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SUMMARY

Clinical trials often aim to compare two groups of patients for efficacy and/or toxicity depending on
covariates such as dose. Examples include the comparison of populations from different geographic
regions or age classes or, alternatively, of different treatment groups. Similarity of these groups can be
claimed if the difference in average outcome is below a certain margin over the entire covariate range. In this
article, we consider the problem of testing for similarity in the case that efficacy and toxicity are measured
as binary outcome variables. We develop a new test for the assessment of similarity of two groups for a
single binary endpoint. Our approach is based on estimating the maximal deviation between the curves
describing the responses of the two groups, followed by a parametric bootstrap test. Further, using a two-
dimensional Gumbel-type model we develop methodology to establish similarity for (correlated) binary
efficacy–toxicity outcomes. We investigate the operating characteristics of the proposed methodology by
means of a simulation study and present a case study as an illustration.

Keywords: Binary data; Bootstrap; Dose response; Gumbel model; Logistic regression.

1. INTRODUCTION

A common problem in clinical drug development is the assessment of an investigational drug in two
groups of patients, such as different age classes, gender, geographic regions, or different treatment groups
(see Jhee and others, 2004; Otto and others, 2008) (among many others for clinical examples). A natural
question is then whether the effect of the investigational drug is consistent across populations. Considering
data with covariates, the effect of the investigational drug is described as a function of the covariates, and
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950 K. MÖLLENHOFF AND OTHERS

consistency across the two groups is claimed if these functions are similar in a suitable sense. Several
authors use confidence bands for the difference between the response functions to construct such tests (see
e.g., Liu and others, 2009; Gsteiger and others, 2011; Bretz and others, 2018). Alternatively, Dette and
others (2018) and Möllenhoff and others (2018) propose more powerful tests by estimating a distance
between the two functions, such as the squared integral of the difference or the maximal deviation between
the functions. They claim similarity if the estimated distance is small.

All above approaches assume a single, continuous outcome. However, there are many situations where
the efficacy of the drug to be investigated is defined by a binary outcome, such as tumor shrinkage or
complete cure. In addition, many clinical trials involve the measurement of a second binary endpoint
to assess the toxicity of the investigational drug, such as the occurrence of adverse events like fatigue
or nausea. Hence the need arises to assess bivariate efficacy–toxicity outcomes which are likely to be
correlated. Several methods for modeling multivariate binary outcomes have been proposed in the literature
(see e.g., Glonek and McCullagh, 1995). Considering efficacy–toxicity outcomes, Murtaugh and Fisher
(1990) and Heise and Myers (1996) investigate bivariate binary responses and derive optimal designs
by fitting a bivariate logistic model and a Cox model to the data. Deldossi and others (2019) propose
copulas to model the marginals and dependence structure of the outcomes separately. Further, Dragalin
and Fedorov (2006) and Gaydos and others (2006) develop adaptive designs for identifying the optimal
safe dose. Finally, several authors investigate the modeling and design of phase I/II dose finding trials
incorporating bivariate outcomes using Bayesian methods (Zhang and others, 2006;Yin and others, 2006).

Different to the literature reviewed above, we investigate statistical tests to assess similarity of binary
efficacy and toxicity responses for two groups of patients. Similarity can be claimed if the differences of
both outcomes are below prespecified margins over the complete range of covariates. Accordingly, we
first develop a new test of similarity for a single binary outcome. Second, we address similarity for bivari-
ate binary (correlated) outcomes and develop a test for comparing simultaneously efficacy and toxicity
outcomes among two populations. For this purpose, we use a two-dimensional Gumbel model (Gumbel,
1961) for bivariate logistic regression to model correlated bivariate binary endpoints. Our approach is
based on a parametric bootstrap, which generates data under the constraint that the distances between
the curves are precisely equal to the prespecified margins. We investigate finite sample properties and
illustrate the procedures with a clinical trial example.

In a recent publication, Möllenhoff and others (2020) investigate the situation where some of the
parameters of the models used to describe the dose-response relationship coincide (e.g., the placebo
effect). They investigate continuous endpoints from two populations, propose a parametric bootstrap and
demonstrate that using such additional information leads to more efficient statistical inference. In order to
apply the methods proposed in this article to similar settings with additional toxicity outcomes, we will also
extend our methodology to models with shared parameters and illustrate their use with the aforementioned
clinical trial example.

2. COMPARING CURVES FOR BINARY OUTCOMES

In this section, we introduce a model-based approach for comparing the responses between two groups
assuming binary outcomes. We consider models with covariates and assume for simplicity a one-
dimensional covariate, although the proposed methodology applies more broadly. For both groups, we
choose the covariate space as a dose range D and assume that the groups are investigated at k� dose
levels d�,1, . . . , d�,k� , � = 1, 2, where the index � = 1, 2 is the group indicator. More precisely the dose
range is given by all dose levels between the lowest and highest dose across both two groups, that is
D = [

min�=1,2 d�,1, max�=1,2 d�,k�

]
. Often min�=1,2 d�,1 = 0 is the placebo or zero-dose control group. The

highest dose level max�=1,2 d�,k� is often determined in earlier trials investigating the tolerability or safety

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/23/3/949/6178616 by Technische U

niversiteit Eindhoven user on 20 July 2022



Testing for similarity of binary efficacy–toxicity responses 951

of a compound. Note that clinical trials typically randomize patients to a few fixed dose levels, which have
to be determined in advance, such that k� is often in the range of 4–6 (Bretz and others, 2005).

At dose level d�,i we observe n�,i patients, i = 1, . . . , k�. Let Y�,i,j denote the (binary) outcome for the
jth patient allocated to the ith dose level in group �. We use the indicators Y�,i,j = 1, if a patient responds
to the treatment and Y�,i,j = 0 otherwise. Therefore Y�,i,j follows a Bernoulli distribution with parameter
p�(d�,i) modeling the probability of success in group � with dose level d�,i, i = 1, . . . , k�, � = 1, 2. The
response probability of the jth patient allocated to dose level d�,i in group � is given by the monotone
function

p�(d�,i) = P(Y�,i,j = 1 | d�,i) = ηE
� (d�,i, β�, γ�), � = 1, 2, (2.1)

where ηE
� is a known distribution function determined by the parameters β�, γ�. Hence, the function

ηE
� (d, β�, γ�) models the response probability over the entire dose range. Note that model (2.1) uses

subscripts � and i on the dose in order to be consistent with the typical clinical trial setting of randomizing
patients to a few fixed dose levels, as discussed above.

