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Abstract—The share of photovoltaic (PV) generation has 
increased quickly in the last decade. Many PV panels are 
connected behind-the-meter (BTM), so that they can not be 
identified with measurement equipment at MV/LV transformers. 
This poses a challenge for a medium-term MV/LV transformer 
loading forecast if the capacity of PV panels is increasing over 
time. Therefore, this paper proposes a hybrid approach for a 
medium-term load forecast (MTLF) of a MV/LV transformer 
with an increasing capacity of PV panels that are not separately 
measured. This approach combines a supervised learning model 
(data-driven approach) with a model to estimate the generation 
profile of the PV panels (model-based approach). The results 
indicate that the accuracy of the forecast improves significantly, 
while an accurate generation profile of the PV panels connected 
BTM or a disaggregation of the net load is unnecessary. 

Index Terms—behind-the-meter PV generation, distribution 
network, medium-term, net load forecasting, supervised machine 
learning  

I. INTRODUCTION 
Photovoltaic (PV) generation has been increasing its share 

in electricity generation in the past decade rapidly due to the 
current energy transition. Many rooftop PV panels are 
connected behind-the-meter (BTM) to the low-voltage (LV) 
network unlike conventional centralized generators connected 
to the transmission network with an individual, dedicated grid 
connection and meter. This can have a large impact on the 
distribution network, because the electricity flows become 
more volatile and negative congestions could occur if a surplus 
amount of electricity is generated  [1]-[2].  

In order to strengthen monitor and control functionalities to 
cope with the explained issues, Distribution System Operators 
(DSOs) are installing measurement equipment at MV/LV 
transformers. However, the electricity generation by the PV 
panels BTM P(t) and the load profile L(t) can not be measured 
separately with measurement equipment installed at the 
MV/LV transformer. The DSO is only able to measure the net 
load over the transformer Lnet(t) at a given time t according to 
 

Lnet(t) = L(t) + P(t)                                       (1) 

in [kW]. Consequently, the DSO is unable to monitor the 
impact of the PV panels on the transformer loading directly. 
This can cause problems for the DSO regarding the accuracy 
of load forecasts, which the DSO increasingly needs for a 
variety of applications, such as network reinforcement 
decisions for long-term planning, day-ahead scheduling and 
(real-time) integration of flexibility services [3]-[4].     

Load forecasts can be classified based on their forecast 
horizon. Short-term load forecasting (STLF) is extensively 
studied for applications regarding network operation.  The time 
horizon of STLF varies typically up to a week-ahead with a 
varying time resolution of the forecasted profile of an hour. 
Two approaches are commonly found in literature for this type 
of forecast to cope with the issue of being unable to separately 
measure consumption and production by PV panels connected 
BTM [5]-[6]. The first approach aims to disaggregate the 
generation profile P(t) from the measured net load Lnet(t) using 
a model-based approach. This requires a rather complex 
method to calculate the unknown generation profile by the PV 
panels with accuracy, because the generation profile depends 
on local meteorological information and accurate knowledge 
of the physical properties of the PV panels [3],[7]-[8]. The 
second approach aims to disaggregate the net load by using 
other measurement data such as smart meters using a 
data-driven approach. However, this approach requires 
additional data sources, which are not always readily available. 
In both approaches, the generation profile and load profile are 
forecasted separately and subsequently added to forecast the 
net load after disaggregation.  Other studies have also 
proposed alternative STLF methods by forecasting the  
generation profile of the BTM PV panels from the net load    
directly without disaggregating the net load first [9]-[10]. 

