
 

Dynamical reduced basis methods for Hamiltonian systems

Citation for published version (APA):
Pagliantini, C. (2021). Dynamical reduced basis methods for Hamiltonian systems. Numerische Mathematik,
148(2), 409–448. https://doi.org/10.1007/s00211-021-01211-w

DOI:
10.1007/s00211-021-01211-w

Document status and date:
Published: 01/06/2021

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1007/s00211-021-01211-w
https://doi.org/10.1007/s00211-021-01211-w
https://research.tue.nl/en/publications/23672a94-42fc-4e77-bb8d-60d7deda3f6c


Numerische Mathematik (2021) 148:409–448
https://doi.org/10.1007/s00211-021-01211-w

Numerische
Mathematik

Dynamical reduced basis methods for Hamiltonian systems

Cecilia Pagliantini1

Received: 4 November 2019 / Revised: 24 April 2021 / Accepted: 23 May 2021 / Published online: 18 June 2021
© The Author(s) 2021

Abstract
We consider model order reduction of parameterized Hamiltonian systems describing
nondissipative phenomena, like wave-type and transport dominated problems. The
development of reduced basis methods for such models is challenged by two main
factors: the rich geometric structure encoding the physical and stability properties of
the dynamics and its local low-rank nature. To address these aspects, we propose a
nonlinear structure-preservingmodel reductionwhere the reduced phase space evolves
in time. In the spirit of dynamical low-rank approximation, the reduced dynamics is
obtained by a symplectic projection of the Hamiltonian vector field onto the tangent
space of the approximation manifold at each reduced state. A priori error estimates
are established in terms of the projection error of the full model solution onto the
reduced manifold. For the temporal discretization of the reduced dynamics we employ
splitting techniques. The reduced basis satisfies an evolution equation on the manifold
of symplectic and orthogonal rectangular matrices having one dimension equal to
the size of the full model. We recast the problem on the tangent space of the matrix
manifold and develop intrinsic temporal integrators based on Lie group techniques
together with explicit Runge–Kutta (RK) schemes. The resulting methods are shown
to converge with the order of the RK integrator and their computational complexity
depends only linearly on the dimension of the full model, provided the evaluation of
the reduced flow velocity has a comparable cost.

Mathematics Subject Classification 37N30 · 65P10 · 15A24 · 78M34

1 Introduction

Hamiltonian mechanics is a cornerstone of physics and has provided the mathematical
foundation for the equations ofmotion of systems that describe conservative processes.
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410 C. Pagliantini

Hamiltonian systems can be viewed as dynamical extension of the first law of ther-
modynamics. In this work, we consider parameterized finite-dimensional canonical
Hamiltonian systems: these can model energy-conserving nondissipative flows or can
ensue from the numerical discretization of partial differential equations derived from
action principles. Many relevant models in mathematical physics can be written as
Hamiltonian systems, and find application in, for example, classical mechanics, quan-
tum dynamics, population and epidemics dynamics. Furthermore, partial differential
equations that can be derived from action principles include Maxwell’s equations,
Schrödinger’s equation, Korteweg–de Vries and the wave equation, compressible and
incompressible Euler equations, Vlasov–Poisson and Vlasov–Maxwell equations.

Our target problem is as follows. Let T := (t0, T ] be a temporal interval and let
V2N be a 2N -dimensional vector space. Let � ⊂ R

d , with d ≥ 1, be a compact set of
parameters. For each η ∈ �, we consider the initial value problem: For u0(η) ∈ V2N ,
find u(·, η) ∈ C1(T ,V2N ) such that

{
∂t u(t, η) = XH(u(t, η), η), for t ∈ T ,

u(t0, η) = u0(η),
(1.1)

whereXH(u, η) ∈ V2N is the Hamiltonian vector field at time t ∈ T , andC1(T ,V2N )

denotes continuous differentiable functions in time taking values in V2N . Numerical
simulations of systems like (1.1) can become prohibitively expensive, in terms of
computational cost, if the number 2N of degrees of freedom is large. In the context of
long-time and many-query simulations, this often leads to unmanageable demands on
computational resources.Model order reduction aims at alleviating this computational
burden by replacing the original high-dimensional problem with a low-dimensional,
efficient model that is fast to solve but that approximates well the underlying full-
order dynamics. When dealing with Hamiltonian systems additional difficulties are
encountered to ensure that the geometric structure of the phase space, the stability
and the conservation properties of the original system are not hindered during the
reduction. The main goal of this work is to develop and analyze structure-preserving
model order reduction methods for the efficient, accurate, and physically consistent
approximation of high-dimensional parametric Hamiltonian systems.

Within model order reduction techniques, projection-based reduced basis meth-
ods (RBM) consist in building, during a computationally intensive offline phase, a
reduced basis from a proper orthogonal decomposition of a set of high-fidelity simu-
lations (referred to as snapshots) at sampled values of time and parameters. A reduced
dynamics is then obtained via projection of the full model onto the lower dimension
space spanned by the reduced basis. Projection-based RBM for Hamiltonian systems
tailored to preserve the geometric structure of the dynamicswere developed in [21] and
[6] using a variational Lagrangian formulation of the problem, in [2,4,30] for canon-
ically symplectic dynamical systems, and in [16] to deal with Hamiltonian problems
whose phase space is endowed with a state-dependent Poisson manifold structure.
Although the aforementioned approaches can provide robust and efficient reduced
models, they might require a sufficiently large approximation space to achieve even
moderate accuracy. This can be ascribed to the fact that nondissipative phenomena,
like advection and wave-type problems, do not possess a global low-rank structure,
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Dynamical reduced basis methods for Hamiltonian systems 411

and are therefore characterized by slowly decayingKolmogorovwidths, as highlighted
in [11]. Hence, local reduced spaces seem to provide a more effective instrument to
deal with this kind of dynamical systems.

