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Abstract—Sleep is a natural phenomenon controlled by
the central nervous system. The sleep-wake pattern, which
functions as an essential indicator of neurophysiological
organization in the neonatal period, has profound meaning
in the prediction of cognitive diseases and brain maturity. In
recent years, unobtrusive sleep monitoring and automatic
sleep staging have been intensively studied for adults, but
much less for neonates. This work aims to investigate a
novel video-based unobtrusive method for neonatal sleep-
wake classification by analyzing the behavioral changes
in the neonatal facial region. A hybrid model is proposed
to monitor the sleep-wake patterns of human neonates.
The model combines two algorithms: deep convolutional
neural network (DCNN) and support vector machine (SVM),
where DCNN works as a trainable feature extractor and SVM
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as a classifier. Data was collected from nineteen Chinese
neonates at the Children’s Hospital of Fudan University,
Shanghai, China. The classification results are compared
with the gold standard of video-electroencephalography
scored by pediatric neurologists. Validations indicate that
the proposed hybrid DCNN-SVM model achieved reliable
performances in classifying neonatal sleep and wake states
in RGB video frames (with the face region detected), with an
accuracy of 93.8 ± 2.2% and an F1-score 0.93 ± 0.3.

Index Terms—Neonatal sleep monitoring, video and
image analysis, facial expression, deep convolutional
neural network, support vector machine.

I. INTRODUCTION

S LEEP is a natural quiescence state of the mind and body,
which is associated with reduced responsiveness to external

stimuli [1], [2]. According to research on human development
in early life, sleep is an essential factor for the development of
the nervous system in infants [3], [4]. Newborn babies usually
sleep between 16 and 18 hours per day in equispaced periods.
As age increases, sleep changes from an ultradian rhythm to a
circadian rhythm [5]. Consistent evidence indicates that sleep
is vital for the brain development of neonates (in particular for
preterm infants) and help them in recovering from illness [2], [6].
Further, the reliable measures for the tracking and assessment
of wake-sleep patterns, over multiple nights could potentially
provide an indication of neonatal development over time [7],
[8], [9], [10].

Sleep in infants can be scored as in multiple stages such as ac-
tive sleep, deep sleep, and wake, using polysomnographic (PSG)
and EEG features [1]–[4]. Indeed, PSG is the gold standard for
sleep monitoring and VEEG is the gold standard for seizure
detection. As EEG signal is the most important modality in both
PSG and VEEG to measure the brain activity during sleep or
seizure, neurologists in the hospital used PSG or Video-EEG
data to annotate sleep states (wake and sleep), and sleep staging
(active sleep, quiet sleep, and wake) respectively[11], [12],
which requires a number of sensors and electrodes attached to an
infant’s body to collect electrophysiological signals. The attach-
ment of adhesive sensors/electrodes can have adverse effects on
an infant’s skin, which could lead to an elevated risk of infections
[13], [14]. In previous decades, several unobtrusive or minimally
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obtrusive techniques have been developed for the objective of
infant monitoring such as dry electrode [15], capacitive sensing
[16], ballistocardiogram [17], remote ultra-wideband radar [18],
[19], video camera [20], and near-infrared spectroscopy [21].
Among these, video monitoring appears to be a promising
technique since it is contact-free and convenient to use both at
home or in hospitals and it can analyze body movements of an
infant [14]. Video-based approaches capture body movements
that are highly associated with infant sleep-wake patterns [22].
In that study, a three-dimensional (3D) spatiotemporal-based
motion detection method was proposed to quantify infants’
full-body movements from video (i.e., video-based actigraphy)
of adult sleepers and achieved an error of 5.8% in estimating
sleep efficiency. Subsequently, Long et al. [23] employed the
video-based actigraphy approach to identify the sleep/wake state
for 10 healthy term infants. Tested on a monochrome video
data set of daytime naps using a linear discriminant classifier,
92.0% mean accuracy was reported. However, they analyzed
general full-body movements solely without specifying move-
ment types and did not eliminate disturbances in video frames
caused by other subjects or objects like caregiving activities,
which likely result in increased false positives in detecting
awakenings. Recent studies have indicated that the facial motor
and neuron activity as well as facial expression of neonates are
associated with certain physiological and behavioral changes
during sleep [24], [25]. Ariyaratnam and Rood [26] measured
facial skin temperature and, found that the highest temperature
of the face was in the forehead area (c. 34 °C) and the lowest
(c. 32 °C) in the cheek area. The temperature pattern changes in
the facial region may be used to investigate and assess lesions
in the peripheral branches of cranial nerves. Further, studies
on cutaneous temperature manipulation [27] reveal that skin
temperature variation strongly improved the two most typical
age-related sleep problems a decreased slow wave sleep and an
increased risk of early morning awakening. Inducing an increase
of 0.4 °C in skin temperature was sufficient to almost double the
proportion of nocturnal slow wave sleep and to decrease the
probability of early morning awakening from 0.58 to 0.04. The
characterization of neonatal facial expressions could provide
essential information in classifying their sleep and wake states
with reduced artifact interference as compared with using full-
body movements. However, the analysis of facial expressions
for unobtrusive neonatal sleep monitoring has not been studied
thus far.

