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ABSTRACT In line-of-sight massive MIMO, the downlink channel vectors of few users may become
highly correlated. This high correlation limits the sum-rates of systems employing linear precoders. To
constrain the reduction of the sum-rate, few users can be dropped and served in the next coherence
intervals. The optimal strategy for selecting the dropped users can be obtained by an exhaustive search
at the cost of high computational complexity. To alleviate the computational complexity of the exhaustive
search, a correlation-based dropping algorithm (CDA) is conventionally used, incurring a sum-rate loss with
respect to the optimal scheme. In this paper, we propose a dropping algorithm based on neural networks
(DropNet) to find the set of dropped users. We use appropriate input features required for the user dropping
problem to limit the complexity of DropNet. DropNet is evaluated using two known linear precoders:
conjugate beamforming (CB) and zero-forcing (ZF). Simulation results show that DropNet provides a trade-
off between complexity and sum-rate performance. In particular, for a 64-antenna base station and 10 single-
antenna users: (i) DropNet reduces the computational complexity of the exhaustive search by a factor of 46
and 3 for CB and ZF, respectively, (ii) DropNet improves the 5th percentile sum-rate of CDA by 0.86 and
2.33 bits/s/Hz for CB and ZF, respectively.

INDEX TERMS Correlated scenarios, dropping algorithm, line-of-sight massive MIMO, neural network.

I. INTRODUCTION

THE mutual orthogonality of the channel vectors from
the base station (BS) to the users is known as favorable

propagation (FP) [1]. Line-of-sight (LOS) environments ex-
hibit FP both in theory and practice [2], [3]. There are im-
portant use cases (e.g., stadiums or exhibitions), in which the
channel vectors of some users become highly correlated [4],
which in turn results in a non-FP environment. In these
non-FP environments, the high correlation yields a reduction
in the achievable sum-rates of linear precoders [3], [5]. In
particular, this reduction is non-negligible when the max-min
power control is employed due to the fairness criterion, as
shown in our previous papers [6], [7].

To limit the reduction in the achievable sum-rates of linear
precoders, a correlation-based dropping algorithm (CDA) for
LOS environments with max-min power control is proposed
in [2]. In CDA, the BS drops a few users to constrain

the spatial correlations between the remaining users up to
a predefined threshold, which is optimized using extensive
simulations. We previously derived this threshold for two
known linear precoders: (i) conjugate beamforming (CB) and
(ii) zero-forcing (ZF) in [6], and for a known non-linear
precoder, i.e., Tomlinson-Harashima precoding [8] in [7].
Employing CDA with the thresholds given in [6], [7] for
channels with only one pair of correlated users (any other
pairs are orthogonal) yields the optimal dropping strategy.
However, when there are more than one pair of correlated
users, the CDA approach is suboptimal. The optimal strategy
in such a scenario can be found via an exhaustive search
at the cost of significantly high computational complexity.
Therefore, a low-complex yet near-optimal dropping strategy
is required when there are more than one pair of correlated
users. To the best of our knowledge, this problem has not
been studied in the literature.
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In this paper, we propose a dropping algorithm based on
neural networks (DropNet) to find the set of dropped users
that maximizes the achievable sum-rate of the remaining
users with max-min power control. DropNet is inspired by
the universal function approximation property of neural net-
works (NNs) [9]–[11]. By employing NN, we study the user
dropping problem in a general scenario for LOS massive
MIMO, when there might be more than one pair of correlated
users. We find appropriate input features for the NN by
studying the signal to noise plus interference ratio (SINR)
of CB and ZF. We treat the user dropping as a classification
problem, where each output class of the NN represents a
possible set of dropped users. To achieve a near-optimal 5th
percentile achievable sum-rate with low complexity com-
pared to the exhaustive search, we adjust the hyperparameters
of the NN. DropNet lifts the need for employing a predefined
threshold to find the set of dropped users as opposed to [2],
[6], [7]. Simulation results for two known linear precoders
with max-min power control show that DropNet provides a
good trade-off between performance in terms of achievable
sum-rate and computational complexity.