In this work we propose a nonlinear projection-based model order reduction of
parameterized Hamiltonian systems where the reduced basis is dynamically evolving
in time. The idea is to consider a modal decomposition of the approximate solution to
(1.1) of the form

u(t, η) ≈
2n∑
i=1

Ui (t)Zi (t, η), n � N , ∀ t ∈ T , η ∈ �, (1.2)

where the reduced basis {Ui }2ni=1 ⊂ R
2N , and the expansion coefficients {Zi }2ni=1 ⊂ R

can both change in time. The approximate reduced flow is then generated by the
velocity field resulting from the projection of the vector field XH in (1.1) into the
tangent space of the reduced space at the current state. By imposing that the evolv-
ing reduced space spanned by {Ui }2ni=1 is a symplectic manifold at every time the
continuous reduced dynamics preserves the geometric structure of the full model.

Low-rank approximations based on a modal decomposition of the approximate
solution with dynamically evolving modes similar to (1.2), have been widely studied
in quantum mechanics in the multiconfiguration time-dependent Hartree (MCTDH)
method, see e.g. [23]. In the finite dimensional setting, a similar approach, known as
dynamical low-rank approximation [20], provides a low-rank factorization updating
technique to efficiently compute approximations of time-dependent large data matri-
ces, by projecting the matrix time derivative onto the tangent space of the low-rank
matrix manifold. For the discretization of time-dependent stochastic PDEs, Sapsis
and Lermusiaux proposed in [31] the so-called dynamically orthogonal (DO) scheme,
where the deterministic approximation space adapts over time by evolving according
to the differential operator describing the stochastic problem. A connection between
dynamical low-rank approximations andDOmethods was established in [29]. Further,
a geometric perspective on the relation between dynamical low-rank approximation,
DO field equations and model order reduction in the context of time-dependent matri-
ces has been investigated in [14]. To the best of our knowledge, the onlywork to address
structure-preserving dynamical low-rank approximations is [28], where the authors
develop a DO discretization of stochastic PDEs possessing a symplectic Hamiltonian
structure. The method proposed in [28] consists in recasting the continuous PDE into
the complex setting and then applying a dynamical low-rank strategy to derive field
equations for the evolution of the stochastic modal decomposition of the approximate
solution. The approachwe propose for the nonlinear model order reduction of problem
(1.1) adopts a geometric perspective similar to [14] and yields an evolution equation
for the reduced solution analogous to [28], althoughwe do not resort to a reformulation
of the evolution problem in a complex framework.

Concerning the temporal discretization of the reduced dynamics describing the evo-
lution of the approximate solution (1.2), the low-dimensional system for the expansion
coefficients {Zi }2ni=1 is Hamiltonian and can be approximated using standard symplec-
tic integrators. On the other hand, the development of numerical schemes for the
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412 C. Pagliantini

evolution of the reduced basis is more involved as two major challenges need to be
addressed: (i) a structure-preserving approximation requires that the discrete evolution
remains on themanifold of symplectic and (semi-)orthogonal rectangularmatrices; (ii)
since the reduced basis forms a matrix with one dimension equal to the size of the full
model, the effectiveness of themodel reductionmight be thwartedby the computational
cost associated with the numerical solution of the corresponding evolution equation.
Various methods have been proposed in the literature to solve differential equations
on manifolds, see e.g. [15, Chapter IV]. Most notably projection methods apply a
conventional discretization scheme and, after each time step, a “correction” is made
by projecting the updated approximate solution to the constrained manifold. Alterna-
tively, methods based on the use of local parameterizations of the manifold, so-called
intrinsic, are well-developed in the context of differential equations on Lie groups, cf.
[15, Sect. IV.8]. The idea is to recast the evolution equation in the corresponding Lie
algebra, which is a linear space, and to then recover an approximate solution in the
Lie group via local coordinate maps. Instrinsic methods possess excellent structure-
preserving properties provided the local coordinate map can be computed exactly.
However, they usually require a considerable computational cost associated with the
evaluation of the coordinate map and its inverse at every time step (possibly at every
stage within each step).

We propose and analyze two structure-preserving temporal approximations and
show that their computational complexity scales linearly with the dimension of the full
model, under the assumption that the velocity field of the reduced flow can be evaluated
at a comparable cost. The first algorithm we propose is a Runge–Kutta Munthe–Kaas
(RK-MK) method [24], and we rely on the action on the orthosymplectic matrix
manifold by the quadratic Lie group of unitary matrices. By exploiting the structure
of our dynamical low-rank approximation and the properties of the local coordinate
map supplied by the Cayley transform, we prove the computational efficiency of
this algorithm with respect to the dimension of the high-fidelity model. However,
a polynomial dependence on the number of stages of the RK temporal integrator
might yield high computational costs in the presence of full models of moderate
dimension. To overcome this issue, we propose a discretization scheme based on the
use of retraction maps to recast the local evolution of the reduced basis on the tangent
space of the matrix manifold at the current state, inspired by the works [9,10] on
intrinsic temporal integrators for orthogonal flows.

