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3D equilibria with an anisotropic pressure component in the Large Helical Device are

analysed with respect to their magnetic axis locations. The anisotropic extension of the

3D equilibrium solver VMEC, ANIMEC, is used to compute fixed-boundary plasma equi-

libria based on a Bi-Maxwellian distribution function describing the anisotropic particles.

Different heating scenarios are assessed by means of parallel and perpendicular pressure

anisotropies with different radial anisotropic pressure profiles imposed. A theoretical pre-

dicted scaling of the magnetic axis location with the auxiliary parameter βeq as predicted

for classical stellarators and heliotrons by Hitchon [Nuclear Fusion 23, 383(1983)] is found

to be applicable to the Large Helical Device in case of a flat hot-particle profile for parallel

or weak perpendicular dominated anisotropies with β⊥/β‖ ≤ 2. For strong perpendicular

or non-flat hot-particle profiles, a deviation from the predicted scaling of the magnetic axis

location is found. While center peaked profiles show a stronger shift of the magnetic axis,

edge peaked profiles show no significant change of its radial location. High critical mag-

netic fields are identified as a necessary condition for strong perpendicular anisotropies.

The observed deviations are ascribed to the magnetic field structure and negative pressure

gradients. The invalidity of the theoretical predictions in case of certain configurations

is found to be caused by higher order terms in the pressure components which are not

accounted for by the ordering on which the theory is based.

a)Electronic mail: t.romba@student.tue.nl
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Analysis of influences of pressure anisotropies on the 3D MHD equilibrium in LHD

I. INTRODUCTION

Investigations of plasmas of high ratios of plasma pressure to magnetic pressure, β , are a crucial

step on the path to commercially viable nuclear fusion reactors. In the Large Helical Device

(LHD), high β operation with a spatial averaged β up to 4%1 is achieved by operation of low

density plasmas at low magnetic fields2. Such plasmas are sustained by tangential neutral beam

injection and have a low collisionality and, subsequently, a long slowing down time of the hot

injected particles. With the thermal plasma pressure being low due to the low density, fast particles

have a significant contribution to the total plasma pressure in those high β scenarios. Monte-Carlo

simulations estimated that up to 30% of the total volume-averaged beta can be ascribed to an

anisotropic pressure component in those scenarios3.

To reach thermonuclear conditions, auxiliary heating systems are necessary. As these heat the

plasma particles non-uniformly but with certain preferential directions, an anisotropic population

with an associated pressure component is created within the plasma. The anisotropic character of

this population causes it to have different influences onto the plasma equilibrium than the isotropic

bulk plasma has. These influences may change the magnetic axis location, the central value of the

rotational transform as well as the local magnetic field strength.

The 3D equilibrium solver VMEC4 is a renowned code to determine plasma equilibria in stel-

larator geometry and was expanded by Cooper et al. to treat anisotropic pressure components in its

extension ANIMEC5. Pressure anisotropies are either described by a Bi-Maxwellian distribution

function6 or a modified slowing down distribution7,8. While the Bi-Maxwellian distribution was

shown to be applicable for parallel plasma anisotropies caused by tangential NBI in LHD9 and per-

pendicular pressure anisotropies caused by ICRH in JET10, the modified slowing down distribution

function, expected to describe NBI heated plasmas for any injection angle5, has been tested11 but

was not used for systematic studies of pressure anisotropies yet. In 9, the Bi-Maxwellian distri-

bution function implemented in ANIMEC was used to investigate plasmas sustained by tangential

NBI with fast particles being deposited over the whole plasma region. This study found a match of

simulated and theoretically predicted magnetic axis locations for parallel pressure anisotropies in

case of a flat hot-particle profile. An extension of these investigations by analysing perpendicular

dominated anisotropic plasmas as well as non-flat hot-particle profiles has not been performed yet.

Using fixed-boundary equilibrium calculations and the Bi-Maxwellian distribution function

implemented in ANIMEC, the influences of parallel and perpendicular pressure anisotropies onto
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the plasma equilibrium configuration in LHD are investigated. Heating scenarios giving rise to

fast particles at different radial locations are assessed by different hot-particle pressure profiles.

Section II covers the theoretical background of 3D equilibria with an emphasis on theoretical

predictions of the radial magnetic axis position changed by the Shafranov-shift. Section III covers

the theory behind the equilibrium solver VMEC and its anisotropic extension ANIMEC. Section

IV covers the results obtained for flat, edge-peaked, and center-peaked hot-particle pressure pro-

files as well as a reassessment of the theoretical framework introduced in section II. Section V

summarizes the results and points out arising questions for future research.