     Long-term load forecasting (LTLF) is extensively studied 
for network planning applications. The time horizon is longer 
than a year and aims on forecasting the peak loads, which is 
the main driver to determine the required capacity of the 
network and the necessity of grid reinforcement and extension. 
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Therefore, forecasting the shape and pattern of the load profile 
is usually not considered in LTLF, but mainly different 
scenarios are studied driving the change in peak load. 
Examples of such scenarios involve changing policies and 
economic growth [11]. However, traditional LTLF is based on 
historic patterns and therefore unable to include the adoption 
of new technologies driven by the energy transition, such as 
PV generation [6], [12].  For this reason, [11] describes a LTLF 
approach to cope with this issue for distribution network 
planning.  

Medium-term load forecasts (MTLF) are studied for 
operational planning applications. The time horizon varies 
generally from a week up to a year-ahead with usually an 
hourly time resolution [6]. To improve the utilization of the 
current network capacity over a period exceeding that of 
STLF, MTLF includes not only the forecasted peak load, but 
also the load profile to study applications such as the 
deployment of flexibility, PV curtailment and energy storage. 
LTLF are not applicable for this study, because the impact of 
these applications relies on the typical shape and frequency of 
the load profile. On the other hand, a forecasting period up to 
a week-ahead with STLF is not sufficient to capture the impact 
of long-term patterns, such as seasonality of the weather, 
holidays and the adoption and implementation of new 
technologies. Thus, there is a gap to forecast load profiles and 
corresponding peak loads for time horizons exceeding that of 
STLF, but shorter than those of LTLF. This study proposes an 
approach for MTLF taking into account the combined impact 
of load and PV generation connected BTM, which has not been 
well addressed in the literature so far by enriching existing 
STLF methods with long-term variables related to PV 
generation. 

 One of the extensively studied methods for STLF are 
supervised machine learning models. These data-driven 
models learn the correlation between features, such as time –
and weather-related information, and load during a defined 
training period [13]-[14]. Subsequently, the model forecasts 
the load using the features of the period to be forecasted. If the 
forecast period is longer, a longer training period is generally 
required for an accurate forecast as well. As discussed, the 
capacity of BTM PV panels is rapidly increasing. As a 
consequence, this can lead to large errors of the MTLF, 
because the correlation between the load and the features 
changes during the training period, which is not considered in 
STLF as the variation on the short term tends to be rather 
limited.  

The main contribution of this paper is to propose a general 
approach for a month-ahead forecasting (MTLF) for a MV/LV 
transformer loading directly at which the capacity of BTM 
PV panels is increasing over time. By combining a data-driven 
approach with a model-based approach, a hybrid approach is 
proposed to estimate the generation profile of the BTM 
PV panels without the requirement of disaggregating the net 
load or additional measurements as described.  

 

 

 

The remainder of this paper is organized as follows. Section II 
presents the proposed methodology of the model and section 
III describes the related implementation and evaluation of the 
model. Section IV presents and evaluates the results. Finally, 
in section V the main conclusions of the paper are drawn. 

II. METHODOLOGY 

A. Framework 
This paper proposes a hybrid model consisting of a 

data-driven approach using a supervised learning model 
together with a model-based approach to estimate the 
generation profile at a MV/LV transformer where the capacity 
of BTM PV panels is increasing. The model-based approach is 
used as an extra feature for the supervised learning model. This 
enables the supervised learning model to learn the correlation 
between the increasing capacity of BTM PV panels and the net 
transformer loading without the need of disaggregating this 
transformer loading into generation and load first. Fig. 1 shows 
a flowchart of the proposed methodology. The first step is to 
decompose the measured transformer loading into stationary 
profiles (daily, weekly and yearly profiles) and non-stationary 
profiles (residual profile). These stationary profiles are 
forecasted using autoregression, while the non-stationary 
profile of the net load is forecasted using the supervised 
learning model. Subsequently, the electricity generation by the 
BTM PV panels during the period to be forecasted is estimated 
based on the model-based approach. This estimation is used 
with weather- and time-related features, to train the supervised 
learning model and predict the residual profile, which is 
aggregated with the stationary profiles to forecast the 
transformer loading. 