Common examples of (2.1) include the logistic regression model P(Y�,i,j = 1 | d�,i) =
(1 + e−β�−γ�d�,i )−1 and the probit regression model P(Y�,i,j = 1 | d�,i) = �(β� + γ�d�,i), where � denotes
the distribution function of the standard normal distribution. Assuming independent observations, the
likelihood of the observed data in group � = 1, 2 is

L�(β�, γ�|y�,1,1, . . . , y�,k� ,1, . . . , y�,k� ,n�,k�
) =

k�∏
i=1

n�,i∏
j=1

p�(d�,i)
y�,i,j (1 − p�(d�,i))

(1−y�,i,j)

=
k�∏

i=1

p�(d�,i)
z�,i (1 − p�(d�,i))

n�,i−z�,i ,

where z�,i := ∑n�,i
j=1 y�,i,j, i = 1, . . . , k�, � = 1, 2. Taking the logarithm yields

l�(β�, γ�) := log L�(β�, γ�|y�,1,1, . . . , y�,k� ,1, . . . , y�,k� ,n�,k�
)

=
k�∑

i=1

z�,i log p�(d�,i) + (n�,i − z�,i) log (1 − p�(d�,i)) (2.2)

and corresponding maximum likelihood estimates (MLE) are obtained by maximizing the function (2.2).
In order to investigate the difference in efficacy between the two groups we consider the maximal deviation
between the two curves in (2.1) and test the hypotheses

H E
0 : max

d∈D

∣∣ηE
1 (d, β1, γ1) − ηE

2 (d, β2, γ2)
∣∣ ≥ εE vs. H E

1 : max
d∈D

∣∣ηE
1 (d, β1, γ1) − ηE

2 (d, β2, γ2)
∣∣ < εE , (2.3)

where εE denotes a prespecified margin measuring the degree of similarity for efficacy. The latter has to
be carefully chosen in advance by clinical experts and depends on the application.

The following algorithm provides a bootstrap test for the hypotheses (2.3). It is derived by adapting
the methodology developed in Dette and others (2018) to binary data.

Algorithm 2.1 (parametric bootstrap for testing similarity of binary outcomes)
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952 K. MÖLLENHOFF AND OTHERS

(1) Calculate the MLE (β̂�, γ̂�), � = 1, 2, by maximizing for each group the log-likelihood given in
(2.2). The test statistic is obtained by

�̂E := max
d∈D

∣∣∣ηE
1 (d, β̂1, γ̂1) − ηE

2 (d, β̂2, γ̂2)

∣∣∣ .

(2) Define estimators of the parameters β�, γ�, � = 1, 2, so that the corresponding curves fulfill the null
hypothesis (2.3), that is

( ˆ̂
β�, ˆ̂γ�

) =
{

(β̂�, γ̂�) if �̂E ≥ εE

(β̄�, γ̄�) if �̂E < εE � = 1, 2,

where (β̄1, γ̄1) and (β̄2, γ̄2) maximize the same objective function as defined in (2.2), but under the
constraint

�E = max
d∈D

∣∣ηE
1 (d, β1, γ1) − ηE

2 (d, β2, γ2)
∣∣ = εE . (2.4)

We discretize the dose range D to get a feasible optimization problem by fixing r nodes d1, . . . , dr

and using a smooth approximation of the maximum,

max (d1, . . . , dr) ≈ λ log
r∑

i=1

exp di
λ

for λ → 0,

in (2.4). We solve the constrained optimization problem by using the augmented Lagrangian mini-
mization algorithm as implemented with the auglag() function in the R package alabama (Varadhan,
2014).

(3) Proceed as follows:
(i) Generate bootstrap data under the null hypothesis (2.3) by creating binary data specified by the

parameters
( ˆ̂
β�, ˆ̂γ�

)
, � = 1, 2. More precisely, calculate ηE

� (d�,i,
ˆ̂
β�, ˆ̂γ�), i = 1, . . . , k�, � = 1, 2

yielding the probabilities p(d�,i) at each dose level d�,i.
(ii) From the bootstrap data calculate the MLE (β̂∗

� , γ̂ ∗
� ) as in step (1) and the test statistic

�̂E∗ = max
d∈D

∣∣∣ηE
1 (d, β̂∗

1 , γ̂ ∗
1 ) − ηE

2 (d, β̂∗
2 , γ̂ ∗

2 )

∣∣∣ . (2.5)

(iii) Repeat the steps (i) and (ii) nboot times to generate replicates �̂E∗
1 , . . . , �̂E∗

nboot
of �̂E∗. Let

�̂E∗
(1) ≤ . . . ≤ �̂E∗

(nboot )
denote the corresponding order statistic. The estimator of the α-quantile

of the distribution of �̂∗ is defined by �̂E∗
(�nbootα	). Reject the null hypothesis (2.3) and decide for

similarity if

�̂E < �̂E∗
(�nbootα	). (2.6)

Alternatively, calculate the p-value F̂E
nboot

(�̂E) = 1
nboot

∑nboot
i=1 I {�̂E∗

i ≤ �̂E} and reject the null

hypothesis (2.3) if F̂E
nboot

(�̂E) < α for a prespecified significance level α, where F̂E
nboot

denotes
the empirical distribution function of the bootstrap sample.
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Testing for similarity of binary efficacy–toxicity responses 953

Both, the bootstrap quantile �̂E∗
(�nbootα	) and the p-value F̂E

nboot
(�̂E), depend on the number of bootstrap

replicates nboot and the margin εE given in the hypotheses (2.3), but we do not reflect the latter dependence
in our notation.

The test proposed in Algorithm 2.1 has asymptotic level α and is consistent. More precisely,
�̂E∗

(�nbootα	) → q̂α as nboot → ∞, where q̂α denotes the α-quantile of the distribution of the statistic
(2.5). It can then be shown that under H E

0

lim sup
n1,n2→∞

PHE
0
(�̂E < q̂α) ≤ α (2.7)

and that under H E
1

lim
n1,n2→∞ PHE

1
(�̂E < q̂α) = 1. (2.8)

These results follow from the well-known fact that under suitable regularity conditions the MLE converges
weakly to a normal distribution (Bradley and Gart, 1962), that is

√
n�

(
(β̂�, γ̂�) − (β�, γ�)

) D−→ N (0, I−1
� ), � = 1, 2, (2.9)

where the asymptotic variance-covariance matrix I� is the Fisher’s information matrix corresponding to
group �. The weak convergence (2.9) is the essential ingredient to apply the proof of Dette and others
(2018) to the situation considered in this article and (2.7) and (2.8) follow. These arguments provide the
validity of the test (2.6) for large sample sizes. For moderate sample sizes the quality of the approximation
depends on the model under consideration (including the parameters), see Section 4 for a numerical
investigation.