II. THEORETICAL TREATMENT OF ANISOTROPIC PLASMAS

The theoretical quantification of influences of anisotropic pressure components onto a plasma

equilibrium is done by means of assigning a spatially averaged β and comparing central plasma

parameters, such as the magnetic axis location, to results obtained in isotropic cases of comparable

β . In context of pressure anisotropies, two different β definitions may be of use. Based on the

plasma energy, using the principle of equipartition, one can assign a total beta value, βtot , to a

plasma

βtot =
1
3

∫
(

p‖+2p⊥
)

dV
∫

B2

2µ0
dV

, (1)

where p‖ and p⊥ are the parallel and perpendicular pressures, respectively, B is the magnetic field

strength, and µ0 is the vacuum permeability. The integration is carried out over the whole plasma

volume to obtain a spatially averaged quantity.

Alternatively, β can be based on an analytical treatment of anisotropic plasmas which aims to

predict a certain parameter scaling as done by Hitchon et al.12,13. This framework uses a low beta

ordering β ˜O(ε2)14 and the pressure tensor from the hydromagnetic equations p
↔
= p⊥I +(p‖−

p⊥)bb
15 where ε is the inverse aspect ratio, I the identity matrix, and b is the unit vector along

the magnetic field lines. In this ordering, which was initially proposed for classical stellarators

and heliotrons, quantities are reduced to their flux-surface averages and an equivalent beta, βeq, is

derived

βeq =
1
2

∫
(

p‖+ p⊥
)

dV
∫

B2

2µ0
dV

. (2)

This parameter is defined such that the same radial shift of the magnetic axis is present for

anisotropic plasmas of βeq as it is for isotropic plasma of same β . Note that the two β defini-
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tions are equal in the isotropic case and that they relate like

βeq =
3

2
βtot −

1

2
β⊥ =

3

2
βtot

1+β⊥/β‖

1+2β⊥/β‖
, (3)

where

β⊥ =

∫

p⊥ dV
∫

B2

2µ0
dV

(4a)

β‖ =

∫

p‖ dV
∫

B2

2µ0
dV

. (4b)

In the flux-surface-averaged treatment, the flux-surface averages of the parallel and perpendic-

ular pressure, P‖ and P⊥, are defined. The Pfirsch-Schlüter current then follows to12,16

jps =
ρ

b∗

(

P
′

‖+P
′

⊥

)

cosθ , (5)

where ρ = r/a is the normalized radial coordinate, ′ is the radial derivative, θ is the poloidal angle,

and b∗ is the effective mean poloidal field as defined in Eq. (17) in 17.

Any such current running in the plasma gives rise to a magnetic field however. With such a

plasma based magnetic field component, Bpl , the total magnetic field, Btot , can be expressed as a

linear combination of vacuum and plasma related field strength

Btot =Bvac +Bpl, (6)

where Bvac is the vacuum magnetic field caused by the currents through the external field coils.

Using this relation, the knowledge of the field strengths in a given equilibrium, as well as the

vacuum field strength, one can determine the magnetic field component which arises due to the

plasma current. In the following, the vertical magnetic field component which can be assigned to

the plasma current is denoted with Bz,pl.

To monitor the stability of a plasma configuration, the fire hose stability criterion18

σ =
1

µ0
−

1

B

∂ p‖

∂B

∣

∣

∣

∣

s

=
1

µ0
−

p‖− p⊥

B2
> 0, (7)

as well as the mirror stability criterion18

τ =
∂ (σB)

∂B

∣

∣

∣

∣

s

=
1

µ0
+

1

B

∂ p⊥

∂B

∣

∣

∣

∣

s

> 0, (8)
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need to be fulfilled. In both expressions, s is a radial index proportional to the enclosed toroidal

flux 2πΦ where Φ is the toroidal magnetic flux function.

In the framework of the stability criteria in Eqs. (7) and (8) and using the parameters defined

beforehand, a numerical framework for a 3D equilibrium solver with an anisotropic particle dis-

tribution is introduced next.

III. NUMERICAL MODEL

The MHD equilibrium code VMEC4 numerically computes a 3D equilibrium in a set isotropic

plasma configuration by means of a variational principle which minimizes the plasma energy W 19

W =

∫

(

B2

2µ0
+

p

Γ−1

)

dV, (9)

where p is the isotropic plasma pressure, and Γ is the ratio of the specific heats. In case of an

anisotropic pressure component, the definition of the plasma energy in the variational principle is7

W =

∫

(

B2

2µ0
+

p‖(s,B)

Γ−1

)

dV, (10)

where p‖(s,B) denotes the total parallel pressure at a flux-surface s, dependent on the local mag-

netic field strength B. Note that by introducing a B-dependency to p‖, the pressure is no longer a

flux-surface quantity. In plasmas with anisotropic populations, the total pressure is given by the

sum of the thermal bulk pressure and the pressure imposed by the anisotropic species. The profile

of the latter is specified by an amplitude factor ph(s), giving rise to the total parallel pressure being

of the form

p‖(s,B) = m(s) [1+ ph(s)H(s,B)] , (11)

where m(s) denotes the plasma mass and H(s,B) is a factor describing local pressure variations

around a flux-surface due to high energetic particles. In the isotropic limiting case, Eq. (11)

reduces to its isotropic component only, making p‖ a flux-surface constant again. Note that an

imposed hot-particle profile in Eq. (11) does not influence the total parallel pressure directly but

only via the product m(s)ph(s), therefore, the anisotropic part only enters in form of a multiple of

the thermal pressure profile. This allows the anisotropic profile to deviate from the imposed radial

profile.