II. SYSTEM MODEL
The schematic of the massive MIMO downlink channel with
linear precoding is shown in Fig. 1, where an M -antenna BS
serves K single-antenna users in a time division duplexing
manner. The symbol of the users is s = (s1, s2, ..., sK)T ∈
CK×1, where the components of s are assumed to be zero-
mean, uncorrelated, and unit variance. 1 The diagonal power
control matrix D = diag(d) and a linear precoding matrix
U = (u1,u2, ...,uK) ∈ CM×K (with unit-norm column
vectors ui) precode s to x ∈ CM×1. The power control
vector d = (

√
d1,
√
d2, ...,

√
dK)T has the coefficients di ∈

R+ with i = 1, 2, ...,K with the total power constraint∑K
i=1 di = P . The transmit vector x is found by

x = UDs. (1)

Then, x is transmitted through the propagation channel de-
noted by H = (h1,h2, ...,hK)

T ∈ CK×M , where hi is the
channel vector from the BS antennas to user i.

The received signal at user i is given as

yi = hTi x+ni = hTi ui
√
disi+

K∑
j=1
j 6=i

hTi uj
√
djsj+ni, (2)

where ni is zero mean complex Gaussian noise with the
variance of N0. Assuming perfect channel state information
at the BS, the SINR for user i denoted by γi is given as

γi =
|hTi ui|2di∑K

j=1,j 6=i |h
T
i uj |2dj +N0

. (3)

1Notation: Lowercase, bold lowercase, and bold uppercase letters denote
scalars, column vectors, and matrices, respectively. | · | and ‖ · ‖ denote the
absolute value and l2-norm operators. The superscripts ∗, T , and H denote
complex conjugate, un-conjugated transpose, and conjugated transpose,
respectively. diag(p) denotes a diagonal matrix with diagonal entries taken
from p. The operator ⊗ denotes the kronecker product.

Linear Precoding

Downlink Channel

s diag(d) U HK×Mx

+

+

hT1 x

hTKx

...

n1

nK
.
.
.

y1

yK

FIGURE 1. The model of the downlink channel with linear precoding.

In this paper, we consider two known linear precoders:
CB and ZF. To find the precoding matrix U for CB and ZF,
we first find G = HH and G = H† = HH(HHH)−1,
respectively. The precoding matrix U is then found for
each precoder by normalizing G to have unit-norm column
vectors, i.e., ui = gi/‖gi‖. By replacing CB and ZF filters,
the following SINR is obtained for each user:

γCB
i =

‖hi‖2di
‖hi‖2

∑K
j=1,j 6=i |ρij |2dj +N0

, (4)

γZF
i =

|hTi ui|2di
N0

=
di

‖gi‖2N0
. (5)

For a given set of filters ui, i = 1, 2, ...,K, we are
interested in finding the coefficients di, i = 1, 2, ...,K, that
maximize the minimum γi among the users, which is referred
to as max-min power control [12, Sec. 7.1]. Employing
the max-min power control equalizes the throughput of all
users [2], i.e., γCB

i = γCB and γZF
i = γZF for i = 1, 2, ...,K.

The power control vector d∗ is found by solving

d∗ = argmax
d1,d2,...,dK∈R+

min
i∈{1,2,...,K}

γi, (6)

where γi is given by (3). To solve (6), we use the bi-
section method (see [2, Algorithm 2]) for CB, and we use
the Lagrangian multiplier for ZF.

III. DROPNET: PROPOSED DROPPING ALGORITHM
BASED ON NEURAL NETWORKS
In this section, we present details of DropNet. DropNet is de-
signed to find the set of users that shall be dropped such that
the achievable sum-rate of the remaining users is maximized.
At the end of this section, a complexity analysis is given
to compare the complexity of DropNet with the exhaustive
search and the previous CDA.

