
 

An integrated model of energy-efficient timetabling of the
urban rail transit system with multiple interconnected lines
Citation for published version (APA):
Huang, K., Liao, F., & Gao, Z. (2021). An integrated model of energy-efficient timetabling of the urban rail transit
system with multiple interconnected lines. Transportation Research. Part C: Emerging Technologies, 129, Article
103171. https://doi.org/10.1016/j.trc.2021.103171

Document license:
CC BY

DOI:
https://doi.org/10.1016/j.trc.2021.103171

Document status and date:
Published: 01/08/2021

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.1016/j.trc.2021.103171
https://doi.org/10.1016/j.trc.2021.103171
https://research.tue.nl/en/publications/726bb858-ee99-4c68-bd81-a9b32520bf6e


Transportation Research Part C 129 (2021) 103171

Available online 8 June 2021
0968-090X/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

An integrated model of energy-efficient timetabling of the urban 
rail transit system with multiple interconnected lines 

Kang Huang a,b,c, Feixiong Liao b,*, Ziyou Gao c,* 

a State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China 
b Urban Planning and Transportation Group, Eindhoven University of Technology, Eindhoven, the Netherlands 
c Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Ministry of Transport, Beijing Jiaotong 
University, Beijing, China   

A R T I C L E  I N F O   

Keywords: 
Urban rail transit 
Energy-efficient timetabling 
Bi-level model 
User equilibrium 

A B S T R A C T   

Urban rail transit (URT) has been considered an effective means of addressing urban congestion 
problems in metropolises. The operations of a URT system involve high energy consumption and 
its trade-off with passenger travel times. Existing energy-efficient timetabling studies have pre
dominately focused on single URT lines and thus are incapable of accurately modeling the energy 
consumption in a URT network with transfer opportunities and synchronization between the URT 
lines. To extend the energy-efficient timetabling from one single line to multiple interlinked lines, 
we propose a bi-level model incorporating the operator’s decision on a regular timetable and 
passengers’ path choice in a URT network. The objective of energy consumption and timetable 
constraints of the upper level are linearized and formulated as mixed-integer linear programming. 
The lower level captures the user equilibrium based path choice behavior responding to the 
timetable. We develop a heuristic algorithm for the bi-level model that produces near-optimal 
timetable solutions in a relaxation process. The proposed model and solution algorithm are 
validated in the URT network of Xi’an (China). It is found that the energy consumption is 
considerably reduced, compared with using the current timetable, at the expense of an acceptable 
increase in the average travel time.   

1. Introduction 

Urban rail transit (URT), due to the low fare, high capacity, punctuality, and environmental friendliness, has attracted much 
attention in urban mobility in large cities (Yang et al., 2020). However, even though the URT is much more energy-efficient than other 
main transport modes for serving the same population (González-Gil et al., 2013, 2014), the URT faces a challenge in energy-saving. 
For instance, it is estimated that the Beijing URT will approximately use two billion kWh in 2020 (the same amount may supply a city 
with a population of 500 thousand for one year) and be the largest consumer of all single organizations in Beijing, which cause 
concerns to the local government and environment agencies (Lv et al., 2019). In the existing research, there are two research lines 
dedicated to energy efficiency in a URT system (Huang et al., 2019), namely, optimal train control and energy-efficient timetabling. 
Focusing on a single train on a track between two stations, the optimal train control aims at finding the optimal driving strategies in 
terms of speed profiles to minimize energy consumption (Howlett, 1996, 2000; Howlett and Pudney, 1998; Albrecht et al., 2013; 
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Scheepmaker et al., 2017). On the other hand, energy-efficient timetabling (Li and Lo, 2014a, b; Yang et al., 2015, 2016, 2017; Yin 
et al., 2016; Wang and Goverde, 2016, 2017) typically concerns the running time allocations of a fleet of trains on a URT line. As 
energy-efficient timetabling is the focus of attention, we review the most relevant studies in two research lines, i.e., (1) optimal train 
control for reducing energy consumption and (2) energy-efficient timetabling for single metro lines. 

Optimal train control is a traditional problem based on the optimal control theory, in particular on the Pontryagin’s Maximum 
Principle (PMP) (Albrecht et al., 2016a,b). The mathematical problem was conducted and applied under the control theory in the early 
years (Howlett and Pudney, 1995; Khmelnitsky, 2000; Liu and Golovitcher, 2003; Lai et al., 2020). The train control and speed profile 
include three sub-processes, namely, maximum acceleration, coasting, and maximum braking (Howlett and Pudney, 1998). The 
switching points of these sub-processes are at the core of train control. Howlett et al. (2009) showed that the optimal switching points 
for a steep section can be found by minimizing an intrinsic local energy function. Yang et al. (2018) analyzed the switching points and 
converted the relationship between running time and energy consumption into a strictly convex quadratic programming problem. To 
assist train drivers with optimal controls in real-time, some train on-board systems incorporated specific speed advice and train delays 
in operations (Panou et al., 2013). With the mass data generated in real operations and development of artificial intelligence, Huang 
et al. (2019) and Yin et al. (2020) applied machine learning methods, for example, random forest regression (RFR), support vector 
machine regression (SVR), and deep neural network (DNN), to optimize speed profiles. 

Energy-efficient timetabling has recently been a hotspot topic (Li and Lo, 2014a, b; Zhao et al., 2015; Gupta et al., 2016; Ye and Liu, 
2016; Yin et al., 2016, 2017; Canca and Zarzo, 2017; Yang et al., 2019; Mo et al., 2019a,b; Liu et al., 2020; Qu et al., 2020) in the study 
of energy efficiency of URT systems. For example, Li and Lo (2014a) considered the speed control and headway of a timetable by 
synchronizing train acceleration and braking to maximize the utilization of regenerative energy. It was later found by Li and Lo 
(2014b) that adjusting the cycle time of the URT line could further reduce energy consumption. These two studies formulated the 
problems in a non-linear system and applied a genetic algorithm (GA) to find the solutions. Considering uncertain dwell times, Yang 
et al. (2017) proposed an ε-constraint method in the GA framework to find Pareto optimal solutions to minimize the total energy 
consumption and passenger travel time. Utilizing passenger smart-card data as input for passenger demand, Yang et al. (2019) 
formulated a convex quadratic programming problem and developed an optimization-based approach to generate a timetable with 
stop-skipping patterns. By transferring arrival and departure times to time window constraints and relaxing the given timetable, Wang 
and Goverde (2019) proposed a multi-train trajectory optimization method with a base objective of minimizing multi-train energy 
consumption and an additional objective of eliminating conflicts between trains. Mo et al. (2019a) presented a bi-objective model to 
minimize energy consumption and passenger waiting time simultaneously, considering different train capacity constraints. A modified 
tabu search algorithm with a prior enumeration process was used to find near-optimal solutions. A few factors in a URT network affect 
the total energy consumption, e.g., rolling stocks and line lengths. Specifically, different lines in a URT network usually operate with 
different rolling stocks (Zhong et al., 2019), which affects train deadhead mileage, passenger flow, and energy consumption on the 
sections (Zhong et al., 2020). Mo et al. (2019b) integrated the optimal train timetable and rolling stock plan that optimized the brake- 
traction overlapping time at stations. Based on energy-regenerative technologies, Yang et al. (2020) formulated an optimization model 
considering energy allocation and passenger assignment to maximize regenerative energy utilization and minimize passenger travel 
time. A solution algorithm based on the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) was developed to find the Pareto 
frontier. All of the above studies reported significant energy reductions of the newly generated timetables over the used timetables. 

It is commonly known that the timetabling for a single URT line is an NP-hard problem (Cai and Goh, 1994). The timetabling 
problem becomes harder when energy-efficiency is incorporated. As summarized in Table 1, with the assumption of fixed passenger 
arrival rates and the absence of path choices, a few studies (e.g., Yin et al., 2017) suggested mixed-integer linear programming (MILP) 
formulations for single URT lines of less than 20 stations. With a similar assumption, some studies (e.g., Yang et al., 2020) considered 
non-linear formations and applied metaheuristic solution algorithms (e.g., GA and PSO). The energy-efficiency timetabling problem is 
even harder when considering passenger path choices in a URT network of multiple interconnected lines, which is probably the reason 
why no research of this kind has been done. 

Table 1 
Main differences between the present study and the existing ones in energy-efficient timetabling.  

Reference Scope Passenger assignment Model type Solution method 

Chevrier et al. (2013) S No NP GA 
Li and Lo, (2014a, b) S No NP GA 
Yang et al. (2015, 2016, 2017) S No NP GA 
Gupta et al. (2016) S No NP N/A 
Wang and Goverde, (2016, 2017, 2019) S No NP Heuristic policy 
Yin et al. (2016) S No MIQP Approximate dynamic programming 
Canca and Zarzo, (2017) S No MILP Gurobi 
Yin et al. (2017) S Yes MILP Lagrangian relaxation-based heuristic algorithm 
Liu et al. (2018) S No NP GA 
Lv et al. (2019) S Yes MILP Gurobi 
Su et al. (2019) S No NP Dynamic Programming and PSO 
Yang et al. (2020) S Yes NP NSGA-II 
This study M Yes Bi-level MILP Gurobi, a domain-knowledge based heuristic, and MSA 

(S = Single line; M = Multiple lines; NP: Non-linear programming; MIQP: Mixed-integer quadratic programming; NSGA-II: Non-Dominated Sorting 
Genetic Algorithm II; N/A: Not available). 
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Despite increasing research entries on energy-efficient timetabling, to the best of our knowledge, existing studies have been 
unexceptionally limited to single URT lines. This treatment is valid in a URT system with only one URT line or independent URT lines, 
which however does not hold in most modern URT systems. Although the power supply for each URT line is separated, the URT lines 
are associated with each other by passenger transfers and timetable synchronization among the URT lines. The modeling limitations 
cannot capture the accurate passenger allocation in the URT network and tend to produce unwanted chain effects on the calculation of 
energy consumption. Many studies have addressed the traditional timetabling problems of a URT network with multiple lines (e.g., 
Wong et al., 2008; Guo et al., 2018; Shang et al., 2018; Sun et al., 2018; Chen et al., 2019; Yao et al., 2019; Guo et al., 2020; Boroun 
et al., 2020; Huang et al., 2021), but none of them takes energy-efficiency into consideration. 

Therefore, this study aims to extend the energy-efficient timetabling from a single line to multiple lines in a URT network. We 
propose a bi-level model framework considering timetabling and passenger path choices (including transfer choices) as an interactive 
process. The upper level model determines the optimal timetable and speed profiles under the given passenger path choices. The lower 
level model concerns passenger path choices by the receiving timetable from the upper level. Technically, we formulate the upper level 
optimization problem as mixed-integer linear programming (MILP). The lower level adopts a passenger assignment in a space–time 
network and is assumed that passengers adapt path choices until a user equilibrium (UE) state is reached. 

To highlight the contributions of this study, we summarize the differences between this study and a few relevant studies in terms of 
modeling aspects in Table 1. First of all, our study is the first one extending the energy-efficient timetabling from a single line to 
multiple lines in a URT network. Second, although passenger assignment has recently been considered in energy-efficient timetabling 
(e.g., Su et al., 2019; Yang et al., 2020), these studies applied a one-off allocation based on simple heuristics of proportional 
assignment. This study considers more realistic UE-based feedback of passengers to the timetable. Third, most studies formulated one 
level of (non–)linear programming and applied (meta-)heuristic methods (e.g., GA and PSO), which might result in non-justifiable and 
non-reproducible solutions. In this study, we propose a bi-level model framework and develop a domain-knowledge based heuristic 
algorithm to obtain near-optimal solutions. 

The remainder of this paper is organized as follows. Section 2 provides the problem description and modeling assumptions. Section 
3 entails the modeling of synchronous URT lines and their interactions with passenger path choices in a bi-level model framework. 
Section 4 discusses the solution algorithm to the bi-level model. Section 5 presents a comprehensive case study in the URT system in the 
city of Xi’an (China) to verify the model and algorithm. Finally, Section 6 concludes the main contributions and provides suggestions 
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Fig. 1. An illustration of a URT network with two bidirectional lines.  
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for future research. 