B. Time series decomposition 
Reference [4] describes the improvement in accuracy of the 

forecast if the measured net load signal is decomposed first. 
Therefore the transformer loading is decomposed into daily, 
weekly and yearly profiles, which are all stationary, while 
a non-stationary profile, the residual, is left [15].  

Figure 1: Flowchart of the proposed methodology to forecast the net 
load of a MV/LV transformer. 



 
 

C. Generation profile estimation 
To estimate the generation profile of the BTM PV panels, 

the estimated power output of the sum of all BTM PV panels 
installed at the MV/LV transformer is calculated as follows 

P ≈ C · IPV,t
10000

 · [1-µ · (TPV,t – 25)] ,               (2) 

where C represents the capacity of the sum of all BTM 
PV panels connected to the MV/LV transformer [kWp], 
IPV,t  the incoming radiation on the PV panels [W/m2], µ the 
constant temperature parameter and TPV,t  the temperature of the 
PV panel [℃] [3].  TPV,t  is calculated as follows 

TPV, t ≈  TA,t+ IPV, t
800

 · (NOCT-20) ,                  (3) 

where TA,t represents the ambient air temperature [℃] and 
NOCT the nominal operating cell temperature [℃] [3]. 

D. Net load forecasting 
To forecast the transformer loading, the stationary profiles 

and non-stationary profiles are forecasted. The stationary 
profiles are forecasted using an autoregression model, which is 
a technique that uses a linear combination of past values to 
forecast the value ahead [16]. Based on the performance of the 
forecast accuracy as described in [4], a gradient boosting 
algorithm is used as supervised learning model to forecast the 
non-stationary residual profile [17]. To improve the accuracy 
of the forecast, a Bayesian optimization search is performed 
first to optimize the hyperparameters of this model. Finally, the 
MTLF is calculated by aggregating all separately forecasted 
profiles. 

III. IMPLEMENTATION AND VALIDATION OF THE 
SUPERVISED LEARNING MODEL 

For this paper, a MV/LV transformer loading is measured 
during a period of 2.5 years with an hourly time resolution. The 
measurements from January 2018 until December 2019 are 
used as training set for the supervised learning model. The 
months from January 2020 until May 2020 are used to evaluate 
the forecast accuracy of the supervised learning model without 
and with the model-based approach. To estimate the generation 
profile of the BTM PV panels with this model-based approach, 
a database with all registered residential PV installations at the 
same MV/LV transformer is used, which includes the 
installation date and installed capacity.  

A. Feature preprocessing 
To forecast the month-ahead residual profiles, the 

following three types of features are implemented to train the 
model: 

1. Time-related features, which include the hour of the 
day, the month of the year and whether it is a working 
day, weekend or a holiday including the difference of 
every variable with the previous hour. 

2. Weather-related features measured at the nearest 
weather station, which are the temperature [℃], 

global irradiation [W/m2], sunshine [min./hour] and 
rain duration [min./hour] every hour including the 
difference of every feature with the previous hour 
[18]. These used features are from 2008 until 2017, 
because it is assumed that the actual weather features 
of 2020 are unavailable for the period ahead. 

3. PV-related features, which is the registered capacity 
of the BTM PV panels [kWp] and their estimated 
generation using the model-based approach [kW].  

4. Stationary profiles as explained in section II.B, 
including the difference of every profile with the 
previous hour. 

To improve the accuracy of the forecast, the features are 
preprocessed before they are applied to train the model. All 
time-related features are modelled as dummy features, because 
their values represent a qualitative value and not a quantitative 
value. The other features are scaled to a standardized scale 
according to (4) 

Feature(t)’ = Feature (t) - μ
σ

 ,                          (4) 

where Feature(t)’ represents the standardized value,  
Feature(t) the unstandardized value, µ the median and σ the 
standard deviation [4].   