In recent years, deep learning (e.g., DCNN) algorithms have
been widely used in different applications for biomedical image
and physiological signal processing and analysis [28], [29].
Although their overall performances are promising, most of
them were designed for a dedicated application rather than sleep
monitoring in infants or neonates. For automated neonatal sleep
state classification, for example, Koolen et al. [30] proposed a
greedy algorithm using EEG recordings to classify active and
quiet sleep for neonates; however, their approach may lead to
a risk of overfitting by including too many redundant features.
Further, Ansari et al. [31] designed an 18-layer CNN model to
identify quiet sleep in preterm infants. A primary disadvantage
is that the approach was based on a “trial-and-error” strategy,

which might cause abundant room for further improving the
network architecture. Palmu et al. [32] developed an EEG-based
index for characterizing sleep states in early preterm infants.
They found that infant’s exhibit different sleep states, and a
detection system that can handle artifacts (often occurring in
EEG) is desired. To the best of our knowledge, this is the
first study on video-based neonatal sleep monitoring using deep
neural networks. In our previous research [33], we proposed to
evaluate the use of existing pre-trained networks as a features
extractor to perform neonatal sleep and wake states classification
using different using video frames. From around 2-h Fluke video
recording of seven neonates, we achieved a modest classifica-
tion performance with an accuracy of 65.3%, with AlexNet
using Fluke (RGB) video frames. This indicates that using a
pre-trained model as a feature extractor could not fully suffice
for highly reliable sleep and wake classification in neonates.

Various studies have demonstrated the effectiveness of com-
bining DCNN for learning distinguishable features and support
vector machine (SVM) for training a reliable classifier, thereby,
outperforming DCNN with output activation function for clas-
sification [34], [36]. The success of the combinations inspire
us to design a dedicated hybrid model for neonatal sleep-wake
classification based on video data.

This work aims to investigate a non-contact approach (with
a video camera) to classify sleep-wake states in neonates, with
the advantage of no disruption for their sleep. More specifically,
in this work, we will propose a hybrid DCNN-SVM model to
perform the classification by exploiting facial expressions from
(thermal and RGB) video frames. The paper is organized as
follows. Section II describes the neonatal facial characteristics
and the dataset information used in this study. The details of our
proposed methodology are explained in Section III. Section IV
presents and discusses the results. Finally, we conclude the work
and provide future research directions in Section V.

II. DATA COLLECTION

Nineteen Chinese newborn infants were included in this study
and the data collection was done with the help of a pediatri-
cian at the Children’s Hospital of Fudan University, Shanghai,
China, between September 2017 and December 2018. The study
protocol was approved by the internal ethics committee of
the hospital. Since this study was observational in nature, no
additional approval from an external ethics board was required.
Table I provides detailed descriptions of patient demographics
(including sex, gestational age, postmenstrual age, and weight),
total sleep/wake time recorded, and the reason(s) for hospital
admission per infant.