Instead of implementing a similar expression for the total pressure perpendicular to the mag-

netic field lines, p⊥(s,B), ANIMEC uses the force balance parallel to B to determine the second

5
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pressure component7

p⊥(s,B) = p‖(s,B)−B
∂ p‖

∂B

∣

∣

∣

∣

s

. (12)

In analogy to the Maxwell distribution used to describe isotropic particles, anisotropic popula-

tions are described by solutions of appropriate differential equations. As the lowest order solution

of the Fokker-Planck equation B ·∇Fh = 0, a Bi-Maxwellian distribution Fh was found to yield

appropriate results for plasmas with parallel anisotropies sustained by tangential NBI9 as well as

plasmas with perpendicular anisotropies heated by ICRH10. The Bi-Maxwellian distribution is

given by20

Fh(s,ε,µ) =N (s)

(

mh

2πT⊥(s)

)3/2

×exp

[

−mh

(

µBC

T⊥(s)
+

|ε −µBC|

T‖(s)

)]

, (13)

where N (s) is a density like amplitude factor, mh, ε , and µ are a particle’s mass, energy, and

magnetic moment, respectively, BC is the critical magnetic field at the particle deposition layer,

and T‖ and T⊥ are the parallel and perpendicular temperatures, respectively. An analytic integral

of this expression leads to the hot-particle pressure component of Eq. (11). The scale factor

H(s,B) in case of a Bi-Maxwellian distribution depends on BC as it differs for trapped and passing

particles. In plasma regions of B > BC one has21

H(s,B) =
B/BC

1− T⊥
T‖

(

1− B
BC

) , (14)

in regions of B < BC one has21

H(s,B)=
B

BC

×
1+ T⊥

T‖

(

1− B
BC

)

−2
(

T⊥
T‖

)5/2(

1− B
BC

)5/2

[

1− T⊥
T‖

(

1− B
BC

)][

1+ T⊥
T‖

(

1− B
BC

)] . (15)

The value of BC determines the amount of trapped particles and thus influences the distribution

function with none of the anisotropic particles being trapped if BC is smaller than the minimal

magnetic field strength Bmin.

To set a certain Bi-Maxwellian distribution function, three input parameters at , ah(s), and BC

are passed to ANIMEC. The ratio of perpendicular to parallel temperature is set by at = T⊥/T‖,

6
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ah(s) specifies the radial hot-particle pressure profile ph(s) using a polynomial of order 20, and

BC sets the critical magnetic field. In the following, BC is chosen such that a significant amount of

trapped particles is present unless stated differently.

Whilst in the ANIMEC input a temperature ratio is specified, the plasmas are better charac-

terized using their pressures. The anisotropies are quantified in the following by the ratio of the

beta values assigned to the anisotropic pressure component perpendicular to the magnetic field,

β⊥, and the anisotropic component parallel to the magnetic field, β‖,

β⊥/‖ =
β⊥

β‖
. (16)

Note that at and β⊥/‖ share two fix points (at ,β⊥/‖) at (0,0) and (1,1) due to p⊥ being zero in the

first and equal to p‖ in the second case.

To assess plasma equilibria for different hot-particle profiles, three different profiles, sketched

in Fig. (1), are evaluated. First, a radially constant profile

p
f
h(s) = c0, (17)

where c0 is a dimensionless constant, is analyzed to benchmark the influences of pressure

anisotropies. In order to cover a realistic parameter range in βeq, c0 = 3 was chosen in this

case. The peak value and radial integral of this profile are both three. The second profile used

models an edge-peaked hot-particle deposition

pe
h(s) = c0

(

1− s4
)2

· s4. (18)

Such profiles can be expected for plasma scenarios in which primarily the edge region is heated.

The maximum of the profile is scaled to unity by setting c0 = 27/4, giving rise to a radial integral

of 0.369. The lower integral value causes the differences between scenarios of different p0 to be

smaller than in the flat profile case. The third profile evaluated mimics a power deposition at the

plasma center

pc
h(s) = c0

(

1− s2
)4
. (19)

For this profile, in order that the maximum value equals unity, c0 = 1 is set, leading to a radial

integral of 0.406, again, significantly smaller than the flat profile case but similar to the edge-

peaked one.
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0

0.2

0.4
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)

s

 Flat
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 Center-peaked

FIG. 1: Radial profiles of the investigated hot-particle pressure profiles. The coordinate s is

proportional to the enclosed toroidal flux with s = ρ2.