B. Error evaluation 
The accuracy of the forecast a month-ahead is analyzed by 

performing an out-of-sample time series cross-validation 
starting from January 2020 until May 2020. The minimum 
ratio between the training set and forecast is therefore 
0.96/0.04 for the month of January, which is increasing every 
subsequent month. Fig. 2 provides a schematic representation 
of the time series cross-validation carried out [19]. 

To analyze the accuracy of the forecast of every month, the 
related normalized root-mean-square-error (NRMSE) is 
calculated every hour according to (5)  

NRMSE [%]= 
� 1n · ∑ (Lnet, i - Lnet,i )

2 n
i=1

Lnet, max - Lnet.min
  · 100 ,            (5) 

where n represents the number of forecasted timestamps, L’net,i 
represents the forecast of the net load at a timestamp [kW], 
L’net,i  the measured net load at the same timestamp [kW] and  
Lnet,max and Lnet,min represent the maximum and minimum 
measured net load within the period of forecast [kW]. The 
average NRMSE is calculated for every month [20]. 

Figure 2: schematic representation of time series cross validation. 



C. Feature importance
The performance of the supervised learning model is not

only evaluated on the calculated NRMSE, as explained in the 
previous section. After the NRMSE of the forecast is 
calculated for the supervised learning model with and without 
the model-based approach, the performance is also evaluated 
on the feature importance. This analysis indicates the relative 
importance of all the features applied with the supervised 
learning model. If the error of the forecast is reduced due to the 
additional features of the model-based approach, evaluation of 
the feature importance should indicate the relative importance 
of these features by the supervised learning model. 

IV. RESULTS AND DISCUSSION

A. Net load forecasts
Fig. 3 shows the decomposed profiles during the first

15 days of May (green) together with their forecast (blue). The 
forecast of the stationary profiles are constant, while the shape 
of the residual forecast follows the measured profiles rather 
accurately. The load forecast of the residual profile is the 
average of the forecast using the weather-related featured from 
2008 until 2017. The lowest graph of Fig. 3 shows the 
aggregated forecast during the same period.      

Fig. 4 shows the measured transformer loading (green) 
with the average forecast of the transformer loading for all 
months using weather-related features from 2008 – 2017 in 
case when the PV-related features are excluded (red) and 
included (blue). Fig. 4 shows on the left graph that if the 
electricity generation is low (January and February), the 
difference between the forecasts is small.   The error compared 
with the measurement is generally small as well, except during 
some days in February when the measured generation is 
increasing. Fig. 4 shows on the right graph that the accuracy 
improves significantly if the PV-related features are included 
when the electricity generation by the PV panels is increasing. 
The remaining error of the generation peaks can predominantly 
be explained due to the use of weather-related features from 
previous years instead of the actual weather-related features of 
2020. The NRMSE of the peak loads is also increasing during 
the lockdown in the Netherlands caused by the COVID-19 
pandemic from the second half of March until the end of May. 
Due to this lockdown, a higher peak load was measured during 
this period compared with previous years. As a consequence, 
the forecast by the model trained with the measurement of 
previous years will be lower as indicated in Fig. 4. After the 
lockdown has ended, the measured peak load reduced from 
June and the forecast of the peak load error reduced as well.

Figure 4: The measured net load (green) with the forecast of the net load incl. (blue) and excl. (red) the PV related features and  
weather-related features from 2008 – 2017. 

Figure 3: The decomposed profiles (green) and their related forecast 
(blue) during the first 15 days of May 2020. 

Begin lockdown 

End lockdown 



 
 

 

B. Model evaluation 
Fig. 5 shows the calculated NRMSE according to (5) to 

analyze the forecasts using weather-related features from 2020 
in case when the PV-related features are excluded (orange) and 
included (purple). Fig. 5 also shows the calculated NRMSE of 
the forecasts in combination with the weather-related features 
from 2008-2017 when the PV-related features are excluded 
(red) and included (blue). The NRMSE of the forecast is 
significantly reduced when the actual weather-related features 
from 2020 are used. This supports the discussion that the 
accuracy of the forecast is limited due to the use of weather-
related features from previous years.  However, this is from a 
practical perspective an unavoidable cause of error. The error 
of the forecast is also generally increasing if the estimated 
average electricity generation per month is increasing (black). 