3. TESTS FOR SIMILARITY OF EFFICACY–TOXICITY RESPONSES

3.1. The Gumbel model for efficacy–toxicity outcomes

We now extend the approach of Section 2 to correlated bivariate binary outcomes. We consider the bivariate
Gumbel model (see e.g., Murtaugh and Fisher, 1990; Heise and Myers, 1996) based on the bivariate logistic
function derived by Gumbel (1961),

FU ,V (u, v) = 1

1 + e−u

1

1 + e−v

(
1 + νe−u−v

(1 + e−u)(1 + e−v)

)
. (3.1)

Note that the marginal distributions are logistic and that the parameter ν represents the dependence of U
and V , where ν = 0 corresponds to independent margins and in this case, two separate logistic models for
efficacy and toxicity can be fitted separately to the data. The approach in this article can also be applied to
other parametric two-dimensional distributions. In the Supplementary material available at Biostatistics
online, we investigate an alternative distribution with logistic margins and a different dependence structure.

We make the same assumptions as in the univariate case and further let Y = (Y E , Y T ) ∈ {0, 1}2 denote
the bivariate outcome for a patient allocated to the dose level d, where Y E denotes the efficacy and Y T the
toxicity response. We follow Murtaugh and Fisher (1990) and formulate the model by deriving the four
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954 K. MÖLLENHOFF AND OTHERS

cell probabilities

p00(d) := P(Y E = 0, Y T = 0| d) = 1 − 1
1+e−u1(d) − 1

1+e−u2(d) + 1
1+e−u1(d)

1
1+e−u2(d)

+ νe−u1(d)−u2(d)

(1 + e−u1(d))2(1 + e−u2(d))2
,

p01(d) := P(Y E = 0, Y T = 1| d) = 1
1+e−u2(d) − 1

1+e−u1(d)
1

1+e−u2(d) − νe−u1(d)−u2(d)

(1+e−u1(d))2(1+e−u2(d))2 ,

p10(d) := P(Y E = 1, Y T = 0| d) = 1
1+e−u1(d) − 1

1+e−u1(d)
1

1+e−u2(d) − νe−u1(d)−u2(d)

(1+e−u1(d))2(1+e−u2(d))2 ,

p11(d) := P(Y E = 1, Y T = 1| d) = 1
1+e−u1(d)

1
1+e−u2(d) + νe−u1(d)−u2(d)

(1+e−u1(d))2(1+e−u2(d))2 . (3.2)

Here, u1(d) = β1 + γ1d and u2(d) = β2 + γ2d denote the transformed doses for efficacy and toxicity,
respectively (see Heise and Myers, 1996). Consequently, the Gumbel model is determined by the five-
dimensional parameter θ := (β1, γ1, β2, γ2, ν) ∈ R

5. The individual curves for efficacy and toxicity are
obtained by the marginal probabilities

ηE(d, θ) := P(Y E = 1| d) = p11(d) + p10(d) = 1

1 + e−u1(d)
,

ηT (d, θ) := P(Y T = 1| d) = p11(d) + p01(d) = 1

1 + e−u2(d)
. (3.3)

For simplicity we do not display the dependence on θ in the cell probability functions (3.2). We further
denote by η(d, θ) := (

ηE(d, θ), ηT (d, θ)
)

the vector of bivariate response probabilities at dose d. Note
that the correlation parameter ν is part of the model but not displayed explicitly. In order to guarantee that
all cell probabilities in (3.2) lie between 0 and 1 for all doses d ∈ D, the lower bound on ν is always −1,
whereas the upper bound depends on the other model parameters β1, γ1, β2, and γ2 and is at most 4. As
derived by Murtaugh and Fisher (1990), the correlation of Y E and Y T is given by

corr(Y E , Y T | d) = ν

(eu1(d)/2 + e−u1(d)/2)(eu2(d)/2 + e−u2(d)/2)
. (3.4)

For the estimation of the model parameters, we use again MLE. The likelihood for one observation
y = (yE , yT ) ∈ {0, 1}2 modeled by the Gumbel model is therefore given by

L(θ |y) = p11(d)yE yT
p01(d)(1−yE )yT

p10(d)yE (1−yT )p00(d)(1−yE )(1−yT ). (3.5)

3.2. The test procedure

We now compare the two groups with respect to their efficacy and toxicity outcomes. Let Y�,i,j =
(Y E

�,i,j, Y T
�,i,j) ∈ {0, 1}2 denote the bivariate outcome for the jth patient allocated to the ith dose level

d�,i of group � and define by z�,i
pq := ∑n�,i

j=1 I {(yE
�ij, yT

�ij) = (p, q)} the number of responses with outcome
(p, q) at dose level d�,i in group � = 1, 2, i = 1, . . . , k�. We use the Gumbel model from Section 3.1.
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Testing for similarity of binary efficacy–toxicity responses 955

According to (3.5) the likelihood of the Gumbel model for group � is given by

L�(θ�|y�,1,1, . . . , y�,1,n�,1 , . . . , y�,k� ,n�,k�
)

=
k�∏

i=1

n�,i∏
j=1

p11(d�,i)
yE
�ij y

T
�ij p01(d�,i)

(1−yE
�ij )y

T
�ij p10(d�,i)

yE
�ij (1−yT

�ij )p00(d�,i)
(1−yE

�ij )(1−yT
�ij )

=
k�∏

i=1

p11(d�,i)
z�,i
11 p01(d�,i)

z�,i
10 p10(d�,i)

z�,i
10 p00(d�,i)

z�,i
00 .

Taking the logarithm yields

l�(θ�) := log L�(θ�|y�,1,1, . . . , y�,1,n�,1 , . . . , y�,k� ,n�,k�
)

=
k�∑

i=1

z�,i
11 log p11(d�,i) + z�,i

01 log p01(d�,i) + z�,i
10 log p10(d�,i) + z�,i

00 log p00(d�,i) (3.6)

and the estimate θ̂� for the parameter θ� of the Gumbel model is obtained by maximizing this function
over the parameter space (� = 1, 2). Note that in the case of independence, that is ν� = 0, the parameter
estimates β̂�,1, γ̂�,1 are the same as the ones obtained by maximizing the likelihood function in the univariate
case (2.2).

