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ABSTRACT
Comprehensive calculations were performed to predict the phase behavior of large spherical colloids mixed with small spherical colloids that
act as a depletant. To this end, the free volume theory (FVT) of Lekkerkerker et al. [Europhys. Lett. 20, 559 (1992)] is used as a basis and is
extended to explicitly include the hard-sphere character of colloidal depletants into the expression for the free volume fraction. Taking the
excluded volume of the depletants into account in both the system and the reservoir provides a relation between the depletant concentration in
the reservoir and that in the system that accurately matches with computer simulation results of Dijkstra et al. [Phys. Rev. E 59, 5744 (1999)].
Moreover, the phase diagrams for highly asymmetric mixtures with size ratios q ≲ 0.2 obtained by using this new approach corroborate
simulation results significantly better than earlier FVT applications to binary hard-sphere mixtures. The phase diagram of a binary hard-
sphere mixture with a size ratio of q = 0.4, where a binary interstitial solid solution is formed at high densities, is investigated using a numerical
free volume approach. At this size ratio, the obtained phase diagram is qualitatively different from previous FVT approaches for hard-sphere
and penetrable depletants but again compares well with simulation predictions.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0037963., s

I. INTRODUCTION

Colloidal particles are ubiquitously present in everyday prod-
ucts such as cosmetics, foodstuffs, and coatings.1 The stability of
these products depends on the phase behavior of the colloids that
can undergo phase transitions similar to atomic or molecular sys-
tems.2 The conditions where these transitions occur are determined
by the (effective) interactions between the colloidal particles and are
affected by their environment.3–5 In colloidal products, this environ-
ment is often composed of different types of other colloidal particles
that interact with each other. For example, coating formulations
often contain multiple colloidal components that can serve either as
binder, pigment, or additive.6 These colloidal particles can be spher-
ical but are also often anisotropic in the case of pigments. More-
over, the size ratio between the different particles is often quite large
for stratification purposes.7,8 In these types of colloidal mixtures,

depletion interactions are present that can lead to phase separa-
tion, which is often undesired in colloidal products since it leads to
inhomogeneities. However, depletion interactions can also be used
advantageously in the separation or fractionation of colloidal mix-
tures9,10 or inducing protein crystallization.11 For the optimal use of
colloidal mixtures, it is crucial to have a good understanding of the
phase behavior of the colloidal particles.

Colloidal particles have a finite volume and therefore excluded
volume interactions are always present in colloidal systems. The
excluded volume is generally associated with repulsive interactions,
but in mixtures of colloids with different sizes, excluded volume
interactions can also indirectly induce effective attractions between
particles. Around the larger colloidal particles, a depletion zone
exists that is inaccessible to the centers of the smaller particles. Once
the depletion zones of different particles overlap, the total volume
available for the smaller particles will increase, leading to an effective
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depletion attraction3,12–14 between the larger colloids, induced by the
excluded volume repulsion between the large and small particles.
The depletion interaction is schematically illustrated in Fig. 1(a).
Due to the depletion attraction, colloidal dispersions can undergo
phase transitions at much lower concentrations than expected for a
single component dispersion.

In 1954, Asakura and Oosawa12 were the first to theoretically
consider the interaction between two spherical particles as medi-
ated by non-adsorbing macromolecules and showed that this leads
to an effective attraction due to excluded volume interactions. A few
years later,13 they explicitly quantified the case of the interaction
between two hard spheres mediated by other hard spheres in the
dilute limit. In their pioneering paper, Asakura and Oosawa specu-
lated already about more complicated situations. Here, we consider
in some detail the phase behavior of asymmetric binary hard sphere
dispersions.

An insightful and relatively simple method to elucidate the
phase behavior of mixtures with colloids and depletants is free vol-
ume theory (FVT).16 In FVT, phase behavior is determined using a
thermodynamic description of the system containing colloids and
depletants based on the estimation of the free volume available
for the depletants. FVT was originally developed to study colloid–
polymer mixtures, where the colloids were described as hard spheres
and the polymers were considered as penetrable hard spheres.16 Pen-
etrable hard spheres (PHS) are defined as non-additive spheres that
can freely overlap with each other but cannot overlap with the col-
loidal particles,14 an approximation that is reasonably accurate if
the polymers are ideal chains or are dilute. The PHS model was
later applied in FVT studies of mixtures with polymers that have
a large size compared to the colloidal particles17 and colloidal parti-
cles that have additional interactions besides the excluded volume
interactions.4 FVT has also been extended toward using interact-
ing polymers as depletants18,19 and FVT approaches to describe the
phase behavior of binary colloidal hard-sphere mixtures have been
proposed.20–22 Although the nature of the depletion interaction is
similar for PHS and hard-sphere depletants, the inclusion of the

FIG. 1. (a) Schematic representation of the depletion interaction mediated by
hard-sphere or penetrable hard sphere depletants. The depletion zones around
the large spheres that are inaccessible for the small spheres are shown by the
thick green circles and the overlap of the depletion zones resulting in more free
volume available for the small spheres is highlighted. (b) Comparison between
the Asakura–Oosawa12 depletion potential for PHS depletants (gray curve) and
the depletion potential induced by hard-sphere depletants obtained from a sec-
ond order perturbation theory (black curve)15 for a size ratio of q = 0.1 and a
depletant volume fraction of π/15. The distance between the colloidal particles h
is normalized by the diameter of the depletants σ.

excluded volume of the depletants has a significant effect on the
free volume available to the depletants. Moreover, the excluded vol-
ume repulsion between the depletants leads to a significant change
in the effective pair potential between two hard spheres mixed with
depletants,15,23–25 as shown in Fig. 1(b). The range of the depletion
attraction for hard-sphere depletants is significantly smaller and a
repulsive barrier is present in the pair potential. Computer simula-
tions on binary hard-sphere mixtures revealed that there is not only
a primary minimum and a primary maximum in the pair potential
but also more concentration-dependent oscillations present around
a zero potential.23