IV. RESULTS

The key parameter in the description of a 3D equilibrium is the plasmas magnetic axis position

which changes due to the radial Shafranov-shift. This shift occurs due to a vertical magnetic field

which again is caused by occurring Pfirsch-Schlüter currents. Besides the radial position of the

magnetic axis, associated parameters such as the on-axis value of the rotational transform, ι , or

the vertical magnetic field, Bz, are of importance. As introduced in section II, anisotropic 3D equi-

libria may be assessed by βtot or βeq with theory predicting that, when the magnetic axis position

is plotted against βeq, the anisotropic data points coincide with ones of isotropic plasmas of same

β . Note that this match of data points may only be expected when the plasma can be described by

the low beta ordering that the introduced theory is based on.

The framework used in this study is given by the LHD standard configuration whose magnetic

saddle structure at an upright and recumbent plasma location is displayed in Fig. (2). The minimal

magnetic field strengths in the two cross sections are 1.73 T and 1.74 T, respectively, the maximal

field strengths are 4.02 T and 3.28 T, respectively.

The three scenarios introduced in III are assessed using an underlying parabolic thermal pres-

sure profile m(s)=m0(1−s), where s= ρ2. The ratio of the specific heats Γ in Eqs. (9) and (10) is

set to zero which relates to the incompressible plasma case in which the plasma mass m0 reduces

to the plasma pressure p0. p0 is varied to 1.0,1.5,2.0,2.5,3.0×104Pa for each of the profiles.

The number of radial grid points is 201, the reference location of the magnetic axis position is

obtained by setting p0 = 0Pa and is found to r0 = 3.653m. A radial shift of the magnetic axis is

8
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3 3.5 4 4.5
r / m

-1

-0.5

0

0.5

1

z 
/ m

2

2.5

3

3.5

4

|B
| /

 T

3 3.5 4 4.5
r / m

-1

-0.5

0

0.5

1

z 
/ m

2

2.5

3

|B
| /

 T

FIG. 2: Absolute vacuum magnetic field strength in the LHD standard configuration at the

upright (left) and recumbent (right) locations of the plasma. The two locations are half a field

period apart from another, therefore cover the whole field geometry, and relate to the most

elongated cross sections in the respective directions.

defined as ∆Rax = r(β⊥/‖)− r0.

To assess parallel as well as perpendicular dominated anisotropic plasmas, the parameter range

of at = T⊥/T‖ is chosen to [0,10], which also contains the two aforementioned fix points. The at

increments in the lower parameter region are chosen smaller than in the higher one due to a steeper

scaling of β⊥/‖ with at for small values of at .

0 2 4 6 8 10
0

1

2

3

4

5
 Without trapped particles
 With trapped particles

b
 /

at

FIG. 3: Anisotropies reached in case of a flat hot-particle profile with (BC = 2.125T) and without

(BC = 1T) trapped particles. The two fix points of at and β⊥/‖ are fulfilled in both cases, the

different increments are chosen due to the scaling of β⊥/‖ with at .

Examples for the relation of at and β⊥/‖ for one case with and one without trapped particles

over the assessed parameter range are displayed in Fig. (3). The non-linear scaling of the two

parameters as well as the necessity for smaller increments for low at is apparent. The figure is

revisited and discussed in depth in section IV A.
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Analysis of influences of pressure anisotropies on the 3D MHD equilibrium in LHD

A. Flat profile case

Fig. (4) depicts the radial location of the magnetic axis versus the two introduced beta defi-

nitions without trapped particles, obtained by setting BC = 1T, a value significantly smaller than

Bmin of 1.73 T. Colors ranging from red to pink indicate an increase of the pressure scale factor

p0 in increments of 0.5×104 Pa. The black data points relate to magnetic axis locations obtained

for isotropic plasmas with same β , using the same isotropic pressure profile. In compliance with

the results obtained by Asahi et al.9 and Eq. (3), the magnetic axis location is a double-valued

function when plotted against βtot whilst it follows the approximately linear isotropic reference

data when plotted against βeq as derived in section II. The deviations of the data points from the

isotropic ones in Fig. (4a) are caused by the fact that the relation between the Shafranov-shift

and the plasma energy is different for isotropic and anisotropic plasma components, consequently

giving rise to a deviation from the isotropic reference data.

As indicated by the labeled data points in Fig. (4b), stronger perpendicular anisotropies, i.e.

cases with high at , are found to have lower ∆Rax with lower βeq values. These data points also lie

closer together in the parameter space than the more sparse parallel dominated data points of low

at due to the saturation observed in Fig. (3).
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R
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(a) Magnetic axis

position versus βtot .
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 p0 = 1.0x104 Pa
 p0 = 1.5x104 Pa
 p0 = 2.0x104 Pa
 p0 = 2.5x104 Pa
 p0 = 3.0x104 Pa

R
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(b) Magnetic axis

position versus βeq.