2. Problem description 

The energy-efficient timetabling determines the elements of a timetable (e.g., arrival time, running time, departure time for each 
platform) with the minimum energy consumption while completing the tasks of transporting passengers. The passengers in the URT 
network may have multiple alternative paths. Therefore, passenger path choices should be taken into consideration. In Fig. 1, we use a 
typical and simplest URT network with two crossed lines to illustrate the timetabling problem. Suppose there are Nl and Nl’ stations, 
2Nl and 2Nl’ platforms, and 2Nl − 2 and 2Nl’ − 2 tracks (one track between two neighboring platforms) on line l and l’, respectively. The 
platforms and tracks are arranged and numbered in order. A train departing from platform 1 to platform Nl is in the up-direction, while 
departing from the platform Nl +1 to platform 2Nl is in the down-direction. There are four platforms on the transfer station, i.e., 
platform 4 and 2Nl’ − 3 of line l’, platform 3 and 2Nl’ − 2 of line l. Based on this layout, key components for energy-efficient timetabling 
are represented in Fig. 2. A passenger starts from its origin platform and goes through a series of activities (waiting, boarding, and 
alighting) to reach the destination platform. 

For illustration, as shown in Fig. 3(a), the running process on each track has a set of alternative discrete speed profiles and each 
profile has three main stages (accelerating, coasting, and decelerating) with speed limitations for different geographical conditions. 
Commonly, the speeds and running times are dynamic according to the operation level of the on-board control systems called ATO 
(Automatic Train Operation). The drivers intervene and control the trains only in case of emergencies (Yin et al., 2017; Mo et al., 
2019a). Based on the train control theory, the energy consumption on track t is a non-linear function of the loading weight (ml,t) and 
running time nl,t , denoted by e

(
ml,t , nl,t

)
. For each track, one level of on-board operation corresponds to one speed profile and thus one 

specific running time. A higher operation level usually corresponds to a lower speed. Denote the running time at operation level g on 
track t of line l by nl,t,g. For simplicity, nl,t,g is simplified as ng given a track. To illustrate the relationships, suppose that operation level g 
is associated with running times ng. Given train loading weight level m, the energy consumption egm (for the sake of notational 

Platform
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p

p+1

Track

Arrival time:

Departure time:

Dwell
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Time

Station
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Fig. 2. Key variables for energy-efficient timetabling.  

Time

Energy consumption 

(e11,n1)

Level 1
Level 2
Level 3

(e21,n2)
(e31,n3)

(e12,n1)

(e22,n2)
(e32,n3)

m1

m2

m2>m1

(e21,n2)

(e31,n3)

.noitpmusnocygrenE)b(.seliforpdeepsevitanretlA)a(

Accelerating

(e12,n1)

Coasting

Decelerating

Limiting speed

Fig. 3. Speed profiles at different levels and energy consumption with different weights.  

K. Huang et al.                                                                                                                                                                                                         



Transportation Research Part C 129 (2021) 103171

5

simplicity) has the following features. As shown in Fig. 3(b), for the same loading, a higher speed profile needs more energy con
sumption for acceleration and coasting (the main stages of energy consumption). Therefore, running times and energy consumption 
satisfy n1 ≤ n2 ≤ n3 and e11 ≥ e21 ≥ e31 respectively. For the same operation level, the heavier the train is, the more energy con
sumption is involved (i.e., e12 ≥ e11; e22 ≥ e21; e32 ≥ e31). 

Overall, operation level g and train loading ml,t determine the running time and energy consumption given operation conditions 
(train type and ATO system). The train loading, ml,t , depends on the passenger volume on the train. Therefore, there are two types of 
decision variables, i.e., timetable and passenger distribution on the network, in the energy-efficient timetabling problem for multiple 
lines. The notations are defined below. 

2.1. Assumptions 

The following assumptions are made to facilitate the development of the model framework. 

Assumption 1. The trains are scheduled periodically (e.g., during peak hours) and all passengers can board the train in a planning 
period. Periodic timetables are widely adopted by URT operators using the space–time network modeling method (Shang et al., 2018, 
Zhang et al., 2019). 

Assumption 2. In the URT network, the transfer time consists of walking time and waiting time, where the walking time is fixed 
given the transfer station and the waiting time is related to the headway of the URT line. 

Assumption 3. To accommodate all passengers, the passenger arrival rate determines the headway for a periodic timetable. The 
time-dependent passenger arrival rate at a platform is fixed as the average during the planning period. 

Assumption 4. Given a timetable, the passengers in the URT network adapt path choice to reach a UE state by long-term day-to-day 
adjustments (Bie and Lo, 2010; Djavadian and Chow, 2017). 

Assumption 5. The URT operator pursues the minimum energy consumption, while the passengers seek the least generalized travel 
cost. 

2.2. Notations 

The following parameters, sets, intermediate variables, and decision variables are used in the model. 
Parameters:  

Elements and sets:  

Γ  the length of the planning period 
γl  train capacity of line l  
Nl  number of stations on line l  

m0
l  weight of empty train on line l  

κw  cost coefficient of waiting time 

κr  cost coefficient for crowding of in-vehicle time 

κt  cost coefficient of transfer time   

l,L  index of line and set of lines 
t,Tl  index of track and set of tracks on line l  
p,Pl  index of platform and set of platforms on line l  
Hl  set of headways on line l  
Ωl  set of frequencies on line l  
Nl  number of stations on line l  

[hO,hE] time range of the feasible headway 

[bO ,bE] time range of the feasible dwell time 

j, J  index of OD (origin–destination) pair and set of the OD pairs 
i, I  index of arc and set of arcs 
r,Rj  index of path and path belongs to OD pair j    
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Intermediate variables related to the timetable and passenger assignment:  

Decision variables related to the timetable and passenger assignment: 

Upper level

Energy-efficient timetabling

Input

Lower level

User equilibrium assignment

TimetablePassenger path choice

InputOutput

Output

Fig. 4. Integrated model framework for the energy-efficient timetabling in a URT network.  

v̂+

l,p, v̂
−

l,p  
average number of boarding/alighting passengers at platform p on line l  

v+l,p, v
−
l,p  boarding/alighting passengers at platform p on line l  

y+l,p,y
−
l,p  Boarding/alighting time at platform p on line l  

δl,k  0–1 variable with 
∑

l,kδl,k = 1  
el  energy consumption of line l  
Qj  passenger volume of OD pair j  
uijr  0–1 variable, uijr = 1 if arc i belongs to path r of OD pair j; otherwise, uijr = 0  

βl,t
i  0–1 variable, βl,t

i = 1 if arc i corresponds to track t on line l ; otherwise, βl,t
i = 0  

ql,t  passenger volume on track t of line l  
qmax

l  the maximum number of passengers on the tracks of line l  
qi  the passenger volume on running arc i  
zr

j  cost of path r that belongs to OD pair j  
μj  the minimum cost of od pair j at the user equilibrium state    

al,p  arrival time of the first train at platform p on line l  
bl,p  dwell time of the first train at platform p on line l  
Φl  cycle time of line l  
dl,p  departure time of the first train at platform p on line l  
nl,t  running time of the first train on track t of line l  
fl  frequency of line l  
hl  headway of line l  
φl  fleet size of line l  
xi  passenger flow on arc i  
qr

j  passenger flow assigned to path r of OD pair j    
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3. Model 

The primary difference between single-line and multiple-lines is whether the transfer is allowed. Passenger path choices are the most 
salient differences between a single line and multiple lines in a URT network. Although the power supply for each URT line is separated, 
the URT lines are associated with each other by passenger transfers and synchronization between the URT lines. For a URT network with 
transfer opportunities, passenger transfer and path choice should be incorporated in the energy-efficient timetabling. Passengers’ path 
choice and the operator’s timetable have a typical game relationship (Assumption 5). Therefore, we propose a bi-level model for the 
energy-efficient timetabling in a URT network to model the interactions. The energy-efficient timetabling model at the upper level is 
formulated as mixed-integer linear programming. The lower level is specified as a UE-based passenger assignment in the URT network. 
Fig. 4 shows the bi-level model framework, in which the upper level is an energy-efficient timetabling model that needs the input of 
passenger path choices, and the lower level is the passenger assignment responding to a timetable. The bi-level optimization framework 
divides the decision variables into two parts, i.e., timetable and passenger flow patterns in the URT network. Since it is not straightforward 
to formulate the lower-level user equilibrium conditions as constraints in the upper-level model, the timetabling (up-level) and passenger 
flow assignment (lower-level) are carried out in a heuristic relaxation process to seek quality timetable solutions. 

3.1. Energy-efficient timetabling model (Upper level) 

Focusing on transfer between multiple lines, we optimize a periodic timetable with a fixed headway of each line at the upper level. 
In the following two subsections, we first propose the energy-efficient timetabling in non-linear formulations to minimize the total 
energy consumption. Then, the model is transformed into MILP by linearizing the non-linear objective and constraints. 

3.1.1. Energy-efficient timetabling model in non-linear formulation 
The timetable-related constraints and objective of energy consumption are presented as follows. As the designed timetable is 

periodic and parallel, the time schedules of the first train are repeated cyclically by the ensuing trains on the same URT line. For track t 
on line l, ∀t ∈ Tl, ∀l ∈ L, the definitional relationship among departure time (dl,t), running time (nl,t) and arrival time (al,t+1) is 
formulated as Eq. (1). For the dwell time on platform p (∀p ∈ Pl) on line l, the relationship between departure time (dl,p) and arrival 
time (al,p) is formulated as Eq. (2). To allow enough time for alighting and boarding and avoid waiting long at the platform, there is a 
time range, [bO,bE], of the feasible dwell time bl,p in Eq. (3). There is also a time range [hO, hE] in Eq. (4) for the feasible train headway hl. 
The minimum headway is determined by the signaling system for safety considerations and the maximum value is usually related to 
the service level. The departure frequency fl determines the train fleet size during the planning period and is associated with the 
headway by Eq. (5). To ensure frequency fl is an integer, hl is specified as a divisor of 3600 (considering one hour as the time frame). As 
Canca and Zarzo, (2017) suggested, there are alternative headway values, for instance, 120, 180, 240, 300, 360, 600, 720, 900, 1200, 
and 1800 in seconds. The cycle time Φl is the time expense by a train completing a loop in the bi-directional line, given as Eq. (6), where 
ηl denotes the turning-around time of line l. 

al,t+1 − dl,t = nl,t, ∀l ∈ L,∀t ∈ Tl (1)  

bl,p = dl,p − al,p, ∀l ∈ L,∀p ∈ Pl (2)  

bO ≤ bl,p ≤ bE, ∀l ∈ L, ∀p ∈ Pl (3) 

Platform t Track t Platform t+1 Line

Passenger volume

Passenger volume on track t:

o

Fig. 5. Passenger volume on track t.  
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hO ≤ hl ≤ hE, ∀l ∈ L (4)  

fl∙hl = 3600, ∀l ∈ L (5)  

Φl = 2∙ηl +
∑

t∈Tl

nl,t +
∑

p∈Pl

bl,p, ∀l ∈ L (6) 

The passenger volume on track t can be computed by the accumulations on the track, which is illustrated in Fig. 5. Starting from the 
first platform in one direction, v+l,p and v−l,p denote the numbers of boarding and alighting passengers at platform p of line l respectively. 