The remainder of the paper is organized as follows. In Sect. 2 the geometric struc-
ture underlying the dynamics of Hamiltonian systems is presented, and the concept of
orthosymplectic basis spanning the approximate phase space is introduced. In Sect. 3
we describe the properties of linear symplectic maps needed to guarantee that the
geometric structure of the full dynamics is inherited by the reduced problem. Sub-
sequently, in Sect. 4 we develop and analyze a dynamical low-rank approximation
strategy resulting in dynamical systems for the reduced orthosymplectic basis and
the corresponding expansion coefficients in (1.2). In Sect. 5 efficient and structure-
preserving temporal integrators for the reduced basis evolution problem are derived.
Section 6 concerns a numerical test where the proposedmethod is compared to a global
reduced basis approach. We present some concluding remarks and open questions in
Sect. 7.
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Dynamical reduced basis methods for Hamiltonian systems 413

2 Hamiltonian dynamics on symplectic manifolds

The phase space of Hamiltonian dynamical systems is endowed with a differential
Poisson manifold structure which underpins the physical properties of the system.
Most prominently, Poisson structures encode a family of conserved quantities that, by
Noether’s theorem, are related to symmetries of the Hamiltonian. Here we focus on
dynamical systems whose phase space has a global Poisson structure that is canonical
and nondegenerate, namely symplectic.

Definition 2.1 (Symplectic vector space) Let V2N be a 2N -dimensional real vector
space. A skew-symmetric bilinear form ω : V2N × V2N → R is symplectic if it is
nondegenerate, i.e., if ω(u, v) = 0, for any v ∈ V2N , then u = 0. The map ω is called
a linear symplectic structure on V2N , and (V2N , ω) is called a symplectic vector space.

On a finite 2N -dimensional smooth manifold V2N , let ω be a 2-form, that is, for
any p ∈ V2N , the map ωp : TpV2N × TpV2N → R is skew-symmetric and bilinear
on the tangent space to V2N at p, and it varies smoothly in p. The 2-form ω is a
symplectic structure if it is closed and ωp is symplectic for all p ∈ V2N , in the sense
of Definition 2.1. A manifold V2N endowed with a symplectic structure ω is called a
symplectic manifold and denoted by (V2N , ω). The algebraic structure of a symplectic
manifold (V2N , ω) can be characterized through the definition of a bracket: Let dF
be the 1-form given by the exterior derivative of a given smooth function F . Then, for
all F ,G ∈ C∞(V2N ),

{F ,G}2N := 〈T ∗V2N
dF ,J2N dG〉 TV2N

= ω(J2N dF ,J2N dG), (2.1)

where 〈T ∗V2N
·, ·〉 TV2N

denotes the duality pairing between the cotangent and the
tangent bundle. The function J2N : T ∗V2N → TV2N is a contravariant 2-tensor
on the manifold V2N , commonly referred to as Poisson tensor. The space C∞(V2N )

of real-valued smooth functions over the manifold (V2N , {·, ·}2N ), together with the
bracket {·, ·}2N , forms a Lie algebra [1, Proposition 3.3.17].

To any functionH ∈ C∞(V2N ), the symplectic form ω allows to associate a vector
field XH ∈ TV2N , called Hamiltonian vector field, via the relation

dH = iXHω, (2.2)

where i denotes the contraction operator. Since ω is nondegenerate, XH ∈ TV2N is
unique. Any vector fieldXH on amanifoldV2N determines a phase flow, namely a one-
parameter group of diffeomorphisms �t

XH : V2N → V2N satisfying dt�t
XH(u) =

XH(�t
XH(u)) for all t ∈ T and u ∈ V2N , with �0

XH(u) = u. The flow of a Hamilto-
nian vector field satisfies (�t

XH)∗ω = ω, for each t ∈ T , that is �t
XH is a symplectic

diffeomorphism (symplectomorphism) on its domain.

Definition 2.2 (Symplectic map) Let (V2N , {·, ·}2N ) and (V2n, {·, ·}2n) be symplectic
manifolds of finite dimension 2N and 2n respectively, with n ≤ N . A smooth map
� : (V2N , {·, ·}2N ) → (V2n, {·, ·}2n) is called symplectic if it satisfies

�∗{F ,G}2n = {�∗F , �∗G}2N , ∀F ,G ∈ C∞(V2n).
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414 C. Pagliantini

In addition to possessing a symplectic phase flow, Hamiltonian dynamics is charac-
terized by the existence of differential invariants, and symmetry-related conservation
laws.

Definition 2.3 (Invariants of motion) A function I ∈ C∞(V2N ) is an invariant of
motion of the dynamical system (2.2), if {I,H}2N (u) = 0 for all u ∈ V2N . Conse-
quently, I is constant along the orbits of XH.