The phase behavior of binary hard-sphere mixtures has been
widely studied as a fundamental problem. For a long time, it
was believed that binary hard-sphere mixtures are thermodynami-
cally stable for all concentrations and size ratios,26 until Biben and
Hansen27,28 first showed that phase separation can occur in binary
hard-sphere mixtures. This finding was later confirmed by a variety
of theoretical approaches,29–31 simulation studies,23,32,33 and experi-
mental works.34,35 A historical overview of studies on binary hard-
sphere mixtures can be found in Ref. 33. Most of these studies have
been focused on highly asymmetric binary hard-sphere mixtures
with size ratios q ≲ 0.2, where pair potential based methods can still
be applied, as shown by Dijkstra et al.33 An exact derivation of the
AO potential was done in the canonical ensemble36 and in the semi-
grand canonical ensemble.33 For larger size ratios, the assumption
of pairwise additivity becomes less accurate due to the possibility of
overlap of multiple depletion zones leading to many-body interac-
tions.37 Even for hard-sphere + PHS mixtures, pairwise additivity38

of the interaction is only exact for size ratios q < 0.154. FVT does
not rely on an (effective) pair potential for the large spheres, but
the depletants are explicitly incorporated through a thermodynamic
description of the binary system and multi-body interactions are
taken into account. Moreover, it has been shown that anisotropy
in the particle shape can be taken into account in a relatively sim-
ple manner with FVT.39–42 For these reasons, FVT is a promising
and versatile method to gain insight into the phase behavior of col-
loidal mixtures. However, already for the binary hard-sphere mix-
ture, there is a significant discrepancy between the FVT results in
comparison with the results from simulations33 and perturbation
theory.29

In this paper, we first show why the original FVT approach to
account for the excluded volume of colloidal depletants20–22 does not
lead to an accurate description of the phase behavior for binary hard-
sphere mixtures. Next, we propose a FVT approach that accurately
takes the excluded volume of the depletants into account. We focus
on highly asymmetric binary hard-sphere mixtures (q ≲ 0.2) for
comparison with previous studies to validate the proposed approach.
We also briefly discuss the possibility of applying FVT for a larger
size ratio of 0.4 where an interstitial solid solution is formed at high
densities.43,44

II. THEORY
In this section, we provide an overview of the FVT used in this

paper. In FVT, the system of interest containing colloidal particles
and depletants is assumed to be in thermodynamic equilibrium with
a hypothetical reservoir through a membrane that is permeable to
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the solvent and depletants, but impermeable to the large colloidal
particles. This equilibrium is used as a starting point for the deriva-
tion of the thermodynamic properties of the binary system. First,
we provide the original equations of FVT for hard spheres mixed
with penetrable hard spheres3,16 and an adjusted description of the
free volume in a face-centered-cubic (fcc) crystal based on geomet-
rical arguments.45 Then, we show the correction on the semi-grand
potential for hard-sphere depletants first discussed by Lekkerkerker
and Stroobants20 and argue why this correction is not sufficient to
accurately describe binary hard-sphere mixtures. Finally, we pro-
vide a novel description of the semi-grand potential and free volume
fraction in a binary hard-sphere system and explain how this can
be used to calculate phase coexistence binodals. The focus of this
paper is on highly asymmetric binary hard-sphere mixtures (q ≲ 0.2);
however, we also briefly discuss the applicability of FVT for a larger
size ratio of q = 0.4. All calculations were performed using Wolfram
Mathematica 12.

A. Semi-grand potential
The semi-grand potential Ω describing a system containing

Nc colloidal particles and Nd depletants, in contact with a deple-
tant reservoir, is a Legendre transformation of the Helmholtz free
energy F,

Ω(Nc,V ,T,μd) = F(Nc,Nd,V ,T) − μdNd, (1)

where μd denotes the chemical potential of depletants in the system
and the volume and temperature are given by V and T, respectively.
In this approach, the solvent is treated as background. From Eq. (1),
the following thermodynamic relation is obtained:

(
∂Ω
∂μd
)

Nc ,V ,T
= −Nd, (2)

from which it follows that

Ω(Nc,V ,T,μd) = F0(Nc,V ,T) −
μd

∫
−∞

Nd(μ
′
d)dμ′d, (3)

where the equality Ω(Nc, V, T, μd → −∞) = F0(Nc, V, T) was used.
In Eq. (3), F0 is the Helmholtz free energy of a pure system of
hard spheres (i.e., colloids without depletants). Equations (1)–(3) are
exact and hold for any type of binary colloidal mixture.

1. Penetrable hard spheres
In original FVT,16 which was developed to describe mixtures

of colloids and polymers, polymers were described as penetrable
hard spheres (PHS) that can freely overlap with each other but can-
not overlap with the colloidal particles. To obtain an expression for
the number of depletants in the system (Nd), Widom’s insertion
theorem46 is used, which gives for the chemical potential of PHS
depletants in the system

μd = const + kBT ln
Nd

⟨Vfree⟩
, (4)

where ⟨V free⟩ is the ensemble-averaged volume that is available
for the depletants. The chemical potential of PHS depletants in
the reservoir is simply given by the chemical potential of an ideal
solution,

μR
d = const + kBT ln nR

d , (5)

with nR
d being the number density of depletants in the reservoir. By

equating both expressions for the chemical potential of depletants,
assuming equilibrium, an expression for Nd is found,

Nd = n
R
d ⟨Vfree⟩. (6)

Substituting Eq. (6) into Eq. (3) and applying the Gibbs–Duhem
relation,

nR
d dμd = dΠR, (7)

yields the following expression for the semi-grand potential of the
system:

Ω(Nc,V ,T,μd) = F0(Nc,V ,T) −
ΠR

∫

0

⟨Vfree⟩dΠ′R, (8)

where ΠR is the osmotic pressure of depletants in the reservoir.
Finally, it is assumed that the PHS depletants do not influence the
configuration of the colloids in the system. This implies that the
free volume available for the depletants is equal to the free volume
for depletants in the pure hard-sphere system; ⟨Vfree⟩ = ⟨Vfree⟩0.
This leads to the following approximate result for the semi-grand
potential of a mixture of hard spheres and penetrable hard spheres:

Ω(Nc,V ,T,μd) = F0(Nc,V ,T) − ⟨Vfree⟩0 ΠR. (9)

To compute phase equilibria, it is useful to rewrite this equation in
terms of dimensionless quantities as

Ω̃ = F̃0 − α Π̃R, (10)

where the following definitions are used:

Ω̃ =
Ω vc

V kBT
, F̃ =

F vc

V kBT
,

α =
⟨Vfree⟩0

V
, Π̃ =

Π vc

kBT
.