As shown in Eq. (7), the passenger volume on track t is 
∑t

p=1

(
v+l,p − v−l,p

)
in the up-direction (t < N); likewise, the passenger volume is 

∑t
p=Nl+1

(
v+l,p − v−l,p

)
in the down-direction. The maximum number of passengers on the tracks of line l , qmax

l in Eq. (8), is an essential 

indicator for accommodating the passenger demand within the train capacity. According to Assumption 4, the average number of 
boarding passengers (v̂+

l,p)and alighting passengers (v̂ −

l,p) (passengers per second) are given in Eq. (9). In addition, there are constraints 
on the numbers of boarding and alighting passengers during the dwelling process. ε− and ε+ denote the alighting and boarding rates 
(seconds per passenger) respectively, which are determined by the width and number of train doors. Then, the alighting time (y−

l,p) and 
boarding time (y+

l,p) at platform p can be computed in Eqs. (10)–(11). 

ql,t =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑t

p=1

(
v+l,p − v−l,p

)
, if t ∈ [1,Nl]

∑t

p=Nl+1

(
v+l,p − v−l,p

)
, if t ∈ [Nl + 1, 2Nl]

(7)  

qmax
l = max

t
ql,t, ∀t ∈ Tl (8)  

v̂+

l,p =
v+l,p
Γ
, v̂−

l,p =
v−l,p
Γ
, ∀l ∈ L, ∀p ∈ Pl (9)  

y−l,p = v̂ −

l,p∙hl∙ε− , ∀l ∈ L, ∀p ∈ Pl (10)  

y+l,p = v̂+

l,p∙hl∙ε+, ∀l ∈ L, ∀p ∈ Pl (11) 

The dwell times need to be long enough to complete the alighting and boarding processes. As shown in Fig. 6, the alighting and 

boarding processes take time 
(

y−
l,p + y+

l,p

)
. The dwell time should be no less than the alighting and boarding time, i.e., bl,p ≥

(
y−

l,p +y+
l,p

)
, 

rearranged as (12). Since the opening and closing times of the train doors are short, they are not considered in the dwelling process. 

bl,p ≥ hl∙
(

ε− ∙v̂−

l,p + ε+∙v̂+

l,p

)

, ∀l ∈ L, ∀p ∈ Pl (12) 

The headway is associated with the fleet size φl, expressed as Eq. (13). By replacing headway hl with fl
3600, the fleet size is formulated 

Time

Boarding

Alighting

LinePlatform Track1pTrack p

o

p

Fig. 6. Alighting and boarding constraints of dwell time.  
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as Eq. (14). We can see that if cycle time Φl ≥ 3600s, then φl ≥ fl. If Φl < 3600s (there may be URT lines with short cycles), then φl < fl. 
Economically, the fleet size should not be greater than the maximum number of trains in Eq. (15). There is a corresponding capacity of 
each line, γl, for the consideration of limited room and passenger comfort. To accommodate all passenger demands given the capacity, 
frequency fl should be large enough to satisfy the constraint as Eq. (16). Constraint (16) can be in another form due to fl∙hl = 3600 as 
Eq. (17). Therefore, if the train capacity is fixed after determining the train units, the maximum passenger volume in one hour is 3600∙γl

hE . 
Additionally, with an increase in qmax

l , the headway should be shorter. Given average passenger weight τ, the passenger load ml,t on 
track t is formulated as Eq. (18). 

φl =
Φl

hl
, ∀l ∈ L (13)  

φl = Φl∙
fl

3600
, ∀l ∈ L (14)  

φl ≤ φmax
l , ∀l ∈ L (15)  

qmax
l ≤ γl∙fl, ∀l ∈ L (16)  

qmax
l ∙hl ≤ γl∙3600, ∀l ∈ L (17)  

ml,t =
ql,t∙τ

fl
=

ql,t∙τ∙hl

3600
, ∀l ∈ L, ∀t ∈ Tl (18) 

The objective of energy-efficient timetabling is the total energy consumption of the URT network. The energy consumption for line l 
is given as Eq. (19) and the total energy consumption of the URT network is given as Eq. (20). 

el = fl∙
∑

t∈Tl

e
(
ml,t, nl,t

)
, ∀l ∈ L (19)  

E =
∑

l∈L
el (20)  

where el is the energy consumption of linel and E is the total energy consumption of the URT network. 
As formulated in Eq. (20), the energy consumptions of the URT lines are independent of each other. However, the linkage between 

the URT lines are reflected in ql,t of Eq. (10) and ml,t of Eq. (19) during the course of passenger path choice. One derived feature is that 
Eq. (20) can be solved in parallel given the passenger path choices. This implicit decomposition of energy consumption reduces the 
complexity of energy-efficient timetabling. 

3.1.2. Energy-efficient timetabling model as MILP 
To make the energy-efficient timetabling problem tractable, we linearize the non-linear objective function (Eq. (20)) and two 

constraints (Eqs. (5) and (13)). First, the non-linear objective function is linearized by utilizing discrete speed levels. Then, based on 
alternative headways, the constraints are linearized by the Big M method and variable transformations. 

Denote the basic energy consumption on track t at level g by e0
l,t,g when the train is empty with weight m0

l . When the passengers are 

loaded on the train, the total weight is m0
l + ml,t . Thus, the energy consumption in a neat form is equal to 

(

1+
ml,t
m0

l

)

e0
l,t,g (the multi

plication sign ∙ is omitted for simplicity). The side-effect of this formulation on the energy consumption is negligible because the 
energy consumption is mainly determined by the mechanical running resistance and the kinetic energy (other parts, such as aero- 
dynamical resistance and the ingoing air volume, are only in very small proportions). 

Given a set of operation levels on track t of line l, Glt, a set of binary variables θl,t,g is introduced: θl,t,g = 1 if level g is selected; 
otherwise, θl,t,g = 0. For track t, only one level can be selected, expressed as Eq. (21). Given the selected level, the running time on a 
track is fixed. Therefore, the running time for track t of line l can be formulated in Eq. (22). 

∑

g∈Glt

θl,t,g = 1, ∀l ∈ L, ∀t ∈ Tl (21)  

nl,t =
∑

g∈Glt

θl,t,gnl,t,g, ∀l ∈ L, ∀t ∈ Tl (22) 

Therefore, energy consumption e
(
ml,t , nl,t

)
in Eq. (19) can be replaced by 

e
(
ml,t, nl,t

)
=
∑

g∈Gl,t

θl,t,g

(

1 +
ml,t

m0
l

)

e0
l,t,g, ∀l ∈ L,∀t ∈ Tl (23) 

K. Huang et al.                                                                                                                                                                                                         



Transportation Research Part C 129 (2021) 103171

10

Eq. (23) consists of the product of binary variable θl,t,g and variable 
(

1 +
ml,t
m0

l

)

. To linearize Eq. (23), we introduce a new set of 

variables ρl,t,g: ρl,t,g =

(

1+
ml,t
m0

l

)

if θl,t,g = 1; otherwise, ρl,t,g = 0. Then, a set of constraints are introduced as 

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(

1 +
ml,t

m0
l

)

− Λ1
(
1 − θl,t,g

)
≤ ρl,t,g ≤

(

1 +
ml,t

m0
l

)

+ Λ1
(
1 − θl,t,g

)

ρl,t,g ≤ θl,t,gΛ1

ρl,t,g ≥ 0

∀l ∈ L, t ∈ Tl, g ∈ Glt

(24)  

where Λ1 is an upper bound of ρl,t,g, for instance, max

(

1+
ml,t
m0

l

)

e0
l,t,g. Therefore, e

(
ml,t , rl,t

)
can be replaced by 

∑
gρl,t,ge0

l,t,g,∀g ∈ Glt . 

Denote an element of Hl by hl,k
(
k ≤ |Ωl|

)
and an element of Ωl by fl,k. To keep hl,kfl,k = 3600, hl,k is in ascending order if fl,k is given 

in descending order. 
To linearize the constraints, we introduce a series of intermediate binary variables δl,k. The sum of the binary variables δl,k is equal 

to 1 in Eq. (25). The binary variable δl,k and the element hl,k can be utilized to represent the headway as the sum of their product in Eq. 
(26). Similarly, the frequency can be expressed in Eq. (27). Recall that constraints (5) and (13) are non-linear. After introducing δl,k, Hl, 
and Ωl, constraint (5) is linearized. Constraint (13) can be rewritten as Eq. (28). 

∑

k≤|Ωl|

δl,k = 1, ∀l ∈ L (25)  

hl =
∑

k≤|Ωl|

δl,khl,k, ∀l ∈ L (26)  

fl =
∑

k≤|Ωl|

δl,kfl,k, ∀l ∈ L (27)  

Φl =
∑

k≤|Ωl|

δl,khl,kφl, ∀l ∈ L (28) 

To linearize Eq. (28), a set of intermediate variables αl,k is further introduced: αl,k = φl if δl,k = 1; otherwise, αl,k = 0. The line
arization is achieved by a set of constraints in Eq. (29), where Λ2 is an upper bound of αl,k, for example, Λ2 = maxφlhl,∀l ∈ L. The cycle 
time of line l is given in Eq. (30). 

⎧
⎪⎪⎨

⎪⎪⎩

φl − Λ2
(
1 − δl,k

)
≤ αl,k ≤ φl + Λ2

(
1 − δl,k

)

αl,k ≤ δl,kΛ2
αl,k ≥ 0
∀k ≤ |Ωl|, ∀l ∈ L

(29)  

Φl =
∑

k≤|Ωl|

αl,khl,k, ∀l ∈ L (30) 

With the new variables, the objective is expressed as 

el =
∑

k≤|Ωl |

(
δl,kfk

)∑

t∈Tl

∑

g∈Glt

(ρl,t,ge0
l,t,g) =

∑

k≤|Ωl |

∑

t∈Tl

∑

g∈Glt

(
ρl,t,ge0

l,t,gδl,kfk

)
=
∑

k≤|Ωl |

∑

t∈Tl

∑

g∈Glt

(
ρl,t,gδl,k

)(
e0

l,t,gfk

)
(31) 

Furtherly, we replace (ρl,t,gδl,k) by a new variable λl,t,g,k, where λl,t,g,k = ρl,t,g when δl,k = 1 and λl,t,g,k = 0 when δl,k = 0. The rela
tionship between λl,t,g,k, ρl,t,g, and δl,k are described by constraints (32), where Λ3 is the upper bound of λl,t,g,k, for instance, 

max
(

1+
ml,t
m0

l

)

e0
l,t,gfk,∀l ∈ L,∀t ∈ Tl, g ∈ Gl,t ,k ≤ |Ωl|. Taken together, the linear formulation of the objective is shown as Eq. (33). 

⎧
⎪⎪⎨

⎪⎪⎩

ρl,t,g − Λ3
(
1 − δl,k

)
≤ λl,t,g,k ≤ ρl,t,g + Λ3

(
1 − δl,k

)

λl,t,g,k ≤ δl,kΛ3
λl,t,g,k ≥ 0
∀l ∈ L, t ∈ Tl, g ∈ Glt, k ≤ |Ωl|

(32)  
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E =
∑

l∈L

∑

t∈Tl

∑

g∈Glt

∑

k≤|Ωl |

λl,t,g,k (33) 

With the objective and constraints linearized, the upper level model (UL for short) is transformed into a MILP formulation as 

UL : min E =
∑

l∈L

∑

t∈Tl

∑

g∈Glt

∑

k≤|Ωl|

λl,t,g,k 

s.t. Eqs. (1)–(4), (5)–(12), (15), (17)–(18), (21)–(22), (24)–(27), (29)–(30), (32) 
As the UL is in mixed-integer linear formulations, we can obtain the exact energy-efficient timetable solution by optimization 

solvers (e.g., Cplex and Gurobi) given the passenger path choices. It is noteworthy that the linearization of the constraints by the Big M 
method and variable transformation does not modify the space of feasible solutions. In the UL, the total number of variables is the sum 
of those in each line. The detailed numbers of variables and constraints are listed in Table 2 to reflect the true complexity of the model. 
The total number of variables is 4|L| + 3

∑
l|Pl| + 2

∑
l|Tl| +

∑
l|Ωl| +

∑
l
∑

t |Glt | +
∑

l
∑

t |Glt ||Ωl|, where operator |∙| gives the cardi
nality of a set. The total number of constraints is 7|L| + 2

∑
l|Pl| + 8

∑
l|Tl| + 4

∑
l|Ωl| + 3

∑
l
∑

t |Glt | + 3
∑

l
∑

t |Glt ||Ωl|. The numbers of 
variables and constraints for line l are 3|Pl| +2|Tl| +|Ωl| +

∑
t |Glt | +

∑
t |Glt ||Ωl| and 2|Pl| + 8|Tl| + 4|Ωl| + 3

∑
t |Glt | + 3

∑
t |Glt ||Ωl|,

∀t ∈ Tl, respectively. Due to the implicit decomposition, the URT line with the most variables and constraints dictates the complexity of 
the UL, which is under the capacity of the optimization solvers. 