The Hamiltonian, if time-independent, is an invariant of motion. A particular subset
of the invariants of motion of a dynamical system is given by the Casimir invariants,
smooth functions C on V2N that {·, ·}2N -commute with every other functions, i.e.
{C,F}2N = 0 for all F ∈ C∞(V2N ). Since Casimir invariants are associated with
the center of the Lie algebra (C∞(V2N ), {·, ·}2N ), symplectic manifolds only possess
trivial Casimir invariants.

Resorting to a coordinate system, the canonical structure on a symplectic man-
ifold can be characterized by canonical charts whose existence is postulated in [1,
Proposition 3.3.21].

Definition 2.4 Let (V2N , {·, ·}2N ) be a symplectic manifold and (U , ψ) a cotangent
coordinate chartψ(u) = (q1(u), . . . , qN (u), p1(u), . . . , pN (u)), for all u ∈ U . Then
(U , ψ) is a symplectic canonical chart if and only if {qi , q j }2N = {pi , p j }2N = 0,
and {qi , p j }2N = δi, j on U for all i, j = 1, . . . , N .

In the local canonical coordinates introduced in Definition 2.4, the vector bundle
map J2N , defined in (2.1), takes the canonical symplectic form

J2N :=
(

0 Id
− Id 0

)
: T ∗VN × T ∗VN −→ TV2N ,

where Id and 0 denote the identity and zero map, respectively. Symplectic canonical
charts on a symplectic vector space allow to identify a Kälher structure, namely a
compatible combination of a scalar product and symplectic form, as follows. On a
symplectic vector space (V2N , ω), the operator J�

2N is an almost complex structure,
that is a linearmap onV2N such that J�

2N ◦J�
2N = − Id . Furthermore, J�

2N is compatible
with the symplectic structure ω, namely, for any u, v ∈ V2N , u �= 0, it holds

ω(J�
2Nu, J�

2Nv) = ω(u, v), and ω(u, J�
2Nu) > 0.

A symplectic formω on a vector space V2N together with a compatible positive almost
complex structure J�

2N determines an inner product on V2N , given by

(u, v) := ω
(
u, J�

2Nv
)

, ∀ u, v ∈ V2N . (2.3)

A symplectic basis on (V2N , ω) is an orthonormal basis for the compatible inner
product (2.3), andwe refer to it asorthosymplectic.A subspaceU of a symplectic vector
space (V2N , ω) is called Lagrangian if it coincides with its symplectic complement
in V2N , namely the set of u ∈ V2N such that ω(u, v) = 0 for all v ∈ U . As a
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Dynamical reduced basis methods for Hamiltonian systems 415

consequence of the fact that any basis of a Lagrangian subspace of a symplectic vector
space can be extended to a symplectic basis, every symplectic vector space admits an
orthosymplectic basis, cf. for example [5, Sect. 1.2].

With the definitions introduced hitherto, we can recast the dynamical system (1.1)
on a symplectic vector space (V2N , ω) as a Hamiltonian initial value problem. For
each η ∈ �, and for u0(η) ∈ V2N , find u(·, η) ∈ C1(T ,V2N ) such that

{
∂t u(t, η) = J2N∇uH(u(t, η); η), for t ∈ T ,

u(t0, η) = u0(η),
(2.4)

where H(·, η) ∈ C∞(V2N ) is the Hamiltonian function, and ∇u denotes the gradient
with respect to the variable u. The well-posedness of (2.4) is guaranteed by assuming
that, for any fixed η ∈ �, the operator XH : V2N × � → R defined as XH(u, η) :=
J2N∇uH(u; η) is Lipschitz continuous in u uniformly in t ∈ T in a suitable norm.

3 Orthosymplectic matrices

In order to construct surrogate models preserving the physical and geometric proper-
ties of the original Hamiltonian dynamics we build approximation spaces of reduced
dimension endowed with the same geometric structure of the full model. To this aim,
the reduced space is constructed as the span of suitable symplectic and orthonormal
time-dependent bases, so that the reduced space inherits the geometric structure of
the original dynamical system. In this Section we describe the properties of linear
symplectic maps between finite dimensional symplectic vector spaces.

Analogously to [1, p. 168], we can easily extend the characterization of symplectic
linear maps to the case of vector spaces of different dimension as in the following
result.

Lemma 3.1 Let (V2N , ω) and (V2n, ω) be symplectic vector spaces of finite dimension
2N and 2n, respectively, with N ≥ n. A linear map M+ : (V2N , ω) → (V2n, ω)

is symplectic, in the sense of Definition 2.2, if and only if the corresponding matrix
representation M+ ∈ R

2n×2N satisfies M+ J2N M�+ = J2n.

We define symplectic right inverse of the symplectic matrix M+ ∈ R
2n×2N the

matrix M = J2N M�+ J�
2n ∈ R

2N×2n . It can be easily verified that M+M = I2n , and
that M : (V2n, ω) → (V2N , ω) is the adjoint operator with respect to the symplectic
form ω, i.e. ω(M+u, y) = ω(u, My) for any u ∈ V2N , and y ∈ V2n . Furthermore,
the symplectic condition M+ J2N M�+ = J2n is equivalent to M� J2N M = J2n . Owing
to this equivalence, with a small abuse of notation, we will say that M ∈ R

2N×2n is
symplectic if it belongs to the space

Sp
(
2n,R2N

)
:=

{
L ∈ R

2N×2n : L� J2N L = J2n
}

.
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416 C. Pagliantini

Definition 3.2 A matrix M ∈ R
2N×2n is called orthosymplectic if it belongs to the

space

U
(
2n,R2N

)
:= St

(
2n,R2N

)
∩ Sp

(
2n,R2N

)
,

where St(2n,R2N ) := {M ∈ R
2N×2n : M�M = I2n} is the Stiefel manifold.