Let

η�(d, θ�) = (
ηE

� (d, θ�), ηT
� (d, θ�)

) =
( 1

1 + e−β�,1−γ�,1d
,

1

1 + e−β�,2−γ�,2d

)T

denote the vector of efficacy and toxicity curves for group � = 1, 2. Claiming similarity of both groups, we
want to ensure that the efficacy and toxicity responses do not deviate by more than a prespecified margin
ε = (εE , εT ). Consequently, we test the global null hypothesis

H0 : max
d∈D

∣∣ηE
1 (d, θ1) − ηE

2 (d, θ2)
∣∣ ≥ εE or max

d∈D

∣∣ηT
1 (d, θ1) − ηT

2 (d, θ2)
∣∣ ≥ εT (3.7)

against the alternative

H1 : max
d∈D

∣∣ηE
1 (d, θ1) − ηE

2 (d, θ2)
∣∣ < εE and max

d∈D

∣∣ηT
1 (d, θ1) − ηT

2 (d, θ2)
∣∣ < εT . (3.8)

This problem can be solved by simultaneously testing the individual hypotheses

H E
0 : max

d∈D

∣∣ηE
1 (d, θ1) − ηE

2 (d, θ2)
∣∣ ≥ εE vs. H E

1 : max
d∈D

∣∣ηE
1 (d, θ1) − ηE

2 (d, θ2)
∣∣ < εE (3.9)

and
H T

0 : max
d∈D

∣∣ηT
1 (d, θ1) − ηT

2 (d, θ2)
∣∣ ≥ εT vs. H T

1 : max
d∈D

∣∣ηT
1 (d, θ1) − ηT

2 (d, θ2)
∣∣ < εT . (3.10)

As the global null in (3.7) is the union of H E
0 and H T

0 we can apply the intersection union principle
(Berger, 1982). That is, we reject the global null in (3.7) and claim similarity only if both individual null
hypotheses in (3.9) and (3.10) are rejected. Each of the two individual tests in (3.9) and (3.10) is performed
by extending the parametric bootstrap approach in Algorithm 2.1, as described below.
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956 K. MÖLLENHOFF AND OTHERS

Algorithm 3.1 (parametric bootstrap for testing for similarity of bivariate binary outcomes)

(1) Calculate the MLE θ̂� = (β̂�,1, γ̂�,1, β̂�,2, γ̂�,2, ν̂�), � = 1, 2, by maximizing the log-likelihood
given in (3.6) for each group. The test statistics are obtained by

�̂E = �E(θ̂1, θ̂2) = max
d∈D

∣∣ηE
1 (d, θ̂1) − ηE

2 (d, θ̂2)
∣∣

and

�̂T = �T (θ̂1, θ̂2) = max
d∈D

∣∣ηT
1 (d, θ̂1) − ηT

2 (d, θ̂2)
∣∣.

(2) For each individual test in (3.9) and (3.10) we perform a constrained optimization as described in

Algorithm 2.1, yielding estimates ˆ̂
θ�, � = 1, 2. This procedure is done separately for each individual

test because the constraints differ. Although the constraints are only imposed on the marginal
densities which do not contain the dependence parameters ν�, they appear in the likelihood function
to be maximized under the constraints. Consequently the constrained estimates of the parameters
ν� are usually different from the unconstrained estimates. We generate bootstrap data for each
individual test separately and obtain replicates �̂E∗

1 , . . . , �̂E∗
nboot

for the comparison of the efficacy

curves and �̂T∗
1 , . . . , �̂T∗

nboot
for the comparison of the toxicity curves. Let �̂E∗

(1) ≤ . . . ≤ �̂E∗
(nboot )

and �̂T∗
(1) ≤ . . . ≤ �̂T∗

(nboot )
denote the corresponding order statistics and let �̂E∗

(�nbootα	) and �̂T∗
(�nbootα	)

denote the corresponding empirical level α quantiles, respectively.

(3) Reject the global null hypothesis (3.7) if

�̂E < �̂E∗
(�nbootα	) and �̂T < �̂T∗

(�nbootα	). (3.11)

We do not need to adjust the level of the two individual tests and can thus use the α-quantile according
to the intersection union principle. The technical difficulty of the implementation of this algorithm consists
in generating bivariate correlated binary data in Step (2), which is explained in more detail in the following
section.

3.3. Generation of bivariate correlated binary data

The bootstrap test described in Algorithm 3.1 requires the simulation of bivariate binary data. Several
approaches have been proposed in the literature, such as the inversion method (see Devroye, 1986), which
is rather simple but comes along with computational disadvantages (for details see e.g., Leisch and others,
1998). Here, we use the algorithm of Emrich and Piedmonte (1991), as implemented with the function
generate.binary in the R package MultiOrd (Amatya and Demirtas, 2015). For this purpose, we calculate
the correlation (3.4) and the marginal distributions in (3.3) to generate the data at each dose level as long
as the correlation does not exceed the boundaries specified by the model parameter θ given by

max
(

−
√

p1(d)p2(d)

(1−p1(d))(1−p2(d))
, −

√
(1−p1(d))(1−p2(d))

p1(d)p2(d)

)
≤ corr(Y E , Y T | d) (3.12)

and

corr(Y E , Y T | d) ≤ min

(√
p1(d)(1−)p2(d))

(1−p1(d))p2(d)
,
√

(1−p1(d))p2(d)

p1(d)(1−p2(d))

)
. (3.13)
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Here, p1(d) = ηE(d, θ1) and p2(d) = ηT (d, θ2) denote the marginal probabilities of efficacy and toxicity,
respectively. These restrictions have to be fulfilled at each dose in order to guarantee that a joint distribution
of Y E and Y T can exist. We impose these inequality constraints in the optimization step in addition to the

constraint described in (2.4) such that the estimates ˆ̂
θ1 and ˆ̂

θ2 generate a distribution and bootstrap data
can be obtained.

3.4. Shared parameters

As pointed out in the introduction there exist also situations, where it is reasonable to assume that certain
model parameters are the same for both groups. In such cases, the total number of parameters to be
estimated is reduced, which yields to more efficient inference if the assumption is correct. For example,
Möllenhoff and others (2020) describe a trial assessing similarity of Japanese and Caucasian patients,
where a similar response to placebo and a common maximum treatment effect is assumed.

The new methodology can be further developed to address this situation by considering a joint likelihood
function instead of fitting two separate models. For this purpose, we adopt Algorithm 3.1 to that situation
as follows. Let θ = (θ0, θ̃1, θ̃2), where θ0 denotes the vector of common parameters and θ̃1, θ̃2 denote
the remaining parameters of the Gumbel models, such that θ� = (θ0, θ̃�), � = 1, 2. We then estimate
an MLE θ̂ by using the combined sample and maximizing l1(θ0, θ̃1) + l2(θ0, θ̃2), where l1 and l2 are the
log-likelihood functions given in (3.6). The calculation of the test statistic, the constrained optimization,
and the generation of bootstrap data described in step (2) of Algorithm 3.1 are performed similarly, now
using joint likelihood functions instead of fitting two separate models throughout. The details are omitted
for the sake of brevity.