(11)

Here, vc denotes the volume of a colloidal sphere. Furthermore, the
size ratio q is defined as the ratio of the radii of the depletants and
colloids, q = Rd/Rc. Since the depletants do not have interactions
with each other (i.e., ideal depletants), the osmotic pressure Π̃R is
given by (the dimensionless form of) the van’t Hoff equation,

Π̃R
ideal = q

−3 ϕR
d . (12)
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Here, ϕR
d is the volume fraction of depletants in the reservoir given by

nR
dvd. Furthermore, the Helmholtz free energy F̃0 of the pure hard-

sphere fluid phase is given by

F̃0,fluid = ϕc [ln(ϕc Λ3
/vc) − 1] +

4ϕ2
c − 3ϕ3

c

(1 − ϕc)2 , (13)

where the first term on the right-hand side is the ideal contribution
and the second term originates from the Carnahan–Starling equa-
tion of state.47 For the hard-sphere solid, a face-centered-cubic (fcc)
crystal, the result from Lennard-Jones and Devonshire cell theory48

is used,

F̃0,solid = ϕc ln(Λ3
/vc) + ϕc ln(

27
8ϕ3

cp
) + 3ϕc ln(

ϕc

1 − ϕc/ϕcp
). (14)

In Eqs. (13) and (14), Λ is the De Broglie wavelength, ϕc is the
volume fraction of colloidal spheres, and ϕcp denotes the volume
fraction of a close-packed fcc crystal (ϕcp = π/3

√
2 ≈ 0.74). The

final ingredient for the semi-grand potential Ω̃ in Eq. (10) is the free
volume fraction α, which can be obtained from the reversible work
W required to insert a depletant into the system,16

α = exp[−
W
kBT
]. (15)

The work of insertion W is determined with scaled particle theory
(SPT),49 resulting in

W
kBT
= − ln(1 − ϕc) +

3qϕc

1 − ϕc

+
1
2
(

6q2ϕc

1 − ϕc
+

9q2ϕ2
c

(1 − ϕc)2 ) + q3 Π̃. (16)

For the osmotic pressure Π̃ in the last term on the right-hand side
of Eq. (16), the Carnahan–Starling equation47 is used for the fluid
phase,

Π̃fluid =
ϕc + ϕ2

c + ϕ3
c − ϕ4

c

(1 − ϕc)3 . (17)

For the solid phase, the osmotic pressure as derived from cell theory
for an fcc crystal48 is used,

Π̃solid =
3ϕc

1 − ϕc/ϕcp
. (18)

It is noted here that the Percus–Yevick osmotic pressure [Eq. (22)]
was used in original FVT,16 as this osmotic pressure is internally
consistent with SPT for both the fluid phase and the solid phase.

The free volume fraction in the solid phase can also be deter-
mined using geometrical arguments,45 which gives a more accurate
result for the solid phase at high volume fractions,

αsolid =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 − ϕc ṽ 0
exc for ϕc < ϕ∗c

1 − ϕc ṽ∗exc for ϕ∗c ≤ ϕc < 23/2 ϕ∗c
0 otherwise.

(19)

Here, it is assumed that the centers of the spherical colloids are per-
fectly located on the fcc lattice points. In this equation, ϕ∗c = ϕ

cp
c / ṽ0

exc
denotes the volume fraction of large spheres above which the deple-
tion zones overlap. Furthermore, the normalized excluded volumes
are given by

ṽ 0
exc = (1 + q)3, (20)

ṽ∗exc = ṽ
0
exc − 6

⎡
⎢
⎢
⎢
⎢
⎣

1 + q − (
ϕcp

c

ϕc
)

1
3
⎤
⎥
⎥
⎥
⎥
⎦

2⎡
⎢
⎢
⎢
⎢
⎣

1 + q +
1
2
(
ϕcp

c

ϕc
)

1
3
⎤
⎥
⎥
⎥
⎥
⎦

. (21)

Note that Eq. (19) only holds if there are no multiple overlaps of
depletion zones, i.e., for size ratios smaller than q = 2

3

√
3− 1 ≈ 0.15.

2. First Ω correction for HS depletants
The semi-grand potential Ω can also be used to describe a mix-
ture of large and small spheres in equilibrium with a reservoir of
small spheres. For this purpose, Lekkerkerker and Stroobants20 pro-
posed using a different expression in Eq. (10) for the osmotic pres-
sure in the reservoir to account for the excluded volume interac-
tions between the depletants. Instead of assuming ideal behavior, the
“compressibility” result of the Percus–Yevick (PY) closure was used,
which describes the osmotic pressure of monodisperse hard-sphere
dispersions with reasonable accuracy,

Π̃R
PY = q

−3 ϕR
d + (ϕR

d)
2 + (ϕR

d)
3

(1 − ϕR
d)

3 . (22)