A. DESIGN METHODOLOGY
We model the user dropping as a classification problem. In
the classification problem, we consider one class representing
the case where no user is dropped,

(
K
i

)
classes representing

the cases where i users out of K users are dropped. We
assume 1 ≤ i ≤ nmax, where nmax is the maximum number of
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users that we allow to be dropped. Overall, the total number
of classes is

nout = 1 +

(
K

1

)
+

(
K

2

)
+ ...+

(
K

nmax

)
. (7)

Each class denotes a neuron in the output layer. Thus, the
number of neurons corresponding to the output layer is nout.

We choose the inputs of the NN as follows assuming a real-
valued NN. For a given channel realization H , the chosen in-
puts should correspond to a meaningful metric related to the
users to be dropped. Moreover, as will be shown in Sec. III-B,
the computational complexity of the resulting NN is directly
related to the number of input and output neurons. Therefore,
the number of inputs should be as small as possible. In
general, for a fixed transmit power P , one can employ the
elements of H as the inputs of the NN, as H contains all the
information required for the dropping algorithm. However,
the number of elements of H is 2MK,2 which scales linearly
with both the number of antennas M and the number of
users K. This is not desirable because in massive MIMO
M >> K. Thus, it is beneficial to find appropriate input
features for which the number of input nodes does not scale
with M . Previous dropping algorithms [2], [6], [7] use the
absolute value of the pair-wise normalized spatial correlation
of the users ρij

ρij =
hHj hi

‖hi‖‖hj‖
, i, j 6= i ∈ {1, 2, ...,K}, (8)

to drop some of the users. There are
(
K
2

)
values of |ρij |, i.e.,

(K2 − K)/2, which is much less than 2MK values of H .
Thus, |ρij | values are possible candidates for the inputs of
the NN. By studying (4) and (5), we propose to use |ρij | and
‖hi‖2 as the input features of the NN as explained in the
following.

To find the SINR for CB as in (4), we need to use bisection
method to find the power control coefficients, for which ‖hi‖
and |ρij | are required. Therefore, ‖hi‖ and |ρij | provide
enough information to find the set of dropped users for CB.
To find the SINR for ZF as in (5), we need to use Lagrangian
multiplier to find the power control coefficients for which
‖gi‖2 the diagonal elements of (HHH)−1 are required. To
compute the diagonal elements of (HHH)−1, we need ‖hi‖
and ρij . Thus, for ZF, we need the complex values of ρij
rather than |ρij | as for CB. However, by using |ρij | instead
of ρij , we can further reduce the number of input nodes for
ZF. Thus, in this paper, we use |ρij | and ‖hi‖2 as the input
features for both CB and ZF. Overall, the number of input
nodes becomes:

nin =

(
K

2

)
+K =

K2 +K

2
, (9)

which is much lower than 2MK. For instance, assuming
K = 10 and M = 100,

(
K
2

)
+ K = 55, while 2MK =

2000. We emphasize that by using |ρij | and ‖hi‖2 values,

2Note that the factor 2 is due to considering a real-valued NN.

|ρ12|
|ρ13|
|ρ23|
‖h1‖2

‖h2‖2

‖h3‖2 v

no drop
drop user 1
drop user 2
drop user 3

RelU

SoftMax

FIGURE 2. The schematic of a NN for DropNet when K = 3 and nmax = 1
with inputs |ρ12|, |ρ13|, |ρ23|, ‖h1‖2, ‖h2‖2, ‖h3‖2 and output one-hot
vector v.

we remove the dependency of the number of inputs to M
and therefore, reduce the complexity of NN considerably.
Hence, such input selection is practical for massive MIMO
systems. We investigated different NNs with more than one
hidden layer, however, to limit the computational complexity
of the designed NN we use only one hidden layer instead.
The number of neurons in the hidden layer is the design
parameter, which provides a performance-complexity trade-
off in DropNet.

