0} (6.3) 

 

where  𝑐𝑙
𝑖AD(𝜏)  is the activity disutility incurred by 𝑖  arriving at 𝑙  during 𝜏 ,  𝜆2

𝑖  is the 

disutility coefficient for waiting time, 𝜆3
𝑖  is a disutility coefficient for activity 
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participation, 𝜆4
𝑖  is the late arrival penalty coefficient. 𝑈𝑙 (𝜏 + 𝑡𝑙

W(𝜏)) is the activity 

participation disutility, which is defined as the gap between the ideal utility and the actual 

utility at 𝑙. Following Yasmin et al. (2017) and Li et al. (2018), a log-form disutility 

function is adopted and formulated as  

 

 𝑈𝑙 (𝜏 + 𝑡𝑙
W(𝜏)) = 𝑈𝑙

∗ − 𝐹𝑙
𝑎 (𝜏 + 𝑡𝑙

W(𝜏)) ∙
ln (1 + 𝛽6 ∙ 𝑡𝑙

D (𝜏 + 𝑡𝑙
W(𝜏)))

(1 +
𝑞𝑙(𝜏)
𝑒𝑙

)
𝛽7

 (6.4) 

 

where 𝑈𝑙
∗ is the ideal utility, 𝐹𝑙

𝑎(𝜏) is the coefficient for time-dependency at activity 

location 𝑎 , 𝑞𝑙(𝜏)  denotes the number of travelers exceeding location capacity 𝑒𝑙 

(𝑞𝑙(𝜏) = 0, otherwise), 𝛽6 and 𝛽7 are parameters.  

The first term of Eq. (6.3) denotes the waiting disutility, and the last term is the late 

arrival penalty. Given the focus on the method of ATP generation in 𝑆𝑁𝐾𝑇, this chapter 

does not consider the effects of activity sequence on activity disutility (see Liao et al. 

(2011) for specifications).  

 

Parking disutility   

Parking at a location may involve parking costs. The duration of one episode of parking 

equals the difference between the time intervals of picking-up the car and parking. This 

duration is equivalent to the summation of waiting time and activity duration. Parking 

duration and disutility are formulated as 

 

 𝑡𝑙
PK(𝜏) = 𝑡𝑙

W(𝜏) + 𝑡𝑙
D (𝜏 + 𝑡𝑙

W(𝜏)) (6.5) 

   

 𝑐𝑙
𝑖PD(𝜏) = 𝜆5

𝑖 ∙ 𝑡𝑙
PK(𝜏),      ∀𝑖 ∈ 𝐼, 𝑙 ∈ 𝐴𝐴𝑇 , 𝜏 (6.6) 

 

where 𝑡𝑙
PK(𝜏) is the parking duration of travelers who arrive at transaction link 𝑙 during 

𝜏, 𝑐𝑙
𝑖PD(𝜏) is the parking disutility incurred by 𝑖 arriving at link 𝑙 during 𝜏, and 𝜆5

𝑖  is the 

disutility coefficient for parking duration.  

 

Home-stay disutility 

Home-stay duration choice can be modeled through an explicit or implicit representation. 

For the explicit representation, an episode of home-stay is regarded as an in-home 

activity, and the corresponding link is a transaction link. Alternatively, home-stay can be 

implicitly represented as waiting in the home zone, which incurs disutility but does not 

lead to a new activity state. Home-stay disutility is defined as  
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 𝑐𝑙
𝑖HD(𝜏) = 𝜆6

𝑖 ∙ 𝑡𝑙(𝜏),      ∀𝑖 ∈ 𝐼,  𝑙 ∈ 𝐴𝐴𝑇 ,  𝜏 (6.7) 

 

where 𝑐𝑙
𝑖HD(𝜏) is the home-stay disutility incurred by 𝑖 arriving at link 𝑙 during 𝜏 and 𝜆6

𝑖  

denotes the disutility coefficient for home-stay duration 𝑡𝑎(𝜏).  

 

ATP disutility 

Let 𝑐𝑙
𝑖(𝜏) denote the disutility incurred by 𝑖 arriving at link 𝑙 during time interval 𝜏. The 

disutility of an ATP can be expressed as the summation of the disutilities of the 

associated activity-travel links, which can be derived from the above disutility 

specifications. A nested structure of link time expense captures time continuum along an 

ATP. For presentation convenience, link-path time incidence variables are adopted to 

formulate ATP disutility as      

 

 𝑐𝑝
𝑖ℎ(𝑘, 𝒇) =∑∑𝛿𝑙𝑘

𝑖ℎ𝑝
(𝜏) ∙

𝜏∈𝐾

𝑐𝑙
𝑖(𝜏)

𝑙∈𝐴

,      ∀𝑖 ∈ 𝐼, ℎ ∈ 𝐻, 𝑝 ∈ 𝑃𝑖ℎ , 𝑘 ∈ 𝐾 (6.8) 

 

where 𝛿𝑙𝑘
𝑖ℎ𝑝
(𝜏) is a 0-1 indicator variable, 𝛿𝑙𝑘

𝑖ℎ𝑝(𝜏) = 1 if a traveler of class 𝑖  departs 

from ℎ during 𝑘 via ATP 𝑝 and arrives at link 𝑙 during 𝜏 and 𝛿𝑙𝑘
𝑖ℎ𝑝(𝜏) = 0 otherwise.  

 

6.2.3 BR-DATA user equilibrium condition 

 

As an extension of the boundedly rational dynamic user equilibrium (BR-DUE) 

condition, the user equilibrium condition of BR-DATA is stated as for travelers in the 

same class and living in the same home zone, the experienced disutilities by travelers 

departing during the same time interval are no larger than the minimum value plus a 

threshold. Formally, the condition is expressed as  

 

 𝑐𝑝
𝑖ℎ(𝑘, 𝒇∗)∈[𝑐min

𝑖ℎ (𝒇∗),  𝑐min
𝑖ℎ (𝒇∗) ∙ (1 + 𝜀𝑖ℎ)],  if 𝑓𝑝

𝑖ℎ∗(𝑘) > 0    ∀𝑝∈𝑃𝑖ℎ , 𝑘∈𝐾, 𝑖, ℎ (6.9) 

     

The corresponding finite-dimensional VI problem VI(𝒇, 𝛺) is formulated as  

 

 ∑∑ ∑ ∑𝑐̃𝑝
𝑖ℎ(𝑘, 𝒇∗) ∙ [𝑓𝑝

𝑖ℎ(𝑘) − 𝑓𝑝
𝑖ℎ∗(𝑘)]

𝑘∈𝐾𝑝∈𝑃𝑖ℎℎ∈𝐻𝑖∈𝐼

≥ 0,      ∀𝒇 ∈ 𝛺 (6.10) 

   

 𝛺 = {𝒇| 𝒇 ≥ 0, ∑ ∑ 𝑓𝑝
𝑖ℎ(𝑘)

𝑘∈𝐾 𝑝∈𝑃𝑖ℎ

= 𝑄𝑖ℎ ,      ∀ ℎ ∈ 𝐻, 𝑖 ∈ 𝐼 } (6.11) 

 

where  
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 𝑐̃𝑝
𝑖ℎ(𝑘, 𝒇∗) = max {𝑐𝑝

𝑖ℎ(𝑘, 𝒇∗),  𝑐min
𝑖ℎ (𝒇∗) ∙ (1 + 𝜀𝑖ℎ)} (6.12) 

 

The dynamic network loading relates to the traffic flow propagation inside a traffic 

network. With different dynamic network loading models, researchers have proved the 

continuity of path disutility in continuous-time and discrete-time formulations. For 

example, relying on a priori boundedness of path departure rates, Zhu and Marcotte 

(2000) and Bressan and Han (2013) showed the continuity using the link delay model 

and the LWR-Lax model respectively. Considering Vickrey’s point queue model 

(Vickrey, 1969), Han et al. (2013) proved the strong continuity in the Hilbert space of 

interest. Similarly, Han et al. (2015) presented the continuity of a path delay operator 

base on several mild assumptions in the context of bounded rationality (BR). In the 

discrete-time domain, Lo and Szeto (2002) proved the continuity of path travel time for 

networks whose dynamics are described by the cell transmission model. Considering the 

discrete-time point queue model, Huang and Lam (2002) proved the continuity of path 

travel time with a nested formulation. Long et al. (2011) showed the continuity using a 

step function and linear interpolation to approximate cumulative flows.  

Different from the general BR-DUE models, the BR-DATA models are developed 

in the SNKs, which express activity participation in the form of transaction links. In this 

chapter, the discrete-time point queue model is considered in the SNKs. The 

corresponding dynamic network loading is formulated as follows.  

 

 𝑢𝑙(𝜏) = ∑∑ ∑ 𝑢𝑙
𝑖ℎ𝑝
(𝜏)

𝑝∈𝑃𝑖ℎℎ∈𝐻𝑖∈𝐼

,    ∀𝑙 ∈ 𝐴, 𝜏 ∈ 𝐾, (6.13) 

   

 𝑢𝑙
𝑖ℎ𝑝(𝜏) = 𝜁𝑙

𝑖ℎ𝑝
⋅ 𝑓𝑝

𝑖ℎ(𝜏) + 𝜁ℓ𝑙
𝑖ℎ𝑝

⋅ 𝑣ℓ
𝑖ℎ𝑝(𝜏),      ∀𝑙 ∈ 𝐴𝑃𝐶 , ℓ ∈ 𝐴, 𝑖, ℎ, 𝑝, 𝜏 (6.14) 

   

 𝑣𝑙(𝜏) =∑∑ ∑ 𝑣𝑙
𝑖ℎ𝑝
(𝜏)

𝑝∈𝑃𝑖ℎℎ∈𝐻𝑖∈𝐼

,    ∀𝑙 ∈ 𝐴, 𝜏 ∈ 𝐾, (6.15) 

   

 𝑣𝑙
𝑖ℎ𝑝(𝜏) = 𝜋𝑙(𝜏) ⋅ 𝑢𝑙

𝑖ℎ𝑝(𝜏 − 𝑡𝑙
0)+(1 − 𝜋𝑙(𝜏))𝑒𝑙

𝑢𝑙
𝑖ℎ𝑝(𝑗)

𝑢𝑙(𝑗)
,   ∀𝑙∈𝐴𝑃𝐶 , 𝑖, ℎ, 𝑝, 𝜏 (6.16) 

   

 𝑟𝑙
𝑖ℎ𝑝(𝜏) = 𝜁𝑙ℓ

𝑖ℎ𝑝
⋅ 𝑣ℓ

𝑖ℎ𝑝(𝜏),      ∀𝑙 ∈ 𝐴𝐴𝑇 , ℓ ∈ 𝐴, 𝑖, ℎ, 𝑝, 𝜏      (6.17) 

   

 𝑟𝑙
𝑖ℎ𝑝(𝜏) = 𝑢𝑙

𝑖ℎ𝑝
(𝜏 + 𝑡𝑙

W(𝜏)),      ∀𝑙 ∈, 𝑖, ℎ, 𝑝, 𝜏       (6.18) 

   

 𝑢𝑙
𝑖ℎ𝑝(𝜏) = 𝑣𝑙

𝑖ℎ𝑝
(𝜏 + 𝑡𝑙

D(𝜏)),      ∀𝑙 ∈ 𝐴𝐴𝑇 , 𝑖, ℎ, 𝑝, 𝜏       (6.19) 
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 𝑞𝑙(𝜏) = ∑ 𝑢𝑙(𝑗1)

𝑗1≤𝜏

− ∑ 𝑣𝑙(𝑗2)

𝑗2≤𝜏

− 𝑒𝑙 ,      ∀𝑎 ∈ 𝐴𝐴𝑇 , 𝜏 ∈ 𝐾 (6.20) 

 

where 𝑢𝑙
𝑖ℎ𝑝
(𝜏), 𝑣𝑙

𝑖ℎ𝑝(𝜏), and 𝑟𝑙
𝑖ℎ𝑝(𝜏) are the inflow, outflow, and arrival flow of travelers 

of class 𝑖 on link 𝑙 during time interval 𝜏 via ATP 𝑝 from home zone ℎ; 𝜁𝑙
𝑖ℎ𝑝

= 1 if link 

𝑙 is the first link of 𝑝 and 𝜁𝑙
𝑖ℎ𝑝

= 0 otherwise; 𝜍ℓ𝑙
𝑖ℎ𝑝

= 1 if link ℓ is the predecessor link 

of 𝑙 on 𝑝 and 𝜍ℓ𝑙
𝑖ℎ𝑝

= 0 otherwise; 𝑣𝑙(𝜏) is the outflow of link 𝑙 during 𝜏; 𝜋𝑙(𝜏) = 1 if 

there is no vehicle in the queue on link 𝑙  during 𝜏 and 𝜋𝑙(𝜏) = 0 otherwise; 𝑗 in Eq.  

(6.16) satisfies 𝑗 + 𝑡𝑙(𝑗) = 𝜏. Eq. (6.16) indicates that the link exit rate is either the entry 

rate during interval 𝜏 − 𝑡𝑙
0 or a portion of the link capacity.  

For transaction link 𝑙, as shown by Eqs. (6.17)-(6.20), 𝑟𝑙
𝑖ℎ𝑝(𝜏) denotes the arrival 

flow of link 𝑙 and equals the outflow of its predecessor link on 𝑝. The arrival flows start 

the activity after waiting time 𝑡𝑙
W(𝜏), and then finish the activity after duration 𝑡𝑙

D(𝜏). 

The queue on 𝑙 , 𝑞𝑙(𝜏) , is equal to the cumulative inflows minus the summation of 

cumulative outflows and the activity location capacity. With the above dynamic network 

loading procedure, the continuity of travel time and disutility can be directly derived 

based on Huang and Lam (2002). Activity duration and the incurred disutility (Eqs. (6.4) 

and (6.7)) are continuous with respect to the link inflow. Likewise, the continuity of the 

waiting and parking time (and disutility) can be easily derived from Eq. (6.2) and Eqs. 

(6.5)-(6.6) respectively. That is, all link disutilities are continuous with the link inflows. 

Therefore, the following remark is made. 

 

Remark 6.1 The ATP disutility Eq. (6.8) is continuous with respect to ATP inflow in 

the SNKs.  

 

The link inflow 𝑢𝑙
𝑖ℎ𝑝(𝜏) without link capacity constraint is reduced to 

 

 𝑢𝑙
𝑖ℎ𝑝(𝜏) = 𝛿𝑙𝑘

𝑖ℎ𝑝
(𝜏) ⋅ 𝑓𝑝

𝑖ℎ(𝑘)   (6.21) 

 

Incorporating linear interpolation of link travel times, Liu et al. (2015) proved the 

continuity of ATP disutility if the time interval length is infinitely close to zero.  

For the finite-dimensional BR-DUE problem VI(𝒇, 𝛺), Eqs. (2.17)-(2.19), Chapter 

4 analyzed its existence based on the existence conditions of the continuous counterpart 

presented by Han et al. (2015). Here, 𝒄(𝒇) = {𝑐𝑝
𝑖ℎ(𝑘, 𝒇)} is used to denote the vector of 

ATP disutility 𝑐𝑝
𝑖ℎ(𝑘) and show the existence under a weaker condition in the framework 

of BR-DATA. 
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Proposition 6.1 If 𝒄(𝒇)  is continuous on  𝛺 , there exists a solution to VI(𝒇, 𝛺) Eqs. 

(6.10)-(6.12), and the solution satisfies the BR-DATA user equilibrium condition (6.9). 