Figure 2 shows the phase diagram for a hard-sphere mixture
with size ratio q = 0.1 determined using original FVT for hard-
sphere depletants20–22 compared with direct coexistence simulation
results of Dijkstra et al.33 The results are shown for both the SPT
expression [Eq. (15)] and the geometrical expression for the free
volume fraction in the solid phase [Eq. (19)]. Also shown for com-
parison are the binodals obtained with FVT using the PHS approx-
imation (gray curves). The SPT expression was originally used in
FVT for hard-sphere depletants, and the resulting binodals are in
slightly better agreement with the simulation results than the bin-
odals for PHS depletants. However, still, a significant discrepancy
remains, and also when the geometrical expression for αsolid is used,
this discrepancy is present. The reason for this mismatch is that
the excluded volume of the depletants is still not explicitly taken
into account in the FVT of Lekkerkerker and Stroobants.20 The
excluded volume of the depletants is not accounted for in the free
volume fraction for both the reservoir and the system, and there-
fore, the chemical potential of the depletants is not accurately taken
into account. The chemical potential for depletants in the system
given by Eq. (4) still holds for hard-sphere depletants, but the vol-
ume excluded by the depletants has to be accounted for properly
in the free volume ⟨V free⟩. The chemical potential for depletants
in the reservoir given by Eq. (5) is no longer valid since hard
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FIG. 2. Comparison between the phase diagrams of a binary hard-sphere mix-
ture with size ratio q = 0.1 determined with FVT using the PHS approximation16

(gray curves), FVT for hard-sphere depletants21,22 (black curves), and fluid–solid
coexistence lines from direct coexistence simulations33 (open square symbols,
the dashed lines are a guide for the eyes). In contrast to the theoretical results,
simulations also revealed a small region of solid–solid coexistence at high con-
centrations of large spheres, but these results are omitted here. The free volume
fraction obtained from SPT [Eq. (15)] is used for the FVT calculations in (a) and the
FVT results for the geometrical expression for the free volume fraction [Eq. (19)]
are shown in (b). The fluid phase is denoted with F, the solid phase with S, and the
coexistence region with F+S.

spheres at finite concentrations do not behave ideally. Moreover, the
approximation used in Eq. (9) is no longer valid because the free
volume available to the depletants is no longer independent of deple-
tant concentration. In Subsection II A 3, we derive an adjusted
expression for the semi-grand potential of binary hard-sphere mix-
tures that accounts for the excluded volume of the depletants more
accurately.

It is noted that the binodals of FVT for PHS depletants in
Fig. 2(b) are in remarkable agreement with the simulation results
of the binary hard-sphere mixture, except for the low depletant con-
centration region. This similarity in phase behavior for PHS deple-
tants and hard-sphere depletants for large size discrepancies (q ≲ 0.2)
was also found by Velasco et al.29 Using a perturbation theory, they
determined the phase behavior of a colloidal mixture using a variety
of different model pair potentials. It was found that the exact shape
of the depletion potential barely affects the phase behavior of the
system as various hard-sphere pair potentials yield essentially the
same phase diagram as the Asakura–Oosawa pair potential. More-
over, a mismatch between the simulation and theoretical results in
the region of low depletant concentrations and high colloid concen-
trations was found by Velasco et al. for both the Asakura–Oosawa
pair potential and the hard-sphere pair potentials, similar to the
mismatch in FVT that can be seen in Fig. 2(b). A downside of the
perturbation theory is that it relies on a pair potential to account
for depletion, which makes it difficult to apply to colloidal mixtures
with large size discrepancies or containing anisotropic depletants,
whereas FVT does not use a pair potential, but is solely based on the
free volume available to the depletants.

3. Adjusted Ω for HS depletants
Next, the excluded volume of hard-sphere depletants is

accounted for in both the reservoir and the system. We start from

the definition of the semi-grand potential given by Eq. (3). An equa-
tion for the number of small hard-sphere depletants in the sys-
tem is again obtained by equating the chemical potentials of the
small spheres in the system and in the reservoir. Non-ideal behav-
ior can be accounted for in the chemical potential of the small
spheres, both in the system and in the reservoir, by the work of small
sphere-insertion,

μ̃d = const + ln(ϕd) +
WS

kBT
, (23)

μ̃R
d = const + ln(ϕR

d) +
WR

kBT
, (24)

where WS is now the work of inserting a hard-sphere depletant in
the system consisting of a binary sphere mixture and WR is the work
of inserting a hard-sphere depletant in the reservoir, which is a dis-
persion containing only hard-sphere depletants. Combining Eq. (15)
with Eqs. (23) and (24), the following expressions are found for the
volume fraction of depletants in the system ϕd for the fluid phase
and solid phase, respectively:

ϕd = ϕ
R
d
αS

fluid(q,ϕc,ϕd)

αR(ϕR
d)

, (25)

ϕd = ϕ
R
d
αS

solid(q,ϕc,ϕd)

αR(ϕR
d)

. (26)

In Eqs. (25) and (26), it is stressed that the free volume fraction
in the reservoir is no longer unity and αS

fluid and αS
solid do not only

depend on the volume fraction of large spheres ϕc but also on the
volume fraction of the depletants. The volume fraction of depletants
in the system ϕd, in coexistence with the reservoir with a certain
depletant volume fraction ϕR

d , can be found numerically by solving
Eqs. (25) and (26). Substituting Eqs. (25) and (26) into the defi-
nition of the semi-grand potential given by Eq. (3) and applying
the Gibbs–Duhem relation [Eq. (7)] finally yields expressions for
the semi-grand potential for the fluid and solid phases of a binary
hard-sphere mixture,

Ω̃fluid = F̃0,fluid −

ϕR
d

∫

0

αS
fluid(q,ϕc,ϕd)

αR(ϕR
d)

(
∂Π̃R

∂ϕR′
d
)dϕR′

d , (27)

Ω̃solid = F̃0,solid −

ϕR
d

∫

0

αS
solid(q,ϕc,ϕd)

αR(ϕR
d)

(
∂Π̃R

∂ϕR′
d
)dϕR′

d , (28)

where the dimensionless quantities from Eq. (11) are applied and
the integration variable dμ′d in Eq. (3) is changed to the volume
fraction of depletants in the reservoir dϕR′

d . The free volume frac-
tion for depletants in the reservoir αR can be calculated by using
Eqs. (15)–(17) and using q = 1. It is noted that Eqs. (27) and (28)
recover the original semi-grand potential given by Eq. (10) when the
PHS approximation is applied. In Sec. II B, we discuss how to obtain
expressions for the free volume fraction of hard-sphere depletants
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in the binary system for both the fluid and solid phase. Even though
the excluded volume of the small spheres will be accounted for in
the free volume fractions, it is still assumed that the presence of the
depletants does not alter the configurations of the large spheres in
our approach outlined below.