FIG. 4: Magnetic axis position versus the two beta definitions for different pressure scale factors

p0, in case of a flat hot-particle pressure profile and no trapped particles. Five pink data points are

example wise labelled with their at value. The location of these points for the other cases is alike.

The isotropic reference case is given by the black (square-shaped) data points and shows a match

with the anisotropic data when plotted against βeq.

Introducing a population of trapped particles by increasing BC to 2.125 T leads to the magnetic

axis positions displayed in Fig. (5). Fig. (5a) shows the magnetic axis position for the different
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Analysis of influences of pressure anisotropies on the 3D MHD equilibrium in LHD

p0 versus βeq while Fig. (5b) shows a β⊥/‖ resolved zoom onto the turquoise (diamond-shaped),

2.5×104 Pa, data points in Fig. (5a).

Parallel dominated anisotropies are observed to lie on the line outlined by the isotropic ref-

erence data whilst strong perpendicular anisotropic cases show smaller ∆Rax than the isotropic

reference. The close up onto the data shows that deviations from the theoretical predictions start

to occur when β⊥/‖ ≥ 2.0. This behaviour is present regardless of the p0 imposed, making it an

effect inherent in the population of trapped particles and not a high pressure effect.
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R
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(a) Magnetic axis

locations for the

different p0 versus βeq.
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0.0  b /  < 1.0
1.0  b /  < 2.0
2.0  b /  < 3.0
3.0  b /  < 4.0

R
ax
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 / 

m

beq / %

(b) β⊥/‖ resolved

magnetic axis locations

of the 2.5×104 Pa

(turquoise/diamond-

shaped) data points in

(a) versus βeq.

FIG. 5: Magnetic axis position versus βeq with a flat hot-particle pressure profile and trapped

particles. The color code is chosen as before with four pink data points being example wise

labelled with their respective β⊥/‖ value. A match with the isotropic reference case is only

present for low values of β⊥/‖. BC was set to 2.125 T.

The already introduced Fig. (3) displays the anisotropies reached in case of the data displayed

in Figs. (4) and (5). While the simulations with trapped particles reach strong perpendicular

anisotropies, for those without trapped particles β⊥/‖ hardly exceeds 1.5. This explains the differ-

ences between Figs. (4b) and (5a) as the perpendicular dominated parameter range necessary for

the observed deviations to take place cannot be reached without trapped particles. The increase

of β⊥/‖ when introducing trapped particles is present as predominantly particles perpendicular to

the magnetic field lines are trapped, significantly increasing their effects, subsequently increasing

their pressure contribution and β⊥/‖. Deviations from the isotropic reference data are therefore

identified to occur for strong perpendicular anisotropies only which can only be reached in case of
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Analysis of influences of pressure anisotropies on the 3D MHD equilibrium in LHD

a certain amount of trapped particles.

Fig. (6) depicts 2D pressure profiles of the parallel and perpendicular pressures p‖ and p⊥ for

the two LHD plasma locations of Fig. (2). The two locations were chosen such that they cover

half a field period, allowing to assess the whole plasma due to symmetries in LHD. Note that the

parallel and perpendicular profiles in the β⊥/‖ = 1.0 case are equal due to the earlier mentioned

fix point.
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FIG. 6: Parallel (top one) and perpendicular (bottom two) pressure profiles at two LHD

cross-sections for the flat hot-particle profile with trapped particles for β⊥/‖ = 1,2,3,4 (left to

right). The scaling is chosen such that the scaling of plots relating to one β⊥/‖ is the same, p0 is

set to 2.5×104 Pa.

The p‖ profiles show a decay in amplitude with increasing β⊥/‖, and are almost vanished for

β⊥/‖ = 4.0, the p⊥ profiles show a radial outward shift of the pressure peak up to β⊥/‖ = 2.0

and a subsequent movement towards the plasma tips. The latter movement corresponds to a radial

movement in case of the recumbent plasma cross section and an upward movement for the upright

one. For large β⊥/‖, localized pressure peaks are formed at the plasma tips at locations of minimal
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Analysis of influences of pressure anisotropies on the 3D MHD equilibrium in LHD

|B|. The location of the pressure peak for strong perpendicular anisotropies in the upright cross

section matches density peaks observed by the vertical neutron camera system of LHD when the

plasma is heated by perpendicular neutral beam injection22, indicating that the simulations cover

a real physics mechanism and that the assessed parameter range can be experimentally reached

in LHD. In Fig. (6) also note the symmetry in the upright cross section caused by the symmetric

magnetic field in Fig. (2) and that the progression of the locations of the high p⊥ regions is

consistent with the path towards lowest |B|.