3.2. Passenger assignment (Lower level) 

Passenger path choice is the key to URT operations. Much research has been done on passenger path choice in traffic networks. The 
majority of studies revolve around the UE-based traffic assignment (Wardrop, 1952; Nguyen and Pallottino, 1988; Spiess and Florian, 
1989; Wu et al., 1994; Nuzzolo et al., 2001; Gentile et al., 2005; Jiang and Szeto, 2016; Shang et al., 2019,). However, little research 
has been thus far dedicated to passenger assignment for energy-efficient timetabling in a URT network. We formulate a passenger 
assignment model in a one-time instance of the space–time URT network as the lower level (LL for short) of the bi-level model. 

We first construct the space–time URT network responding to a timetable generated from the UL model. In the space–time URT 
network, crowding, waiting, and transfers should be considered for defining passenger travel cost (disutility) on the paths. Given a 
timetable, the passenger flow patterns influence crowding on different running arcs. In line with the literature of path choice in traffic 
networks, we assume that the passengers adjust path choices to reach a user equilibrium (UE) state, at which all selected paths have an 
equal and minimum cost (Assumption 4). The space–time network consists of 

five types of arcs (virtual arc, waiting arc, running arc, transfer arc, and arrival arc) and two types of nodes (physical node for the 
platform and virtual node for the station). One station is extended into one virtual node and two real nodes corresponding to the two 
platforms. The virtual arc connects the platforms of the same station. The waiting arc represents the waiting stage before boarding at 
the origin station of a trip. Running arcs represent physical movements over the tracks. A transfer arc bridges the platforms of the 
feeder line and the platforms of the connecting line at the transfer station. The arrival arc refers to the final stage of a trip leaving the 
destination platform. One temporal instance of the space–time network is illustrated in Fig. 7. For passengers departing from origin 
node o to destination node d, they first traverse the waiting arc to take the train on the running arc; after that, they arrive at the transfer 
station and go through the transfer arc to the connecting line. Next, they take running arcs again and finally reach the destination. 
Since we focus on a periodic timetable (Assumption 1), the space–time network has a common backbone structure. The generalized 
costs of the different arcs are defined below. 

The cost of the virtual arc i, ci(i ∈ Iv), is considered zero in Eq. (34). Similarly, the cost of the arrival arc ci(i ∈ Ia) is also considered 
zero. 

Table 2 
Numbers of variables and constraints in the UL.  

Variables or constraints Numbers in the UL 

Arrival time, al,p; dwell time, bl,p; departure time, dl,p  
∑

l∈L|Pl |

Running time, nl,t ; loading weight, ml,t  
∑

l∈L|Tl |

Frequency, fl; headway, hl; fleet size, φl; cycle time, Φl  |L|
Intermediate binary variable, δl,k  

∑
l∈L|Ωl |

Intermediate continuous variable, ρl,t,g  
∑

l∈L
∑

t∈Tl
|Glt |

Intermediate continuous variable, λl,t,g,k  
∑

l∈L
∑

t∈Tl
|Glt ||Ωl|

Constraints (1), (7), (9)–(12), (18), (22) 
∑

l∈L|Tl |

Constraints (2)–(3) 
∑

l∈L|Pl |

Constraints (4), (6), (8), (17), (26)–(27), (30) |L|
Constraints (21) 

∑
l∈L|Ωl |

Constraints (24) 3
∑

l∈L
∑

t∈Tl
|Glt |

Constraints (29) 3
∑

l∈L|Ωl |

Constraints (32) 3
∑

l∈L
∑

t∈Tl
|Glt ||Ωl |
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ci = 0, i ∈ Iv ∪ Ia (34)  

where Iv and Ia are the sets of virtual arcs and arrival arcs respectively. 
According to Assumption 4, the time-dependent passenger arrival rate at a platform is fixed as the 
average during the planning period. The average waiting time at a platform is considered half of the headway (Ceder and Tal, 

2001). Thus, the cost of a waiting arc is simply set as 

ci = κw
(

hl

2

)

, i ∈ Iw (35)  

where κw is the cost coefficient of waiting time and Iw is the set of waiting arcs. 
In the literature of route choice in a public transport system, crowding is often considered an important factor affecting passenger 

route choice (Liu et al., 2016; Fu and Lam, 2018). In this study, the passenger crowding effect is considered on the running arcs of the 
URT network. The crowding is directly determined by the passenger volume. Note that the crowding in URT is different from the 
crowding on the road surfaces. Crowding on the roads is out-the-vehicle which causes losses of time, but crowding in URT is in-vehicle 
which causes discomfort other than losses of time. Therefore, the cost of a running arc is determined by the running time of each track 
and the crowding effect (Chen et al., 2015), formulated in a BPR-like (Bureau of Public Road) form as 

ci =

(

1 +
κr∙ql,t

fl∙γl

)

nl,t, i ∈ Ir (36)  

where κris the crowding coefficient of in-vehicle time and Ir is the set of running arcs. 
According to Assumption 2 and Eq. (36), the cost of a transfer arc is given as 

ci = κt
(

wi +
hi

2

)

, i ∈ It (37) 
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Fig. 7. An illustration of the expanded network.  
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where κt is cost coefficient of transfer time, wi is the fixed walking time for transfer arc i at a specific station, hi is the headway of the 
connecting line on transfer arc i, and It is the set of transfer arcs. 

Based on the generalized arc costs in the space–time URT network, the generalized path cost for an OD pair is formulated in an 
additive form as Eq. (38). The UE condition is given in Eq. (39). 

zr
j =

∑

i
ci∙uijr, ∀i ∈ I (38)  

μj − zr
j

{
= 0, qr

j > 0
≤ 0, qr

j = 0
∀j ∈ J,∀r ∈ Rj (39)  

Qj =
∑

r
qr

j , ∀r ∈ Rj (40)  

xi =
∑

j

∑

r
qr

j ∙uijr , ∀j ∈ J,∀r ∈ Rj (41)  

ql,t = xi∙βl,t
i , ∀i ∈ I (42) 

Eq. (38) is the additive costs of a path, where uijr is a 0–1 variable, uijr = 1 if the arc i belongs to path r of OD pair j, otherwise, uijr =

0. Eq. (39) describes the equilibrium condition, i.e., the used paths for an OD have equal and minimum cost and unused paths have 
costs higher than or equal to the minimum cost. μj is the minimum cost of OD j at the UE state, zr

j is the cost of path r that belongs to OD 
j, and qr

j is the passenger flow assigned to path r of OD j. Eq. (40) is the flow conservation on paths, where Qj is the travel demand of OD 

j. Eq. (41) gives the passenger volume of arc i. To get the passenger volume ql,t on the track, βl,t
i (a 0–1 variable) is introduced in Eq. (42) 

to represent the passenger volume of arc i, where βl,t
i = 1 if arc i corresponds to track t on line l, otherwise, βl,t

i = 0. 
In any time instance of the space–time URT network, all expanded arc costs are static and thus the path costs are continuous and 

non-decreasing with path inflows according to Eqs. (34)–(38). Therefore, given a periodic timetable, a UE state exists after long-term 
adaptions of path choice (including transfer choices). Existing algorithms such as the Method of Successive Average (MSA) and 
Routing-Swapping Method are sufficient to find a UE state. The results of the passenger choices at the UE state will be fed to the UL 
model through Eq. (42) in the bi-level model. 

Overall, the proposed optimization framework for generating a periodic energy-efficient timetable relies on assumptions that all 
passengers can board the train (Assumption 1) and the time-dependent passenger arrival rates at a platform are fixed (Assumption 3) 
during this period. These assumptions hold in most cases when the passenger demands are evenly distributed in the temporal 
dimension and not extremely high in the planning period. The model has limitations with uneven and large passenger demands. In that 
sense, the model framework can be extended by incorporating aperiodic timetables and passenger delays, which however substantially 
increases the solution space and the difficulty to find a quality solution. As the first endeavor to extend the energy-efficient timetabling 
from a single line to multiple lines, the bi-level optimization framework divides the decision variables into two parts (i.e., timetable 
and passenger flow pattens) to cut down the complexity. As it is not straightforward to incorporate the lower-level UE condition as a 
constraint in the upper-level, we have to resort to a heuristic relaxation process, which cannot guarantee obtaining an optimal solution. 

4. Solution algorithm 

Bi-level programming is widely applied in transportation research considering two-player interactions (Bracken and McGill, 1973; 
Yang and Huang, 2004; Gao et al., 2005; Han et al., 2015; Yu et al., 2015; Rashidi et al., 2016; Li and Wan, 2019; Li and Liao, 2020). 
The bi-level programming for network design problems is proved as an NP-hard (NP: non-deterministic polynomial-time) problem. 
Several algorithms have been proposed to solve the bi-level model, for example, meta-heuristic algorithms and Lagrangian relaxation- 
based algorithms (Cantarella et al., 2006; Szeto and Jiang, 2014; Liu and Zhou, 2016). As remarked in Section 3.1, given the passenger 
path choices, we can directly apply an existing solver to obtain the exact solutions. Since the lower level is a static user equilibrium in 
the space–time network, the method of successive average (MSA) as a proven method is applied. There are usually four steps of the 
MSA (see the pseudo-code below), including initialization, path generation, traffic impedance updating, and passenger flow assign
ment (Mounce and Carey, 2015). Although the MSA may get a local optimum, the outer iterations of the upper and lower level models 
can be utilized to evaluate the quality of a feasible solution. 

K. Huang et al.                                                                                                                                                                                                         



Transportation Research Part C 129 (2021) 103171

14

The pseudo-code of the MSA:  
Step 1: Initialization 

Set passenger flow vector x as 0; calculate traffic impedances for all arcs by Eqs. (34)–(38); set iteration counter s = 0.  
Step 2: Path generation 

Assign passenger demands to the feasible paths generated by the shortest path algorithm with the minimum path impedances; obtain path and arc flows. 
Step 3: Update arc impedances 

s = s + 1; calculate the traffic impedances of all arcs with passenger flow xs.  
Step 4: Update the passenger flow assignment 

Repeat Step 2; obtain new passenger flow ys and update xs+1 = xs + (ys − xs)/s.  
Step 5: Termination condition 

If s ≥ A or ‖xs+1 − xs‖/xs ≤ ω, then stop, where A and ω are the maximum number of iterations and threshold for convergence respectively; otherwise, s = s+1 
and return to Step 3.   

For the bi-level model, any feasible timetable and passenger path flow together generate an upper bound. To examine the quality of the 
upper bound, we propose a domain-knowledge based heuristic method to find a lower bound of the optimal energy consumption. 
Similar to the MSA algorithm performed in the space–time URT network, the MSA algorithm is carried out in a space-energy network to 
obtain the lower-bound energy consumption. The space-energy network has the same topology as a one-time instance of the space
–time network. Link impedances in the space-energy network refer to energy consumption and the energy-related MSA algorithm is 
called EMSA for short. One major difference is that only running arcs consume energy and the other four types of arcs do not. To obtain 
a valid lower bound, we use the profile with the minimum energy consumption of an empty train, e0,min

l,t , on a running arc. For a further 
relaxation of the lower bound, we only consider a proportion of the train passengers obtained from the EMSA. It is supposed that the 
passengers on the space-energy network also reach equilibrium with the lowest energy consumption. Likewise, the impedance of 
running arcs in the EMSA is updated as 

ci =

(
qi

γl
+

qi∙τ
m0

l

)

e0,min
l,t , i ∈ Ir (43)  

where qi is the passenger volume on running arc i. 
For each line, the frequency is determined the maximum number of passengers on the tracks, qmax

l . Therefore, replacing qi by qmax
l in 

qi
γl 

of Eq. (43) is closer to the actual frequency. Moreover, as the frequency should be an integer, 
⌈

qmax
l
γl

⌉

is the actual frequency with the 

passenger loading. The impedances of running arcs can be replaced by Eqs. (44)–(45) alternatively to accelerate the passenger flow 
adjustment and convergence of EMSA. 

ci =

(
qmax

l

γl
+

qi∙τ
m0

l

)

e0,min
l,t , i ∈ Ir (44)  

ci =

(⌈
qmax

l

γl

⌉

+
qi∙τ
m0

l

)

e0,min
l,t , i ∈ Ir (45) 

Using the minimum energy consumption on each track, a relaxed constraint for the fleet size, and a similar MSA convergence, the 
EMSA can find a quality approximate lower bound. Integrating the above 

modeling components, a solution algorithm to the bi-level model is shown in Fig. 8. Note that, starting from a timetable input, the 
passenger assignment should be conducted before energy-efficient timetabling. Therefore, the lower level module is swapped to the 
upside with reference to Fig. 8. The solution algorithm has two stages, in which the “Lower bound” module on the left-hand side aims 
to find a quality lower bound in Fig. 8(a) and the counterpart on the right-hand side finds a feasible solution for the upper bound in 
Fig. 8(b). Specifically, at the first stage, we construct the space-energy network SL and obtain the passenger flow XL at an imaginative 
UE state by EMSA; then, we solve the energy-efficient model Eq. (33) to find the lower bound energy consumption EL and timetable BL. 
This stage is completed when a converged EL is found. Likewise, at the second stage, we construct the space–time network SU, obtain 
passenger flow XU by MSA, and find the minimum energy EU with feasible timetable BU. If the relative gap, EU − EL

EU
, between the upper 

and lower bounds is not satisfactory, BU is considered the input to the “Upper bound” module to start the next iteration. The solution 
algorithm is terminated when a satisfactory relative gap is obtained or the maximum number of iterations is reached. 