Orthosymplectic rectangular matrices can be characterized as follows.

Lemma 3.3 Let M+ ∈ R
2n×2N be symplectic and let M ∈ R

2N×2n be its symplectic
inverse. Then, M+M�+ = I2n if and only if M = M�+ .

Proof Let M = [A | B] with A, B ∈ R
2N×n . The (semi-)orthogonality and symplec-

ticity of M+ give A�A = B�B = In and A� J2N B = In . These conditions imply
that the column vectors of A and J2N B have unit norm and are pairwise parallel,
hence A = J2N B. Therefore, M = [A | J�

2N A] with A�A = In and A� J2N A = 0n .
The definition of symplectic inverse yields M�+ = J�

2N M J2n = J�
2N [A | J�

2N A]J2n =
[J�

2N A | −A]J2n = [A | J�
2N A] = M .

Conversely, the symplecticity of M+ implies M+M�+ = M+ J2N M�+ J�
2n = I2n . ��

In order to design numerical methods for evolution problems on the manifold
U(2n,R2N ) of orthosymplectic rectangular matrices, we will need to characterize its
tangent space. To this aim we introduce the vector space so(2n) of skew-symmetric
2n × 2n real matrices so(2n) := {M ∈ R

2n×2n : M� + M = 02n}, and the vector
space sp(2n) of Hamiltonian 2n×2n real matrices, namely sp(2n) := {M ∈ R

2n×2n :
MJ2n + J2nM� = 02n}. Throughout, if not otherwise specified, we will denote with
G2n := U(2n) the Lie group of orthosymplectic 2n × 2n matrices and with g2n the
corresponding Lie algebra g2n := so(2n) ∩ sp(2n), with bracket given by the matrix
commutator adM (L) = [M, L] := ML − LM , for any M, L ∈ g2n .

4 Orthosymplectic dynamical reduced basis method

Assume we want to solve the parameterized Hamiltonian problem (2.4) at p ∈ N

samples of the parameter {η j }pj=1 =: �h ⊂ R
pd . To simplify the notation we take

d = 1, namely we assume that the parameter η is a scalar quantity, for vector-valued η

the derivation henceforth appliesmutatismutandis. Then, theHamiltonian system (2.4)
can be recast as a set of ordinary differential equations in a 2N × p matrix unknown.
Let ηh ∈ R

p denote the vector of sampled parameters, the evolution problem reads:
For R0(ηh) := [

u0(η1)| . . . |u0(ηp)
] ∈ R

2N×p, find R ∈ C1(T ,R2N×p) such that

{
Ṙ(t) = XH(R(t), ηh), for t ∈ T ,

R(t0) = R0(ηh).
(4.1)
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Let n � N , to characterize the reduced solution manifold we consider an approxima-
tion of the solution of (4.1) of the form

R(t) ≈ R(t) =
2n∑
i=1

Ui (t)Zi (t, ηh) = U (t)Z(t)�, (4.2)

whereU = [
U1| . . . |U2n

] ∈ R
2N×2n , and Z ∈ R

p×2n is such that Z j,i (t) = Zi (t, η j )

for i = 1, . . . , 2n, and j = 1, . . . , p. Since we aim at a structure-preserving model
order reduction of (4.1), we impose that the basis U (t) is orthosymplectic at all t ∈
T , in analogy with the symplectic reduction techniques employing globally defined
reduced spaces. Here, since U is changing in time, this means that we constrain its
evolution to the manifold U(2n,R2N ) from Definition 3.2. With this in mind, the
reduced solution is sought in the reduced space defined as

Mspl
2n :=

{
R ∈ R

2N×p : R = UZ� with U ∈ M, Z ∈ V p×2n
}

, (4.3)

where

M := U
(
2n,R2N

)
=

{
U ∈ R

2N×2n : U�U = I2n, U� J2NU = J2n
}

,

V p×2n :=
{
Z ∈ R

p×2n : rank(Z�Z + J�
2n Z

�Z J2n) = 2n
}

.
(4.4)

Note that (4.3) is a smooth manifold of dimension 2(N + p)n − 2n2, as follows from
the characterization of the tangent space given in Proposition 4.1. The characterization
of the reduced manifold (4.3) is analogous to [28, Definition 6.2]. Let C ∈ R

2n×2n

denote the correlation matrix C := Z�Z . The full-rank condition in (4.4),

rank(C + J�
2nC J2n) = 2n, (4.5)

guarantees that, for Z fixed, if UZ� = WZ� with U ,W ∈ M, then U = W . If the
full-rank condition (4.5) is satisfied, then the number p of samples of the parameter
η ∈ � satisfies p ≥ n. This means that, for a fixed p, a too large reduced basis
might lead to a violation of the full rank condition, which would entail a rank-deficient
evolution problem for the coefficient matrix Z ∈ R

p×2n . This is related to the problem
of overapproximation in dynamical low-rank techniques, see [20, Sect. 5.3]. Observe
also that if p ≥ 2n and rank(Z) = 2n then the full rank condition (4.5) is always
satisfied. In general, the elements of Mspl