Video data were recorded using a Fluke infrared camera (TiX
580 Expert Series Thermal Imagers with a resolution of 640
× 480 pixels and a frame rate of 24 fps) [37]. It was placed
with a “look-down” view to film the neonates in a good lighting
condition, as depicted in Fig. 1. In addition, EEG data were
collected simultaneously. One of the main advantages of using
the Fluke TiX580 camera is that it can record multiple types
of color palettes along with RGB videos. LaserSharp Auto
Focus help us to calculate and displays the distance from the
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TABLE I
DEMOGRAPHICS, RECORDED SLEEP/WAKE TIME, AND REASON FOR

HOSPITAL ADMISSION OF THE INFANTS INCLUDED IN THIS STUDY

G: girl, B: boy, GA: gestational age, PMA: postmenstrual age during data collection, S:
sleep, W: wake.

Fig. 1. Examples indicating the setup for recording VEEG (video +
EEG) data of a neonate in the hospital.

designated target and immediately adjusts the focus. For the
neonatal facial database, we keep the distance between the
subject and the camera to between 0.25 m and 0.36m. During
the data collection process, a swaddle was used in order to
keep the infant’s position unchanged with his/her face visible
(in a supine position) as much as possible. The experimental
setup was designed according to the clinical study regulation
of the hospital. For more details of the setup, please refer to
our previous study [38]. For each neonate, a 120-min recording
was collected to ensure the inclusion of one or two complete
sleep-wake cycles [39].

Three neurologists, as per the hospital rostering system (one
for each subject), performed manual sleep state scoring (on a
30-s basis) based on VEEG data [11]. NicoletOne system was
used for EEG measurements and visual annotation. Electrodes
were placed according to the standard 10-20 system for electrode
placement [40]–[42]. Among the 19 infants, 15 include all the
given electrodes except “T5 - 6,” “F7 - 8” and “O1 - 2” (11
electrodes). For the remaining 4, “T5 - 6,” “F7 - 8,” “Cz” and

Fig. 2. Examples of 30-s EEG signal waveforms, and the correspond-
ing RGB and thermal video frames of a neonate’s face during (a) wake
state and (b) sleep state. The amplitude scale (y-axis) represent in term
of voltage (min:−100 µV, max:100 µV) vs time (x-axis).

“O1 - 2” were not recorded. These led to 10 channels included
[41]. Note that, in neonates, recognizable EEG patterns during
sleep are mostly visible at a postmenstrual age (PMA) of larger
than 32 weeks. [43], [11]. Fig. 2 presents an example of 30-s
EEG signal waveforms (from four channels) of a neonate during
sleep and wakefulness with clear differences in term of both
amplitude and frequency. In addition, the figure also indicates the
corresponding RGB and thermal video frames from a neonate,
exhibiting different facial expressions between sleep and wake
states. During human annotation, the annotators observed the
video when artifacts (for example due to body movements)
appeared. The neurologists assigned either the label of “sleep”
or “wake” for 30-s signal waveforms from VEEG; the parallel
video data had a frame rate of 24 fps, corresponding to 720
frames per 30 s. Therefore, we labelled the 30-s video i.e., 720
frames as either “sleep” or “wake” depending on its correspond-
ing VEEG 30-s sleep/wake annotation for classification.

III. METHODOLOGY

A. Face Region Detection

In order to enable the automatic identification of sleep or wake
states for neonates by analyzing their facial expressions, it is
necessary to have reliable neonatal face detection with minimal
non-face related regions included. In our previous study [38], an
automatic intensity-based method was used to detect an infant’s
facial region. For intensity-based face detection, initially, we
transformed the RGB video frames into CIELAB color space
after examining the color intensity values of each CIELAB
channel, thereby the determining the threshold. The CIELAB
single-channel frame was converted into binary frames and the
connected area was separate from each other. Finally, the facial
intensity region with the highest number of related/linked por-
tions is imbricated on the original RGB video frames. Thereafter,
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Fig. 3. Illustration of neonatal face region detection for both RGB and
thermal videos using the intensity-based detection method [38].

the detected RGB facial region was mapped on the thermal video
frames to extract the thermal facial region. Overall, we achieved
a reliable performance of 95.8% accuracy. In the present study,
this method was applied on raw RGB video frames to identify
the facial region. Once the facial region was detected, it was
then mapped onto the corresponding thermal video frames.
Because DCNN prefers images with a fixed size, we thereby
considered “cropping” the video frame resolution to 300 × 300
pixels with a centered infant face after face region detection (see
Fig. 3), which sufficiently captured the entire face of all neonates
with minimal inclusion of non-face related areas. Thereafter, we
resized all the video frames to 224 × 224 pixels for the sake of
allowing comparing with other well-known pre-trained neural
networks (such as ResNet [44] and Inception [45], which used
this resolution) in the future. More details of the intensity-based
(face region) detection method can be found in our previous
paper [38].