B. Free volume fraction for HS depletants
1. Fluid phase

The free volume fraction in the fluid phase of a binary hard-
sphere mixture can again be determined using the work for depletant
insertion in a binary mixture given by SPT,50 resulting in

αS
fluid = exp−[−ln(1 − ϕc − ϕd) +

3qϕc + 3ϕd

1 − ϕc − ϕd
+

3qϕc + 3ϕd

1 − ϕc − ϕd

+
1
2
⎛

⎝

6q2ϕc + 6ϕd

1 − ϕc − ϕd
+ (

3qϕc + 3ϕd

1 − ϕc − ϕd
)

2
⎞

⎠
+ q3Π̃BM

⎤
⎥
⎥
⎥
⎥
⎦

, (29)

where Π̃BM is the osmotic pressure of the binary mixture of hard
spheres. An expression for Π̃BM is given by the Boublik–Mansoori–
Carnahan–Starling–Leland (BMCSL) equation of state for binary
hard-sphere mixtures,51,52

Π̃BM =
ϕc + q−3ϕd

1 − ϕc − ϕd
+ 3

ϕ2
c + q−1ϕcϕd + q−2ϕcϕd + q−3ϕ2

d

(1 − ϕc − ϕd)2

+ (
ϕ3

c + 3q−1ϕ2
cϕd + 3q−2ϕcϕ2

d + q−3ϕ3
d

(1 − ϕc − ϕd)3 )(3 − ϕc − ϕd). (30)

2. Solid phase (q ≲ 0.2)
The same approach cannot be followed for the solid phase since

the osmotic pressure of a hard-sphere solid containing smaller hard
spheres is not known. Moreover, as mentioned in Sec. II A 1, the
scaled particle theory approach does not accurately describe the free
volume available in the solid phase at high concentrations.45 The free
volume fraction in the solid phase is approximated here by consid-
ering an fcc crystal of the larger spheres and assuming that the small
spheres behave as a fluid in the free space left by the large spheres,
which is valid for highly asymmetric binary sphere mixtures33,44 with
q ≲ 0.2. With this assumption, the free volume fraction αS

solid can be
approximated by a product of the free volume fraction of the hard-
sphere solid and the free volume fraction in the small sphere fluid
that surrounds the larger spheres,

αS,approx
solid (q,ϕc,ϕd) = αsolid(q,ϕc)αfluid(q = 1,ϕ†

d), (31)

where ϕ†
d = ϕd/(1 − ϕc) is the effective volume fraction of the small

spheres in the space that is not occupied by large spheres and αsolid(q,
ϕc) is given by the geometrical free volume fraction in Eq. (19).
This expression is only a rough approximation, as it does not accu-
rately account for the overlap between the depletion zones of large
and small spheres. To take this overlap into account, we make the
same approximation for the fluid phase and use the ratio of this
approximation and αS

fluid from SPT given by Eq. (29) as a correction

factor that takes the overlap between the depletion zones of small
and large spheres into account,

αS,approx
fluid (q,ϕc,ϕd) = αfluid(q,ϕc)αfluid(q = 1,ϕ†

d), (32)

αS
solid(q,ϕc,ϕd) = α

S,approx
solid (q,ϕc,ϕd)

αS
fluid(q,ϕc,ϕd)

αS,approx
fluid (q,ϕc,ϕd)

= αsolid(q,ϕc)
αS

fluid(q,ϕc,ϕd)

αfluid(q,ϕc)
. (33)

The result in Eq. (33) implies that the ratio between the free volume
for a depletant in the binary system (denoted as αS) and in a sys-
tem with only large particles is independent of the phase of the large
particles. In Sec. III A, it is shown that Eq. (33) accurately matches
simulation data for dense colloidal hard-sphere mixtures with size
ratios q = 0.1 and q = 0.05.

3. Solid phase (q > 0.2)
The analysis in Sec. II B 2 only holds when the small spheres

behave as a fluid in the fcc crystal of the large particles, but for
q > 0.2, this is no longer the case, and at these size ratios, either
an interstitial solid solution or a cocrystal is formed.43,44,53 Due to
the large variety of crystal structures that can be formed for hard-
sphere mixtures with larger size ratios,43,54,55 a general FVT can-
not be derived because each different cocrystal requires an accurate
thermodynamic description and free volume fraction. However, for
specific size ratios, FVT might still be applicable. The Monte Carlo
approach of Filion and Dijkstra43 can be used to predict the crystal
structures of binary mixtures with a specific size ratio. This may be
used to obtain the required input for an accurate FVT approach for
specific mixtures. Here, we focus on the case of a mixture of hard
spheres with size ratio q = 0.4. At this size ratio, the binary mix-
ture forms an interstitial solid solution at high densities.43,44 In this
relatively simple binary system, the large spheres organize in an fcc
structure where the small spheres do not fit in the tetrahedral holes
and there is space for one small sphere in the octahedral holes of the
fcc crystal formed by the large particles.

A new expression is needed for the free volume available in the
fcc crystal formed by the hard spheres αsolid since Eq. (19) can no
longer be applied for q = 0.4 due to multiple overlap of depletion
zones. Finding an analytical equation for αsolid for q > 0.15 is more
difficult since already accounting for the overlap of three depletion
zones is mathematically laborious.56 However, it is possible to find
an equation for the free volume available in an fcc crystal, or any
other given (binary) crystal structure, accounting for multiple over-
laps with a numerical approach. One way to do this is using Wolfram
Mathematica’s built-in Region functions.57 The free volume fraction
of the one component fcc crystal obtained for q = 0.4 following this
approach57 is given by

αfit
solid(q = 0.4,ϕc) = 1.33 − 9.38ϕc + 28.5ϕ2

c

− 48.0ϕ3
c + 47.1ϕ4

c − 25.5ϕ5
c + 5.97ϕ6

c . (34)

This result is used to determine the free volume fraction of the
interstitial solid solution. Given that the number of octahedral holes
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in the fcc crystal of the large particles is the same as the number
of large particles and assuming that the excluded volume of a small
sphere present in an octahedral hole completely fills the hole, the
total free volume fraction in the system can be described as

αS
solid(q = 0.4,ϕc,ϕd) = α

fit
solid(q = 0.4,ϕc)(1 − q−3 ϕd

ϕc
), (35)

where the term q−3(ϕd/ϕc) can be interpreted as a filling fraction of
small spheres in the octahedral holes.