2n might not have full rank 2n: for any R ∈
Mspl

2n it holds rank(Z) ≤ rank(R) ≤ min{2n, p}.
The decomposition UZ� of matrices inMspl

2n is not unique: the map φ : (U , Z) ∈
M × V p×2n �→ R = UZ� ∈ Mspl

2n is surjective but not injective. In particular,

(M × V p×2n,Mspl
2n , φ,U(2n)) is a fiber bundle with fibers given by the group of

unitary matrices U(2n), andMspl
2n is isomorphic to (M/U(2n))× V p×2n . Indeed, let
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U1 ∈ M and Z1 ∈ V p×2n , then, for any arbitrary A ∈ U(2n), it holds U2 := U1A ∈
M, Z2 := Z1A ∈ V p×2n , and U1Z�

1 = U2Z�
2 .

In dynamically orthogonal approximations [31] a characterization of the reduced
solution is obtained by fixing a gauge constraint in the tangent space of the reduced
solution manifold. For the manifold Mspl

2n the tangent space at R ∈ Mspl
2n is defined

as the set of X ∈ R
2N×p such that there exists a differentiable path γ : (−ε, ε) ⊂

T → R
2N×p with γ (0) = R, γ̇ (0) = X . The tangent vector at U (t)Z�(t) ∈

Mspl
2n is of the form X = U̇ Z� + U Ż�, where U̇ and Ż denote the time derivatives

of U (t) and Z(t), respectively. Taking the derivative of the orthogonality constraint
on U yields U̇�U + U�U̇ = 0. Analogously, the symplecticity constraint gives
U̇� J2NU + U� J2NU̇ = 0 which is equivalent to U̇�U J2n + J2nU�U̇ = 0 owing
to the fact that U ∈ Sp(2n,R2N ). Therefore, the tangent space of Mspl

2n at UZ� is
defined as

TUZ�Mspl
2n = {X ∈ R

2N×p : X = XU Z� +UX�
Z with XZ ∈ R

p×2n,

XU ∈ R
2N×2n, X�

UU ∈ g2n}.
(4.6)

However, this parameterization is not unique. Indeed, let S ∈ g2n be arbitrary: if
X�
UU ∈ g2n then the matrix (XU + US)�U belongs to g2n , and the pairs (XU , XZ )

and (XU + US, XZ + ZS) identify the same tangent vector X := XU Z� + UX�
Z .

We fix the parameterization of the tangent space as follows.

Proposition 4.1 The tangent space ofMspl
2n atU Z� defined in (4.6) is uniquely param-

eterized by the space H(U ,Z) := HU × R
p×2n, where

HU :=
{
XU ∈ R

2N×2n : X�
UU = 0, XU J2n = J2N XU

}
. (4.7)

This means that the map

� : H(U ,Z) −→ TUZ�Mspl
2n

(XU , XZ ) �−→ XU Z� +UX�
Z ,

is a bijection.

Proof We first observe that, if (XU , XZ ) ∈ H(U ,Z) then X�
UU ∈ g2n is trivially

satisfied, and hence XU Z� +UX�
Z ∈ TUZ�Mspl

2n .

To show that the map� is injective, we take X = 0 ∈ TUZ�Mspl
2n . By the definition

of the tangent space (4.6), the zero vector admits the representation 0 = XU Z�+UX�
Z

with U�XU = 0. This implies 0 = U�(XU Z� +UX�
Z ) = X�

Z . Hence, XU Z� = 0
and

0 = XU Z�Z + J2N XU Z�Z J�
2n

= XU Z�Z + J�
2N XU J2n J2n Z

�Z J�
2n

= XU

(
Z�Z + J2n Z

�Z J�
2n

)
,
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which implies XU = 0 in view of the full-rank condition (4.5).
For the surjectivity of � we show that

∀ X ∈ TUZ�Mspl
2n ∃ (XU , XZ ) ∈ H(U ,Z) such that X = XU Z� +UX�

Z .

Any X ∈ TUZ�Mspl
2n can be written as X = U̇ Z� + U Ż� where Ż ∈ R

p×2n and
U̇ ∈ R

2N×2n satisfies U̇�U ∈ g2n . Hence, the tangent vector X can be recast as

X = U̇ Z� +U Ż� = U
(
Ż� +U�U̇ Z�)

+
((

I2N −UU�)
U̇

)
Z�.

We need to show that the pair (XU , XZ ), defined as XU := (I2N − UU�)U̇ and
XZ := Ż + ZU̇�U , belongs to the space H(U ,Z). From the orthogonality of U it
easily follows that

U�XU = U� (
I2N −UU�)

U̇ = U�U̇ −U�U̇ = 0.