5. Case study 

In this section, we demonstrate the effectiveness of the proposed bi-level model with the URT network in the City of Xi’an (China), 
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which includes 4 lines and 94 stations in service (Fig. 9). Lines 1–4 have 38, 42, 52, and 56 bidirectional platforms respectively. The 
alternative headways for each line are listed in Table 3. Since a station is extended to three nodes (i.e., two platforms and one virtual 
node), there are 282 (or 94× 3) nodes in a one-time instance of the space–time network. We select a URT operating period between 
8:00 am and 9:00 am (Γ = 3600s) during the morning peak time. The running time and speed profiles for each section are listed in 
Table A1 (in the Appendix). The model is solved with a personal computer (8G RAM and Intel Core i7-6700U CPU) and Gurobi +
python. The parameters in the lower level UE model are set in the unit of disutility/min as, the cost coefficient of waiting time κw:1.0, 
the cost coefficient for crowding of in-vehicle time κr: 0.1, cost coefficient range of transfer time κt : [1.3, 2.5] (a feasible range sug
gested by Chen et al. (2015)). The maximum iterations (A) for MSA and EMSA are set as 500, and ω is set as 10− 3. The relative gap 
threshold, gap0, is set as 5% for the bi-level model. 

To verify the model and algorithm, two cases are presented in an accumulative way. Case 1 shows the effectiveness of the model in 
the current URT network with a sensitivity test on the key parameter κt. To highlight the effects of transfer opportunities in the URT 
network, Case 2.1 supposes disruptions at the transfer stations; in Case 2.2, we add transfer opportunities from and to new URT lines to 
be opened to study the influence on energy consumption. 

EMSA: passenger 
flow XL

Space-energy 
network SL

Solver for Eq. (33) 
with relaxed-
constraints

Generate timetable BL

and total energy EL

If energy EL is 
convergent?

No

MSA: passenger 
flow XU

Space-time 
network SU

Solver for Eq. (33)  
with full-constraints

Generate timetable BU

and total energy EU

End

Yes

No

Upper boundLower bound

Original timetable

Lower 
level

Upper 
level

Original timetable

Yes

Total energy EL

(a) Flowchart of obtaining lower bound (b) Flowchart of obtaining upper bound

If termination 
condition is satisfied?

Fig. 8. Solution algorithm flowchart (lower and upper bound are obtained respectively).  
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5.1. Case 1: URT in the current form 

Based on the passenger demand on a weekday, the original timetable consumes energy of 94453.98 kWh, calculated by our model. 
Considering different values of κt and 90% of the train passengers in the lower bound (Section 4), stable timetable solutions are ob
tained as shown in Fig. 10. Since all upper bounds are stable after ten iterations, the convergent solutions are shown for the first ten 
outer iterations, which take around 650 s as the average computation time. Taking κt

= 1.3 for example, a common setup in MSA (Chen 
et al., 2015), the upper bound timetable solution consumes energy of 69537.97 kWh as opposed to the lower bound 66807.877 kWh, 
resulting in a relative gap of 11.97% (or (69537.97–66807.877)/69537.97). Compared with using the current timetable, the solution 

Table 3 
The alternative headways for each line.  

Line \ headway index 1 2 3 4 5 

Line 1 180 s 200 s 240 s 300 s 360 s 
Line 2 150 s 180 s 200 s 240 s 300 s 
Line 3 150 s 180 s 200 s 240 s 300 s 
Line 4 240 s 300 s 360 s 400 s 600 s  

3

3

1

1

4
2

4

Yuhuazhai

Zhangbabeilu

Yanpingmen

Kejilu

Taibainanlu

Jixiangcun
Weiyijie

Xiaozhai
Tiyuchang

Huizhanzhongxin

Sanyao

Fengqiyuan

Hangtiancheng

Weiqunan

Nanshaomen

Yongningmen

Zhonglou

Anyuanmen

Longshouyuan

Daminggongxi

Library municipal

Fengchengwulu

Sport park

Beiyuan

Beikezhan

Xingzhengzhongxin

Shizhongyi
yiyuan

Beidajie

Hangtian
xincheng

Hangtiandonglu

Shenzhou
dadao

Dongchanganjie
Feitianlu

Hangtiandadao

Jinhutuo

Qujiangchixi

Datangfu
rongyuan

Dayanta

Xi'an Technology 
University

Hepingmen

Dachaishi

Beichitou Qinglongsi

Yanxingmen

Xianninglu

Changle park

Wulukou

Railway Station

Hanyuandian

Daminggong

Daminggongbei

Yujiazhai

Baihuacun

ChangqingluWenjinglu

Fengcheng 9-lu

Fengcheng 12-lu

Yuanshuolu

Beikezhan(beiguangchang)

Houweizhai

Sanqiao

Zaohe

Zaoyuan

Hanchenglu

Kaiyuanmen

Laodonglu

Yuxiangmen

Sajinqiao

Chaoyangmen

kangfumen wanshoulu

changlepo

Chanhe

Banpo

Fangzhicheng

Hujiamiao

Shijiajie

Xinjiamiao
Guangtaimen

Taohuatan

Chanbazhongxin

Xianghuwan

Wuzhuang

Guojigangwuqu

Shuangzhai

Xinzhu

Baoshuiqu

Tonghuamen

2

Jianzhukeji
daxue

Fig. 9. The Xi’an URT network.  
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Fig. 11. The convergence of EMSA.  

Fig. 12a. The timetable of Line 1.  

Fig. 10. Results of upper and lower bounds with different κt .  
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Fig. 12b. The timetable of Line 2.  

Fig. 13. Origins and destinations of OD pairs that have different least-cost paths.  

Fig. 14. Change of travel time between every two stations.  
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timetable reaches a relative energy reduction by 26.4% (or (94453.98–69537.97)/94453.98). When the κt is bigger, it may obtain 
more energy reduction. For example, κt

= 1.5, the relative energy reduction reaches 29.3%. Due to the limited alternatives of train 
headways (Table 3) and the use of a conservative low bound, the solution space is not large in terms of discrete combinations. We find 
that the upper bounds are convergent after two iterations and the relative gaps do not reach the pre-specified level with certain 
specifications of κt. The reason is that this example has limited alternatives of train headways (Table 3) and uses a conservative low 
bound. Comparing the current and optimized timetables, we find that the average proportions of energy consumption caused by 
passenger weights on all tracks are both around 23%. Although the proportions hardly change after optimization, there is a significant 
reduction in total energy consumption, implying that timetabling and the passenger assignment process affect energy consumption. 
Overall, the solution algorithm produces satisfactory timetable solutions based on energy consumption reductions. 

The iterative process of EMSA is illustrated in Fig. 11, where EMSA-1, EMSA-2, EMSA-3 correspond to Eqs. (43), (44), and (45) for 

Fig. 15. Passenger volumes on each track of Lines 1–4.  
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updating the impedances of running arcs, respectively. When the iterations get larger, the flow adjustment process is stable and 
convergent. The results show that Eqs. (44)–(45) (curves in red and green) accelerate the convergence. 

The comparisons between the original timetables and optimized timetable (when κt
= 1.3) are shown in Figs. 12a–b, in which Lines 

1 and 2 are taken for demonstration. In the optimized timetable, all running trains of Line 1 incur a slight delay despite no change in the 
headway, whereas trains of Line 2 have both slightly increased headway and running times. The results are in line with the basic 
principles of energy consumption. Specifically, a larger headway means fewer trains on the planning horizon and a delay means a 
longer running time with lower energy consumption. Therefore, on the condition of transporting all passenger demand, the optimized 
timetable effectively reduces energy consumption. 

To further show which OD pairs may change their paths under the optimized timetable, we record the OD pairs that have different 
least-cost paths from those under the original timetable. It is found that 896 OD pairs among the total 6588 OD pairs that need transfers 
have different least-cost paths. The visualization of origins and destinations of those pairs are shown in Fig. 13. The histogram height 
placed on the stations indicates the number of origins or destinations changing the least-cost path. We can see that the origins and 
destinations in the city center and northern part are more likely to change their paths under the optimized timetable. The maximum 
numbers of origins and destinations changing the least-cost path are 33 and 27, which are the Xingzhengzhongxin and Beidajie sta
tions, respectively. This information is useful for aiding the operator to determine if the changes are intended. 

A side effect is that passenger travel times may increase unavoidably. However, as shown in Fig. 14, compared with the original 
timetable, the largest increase of travel time is less than 18% of all OD pairs between the 94 stations of the URT network. It is found that 
the average travel time of all OD pairs is increased by 9.8% (the average travel time is 34.4 min with the original timetable). All setups 
being equal, energy-oriented timetabling cannot avoid the expenses of passenger travel time for reducing energy consumption 
(Chevrier et al., 2013; Yang et al., 2020). However, it appears acceptable to have considerably reduced energy consumption with a 
slight increase in passenger travel time in an initiative to combat environmental concerns (Mo et al., 2019a). Empirical research is 
required to achieve an appropriate trade-off between energy consumption and passenger travel time, which is however beyond the 
scope of this study. 

Passenger volumes of Lines 1–4 are displayed in Fig. 15(a)–(d). We find that the passenger volume has two-peaks concentrating on 
certain tracks near the transfer stations. To transport all passengers with a periodic timetable, the peak volumes determine the fre
quency of the URT lines. Given that the train mass is much larger than the total passenger weight, a train itself accounts for a significant 
share of energy consumption. Therefore, a higher frequency means a larger fleet size and higher energy consumption. In Fig. 15(a)–(d), 
the obtained frequencies are denoted by the red dashed lines. To cut down energy consumption, a slight reduction in the peak volumes 
can effectively reduce the train frequencies to the green dashed lines, which correspond to the first larger alternative headways than 
the obtained ones. A larger value of κtmakes passengers less concentrate on the track near the transfer stations and results in a lower 
peak passenger volume. This also explains why a higher value of κt leads to a smaller (better) upper bound. 

5.2. Case 2.1: Effects of transfer – interrupt of transfer opportunities 

To show the effects of transfer between URT lines on the total energy consumption, we deliberately make an interrupt on transfer 
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Fig. 16. Interrupt at a transfer station in the Xi’an URT network.  
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arcs at each transfer station (all transfer directions are interrupted at the station). Note that the interrupts on the transfer arcs at one 
station do not prevent the URT lines and the other transfer stations from functioning. The setup allows us to evaluate the influence of 
transfer opportunities due to potential emergencies on a single line separately. First, we consider the original passenger demand as in 
Case 1. When there is a separate interrupt at each transfer station, as shown in Fig. 16, it is found that the original passenger demand 
exceeds the capacity of the downgraded URT network and not all passengers can be transported. To show the influence after the 
interrupt, we define four indicators, “Energy consumption after an interrupt” (ECI), “Energy consumption increase after an interrupt” 
(EII), “Percentage of energy consumption increase after an interrupt” (EIP), “Maximum allowed percentage of the original passenger 
demand” (MAP). ECI, EII, and EIP refer to energy consumption change, while MAP reflects the vulnerability of the URT network. The 
ECI, EII, EIP, and MAP after the interrupt at each transfer station are shown in Fig. 17. It shows that the vulnerabilities of the transfer 
stations, indicated by MAP, are different. Amongst, the Xiaozhai is the weakest. If the transfer is not allowed, the network cannot even 
afford 60% of the original passenger demand. The interrupt at Wulukou has the least negative effect (− 5%) on the URT network. Since 
the Wulukou station is located in the central area, the interruption of transfer can be compensated by other transfer stations. 