4. FINITE SAMPLE PROPERTIES

We now investigate the finite sample properties of the two tests based on Algorithms 2.1 and 3.1. We
consider the dose range D = [0, 2] with the seven dose levels 0, 0.1, 0.2, 0.5, 1, 1.5, and 2. We assume
n�,i = 7, 14, 21, 28, 50 patients per dose level, i = 1, . . . , 7 and group � = 1, 2, resulting in n� =
49, 98, 147, 196, 350, � = 1, 2. The significance level is α = 0.05 throughout and we consider three
different margins in (3.7) and (3.8), that is 0.1, 0.15, and 0.2. All simulations are performed using 1000
simulation runs and nboot = 400 bootstrap replications. Binary data are generated as described in Section
3.3. We set ν = 0 for the univariate (efficacy) case. For the sake of brevity, we present in this section only
the results for the bivariate case and a short summary of the findings for the univariate case. We refer to
Supplementary Section S1 available at Biostatistics online for the complete simulation results and a more
detailed discussion.

4.1. Univariate efficacy outcomes

Supplementary Table S1 and Table S2 available at Biostatistics online display the simulated Type I error
rates and the power of the bootstrap test (2.6), respectively, for margins εE = 0.1, 0.15, 0.2. We conclude
that the test controls its level in all cases under consideration. The approximation of the level is very
precise at the margin of the null hypothesis (that is, �E = εE) and this accuracy increases with increasing
sample sizes. Moreover, in the interior of the null hypothesis (that is, �E > εE) the number of rejections
is close to 0 in all scenarios, indicating that the Type I error rate is very small in these cases. We further
conclude that the procedure has reasonable power for sufficiently large sample sizes. For example, the
test achieves more than 80% power for sample sizes of 28 or 50 patients per dose level, depending on the
margin under consideration. We also observe that the power increases with increasing sample sizes.
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4.2. Bivariate efficacy–toxicity outcomes

We now consider bivariate efficacy–toxicity outcomes using a Gumbel model for both groups as defined
in Section 3.1. The reference model is defined by the parameter

θ1 = (β1,1, γ1,1, β1,2, γ1,2, ν1) = (−1, 2, −3, 3, ν1) (4.1)

and we assume two different levels of dependence. The first setting represents a moderate correlation
between the efficacy and toxicity outcomes (ν1 = 1). In the second setting, we fix ν1 to the maximum
value such that all cell probabilities in (3.2) with regard to the model parameter θ1 are still between 0 and
1, that is ν1 = 2.4. According to (3.4), the correlation of Y E

1 and Y T
1 at dose d ∈ D is given by

corr(Y E
1 , Y T

1 | d) = ν1

(e−0.5+d + e0.5−d)(e−1.5+1.5d + e1.5−1.5d)
, (4.2)

which ranges from 0.09 to 0.23 for ν1 = 1 and from 0.23 to 0.55 for ν1 = 2.4. Figure 1(a) displays the
probability of efficacy without toxicity response, P(Y E = 1, Y T = 0| d) = p10(d). Figure 1(b) displays
the correlation for three different choices of ν in dependence of the dose. In order to investigate the
performance under the null and the alternative, we vary the parameters of the second model resulting in
seven scenarios for each choice of ν1; see Table 1. We assume the same correlations as for the reference
model, that is ν2 = ν1. As an illustration, we show the efficacy and toxicity curves for three scenarios and
ν1 = 1 in Figure 1(c).

For the Type I error rate simulations, we counted the number of individual and simultaneous rejections
of both null hypotheses in (3.9) and (3.10), allowing us to reject the global null hypothesis in (3.7).
All simulation results are displayed in Tables 2 and 3, where the numbers in brackets correspond to
the proportion of rejections for the individual tests on efficacy and toxicity. For the sake of brevity,
we assume only two different margins ε = (εE , εT ) = (0.15, 0.15) and (0.2, 0.2). We observe that the
global bootstrap test according to Algorithm 3.1 is rather conservative as the Type I error rates are very
small. For example, for n�,i = 14, ν1 = ν2 = 1 and � = (�E , �T ) = ε = (0.2, 0.2) the individual
proportions of rejection are 0.046 for efficacy and 0.058 for toxicity, whereas the Type I error rate for the
global test is 0.001, which is well below the nominal level. This is a common feature of the intersection
union principle for the problem of testing equivalence in multivariate responses (Berger and Hsu, 1996).
A similar conclusion holds for the high level of dependence, that is ν1 = ν2 = 2.4. Considering the
same configuration as above, that is n�,i = 14 and � = ε = (0.2, 0.2), the individual proportions of
rejection are 0.088 for efficacy and 0.089 for toxicity, whereas the Type I error rate for the global test
is 0.002.

In general, we conclude that for a low level of dependence the individual tests on efficacy and toxicity
yield rejection probabilities that are close to 0.05 when simulating on the margin of the global null
hypothesis (that is � = ε) and hence the global Type I error rates are well below α in these cases.
However, for a high level of correlation, that is ν1 = ν2 = 2.4, there are a few scenarios where the
Type I error rate is too large. For instance, we observe the largest proportion of rejections of the global
null hypothesis given by 0.127 for n�,i = 50, ε = (0.2, 0.2) and � = (0, 0.2). Considering the same
configurations but ε = (0.15, 0.15), yields a proportion of 0.089, which is lower but still above the desired
value of 0.05. For all other scenarios, the Type I error of the global test is well below the nominal level.
The size of the parameter ν� affects the precision of the estimates for the parameter θ� of the Gumbel
model, which explains the different results for the rather low correlations corresponding to ν� = 1 and the
high correlations obtained for ν� = 2.4, � = 1, 2. In other words, a high correlation makes the estimation
of the curves more difficult, even for large sample sizes. A more detailed discussion, including a table
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(a)

(c)

(b)

Fig. 1. (a) Probability P(Y E = 1, Y T = 0) = p10(d) in dependence of the dose for the reference model (4.1) for
different choices of the correlation parameter ν; (b) Correlation of efficacy and toxicity response for different choices
of ν in dependence of the dose; (c) Efficacy curves (solid lines) and toxicity curves (dashed lines) derived in (3.3).
The black lines correspond to the reference model, the blue lines to the second model, specified by θ2. The scenarios
shown correspond to a maximum absolute deviation (indicated by the arrows) of �E = �T = 0.2, 0.1 and 0 (from
left to right).