B. The Hybrid DCNN-SVM Model

1) DCNN: DCNN is a multi-layer neural network with a su-
pervised learning architecture that can be viewed as the compo-
sition of a trainable classifier and an automatic feature extractor
[46]. It has been proven that model generalization is attained
with a large set of training data by using distortion techniques
[47], [48]. Considering the usage of a relatively small dataset
(small number of patients) in this study, training a complete
DCNN classifier would not be the best choice for video-based
neonatal sleep-wake classification. This is because infinitesimal
optimization on loss function can be time-consuming and, more
importantly, the trained model might not be able to achieve good
generalization. Thus, rather than using the complete architecture
of DCNN, we propose to extract valuable features with DCNN
and then feed these features into a SVM model for classification.

Thus instead of using a highly diverse and complicated neural
network, we considered a simplified DCNN architecture for
this specific population. The architecture primarily includes five
two-dimensional convolutional (Conv2D) layers with a recti-
fied linear unit (ReLU) as the activation function for learning,
and a flattened layer that concatenates the features followed

by three fully connected layers (with softmax activation) for
further classification of sleep and wake states. Here the reason
for using ReLU instead of others like tanh is because it is
time-efficient and can deal with the vanishing gradient problem
[49]. Functioning as a feature extractor, convolutional layers are
repossessed to discriminative features (or feature maps) through
two operations: convolutional filtering and down-sampling (e.g.,
maxpooling). Commonly used filtering kernels with a size of 5
× 5 pixels (with stride = 1 for convolving all pixels of input
images) and down-sampling ratio of 2 are adopted [28]. Further
the number of stacked feature maps (i.e., layer size) can have
a significant influence on the generalization of a DCNN model
[50]. Hence, we experimentally selected the layer sizes to be≥32
by taking into account both accuracy and computation time. To
avoid overfitting, we apply dropout layers (with a dropout rate
of 0.1) at the end of each fully connected layer. In addition, for
model training, the image batch size of 100 and epoch number
of 100 are used. For DCNN-SVM, the output of each fully
connected layer in DCNN is often considered to be multiple
estimated normalized features of the input sample. In addition,
the corresponding activation function can be used to calculate
and optimize the features for each output unit.

2) SVM: SVM is a classification algorithm developed from
the generalized portrait algorithm in pattern recognition and sub-
sequently a linear SVM with hard margins was established [51].
It is considered a robust classifier, where the decision boundary
can be determined by learning the maximum-margin separating
hyperplane [52]. In this task for sleep-wake classification with
video frames, a binary soft-margin linear SVM classifier [53]
is applied. Let us consider an n-sample training dataset with
feature vectors {x1, x2, …, xi, …, xn} and the corresponding
labels {y1, y2, …, yi, …, yn} where yi � {-1, 1}; SVM attempts
to identify the maximum-margin hyperplane by minimizing a
loss function U, such that

min
w,b,s

(
U =

1

2
〈w,w〉+ C

l∑
i = 1

si

)
, (1)

subject to

yi (〈w, xi〉+ b) ≥ 1− si and si ≥ 0 (i = 12, . . . , n) , (2)

where w is the weight vector, si are the slack variables, b is a
scalar quantity, and the weight parameter C controls the trade-off
between the minimum and maximum classification error. Here,
we chose C = 1.

3) The Hybrid Model: We consider features from the three
fully connected layers of DCNN after all convolutional layers.
This results in three hybrid models including DCNN-SVM1,
DCNN-SVM2, and DCNN-SVM3, with feature numbers 2048,
256, and 64, respectively. Fig. 4 illustrates the schematic network
architecture of the proposed hybrid DCNN-SVM models. First,
the video frames after face region detection and resampling are
directed to the input layer, and the original DCNN with the output
layer is trained until the training process converged. Thereafter,
we take the output from each fully connected layer as feature
vectors for training and testing an SVM classifier for classifying
sleep and wake states. It is expected that, for this specific dataset
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Fig. 4. The schematic network architecture of our proposed hybrid DCNN-SVM models combining DCNN layers and an SVM classifier, including
DCNN-SVM1, DCNN-SVM2, and DCNN-SVM3. Conv2D: two-dimensional convolutions, FCL: fully connected layer.