Proof. The finite-dimensional linear and nonnegative constraints demonstrate that 𝛺 is 

a compact closed convex set. With continuous 𝒄(𝒇) on 𝛺, 𝒄̃(𝒇) defined by Eq. (6.12) 

maintains continuity. Following Theorem 2 proposed by Browder (1968), there exists 𝒇∗ 

in 𝛺 satisfying VI(𝒇, 𝛺) Eqs. (6.10)-(6.12). In addition, it follows from Eq. (6.10) that 

for ∀ ℎ, 𝑖,  

 

 𝑓𝑞
𝑖ℎ(𝜏) > 0 ⟹ 𝑐̃𝑞

𝑖ℎ(𝜏, 𝒇∗) = min
𝑝
min
𝑘
𝑐̃𝑝
𝑖ℎ(𝑘, 𝒇∗) (6.22) 

 

where 𝑞  is an ATP and 𝜏  denotes a time interval. Eq. (6.22) is a necessary but not 

sufficient condition of Eq. (6.10).  

Recalling the definition of 𝑐̃𝑞
𝑖ℎ(𝜏, 𝒇∗), for the discrete VI problem (6.10)-(6.12), it 

can be concluded that 

 

 min
𝑝
min
𝑘
𝑐̃𝑝
𝑖ℎ(𝑘, 𝒇∗) = 𝑐min

𝑖ℎ (𝒇∗) ∙ (1 + 𝜀𝑖ℎ) (6.23) 

 

The minimum value is reached if and only if 𝑐𝑞
𝑖ℎ(𝜏, 𝒇∗)  falls 

within [𝑐min
𝑖ℎ (𝒇∗),  𝑐min

𝑖ℎ (𝒇∗) ∙ (1 + 𝜀𝑖ℎ)]. □ 

 

6.3 Column generation algorithms for BR-DATA  
 

This section focuses on the theoretical analyses and developments of CG and TBCG 

algorithms. The four strategies in the TBCG algorithm are refined and classified into 

spatial-temporal exploration and exploitation for fitting the DATA context. Unless 

otherwise explained below, the term TBCG in the BR-DATA context refers to the one 

with refinements. To keep consistency, the notations used above attached with 𝑛 refer to 

the same entities at iteration 𝑛. A time-dependent ATP is defined as a tuple of ATP and 

departure time (𝑝, 𝑘). All (𝑝, 𝑘) tuples form the global solution space 𝛹 = {(𝑝, 𝑘)|𝑝 ∈

𝑃, 𝑘 ∈ 𝐾} and 𝛷𝑛 = {(𝑝, 𝑘)|𝑝 ∈ 𝑃𝑛 , 𝑘 ∈ 𝐾𝑝} is the potential time-dependent ATP set at 

iteration  𝑛 , where 𝐾𝑝  is a 𝑝 -related time interval set. 𝛷𝑛  is created to store time-

dependent ATPs as a potential solution for the BR-DATA user equilibrium. 

 

6.3.1 CG algorithm 

 

As mentioned above, the seminal CG algorithm has been applied widely for solving DTA 

problems. However, no formal proof has been given about the correctness in dynamic 

contexts. To fill the gap, the theoretical analyses are provided below.  



The Refined TBCG Algorithm for BR-DATA 

103 

Proposition 6.2 If 𝒄(𝒇) is continuous on 𝛺, a solution derived from the CG algorithm 

satisfies the BR-DATA user equilibrium condition (6.9).  

Proof. Initially, the ATP set 𝑃0 is generated using the MDS search algorithm for ∀ℎ, 𝑖,  

 

 𝑃0 = ⋃ 𝑃0
𝑖ℎ

𝑖∈𝐼,ℎ∈𝐻

 (6.24) 

 

At iteration 𝑛, find a vector 𝒇𝒏
∗  satisfying the following VI(𝒇𝒏, 𝛺𝑛) sub-problem on 

ATP set 𝑃𝑛.  

 

 
∑∑ ∑ ∑𝑐̃𝑝

𝑖ℎ(𝑘, 𝒇𝒏
∗ )[𝑓𝑝𝑛

𝑖ℎ(𝑘) − 𝑓𝑝𝑛
𝑖ℎ∗(𝑘)]

𝑘∈𝐾𝑝∈𝑃𝑛
𝑖ℎℎ∈𝐻𝑖∈𝐼

≥ 0,      ∀𝒇𝒏 ∈ 𝛺𝑛 
(6.25) 

   

 𝛺𝑛 = {𝒇𝒏| 𝒇𝒏 ≥ 0, ∑ ∑ 𝑓𝑝𝑛
𝑖ℎ(𝑘)

𝑘∈𝐾 𝑝∈𝑃𝑛
𝑖ℎ

= 𝑄𝑖ℎ ,      ∀ ℎ ∈ 𝐻, 𝑖 ∈ 𝐼 } (6.26) 

 

where 𝑐̃𝑝
𝑖ℎ(𝑘, 𝒇𝒏

∗ ) is formulated as  

 

 𝑐̃𝑝
𝑖ℎ(𝑘, 𝒇𝒏

∗ ) = max {𝑐𝑝
𝑖ℎ(𝑘, 𝒇𝒏

∗ ),  𝑐min
𝑖ℎ (𝒇𝒏

∗ ) ∙ (1 + 𝜀𝑖ℎ)} (6.27) 

 

If 𝒄(𝒇) is continuous on 𝛺, according to Propositions 6.1, there exists a solution 𝒇𝒏
∗  

to VI(𝒇𝒏, 𝛺𝑛) and the solution satisfies 

 

 𝑐𝑝
𝑖ℎ(𝑘, 𝒇𝒏

∗ )∈[𝑐min
𝑖ℎ (𝒇𝒏

∗ ),  𝑐min
𝑖ℎ (𝒇𝒏

∗ ) ∙ (1+𝜀𝑖ℎ)],    if 𝑓𝑝𝑛
𝑖ℎ∗(𝑘) > 0   ∀𝑝∈𝑃𝑛

𝑖ℎ , 𝑘∈𝐾 (6.28) 

 

Extending 𝒇𝒏
∗  to the global space 𝛹 gives 

 

 𝒇∗ = {𝑓𝑝
𝑖ℎ(𝑘)|𝑓𝑝

𝑖ℎ(𝑘) = {
0,              if 𝑝 ∈ 𝑃̅𝑛

𝑖ℎ

𝑓𝑝𝑛
𝑖ℎ(𝑘),    if 𝑝 ∈ 𝑃𝑛

𝑖ℎ},      ∀ 𝑘 ∈ 𝐾 (6.29) 

 

where 𝑃̅𝑛
𝑖ℎ = 𝑃 − 𝑃𝑛

𝑖ℎ  is a set of unfound ATPs at ℎ for 𝑖 at iteration 𝑛. This extension 

ensures the feasibility of the solution to the original VI problem (6.10)-(6.12), which is 

consistent with constraint (6.11). Then, the algorithm searches the MDAs again. If no 

new ATP is found, it means  

 

 min{𝑐𝑝
𝑖ℎ(𝑘)| 𝑝 ∈ 𝑃̅𝑛

𝑖ℎ ,  𝑘 ∈ 𝐾} ≥  𝑐min
𝑖ℎ (𝒇𝒏

∗ ) (6.30) 
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Eq. (6.28) is satisfied by substituting 𝒇𝒏
∗  with 𝒇∗ and thus 𝒇∗ is a solution to VI 

problem (6.10)-(6.12). Otherwise, there exists at least one time-dependent ATP in 

{(𝑝̅, 𝑘)|𝑝̅ ∈ 𝑃̅𝑛
𝑖ℎ ,  𝑘 ∈ 𝐾} and the corresponding minimum disutility satisfies  

 

 𝑐𝑝̅
𝑖ℎ(𝑘, 𝒇∗) < 𝑐min

𝑖ℎ (𝒇𝒏
∗ ) (6.31) 

 

Due to the change of the minimum disutility, the disutilities of time-dependent 

ATPs with non-zero inflows may be outside of the range [𝑐𝑝̅
𝑖ℎ(𝒇∗),  𝑐𝑝̅

𝑖ℎ(𝒇∗) ∙ (1 + 𝜀𝑖ℎ)]. 

𝑃𝑛
𝑖ℎ is extended by defining 𝑃𝑛+1

𝑖ℎ = 𝑃𝑛
𝑖ℎ ∪ {𝑝̅} and proceed to iteration 𝑛 + 1. Note that 

the number of ATPs in 𝑃̅𝑛
𝑖ℎ  is finite. Maximally, ∑ ∑ |𝑃̅𝑛

𝑖ℎ|ℎ𝑖  iterations are needed to 

extend from 𝑃𝑛
𝑖ℎ to the global ATP set. The VI(𝒇𝒏, 𝛺𝑛) sub-problem (6.25)-(6.27) has 

the same formulation with VI problem (6.10)-(6.12) and thus the solution 𝒇𝒏
∗  satisfies 

BR-DATA user equilibrium condition (6.9). □ 

     

Note that BR-DATA is a more general form and equivalent to DATA when the 

relative convergence threshold 𝜀𝑖ℎ  equals zero. Based on Proposition 6.2, it can be 

concluded that the solution derived from the CG algorithm satisfies the DATA user 

equilibrium condition. Moreover, the existence of solutions to the VI sub-problem 

(6.25)-(6.27) is ensured under the assumption that ATP disutility is continuous. The BR-

DUE and BR-DATA user equilibrium problems have similar VI formulations except for 

the specification of path disutility. The DUE problem can be transformed from the BR-

DUE problem by setting the relative convergence threshold to zero. Thus, the following 

corollary is obtained.  

 

Corollary 6.1 The solution derived from the CG algorithm satisfies the BR-DUE 

condition (or DUE condition if the threshold equals zero) if the path disutility is 

continuous.  

 

In Chapter 4, the TBCG algorithm is proposed by integrating four strategies into 

the CG scheme: (1) using a tolerance-based criterion for minimum disutility path 

searches; (2) self-adjusting convergence thresholds to drive the intermediate steps fast; 

(3) adapting temporal resolutions to extend feasible time regions; and (4) skipping path 

searches by selecting potential time intervals. These strategies do not only maintain the 

convergence property of the CG algorithm but also improve the computation efficiency 

significantly. However, strategies 1 and 2 may influence the property of the solutions. 

Specifically, as strategy 2 uses 𝜀𝑖𝑟𝑠 as the lower bound of the self-adjusted convergence 

threshold, the relative gap between the minimum and maximum path disutilities of the 

generated path set may reach 𝜀𝑖𝑟𝑠. According to strategy 1, paths with disutilities lower 

than the minimum disutility of the used paths may not be added to the final path set. 



The Refined TBCG Algorithm for BR-DATA 

105 

These unadded paths make the maximum relative gap larger than 𝜀𝑖𝑟𝑠, which contradicts 

the BR-DUE equilibrium condition (2.16). Moreover, some properties of DATA models 

may cause inapplicability and inefficiency of these strategies. For example, strategies 1 

and 4 require modifications due to the non-FIFO property of ATP disutilities brought by 

space-time constraints in DATA models. The refinements of these strategies are 

discussed in the next subsection.  

 

6.3.2 Refined TBCG algorithm 

 

The TBCG algorithm improves the classical CG algorithm in both spatial and temporal 

dimensions and gains significant speedups. This subsection refines and analyses the 

strategies in the context of BR-DATA. Inspired by the meta-heuristic methods for 

combinatorial optimization (Reeves, 1993; Eiben and Schippers, 1998), the strategies are 

related to spatial-temporal exploration and exploitation.  

 

6.3.2.1 Spatial-temporal exploration strategies 

 

The spatial and temporal explorations aim to locate the potential distribution of the near-

equilibrium flows. Based on the recursive formulations in space-time networks (Dean, 

2004; Liao, 2019), an algorithm is developed for searching the boundedly rational 

minimum disutility ATPs (BR-MDA) with variable temporal resolutions. As for spatial 

exploration, the BR-MDA algorithm adds new acceptable ATPs to a generated ATP set. 

Regarding the temporal exploration, it explores the potential time region and adds the 

corresponding time-dependent ATPs to the potential time-dependent ATP set.  

 

Spatial exploration strategy 

In the CG algorithm, when a time-dependent ATP (𝑝̅, 𝑘) is found with smaller disutility 

𝑐𝑝̅
𝑖ℎ(𝑘, 𝒇𝒏) than the minimum disutility 𝑐min

𝑖ℎ (𝒇𝒏) at iteration 𝑛, the current ATP set is 

extended by adding 𝑝̅. This criterion is expressed by  

 

 𝑐min
𝑖ℎ (𝒇𝒏) − 𝑐𝑝̅

𝑖ℎ(𝑘, 𝒇𝒏) ≥ 0 (6.32) 

 

In the BR context, even if there is a time-dependent ATP with the disutility 

satisfying Eq. (6.32), travelers may prefer their familiar paths and departure time 

intervals due to the inconspicuous difference between 𝑐min
𝑖ℎ (𝒇𝒏)  and  𝑐𝑝̅

𝑖ℎ(𝑘, 𝒇𝒏) . As 

expressed by Eq. (6.8), an ATP in the BR-DATA model consists of more choice facets, 

for which BR tends to be more evident in choice-making. As a consequence, the 

following criterion is proposed for considering a tolerance band in adding any ATP to 

the current ATP set. Eq. (6.32) is replaced by 
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Algorithm 6.1 BR-MDA algorithm 

The auxiliary notations are defined below to illustrate the BR-MDA algorithm.  

𝑎, 𝑏:  start and end nodes of link 𝑙 respectively 

𝐶𝑗̅
𝑖(𝜏): the minimum disutility of class 𝑖 arriving at node 𝑗 during time interval 𝜏 by departing 

from ℎ at any time 

𝑇̅𝑏
𝑖(𝜏): the arrival time at node 𝑏 of class 𝑖 departing from node 𝑎 during time interval 𝜏 

𝑡𝑙(𝜏): the sum of waiting and duration time traversing link 𝑙 when departing from 𝑎 during 𝜏  

𝐹𝑗
𝑖(𝜏): two-tuple vector recording the preceding link and time interval 

Input: 𝑐𝑙
𝑖(𝜏) and 𝑡𝑙(𝜏), ∀ 𝑖 ∈ 𝐼, 𝑙 ∈ 𝐴, 𝜏 ∈ 𝐾  

Initially, set 𝐶𝑗̅
𝑖(𝜏) = ∞ and 𝐶ℎ̅

𝑖 (𝜏) = 0, ∀𝑖 ∈ 𝐼, 𝜏 ∈ 𝐾, ∀𝑗 ∈ 𝑁\{ℎ}; 𝜏 = 1.  

for 𝑖 ∈ 𝐼 

      while 𝜏 ≤ |𝐾| 

             for 𝑙 ∈ 𝐴 

                   𝑇̅𝑏
𝑖(𝜏) = 𝜏 + 𝑡𝑙(𝜏) 

                   if 𝐶𝑙̅
𝑖 (𝑇̅𝑙

𝑖(𝜏)) ≥ 𝑀 or 𝑡𝑙
D(𝜏 +  𝑡𝑙

W(𝜏)) < 𝜎min
𝑙  

                         continue (skip the following steps in the for loop) 

                   else 

                         if 𝐶𝑏̅
𝑖 (𝑇̅𝑏

𝑖(𝜏)) > 𝐶𝑎̅
𝑖 (𝜏) + 𝑐𝑙

𝑖(𝜏) and 𝑇̅𝑏
𝑖(𝜏) ≤ |𝐾| 

                              𝐶𝑏̅
𝑖 (𝑇̅𝑏

𝑖(𝜏)) = 𝐶𝑎̅
𝑖 (𝜏) + 𝑐𝑙

𝑖(𝜏) 

                              𝐹𝑏
𝑖 (𝑇̅𝑏

𝑖(𝜏)) = 〈𝑙, 𝜏〉  

             end 

             𝜏 = 𝜏 + 1 

      end 

      for all ℎ′ 

             backtrack the optimal ATPs 𝑝̅ through 𝐹𝑗
𝑖(𝜏) 

             if the disutility on 𝑝̅ satisfies Eq. (6.33) and 𝑝̅ ∉ 𝑃𝑖ℎ, add 𝑝̅ to 𝑃𝑖ℎ 

      end 

end 

 

 𝑐min
𝑖ℎ (𝒇𝒏) − 𝑐𝑝̅

𝑖ℎ(𝑘, 𝒇𝒏) ≥ 𝜖
𝑖ℎ ∙ 𝑐min

𝑖ℎ (𝒇𝒏) (6.33) 

 

where 𝜖𝑖ℎ  (∈ [0, 1) ) is the relative indifference threshold of 𝑖  at ℎ  toward ATP-

switching. When 𝜖𝑖ℎ equals 0, this criterion degenerates to Eq. (6.32).  