As also indicated by Fig. 4, the difference in calculated 
NRMSE shown in Fig. 5 is relatively small for the months of 
January and February independent from the used weather-
related features. If the average estimated electricity generation 
is increasing, the difference between the forecast which 
includes and excludes the PV-related features is increasing, 
especially when the weather-related features from 2020 are 
considered. This difference is smaller when the weather-
related features from 2008-2017 are used. For the month of 
June, the error of the forecast without the PV-related features 
is even slightly lower. This is mainly due to the variation in 
weather over years on individual days.  

The lower graphs Fig. 6 shows that including the 
PV-related features with the weather-related features from 
2020 enables to improve the forecast during peak generation. 
In general, the upper graph of Fig. 6 indicates that this also 
holds when comparing the forecasts with the weather-related 
features from 2008-2017. However, if the weather-related 
features from 2008-2017 are used, too much PV generation is 
forecasted on some specific days. For example, the 
measurements indicate that the electricity generation was 
significantly lower on the 4th, 5th and 14th of June, most likely 
due to cloudy days with a low amount of sunshine. As a 
consequence, a larger NRMSE is calculated according to (5) 
for the forecast with a higher peak generation. Nevertheless, 
the general shape and frequency of the profile in combination 
with the duration and size of the forecasted peak load have 
improved in general due to the PV-related features over the 
whole month of June, which is of more value than the exact 
timing on each specific day. In other words, interchanging the 
forecast of the 4th of June with the forecast of the 12th of June 
would reduce the calculated NRMSE of June, but would not 
be a relevant improvement for the MTLF considering the 
general goal and application of MTLF explained in section I.  

Figure 5: Average monthly NRMSE excluding and including PV-related 
features with weather-related features from 2008 – 2017 (red and blue) and 
with weather-related features from 2020 (orange and purple) together with 

the average estimated generation per month of the BTM PV panels (orange). 

Figure 6: The measured net load (green) with the forecast of the net load incl. (blue) and excl. (red) the PV related features during the month of June. 



 
 

C. Feature importance 
To gain more insight into the outcome of both forecast 

accuracies, Fig. 7 shows the 20 features with the largest impact 
on the forecast by the supervised learning model [21].  Fig. 7 
supports the impact of the PV-related features on the accuracy 
of the forecast as noticed in Fig, 4 and Fig. 5. Many of the other 
important features are weather-related features which was also 
noticed by the improvement in accuracy shown in Fig. 5, when 
the weather-related features of 2020 are applied. Additionally, 
Fig. 7 also indicates that time-related features related to the 
usual periods of peak demand and the decomposed stationary 
profiles have a relative large impact on the accuracy forecast. 

V. CONCLUSION 
This paper proposes a combination of a data-driven 

approach and a model-based approach for a MTLF of a 
MV/LV transformer, while the capacity of BTM PV panels 
connected behind the transformer is increasing. The 
performance of the model is evaluated based on the accuracy 
of the forecast, which is compared with the forecast if the 
model-based approach is excluded. Additionally, the 
importance of the features from the model is evaluated. 

The applied data-driven approach involved a supervised 
learning model, which is trained with time-related features, 
weather-related features and the PV-related features. The latter 
is estimated using the model-based approach. If the PV-related 
features are included, the relative improvement in accuracy is 
increasing if the average estimated electricity generation by the 
BTM PV panels is increasing. Analysis of the feature 
importance also indicated the importance of the PV-related 
features for the forecast. Therefore, this approach enables a 
general method to improve the MTLF of a MV/LV transformer 
at which the amount of BTM PV panels is increasing on an 
hourly time resolution. 
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