Fig. 5. The indicated partition of training, validation and test sets is an
example during one cross-validation round.

and task, the hybrid models can synergize the strengths of both
DCNN and SVM algorithms.

We used as Estar-S2600IP ((Intel Xeon(R) CPU E5-2650v4
@ 2.64GHz × 32) processor with 3 Nvidia 1080Ti Graphics
cards with 64 GB RAM and another Dell precision Tower
7910(Intel Xeon(R) CPU E5-2687W v4 @ 3.00GHz × 24)
with an Nvidia 1080Ti Graphics card to perform all the data
processing. The overall computation time for a single fold is
approximately 5-7 days, however once the model is trained it
will cost much less time than training

C. Cross Validation and Evaluation Metrics

Given the relatively small data set, a five-fold cross validation
was applied in this work in order to generate classification results
for all data samples. The nineteen neonates were randomly
divided into five folders (with three or four per fold). Fig. 5
depicts the overall description of our dataset and subject division
for the five fold cross validation. During each round of cross
validation, data from four folds were used for model training
and parameter tuning, and data from the other fold were used
for testing. After five rounds, sleep-wake classification results
were obtained and the mean ± standard deviation (std) over

infants are computed. With respect to wake detection, metrics
including specificity, sensitivity, precision, accuracy, and F1-
score were used to assess the classification performance. In this
study, we compare the performance on the basis of raw RGB
and thermal video frames as well as the corresponding cropped
frames automatically detected facial region).

IV. RESULTS AND DISCUSSION

With neonatal face region detection, approximately 0.65 out
from among 0.68 million of video frames (in 224 × 224 pix-
els) were retained in the dataset for training and testing. To
understand the separation of features between sleep and wake
states, we visually compare the normalized feature values (from
all features) in both classes on boxplots using facial region
(Fig. 6) and raw (Fig. 7) video frames with different types of
video (RGB and thermal) and classification models. Clearly,
the feature values after the first fully connected layer (in cor-
respondence to the DCNN-SVM1 model) using RGB video
frames with the detected neonatal facial region appear to have
the most separable distributions between sleep and wake times,
indicating the promise in sleep-wake classification, whereas the
other methods indicate a strong overlap between the two states.

The five-fold cross validation results for neonatal sleep-wake
classification using different types (RGB and thermal) and sizes
(raw and race region) of video frames as well as different
DCNN-SVM models are summarized and compared in Tables
II and III. Note that the choices of DCNN and SVM settings
(or hyperparameters) were determined experimentally based
on training accuracy. A reliable classification performance was
achieved (see Table II), including an accuracy (mean ± std) of
93.8 ± 2.2% and an F1-score of 0.93 ± 0.03, at a specificity,
a sensitivity, and a precision of 93.7 ± 1.6%, 93.8 ± 3.6%,
and 92.9 ± 2.4%, respectively. As indicated in the tables, the
hybrid model DCNN-SVM1 trained on cropped RGB video
frames with face region detection significantly outperforms all
other models. With regard to the detected face region, using the
raw video frames may cause the inclusion of other surroundings
(e.g., swaddle and cloths) that are irrelevant to infants’ facial
expression. These interferences can bring confounding factors
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TABLE II
PERFORMANCE OF NEONATAL SLEEP-WAKE CLASSIFICATION (FIVE-FOLD CROSS VALIDATION) USING DIFFERENT DCNN-SVM MODELS BASED ON

AUTOMATICALLY CROPPED FACE REGION VIDEO FRAMES (224X224 PIXELS)

TABLE III
PERFORMANCE OF NEONATAL SLEEP-WAKE CLASSIFICATION (FIVE-FOLD CROSS VALIDATION) USING DIFFERENT DCNN-SVM MODELS BASED ON RAW

VIDEO FRAMES (640 × 480 PIXELS)

Fig. 6. Boxplots of all feature values in sleep and wake states using
face region RGB (a, c, and e) and thermal (b, d, and f) video frames for
different DCNN-SVM models.

to the DCNN feature learning and, thus, may fail in classify-
ing sleep and wake states. In comparison with RGB, thermal
video appears to be unable to reveal numerous details of an
infant’s facial expression, thereby producing a “blurred” face
image. It is interesting to find that using more fully connected
layers (two or three) with less generated features can decrease
classification performance, thereby indicating ineffective neural

Fig. 7. Boxplots of all feature values in sleep and wake states using
raw RGB (a, c, and e) and thermal (b, d, and f) video frames for different
DCNN-SVM models.

network learning. Forcing a largely reduced feature set would
likely miss valuable features that represent certain important
facial expression information associated with neonatal sleep and
wake states.