Travel link and transaction link are two types of links in 𝑆𝑁𝐾𝑇. For travel links, 

FIFO property is satisfied. Specifically, a traveler entering a travel link earlier will not 

exit the link later than those who enter the link during later time intervals. For transaction 

links, space-time constraints are involved. The space constraints ensure that locations of 

different activities of an activity program are included in an ATP, and the time constraints 

enforce the activities to be conducted within time windows at the locations. If a traveler 
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departs from home early and arrives at a shopping location before the shop opens, he/she 

has to wait and incurs disutility for waiting. The total disutility for shopping may be 

higher than that of departing from home later and arrives at the shop just after the shop 

opens. In that sense, the transaction link disobeys the FIFO property in terms of disutility. 

Once a link does not satisfy this FIFO property, the network or supernetwork is non-

FIFO (Dean, 2004; Liao, 2016). 𝑆𝑁𝐾𝑇 is a non-FIFO network after waiting disutility 

and time window constraints are incorporated. The tolerance-based path search 

algorithm suggested in Chapter 4 is not valid to find the optimal paths in non-FIFO 

supernetworks. Therefore, the BR-MDA algorithm is devised to search for the non-FIFO 

ATPs subject to space-time constraints, for which the pseudo-code is given above. 

 

Temporal exploration strategy 

The TBCG algorithm extends the time interval set of the generated ATPs via temporal 

exploration. Rather than assigning flows to all the time intervals, TBCG tentatively 

assigns flows to potential time regions. This strategy is based on the observation that 

ATP flows of specific classes of travelers are concentrated on narrow time regions. With 

these narrow potential time regions, the intermediate BR-DATA user equilibrium states 

are achieved fast. The discrete-time regions are composed of several blocks of 

continuous-time zones. The temporal exploration aims to approximately cover these time 

regions. Taking Figure 6.2 for example, subfigure (a) shows the resultant time-dependent 

ATPs. Subfigures (b), (c), and (d) represent time-dependent ATPs according to 

alternative algorithms. Traditional traffic assignment algorithms (e.g., Huang and Lam, 

2002; Long et al., 2016) take all time intervals into account, shown in subfigure (b). 

According to the algorithm developed by Lu et al. (2009), if a new ATP 𝑝 is found during 

time interval 3, only this time interval, as shown in subfigure (c), is added to the time-

dependent ATP set. Other time-dependent ATPs will be added during the following ATP 

searches. Whereas, as reflected in subfigure (d), the temporal exploration strategy adds 

time intervals satisfying Eq. (6.34) to an ATP-related set 𝐾𝑝. The corresponding time-

dependent ATPs {(𝑝, 𝑘)|𝑝, 𝑘 ∈ 𝐾𝑝} are added to 𝛷𝑛 for BR-DATA.   

 

Figure 6.2 Different results of time-dependent ATPs. 
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 𝑐𝑝
𝑖ℎ(𝑘, 𝒇𝒏) − 𝑐min

𝑖ℎ (𝒇𝒏) ≤ 𝜗3 ∙ 𝜀
𝑖ℎ∙𝑐min

𝑖ℎ (𝒇𝒏) (6.34) 

 

where parameter 𝜗3 is equal to or larger than 1 to approximate the potential time interval 

sets of the BR-DATA solutions. If 𝜗3 is set too large, all (𝑝, 𝑘) satisfy Eq. (6.34) and the 

resultant time-dependent ATPs become the case in subfigure (b). A smaller 𝜗3 leads to 

more times of updating 𝛷𝑛. 𝜗3 = 0  results in the case in subfigure (c).  

 

6.3.2.2 Spatial-temporal exploitation strategies 

 
The exploitation strategies aim to discern the right moments to enforce the flow 

assignment with the required convergence precision. The TBCG algorithm starts with a 

large relative convergence threshold and a low temporal resolution to explore the 

solution space. The spatial exploitation reduces the number of intermediate iterations by 

adjusting the relative convergence threshold dynamically. The temporal exploitation 

intensifies the convergence process by increasing the temporal resolution. Eventually, 

both the relative convergence threshold and the temporal resolution would reach the 

required values.  

 

Spatial exploitation strategy 

A convergence gap is a measurement of how close the current solution is to the 

equilibrium solution. Some existing studies have used the gap of traffic flows or 

disutilities over successive iterations. For example, Han et al. (2015) employed the 

relative distance between the previous path flow vector and the current one as the 

termination condition. However, this may not be valid since the sufficient condition for 

the convergence cannot be guaranteed. For that matter, a relative gap function is defined 

as Eq. (6.35) to measure the convergence of the proposed algorithm.  

 

 𝑅𝑒𝑔𝑎𝑝(𝑘, 𝒇𝒏) = max {
𝑐𝑝
𝑖ℎ(𝑘, 𝒇𝒏) − 𝑐min

𝑖ℎ (𝒇𝒏)

𝑐min
𝑖ℎ (𝒇𝒏)

},    ∀ 𝑝 ∈ 𝑃𝑖ℎ , 𝑖∈𝐼, ℎ∈𝐻, 𝑘∈𝐾 (6.35) 

 

The denominator 𝑐min
𝑖ℎ (𝒇𝒏) is always larger than 0. For ∀ ℎ , 𝑖 , this measure is 

consistent with  

 

 𝑐𝑝
𝑖ℎ(𝑘, 𝒇𝒏) − 𝑐min

𝑖ℎ (𝒇𝒏) ≤ 𝜀
𝑖ℎ∙𝑐min

𝑖ℎ (𝒇𝒏) (6.36) 

 

The relative convergence threshold  𝜀𝑖ℎ  is a parameter associated with traveler 

heterogeneity. Note that the convergence curves usually become flat when the solutions 

approach the equilibrium. The convergence criterion Eq. (6.36) may result in many 

iterations of flow transfers to reach the required convergence precision. Since the current 
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ATP set at iteration 𝑛 is likely to be a subset of the solution set at an equilibrium state, 

the TBCG algorithm adopts a self-adjusted convergence threshold to perform rough 

assignments at intermediate iterations. This strategy is formulated as  

 

 𝑐𝑝
𝑖ℎ(𝑘, 𝒇𝒏) − 𝑐min

𝑖ℎ (𝒇𝒏) ≤ 𝜀𝑛
𝑖ℎ∙𝑐min

𝑖ℎ (𝒇𝒏) (6.37) 

 

where 𝜀𝑛
𝑖ℎ is the relative convergence threshold at iteration 𝑛. 

Suppose that a new ATP is found and added to the ATP set, meaning that some 

ATP flows are more likely to shift to this new ATP. The self-adjusted convergence 

strategy increases 𝜀𝑛
𝑖ℎ  (Eq. (6.38)) to ensure fast convergence.  

 

 𝜀𝑛+1
𝑖ℎ = min (

1

𝜗1
∙ 𝜀𝑛

𝑖ℎ,  𝜀max 
𝑖ℎ ) (6.38) 

 

where 𝜗1 ∈ (0, 1) is a scaling parameter and 𝜀max
𝑖ℎ  is the upper bound of convergence 

tolerance for travelers of class 𝑖  at ℎ . Iteration 𝑛 + 1 tends to have a larger relative 

convergence threshold, which reduces the computation time and provides an inclusive 

ATP set.  

If no new ATP satisfying Eq. (6.33) is found at iteration 𝑛 (i.e., the ATP set is 

saturated), the relative convergence threshold is decreased as Eq. (6.39) to intensify 

convergence.  

 

 𝜀𝑛+1
𝑖ℎ = max(𝜗1 ∙ 𝜀𝑛

𝑖ℎ,  𝜀min
𝑖ℎ ) (6.39) 

 

where 𝜀min
𝑖ℎ = 𝜀𝑖ℎ − 𝜖𝑖ℎ − 𝜀𝑖ℎ𝜖𝑖ℎ  is the lower bound of convergence tolerance for 

travelers of class 𝑖 at ℎ. Different from the second strategy  proposed in Chapter 4, 𝜀min
𝑖ℎ  

other than 𝜀𝑖ℎ is used as the lower bound of convergence tolerance in Eq. (6.39). It would 

prevent the violation of the global convergence condition. Note that 𝜀min
𝑖ℎ  is related to 𝜀𝑖ℎ 

and 𝜖𝑖ℎ, and the value increases by decreasing 𝜖𝑖ℎ. If 𝜖𝑖ℎ is decreased to 0, meaning that 

travelers are assumed to choose the ATPs with smaller disutility in the BR-MDA 

algorithm, 𝜀min
𝑖ℎ  is equal to 𝜀𝑖ℎ. 

 

Temporal exploitation strategy  

For the time dimension, a high temporal resolution is important for accuracy and fidelity. 

In this chapter, constant ∆  is defined as the minimum length of a time interval, 

representing the required temporal resolution. A small Δ  leads to high computation 

demand and slow convergence. The TBCG algorithm employs a variable temporal 

resolution Δ𝑛 to balance the convergence speed and accuracy. If no new ATP satisfies 

Eq. (6.33) at iteration  𝑛  and the relative convergence threshold 𝜀𝑛
𝑖ℎ  equals 𝜀𝑚𝑖𝑛

𝑖ℎ , the 
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temporal exploitation strategy is performed as Eq. (6.40) to meet the required temporal 

resolution.  

 

 ∆𝑛+1= max(⌊𝜗2 ∙ ∆𝑛⌋,  ∆) (6.40) 

  

where 𝜗2 ∈ (0, 1) is a resolution scaling parameter and ⌊∙⌋ is an integer-floor operator.  

All in all, for the spatial-temporal exploration strategies, the relative convergence 

thresholds and temporal resolutions are adaptively set to explore the potential time-

dependent ATP set. For the spatial-temporal exploitation strategies, the values of ∆𝑛 

and 𝜀𝑛
𝑖ℎ are dynamically modified until the required convergence precision is met. The 

exploration and exploitation are complementary and complete the convergence process 

of the TBCG algorithm together.  

 

 
 

Figure 6.3 Flowchart of the refined TBCG algorithm. 
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Table 6.1 Comparison of three representative CG-related algorithms 

Algo. Ref. Problems 
Activity

-based 

Spatial 

exploration 

Temporal 

exploration 

Spatial 

exploitation 

Temporal 

exploitation 

Disutility 

non-FIFO 
 𝜗3 𝜀min

𝑖ℎ  
Time 

horizon 

CG 
Friesz, 

1985; 
UE No No  – – – 

TBCG 
Chapter  

4 
BR-DUE No No  Fixed 𝜀𝑖ℎ (loose) Peak hours 

Refined 

TBCG 

Current 

chapter 

BR-

DATA 
Yes Yes  Flexible 

𝜀𝑖ℎ– 𝜖𝑖ℎ– 𝜀𝑖ℎ𝜖𝑖ℎ 

(tight) 
One-day 

(–: not applicable; Algo. is short for algorithm; Ref. is short for reference) 

 

Different from the strategies used for solving BR-DUE in Chapter 4, the 

exploration strategies take into account time window constraints of activity chains in a 

long-time frame, and the exploitation strategies adjust the original lower bound of 

relative convergence thresholds. The refined TBCG algorithm regroups the modules so 

that the strategies are coupled better with each other. Accordingly, the flowchart of the 

TBCG algorithm is shown in Figure 6.3. Parameter initialization and SNK construction 

are within the module of algorithm initialization, which provides the necessary inputs. 

The second part, as shown within the red rectangle, consists of two procedures. Temporal 

and spatial exploration strategies extend potential time regions and ATPs respectively. 

The route-swapping algorithm is applied for equilibrating the flows. The mechanism has 

been proved by Nagurney and Zhang (1997) and Huang and Lam (2002) that the 

generated flow vector will converge to an equilibrate flow pattern even if the path cost 

functions are not monotonic. To measure the convergence of the TBCG algorithm, three 

different criteria are checked in turn. As shown within the blue rectangle, the violation 

of different criteria will induce different strategies. The solution to the BR-DATA 

problem is obtained when all these criteria are satisfied simultaneously.  

Path search and network loading are two time-consuming components in traffic 

assignment models using CG techniques. Given temporal resolution Δ𝑛 at intermediate 

iteration 𝑛, the run-time complexities to search ATPs and load ATP flows are 𝑂(|𝐼| ∙

|𝐻| ∙ |𝐴| ∙ |𝐾𝑛|)  and 𝑂(∑ |𝑃𝑖ℎ|𝑖,ℎ ∙ |𝐴′| ∙ |𝐾𝑛| ∙ 𝑚1)  respectively, where |𝐴′|  is the 

maximum number of links in an ATP, 𝑚1 is the number of dynamic network loadings, 

𝐾𝑛 the set of time intervals corresponding to Δ𝑛, and operator |∙| gives the cardinality of 

a set. A large ∆𝑛 leads to a significant decrease in the number of time intervals and time-

dependent ATPs. Since ABMs focus on ATPs of a long-time frame, the ratio |𝐾|/|𝐾𝑛| 

in DATA problems is much larger than that in DTA problems (usually focusing on peak 

hours). Thus, the temporal exploitation strategy is paramount in the BR-DATA context. 

Although the proposed algorithm does not reduce the run-time complexities in principle, 



Chapter 6 

112 

the proposed strategies lead to less computation time by decreasing |𝐾𝑛|, |𝑃
𝑖ℎ| and 𝑚1 

during the intermediate iterations. Table 6.1 summarizes the comparison of the 

representative CG algorithms for addressing three different network equilibrium 

problems.  

 

6.3.2.3 Properties of the TBCG algorithm 

 

In view of the above, decreasing Δ𝑛 leads to a more precise distribution of ATP flows 

and disutilities, while decreasing 𝜀𝑛
𝑖ℎ forces the disutilities to fall within a predefined 

tolerance band. The following theoretical properties of the refined TBCG algorithm are 

derived.  

 

Lemma 6.1: At iteration 𝑛, the solution 𝒇∗ to BR-DATA problem (6.10)-(6.12) can be 

derived from 𝒇𝒏
∗  if ∆𝑛= ∆, 𝜀𝑛

𝑖ℎ = 𝜀min
𝑖ℎ , no new time-dependent ATP satisfies Eq. (6.33), 

and 𝒄(𝒇) is continuous. 