To prove that XU = J�
2N XU J2n , we introduce the matrix S := Z�Z + J2n Z�Z J�

2n ∈
R
2n×2n for which it holds SJ2n = J2n S. We then show the equivalent condition

XU SJ�
2n = J�

2N XU S. First, we add to XU the zero term (I2N − UU�)U (Ż�Z +
J2n Ż�Z J�

2n), and use the symplectic constraint on U and its temporal derivative to
get

XU =
(
I2N −UU�)

U̇ =
(
I2N −UU�)

U̇ SS−1

=
(
I2N −UU�) (

U
(
Ż�Z + J2n Ż

�Z J�
2n

)
+ U̇

(
Z�Z + J2n Z

�Z J�
2n

))
S−1

=
(
I2N −UU�) (

X Z + J2N X Z J�
2n

)
S−1.

Then, using the commutativity of the symplectic unit J2N and the projection onto
the orthogonal complement to the space spanned by U , i.e. (I2N − UU�)J2N =
J2N (I2N −UU�), results in

XU SJ�
2n =

(
I2N −UU�) (

X Z + J2N X Z J�
2n

)
J�
2n

= J�
2N

(
I2N −UU�)

J2N
(
X Z J�

2n + J�
2N X Z

)
= J�

2N XU S.

��
Remark 4.2 Proposition 4.1 provides a connection on the fiber bundle (M ×
V p×2n,Mspl

2n , φ,U(2n)) via the smooth splitting TUZ�Mspl
2n = V(U ,Z) ⊕ H(U ,Z),

for any UZ� ∈ Mspl
2n . The factor V(U ,Z), the vertical space, is the subspace of

TUZ�Mspl
2n that consists of all vectors tangent to the fiber of UZ�, while the space

H(U ,Z) := HU ×R
p×2n , with HU defined in (4.7), is a horizontal space. This decom-

position into the subset of directions tangent to the fiber and its complementary space
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provides a unique parameterization of the tangent space. We refer the reader to e.g.
[13] and [19, Chapter 2], for further details on the topic.

Owing to Proposition 4.1, the tangent space of Mspl
2n can be characterized as

TUZ�Mspl
2n = {X ∈ R

2N×p : X = XU Z� +UX�
Z with XZ ∈ R

p×2n,

XU ∈ R
2N×2n, X�

UU = 0, XU J2n = J2N XU },
Henceforth, we consider M endowed with the metric induced by the ambient space
C
2N×2n , namely the Frobenius inner product 〈A, B〉 := tr(AHB), where AH denotes

the conjugate transpose of the complex matrix A, and we will denote with ‖·‖ the
Frobenius norm. Note that, on simple Lie algebras, the Frobenius inner product is a
multiple of the Killing form.

4.1 Dynamical low-rank symplectic variational principle

For any fixed η ∈ �, the vector field XH in (2.4) at time t belongs to Tu(t)V2N .
Taking the cue from dynamical low-rank approximations [20], we derive a dynamical
system on the reduced space Mspl

2n via projection of the velocity field XH of the

full dynamical system (4.1) onto the tangent space of Mspl
2n at the current state. The

reduced dynamical system is therefore optimal in the sense that the resulting vector
field is the best dynamic approximation of XH, in the Frobenius norm, at every point
on the manifold V2N . To preserve the geometric structure of the full dynamics we
construct a projection which is symplectic for each value of the parameter η j ∈ �h ,
with 1 ≤ j ≤ p. To this aim, let us introduce on the symplectic vector space (V2N , ω)

the family of skew-symmetric bilinear forms ω j : R2N×p ×R
2N×p → R defined as

ω j (a, b) := ω(a j , b j ), 1 ≤ j ≤ p, (4.8)

where a j ∈ R
2N denotes the j-th column of the matrix a ∈ R

2N×p, and similarly for
b j ∈ R

2N .

Proposition 4.3 Let TRMspl
2n be the tangent space of the symplectic reduced manifold

Mspl
2n , defined in (4.3), at a given R := UZ� ∈ Mspl

2n . Let S := Z�Z + J2n Z�Z J2n ∈
R
2n×2n. Then, the map



TRMspl

2n
: R2N×p −→ TRMspl

2n

w �−→ (I2N −UU�)(wZ + J2NwZ J�
2n)S

−1Z� +UU�w,

is a symplectic projection, in the sense that

p∑
j=1

ω j
(
w − 


TRMspl
2n

w, y
) = 0, ∀ y ∈ TRMspl

2n ,

where ω j is defined in (4.8).
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Proof Let XU (w) := (I2N −UU�)(wZ + J2NwZ J�
2n)(Z

�Z + J2n Z�Z J�
2n)

−1 and
XZ (w) = w�U . Using a reasoning analogous to the one in the proof of Propo-
sition 4.1, it can be shown that (XU , XZ ) ∈ H(U ,Z). Moreover, by means of the

identification T TRMspl
2n

∼= TRMspl
2n , we prove that 
 := 


TRMspl
2n

is a projection.

It can be easily verified that XZ (
w) = (
w)�U = XZ (w). Furthermore, let
Fw := wZ + J2NwZ J�

2n ∈ R
2N×2n , then

XU (
w) =
(
I2N −UU�) ((

I2N −UU�)
FwS

−1Z�Z

+J2N
(
I2N −UU�)

FwS
−1Z�Z J�

2n

)
S−1

= XU (w)Z�ZS−1 + J2N XU (w)Z�Z J�
2n S

−1.