C. Phase coexistence calculations
Two-phase coexistence densities of a system containing hard

spheres and depletants are determined by applying the coexistence
criteria of an equilibrium between phase I and phase II,

μ̃I
c = μ̃

II
c , Π̃I

= Π̃II. (36)

The chemical potential of the large spheres and the osmotic pressure
are calculated with the following thermodynamic relations:

μ̃c = (
∂Ω̃
∂ϕc
)

Π̃R ,V ,T
, (37)

Π̃ = ϕc μ̃c − Ω̃. (38)

Note that the equalities given by Eq. (36) correspond to a common
tangent construction applied on the semi-grand potential Ω̃ as a
function of ϕc with slope μ̃c and intercept −Π̃. Numerical expres-
sions for the semi-grand potential in the fluid and solid phase of the
binary hard-sphere mixture were obtained according to the follow-
ing procedure. First, the depletant concentration and free volume
fraction in the system are determined by solving Eqs. (25) and (26)
for different values of ϕR

d and a given ϕc. These data are then fit-
ted using interpolation and used as the input for Eqs. (27) and (28)
to determine Ω̃ for a given ϕc. This is repeated for different val-
ues of ϕc, and again, interpolation is used to get an expression for
Ω̃ as a function of ϕc for a given ϕR

d and q. Binodals were finally
determined by solving Eqs. (36)–(39) with Mathematica’s built-
in FindRoot function and repeating this procedure for a range of
reservoir concentrations ϕR

d . The phase diagrams were converted
from the (ϕc,ϕR

d)-plane into the (ϕc, ϕd)-plane by making use of
Eqs. (25) and (26).

III. RESULTS AND DISCUSSION
Here, we present and discuss results of the theoretical method

described in Sec. II and verify the validity. First, we show how the
adjusted description of the semi-grand potential that explicitly takes
the excluded volume of the depletants into account deviates from the
original semi-grand potential used in FVT for binary hard-sphere
mixtures. Second, we test the validity of the expressions used for
the free volume fraction αS in the binary mixture by comparing the
relation between the concentrations of depletants in the reservoir

and in the system with computer simulation results. Next, we show
how multiple overlap influences the free volume fraction in the
solid phase. Subsequently, we present phase diagrams for size ratios
q = 0.05, 0.1, 0.2, and 0.4 and make a comparison with phase dia-
grams obtained from simulations. Finally, possible extensions of our
approach are discussed.

A. Free volume fraction
The main difference between the theory presented in

Secs. II A 3 and II B and the original FVT for binary hard-sphere
mixtures is that the excluded volume of the depletants is explicitly
taken into account in the free volume descriptions. Due to this, the
free volume available to the depletants in the system and in the reser-
voir is significantly lower. Figure 3(a) shows a schematic picture of
the FVT approach presented in this paper. Both the large and small
colloidal particles are surrounded by a depletion zone that is inac-
cessible to the small particles, and the white areas in both the system
and the reservoir show the free volume available to the depletants.
In original FVT, the excluded volume of the depletants was not fully
taken into account, and as a result, the free volume fraction is always
unity in the reservoir and the free volume fraction in the system
is independent of the depletant concentration. When the excluded
volume interactions of the depletants are taken into account, this
is no longer the case, as presented in Sec. II A 3, and both the free
volume in the reservoir (αR) and the system (αS) depend on the
depletant concentration. The effect of this excluded volume interac-
tion is demonstrated in Fig. 3(b) where the ratio αS/αR, the relative
fraction of the volume available in the system with respect to that
available in the reservoir, is plotted as a function of the depletant

FIG. 3. (a) Schematic representation of the FVT approach for hard-sphere deple-
tants explained in Sec. II A 3. The black dashed lines represent the semi-
permeable membrane that the large colloidal spheres cannot pass through, which
is, however, permeable to the small spheres and solvent. The semi-transparent
regions around the small and large spheres indicate the depletion zones that are
inaccessible to the centers of the small spheres. The white area shows the free
volume that is available to the depletants. The size ratio between the colloidal
spheres is 0.4. (b) The ratio of the free volumes in the system and in the reser-
voir αS/αR as a function of the depletant volume fraction in the reservoir ϕR

d for
different volume fractions of the large spheres ϕc and a size ratio of q = 0.1. The
solid curves are obtained from the theory presented in Sec. II B with αS given by
Eq. (29) for the fluid phase (ϕc = 0.15 and ϕc = 0.35) and Eq. (33) for the solid
phase (ϕc = 0.55 and ϕc = 0.74). The dashed curves indicate the results for the
PHS approximation with Eq. (19) for αsolid.
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FIG. 4. Relation between ϕR
d and ϕd as determined with Eqs. (25) and (26) (solid

curves). The free volume fraction in the system αS is given by Eq. (29) for the
fluid phase (a) and Eq. (33) for the solid phase (b). The values used for the
volume fraction of large spheres ϕc and the size ratio q are indicated in the fig-
ure. The dashed curves show the results for PHS depletants using Eq. (19) for
αsolid. The symbols denote Monte Carlo computer simulation data from the work of
Dijkstra et al.33

volume fraction for different large particle concentrations ϕc. This
ratio is given by Eqs. (25) and (26) and is an important contribution
to the semi-grand potential of the system given by Eqs. (27) and (28).
Figure 3(b) shows that αS/αR is no longer constant as originally
assumed by Lekkerkerker and Stroobants20 but increases as a func-
tion of the depletant concentration in the reservoir. The difference
with respect to original FVT becomes more significant at higher
concentrations of either the large or small hard spheres.