Proof. Different from VI sub-problem (6.25)-(6.27), the TBCG algorithm uses 𝐾𝑝 rather 

than 𝐾 to form time-dependent ATPs set 𝛷𝑛
𝑖ℎ = {(𝑝, 𝑘)|𝑝 ∈ 𝑃𝑛

𝑖ℎ , 𝑘 ∈ 𝐾𝑝}. Hence, the VI 

problem at iteration 𝑛 is formulated as  

 

 
∑∑ ∑ ∑ 𝑐̃𝑝

𝑖ℎ(𝑘, 𝒇𝒏
∗ )[𝑓𝑝𝑛

𝑖ℎ(𝑘) − 𝑓𝑝𝑛
𝑖ℎ∗(𝑘)]

𝑘∈𝐾𝑝𝑝∈𝑃𝑛
𝑖ℎℎ∈𝐻𝑖∈𝐼

≥ 0,      ∀𝒇𝒏 ∈ 𝛺𝑛 
(6.41) 

   

 𝛺𝑛 = {𝒇𝒏| 𝒇𝒏 ≥ 0, ∑ ∑ 𝑓𝑝𝑛
𝑖ℎ(𝑘)

𝑘∈𝐾𝑝 𝑝∈𝑃𝑛
𝑖ℎ

= 𝑄𝑖ℎ ,     ∀ℎ ∈ 𝐻, 𝑖 ∈ 𝐼 } (6.42) 

   

 𝑐̃𝑝
𝑖ℎ(𝑘, 𝒇𝒏

∗ ) = max {𝑐𝑝
𝑖ℎ(𝑘, 𝒇𝒏

∗ ),  𝑐min
𝑖ℎ (𝒇𝒏

∗ ) ∙ (1 + 𝜀𝑛
𝑖ℎ)} (6.43) 

 

Under the condition that 𝒄(𝒇) is continuous on 𝛺𝑛, there is a solution 𝒇𝒏
∗  to this VI 

problem, and the solution satisfies the following equation according to Proposition 6.1.  

 

 
𝑐𝑝
𝑖ℎ(𝑘, 𝒇𝒏

∗ ) ∈ [𝑐min
𝑖ℎ (𝒇𝒏

∗ ),  𝑐min
𝑖ℎ (𝒇𝒏

∗ ) ∙ (1 + 𝜀𝑛
𝑖ℎ)],    if 𝑓𝑝𝑛

𝑖ℎ∗(𝑘) > 0       ∀𝑝

∈ 𝑃𝑛
𝑖ℎ , 𝑘 ∈ 𝐾𝑝, 𝑖, ℎ 

(6.44) 

 

Let 𝛷̅𝑛
𝑖ℎ = {(𝑝, 𝑘)|𝑝 ∉ 𝑃𝑛

𝑖ℎ ∪ 𝑘 ∉ 𝐾𝑝}. 𝒇𝒏
∗  can be extended to the global region 𝛹 

by defining  
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 𝒇∗ = {𝑓𝑝
𝑖ℎ∗(𝑘)|𝑓𝑝

𝑖ℎ∗(𝑘) = {
0,               if (𝑝, 𝑘) ∈ 𝛷̅𝑛

𝑖ℎ

𝑓𝑝𝑛
𝑖ℎ∗(𝑘),   if (𝑝, 𝑘) ∈ 𝛷𝑛

𝑖ℎ} (6.45) 

 

Although no new time-dependent ATP satisfies Eq. (6.33), there may be one or 

more time-dependent ATPs in 𝛷̅𝑛
𝑖ℎ with disutilities 𝑐𝑝

𝑖ℎ(𝑘, 𝒇∗) less than 𝑐min
𝑖ℎ (𝒇𝒏

∗ ). It is 

reasonable to assume that (𝑝′, 𝑘′)  has the minimum disutility  𝑐𝑝′
𝑖ℎ(𝑘′, 𝒇∗) , that 

is 𝑐min
𝑖ℎ (𝒇∗) = 𝑐𝑝′

𝑖ℎ(𝑘′, 𝒇∗). Derived from this finding and Eq. (6.45), it can be obtained 

that for all (𝑝, 𝑘) ∈ 𝛹, if 𝑓𝑝
𝑖ℎ∗(𝑘) > 0,  

 

 

𝑐𝑝
𝑖ℎ(𝑘, 𝒇∗) − 𝑐min

𝑖ℎ (𝒇∗)

𝑐min
𝑖ℎ (𝒇∗)

=
𝑐𝑝
𝑖ℎ(𝑘, 𝒇∗) − 𝑐𝑝′

𝑖ℎ(𝑘′, 𝒇∗)

𝑐𝑝′
𝑖ℎ(𝑘′, 𝒇∗)

    

≤
𝑐𝑝
𝑖ℎ(𝑘, 𝒇∗) − (1 − 𝜖𝑖ℎ) ∙ 𝑐min

𝑖ℎ (𝒇𝒏
∗ )

(1 − 𝜖𝑖ℎ) ∙ 𝑐min
𝑖ℎ (𝒇𝒏

∗ )

≤
𝑐min
𝑖ℎ (𝒇𝒏

∗ ) ∙ (1 + 𝜀𝑛
𝑖ℎ) − (1 − 𝜖𝑖ℎ) ∙ 𝑐min

𝑖ℎ (𝒇𝒏
∗ )

(1 − 𝜖𝑖ℎ) ∙ 𝑐min
𝑖ℎ (𝒇𝒏

∗ )

=
𝜀min
𝑖ℎ + 𝜖𝑖ℎ

1 − 𝜖𝑖ℎ
= 𝜀𝑖ℎ 

(6.46) 

 

The first inequality is derived since (1 − 𝜖𝑖ℎ) ∙ 𝑐min
𝑖ℎ (𝒇𝒏

∗ )  is a lower bound of 

𝑐𝑝′
𝑖ℎ(𝑘′, 𝒇∗) according to Eq. (6.33), and the second inequality holds due to Eq. (6.44). 

Note that the denominator is always larger than 0 since 𝜖𝑖ℎ ∈ [0, 1). This conclusion is 

consistent with the BR-DATA condition (6.9). Thus, 𝒇∗  is a solution to BR-DATA 

problem (6.10)-(6.12). □ 

 

Lemma 6.2: The first three conditions posited in Lemma 6.1 can be reached within finite 

iterations.  

Proof. This lemma can be proved by showing that the number of iterations of spatial-

temporal exploration and exploitation is finite in the TBCG algorithm. Specifically, for 

the spatial exploration, only when the time-dependent ATP (𝑝, 𝑘) ∈ {(𝑝, 𝑘)|𝑝 ∉ 𝑃𝑛
𝑖ℎ , 𝑘 ∈

𝐾𝑛}  with disutility satisfying Eq. (6.33), 𝑝  is added to the current ATP set 𝑃𝑛
𝑖ℎ  and 

processed in the next iteration. The number of ATPs in 𝑃 leads to the result that no more 

than |𝑃| iterations of ATP extensions are needed from ∅ to 𝑃. It should be noted that the 

actual number of used ATPs is significantly less than |𝑃| . Regarding the temporal 

exploration, it adds time interval 𝑘  to 𝐾𝑝  only if time interval 𝑘  satisfies Eq. (6.34). 

Then, the VI problem is solved with the new 𝐾𝑝. At iteration 𝑛, the maximum number of 

𝐾𝑝 extensions is |𝐾𝑛| since 𝐾𝑝 ⊑ 𝐾𝑛 . Taken together, the new ATP and time interval 

extension are completed within finite steps. On the other hand, Eq. (6.40) is performed 

⌈ln(Δ/Δ0)/ ln 𝜗2⌉ times at most to increase the time resolution to Δ, and Eq. (6.39) is 
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performed at most ⌈ln(𝜀𝑚𝑖𝑛
𝑖ℎ /𝜀𝑚𝑎𝑥

𝑖ℎ )/ ln 𝜗1⌉ times to reach 𝜀𝑚𝑖𝑛
𝑖ℎ . These are consistent with 

the conditions noted in Lemma 6.1.□ 

 

According to Lemmas 6.1 and 6.2, the following proposition is obtained.  

 

Proposition 6.3 If 𝒄(𝒇) is continuous, the solution derived from the TBCG algorithm 

satisfies the BR-DATA user equilibrium condition under the required convergence 

precision.  

Proof. According to Lemma 6.2, the required convergence precision can be reached 

within finite iterations of spatial and temporal exploitation. As shown by Eq. (6.45), the 

extension of 𝒇𝒏
∗  to the global region 𝛹 ensures that all used time-dependent ATPs in 𝛹 

by class 𝑖 departing from ℎ has disutilities within [𝑐min
𝑖ℎ (𝒇∗),  𝑐min

𝑖ℎ (𝒇∗) ∙ (1 + 𝜀𝑖ℎ)]. □ 

 

The continuity of 𝒄(𝒇) ensures that there is at least one solution to BR-DATA 

problem (6.10)-(6.12). However, the monotonicity of the ATP disutilities, 𝑐𝑝
𝑖ℎ(𝑘, 𝒇), 

cannot be guaranteed based on Eq. (6.8); hence, the uniqueness of solutions may not 

hold. The refined strategies make major revisions to the original CG algorithm. 

Comparatively, the TBCG algorithm searches the solutions to the BR-DATA problems 

in reduced space but produces uncompromised solutions. In the numerical example 

section, it will be shown that the TBCG algorithm produces approximately the same BR-

DATA solutions as the original CG algorithm with significantly reduced computation 

time.  

 

6.4 Numerical examples 
 

In this section, numerical examples are carried out to assess the TBCG algorithm for BR-

DATA problems. The solution algorithm is coded in MATLAB and runs on a personal 

computer with an Intel(R) Core(TM) i5-7300U 2.60 GHz CPU and 8.00 GB RAM. The 

time horizon is taken from 7:00 am to 8:00 pm on an average day. To illustrate traveler 

heterogeneity, three different traveler classes are considered according to their incomes.  

The ratio among low, medium, and high-income travelers is 1:3:1. Travelers are assumed 

to conduct activities from a pool of activities, including work (W), shopping (S), and 

leisure (L), constituting seven different daily activity programs. The percentages of 

travelers on different activity programs are W 20%, S 20%, L 20%, W+S 8%, W+L 8%, 

S+L 8%, and W+S+L 16%. After performing link attribute transformations in the studied 

transport networks, travelers with work activity are assumed to work at locations where 

can be reached within 1 hour of free-flow travel time. The attraction of a work location 

is inversely proportional to the distance between the home zone and the workplace. The 

parameters are set as ∆= 1 minute and 𝜀𝑖ℎ = 0.1 in the CG and TBCG algorithms. 𝐹𝑎
𝑙 is 
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defined as −0.001(𝑡 − 7.5)(𝑡 − 8)(𝑡 − 17)(𝑡 − 18)+1  for work, −0.001(𝑡 −

7.5)(𝑡 − 8)(𝑡 − 18)(𝑡 − 19)+1  for shopping, and −0.001(𝑡 − 7.5)(𝑡 − 8.5)(𝑡 −

17)(𝑡 − 19) + 1 for leisure. Other common parameters are listed in Table 6.2. The 

newly- developed BR-MDA is used in both algorithms. One main difference is that the 

CG algorithm uses Eq. (6.32) as the ATP-adding criterion, while the TBCG uses Eq. 

(6.33). In addition, 𝜗1 = 0.1, 𝜗2 = 0.3, 𝜗3 = 1, ∆1= 2 minutes, 𝜖𝑖ℎ = 0.1, and 𝜀0
𝑖ℎ =

𝜀max
𝑖ℎ = 0.2 are defined only for the TBCG algorithm (some parameters are modified for 

sensitivity analyses below).  

 

Table 6.2 Parameter settings 

Activity 𝑡𝑙
o (h) 𝑡𝑙

e (h) 𝑈𝑙
∗ 𝜎min

𝑙 (h) 𝜎max
𝑙 (h) 𝑒𝑙 

W 8 17 10 6 8 100 

S 8 19 3 0.17 1 100 

L 8 19 5 0.33 1.5 100 

Class 𝜆1
𝑖  𝜆2

𝑖  𝜆3
𝑖  𝜆4

𝑖  𝜆5
𝑖   𝜆6

𝑖  

1 0.30 0.33 1 100 1 -0.083 

2 0.36 0.40 1.3 100 0.8 -0.075 

3 0.39 0.43 1.3 100 0.8 -0.067 

 

      

   
                             (a) Land use map                                         (b) Transport network 

Figure 6.4 Land use and transport network of Sioux Falls.  
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Figure 6.5 Convergence curves of the CG and TBCG algorithms. 

 

6.4.1 Sioux Falls network 

 

The application of the TBCG algorithm is first elaborated in the Sioux Falls network 

consisting of 24 nodes and 76 links. To illustrate the activity participation of travelers, 

10 home zones (residential neighborhoods), 4 workplaces (including offices and 

industries), 5 shops, and 3 leisure locations are defined. The demands of these 10 home 

zones are randomly generated from 1 to 6 times of 1000. The layout of these locations 

given in Figure 6.4 (b) corresponds to the land use map shown in Figure 6.4 (a) from 

http://www.siouxfalls.org/Planning.  

Figure 6.5 shows the convergence curves of CG and TBCG algorithms. Both 

algorithms go through oscillations. These fluctuations in the course of convergence are 

a common issue of many flow assignment algorithms (e.g., Huang and Lam, 2002; Long 

et al., 2013; Han et al., 2015). For the flat parts, the relative gaps remain unchanged when 

the flows shifted in the assignment process are not large enough to change the values of 

the maximum and minimum disutilities. For the peaks, the relative gaps change 

considerably when new time-dependent ATPs are generated. The first peak of the TBCG 

algorithm appears when the relative gap reaches 𝜀max 
𝑖ℎ  (0.2). At that point, the BR-MDA 

algorithm is run to find new ATPs, and the new generated ATP provides a new start for 

the following iterations. The total computation times are 214.79 s for TBCG algorithm 

http://www.siouxfalls.org/Planning
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and 512.06 s for CG algorithm (note that the computation times should be substantially 

reduced when using a compiling programming language). The horizontal axes in the 

subfigures denote the number of ATP flow reassignments, which is consistent with the 

number of dynamic network loadings. In this example, the TBCG and CG algorithms 

need 37 and 72 ATP flow reassignments respectively to satisfy the stopping criterion. 

  

 
                   (a) ATP disutility of class 1                                 (b) ATP flow of class 1 

 

 
                    (c) ATP disutility of class 2                                (d) ATP flow of class 2 

 

Figure 6.6 Equilibrium solutions of class 1 and class 2. 

 
Table 6.3 ATP specification 

Class ATP ID Sequence of nodes 

1 
ATP 1  15 - 22 (shopping) - 21 (leisure) - 24 (work) - 21 - 22 - 15 

ATP 2 15 - 22 - 21 - 24 (work) - 21 (leisure) - 22 (shopping) - 15 

2 

ATP 1 15 - 22 (shopping) - 21 (leisure) - 24 (work) - 21 - 22 - 15 

ATP 2 15 - 22 - 21 - 24 (work) - 21 (leisure) - 22 (shopping) - 15 

ATP 3 15 - 22 - 21 (leisure) - 24 (work) - 23 - 22 (shopping) - 15 
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Figure 6.7 The number of travelers at different states. 

 

Travelers belonging to classes 1 and 2 of the same home zone are chosen to 

illustrate the effects of traveler heterogeneity on BR-DATA user equilibrium states. As 

shown in Figure 6.6, ATPs 1 and 2 are generated for class 1 (the upper two subfigures), 

while travelers in class 2 have three ATPs (the lower two subfigures). Each ATP is 

represented by a sequence of nodes in Table 6.3. At the steady state, the disutilities of 

used time-dependent ATPs are no larger than the upper bound defined by Eq. (6.37). 

These results meet the BR-DATA user equilibrium condition. The disutility of ATP 1, 

shown by the blue curve, has a steep increase at around 8:15 am. Travelers who depart 

later than this time cannot finish three activities subject to space-time constraints and 

consequently receive a large penalty. It is interesting to find that the flow curves of ATP 

2 in Figure 6.6 (b) and (d) have major fluctuations at around 9:00 am as the corresponding 

ATP disutilities have larger values. The reason is that a large part of travelers departing 

at around 8:00 am choose to go shopping first, which leads to a mild traffic peak at 

around 9:00 am. Hence, travelers departing later may either alter departure times or 

switch to other ATPs to avoid congestion. Similarly, travelers who conduct leisure 

activities in the morning would be involved in dense traffic at around 9:30 am. This 

explanation is verified by Figure 6.7. Moreover, ATPs 1, 2, and 3 have different activity 

sequences. Based on Eqs. (6.3) and (6.4), the activity disutility decreases with increased 

duration, which is partly due to the 𝑙𝑜𝑔-shape activity disutility function.  