Furthermore, we use 50% of the original passenger demand (less than the values of MAP of all stations) proportionally for all ODs to 
show the increase in energy consumption. With the reduced demand, the optimal energy consumption is 36389.76 kWh before an 
interrupt at one of the transfer stations. Based on the indicator of ECI, we find that interrupts significantly increase energy con
sumption. Particularly, note that the EII and EIP may not change at the same pace with MAP. For example, the interrupts at the 
Xinzhenzhongxin and Wulukou stations have EII over 7000 kWh, which accounts for EIP about 20%. Interrupts at other stations have 
also caused about 10% in EIP. However, the Xinzhenzhongxin station has the least vulnerability for transfer, but it has the highest EIP. 
Combing the above results, from a reversed perspective, we find that transfer stations play an essential role in energy-saving. 

5.3. Case 2.2: Effects of transfer – the addition of transfer opportunities 

To complement Case 2.1, we add transfer arcs based on Case 1 to further verify the influence of transfer opportunities on energy 
consumption. As shown in Fig. 18, two URT lines (Lines 5 and 6), which will come into operation soon1, have transfer opportunities 
with the existing lines at six stations. Since the detailed designs of the newly added URT lines are not available, we use the neighboring 
parallel sections to approximate the running times and energy consumption. To make interesting comparisons, we also assume that the 
added transfer opportunities (delineated within the two ellipses) would not introduce new passenger demand. Corresponding to Cases 
1 and 2.1, we re-run the model under two scenarios and present the results below. 

First, with the original passenger demand in Case 1, the energy consumption after separately adding transfer arcs of Lines 5 and 6 
are 67945.27 kWh and 67613.02 kWh, respectively, meaning 2.3% and 2.8% of energy reductions, compared with the optimal solution 
(69537.97 kWh) in Case 1. When simultaneously adding transfer arcs of Lines 5 and 6, a higher energy reduction of 3.4% (67271.27 
kWh) is achieved. Therefore, the transfer and synchronous optimization of multiple lines have a positive reduction in energy 
consumption. 

Fig. 17. Energy consumption and network vulnerability after the interrupt at a transfer station.  

1 https://www.xianrail.com/#/planConstruction/linesConstruction. 
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Second, considering 50% of the passenger demand in Case 1, we find that the vulnerability and energy consumption after an 
interrupt at the same station are reduced, compared to Case 2.1. In Fig. 19, ’-5′, ’-6′, and ’-5&6′ are attached to the indicators referring 
to the addition of transfer arcs with Line 5 only, Line 6 only, and Lines 5–6, respectively. As seen in the histogram, the EII values after 
the interrupt of transfer opportunities associated with the Beidaijie, Wulikou, Xiaozhai, and Dayanta stations are negative. The EIP 
values after adding the transfer opportunities show obvious reductions with reference to the green dashed curve (before the addition). 
Moreover, the vulnerability of the URT network has been reduced after the addition of transfer opportunities, as shown in Fig. 20. The 
original MAP, denoted by the purple dashed curve, is lower than the solid curves. After adding transfer arcs of Line 5 or Line 6, the MAP 
values are different due to the interrupt at different stations. Even when the transfer arcs at Beidajie or Wulukou are interrupted, the 
network can still afford all (100%) of the original passenger demand. When the interrupt happens at Tonghuamen, Xiaozhai, or 
Danyanta, the maximum affordability of the network is significantly improved after adding the transfer opportunities. Only for the 
interrupt at the Xinzhengzhongxin station (located in the suburban area), the added transfer opportunities have no effect on the MAP. 

Overall, through the above numerical analyses, it can be concluded that the proposed model and the solution algorithm perform 
well for generating energy-efficient timetables of the URT network with multiple lines. The results also show that the transfer op
portunities and passenger path choice significantly influence the total energy consumption of the URT network. For the URT operator, 

(EII: Energy consumption increase after an interrupt; 
 EIP: Percentage of energy consumption increase after an interrupt)

Fig. 19. Energy reduction after adding transfer arcs.  
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Fig. 18. The transfer arcs of new lines in the Xi’an URT network.  
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the transfer design and control are not only crucial to vulnerability reduction but also important for the energy-saving of the URT 
network. 

6. Conclusions and future work 

Existing energy-efficient timetabling has been limited to single URT lines. In the paper, we proposed a bi-level model framework 
that formulates energy-efficient timetabling of an entire URT network as MILP in the UL and UE-based path choice responding to a 
timetable in the LL. A heuristics algorithm involving a relaxation process and an MSA module was developed to find near-optimal 
timetable solutions. The efficiency and effectiveness of the proposed model were demonstrated in experimental examples consid
ering the URT network of Xi’an (China) as a study area. The proposed model can achieve a significant reduction (26.4%) of energy 
consumption with the compromise of a minor (9.8%) increase in the average travel time compared to the current timetable. To 
highlight the influence of transfer opportunities and timetable synchronization, sensitivity analyses based on the deletion and addition 
of transfer arcs are conducted. The results show that transfer opportunities and synchronization between multiple URT lines contribute 
to saving energy and improving the resilience of the URT network. These results confirm the inaccuracy and insufficiency of the 
existing energy-efficient timetabling models that ignore the interconnections between multiple URT lines. 

Moreover, this study paves the way to several promising research directions. First, the trade-off between energy consumption and 
passenger travel time should be considered, for which multi-objective energy-efficient timetabling is worth investigation. Second, the 
solution algorithm should consider space–time networks in the full temporal dimension. In theory, higher resolutions improve the 
fidelity of the energy-efficient tabling but require more computation resources. Therefore, speedup techniques should be developed for 
the solution algorithm. Third, some new URT technologies, such as energy regenerative and energy storage devices, could be incor
porated into the model framework. Fourth, more realistic passenger path choice behavior should be incorporated in the URT network. 
Finally, it is important to investigate the relationship between the topology of the URT networks and energy consumption for designing 
the URT networks. We will address these issues in our future work. 
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Appendix 

See Table A1. 

(MAP: Original maximum allowed percentage of the original passenger demand.)

Fig. 20. Vulnerability reduction after adding transfer arcs.  
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Table A1 
The running time and energy consumption of speed profile in three levels.  

Platforms n1  n2  n3  e1  e2  e3  number Line 

Houweizhai_Up 130 141 154 25 21 18 1 Line 1 
Sanqiao_Up 132 141 152 24 21.5 17.5 2 Line 1 
Zaohe_Up 85 90 95 17 16 15 3 Line 1 
Zaoyuan_Up 95 103 112 20 17.5 15 4 Line 1 
Hanchenglu_Up 119 134 143 23 19 16 5 Line 1 
Kaiyuanmen_Up 112 123 136 23 20 16 6 Line 1 
Laodonglu_Up 85 92 100 15 13 11 7 Line 1 
Yuxiangmen_Up 91 102 116 18 16 14.5 8 Line 1 
Sajinqiao_Up 94 106 120 19 16.5 13.5 9 Line 1 
Beidajie_Up 101 110 125 18 15.5 13 10 Line 1 
Wulukou_Up 85 97 119 15.5 14 12 11 Line 1 
Chaoyangmen_Up 85 92 105 17 15 13 12 Line 1 
Kangxialu_Up 85 90 96 14 13 12 13 Line 1 
Tonghuamen_Up 116 133 146 23 19 16 14 Line 1 
Wanshoulu_Up 110 120 130 23 20 18 15 Line 1 
Changlepo_Up 110 122 135 24 20 17 16 Line 1 
Chanhe_Up 92 102 123 19 16 14 17 Line 1 
Banpo_Up 99 116 132 19 16.5 14 18 Line 1 
Fangzhicheng_Up       19 Line 1 
Fangzhicheng_Down 95 106 120 19 17 14.5 20 Line 1 
Banpo_Down 92 105 126 20 17 15 21 Line 1 
Chanhe_Down 98 114 131 20 16.5 14 22 Line 1 
Changlepo_Down 104 121 138 19 16 14 23 Line 1 
Wanshoulu_Down 103 121 136 19 16.5 14.5 24 Line 1 
Tonghuamen_Down 85 90 102 17 15 13 25 Line 1 
Kangxialu_Down 84 93 106 17.5 15 13 26 Line 1 
Chaoyangmen_Down 89 99 108 18 15.5 13.5 27 Line 1 
Wulukou_Down 97 115 129 19 16 14 28 Line 1 
Beidajie_Down 91 102 118 18 15.5 14 29 Line 1 
Sajinqiao_Down 92 102 117 17 15 13 30 Line 1 
Yuxiangmen_Down 93 106 120 18.5 16 13.5 31 Line 1 
Laodonglu_Down 103 120 137 20 17 15 32 Line 1 
Kaiyuanmen_Down 121 133 145 23 19 16 33 Line 1 
Hanchenglu_Down 92 105 119 18 16 14 34 Line 1 
Zaoyuan_Down 96 109 124 20 17 14.5 35 Line 1 
Zaohe_Down 140 152 163 25 21 18 36 Line 1 
Sanqiao_Down 150 165 180 28 25 20 37 Line 1 
Houweizhai_Down       38 Line 1 
Beikezhan_UP 105 122 138 23 20 18 39 Line 2 
Beiyuan_UP 94 106 119 17 15 13 40 Line 2 
Yudonggongyuan_Up 90 100 111 17 15 13.5 41 Line 2 
Xingzhengzhongxin_Up 89 100 113 17.5 15 13 42 Line 2 
Fengchengwulu_Up 92 107 121 19 16 13 43 Line 2 
Shitushugaun_Up 93 110 128 16 14 12 44 Line 2 
Daminggongxi_Up 99 111 127 19.5 17 14 45 Line 2 
Longshouyuan_Up 87 98 111 17.5 15 13 46 Line 2 
Anyuanmen_Up 92 111 128 19 16 13 47 Line 2 
Beidajie_Up 85 96 108 17 14 12 48 Line 2 
Zhonglou_Up 110 128 140 21 18 15 49 Line 2 
Yongningmen_Up 82 93 108 17.5 15 13 50 Line 2 
Nanshaomen_Up 79 91 104 17 15 13 51 Line 2 
Tiyuchang_Up 86 98 111 19 16 13 52 Line 2 
Xiaozhai_Up 85 95 108 18 15 12 53 Line 2 
Weiyijie_Up 105 120 135 21 18 15 54 Line 2 
Huizhanzhongxin_Up 114 136 148 25 20 16 55 Line 2 
Sanyao_Up 108 122 139 24 20 16 56 Line 2 
Fengqiyuan_Up 100 112 131 22 18 14 57 Line 2 
Hangtaincheng_Up 135 144 160 27 23 20 58 Line 2 
Weiqunan_Up       59 Line 2 
Weiqunan_Down 130 146 160 28 24 20 60 Line 2 
Hangtaincheng_Down 97 108 120 20 18 15 61 Line 2 
Fengqiyuan_Down 103 118 135 20 18 16 62 Line 2 
Sanyao_Down 121 132 151 24 20 16 63 Line 2 
Huizhanzhongxin_Down 104 122 137 20 18 16 64 Line 2 
Weiyijie_Down 92 107 124 19 16 14 65 Line 2 
Xiaozhai_Down 91 105 123 19.5 16 14 66 Line 2 
Tiyuchang_Down 89 100 118 18.5 15 13.5 67 Line 2 
Nanshaomen_Down 81 95 109 16 14 12 68 Line 2 

(continued on next page) 
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Table A1 (continued ) 