Figure 4 shows the relation between the volume fraction of
depletants in the system ϕd and in the reservoir ϕR

d for the fluid
phase (a) and the solid phase (b). As mentioned above, this rela-
tion is given by the αS/αR ratio. Also shown in Fig. 4 is the rela-
tion from original FVT theory and computer simulation data by

Dijkstra et al.33 The results from the adjusted FVT follow the sim-
ulation data remarkably well, which confirms the validity of the
equations obtained for the free volume fractions in the fluid phase
and the solid phase given by Eqs. (29) and (33). The free volume
approach followed here also compares strikingly well with an alter-
native relation between ϕR

d and ϕc derived by Roth et al.30 using a
density functional theory approach.

As mentioned previously, the geometrical description of the
free volume in a single component fcc crystal given by Eq. (19) is
not valid anymore for q > 0.15 due to multiple overlaps of depletion
zones and a numerical method is used to obtain a description for
αsolid, as described in Sec. II B 3. Unfortunately, for these size ratios,
there are no simulation data on the free volume or on the equilib-
rium between ϕd and ϕR

d available in the literature for comparison.
Figure 5 shows the results of the numerical free volume fraction in
the solid phase (αfit) as a function of the volume fraction of the large
particle solid ϕc for a depletant with size ratios q = 0.1, 0.2, and 0.4.
Also shown for comparison is Eq. (19), which does not account for
multiple overlaps. The free volume αfit matches with the analytical
result of Eq. (19) for q = 0.1 as expected because multiple overlaps do
not occur for this size ratio. For q = 0.2, the numerical method also
corresponds to Eq. (19) for low particle concentrations; however, at a
certain point, multiple overlap of depletion zones occurs and the free
volume fraction starts to deviate from Eq. (19). The volume fraction
above which this occurs can be determined by

ϕc =
4π
√

2
3

9(1 + q)3 , (39)

which results in ϕc = 0.66 for q = 0.2, indicated by the black dot in
Fig. 5(b). For q = 0.4, multiple overlap of depletion zones already
occurs at ϕc = 0.42 and the free volume fraction strongly deviates
from Eq. (19), showing the importance of taking multiple overlap of
depletion layers into account for large size ratios q.

FIG. 5. Free volume fraction based upon geometrical arguments for a PHS depletant in a colloidal fcc crystal with the colloidal particles fixed at their respective lattice
positions. The black solid curves show the results for the numerical procedure explained in Sec. II B 3 that takes multiple overlap of depletion zones into account. The gray
dashed curves show the results of Eq. (19), which is analytical but no longer holds when multiple overlaps occur.45 The size ratios considered are q = 0.1 where no multiple
overlaps occur (a), q = 0.2 where multiple overlaps occur at high densities (ϕc ≥ 0.66) (b), and q = 0.4 where multiple overlaps occur for all concentrations where a solid
phase is expected (c).
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B. Phase behavior of HS mixtures

1. Highly asymmetric (q ≲ 0.2)
Phase diagrams were computed for binary hard-sphere mix-

tures with size ratios q = 0.05, 0.1, and 0.2 using the semi-grand
potential descriptions given by Eqs. (27) and (28). The free volume
fraction in the solid phase of the binary mixture is described using
Eq. (33). For q = 0.05 and q = 0.1, the free volume fraction of the
one-component solid αsolid given by Eq. (19) is used. Multiple over-
laps of depletion zones are possible for q = 0.2 at high densities,
and therefore, αsolid is determined following the numerical proce-
dure described in Sec. II B 3. It is noted that the phase diagram for
q = 0.2 determined with Eq. (19) showed no significant difference
from the phase diagram calculated with the numerical αsolid, which is
most likely due to the fact that the deviations between both methods
are quite small for this size ratio, as shown in Fig. 5(b). A compari-
son with the theoretical phase diagrams and phase coexistence data
obtained from direct coexistence simulations from Dijkstra et al.33 is
shown in Fig. 6 for both the reservoir and the system representation.
Metastable isostructural coexistence lines are not shown in the the-
oretical phase diagrams except for the solid–solid phase coexistence
for q = 0.1.

The theoretical binodals are in qualitative agreement with
the simulation results. The binodals shift to lower depletant

concentrations when the size ratio q becomes smaller and an
isostructural solid–solid coexistence region appears at low values of
q. The solid–solid coexistence region in the theoretical phase dia-
gram is metastable for q = 0.1, whereas a small stable isostructural
solid–solid coexistence region was found in simulations. The dis-
crepancy between the solid–solid coexistence regions and the mis-
match of the fluid–solid binodals at low depletant concentrations
is mostly likely because the geometrical description of the free vol-
ume fraction in the solid phase becomes less accurate for low pack-
ing fractions ϕc since a perfect fcc crystal is assumed. For q = 0.2,
there is a slight underestimation of the fluid branch of the bin-
odal compared to the simulation data. Overall, the phase diagrams
are in much better agreement with the simulation data than the
original FVT for binary hard-sphere mixtures,20,21 as can be seen
by comparing Fig. 6(b) with Fig. 2. Moreover, the FVT phase dia-
grams presented in Fig. 6 are very similar to phase diagrams deter-
mined with FVT using the PHS approximation and Eq. (19) for
the free volume fraction in the solid phase, which is in line with
the perturbation theory predictions of Velasco et al.29 Agreement of
the phase diagrams obtained with the FVT presented in this paper
with simulations33 and previous perturbation and DFT studies29,30

indicates that the excluded volume of the depletants is now accu-
rately taken into account and FVT can be accurately applied to hard
depletants. For future applications, FVT can be extended to study