In analogy to positive pressure gradients giving rise to a radial outward Shafranov-shift, the

inward trend of the magnetic axis location may be caused by the formation of negative pressure

gradients. These are present as the pressure peaks are located at the tips of the plasma with

the pressure falling off towards the plasma center, subsequently giving rise to negative pressure

gradients in the direction of the magnetic axis. As positive pressure gradients give rise to an

outward Shafranov-shift, these negative pressure gradients may be the cause for the negative trend

of the magnetic axis location as it is present for β⊥/‖ > 2.0 in Fig. (5).
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FIG. 7: Values of the rotational transform on the magnetic axis in case of a flat profile with

trapped particles.

Besides the movement towards low B, Fig. (6) also shows that the anisotropic pressure com-

ponents in LHD can no longer be treated as flux-surface constants for high β⊥/‖ as local pressure

maxima form. With the flux-surface-averaged treatment, which resulted from the low beta order-

ing used in the derivation of Eq. (2), being not applicable in such cases, the deviations from the

isotropic reference observed in Fig. (5) can be explained.

As can be seen in the β⊥/‖ = 4.0 plots of p⊥ in Fig. (6) by a faint ellipse present at around

ρ = 0.7, the discretization of the ANIMEC grid starts to appear in the solutions, introducing non-

physical effects into the equilibria. As this behaviour is present regardless of the profile used,
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Analysis of influences of pressure anisotropies on the 3D MHD equilibrium in LHD

simulations with β⊥/‖ > 4.0 are discarded in the following; this, together with convergence issues

appearing for even larger β⊥/‖, implies that the Bi-Maxwellian distribution function model im-

plemented in ANIMEC can only treat perpendicular dominated anisotropies up to a certain level;

no such problems are observed for parallel anisotropies. Note that these discretization problems

persist when increasing the radial, poloidal, or toroidal node number.

Data for the on-axis ι value in case of the flat hot-particle profile with trapped particles in

Fig. (7) shows an approximate match of the anisotropic and the isotropic data for β⊥/‖ ≤ 2.0

and deviations for higher β⊥/‖. In the fixed-boundary equilibrium framework, these changes are

caused by changes of the total magnetic field at the location of the magnetic axis by means of

currents in the plasma as described by Eq. (6), as well as by a radial movement of the magnetic

axis within the total magnetic field. Which of the two effects is the dominant one can be assessed

by looking at Fig. (5) which allows to gauge the strength of the latter effect by associating an

anisotropic data point with an isotropic one of same radial location. Via the associated βeq values,

these two points can in turn be identified in Fig. (7). In case that the deviations in the on-axis iota

value are primarily caused by a movement of the magnetic axis within Btot , the two data points

are expected to have the same ι value. When checking for this behaviour in the given data points,

the iota values do not match, indicating that the observed deviations are predominantly caused by

a change of the total magnetic field rather than by a movement of the magnetic axis. Note that the

observed changes in the on-axis ι value are small which is consistent with the expectation that any

changes of Btot are in the order of β .

B. Edge-peaked profile case

The magnetic axis locations in case of the hot-particle profile specified in Eq. (18) and a critical

magnetic field of 2.0 T are displayed in Fig. (8). The different p0 values are color coded as in Fig.

(4). A deviation from the isotropic reference and thus the theoretical scaling as it is expected

for a classical heliotron is observed regardless of the βeq value. The data implies that, for an

edge-peaked hot-particle profile, the magnetic axis barely moves.

Clarification over the small changes of the magnetic axis position is found in the 2D pressure

plots of Fig. (9) which show that, caused by the imposed profile, only an ellipse determined by

the shape of the plasma volume can be reached by the hot particles. With the pressure of the

anisotropic particles being located at the edge of the plasma, negative pressure gradients in the
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FIG. 8: Magnetic axis position versus βeq in case of an edge-peaked hot-particle pressure profile.

BC was set to 2.0 T.
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FIG. 9: Parallel (top) and perpendicular (bottom) pressure profiles for the edge-peaked pressure

profiles for β⊥/‖ = 1,2,3,4 (left to right) in case of the upright plasma cross section. p0 is set to

2.5×104 Pa.

direction of the magnetic axis are present. In analogy to the flat profile case, these gradients

may reduce the outward Shafranov-shift, consequently giving rise to only small changes of the

magnetic axis location as observed in Fig. (8). Note that, as these negative pressure gradients are

present in the edge-peaked profile case regardless of β⊥/‖, deviations from the isotropic reference

data is seen throughout the whole parameter range.
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C. Center-peaked profile case

Center-peaked hot-particle pressure profiles lead to stronger shifts of the magnetic axis as in

the isotropic reference case as apparent in Fig. (10).
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FIG. 10: Magnetic axis position versus βeq in case of a center-peaked hot-particle pressure

profile. BC was set to 2.25 T.
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FIG. 11: Parallel (top) and perpendicular (bottom) pressure profiles for the center-peaked

pressure profile for β⊥/‖ = 1,2,3,4 (left to right) in case of the upright plasma cross section. p0

is set to 2.5×104 Pa.