Throughout a day, travelers may go through five different states, i.e., staying at 

home, traveling on roads, working, shopping, and doing leisure. The travelers at these 
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states are marked with blue, green, red, orange, and purple colors respectively, as 

depicted in Figure 6.7. The time use of travelers on roads shows that the plausible 

morning and evening peaks appear during [7:30 am, 9:30 am] and [4:30 pm, 5:30 pm] 

respectively. During the morning peak hours, three peaks occur, consistent with the ATP 

disutilities in Figure 6.6. Travelers prefer shopping during the time range [8:00 am, 12:00 

pm] in the morning and [4:00 pm, 7:00 pm] in the afternoon. The departure time range 

is pre-set as [7:00 am, 10:00 am] to examine the departure time choice across peak and 

non-peak hours. The pre-set time range causes travelers who only have shopping in the 

activity program to conduct shopping in the morning. Therefore, the yellow area in the 

morning is larger than that in the afternoon. Travelers doing leisure have a similar 

distribution. This may be because both activities have similar opening hours and duration 

choice constraints. In addition, travelers going shopping and/or doing leisure after work 

are involved in a mild traffic peak at around 7:00 pm.  

To test the effects of parameter settings on the convergence of the TBCG algorithm, 

Table 6.4 shows the effects of three parameters,  𝜗1 , 𝜀max
𝑖ℎ  and 𝜖𝑖ℎ  by fixing other 

parameters. As seen, the run-time, the number of BR-MDA algorithm queries (expressed 

as PS - pattern search in Table 6.4), and the number of dynamic network loadings (NL) 

fluctuate with the parameters. Overall, the speedup factors of TBCG over CG fall within 

the range [2, 3] whilst producing approximately the same BR-DATA solutions. In this 

example, it is found that 94.22% of the common ATPs are generated by both algorithms. 

 

Table 6.4 Effects of the parameters of the TBCG algorithm 

Comparison parameters CG algorithm  TBCG algorithm Speedup 

factor 𝜗1 𝜀max
𝑖ℎ   𝜖𝑖ℎ  # PS # NL Run-time (s)  # PS # NL Run-time (s) 

0.5 0.2 0.1  

 4  80 512.06 

 9 49 214.79 2.38 

0.6 0.2 0.1   10 50 221.15 2.32 

0.75 0.2 0.1   11 39 203.02 2.52 

0.8 0.2 0.1   12 42 211.67 2.42 

0.1 0.4 0.1  

 4  76 619.43 

 9 34 267.84 2.31 

0.1 0.3 0.1   9 34 236.18 2.62 

0.1 0.2 0.1   10 44 266.14 2.33 

0.1 0.15 0.1   10 53 278.47 2.22 

0.1 0.2 0.8  

 4  62 699.06 

 9 51 248.05 2.82 

0.1 0.2 0.4   10 57 321.83 2.17 

0.1 0.2 0.2   10 56 294.40 2.37 

0.1 0.2 0.1   10 56 297.59 2.35 
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Figure 6.8 Run-time under different scenarios.  

 

6.4.2 Space-time scalability 

 

Various activity states and time resolutions in the Sioux Falls network and another four 

larger transport networks are chosen to illustrate the space-time scalability. As shown in 

Figure 6.8, the number of activities is increased in an activity program and three 

scenarios of the BR-DATA problem are considered based on the number of activity states 

in the Sioux Falls network, while other setups remain unchanged. Figure 6.8 also shows 

the influence of the time interval ∆ . Note that a larger value of ∆  means a smaller 

temporal resolution in the discrete-time domain. Scenario 1 has 3 activities and 8 activity 

states. Scenarios 2 and 3 consider 4 activities, in which nodes 9 and 19 in Figure 6.4 (b) 

are used as the locations of a new activity. Scenario 2 has 12 activity states under the 

sequencing that the new activity can only be done after work. Scenario 3 removes this 

sequencing, and the number of activity states increases to 16. Although a traveler may 

perform more than 4 activities a day, it is likely that the majority of activity states will 

not exceed 16 due to the implicit sequences between these activities. As depicted, the 

increase in ∆ leads to a decrease in the average run-time. Compared with scenario 1, 

more activity states of scenarios 2 and 3 lead to a larger scale of 𝑆𝑁𝐾, and hence more 

run-time. This example specifically shows the applicability of the TBCG algorithm to 

BR-DATA problem variants in a one-day frame.  

The four larger transport networks include the Eastern Massachusetts (EMA) 

network (74 nodes, 258 links, and 74 zones), the Berlin Friedrichshain (BF) network 

(224 nodes, 523 links, and 23 zones), the Anaheim network (416 nodes, 914 links, and 
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38 zones), and the Chicago-sketch network (933 nodes, 2950 links, and 387 zones). The 

network topologies are obtained from http://www.bgu.ac.il/~ bargera/tntp/. The free-

flow travel times and link capacities are transformed to fit activity-based travel demand 

analysis. 15%, 20%, 30% of zones are randomly selected in the EMA network, about 

50%, 75%, 100% of zones in the BF and Anaheim networks, and about 8%, 13%, and 

26% zones in the Chicago-sketch network as home zones. In addition, the zones for 

offices, industrial areas, and shops, etc. are distributed proportionally in the networks. 

According to the run-time complexities given in Section 4.2, the TBCG algorithm affords 

various spatial distributions of home zones. Specifically, given 𝑖, a limited number of 

paths are usually generated for h, implying 𝑂(∑ |𝑃𝑖ℎ|) = 𝑂(|𝐻|)ℎ . A larger number of 

origins means a larger |𝐻|, which also results in a larger ∑ |𝑃𝑖ℎ|ℎ . From the viewpoint of 

complexity theory, the number of home zones only has linear effects in terms of 

computation time on path searches and network loadings.  

Table 6.5 provides five indicators of the TBCG algorithm, i.e., the numbers of 

network loadings and ATP searches, run-time per network loading and ATP search, and 

the total computation time. As shown, the average values of these five terms increase 

with the increase of the network scale and the number of home zones. Compared with 

the number of network loadings and ATP searches, the increases in the other three 

indicators are more obvious. 

These four representative networks have been thus far the largest general networks 

in the field of DATA modeling. Combining the results under different scenarios in the 

Sioux Falls network, it is concluded that the TBCG algorithm shows solid space-time 

scalability and has large gains in computation time without losing solution quality.  

 

Table 6.5 Application of the TBCG algorithm in larger networks 

Network 
# Home 

zones 

Network loading  ATP search Computation 

time (s) NO. Time per NL (s)  NO.  Time per PS (s) 

EMA 

11 44 2.03  7 5.64 129.05 

14 31 2.60  9 7.59 149.35 

22 31 3.25  7 7.42 153.00 

BF 

12 75 5.65  9 32.68 719.15 

18 83 8.22  9 48.53 1123.27 

23 80 8.85  9 69.63 1337.05 

Anaheim 

20 83 9.55  10 52.12 1315.63 

30 78 14.52  9 92.51 1967.98 

38 82 14.91  9 112.31 2237.13 

Chicago-

Sketch 

30 97 10.80  10 205.01 3100.43 

50 110 24.80  11 333.31 6401.57 

100 147 31.85  11 828.64 14025.70 

 

http://www.bgu.ac.il/~%20bargera/tntp/


Chapter 6 

122 

6.5 Conclusions  
 

DATA in SNKs is an innovative extension of DTA in traditional transport networks. 

Given the flexibility in network extensions, a DATA model is capable of carrying similar 

levels of behavioral realism that are required in activity-based travel demand analyses, 

such as various decision-making mechanisms and high-order choice facets. Due to the 

vulnerability to combinatorial explosion, most theoretical developments in this research 

field had been focusing on the model capability of capturing new mobility patterns rather 

than applicability in large networks. With the spatial-temporal exploration and 

exploitation strategies, the TBCG algorithm was refined for solving the BR-DATA 

problems in large car-only SNKs. A formal proof was provided that the proposed TBCG 

algorithm solves the BR-DATA and its variant problems, which is the first presented in 

the literature within the dynamic context. The numerical examples demonstrated that the 

TBCG algorithm substantially speeds up the original CG algorithm without 

compromising the solutions. 
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7  

Conclusions and Future 

Research 

 
 

7.1 Conclusions 
 

Traffic network equilibrium models and algorithms are important in transportation 

planning and operational management and have attracted much research interest in the 

areas of transportation research, operations research, and computer science. The 

consideration of multi-modal and heterogeneity of travelers enriches and complicates the 

traffic equilibrium problems. Higher time accuracy and larger network scale further 

enlarge the complexity of the problems from both the temporal and spatial dimensions. 

Incorporating several travel behavior mechanisms and mobility services, this thesis 

contributes to the modeling and algorithms of traffic network equilibrium problems.  

To capture the influence of risk attitudes on path choice, a generalized mean-

variance metric (GMV)-based user equilibrium (GMVUE) model is proposed. Travelers 

have different risk attitudes towards travel time uncertainty, for example,  due to different 

travel purposes. The GMV metric is formulated as a generalization of expected travel 

time, variance, and expected early or late arrival penalties. It can capture the influence 

of travelers’ on-time arrival probability and schedule delays on travelers’ path choice 

simultaneously. Due to the non-additivity of GMV, GMV-based dominance definitions 

and conditions are established and result in a new reliable shortest path searching 

algorithm. Then, an effective column generation (CG) algorithm integrates the path 

searching algorithm with the method of successive average (MSA) and is applied to 

solving the GMVUE problem for real networks.  
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Four tolerance-based strategies are proposed for extending the CG algorithm to the 

boundedly rational dynamic user equilibrium (BR-DUE) model in the dynamic context. 

Due to factors such as travel habits,  inertia, and cognition limitations, travelers have the 

behavior of bounded rationality (BR) in path choice. For solving the BR-DUE problem, 

four strategies, including tolerance-based minimum disutility path search strategy, self-

adjusted convergence threshold strategy, varied temporal resolution strategy, and path 

search skipping strategy, are proposed and embedded in an efficient tolerance-based CG 

(TBCG) algorithm to accelerate the original CG algorithm. Theoretically, these strategies 

can accelerate the original algorithm in terms of time complexity and maintain the 

convergence property of the CG algorithm. As illustrated in the numerical examples, the 

four strategies overall accelerate the original CG algorithm and reduce the numbers of 

path searches and dynamic network loadings.  

The supply-demand dynamics under different first-come-first-served (FCFS) 

mechanisms are suggested and embedded in a BR-DUE problem. Car-sharing services 

(CSS) are drawing growing interest in recent years. Rather than travel preferences and 

supply management, the supply-demand dynamics of one-way CSS are formulated and 

analyzed under four FCFS mechanisms. Compared with the existing no waiting FCFS 

(NW-FCFS) mechanism and aggregate FCFS (A-FCFS) mechanism, the disaggregate 

FCFS (D-FCFS) mechanism and VIP membership FCFS (VD-FCFS) mechanism are 

suggested to improve the utilization of shared cars by treating travelers as disaggregate 

units. Furthermore, a path expansion strategy congruently bridges the aggregate-

disaggregate analyses and is incorporated in an adaptive CG algorithm to solve the BR-

DUE problem. As demonstrated by numerical examples, that D-FCFS and VD-FCFS 

mechanisms are more efficient in regulating the usages of shared cars.  

To cope with the evolution from the aggregate trip-based models to disaggregate 

ABMs, several strategies of the TBCG algorithm are refined for solving boundedly 

rational dynamic activity-travel assignment (BR-DATA) problems in multi-state 

supernetworks without activity-travel pattern (ATP) enumeration. The refined spatial-

temporal exploration can allocate activity-travel flows only to potential ATPs in the 

intermediate assignment process and the spatial-temporal exploitation results in fewer 

iterations by intensifying ATP generation and network loading. In the dynamic context, 

the formal proof is presented to show that the refined TBCG algorithm solves the BR-

DATA and its variant problems. The numerical examples demonstrate that the refined 

TBCG algorithm outperforms the original CG algorithm in terms of computation time 

for solving BR-DATA problems. 

 

7.2 Future research 
 

Based on the proposed traffic network equilibrium models and algorithms, several 

extensions are worthy of investigation in future studies.  
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First, the GMV metric is proposed under the assumption that path travel times 

follow normal distributions in the static context. However, this assumption is unlikely or 

even logically impossible to hold in reality. Many other travel time distributions, such as 

lognormal or truncated normal distributions, should be investigated for considering the 

asymmetry of the distributions. Moreover, the GMV metric can be embedded into the 

BR-DUE or BR-DATA models to capture the dynamics and BR behavior.  

Second, travel demands in this thesis are assumed to be constants. Uncertain travel 

demand should be investigated, and thus demand and supply fluctuations should be 

captured simultaneously.  

Third, temporal resolution variations have been mainly considered in the TBCG 

algorithm for exploitation. Temporal resolution variations should also be considered in 

the temporal exploration process.  

Fourth, the relocation of SCs in this thesis is user-based. Operator-based relocations 

of human-driven or autonomous shared cars should also be incorporated in the 

equilibrium model. Similar extensions include vehicle reservations and pricing strategies 

from the supply side. 

 Fifth, other transport modes (e.g., bus, bike, and walking) should be considered in 

BR-DATA models to capture the multi-modal choice behavior and model the 

interactions between travel choices and activity chains.  