On the other hand, we also evaluated a “standalone” DCNN
model without combining DCNN with SVM, where we found
unpromising classification performance. The general learning
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TABLE IV
COMPARISON OF OUR PROPOSED VIDEO-BASED APPROACH WITH THE STATE-OF-THE-ART APPROACHES IN NEONATAL SLEEP-WAKE CLASSIFICATION

∗HRV: heart rate variability derived from ECG. aDiscriminant analysis, bstepwise discriminant analysis, clearning vector quantization neural network, dartificial neural network, erecurrent
neural network, flinear discriminant. #Results with 30% data have been rejected, §Results were measured by Cohen’s kappa coefficient instead of accuracy (0.25 in classifying active
sleep and wake, 0.44 in classifying quiet sleep and wake).

procedure of DCNN is similar to but an extension of the
multi-layer perceptron (MLP). MLP attempts to reduce error
by parameter optimization in the training dataset. When the first
separating hyperplane is established via backpropagation, the
training process ends at either the local or the global minima.
For some of the data, the contribution of using MLP/DCNN
as a classifier could be less than that of using SVM; this is on
account of, the benefit of the SVM loss function in minimizing
the generalization error with its superior regularization effects
on unseen data with a certain dispersal of training data [54].

It is important to note that in order to include more data for
DCNN learning, we considered all video frames as samples
where their labels were derived from the corresponding 30-s
window based sleep scoring. In contrast, the visual scoring of
sleep states by pediatric sleep scorers as a gold standard relies
on the “general picture” of VEEG data over the entire window.
The transitions between sleep and wake often occur much less
than for 30 s accompanied with changes in the amplitudes of
EEG theta and delta activity or with the presence of arousals
[11], [55]. This implies that within a 30-s window, it is possible
that a few video frames can be more related to sleep while others
are related to wake, or vice versa. In this case, the frame-based
labelling is likely imprecise. However, this is not a big issue
since the number of transitions between sleep and wake states
are very small in our dataset (only a few per infant). Nevertheless,
in order to be consistent with the human scoring “resolution,”
30-s based decisions (sleep or wake) can be further made by
analyzing all frame-based classification results within each 30s,
for example, using a majority voting method.

Moreover, the proposed method in this study considers only
“static” video frames with maximum visibility of their facial
expressions and does not analyze temporal information (e.g.,
body or head movements over time). In fact, the level of in-
fants’ movements has been demonstrated to be highly associated
with their sleep and wake states [23], [58]. With regard to
this situation, combining body movement and changes in facial
expression (or motor activity) is anticipated to further improve
the classification performance. For example, incorporating a re-
current neural network model (such as long short-term memory
[56]) after DCNN layers to learn time-variant context between

video frames would help exploit body movements and facial
motor activities over time, which merits further investigation.

Further, we compared the results of our method with others
reported in the literature, as presented in Table IV. Since existing
studies on video-based neonatal or infant sleep monitoring are
limited, we also included those with the deployment of actig-
raphy or electrophysiologic signals such as electrocardiography
(ECG), heart rate (variability), respiration, and EEG signals.
Unlike this study, most previous studies used an obtrusive
or invasive device with a sensor or electrode(s) attached to
an infant’s skin. In addition, a large number of those studies
validated their approaches only on a cohort of healthy term
infants or older children. Nevertheless, our proposed approach
indicates better superiority in classifying infant sleep and wake
states compared with the state-of-the-art approaches. Although
video-based approaches have shown advantages for neonatal
sleep monitoring, there are limitations. First, neonates routinely
undertake caretaking from pediatricians or nurses in hospital set-
tings [65]. The caregiving behaviors would lead to “occlusion”
in video, which implies that the camera cannot always “see”
the infant, thereby making face detection and then sleep-wake
classification challenging. Second, the lighting or illumination
in hospital rooms or neonatal intensive care units can change
dramatically and, occasionally, can even dim to a few lux [66],
which is difficult for the detection of infant’s face region with
RGB video. Thus, the validity of our approch in a low “ambient
light” illumination is unclear and must be explored in the future.