Using the same color code as before, the different p0 are indicated. An approximately linear but

steeper scaling with βeq is found for β⊥/‖ ≤ 3.0. Above this value, the magnetic axis position first

16

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
3
3
8
0
7



Analysis of influences of pressure anisotropies on the 3D MHD equilibrium in LHD

stagnates and then, similar to the flat profile case, shrinks again. The βeq values are significantly

smaller than in the other cases as the area accessible to the hot-particles is smaller and the set crit-

ical magnetic field strength of 2.25 T additionally reduces the peak pressures reached via H(s,B).

The 2D pressure plots in Fig. (11) show that the center-peaked case resembles a shrunk version of

the flat profile case with the vertical elongation of the p⊥ profile only taking place for β⊥/‖ > 3.0.

That this movement takes place for higher β⊥/‖ values than in the flat profile case is caused by

the fact that the magnetic field structure in the central area is different than a shrunk version of the

whole plasma, giving rise to a different path towards minimal |B|, subsequently causing different

β⊥/‖ values to relate to different points on the path towards minimal |B|.

For β⊥/‖ values larger than 3.0, ∆Rax shrinks similar to the flat profile case. In analogy to the

earlier discussed cases, this reduction of the Shafranov-shift may be caused by negative pressure

gradients in the direction of the magnetic axis which form when the vertical elongation of the pres-

sure maximum takes place. As the elongation takes place for larger β⊥/‖ than in the other cases,

an inward trend of the magnetic axis is only observed for stronger perpendicular anisotropies.

D. Reassessment of the theory

As introduced in section II, the framework of the treatment used by Hitchon et al. assumes a low

beta ordering which reduces the pressure to its first order component, thus, making it constant on a

given flux-surface. Based on Figs. (6), (9), and (11), this simplification was observed to be appli-

cable in the LHD case for flat pressure anisotropies with β⊥/‖ ≤ 2.0 only. The non-applicability of

this ordering was found to match well with the deviations from the isotropic reference as observed

in Figs. (5), (8), and (10), indicating that the observed deviations of the scaling of the magnetic

axis location with βeq can be connected to a low beta ordering not being applicable in these cases.

To assess an additional link in the chain of reasoning towards the observed deviations, Fig.

(12) depicts horizontal cuts of Bz,pl at z = 0 in case of the different profiles for a low and a high

β⊥/‖ value at the upright plasma cross section. Bz,pl is determined based on Eq. (6) by means

of subtracting the magnetic field in the vacuum case from the one in case of a given equilibrium.

As the ANIMEC grid change with a movement of the magnetic axis position, Btot and Bvac were

approximated using linear splines which were then used for the subtraction. The rough trend

around the indicated magnetic axis location is caused by the half-integer mesh of ANIMEC.

Regarding the validity of this approach, it should be noted that subtracting the vacuum mag-
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netic field configuration in a fixed-boundary framework does only give a defective version of the

vertical magnetic field component originating from the plasma currents. Errors are introduced as

the external field will react to a change of the plasma, subsequently moving the plasma boundary

slightly. As such shifts are disregarded in a fixed-boundary framework, the field obtained by this

approach only hints towards the real field component in the given case, allowing only a qualitative

assessment of the underlying mechanism.

3.4 3.6 3.8 4.0
r / m

−0.050

−0.025

0.000

0.025

0.050

0.075

B z
,p

l /
 T

Flat
Edge-peaked
Center-peaked

(a) Plasma current related component of the

vertical magnetic field for β⊥/‖ = 1.0.
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(b) Plasma current related component of the

vertical magnetic field for β⊥/‖ = 3.5.

FIG. 12: Horizontal cuts through Bz,pl at z = 0 for the assessed hot-particle profiles at the upright

plasma location for β⊥/‖ = 1.0 in (12a) and β⊥/‖ = 3.5 in (12b). Vertical markers in the

respective colors indicate the location of the magnetic axes in the respective cases, the gray

vertical line relates to the vacuum location. Data was taken from the p0 = 2.5×104 Pa cases.

From Fig. (12), it is apparent that different radial profiles give rise to diverse profiles of Bz,pl

whereby no direct connection between the pressure and Bz,pl profile is apparent.