Lastly, some other travel demand analysis problems, such as population synthesis, 

network design, and policy evaluations, need to be consistently integrated with the 

TBCG algorithm to increase its relevance for addressing societal challenges. These 

issues will be addressed in future work.  
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Appendix 

 
 

 

Appendix 1.A Notations 
 

𝑆𝑁𝐾(𝑁, 𝐴) multi-state supernetwork composed of node set 𝑁 and link set 𝐴 

𝑆𝑁𝐾𝑇(𝑁, 𝐴, 𝐾) space-time supernetwork composed of 𝑁, 𝐴, and time interval set 𝐾 

𝐺(𝑁, 𝐴) the traffic network composed of 𝑁 and 𝐴 

𝐴𝑇𝑆 , 𝐴𝑃𝐶 , 𝐴𝑆𝐶 , 𝐴𝐴𝑇  link sets of transition, PC, SC, and transaction 

𝑙 link of 𝑆𝑁𝐾, 𝑙 ∈ 𝐴 

𝑎, 𝑏, 𝑐 three nodes of 𝑆𝑁𝐾, 𝑎, 𝑏, 𝑐 ∈ 𝑁 

𝑅𝑆 set of OD pairs 

𝑟𝑠 an OD pair, 𝑟𝑠 ∈ 𝑅𝑆 

∆ minimum length of a time interval  

K set of time intervals corresponding to Δ 

𝐾𝑝 set of time intervals of 𝑝 

𝑘, 𝜏, 𝑡, 𝑤 time intervals, 𝑘, 𝜏, 𝑡, 𝑤 ∈ 𝐾 

𝑘𝑟𝑠∗ preferred arrival time of 𝑟𝑠 

𝑃𝑟𝑠 set of paths of 𝑟𝑠 

𝑃̅𝑟𝑠 complement set of 𝑃𝑟𝑠  

𝑝, 𝑝̅, 𝑞 three paths  

𝑝𝑗 an expanded path of 𝑝 

𝑄𝑟𝑠 the demand of 𝑟𝑠 

𝜗𝑗 , 𝑗 = 1,2,3 scale parameters, 𝜗1, 𝜗2 ∈ (0, 1) 𝜗3 ≥ 1,  

𝜖𝑟𝑠  relative indifference threshold of travelers of 𝑟𝑠 toward path switch 

𝜀 convergence threshold 
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𝜀max
𝑟𝑠 , 𝜀min

𝑟𝑠  maximum and minimum relative convergence thresholds of 𝑟𝑠 

𝛹 time-dependent path set, 𝛹 = {(𝑝, 𝑘)|𝑝 ∈ 𝑃, 𝑘 ∈ 𝐾} 

𝛷 time-dependent path set, 𝛷 = {(𝑝, 𝑘)| ∈ 𝑃, 𝑘 ∈ 𝐾𝑝} 

𝛷𝑟𝑠 potential time-dependent path set of 𝑟𝑠, 𝛷𝑟𝑠 = {(𝑝, 𝑘)|𝑝 ∈ 𝑃𝑟𝑠, 𝑘 ∈ 𝐾𝑝} 

𝑓𝑝
𝑟𝑠(𝑘) flow that enters path 𝑝 of 𝑟𝑠 during 𝑘 

𝒇 vector of 𝑓𝑝
𝑟𝑠(𝑘) 

𝑢𝑙(𝑘) inflow of link 𝑙 during 𝑘 

𝑣𝑙(𝑘) outflow of link 𝑙 during 𝑘 

𝑒𝑙 the capacity of link 𝑙 

𝑡𝑙
0 free flow travel time of link 𝑙 

𝑡𝑙(𝑘, 𝒇) travel time of link 𝑙 for travelers entering at interval 𝑘 

𝑡𝑝
𝑟𝑠(𝑘, 𝒇) travel time incurred by 𝑓𝑝

𝑟𝑠(𝑘) 

𝑐𝑙(𝑘) disutility incurred by travelers arriving at the entry node of link 𝑙 during 𝑘 

𝑐𝑝
𝑟𝑠(𝑘, 𝒇) disutility incurred by 𝑓𝑝

𝑟𝑠(𝑘) 

𝑐min
𝑟𝑠 (𝒇) minimum disutility of 𝑟𝑠 

𝑐𝑟𝑠(𝑘, 𝟎) minimum disutility of paths with zero flow of 𝑟𝑠 at 𝑘 

𝒄(𝒇) vector of 𝑐𝑝
𝑟𝑠(𝑘, 𝒇) 

𝑡𝑙
W(𝜏) waiting time of link 𝑙 during 𝜏  

𝑡𝑙
D(𝜏) duration (or travel time) of link 𝑙 during 𝜏 

𝑤𝑎(𝑘) potential waiting time at node 𝑎 during time 𝑘  

𝑤𝑎,min(𝑘) minimum potential value of 𝑤𝑎(𝑘) 

𝑤𝑎,max(𝑘) maximum potential value of 𝑤𝑎(𝑘) 

𝑢𝑎(𝑘) arrival flow for ending the SC trip at 𝑎 during 𝑘  

𝑣𝑎(𝑘) arrival flow for starting the SC trip at 𝑎 during 𝑘 

𝑆𝑎(𝑘), 𝐷𝑎(𝑘) supply and demand of SC at node 𝑎 at the end of 𝑘 

ℎ𝑎(𝑘), 𝑔𝑎(𝑘) stock and shortage of SC at 𝑎 the end of 𝑘 

𝑧𝑎(𝑘, 𝑤) travel flow arriving at 𝑎 during 𝑘 and served after waiting time 𝑤 

𝜆𝑎(𝑘, 𝑤) proportion of served travelers arriving at 𝑎 during 𝑘 and waiting for 𝑤 

𝜛𝑝𝑗(𝑘) proportion of travelers on expanded path 𝑝𝑗 

𝛿𝑝𝑙𝑘
𝑟𝑠 (𝜏) 

0-1 variable, 𝛿𝑝𝑙𝑘
𝑟𝑠 (𝜏)=1 if travelers of 𝑟s depart during 𝑘 via 𝑝 and arrive at 

the entry node of 𝑙 during 𝜏 

𝑛 iteration index, 𝑛 is attached to entities at iteration 𝑛  

|𝑆𝐸𝑇| the number of elements in an arbitrary set 𝑆𝐸𝑇 
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Appendix 1.B Abbreviations 
 

ABM activity-based model ATP activity-travel pattern 

BPR Bureau of Public Road BR bounded rationality 

BR-DUE boundedly rational DUE BR-MDA boundedly rational MDA 

BR-DATA boundedly rational DATA CG column generation 

CDF cumulative distribution function CTM cell transmission model 

CSS car-sharing services DTA dynamic traffic assignment 

DATA dynamic activity-travel assignment DUE dynamic UE 

DSUE dynamic SUE FCFS first-come-first-served 

FIFO first-in-first-out  GMV generalized mean-variance 

LTM link transmission model MDA minimum disutility ATP 

METT mean-excess travel time MLTT mean-less travel time 

MSA method of successive average MTT mean travel time 

M-GMV mean-GMV M-V mean-variance 

OD origin and destination PTPS potential time-dependent path set 

PAT preferred arrival time RUE reliability-based UE 

SD standard deviation SNK multi-state supernetwork 

STA static traffic assignment SUE stochastic UE 

TBCG tolerance-based CG TTB travel time budget 

TTR travel time reliability UE user equilibrium 

VI variational inequality VIP very important person 

 

 

Appendix 2.A Existence and non-uniqueness of the solutions.  
 

Existence: According to Theorem 5.6 proposed by Han et al. (2015), the sufficiency for 

the existence of BR-DUE includes two conditions, which are both satisfied in this 

chapter.  

First, 𝑐̃𝑝
𝑟𝑠(𝑘, 𝒇) is continuous with path flows. 

This condition has been shown to be true for the VI problems in the continuous 

time domain, of which the dynamic network loading can be performed based on the 

Vickrey model (Han et al., 2013) and LWR-Lax model (Bressan and Han, 2013), etc. 

Regarding the finite-dimensional VI problem, the continuity of 𝑐𝑝̃
𝑟𝑠(𝑘, 𝒇) depends on the 

continuity of 𝑐𝑝
𝑟𝑠(𝑘, 𝒇), which has also been shown by Long et al. (2013a) through linear 

interpolation of link travel times.  
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Second, for each 𝑟𝑠 ∈ 𝑅𝑆, let path travel disutility 𝑐𝑝
𝑟𝑠(𝑘, 𝒇) be decomposed into two 

additive components, i.e. 𝑐𝑟𝑠
1 (∙) and 𝑐𝑟𝑠

2 (∙); moreover, the former one is monotonically 

increasing and the latter is Lipschitz continuous with constant 𝐿𝑟𝑠.  

This condition holds for the path disutility formulated in Eq. (2.5) with 𝜂3 > 𝜂1 >

𝜂2 > 0 by supposing 𝑐𝑟𝑠
2 (𝑘) = −𝜂1𝑘 and  

 

𝑐𝑟𝑠
1 (𝑘 + 𝑡𝑝

𝑟𝑠(𝑘, 𝒇)) = 𝜂
1
(𝑘 + 𝑡𝑝

𝑟𝑠(𝑘, 𝒇)) 

+{

𝜂
2
[𝑘𝑟𝑠∗  − 𝜅𝑟𝑠 − 𝑘 − 𝑡𝑝

𝑟𝑠(𝑘, 𝒇)]   if 𝑘 + 𝑡𝑝
𝑟𝑠(𝑘, 𝒇) < 𝑘𝑟𝑠∗ − 𝜅𝑟𝑠

𝜂
3
[𝑘 + 𝑡𝑝

𝑟𝑠(𝑘, 𝒇) − 𝑘𝑟𝑠∗ − 𝜅𝑟𝑠]    if 𝑘 + 𝑡𝑝
𝑟𝑠(𝑘, 𝒇) > 𝑘𝑟𝑠∗ + 𝜅𝑟𝑠

0                                                        otherwise                                  

 
(2.A.1) 

 

Non-uniqueness: As proved by Szeto and Lo (2006) and Han et al. (2015), the solutions 

to the BR-DUE problem are non-unique. Specifically, when the threshold of the 

acceptable relative difference 𝜀𝑟𝑠 approaches infinity, it is obvious that any path flow 

vector in 𝛺 satisfies Eq. (2.16). On the contrary, the BR-DUE problem is degenerated to 

the general DUE when 𝜀𝑟𝑠 equals zero. The uniqueness of DUE solutions requires the 

path disutilities to be strictly monotone with path flow, which do not hold in general 

(Huang and Lam, 2002; Mounce and Carey, 2015).  

Based on the above analyses, the existence and non-uniqueness of the solutions to 

the discrete time VI(𝒇, 𝛺) problem are confirmed.  

 

Appendix 3.A Proof of Remark 3.1. 
 

Proof. While the correctness of Remark 3.1 (i-ii) is obvious, Remark 3.1 (iii) and (iv) 

need some manipulations to prove. Recalling the definition of GMV, it is obtained that  

 

 𝑐𝑝
𝑟𝑠 = 𝜇𝑝 +

1

1 − 𝛼
𝐸(𝑇𝑝 − 𝜉𝑝(𝛼))

+
+ 𝛾(𝛼)𝜎𝑝 (3.A.1) 

 

Based on the definition of TTB in Eq. (3.7), Eq. (3.A.1) is rewritten as 

 

 𝑐𝑝
𝑟𝑠 = 𝜉𝑝(𝛼) +

1

1 − 𝛼
𝐸(𝑇𝑝 − 𝜉𝑝(𝛼))

+
 (3.A.2) 

 

The second term of the right-hand side of Eq. (3.A.2) can be derived as follows 
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1

1 − 𝛼
𝐸(𝑇𝑝 − 𝜉𝑝(𝛼))

+
=

1

1 − 𝛼
∫ (𝑇𝑝 − 𝜉𝑝(𝛼)) ∗
𝑏𝑝

𝜉𝑝(𝛼)

𝑦(𝑇𝑝)𝑑𝑇𝑝             

                                         = ∫ (𝑇𝑝 − 𝜉𝑝(𝛼)) ∗
𝑏𝑝

𝜉𝑝(𝛼)

𝑦(𝑇𝑝)

𝑃𝑟 (𝑇𝑝 ≥ 𝜉𝑝(𝛼))
𝑑𝑇𝑝 

             = 𝐸(𝑇𝑝 − 𝜉𝑝(𝛼)|𝑇𝑝 ≥ 𝜉𝑝(𝛼)) 

 (3.A.3) 

 

where 𝑦(𝑇𝑝) denotes the probability density function of the 𝑇𝑝. Substituting Eq. (3.A.3) 

into Eq. (3.A.2), it is obtained that 

 

 𝑐𝑝
𝑟𝑠 = 𝜉𝑝(𝛼) + 𝐸(𝑇𝑝 − 𝜉𝑝(𝛼)|𝑇𝑝 ≥ 𝜉𝑝(𝛼)) = 𝐸(𝑇𝑝|𝑇𝑝 ≥ 𝜉𝑝(𝛼)) (3.A.4) 

 

Eq. (3.A.4) is consistent with the definition of METT proposed by Chen and Zhou 

(2010). The proof of Remark 3.1 (iv) is similar and thus omitted here. □  

 

Appendix 3.B Proof of Proposition 3.1. 
 

Proof of continuity. Path travel time 𝑇𝑝 is a random variable, so is the late schedule 

delay (𝑇𝑝 − 𝜉𝑝(𝛼))
+ denoted by 𝑇̃𝑝 given by 

 

 𝑇̃𝑝 = (𝑇𝑝 − 𝜉𝑝(𝛼))
+ = {

0,                    𝑇𝑝 < 𝜉𝑝(𝛼)

𝑇𝑝 − 𝜉𝑝(𝛼),   𝑇𝑝 ≥ 𝜉𝑝(𝛼)
 (3.B.1) 

 

As 𝑇𝑝 follows a normal distribution, the CDF of 𝑇̃𝑝 is given by  

 

 𝑃(𝑇̃𝑝 ≤ 𝑥) = {
0,                         𝑥 < 0

𝑌(𝑥 + 𝜉𝑝) ,       𝑥 ≥ 0
 (3.B.2) 

 

where 𝜉𝑝(𝛼) is abbreviated as 𝜉𝑝 for convenience. The expectation of 𝑇̃𝑝 is calculated by  

 

𝐸(𝑇̃𝑝)=0 ∗ 𝑃(𝑇̃𝑝=0)+∫ (𝑇𝑝 − 𝜉𝑝) ∗ 𝑦(𝑇𝑝)𝑑𝑇𝑝=∫ (𝑇𝑝 − 𝜉𝑝) ∗ 𝑦(𝑇𝑝)𝑑𝑇𝑝

+∞

𝜉𝑝

+∞

𝜉𝑝

 (3.B.3) 

 

where 𝑦(𝑇𝑝) denotes the probability density function of 𝑇𝑝. Similarly, the expectation of 

early schedule delay is expressed below 

 

 𝐸(𝑇𝑝 − 𝜉𝑝(𝛼))
− = ∫ (𝜉𝑝 − 𝑇𝑝)

𝜉𝑝

−∞

∗ 𝑦(𝑇𝑝)𝑑𝑇𝑝 (3.B.4) 

According to Eq. (3.12),   
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𝑐𝑝
𝑟𝑠

= 𝜔1𝜇𝑝 + 𝜔2(𝛼)∫ (𝜉𝑝-𝑇𝑝)
𝜉𝑝

-∞

∙𝑦(𝑇𝑝)𝑑𝑇𝑝+𝜔3(𝛼)∫ (𝑇𝑝-𝜉𝑝)∙𝑦(𝑇𝑝)𝑑𝑇𝑝

+∞

𝜉𝑝

+ 𝜔1𝛾(𝛼)𝜎𝑝

= 𝜔1𝜉𝑝 + 𝜔2(𝛼)𝛼𝜉𝑝 − 𝜔2(𝛼)∫ 𝑇𝑝∙𝑦(𝑇𝑝)𝑑𝑇𝑝

𝜉𝑝

-∞

+ 𝜔3(𝛼)∫ 𝑇𝑝∙𝑦(𝑇𝑝)𝑑𝑇𝑝

+∞

𝜉𝑝

− 𝜔3(𝛼)(1-𝛼)𝜉𝑝 

(3.B.5) 

 

The second line of Eq. (3.B.5) starts with the definition of TTB as shown in Eq. 

(3.7). Through integral manipulations, the fourth term on the right-hand side of Eq. 