Platforms n1  n2  n3  e1  e2  e3  number Line 

Yongningmen_Down 120 131 148 22 19 16 69 Line 2 
Zhonglou_Down 85 96 112 16 14 11 70 Line 2 
Beidajie_Down 107 119 132 20 18 12 71 Line 2 
Anyuanmen_Down 98 111 128 19 17 14.5 72 Line 2 
Longshouyuan_Down 101 113 129 20 18 15 73 Line 2 
Daminggongxi_Down 95 109 121 18.5 16 14 74 Line 2 
Shitushugaun_Down 96 108 123 18.5 16.5 14 75 Line 2 
Fengchengwulu_Down 91 102 119 18 16 13.5 76 Line 2 
Xingzhengzhongxin_Down 91 102 119 19 16.5 13 77 Line 2 
Yudonggongyuan_Down 96 108 124 19.5 17 14 78 Line 2 
Beiyuan_Down 105 121 137 23 20 17.5 79 Line 2 
Beikezhan_Down       80 Line 2 
Yuhuazhai_Up 141 153 168 28.5 24 20 81 Line 3 
Zhangbabeilu_Up 94 107 126 19 17 13.5 82 Line 3 
Yanpingmen_Up 105 120 135 20.5 18 14.5 83 Line 3 
Kejilu_Up 95 108 125 18.5 16 13.5 84 Line 3 
Taibainanlu_Up 100 115 130 20 18 15.5 85 Line 3 
Jixiangcun_Up 99 112 131 20 18 15 86 Line 3 
Xiaozhai_Up 96 107 120 19.5 17.5 14.5 87 Line 3 
Dayanta_Up 93 108 124 19.5 17 14.5 88 Line 3 
Beichitou_Up 109 121 138 22 19 16.5 89 Line 3 
Qinglongsi_Up 120 133 149 23 20 16.5 90 Line 3 
Yanixingmen_Up 72 85 100 17 15 12 91 Line 3 
Xianninglu_Up 89 97 110 18 16 13 92 Line 3 
Changlegongyuan_Up 80 94 108 18.5 16 13 93 Line 3 
Tonghuamen_Up 78 89 103 17 15.5 12 94 Line 3 
Hujiamiao_Up 106 118 135 19.5 18 15.5 95 Line 3 
Shijiajie_Up 98 110 127 20 18 15 96 Line 3 
Xinjiamiao_Up 124 136 151 26 22 19 97 Line 3 
Guangtaimen_Up 112 126 140 23 19 17 98 Line 3 
Taohautan_Up 100 115 130 21 18 16 99 Line 3 
Chanbazhongxin_Up 99 112 130 20.5 18.5 16 100 Line 3 
Xianghuwan_Up 124 139 153 27.5 22 18.5 101 Line 3 
Wuzhaung_Up 140 150 160 26.5 23 20.5 102 Line 3 
Guojigangwuqu_Up 94 108 123 19 17 13.5 103 Line 3 
Shaungzhai_Up 92 107 122 19.5 17.5 14 104 Line 3 
Xinzhu_Up 92 102 117 19 16.5 13.5 105 Line 3 
Baoshuiqu_Up       106 Line 3 
Baoshuiqu_Down 90 102 114 19 17.5 15 107 Line 3 
Xinzhu_Down 92 105 118 19 17 15 108 Line 3 
Shaungzhai_Down 94 108 121 19.5 17 14.5 109 Line 3 
Guojigangwuqu_Down 135 150 165 28 24 21 110 Line 3 
Wuzhaung_Down 121 139 154 24 21 19 111 Line 3 
Xianghuwan_Down 98 112 127 20.5 18.5 16 112 Line 3 
Chanbazhongxin_Down 97 115 132 21 18.5 16.5 113 Line 3 
Taohautan_Down 110 126 141 21 19 16.5 114 Line 3 
Guangtaimen_Down 120 136 152 27 22 19 115 Line 3 
Xinjiamiao_Down 97 110 126 19.5 17 15.5 116 Line 3 
Shijiajie_Down 93 106 121 19 17 15.5 117 Line 3 
Hujiamiao_Down 78 94 110 17.5 16 14.5 118 Line 3 
Tonghuamen_Down 80 96 111 17.5 16 15 119 Line 3 
Changlegongyuan_Down 89 99 114 18 16 14.5 120 Line 3 
Xianninglu_Down 72 89 103 19 16.5 14 121 Line 3 
Yanixingmen_Down 121 133 150 24.5 21 18 122 Line 3 
Qinglongsi_Down 121 134 145 24 21 18.5 123 Line 3 
Beichitou_Down 108 119 134 22 19 15.5 124 Line 3 
Dayanta_Down 107 121 138 23 20 16 125 Line 3 
Xiaozhai_Down 99 113 129 20 18 15 126 Line 3 
Jixiangcun_Down 115 130 145 24 21 19 127 Line 3 
Taibainanlu_Down 95 110 125 20 18 16 128 Line 3 
Kejilu_Down 105 120 135 24 21 17 129 Line 3 
Yanpingmen_Down 94 110 126 22 20 17 130 Line 3 
Zhangbabeilu_Down 140 153 168 27.5 23 19 131 Line 3 
Yuhuazhai_Down       132 Line 3 
Beikezhanbeiguangchang_Up 155 170 186 30 25 21 133 Line 4 
Yuanshuolu_Up 85 98 113 17 15 12 134 Line 4 
Fengcheng12lu_Up 102 117 132 18 16 13.5 135 Line 4 
Fengcheng9lu_Up 103 118 135 20 18 15.5 136 Line 4 
Wenjinglu_Up 95 101 117 20 18 15.5 137 Line 4 

(continued on next page) 
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Table A1 (continued ) 

Platforms n1  n2  n3  e1  e2  e3  number Line 

Xingzhengzhongxin_Up 112 127 139 22 20 18 138 Line 4 
Shizhongyiyiyuan_Up 122 136 153 26 23 19 139 Line 4 
Changqinglu_Up 102 116 132 21 19 16 140 Line 4 
Baihuacun_Up 106 120 137 21.5 18 16 141 Line 4 
Yujiazhai_Up 108 121 140 21 18.5 15.5 142 Line 4 
Daminggongbei_Up 120 134 150 24 20 17 143 Line 4 
Daminggong_Up 99 115 130 20 18 15.5 144 Line 4 
Hanyuandian_Up 190 210 230 31 28 25 145 Line 4 
Wulukou_Up 108 121 137 20.5 18.5 16 146 Line 4 
Dachaishi_Up 102 116 132 20 17.5 15.5 147 Line 4 
Hepingmen_Up 102 117 135 20 17.5 15 148 Line 4 
Jianzhudaxue_Up 92 108 123 18.5 16.5 14.5 149 Line 4 
Xiankejidaxue_Up 102 116 130 19 17 14.5 150 Line 4 
Dayanta_Up 169 185 200 28 24 21 151 Line 4 
Datangfurongyuan_Up 155 160 175 27 22 20 152 Line 4 
Qujiangchixi_Up 175 190 205 29 25 22 153 Line 4 
Jinhutuo_Up 120 135 150 23 20 18 154 Line 4 
Hangtiandadao_Up 95 110 125 20.5 18.5 16 155 Line 4 
Feitianlu_Up 110 125 140 20.5 17.5 15 156 Line 4 
Dongchanganjie_Up 175 190 213 29.5 25 21 157 Line 4 
Shengzhoudadao_Up 105 120 136 20 17.5 15 158 Line 4 
Hangtiandonglu_Up 154 170 185 27 23 20 159 Line 4 
Hangtianxincheng_Up       160 Line 4 
Hangtianxincheng_Down 138 152 170 25 22 19 161 Line 4 
Hangtiandonglu_Down 120 135 150 23 20 18 162 Line 4 
Shengzhoudadao_Down 180 195 213 28.5 25 22 163 Line 4 
Dongchanganjie_Down 112 130 145 22 19 17 164 Line 4 
Feitianlu_Down 93 100 115 17.5 16 14 165 Line 4 
Hangtiandadao_Down 105 120 135 20 17.5 15 166 Line 4 
Jinhutuo_Down 176 190 205 30 26 21 167 Line 4 
Qujiangchixi_Down 145 160 175 26 22 19 168 Line 4 
Datangfurongyuan_Down 170 185 200 25.5 23 20 169 Line 4 
Dayanta_Down 102 117 135 20 17.5 15.5 170 Line 4 
Xiankejidaxue_Down 92 107 125 19 17 15 171 Line 4 
Jianzhudaxue_Down 102 117 135 20 17 15 172 Line 4 
Hepingmen_Down 116 132 150 22 19 17 173 Line 4 
Dachaishi_Down 121 137 155 23 20 18 174 Line 4 
Wulukou_Down 195 210 225 29.5 24 20 175 Line 4 
Hanyuandian_Down 99 116 132 18.5 16.5 14 176 Line 4 
Daminggong_Down 134 151 168 22 19 16 177 Line 4 
Daminggongbei_Down 108 124 138 19.5 17.5 15.5 178 Line 4 
Yujiazhai_Down 106 121 137 19.5 17 15 179 Line 4 
Baihuacun_Down 102 119 135 20 17.5 15.5 180 Line 4 
Changqinglu_Down 122 136 153 26 22.5 20 181 Line 4 
Shizhongyiyiyuan_Down 112 127 145 23.5 20 18.5 182 Line 4 
Xingzhengzhongxin_Down 95 110 125 18.5 16.5 15 183 Line 4 
Wenjinglu_Down 103 116 134 20 17.5 15 184 Line 4 
Fengcheng9lu_Down 102 118 135 18.5 16.5 14 185 Line 4 
Fengcheng12lu_Down 85 100 115 18 15.5 13 186 Line 4 
Yuanshuolu_Down 160 175 190 28.5 23.5 20 187 Line 4 
Beikezhanbeiguangchang_Down       188 Line 4  
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González-Gil, A., Palacin, R., Batty, P., Powell, J.P., 2014. A systems approach to reduce urban rail energy consumption. Energy Convers. Manage. 80, 509–524. 
Guo, X., Wu, J., Zhou, J., Yang, X., Wu, D., Gao, Z., 2018. First-train timing synchronisation using multi-objective optimisation in urban transit networks. Int. J. Prod. 

Res. 57 (11), 3522–3537. 
Guo, X., Wu, J., Sun, H., Yang, X., Jin, J., Wang, Z., 2020. Scheduling synchronization in urban rail transit networks: Trade-offs between transfer passenger and last 

train operation. Transp. Res. Part A 138, 463–490. 
Gupta, S.D., Tobin, J.K., Pavel, L., 2016. A two-step linear programming model for energy-efficient timetables in metro railway networks. Transp. Res. Part B 93, 

57–74. 
Han, K., Sun, Y., Liu, H., Friesz, T.L., Yao, T., 2015. A bi-level model of dynamic traffic signal control with continuum approximation. Transp. Res. Part C 55, 409–431. 
Howlett, P., Pudney, P., 1995. Energy-Efficient Train Control. Advances in Industrial Control. Springer, London.  
Howlett, P., 1996. Optimal strategies for the control of a train. Automatica 32 (4), 519–532. 
Howlett, P., Pudney, P., 1998. An optimal driving strategy for a solar powered car on an undulating road. Dyn. Cont. Discrete Impulsive Syst. 4, 553–567. 
Howlett, P., 2000. The optimal control of a train. Ann. Oper. Res. 98, 65–87. 
Howlett, P., Pudney, P., Vu, X., 2009. Local energy minimization in optimal train control. Automatica 45 (11), 2692–2698. 
Huang, K., Wu, J., Yang, X., Gao, Z., Liu, F., Zhu, Y., 2019. Discrete train speed profile optimization for urban rail transit: A data-driven model and integrated 

algorithms based on machine learning. J. Adv. Transport. 4, 1–17. 
Huang, K., Wu, J., Liao, F., Sun, H., He, F., Gao, Z., 2021. Incorporating multimodal coordination into timetabling optimization of the last trains in an urban railway 

network. Transp. Res. Part C 124, 102889. 
Jiang, Y., Szeto, W.Y., 2016. Reliability-based stochastic transit assignment: Formulations and capacity paradox. Transp. Res. Part B 93, 181–206. 
Khmelnitsky, E., 2000. On an optimal control problem of train operation. IEEE Trans. Autom. Control 45 (7), 1257–1266. 
Lai, Q., Liu, J., Haghani, A., Meng, L., Wang, Y., 2020. Energy-efficient speed profile optimization for medium-speed maglev trains. Transp. Res. Part E 102007. 
Li, Q., Liao, F., 2020. Incorporating vehicle self-relocations and traveler activity chains in a bi-level model of optimal deployment of shared autonomous vehicles. 