For β⊥/‖ = 1.0 in the flat profile case, Bz,pl is almost symmetric around the indicated mag-

netic axis. Such symmetries in Bz,pl can be related to the pressure being a conserved quantity on

flux-surfaces based on Eq. (5), which describes the Pfirsch-Schlüter current in the flux-surface-

averaged case. From this equation, it follows that symmetric pressure gradients give rise to a

symmetric Pfirsch-Schlüter current. As symmetric pressure gradients are caused by pressures

which are constant on a given flux-surface, it follows that symmetric Pfirsch-Schlüter currents can

be associated with flux-surface constant pressures. These symmetric currents in turn give rise to a

symmetric magnetic field, therefore, allowing the association of a symmetric Bz,pl with pressures

being constants on flux-surfaces. The observed symmetry in Bz,pl in the flat profile case therefore
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explains the match of the magnetic axis position with the isotropic reference for low β⊥/‖ values

as the underlying ordering is applicable.

In case of the center-peaked profile, the deviations from a mirror symmetry are even smaller,

hinting towards data close to the isotropic reference. When looking at Fig. (10), it becomes

apparent that, even though the radial shifts are stronger than in the isotropic reference case, the

scaling with βeq nonetheless is similar to the one of the isotropic data. The right scaling with βeq

can be assigned to a flux-surface-average treatment being valid while the stronger shifts can be

assigned to the fact that only a part of the plasma is accessible by the hot particles, subsequently

giving rise to a lower βeq. These two effects together give rise to a large displacement of the

magnetic axis at comparably low βeq as observed in Fig. (10).

In case of the edge-peaked profile, Bz,pl is almost zero around the magnetic axis and shows

an asymmetry at the plasma edge, consistent with the imposed hot particle density profile. The

asymmetry in turn hints towards the non-applicability of a low beta ordering for edge peaked

hot-particle profiles, explaining the deviations observed in Fig. (8).

In case of the strong perpendicular anisotropies with β⊥/‖ = 3.5 in Fig. (12b), the asymmetry

around the magnetic axes in case of the flat profile becomes more distinct, hinting towards the

non-applicability of the low beta ordering as was observed in Fig. (5) for strong perpendicular

anisotropies. In the center-peaked profile case, the symmetry at the magnetic axis location re-

mains almost intact, matching the observation that only small deviations from a rescaled isotropic

reference occur as seen in Fig. (10). In the edge-peaked profile case, the asymmetry becomes even

stronger but keeps its overall shape, indicating, as it was observed in the pressure plots of Fig.

(9), the non-applicability of the low beta ordering, and subsequently explaining the deviations

observed in Fig. (8).

V. CONCLUSION

Fixed-boundary plasma equilibria with tangential and perpendicular dominated pressure anisotropies

with different hot-particle profiles in the LHD framework have been investigated. The hot-particles

were modelled by a Bi-Maxwellian distribution function. The on-axis ι value is found to be pri-

marily altered by a change of the total magnetic field due to plasma currents. The magnetic axis

position in the flat profile case is found to follow theoretical predictions for a classical low-beta

expansion heliotron model in case of parallel or weak perpendicular anisotropies with β⊥/‖ ≤ 2.0,
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whereas strong perpendicular anisotropies lead to results deviating from the theoretically predicted

scaling. The deviations are found to be caused by the non-applicability of a low beta ordering in

such cases as the anisotropic pressure components exhibit significant higher order components.

Simulated anisotropic pressure profiles are found to qualitatively match experimental density

measurements in LHD plasmas heated by perpendicular neutral beam injection. As a potential

mechanism underlying the observed inward movement of the magnetic axis, the formation of

negative pressure gradients is proposed. Non-flat hot-particle profiles are found to deviate from

theoretical predictions regardless of the anisotropy imposed with edge-peaked profiles holding the

magnetic axis position fixed while center-peaked profiles give rise to a magnetic axis shift stronger

than in the flat profile case.

With differences in runtime between ANIMEC and VMEC being small and certain scenarios

showing differences in the magnetic axis location in the order of 10 %-20 % of the minor radius,

it is advised to take into account the heating scenario in future investigations of 3D equilibria. Es-

pecially plasmas with radially localized heating or strong perpendicular anisotropies are expected

to show deviations from the isotropic reference.

Subjects of future research are a new theoretical framework predicting anisotropies over a larger

parameter range by taking into account higher order terms of the anisotropic pressure components

as well as a systematical assessment of the influences of the magnetic field structure and the

plasma geometry onto ∆Rax. In addition to the results obtained in case of LHD in this study,

similar investigations of other stellarators, such as W7-X, may give an insight on how general the

obtained findings are. Additionally, the role of pressure anisotropies in future reactors needs to be

analysed systematically in order to estimate their influences onto the reactor design parameters. A

systematic comparison of numerical results and experimental data needs to be performed in a next

step.

In the context of ANIMEC itself, a comparison of the results with ones obtained using the

modified slowing-down distribution is expected to give an insight into the limitations and areas of

applicability of the two distribution functions.
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