In this study, to understand the overall separation of the
discriminative facial features between sleep and awake states,
we visually compare the normalized feature values (from all
features) in both classes using boxplots as shown in Fig. 5 and
Fig. 6. The feature values after the first fully connected layer
(in correspondence to the DCNN-SVM1 model (Fig. 5a)) using
RGB video frames with detected neonatal face region seem to
have the most separable distributions between sleep and wake,
indicating the promise in sleep-wake classification, whereas the
other methods show a strong overlap between the two states.
However, as our proposed approach is based on DCNN and
SVM model that involves a large number of hyper-parameters
features are challenging to be fully understandable. However,
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in the explainable AI area, visualizing network activations (or
activation maps) for CNN layers could provide a hint that which
facial parts (e.g., edge of the face, eyes, mouth, etc.) are key
features.

As mentioned earlier, this preliminary study for proof-of-
concept was conducted in a well-controlled environment, aiming
at examining the feasibility of neonatal sleep-wake classification
through the learning of facial expressions. During the data
collection process, we attempted to ensure that the infants were
lying in bed with their face up in order to increase the visibility
of their facial expressions. However, in real life, infants can
move and change their sleeping position often with their face not
always visible for example, while in a side or a prone position.
Therefore, a larger set of data including more infants without
the requirement of a specific sleeping position (visibility of
face) must be acquired in future work to verify and improve the
algorithm. For example, when the infant’s face is not visible, we
may use body movement to identify sleep/wake [67]. Combining
such video-based actigraphy and face expressions will potentiall
solve the problem. Furthermore, the used method to detect
infants’ face was based on a straightforward intensity–based
algorithm. In the future, designing a robust automatic face
segmentation/tracking algorithm could provide more accurate
facial region for further sleep classification.

To enhance overall classification performance, it would be in-
teresting to classify neonatal sleep and wake states by combining
both RGB and thermal video frames and evaluate the perfor-
mance of our proposed hybrid DCNN-SVM model. A potential
challenge is that it might require using multiple cameras or at
least multiple channels (RGB and thermal) in real applications,
resulting in largely increased computational complexity.

Literature study reveals that, the EEG patterns of neonates
with and without certain clinical events (e.g., seizure) are differ-
ent [68], [69]. Seizure or pathological crying might be biasing
the sleep state classification results. In future work, analysis
of these abnormalities using camera-based AI models will be
clinically relevant. In addition, identification of some other neu-
rological abnormalities (such as sleep disorder, birth asphyxia,
and encephalopathy) could be the future direction.

The promising results found in this paper compel us to go
further in term of classifying a neonate’s sleep states (active,
deep, and awake), followed by creating a home-based monitor-
ing system to follow the infant’s sleep pattern and quality when
she/he is discharged from the hospital. Moreover, in the hospital
it will be helpful for pediatricians to set up a simple device to
collect neonatal sleep data without any wires and this system
could function as an aid tool for neurologists by automatically
annotating the sleep states of neonates. Furthermore, video data
analysis could possibly be used to detect vital signs such as
heart rate [70], [71], respiration rate [20], SpO2 [72]. In realistic
scenarios, having all those signals reliably measured with a
video camera is challenging as the results can be influenced
by many factors including motion artifacts, lighting variations,
etc. Further research is required to improve the capability and
robustness of measuring these vital signs using video-based
approaches for the ultimate goal of classifying neonatal sleep
states.

V. CONCLUSION

In this study, we proposed a hybrid DCNN-SVM model for
neonatal sleep-wake classification. Thermal and RGB video
frames with infant facial expressions were exploited in a novel
non-contact manner to train and test the proposed approach.
Validations were performed on a dedicated data set with ap-
proximately 0.65 million video frames and high classification
performance was achieved by our proposed hybrid model. Our
results indicate that when the face is clearly visible, the proposed
approach is reliable and effective to be used for classifying sleep
and wake states in neonates.
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