Table 1. Different scenarios corresponding to the null hypothesis (3.7) and the
alternative (3.8)

θ1 θ2 � = (�E , �T )

Alternative
(−1, 2, −3, 3, ν1) (−1, 2, −3, 3, ν2) (0, 0)

(−1, 2, −3, 3, ν1) (−1.2, 2, −3.3, 3.1, ν2) (0.05, 0.05)

(−1, 2, −3, 3, ν1) (−1.5, 2.2, −3.6, 3.2, ν2) (0.1, 0.1)

Null hypothesis

(−1, 2, −3, 3, ν1) (−2, 3.4, −2, 2.5, ν2) (0.15, 0.15)

(−1, 2, −3, 3, ν1) (−1, 2, −2, 2.5, ν2) (0, 0.15)

(−1, 2, −3, 3, ν1) (−2.4, 3.4, −1.8, 2.5, ν2) (0.2, 0.2)

(−1, 2, −3, 3, ν1) (−1, 2, −1.8, 2.5, ν2) (0, 0.2)
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Table 2. Simulated Type I error rates of the global bootstrap test (3.11) for two different choices of
ν�, � = 1, 2

ε = (εE , εT ) n�,i θ2 � = (�E , �T ) ν� = 1 ν� = 2.4

(0.15, 0.15)

7
(−2, 3.4, −2, 2.5, ν2) (0.15, 0.15) 0.001 (0.063/0.074) 0.006 (0.078/0.064)
(−1, 2, −2, 2.5, ν2) (0, 0.15) 0.008 (0.122/0.060) 0.012 (0.112/0.075)

14
(−2, 3.4, −2, 2.5, ν2) (0.15, 0.15) 0.003 (0.040/0.047) 0.003 (0.082/0.065)
(−1, 2, −2, 2.5, ν2) (0, 0.15) 0.001 (0.207/0.052) 0.020 (0.230/0.068)

21
(−2, 3.4, −2, 2.5, ν2) (0.15, 0.15) 0.000 (0.026/0.046) 0.002 (0.051/0.057)
(−1, 2, −2, 2.5, ν2) (0, 0.15) 0.016 (0.325/0.041) 0.029 (0.326/0.084)

28
(−2, 3.4, −2, 2.5, ν2) (0.15, 0.15) 0.000 (0.049/0.053) 0.004 (0.125/0.090)
(−1, 2, −2, 2.5, ν2) (0, 0.15) 0.032 (0.476/0.058) 0.034 (0.455/0.076)

50
(−2, 3.4, −2, 2.5, ν2) (0.15, 0.15) 0.000 (0.035/0.078) 0.012 (0.210/0.084)
(−1, 2, −2, 2.5, ν2) (0, 0.15) 0.074 (0.827/0.085) 0.089 (0.815/0.111)

(0.2, 0.2)

7
(−2.4, 3.4, −1.8, 2.5, ν2) (0.2, 0.2) 0.004 (0.061/0.063) 0.006 (0.091/0.101)

(−1, 2, −1.8, 2.5, ν2) (0, 0.2) 0.012 (0.218/0.055) 0.019 (0.233/0.084)

14
(−2.4, 3.4, −1.8, 2.5, ν2) (0.2, 0.2) 0.001 (0.046/0.058) 0.002 (0.088/0.089)

(−1, 2, −1.8, 2.5, ν2) (0, 0.2) 0.024 (0.396/0.067) 0.027 (0.442/0.065)

21
(−2.4, 3.4, −1.8, 2.5, ν2) (0.2, 0.2) 0.003 (0.048/0.070) 0.003 (0.090/0.087)

(−1, 2, −1.8, 2.5, ν2) (0, 0.2) 0.033 (0.672/0.051) 0.040 (0.648/0.070)

28
(−2.4, 3.4, −1.8, 2.5, ν2) (0.2, 0.2) 0.003 (0.069/0.072) 0.004 (0.124/0.077)

(−1, 2, −1.8, 2.5, ν2) (0, 0.2) 0.050 (0.813/0.065) 0.068 (0.870/0.078)

50
(−2.4, 3.4, −1.8, 2.5, ν2) (0.2, 0.2) 0.004 (0.054/0.076) 0.003 (0.145/0.103)

(−1, 2, −1.8, 2.5, ν2) (0, 0.2) 0.060 (0.982/0.061) 0.127 (0.986/0.132)

The numbers in brackets show the proportion of rejections for the individual tests according to the hypotheses (3.9) and (3.10).

presenting the bias of the estimates for some configurations, can be found in Supplementary Section S3
available at Biostatistics online.

The simulated power is shown in Table 3. It turns out that the global test achieves reasonable power for
sufficiently large sample sizes. For example, a maximum power (always attained at � = (0, 0)) of 0.933
is achieved for the global test for a choice of n�,i = 50, ν1 = ν2 = 2.4, and ε = (0.2, 0.2). For a lower
margin, that is, ε = (0.15, 0.15), the maximum power is smaller, but still increasing with growing sample
sizes, reaching for instance 0.581 for n�,i = 50 and ν1 = ν2 = 2.4. The same statement holds for a lower
correlation of ν� = 1, � = 1, 2. For example, considering n�,i = 28, ν1 = ν2 = 1 and ε = (0.2, 0.2), we
observe a maximum power of 0.541.

5. CASE STUDY

To illustrate the proposed methodology, we consider an example that is inspired by a recent consulting
project of one of the authors. A nonsteroidal anti-inflammatory drug is to be investigated for its ability
to attenuate dental pain after the removal of two or more impacted third molar teeth. Dental pain is a
common and inexpensive setting for analgesic proof of concept, recruitment being fast and the outcome
being measured within a few hours. It is common to measure the pain intensity on an ordinal scale at
baseline and several times after the administration of a single dose. The pain intensity difference from
baseline, averaged over several hours after drug administration, may then be compared with a clinical
relevance threshold to create a binary success variable for efficacy. In this particular setting, side effects
such as nausea and sedation after dosing were anticipated, resulting in a binary toxicity variable whether
the patient experienced any such adverse events. As approved analgesics with an identified dosing range
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Table 3. Simulated power of the global bootstrap test (3.11) for two different choices of ν�, � = 1, 2

ε = (εE , εT ) n�,i θ2 � = (�E , �T ) ν� = 1 ν� = 2.4

(0.15, 0.15)

7
(−1.5, 2.2, −3.6, 3.2, ν2) (0.1, 0.1) 0.009 (0.092/0.125) 0.007 (0.089/0.125)
(−1.2, 2, −3.3, 3.1, ν2) (0.05,0.05) 0.009 (0.129/0.108) 0.010 (0.114/0.116)

(−1, 2, −3, 3, ν2) (0, 0) 0.002 (0.128/0.133) 0.018 (0.153/0.121)

14
(−1.5, 2.2, −3.6, 3.2, ν2) (0.1, 0.1) 0.008 (0.105/0.102) 0.014 (0.119/0.104)
(−1.2, 2, −3.3, 3.1, ν2) (0.05, 0.05) 0.031 (0.176/0.146) 0.042 (0.183/0.172)