(3.B.5) is rewritten as 

 

 𝜔3(𝛼)∫ 𝑇𝑝 ∗ 𝑦(𝑇𝑝)𝑑𝑇𝑝

+∞

𝜉𝑝

= 𝜔3(𝛼)𝜇𝑝(1 − 𝛼) +
𝜔3(𝛼)𝜎𝑝

√2𝜋
𝑒
−(
𝜉𝑝−𝜇𝑝

√2𝜎𝑝
)

2

 (3.B.6) 

 

Similarly, the third term on the right-hand side of Eq. (3.B.5) is represented as 

 

 −𝜔2(𝛼)∫ 𝑇𝑝 ∗ 𝑦(𝑇𝑝)𝑑𝑇𝑝

𝜉𝑝

−∞

= −𝜔2(𝛼)𝜇𝑝𝛼 +
𝜔2(𝛼)𝜎𝑝

√2𝜋
𝑒
−(
𝜉𝑝−𝜇𝑝

√2𝜎𝑝
)

2

 (3.B.7) 

 

By combining Eqs. (3.B.5)-(3.B.7), 𝑐𝑝
𝑟𝑠 is reduced to 

 

 

𝑐𝑝
𝑟𝑠 = 𝜔1𝜉𝑝+𝜔2(𝛼)𝛼(𝜉𝑝 − 𝜇𝑝)+𝜔3(𝛼)(1 − 𝛼)(𝜇𝑝

− 𝜉𝑝)+
(𝜔2(𝛼)+𝜔3(𝛼))𝜎𝑝

√2𝜋
𝑒
-(
𝜉𝑝−𝜇𝑝

√2𝜎𝑝
)

2

 
(3.B.8) 

 

Substituting Eq. (3.7) into Eq. (3.B.8), it is obtained that  

 

 

𝑐𝑝
𝑟𝑠 = 𝜔1[𝜇𝑝 + 𝛾(𝛼)𝜎𝑝] + 𝜔2(𝛼)𝛼𝛾(𝛼)𝜎𝑝 − 𝜔3(𝛼)(1 − 𝛼)𝛾(𝛼)𝜎𝑝

+
(𝜔2(𝛼)+𝜔3(𝛼))𝜎𝑝

√2𝜋
𝑒
-(
𝛾(𝛼)

√2
)
2

 
(3.B.9) 

 

Recalling the definition of 𝛾(𝛼) shown in Eq. (3.9), 𝛾(𝛼) is continuous with 𝛼; 

thus, the GMV 𝑐𝑝
𝑟𝑠 calculated by Eq. (3.B.9) is also continuous with 𝛼. □ 
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Proof of monotonicity. Based on the relation between 𝛾(𝛼) and 𝛼 shown in Eq. (3.9), 

𝛼 is represented as  

 

 𝛼 = 𝑋(𝛾(𝛼)) = ∫
1

√2𝜋
𝑒
(−

𝑥2

2
)𝛾(𝛼)

−∞
𝑑𝑥   (3.B.10) 

 

For TTB, the first order of derivatives of 𝑢𝑝
𝑟𝑠 with respect to 𝛾(𝛼) are 

 

 (𝑢𝑝
𝑟𝑠)′ = 𝜎𝑝 (3.B.11) 

 

Recalling Remark 3.1 (iii) and (iv) in Section 3.1, coefficients 𝜔2(𝛼) and 𝜔3(𝛼) 

of GMV are 𝛼-related. The mathematical form of the first order derivative of METT and 

MLTT with respect to 𝛾(𝛼) can be derived from the following equations respectively.  

 

 (𝑢𝑝
𝑟𝑠)

′
=

𝜎𝑝 ∙ 𝑋′(𝛾(𝛼))

√2𝜋[1 − 𝑋(𝛾(𝛼))]2
∫ (𝑥 − 𝛾(𝛼))𝑒−

𝑥2

2 𝑑𝑥
+∞

𝛾(𝛼)

 (3.B.12) 

   

 (𝑢𝑝
𝑟𝑠)

′
=
𝜎𝑝 ∙ [𝛾(𝛼) ∙ 𝑋(𝛾(𝛼)) + 𝑋

′(𝛾(𝛼))]

√2𝜋 ∙ 𝑋2(𝛾(𝛼))
𝑒−

𝛾(𝛼)2

2  (3.B.13) 

 

It is obvious that the values of Eqs. (3.B.11)-(3.B.13) are positive. Therefore, TTB, 

METT, and MLTT are monotonically increasing with 𝛾(𝛼). As 𝛾(𝛼) is monotonically 

increasing with 𝛼 , it is concluded that TTB, METT, and MLTT are monotonically 

increasing with 𝛼.□ 

 

Appendix 3.C Proof of Proposition 3.2 and Proposition 3.3. 
 

Proof of Proposition 3.2. Let 𝑝1
𝑟𝑗
= 𝑝1

𝑟𝑖⨁𝑝𝑖𝑗  and 𝑝2
𝑟𝑗
= 𝑝2

𝑟𝑖⨁𝑝𝑖𝑗  be two paths from 

node 𝑟 to 𝑗 with the same sub-path 𝑝𝑖𝑗 , the deviation between 𝑐1
𝑟𝑗

 and 𝑐2
𝑟𝑗

 is 

 

𝒻𝑟𝑖(𝑝𝑖𝑗)=𝑐1
𝑟𝑗
− 𝑐2

𝑟𝑗
=𝜔1(𝜇1

𝑟𝑖 − 𝜇2
𝑟𝑖)+𝑧 (√(𝜎1

𝑟𝑖)
2
+(𝜎𝑖𝑗)2 − √(𝜎2

𝑟𝑖)
2
+(𝜎𝑖𝑗)2) 

 

(3.C.1) 

 

The derivative of the above equation with respect to (𝜎𝑖𝑗)2 can be formulated as 

follows 
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 (𝒻𝑟𝑖)′(𝑝𝑖𝑗) =
𝑑𝒻𝑟𝑖(𝑝𝑖𝑗)

𝑑(𝜎𝑖𝑗)2
=
𝑧

2
∗
√(𝜎2

𝑟𝑖)
2
+ (𝜎𝑖𝑗)2 − √(𝜎1

𝑟𝑖)
2
+ (𝜎𝑖𝑗)2

√((𝜎1
𝑟𝑖)

2
+ (𝜎𝑖𝑗)2) ((𝜎2

𝑟𝑖)
2
+ (𝜎𝑖𝑗)2)

 (3.C.2) 

 

When 𝜎1
𝑟𝑖 < 𝑧𝜎2

𝑟𝑖 , (𝒻𝑟𝑖)′(𝑝𝑖𝑗) > 0. Note that (𝜎𝑖𝑗)2 ∈ (0,+∞), thus 𝒻𝑟𝑖(𝑝𝑖𝑗) <

𝜇1
𝑟𝑖 − 𝜇2

𝑟𝑖 ≤ 0. The last inequality is followed by 𝜇1
𝑟𝑖 ≤ 𝜇2

𝑟𝑖. This completes the proof of 

case (a) according to Definition 3.1, and case (b) can be concluded similarly. □ 

 

Proof of Proposition 3.3. When 𝑧𝜎1
𝑟𝑖 < 𝑧𝜎2

𝑟𝑖 and 𝜇1
𝑟𝑖 ≤ 𝜇2

𝑟𝑖, (𝒻𝑟𝑖)′(𝑝
𝑖𝑗) > 0 is obtained 

according to Eq. (3.C.2). Thus, 𝒻𝑟𝑖(𝑝𝑖𝑗) < 𝜔1(𝜇1
𝑟𝑖 − 𝜇2

𝑟𝑖) ≤ 0. When 𝑧𝜎1
𝑟𝑖 > 𝑧𝜎2

𝑟𝑖 and 

𝑐1
𝑟𝑖 < 𝑐2

𝑟𝑖, it can be obtained that 𝒻𝑟𝑖
′
(𝑝𝑖𝑗) > 0. Thus, 𝒻𝑟𝑖(𝑝𝑖𝑗) ≤ 𝑐1

𝑟𝑖 − 𝑐2
𝑟𝑖 < 0. When 

𝑧𝜎1
𝑟𝑖 = 𝑧𝜎2

𝑟𝑖  and 𝑐1
𝑟𝑖 < 𝑐2

𝑟𝑖 , 𝒻𝑟𝑖
′
(𝑝𝑖𝑗) = 0 . Thus, 𝒻𝑟𝑖(𝑝𝑖𝑗) = 𝑐1

𝑟𝑖 − 𝑐2
𝑟𝑖 < 0 . Therefore 

𝑝1
𝑟𝑖 ≻ 𝑝2

𝑟𝑖  if  𝑝1
𝑟𝑖 and  𝑝2

𝑟𝑖 satisfy  𝜇1
𝑟𝑖 ≤ 𝜇2

𝑟𝑖 and 𝑐1
𝑟𝑖 < 𝑐2

𝑟𝑖. □ 

 

Appendix 3.D Proof of Proposition 3.6. 
 

Proof. Given 𝛼 and 𝑢𝑙, the value of TTB 𝜉𝑝(𝛼) is a constant, which can be calculated by 

Eqs. (3.1)-(3.5), (3.7). According to Eq. (3.B.8), the GMV can be simplified as 

 

 

𝑐𝑝
𝑟𝑠 = 𝜔1𝜉𝑝 + 𝜔2(𝛼)𝛼(𝜉𝑝 − 𝜇𝑝) + 𝜔3(𝛼)(1 − 𝛼)(𝜇𝑝 − 𝜉𝑝)

+
(𝜔2(𝛼)+𝜔3(𝛼))𝜎𝑝

√2𝜋
𝑒
−(
𝜉𝑝−𝜇𝑝

√2𝜎𝑝
)

2

 
(3.D.1) 

 

For any path 𝑝, the continuity of 𝑐𝑝
𝑟𝑠 is conditional on the continuity of 𝜉𝑝, 𝜇𝑝, and 

𝜎𝑝  because the weight coefficients and on-time arrival probability are constants. 

Referring to Eqs. (3.2)-(3.3), it is obvious that 𝜇𝑙 and 𝜎𝑙 are continuous with link traffic 

flows 𝑢𝑙. Hence, 𝜇𝑝 and 𝜎𝑝 are continuous (Eqs. (3.4)-(3.5)). In addition, as shown in 

Eq. (3.7), TTB is continuous since it is a weighted sum of 𝜇𝑝 and 𝜎𝑝.  

Let 𝜊 be the smallest possible positive real number, and the link traffic flows are 

set as 𝑢𝑙 = max {𝜊, 𝑢𝑙} for calculating GMV. This modification ensures 𝑢𝑙 > 0, and 

therefore a positive 𝜎𝑝, as shown in Eqs. (3.3) and (3.5). Moreover, 𝜎𝑝 hardly changes if 

𝜊 is sufficiently small. With this pretreatment, the denominator in Eq. (3.D.1) is larger 

than zero.  

Therefore, GMV is continuous with the link traffic flows. □    
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Appendix 4.A Proof of Theorem 4.1.  
 

Proof. Instead of using Eq. (4.1) as the criterion to add new paths, strategy (i) adopts Eq. 

(4.2) to model travelers’ BR behavior for path choice. When 𝜖𝑟𝑠 equals zero, this strategy 

is degenerated to the general minimum disutility path search method. Let 𝑃𝑛
𝑟𝑠′ denote the 

path set, of which the members satisfy Eq. (4.1) but violate Eq. (4.2). Based on strategy 

(i), these paths do not belong to 𝑃𝑛
𝑟𝑠 despite having lower path disutilities. The minimum 

disutility of paths in 𝑃𝑛
𝑟𝑠′, denoted by 𝑐min

𝑟𝑠′ (𝒇𝒏), has a lower bound as follows 

 

 𝑐min
𝑟𝑠′ (𝒇𝒏) > (1 − 𝜖

𝑟𝑠) ∙ 𝑐min
𝑟𝑠 (𝒇𝒏) (4.A.1) 

 

where 𝑐min
𝑟𝑠 (𝒇𝒏) is the minimum disutility of paths in 𝑃𝑛

𝑟𝑠.  

The relative gap of the path disutility in path set 𝑃𝑛
𝑟𝑠′ ∪ 𝑃𝑛

𝑟𝑠 can be expressed as 

 

𝑐𝑝
𝑟𝑠(𝑘, 𝒇𝒏) − 𝑐min

𝑟𝑠′ (𝒇𝒏)

𝑐min
𝑟𝑠′ (𝒇𝒏)

<
𝑐𝑝
𝑟𝑠(𝑘, 𝒇𝒏) − (1 − 𝜖

𝑟𝑠) ∙ 𝑐min
𝑟𝑠 (𝒇𝒏)

(1 − 𝜖𝑟𝑠) ∙ 𝑐min
𝑟𝑠 (𝒇𝒏)

                                    

                            =
𝑐𝑝
𝑟𝑠(𝑘, 𝒇𝒏) − 𝑐min

𝑟𝑠 (𝒇𝒏)

𝑐min
𝑟𝑠 (𝒇𝒏)

+
𝜖𝑟𝑠 ∙ 𝑐𝑝

𝑟𝑠(𝑘, 𝒇𝒏)

(1 − 𝜖𝑟𝑠) ∙ 𝑐min
𝑟𝑠 (𝒇𝒏)

                               ≤ 𝜀𝑛
𝑟𝑠 +

𝜖𝑟𝑠 ∙ (1 + 𝜀𝑛
𝑟𝑠)

1 − 𝜖𝑟𝑠
   ∀𝑝 ∈ 𝑃𝑛

𝑟𝑠′ ∪ 𝑃𝑛
𝑟𝑠 , 𝑘 ∈ 𝐾𝑛

 (4.A.2) 

 

The last inequality is derived from Eq. (4.3). 𝑃𝑛
𝑟𝑠′ ∪ 𝑃𝑛

𝑟𝑠 is the newly generated path 

set if the minimum disutility path search method is used instead of the TBMDPS and 

inequality (4.A.2) gives the corresponding relative convergence threshold. That is, 

strategy (i) is equivalent to the minimum path search method combined with a 𝜖𝑟𝑠-related 

relative convergence threshold. Thus, strategy (i) does not really relax the condition of 

convergence. 

Regarding strategy (ii) and (iii), 𝜀𝑛
𝑟𝑠, ∆𝑛 and 𝐾𝑛 at the intermediate iterations are 

constants and have no influence on the convergence of the original CG algorithm. At the 

last iteration, 𝜀𝑛
𝑟𝑠 and ∆𝑛 are equal to the required values to obtain the BR-DUE solution. 

Analogous to the spatial path extension, temporal exploration is the extension in the 

temporal dimension that only occurs at the intermediate iterations. For time intervals 

satisfying Eq. (4.7), the free flow path disutility are larger than the upper bound of the 

tolerance disutility. Strategy (iv) skips these unnecessary path searches and thus has no 

effect on path generation. In sum, none of the strategies modifies the convergence 

conditions of the original CG algorithm. □ 
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Appendix 4.B Proof of Corollary 4.1.  
 

Proof. The proof is based on the conclusions in the studies of Leventhal et al. (1973) and 

Smith (1984), who have analyzed the convergence of the CG algorithm and the 

proportional swap system respectively.  

First, under the monotonicity assumption of the path disutility, the dynamical 

proportional swap system of VI(𝒇𝒏, 𝛺𝑛)  is convergent to an equilibrium, where 

VI(𝒇𝒏, 𝛺𝑛)  is the sub-problem of the VI(𝒇, 𝛺)  Eqs. (2.17)-(2.19) at iteration  𝑛  and 

written as 

 

 ∑ ∑ ∑ 𝑐̃𝑝
𝑟𝑠(𝑘, 𝒇𝒏

∗ )[𝑓𝑝
𝑟𝑠(𝑘) − 𝑓𝑝

𝑟𝑠∗(𝑘)]

𝑘∈𝐾𝑛𝑝∈𝑃𝑛
𝑟𝑠𝑟𝑠∈𝑅𝑆

≥ 0  ∀𝒇𝒏 ∈ 𝛺𝑛 (4.B.1) 

   

 𝛺𝑛 = {𝒇𝒏| 𝒇𝒏 ≥ 0, ∑ ∑ ∆𝑛 ∙ 𝑓𝑝
𝑟𝑠(𝑘)

𝑘∈𝐾𝑛 𝑝∈𝑃𝑛
𝑟𝑠

= 𝑄𝑟𝑠 ,    ∀ 𝑟𝑠 ∈ 𝑅𝑆 } (4.B.2) 

 

where 𝑃𝑛
𝑟𝑠, 𝐾𝑛 and ∆𝑛 are fixed.  