As an example, the NN of DropNet for K = 3, nmax = 1
is illustrated in Fig. 2. There are

(
3
2

)
+ 3 = 6 input nodes

and there are 1 +
(
3
1

)
= 4 output nodes with 7 nodes in the

hidden layer. In DropNet, we employ “Relu” as the activation
function for the hidden layer and “Softmax” as the activation
function for the output layer (see Fig. 2). The output of
Softmax represents the probability of each class for a given
set of input features. The output of NN is represented by
a one-hot vector v of size nout × 1, where the component
corresponding to the class of dropped users is “1” and all
the other components are “0”. We employ cross-entropy as
the cost function, as NN is used to find the set of dropped
users with a high probability. The standard back-propagation
algorithm [13] is used for optimizing the parameters of NN.

To train (test) the NN, we generate the training (test) set
for a given precoder as follows. We generate a large number
of realizations of H for the training (test) set. For each
realization of H , we compute

(
K
2

)
values of |ρij | and K

values of ‖hi‖2 associated with H . We find the optimal set
of dropped users corresponding to H with an exhaustive
search. The solution of the exhaustive search is stored as
a one-hot vector v of size nout × 1, where the component
corresponding to the class of dropped users is “1” and all the
other components are zero. The vector v serves as the NN
output corresponding to the computed input nodes. After the
training phase, the trained NN is evaluated using the test set.
We evaluate the complexity of the designed NN in the sequel.
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B. COMPLEXITY ANALYSIS
We first explain the computational complexity of the exhaus-
tive search for CB and ZF precoding, then, we compute the
corresponding complexity of DropNet. For the complexity
analysis, it is assumed that each complex addition costs 2
floating point operations (FLOPS) and each complex multi-
plication costs 6 FLOPS [14]. To drop i out of K users, there
are
(
K
i

)
possibilities. In the exhaustive search, one requires

to check all possible sets of dropped users. For each set of
dropped users, we need to find the SINR with max-min power
control of the remaining users to compute the corresponding
sum-rate. For CB, it is required to use the bi-section method
to compute the max-min SINR denoted by γCB for the users.
At each iteration of the bi-section method, an inverse of a
K × K matrix is required, which entails K3/2 + 3K2/2
multiplications and K3/2 − K2/2 additions and K square
roots operations3 [15]. For a given nmax, the complexity of
the exhaustive search for CB in FLOPS is given as

CCB =

nmax∑
i=0

(
K

i

)
Ii(4(K−i)3+8(K−i)2+(K−i)), (10)

where Ii is the number of iterations used to run the bi-section
method, which depends on the search interval for γCB and
the required accuracy for γCB [16, Th. 2.1]. For instance, for
nmax = 2 and I0 = I1 = I2 = K with accuracy of 0.01, CCB

has complexity of O(K6).
The max-min SINR for ZF is given as [17, eq. (14)]:

γZF =
P

N0 tr(HHH)−1
. (11)

As can be seen from (11), the trace of (HHH)−1 for
computing γZF needs to be calculated. It is known that the
trace of (HHH)−1 is equal to the sum of the eigenval-
ues of (HHH)−1 [18, Ch. 4]. To find the eigenvalues of
(HHH)−1, it is enough to find the eigenvalues of HHH

and then inverse them. Consequently, the computational
complexity of evaluating γZF is equal to the complexity of
finding the eigenvalues of a K×K symmetric matrix, which
is 16/3K3 [14]. Overall, the complexity of the exhaustive
search for ZF in FLOPS is given as

CZF =

nmax∑
i=0

(
K

i

)
16

3
(K − i)3. (12)

For instance, for nmax = 2, CZF has complexity of O(K5).
The complexity of DropNet depends on the number of

multiplications and additions in the forward propagation of
the NN at the test phase.4 We consider real-valued NN, where
the multiplications and additions are all real operations.
Recall that the input and output layers of NN have nin (see
(9)) and nout (see (7)) neurons. Let us assume that the hidden
layer contains l neurons. The number of multiplications for
computing the value of a given neuron in the hidden and

3We assume that each square root operation costs 1 FLOP [15].
4Back-propagation is performed offline at the training phase, thus, only

the complexity of the forward propagation is considered at the test phase.