FIG. 6. Phase diagrams of binary hard-
sphere mixtures for q = 0.05 [(a) and
(d)], q = 0.1 [(b) and (e)], and q
= 0.2 [(c) and (f)] in the reservoir rep-
resentation [(a)–(c)] and the system rep-
resentation [(d)–(f)]. The black curves
show the coexistence lines determined
with FVT, and the gray data points are
results of direct coexistence simulations
from the work of Dijkstra et al.33 The
open squares denote stable coexistence
densities and the open circles denote
metastable coexistence densities. The
gray curves are a guide for the eye. The
black dashed curves in (b) and (e) show
the metastable isostructural solid–solid
coexistence lines from FVT. For q = 0.05
and q = 0.1, Eq. (33) was used for αS

solid,
and for q = 0.2, the numerical procedure
as described in Sec. II B 3 was used.
Phase regions are indicated in (a)–(c);
the fluid phase is denoted with F, the
solid phase with S, the fluid–solid coexis-
tence region with F+S, and the isostruc-
tural solid–solid coexistence region with
S+S.
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the phase behavior of colloidal mixtures containing hard anisotropic
depletants. It must be noted that anisotropic depletants have already
been studied with FVT;39,40,58 however, the same approximations are
made in these studies as the approximations in the original FVT
for binary hard-sphere mixtures. It is expected that explicitly tak-
ing the excluded volume of the depletants into account in FVT has
a large influence on the phase behavior predictions for anisotropic
depletants since these have a larger effective excluded volume than
spherical depletant particles.

2. Interstitial solid solution (q = 0.4)
In Fig. 7(a), we present the phase diagram of a binary hard-

sphere mixture with a size ratio of q = 0.4, determined using the
numerical free volume fraction given by Eq. (35). Also shown is the
phase diagram resulting from Monte Carlo free energy simulations
by Filion.44 Figure 7(b) shows the FVT results from the PHS approx-
imation, but with multiple overlaps taken into account by using
Eq. (34) for αsolid. It is noted that we only focus on the fluid phase
and the interstitial solid solution (ISS). At large depletant concen-
trations, ϕd > 0.49, the small depletant particles form an fcc crystal
through which the large particles cannot enter. For these concen-
trations, simulations predict a coexistence between the ISS phase
and the small particle fcc crystal and a triple coexistence region
where these two phases coexist with the binary fluid. As shown in
Fig. 7(b), the PHS approximation also predicts a fluid–fluid coex-
istence region, which is not found in simulations for hard-sphere
depletants.44 This shows that the PHS approximation no longer
accurately describes the phase behavior of the binary mixture in
contrast to the size ratios q ≲ 0.2. The reason for the absence of
the fluid–fluid coexistence region for hard-sphere depletants can
be understood by comparing the pair potentials for PHS and hard-
sphere depletants in Fig. 1(b). Fluid–fluid coexistence requires a long

FIG. 7. Phase diagram of a binary hard-sphere mixture with size ratio q = 0.4
in the system representation. In (a), the black curve shows the results of FVT
for hard-sphere depletants with Eq. (35) for the free volume fraction in the solid
phase and the gray curve shows results from Monte Carlo free energy computer
simulations.44 Coexistence lines with phases where the small particles crystallize
(ϕS

d > 0.49) are not shown. The FVT results from the PHS approximation, with
Eq. (34) for the free volume fraction in the solid phase, are shown in (b). The
dashed lines indicate the fluid–fluid–solid triple coexistence region. The fluid phase
is denoted with F, the solid phase with S, the fluid–solid coexistence region with
F+S, and the isostructural fluid–fluid coexistence region with F+F.

range attraction and Fig. 1(b) shows that the range of the primary
minimum is much smaller for a hard-sphere depletant compared to
a PHS depletant. The region of fluid–fluid coexistence is not found
with the FVT approach for a binary hard-sphere mixture described
in this paper. The binodals of the adjusted FVT approach again com-
pare qualitatively well with the simulation results, indicating that
the proposed method of this paper can be extended beyond highly
asymmetric binary hard-sphere mixtures.

C. Outlook
It is interesting to extend our approach to binary colloidal

mixtures in which interactions beyond hard core interactions are
accounted for. In this paper, the focus is on binary mixtures of
hard spheres, while classical FVT focused on hard-sphere + PHS
mixtures.16 It may be interesting to vary the additivity of the deple-
tants to investigate the transition from PHS (non-additive) to HS
(fully additive) along the lines of Roth and Evans.59 Also, it is use-
ful to vary for an asymmetric binary mixture only the degree of
the interactions between the dissimilar particles as Wilding et al.60

did for a symmetrical mixture. A further step may be to induce
a simple Baxter61 stickiness between the particles.62,63 This would
involve three stickiness parameters. Finally, this may be extended by
investigating binary hard-core Yukawa (HCY) mixtures, where each
hard-core particle species interacts with its own and other type of
particles through an additional Yukawa interaction with adjustable
sign, strength, and range. This has been done for HCY + PHS mix-
tures.4 An important element for all these extensions is to obtain the
knowledge of the preferred solid structures that appear in such mix-
tures, for which the simulation method of Filion and Dijkstra43 may
provide a useful starting point.

IV. CONCLUSIONS
A FVT approach that explicitly takes the excluded volume of

hard-sphere depletants into account was developed. The descrip-
tions of the free volume fractions in a highly asymmetric binary
hard-sphere fluid and solid were verified by comparing the volume
fraction of depletants in the system as a function of the volume
fraction in the reservoir with computer simulation results. Explic-
itly taking the excluded volume of the depletants into account leads
to a significantly better match with the simulation data than orig-
inal FVT for binary hard-sphere mixtures. Moreover, the phase
diagrams obtained with the FVT approach presented in this paper
are in qualitative agreement with the simulation results. For highly
asymmetric mixtures, quantified using the size ratio q, FVT for hard-
sphere depletants and PHS depletants lead to very similar results as
expected from perturbation theory.

FVT is more difficult to apply for large size ratios due to the
possibility of multiple overlaps of depletion zones (q > 0.15) and the
wide variety of binary solid phases that can be formed for q > 0.2.
However, we have shown that the phase behavior of a binary hard-
sphere mixture with a size ratio of q = 0.4, where a simple interstitial
solid solution is formed at high densities, can be described reason-
ably well using FVT. Although it is not possible to develop a general
FVT method for binary hard-sphere mixtures with size ratios q > 0.2,
a similar approach as for q = 0.4 could, in principle, be followed
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for specific size ratios, as long as the binary solid phases that can
be formed are known in advance.
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