The proportional swap system proposed by Guo et al. (2017) for the bottleneck 

problem towards BR-DUE can be extended to solve VI(𝒇𝒏, 𝛺𝑛)  by the following 

formulas 

 

 𝑓𝑝𝑛
𝑟𝑠(𝜏+1)(𝑘) = 𝐹𝑝

𝑟𝑠(𝒇𝑛
𝜏 ) = 𝑓𝑝𝑛

𝑟𝑠(𝜏)(𝑘) + 𝛽5Γ𝑝𝑛
𝑟𝑠(𝑘, 𝒇𝑛

𝜏 ) (4.B.3) 

   

 

Γ𝑝𝑛
𝑟𝑠(𝑘, 𝒇𝑛

𝜏 ) = ∑ ∑ (𝑓
𝑝′𝑛

𝑟𝑠(𝜏)(𝑘′) [𝑐̃
𝑝′𝑛

𝑟𝑠(𝜏)(𝑘′, 𝒇𝒏
𝜏 ) − 𝑐̃𝑝𝑛

𝑟𝑠(𝜏)(𝑘, 𝒇𝒏
𝜏 )]

+
𝑘′∈𝐾𝑛𝑝′∈𝑃𝑛

𝑟𝑠

− 𝑓𝑝𝑛
𝑟𝑠(𝜏)(𝑘) [𝑐̃𝑝𝑛

𝑟𝑠(𝜏)(𝑘, 𝒇𝒏
𝜏 ) − 𝑐̃

𝑝′𝑛

𝑟𝑠(𝜏)(𝑘′, 𝒇𝒏
𝜏 )]

+
) 

(4.B.4) 

 

where a mapping [∙]+ = max{∙,  0} is used. 

The continuity of 𝑐̃𝑝
𝑟𝑠(𝑘, 𝒇)  makes 𝐹𝑝

𝑟𝑠(𝒇𝑛
𝜏 )  continuous on  𝛺𝑛 . Moreover, 𝛺𝑛  is 

nonempty, compact and convex. According to Guo et al. (2017), the proportional swap 

system has at least one stationary point, which is a BR-DUE state. The equivalence 

between a stationary point and a BR-DUE state can be derived directly from the 

equivalence theorems of Smith (1984) and Guo et al. (2017). Under the monotonicity 

assumption of the path disutility, Mounce (2007) and Mounce and Carey (2011) proved 

that the dynamical proportional swap system is convergent to an equilibrium.  

Second, the CG algorithm can find the optimal solution to the VI(𝒇, 𝛺) problem 

through path extensions. Ignorance of the time dimension, the difference between the 
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sub-problem Eqs. (4.B.1)-(4.B.2) and the original VI(𝒇, 𝛺) problem Eqs. (2.17)-(2.19) 

lies in the path set. The number of paths of the original problem may be very large 

especially for large networks, but only a few paths have positive flows. The CG 

algorithm proposed by Leventhal et al. (1973) is able to find paths with positive flows as 

stated in Section 2.4. When no new path is found at iteration 𝑛, the rest any path 𝑝 ∈

𝑃𝑟𝑠\𝑃𝑛
𝑟𝑠  has larger disutility and flows only concentrate on those identified paths. 

Therefore, the solution to the sub-problem Eqs. (4.B.1)-(4.B.2) is an equilibrium state of 

the BR-DUE problem.  

According to Theorem 4.1, the above complete the proof of Corollary 4.1. □ 

 

Appendix 5.A Illustration of the supply-demand dynamics and 

admissible conditions under the four mechanisms 
 

As shown in Table A.1, the network has one OD pair connected by one SC link. The 

length of one time interval Δ is set as 20 minutes and assume that 200 travelers arrive at 

node 1 during each interval. In the VD-FCFS context, the 200 travelers are divided into 

half VIP travelers and half ordinary travelers. The arrival SCs are distinguished into three 

cases during the time horizon [7:00 am, 9:00 am].  

Case 1 is used to demonstrate the supply-demand dynamics under the four FCFS 

mechanisms. As shown in Figure A.1, four different mechanisms result in different 

supply-demand patterns. Under the NW-FCFS mechanism, the red curve is high than the 

blue curve during the first three intervals. For each interval, 100 travelers use SCs 

without waiting and the rest demand of SCs is lost, which is denoted by the vertical gap 

between the two curves. During [8:00 am, 9:00 am], all demands can use SCs due to 

sufficient supply. Without considering the queues of SC requests at node 1, the NW-

FCFS mechanism leads to 300 demand losses. Under the A-FCFS mechanism, the SC 

stocks during [7:00 am, 7:20 am), [7:40 am, 8:00 am), and [8:20 am, 8:40 am) equal 100, 

which is smaller than the number of arrival travelers during each interval (200). Since 

the A-FCFS mechanism postulates that travelers who arrive at a CSS location during any 

interval are served simultaneously, the supply of SCs accumulates once the stocks of the 

previous intervals are not consumed. This result is verified by the steep increase of supply 

at 8:00 am in Figure A.1 (b). In contrast, under the D-FCFS mechanism, the arrival SCs 

are used immediately by a part of the demand. The supply during each interval in Figure 

A.1 (c) equals the number of newly arrived SCs. The demand accumulates due to the 

smaller supplies before 8:00 am and then decrease during the last two intervals. Under 

the VD-FCFS mechanism, the curves of VIP and ordinary demands show different 

patterns despite the same arrival rate. The privilege of VIP travelers can be demonstrated 

by the fact that the purple curve is always below the red one in Figure A.1 (d).   

 



Appendix 

152 

 Table A.1 An illustrative example 

Case Item 

 

- Time 

(am) 

 

[7:00, 7:20) [7:20, 7:40) [7:40, 8:00) [8:00, 8:20) [8:20, 8:40) [7:40, 9:00] 

- 
Arrival 

travelers 
200 200 200 200 200 200 

1 
Arrival 

SCs 

100 100 100 300 300 300 

2 300 300 300 300 300 300 

3 0 0 400 0 200 600 

 

 
       (a) NW-FCFS mechanism                                     (b) A-FCFS mechanism 

 
         (c) D-FCFS mechanism                                     (d) VD-FCFS mechanism 

Figure A.1. Evolutions of demand and supply under four FCFS mechanisms.  

 

The SC supply in case 2 is greater than SC demand during each interval. The 

supply-demand dynamics under the NW-FCFS, A-FCFS, and D-FCFS can be calculated 

by Eqs. (5.1), (5.2), and (5.6). As shown in Table A.2, three mechanisms have the same 

demand-supply dynamics, consistent with the admissible condition stated in Remark 5.2. 

The relation between 𝑣𝑎(𝑘)  and 𝑢𝑎(𝑘)  in case 3 satisfies the admissible condition 

between A-FCFS and D-FCFS mechanisms. As shown, the A-FCFS and D-FCFS 

mechanisms have the same supply-demand dynamics. 



Appendix 

153 

Table A.2 The supply-demand dynamics under different mechanisms 

Case Mechanism Item 

Time interval (am) 

[7:00, 

7:20) 

[7:20, 

7:40) 

[7:40, 

8:00) 

[8:00, 

8:20) 

[8:20, 

8:40) 

[7:40, 

9:00] 

2 

NW-FCFS & 

A-FCFS & 

D-FCFS 

Demand 200 200 200 200 200 200 

Supply 300 400 500 600 700 800 

3 

NW-FCFS 
Demand 0 0 200 200 200 200 

Supply 0 0 400 200 200 600 

A-FCFS & 

D-FCFS 

Demand 200 400 600 400 600 600 

Supply 0 0 400 0 200 600 

 

Appendix 5.B Discontinuity of the path disutility 
 

Figure A.2 is a two-node network with one OD pair  𝑟𝑠  and one mode – SC. Three 

intervals (𝑘 = 1, 2, 3) can be chosen by homogeneous travelers. The initial SC stock is 5 

at 𝑟 and 0 at 𝑠. The free-flow travel time is 8 and the disutilities by SC is 3. The preferred 

arrival time at 𝑠 is 10 and the unit disutility of early and late arrival time is 2. Travel 

congestion and transition disutility are not considered in this example. The path (link) 

disutility can be easily calculated as 2 ∙ |𝑘 − 2| + 3.   

As shown in Table A.3, case 1 shows the initial disutility and flow. If the demand 

of 𝑟𝑠 is 5, as presented in case 2, time interval 2 has the minimum disutility and is chosen 

by 5 travelers. Adding the number of travelers 𝛥𝑓 → 0 on this path during interval 2 

results in different disutilities under different FCFS mechanisms. The flow distribution 

and disutility under the A-FCFS and D-FCFS mechanisms are shown by cases 3 and 4 

respectively. According to the A-FCFS mechanism, these travelers will wait until the 

stock at 𝑟 is larger than or equal to 5 + ∆𝑓, meaning that they cannot finish the trip within 

the time horizon. Therefore, the disutilities of intervals 2 and 3 are a large number 𝑀.  

Under the D-FCFS mechanism, the path disutility during interval 2 can be 

calculated by the weighted sum according to Eq. (5.35), i.e., 𝑐̃ = 5 (5 + ∆𝑓)⁄ × 3 +

∆𝑓 (5 + ∆𝑓)⁄ × 𝑀. The continuity of disutility is kept during this interval. However, the 

disutility of interval 3 increases to 𝑀 , which leads to Eq. (5.B.1), meaning that the 

continuity of path disutility is not satisfied due to the dynamic supply-demand of SCs.  

 lim
𝛥𝑓→0

𝛥𝑐 ≠ 0 (5.B.1) 

where 𝑐 is the vector of 𝑐𝑝
𝑟𝑠(𝑘, 𝑓) and 𝛥𝑐 denotes the change of 𝑐.  
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Figure A.2. Two-node network. 

 
 

Table A.3 The path flows and disutilities 

Case  Demand   Item 
Time interval 

1 2 3 

    1  0 
Disutility 5 3 5 

Flow 0 0 0 

    2  5 
Disutility 5 3 5 

Flow 0 5 0 

    3  5+𝛥𝑓 
Disutility 5 M M 

Flow 0 5+𝜟𝒇 0 

    4  5+𝛥𝑓 
Disutility 5 𝑐̃ M 

Flow 0 5+𝜟𝒇 0 

 
 
 

Appendix 5.C Sioux Falls network 
 

The Sioux Falls network (Figure 5.8) has 24 nodes and 76 links. Incorporating the land 

use map from http://www.siouxfalls.org/Planning, the network is divided into the city 

center and suburban area, where home zones, work locations, and CSS locations 

(stations) are placed at the nodes. Nodes in red are home zones, which denotes residential 

neighborhoods in reality. Three different types of CSS locations are defined in Figure 

5.8. Nodes in green are only for CSS locations, where travelers can access/egress SCs or 

park vehicles. Besides the function of CSS locations, nodes in yellow and blue are also 

home zones and work locations respectively.  

 

5.C1 Setting of nodes and links 

 

Table A.4 shows the characteristics of directed links, including the information of 

entrance and exit nodes, link capacity, and free-flow travel time. Note that PC and SC 

share the same physical roads. 

 

 

http://www.siouxfalls.org/Planning
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Table A.4 Basic settings of links 

Link ID Start node End node 
Capacity 

(veh/min) 

Travel time 

(min) 

1 17 19 48 4 

2 19 17 48 4 

3 6 8 49 4 

4 8 6 49 4 

5 23 24 51 4 

6 24 23 51 4 

7 16 17 52 4 

8 17 16 52 4 

9 21 22 52 4 

10 22 21 52 4 

11 4 5 178 4 

12 5 4 178 4 

13 7 18 234 4 

14 18 7 234 4 

15 21 24 49 6 

16 24 21 49 6 

17 7 8 78 6 

18 8 7 78 6 

19 15 22 96 6 

20 22 15 96 6 

21 9 10 139 6 

22 10 9 139 6 

23 15 19 146 6 

24 19 15 146 6 

25 16 18 197 6 

26 18 16 197 6 

27 12 13 259 6 

28 13 12 259 6 

29 10 16 49 8 

30 16 10 49 8 

31 11 14 49 8 

32 14 11 49 8 

33 14 23 49 8 

34 23 14 49 8 

35 5 6 49 8 

36 6 5 49 8 

37 22 23 50 8 

38 23 22 50 8 

39 19 20 50 8 

40 20 19 50 8 

41 13 24 51 8 
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42 24 13 51 8 

43 3 4 171 8 

44 4 3 171 8 

45 1 3 234 8 

46 3 1 234 8 

47 3 12 234 8 

48 12 3 234 8 

49 18 20 234 8 

50 20 18 234 8 

51 2 6 50 10 

52 6 2 50 10 

53 8 16 50 10 

54 16 8 50 10 

55 20 22 51 10 

56 22 20 51 10 

57 14 15 51 10 

58 15 14 51 10 

59 5 9 100 10 

60 9 5 100 10 

61 10 11 100 10 

62 11 10 100 10 

63 4 11 49 12 

64 11 4 49 12 

65 11 12 49 12 

66 12 11 49 12 

67 20 21 51 12 

68 21 20 51 12 

69 10 15 135 12 

70 15 10 135 12 

71 1 2 259 12 

72 2 1 259 12 

73 10 17 50 16 

74 17 10 50 16 

75 8 9 51 20 

76 9 8 51 20 

 

Table A.5 displays the attributes of nodes, including whether they are home zones, work 

locations, and CSS locations or not (0: no; 1: yes), whether they are city center or not (0: 

no; 1: yes), the initial supply of SCs, and parking fees. 

 

Table A.5 Basic settings of nodes   

Node ID Home zone 
Work 

location 

CSS 

location 

Number 

of SCs 

City center 

or not 

Parking 

fee ($) 

1 1 0 0 0 0 1 
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2 1 0 0 0 0 1 

3 0 1 1 0 0 1 

4 1 0 1 200 0 1 

5 1 0 0 0 0 1 

6 1 0 0 0 0 1 

7 1 0 0 0 0 1 

8 1 0 1 200 0 1 

9 0 0 1 200 0 1 

10 0 1 1 0 1 3 

11 1 0 0 0 0 1 

12 1 0 0 0 0 1 

13 1 0 0 0 0 1 

14 0 0 1 400 1 3 

15 0 1 1 0 1 3 

16 0 0 1 400 1 3 

17 1 0 0 0 1 3 

18 1 0 0 0 0 1 

19 1 0 1 400 1 3 

20 1 0 0 0 0 1 

21 0 0 1 200 0 1 

22 1 0 1 400 1 3 

23 1 0 0 0 1 3 

24 0 1 1 0 0 1 

 

Table A.6 Settings of travel demand 

OD pair ID Origin Destination Demand 

1 1 10 2300 

2 2 3 2000 

3 4 10 2000 

4 5 3 2100 

5 6 3 2000 

6 7 3 2100 

7 8 24 2100 

8 11 15 2000 

9 12 24 2500 

10 13 24 2700 

11 17 15 2200 

12 18 15 2300 

13 19 15 2300 

14 20 10 2700 

15 22 24 2300 

16 23 15 2600 
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5.C2 Setting of travel demand 

 

Table A.6 shows the settings of travel demand. An OD pair is formed by a home zone 

and a randomly selected work location. The demands of these OD pairs are randomly 

generated from 2000 to 3000.  

 

5.C3 Setting of other parameters 

 

The time horizon falls within [7:00 am, 10:00 am] and the preferred arrival time is 9:00 

am. The percentage of VIP members and ordinary travelers are 20% and 80% 

respectively. Table A.7 shows the settings of other parameters, where 𝜂1-𝜂4 and 𝜌1-𝜌4 

are in either one unit of disutility per hour or dollar.  

 

Table A.7 Settings of other parameters 

𝜂1 𝜂2 𝜂3 𝜂4 𝜂5 𝜂6 𝜂7 𝜂8 𝑐0 ($) 𝜅𝑟𝑠 (h) 
Δ 

(min) 
𝜀𝑟𝑠 𝜖𝑟𝑠 

6.4     3.9 15.21 3.0 1.0 3.5 8.2 1 0.2 0.1 1 0.1 0.01 
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