(−1, 2, −3, 3, ν2) (0, 0) 0.035 (0.196/0.162) 0.045 (0.209/0.214)

21
(−1.5, 2.2, −3.6, 3.2, ν2) (0.1, 0.1) 0.020 (0.145/0.150) 0.025 (0.145/0.155)
(−1.2, 2, −3.3, 3.1, ν2) (0.05, 0.05) 0.051 (0.288/0.201) 0.075 (0.242/0.254)

(−1, 2, −3, 3, ν2) (0, 0) 0.085 (0.345/0.265) 0.077 (0.309/0.269)

28
(−1.5, 2.2, −3.6, 3.2, ν2) (0.1, 0.1) 0.038 (0.185/0.166) 0.057 (0.137/0.189)
(−1.2, 2, −3.3, 3.1, ν2) (0.05, 0.05) 0.098 (0.387/0.266) 0.121 (0.356/0.313)

(−1, 2, −3, 3, ν2) (0, 0) 0.201 (0.484/0.385) 0.202 (0.453/0.403)

50
(−1.5, 2.2, −3.6, 3.2, ν2) (0.1, 0.1) 0.066 (0.295/0.263) 0.106 (0.239/0.234)
(−1.2, 2, −3.3, 3.1, ν2) (0.05, 0.05) 0.318 (0.624/0.484) 0.326 (0.565/0.527)

(−1, 2, −3, 3, ν2) (0, 0) 0.566 (0.842/0.656) 0.581 (0.827/0.686)

(0.2, 0.2)

7
(−1.5, 2.2, −3.6, 3.2, ν2) (0.1, 0.1) 0.018 (0.133/0.140) 0.029 (0.159/0.129)
(−1.2, 2, −3.3, 3.1, ν2) (0.05,0.05) 0.027 (0.159/0.151) 0.032 (0.213/0.155)

(−1, 2, −3, 3, ν2) (0, 0) 0.026 (0.183/0.189) 0.049 (0.221/0.191)

14
(−1.5, 2.2, −3.6, 3.2, ν2) (0.1, 0.1) 0.063 (0.277/0.210) 0.076 (0.278/0.230)
(−1.2, 2, −3.3, 3.1, ν2) (0.05, 0.05) 0.112 (0.352/0.299) 0.099 (0.335/0.282)

(−1, 2, −3, 3, ν2) (0, 0) 0.124 (0.409/0.300) 0.171 (0.451/0.356)

21
(−1.5, 2.2, −3.6, 3.2, ν2) (0.1, 0.1) 0.119 (0.369/0.310) 0.142 (0.343/0.321)
(−1.2, 2, −3.3, 3.1, ν2) (0.05, 0.05) 0.243 (0.585/0.388) 0.254 (0.527/0.416)

(−1, 2, −3, 3, ν2) (0, 0) 0.328 (0.658/0.505) 0.322 (0.593/0.536)

28
(−1.5, 2.2, −3.6, 3.2, ν2) (0.1, 0.1) 0.177 (0.468/0.348) 0.212 (0.429/0.418)
(−1.2, 2, −3.3, 3.1, ν2) (0.05, 0.05) 0.445 (0.716/0.608) 0.472 (0.688/0.622)

(−1, 2, −3, 3, ν2) (0, 0) 0.541 (0.816/0.660) 0.581 (0.822/0.705)

50
(−1.5, 2.2, −3.6, 3.2, ν2) (0.1, 0.1) 0.404 (0.717/0.543) 0.437 (0.653/0.602)
(−1.2, 2, −3.3, 3.1, ν2) (0.05, 0.05) 0.740 (0.933/0.783) 0.765 (0.897/0.836)

(−1, 2, −3, 3, ν2) (0, 0) 0.900 (0.987/0.914) 0.933 (0.985/0.945)

The numbers in brackets show the proportion of rejections for the individual tests according to the hypotheses (3.9) and (3.10).

and a known dose-response relationship for tolerability are available, the objective of the study at hand
was to demonstrate similarity with a marketed product for the bivariate efficacy–toxicity outcome in a
proof of concept setting.

This was a randomized double-blind multi-regional parallel group clinical trial with a total of 300
patients being allocated to either placebo or one of four active doses coded as 0.05, 0.20, 0.50, and 1 (for
the investigational drug) and 0.10, 0.30, 0.60, and 1 (for the marketed product), resulting in n = 30 per
group (assuming equal allocation). To maintain confidentiality, the actual doses have been scaled to lie
within the [0, 1] interval. Since the study has not been completed yet, we use a hypothetical data set to
illustrate the proposed methodology.

This trial included half of the patients each from Western and Eastern Europe. Prior investigations
suggested that the differences across both geographic regions are negligible. We thus compare the efficacy
and toxicity data of the 150 patients randomized to the marketed drug across both regions. For this
purpose, we fit two Gumbel models as defined in Section 3.1 to the data, one for the 75 patients from

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/23/3/949/6178616 by Technische U

niversiteit Eindhoven user on 20 July 2022



962 K. MÖLLENHOFF AND OTHERS

(a) (b)

Fig. 2. (a) Efficacy and toxicity curves corresponding to the fitted Gumbel models (5.1) for the hypothetical data
described in Section 5. The solid (efficacy) and the dashed line (toxicity) correspond to the patients from Western
Europe, the dotted (efficacy) and the dotted-dashed (toxicity) to those from Eastern Europe. (b) Efficacy and toxicity
curves under the assumption of shared placebo parameters. Here the solid (efficacy) and the dashed line (toxicity)
correspond to the marketed product, the dotted (efficacy) and the dotted-dashed (toxicity) to the investigational drug,
respectively. The arrows indicate the maximum absolute distances.

Western Europe (� = 1) and one for the 75 patients from Eastern Europe (� = 2). The estimated model
parameters are

θ̂1 = (−0.938, 2.145, −2.284, 1.689, 0.498), θ̂2 = (−1.012, 2.388, −2.728, 1.910, −0.475), (5.1)

see Figure 2(a) for the corresponding efficacy and toxicity curves. The maximum distances are �̂E = 0.029
and �̂T = 0.051, attained at the maximum dose 1 and the dose 0.82, respectively. We perform a test (3.11)
for similarity in Algorithm 3.1 (significance level of α = 0.05) choosing the margin ε = (0.2, 0.2), which
means that we allow the responses between populations to differ about 20%.