4 6 8 10

103

104

105

106

K

FL
O

PS

ZF
CB
l = 16

l = 32

l = 64

l = 128

l = 256

FIGURE 3. The computational complexity of the exhaustive search for CB and
ZF compared to the DropNet with different number of nodes (16 to 256) as a
function of the number of users K with nmax = 2.

output layers are nin and l, respectively, rendering a total
of ninl + lnout multiplications in the forward propagation.
Assuming a bias term for the hidden and output layers,
the total number of additions in the forward propagation
becomes the same as the number of multiplications, i.e.,
ninl + lnout. As each real-value multiplication and addition
require one FLOP, the total number of FLOPs for the forward
propagation is given as

CDropNet = 2ninl + 2lnout,

= 2l

(
K2 +K

2
+

nmax∑
i=0

(
K

i

))
(13)

For instance, for nmax = 2 and l = K2, CDropNet has
complexity of O(K4), which is lower than that of CB and
ZF for the same nmax.

In Fig. 3, the complexity (FLOPS) of DropNet as a func-
tion of K is compared with that of the exhaustive search for
nmax = 2 for both CB and ZF. The number of nodes in the
hidden layer for DropNet changes from 16 to 256. Although
by increasing the number of nodes in the hidden layer, the
complexity of DropNet increases, the slope of DropNet is
much lower than the exhaustive search for both CB and
ZF. To compute the complexity of CB in Fig. 3 for a given
number of users, we use the average Ii found by running a
large number of simulations. For instance forK = 10 and ac-
curacy of 0.01, I0 = 24.2, I1 = 21.4 and I2 = 19.9. We use
the results in Fig. 3 to find an appropriate number of neurons
for the hidden layer in DropNet that considerably reduces the
computational complexity of the exhaustive search.

IV. SIMULATION RESULTS
We consider a single-cell massive MIMO, where a BS with a
uniform planar array (UPA) of

√
M ×

√
M antennas located

at x-y plane with half-wavelength spacing (carrier frequency

4 VOLUME , 2020
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FIGURE 4. The CDF plots of the sum-rates for the exhaustive search (EXS), CDA and DropNet with three different l when a 3× 3 UPA serves 4 users
(M = 9, K = 4) with CB and ZF.

of 30 GHz) serving K single-antenna users. The users are
uniformly distributed in the cell (10-200 m). The channel
matrix H is computed using the LOS model given in [19, eq.
(5)]. Moreover, shadowing effect (log-normal shadow fading
with the variance of 12 dB) is considered. The azimuth and
elevation angles of the users are uniformly distributed in the
intervals (0, 2π) and (0, π/2), respectively. The minimum
distance between two users is set to a wavelength. We set the
transmit power (without loss of generality) at the BS such
that in FP, γCB = γZF = 15 is achieved and we consider
nmax = 2 for all the dropping algorithms. This means for each
dropping algorithm, the maximum number of users that is
allowed to be dropped is 2. For the training set 3.9M (97.5%
of dataset) and for the test set 100K realizations (2.5% of
dataset) of the channels are used. We present the cumulative
distribution function (CDF) of CB and ZF achievable sum-
rate for DropNet compared to the exhaustive search and
previous CDA [6, Algorithm 1].

In Fig. 4, the CDF of the sum-rate is shown for CB and
ZF for a BS with a 3 × 3 UPA serving 4 users (M =
9,K = 4) employing the exhaustive search (blue solid line),
CDA (black dash-dotted) and DropNet with three different
l (dashed lines) to drop some of the users. The 5th per-
centile sum-rate is magnified for a better comparison for
all the scenarios. In addition, in Fig. 5, the same curves
are presented for a BS with a 8 × 8 UPA serving 10 users
(M = 64,K = 10). The following conclusions are inferred
from Fig 4 and Fig. 5. First, there is a gap between the
CDF of the sum-rate of the exhaustive search and CDA.
Second, by employing DropNet with an appropriate l, one
can improve the CDF of CDA and reduce the gap to the
exhaustive search. Third, for a given l, the designed NN for
CB has a performance much closer to the exhaustive search
compared to ZF. For ZF, the gap to the exhaustive search can

be further reduced by using ρij instead of |ρij | as the input
features, however, with extra complexity.