Transp. Res. Part B 140, 151–175. 
Li, T., Wan, Y., 2019. Estimating the geographic distribution of originating air travel demand using a bi-level optimization model. Transp. Res. Part E 131, 267–291. 
Li, X., Lo, H.K., 2014a. An energy-efficient scheduling and speed control approach for metro rail operations. Transp. Res. Part B 64, 73–89. 
Li, X., Lo, H.K., 2014b. Energy minimization in dynamic train scheduling and control for metro rail operations. Transp. Res. Part B 70, 269–284. 
Liu, P., Liao, F., Huang, H.J., Timmermans, H., 2016. Dynamic activity-travel assignment in multi-state supernetworks under transport and location capacity 

constraints. Transportmetrica A 12 (7), 572–590. 
Liu, P., Yang, L., Gao, Z., Huang, Y., Li, S., Gao, Y., 2018. Energy-efficient train timetable optimization in the subway system with energy storage devices. IEEE Trans. 

Intell. Transp. Syst. 19 (12), 3947–3963. 
Liu, P., Schmidt, M., Kong, Q., Wagenaar, J.C., Yang, L., Gao, Z., Zhou, H., 2020. A robust and energy-efficient train timetable for the subway system. Transp. Res. Part 

C 121, 102822. 
Liu, R., Golovitcher, I., 2003. Energy-efficient operation of rail vehicles. Transp. Res. Part A 37, 917–932. 
Liu, J., Zhou, X., 2016. Capacitated transit service network design with boundedly rational agents. Transp. Res. Part B 93, 225–250. 
Lv, H., Zhang, Y., Huang, K., Yu, X., Wu, J., 2019. An energy-efficient timetable optimization approach in a bi-direction urban rail transit line: a mixed-integer linear 

programming model. Energies 12 (14), 2686. 
Mo, P., Yang, L., Wang, Y., Qi, J., 2019a. A flexible metro train scheduling approach to minimize energy cost and passenger waiting time. Comput. Ind. Eng. 132, 

412–432. 
Mo, P., Yang, L., D’Ariano, A., Yin, J., Yao, Y., Gao, Z., 2019b. Energy-efficient train scheduling and rolling stock circulation planning in a metro line: a linear 

programming approach. IEEE Trans. Intell. Transp. Syst. 21 (9), 3621–3633. 
Mounce, R., Carey, M., 2015. On the convergence of the method of successive averages for calculating equilibrium in traffic networks. Transport. Sci. 49 (3), 535–542. 
Nguyen, S., Pallottino, S., 1988. Equilibrium traffic assignment for large scale transit networks. Eur. J. Oper. Res. 37 (2), 176–186. 
Nuzzolo, A., Russo, F., Crisalli, U., 2001. A doubly dynamic schedule-based assignment model for transit networks. Transport. Sci. 35 (3), 268–285. 
Panou, K., Tzieropoulos, P., Emery, D., 2013. Railway driver advice systems: Evaluation of methods, tools and systems. J. Rail Transp. Plann. Manage. 3 (4), 150–162. 
Qu, Y., Wang, H., Wu, J., Yang, X., Yin, H., Zhou, L., 2020. Robust optimization of train timetable and energy efficiency in urban rail transit: a two-stage approach. 

Comput. Ind. Eng. 146, 106594. 
Rashidi, E., Parsafard, M., Medal, H., Li, X., 2016. Optimal traffic calming: A mixed-integer bi-level programming model for locating sidewalks and crosswalks in a 

multimodal transportation network to maximize pedestrians’ safety and network usability. Transp. Res. Part E 91, 33–50. 
Scheepmaker, G.M., Goverde, R.M., Kroon, L.G., 2017. Review of energy-efficient train control and timetabling. Eur. J. Oper. Res. 257 (2), 355–376. 
Shang, P., Li, R., Liu, Z., Yang, L., Wang, Y., 2018. Equity-oriented skip-stopping schedule optimization in an oversaturated urban rail transit network. Transp. Res. 

Part C 89, 321–343. 
Shang, P., Li, R., Guo, J., Xian, K., Zhou, X., 2019. Integrating Lagrangian and Eulerian observations for passenger flow state estimation in an urban rail transit 

network: a space-time-state hyper network-based assignment approach. Transp. Res. Part B 121, 135–167. 
Spiess, H., Florian, M., 1989. Optimal strategies: a new assignment model for transit networks. Transp. Res. Part B 23 (2), 83–102. 
Su, S., Wang, X., Cao, Y., Yin, J., 2019. An Energy-Efficient Train Operation Approach by Integrating the Metro Timetabling and Eco-Driving. IEEE Trans. Intell. 

Transp. Syst. https://doi.org/10.1109/TITS.2019.2939358. 
Sun, H., Wu, J., Ma, H., Yang, X., Gao, Z., 2018. A bi-objective timetable optimization model for urban rail transit based on the time-dependent passenger volume. 

IEEE Trans. Intell. Transp. Syst. 20 (2), 604–615. 
Szeto, W.Y., Jiang, Y., 2014. Transit route and frequency design: Bi-level modeling and hybrid artificial bee colony algorithm approach. Transp. Res. Part B 67, 

235–263. 
Wang, P., Goverde, R.M., 2016. Multiple-phase train trajectory optimization with signalling and operational constraints. Transp. Res. Part C 69, 255–275. 
Wang, P., Goverde, R.M., 2017. Multi-train trajectory optimization for energy efficiency and delay recovery on single-track railway lines. Transp. Res. Part B 105, 

340–361. 
Wang, P., Goverde, R.M., 2019. Multi-train trajectory optimization for energy-efficient timetabling. Eur. J. Oper. Res. 272 (2), 621–635. 
Wardrop, J.G.,1952. Some theoretical aspects of road traffic research. ICE Proceedings: Engineering Divisions. 
Wong, R.C., Yuen, T.W., Fung, K.W., Leung, J.M., 2008. Optimizing timetable synchronization for rail mass transit. Transport. Sci. 42 (1), 57–69. 
Wu, J.H., Florian, M., Marcotte, P., 1994. Transit equilibrium assignment: a model and solution algorithms. Transport. Sci. 28 (3), 193–203. 

K. Huang et al.                                                                                                                                                                                                         

http://refhub.elsevier.com/S0968-090X(21)00189-3/h0055
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0055
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0060
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0060
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0065
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0065
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0070
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0070
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0075
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0080
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0085
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0090
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0090
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0095
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0100
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0100
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0105
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0105
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0110
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0110
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0115
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0120
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0125
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0130
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0135
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0140
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0145
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0145
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0150
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0150
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0155
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0160
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0165
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0170
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0170
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0175
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0180
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0185
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0190
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0190
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0195
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0195
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0200
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0200
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0205
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0210
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0215
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0215
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0220
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0220
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0225
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0225
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0230
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0235
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0240
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0245
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0250
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0250
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0255
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0255
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0260
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0265
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0265
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0270
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0270
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0275
https://doi.org/10.1109/TITS.2019.2939358
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0285
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0285
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0290
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0290
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0295
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0300
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0300
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0305
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0315
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0320


Transportation Research Part C 129 (2021) 103171

28

Yang, H., Huang, H.J., 2004. The multi-class, multi-criteria traffic network equilibrium and systems optimum problem. Transp. Res. Part B 38 (1), 1–15. 
Yang, S., Wu, J., Sun, H., Yang, X., Gao, Z., Chen, A., 2018. Bi-objective non-linear programming with minimum energy consumption and passenger waiting time for 

metro systems, based on the real-world smart-card data. Transportmetrica B 6 (4), 302–319. 
Yang, S., Wu, J., Yang, X., Liao, F., Li, D., Wei, Y., 2019. Analysis of energy consumption reduction in metro systems using rolling stop-skipping patterns. Comput. Ind. 

Eng. 127, 129–142. 
Yang, S., Liao, F., Wu, J., Timmermans, H.J., Sun, H., Gao, Z., 2020. A bi-objective timetable optimization model incorporating energy allocation and passenger 

assignment in an energy-regenerative metro system. Transp. Res. Part B 133, 85–113. 
Yang, X., Chen, A., Li, X., Ning, B., Tang, T., 2015. An energy-efficient scheduling approach to improve the utilization of regenerative energy for metro systems. 

Transp. Res. Part C 57, 13–29. 
Yang, X., Chen, A., Ning, B., Tang, T., 2016. A stochastic model for the integrated optimization on metro timetable and speed profile with uncertain train mass. 

Transp. Res. Part B 91, 424–445. 
Yang, X., Chen, A., Ning, B., Tang, T., 2017. Bi-objective programming approach for solving the metro timetable optimization problem with dwell time uncertainty. 

Transp. Res. Part E 22–37. 
Yao, Y., Zhu, X., Shi, H., Shang, P., 2019. Last train timetable optimization considering detour routing strategy in an urban rail transit network. Measur. Control 52 

(9–10), 1461–1479. 
Ye, H., Liu, R., 2016. A multiphase optimal control method for multi-train control and scheduling on railway lines. Transp. Res. Part B 93, 377–393. 
Yin, J., Tang, T., Yang, L., Gao, Z., Ran, B., 2016. Energy-efficient metro train rescheduling with uncertain time-variant passenger demands: An approximate dynamic 

programming approach. Transp. Res. Part B 91, 178–210. 
Yin, J., Yang, L., Tang, T., Gao, Z., Ran, B., 2017. Dynamic passenger demand oriented metro train scheduling with energy-efficiency and waiting time minimization: 

Mixed-integer linear programming approaches. Transp. Res. Part B 97, 182–213. 
Yin, J., Su, S., Xun, J., Tang, T., Liu, R., 2020. Data-driven approaches for modeling train control models: comparison and case studies. ISA Trans. 98, 349–363. 
Yu, B., Kong, L., Sun, Y., Yao, B., Gao, Z., 2015. A bi-level programming for bus lane network design. Transp. Res. Part C 55, 310–327. 
Zhang, Y., Peng, Q., Yao, Y., Zhang, X., Zhou, X., 2019. Solving cyclic train timetabling problem through model reformulation: extended time-space network construct 

and alternating direction method of multipliers methods. Transp. Res. Part B 128, 344–379. 
Zhao, N., Roberts, C., Hillmansen, S., Nicholson, G., 2015. A multiple train trajectory optimization to minimize energy consumption and delay. IEEE Trans. Intell. 

Transp. Syst. 16 (5), 2363–2372. 
Zhong, Q., Lusby, R.M., Larsen, J., Zhang, Y., Peng, Q., 2019. Rolling stock scheduling with maintenance requirements at the Chinese High-Speed Railway. Transp. 

Res. Part B 126, 24–44. 
Zhong, Q., Zhang, Y., Wang, D., Zhong, Q., Wen, C., Peng, Q., 2020. A mixed integer linear programming model for rolling stock deadhead routing before the 

operation period in an urban rail transit line. J. Adv. Transport. 2020. 

K. Huang et al.                                                                                                                                                                                                         

http://refhub.elsevier.com/S0968-090X(21)00189-3/h0325
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0330
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0330
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0335
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0335
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0340
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0340
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0345
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0345
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0350
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0350
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0355
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0355
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0360
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0360
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0365
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0370
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0370
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0375
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0375
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0380
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0385
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0390
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0390
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0395
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0395
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0400
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0400
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0405
http://refhub.elsevier.com/S0968-090X(21)00189-3/h0405

	An integrated model of energy-efficient timetabling of the urban rail transit system with multiple interconnected lines
	1 Introduction
	2 Problem description
	2.1 Assumptions
	2.2 Notations

	3 Model
	3.1 Energy-efficient timetabling model (Upper level)
	3.1.1 Energy-efficient timetabling model in non-linear formulation
	3.1.2 Energy-efficient timetabling model as MILP

	3.2 Passenger assignment (Lower level)

	4 Solution algorithm
	5 Case study
	5.1 Case 1: URT in the current form
	5.2 Case 2.1: Effects of transfer – interrupt of transfer opportunities
	5.3 Case 2.2: Effects of transfer – the addition of transfer opportunities

	6 Conclusions and future work
	CRediT authorship contribution statement
	Acknowledgements
	Appendix Acknowledgements
	References