Using nboot = 1000 bootstrap replications, we obtain critical values qE
0.05 = 0.061 and qT

0.05 = 0.056
and test the global null hypothesis (3.7) against the alternative (3.8). Since �̂E = 0.029 < 0.061 = q̂E

0.05

and �̂T = 0.051 < 0.056 = q̂T
0.05, we can reject (3.7) at level α = 0.05. This conclusion can also

be drawn by directly considering the p-values obtained from the empirical distribution functions of the
bootstrap sample according to Step (iii) of Algorithm 2.1. In general, we reject the null hypothesis (3.7)
at level α if the maximum of the two individual p-values for (3.9) and (3.10) is smaller than or equal
to α. Since the individual p-values are given by F̂E

nboot
(�̂E) = 0.015 and F̂T

nboot
(�̂T ) = 0.042, we have

max (0.015, 0.042) = 0.042 < 0.05 = α and can reject the null hypothesis (3.7), thus concluding
similarity of efficacy and toxicity across the two geographic regions.

Based on this result, it is therefore reasonable to proceed with a further analysis of this trial using the
data pooled from both regions. We now compare the investigational drug with the marketed product across
all dose levels for the bivariate efficacy–toxicity outcomes of all 300 patients randomized into the study.
For this analysis, it is reasonable to assume that the placebo effect is the same for both products with
regard to efficacy and toxicity and to investigate the question of similarity under the assumption of shared
placebo parameters as described in Section 3.4. More precisely we assume that β1,1 = β2,1 and β1,2 = β2,2,
which reduces the number of parameters to be estimated from 10 to 8. The parameter estimates are θ̂1 =
(−1.250, 2.661, −2.299, 1.564, −0.066) and θ̂2 = (−1.250, 2.481, −2.299, 1.453, 0.941), see Figure 2(b)

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/23/3/949/6178616 by Technische U

niversiteit Eindhoven user on 20 July 2022



Testing for similarity of binary efficacy–toxicity responses 963

for the corresponding efficacy and toxicity curves. The maximum distances are now given by �̂E = 0.031
and �̂T = 0.024, attained at the dose levels 0.86 and 1, respectively. We perform the test at a significance
level of α = 0.05 and generate bootstrap data under the assumption of common placebo parameters. The
critical values are now given by qE

0.05 = 0.060 and qT
0.05 = 0.035 and hence we conclude that the null

hypothesis (3.7) can be rejected as �̂E = 0.031 < q̂E
0.05 = 0.06 and �̂T = 0.024 < q̂T

0.05 = 0.035. The
p-values are given by F̂E

nboot
(�̂E) = 0.021 and F̂T

nboot
(�̂T ) = 0.031, respectively.

Finally, we note that fitting separate models as shown above also implies that the dependence parameter
is allowed to differ between the two drugs. Such an approach seems sensible in practice as it would be hard
to justify clinically that the dependence parameter is the same, unless the two products are from the same
chemical class or have a common mode of action. If for a given problem at hand it can be argued in favor
of a shared dependence parameter then the methods in this article can be extended following Möllenhoff
and others (2020).

6. CONCLUSIONS AND DISCUSSION

In the first part of this article, we investigated a single efficacy response given by a binary outcome
and derived a test procedure for the similarity of the corresponding dose-response curves, which can be
modeled, for instance, by a parametric logistic regression or a probit model. We developed a parametric
bootstrap test and decide for similarity if the maximum deviation between the estimated dose-response
profiles is sufficiently small. We also considered the situation of an additional second toxicity endpoint
to model the joint efficacy–toxicity responses. For this purpose we assumed efficacy and toxicity to be
observed simultaneously resulting in bivariate (correlated) binary outcomes and used a Gumbel model to
fit the data. The bootstrap test was extended to this situation by combining two individual tests through the
intersection union principle. In the second part of this article, we investigated the operating characteristics
by means of an extensive simulation study. The choice of the margin ε measuring the degree of similarity
has a major impact on the performance of the test. The explicit choice has to be made on an individual basis
and under consideration of clinical experts. We demonstrated that the resulting procedures control their
level in most of the configurations and achieve reasonable power. However, for a high level of dependence
between the efficacy and the toxicity outcome we observed a slight inflation of the Type I error in some
few scenarios. This can be explained by the difficulty in estimating the model parameters with sufficient
precision for large correlations: Increasing correlations severely increases the bias of the estimates and
hence affects the performance of the test. We provide a more detailed discussion in the Supplementary
Material available at Biostatistics online.

In this article, we used a Gumbel-type copula to model the dependency of bivariate binary outcomes.
In the Supplementary Material available at Biostatistics online, we demonstrate that the methodology is
easily applicable to other copula models. Moreover, we also investigate the sensitivity of our approach
with respect to the choice of the copula by means of a simulation study and demonstrate that the approach
is remarkably robust. A heuristic explanation for this observation is that parametric copula models pro-
vide some flexibility for modeling different dependencies by choosing different parameters. Therefore, a
given dependency structure can often be reasonably well modeled by different copula models choosing
appropriate parameters. A similar observation was also made in Dette and others (2014) in the context of
copula-based regression models.

The methods proposed in this article are broadly applicable whenever binary efficacy and toxicity
responses are compared. These groups can be, for example, different populations or treatments. The
methodology can also be extended to models with shared parameters, such as a common placebo effect. A
standard application for the latter is the comparison of a new with an old formulation in the development
of a generic product because doses are immediately comparable. Our approach is different to the standard
bioequivalence assessment based on pharmacokinetic (PK) parameters, such as the area under the curve
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or the maximum concentration. One reviewer argued that the PK is often linear in dose meaning that a
factor on the “vertical” outcome scale can be translated to a factor on the “horizontal” dose scale and this
implies that two dilutions of the same drug can only be bioequivalent if the concentrations are very close
to each other. With the suggested approach in this article, equivalence, and therefore similarity, is based
on small absolute differences on the “vertical scale” (recall (3.7)). This means that drugs are similar if
the dose range only covers low doses or, as an alternative formulation, a low dose of a drug is similar to
placebo in this metric. In clinical applications, however, the dose range should be chosen sufficient large
(including high doses) such that a relevant difference to placebo can be detected.

In some settings, the efficacy or toxicity responses are not modeled by binary outcomes, but rather
by a continuous response. In case of two continuous outcomes, Fedorov and Wu (2007) considered nor-
mally distributed correlated responses which are dichotomized due to binary utility and the methodology
proposed in this article can be adapted to the situation considered by these authors. A further interesting
situation occurs in case of mixed outcomes, where one of the response variables is continuous and the
other a binary one. Modeling these types of responses is still a challenging problem. Tao and others
(2013) investigated this situation by modeling these multiple endpoints by a joint model constructed with
archimedean copula. A test approach corresponding to these types of outcomes is an interesting topic
which we leave for future research.

7. SOFTWARE

Software in the form of R code together with a sample input data set and complete documentation is
available online at https://github.com/kathrinmoellenhoff/Efficacy_Toxicity.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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