We compare the 5th percentile sum-rate of DropNet with
a given l with the exhaustive search and CDA in Table 1.
We use simulation scenarios in Fig. 4 and Fig. 5. The im-
provement of DropNet for ZF is more than that of CB for
both MIMO systems. In terms of the 5th percentile sum-
rate, by employing DropNet, the gap (loss) to the exhaustive
search is smaller than the gap (improvement) to CDA. We
further compare the computational complexity (FLOPS) of
DropNet for a given l with the exhaustive search and CDA
in Table 2 for the same scenarios as in Table 1. Note that
computing |ρij | for CDA and DropNet costs 8MK2 FLOPS.
The complexity reduction of DropNet for CB is much more
than that of ZF for both MIMO systems. For both CB and
ZF, by employing DropNet, the complexity of the exhaustive
search is reduced.

The results in Table 1 and Table 2 show that
DropNet provides a 5th percentile sum-rate close to that of
the exhaustive search while its complexity is close to that of
CDA. Therefore, DropNet provides an interesting trade-off
between complexity and sum-rate performance.

We further present the CDF of sum-rates for CB and ZF in
Fig. 6 for M = 64 and K = 10 when there is no shadow-
ing. In this case, the gap between CDA and the exhaustive
search is smaller. Similar to the shadowing scenarios, by
employing DropNet, we can approach the exhaustive search
performance.

V. CONCLUSIONS
In this paper, a dropping algorithm based on neural net-
works is proposed for LOS massive MIMO. We show that
the proposed dropping algorithm provides a performance-
complexity trade-off between conventional correlation-based
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FIGURE 5. The CDF plots of the sum-rates for the exhaustive search (EXS), CDA and DropNet with three different l when a 8× 8 UPA serves 10 users
(M = 64, K = 10) with CB and ZF.

TABLE 1. 5th percentile sum-rate comparison between DropNet, exhaustive search, and CDA dropping schemes for the simulation scenarios of Fig. 4 and Fig. 5.

Case study Number of neurons
in hidden layer (l)

5th percentile sum rate gap
w.r.t. exhaustive search (bit/s/Hz)

5th percentile sum rate improvement
w.r.t. CDA (bit/s/Hz)

CB (M = 9,K = 4) 15 0.15 0.70
CB (M = 64,K = 10) 75 0.30 0.86

ZF (M = 9,K = 4) 14 0.31 1.16
ZF (M = 64,K = 10) 75 0.67 2.33

TABLE 2. Complexity (FLOPS) comparison between DropNet, exhaustive search, and CDA dropping schemes for the simulation scenarios of Fig. 4 and Fig. 5. To
find the complexity reduction (increase) ratio, we compute (10) for CB, (12) for ZF and (13) for DropNet.

Case study Number of neurons
in hidden layer (l)

Complexity reduction ratio
w.r.t. exhaustive search

Complexity increase ratio
w.r.t. CDA

CB (M = 9,K = 4) 15 14.57 1.55
CB (M = 64,K = 10) 75 46.89 1.33

ZF (M = 9,K = 4) 14 1.34 1.51
ZF (M = 64,K = 10) 75 3.22 1.33

dropping algorithms and the optimal dropping strategy found
by an exhaustive search. The proposed dropping algorithm
outperforms the correlation-based dropping algorithm and
achieves a 5th percentile sum-rate close to that of the exhaus-
tive search with up to a factor of 46 and 3 lower computa-
tional complexity compared to the exhaustive search for CB
and ZF, respectively.
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