Since XU (w)J2n = J2N XU (w), it follows that XU (
w) = XU (w).
Assume we have fixed a parameter η j ∈ � so that p = 1. Let v := w j ∈ R

2N be
the j-th column of the matrix w ∈ R

2N×p and, hence, 
v ∈ R
2N . We want to show

that ω(v − 
v, y) = 0 for all y ∈ TRMspl
2n . By the characterization of the tangent

space from Proposition 4.1, any y ∈ TRMspl
2n is of the form y = YU Z� +UY�

Z where
YZ ∈ R

1×2n and YU ∈ HU . Therefore,

ω(v − 
v, y) = ω
(
v − 
v,YU Z�)

+ ω
(
v,UY�

Z

)
− ω

(
XU Z� +UX�

Z ,UY�
Z

)
,

where XU = XU (v) and XZ = XZ (v), but henceforth we omit the dependence on v.
Using the definition of XZ and the symplecticity of the basisU the last term becomes

ω
(
UX�

Z ,UY�
Z

)
= ω

(
UU�v,UY�

Z

)
= ω

(
v, J�

2NU J2nU
�UY�

Z

)

= ω
(
v, J�

2NU J2nY
�
Z

)
= ω

(
v,UY�

Z

)
.

Moreover, it can be easily checked that ω(XU Z�,UY�
Z ) = 0 by definition of XU and

by the orthosymplecticity ofU . Hence, the only non-trivial terms are ω(v −
v, y) =
ω(v,YU Z�) − ω(
v,YU Z�). Any YU ∈ HU can be written as YU = 1

2 (YU +
J�
2NYU J2n); thereby

ω(v − 
v, 2y) = ω
(
v,YU Z� + J�

2NYU J2n Z
�)

− ω
(
XU Z� +UX�

Z ,YU Z� + J�
2NYU J2n Z

�)
=: T1 − T2.

We need to prove that T1 and T2 coincide. LetMi ∈ R
2N denote the i-th column vector

of a given matrix M ∈ R
2N×2n . The properties of the symplectic canonical form ω

yield
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T1 = ω

(
v,

2n∑
i=1

(YU )i Zi

)
+ ω

(
J2Nv,

2n∑
i=1

(YU )i (J2n Z
�)i

)

=
2n∑
i=1

ω
(
v, (YU )i

)
Zi +

2n∑
i=1

ω

(
J2Nv, (YU )i

)(
J2n Z

�
)
i

=
2n∑
i=1

ω

(
vZi + J2Nv

(
Z J�

2n

)
i , (YU )i

)
.

To deal with the term T2 first observe that ω(UX�
Z ,YU Z�) = 0 since Y�

U U = 0.
Moreover, using once more the fact that YU ∈ HU results in

T2 = ω
(
XU Z�,YU Z�)

+ ω
(
XU J2n Z

�,YU J2n Z
�)

=
2n∑

i, j=1

ω
(
(XU ) j Z j , (YU )i Zi

) + ω
(
(XU ) j

(
J2n Z

�)
j , (YU )i

(
J2n Z

�)
i

)

=
2n∑

i, j=1

ω
(
(XU ) j , (YU )i

) (
Z j Zi + (

J2n Z
�)

j

(
Z J�

2n

)
i

)
.

The result follows by definition of XU (v). ��
Remark 4.4 Owing to the inner product structure (2.3), the projection operator from
Proposition 4.3 is orthogonal in the Frobenius norm since

p∑
j=1

ω j

(
w − 


TRMspl
2n

w, y
)

= 〈w − 

TRMspl

2n
w, J2N y〉 = 0, ∀ y ∈ TRMspl

2n .

This means that the projection gives the best low-rank approximation of the velocity
vector, and hence the reduced dynamics is associated with the flow field ensuing from
the best approximation in the tangent space to the reduced manifold.

To compute the initial condition of the reduced problem, we perform the complex
SVD ofR0(ηh) ∈ R

2N×p truncated at the n-th mode. Then the initial value U0 ∈ M
is obtained from the resulting unitary matrix of left singular vectors of R0(ηh) by
exploiting the isomorphism betweenM and St(n,CN ), cf.Lemma 4.8. The expansion
coefficientsmatrix is initialized as Z0 = R0(ηh)

�U0. Therefore, the dynamical system
for the approximate reduced solution (4.2) reads: Find R ∈ C1(T ,Mspl

2n ) such that

{
Ṙ(t) = 


TRMspl
2n
XH(R(t), ηh), for t ∈ T ,

R(t0) = U0Z�
0 .

(4.9)

For any 1 ≤ j ≤ p and t ∈ T , let Z j (t) ∈ R
1×2n be the j-th row of the matrix Z(t) ∈

V p×2n , and let Y (t) := [Y1| . . . |Yp] ∈ R
2N×p where Y j := ∇UZ�

j
H(UZ�

j , η j ) ∈
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R
2N×1, and∇UZ�

j
denotes the gradient with respect toUZ�

j . Using the decomposition

R = UZ� in (4.3), we can now derive from (4.9) evolution equations for U and Z :
Given R0(ηh) ∈ R

2N×p, find (U , Z) ∈ C1(T ,M) × C1(T , V p×2n) such that

⎧⎨
⎩

Ż j (t) = J2n∇Z jH(UZ�
j , η j ), t ∈ T , 1 ≤ j ≤ p,

U̇ (t) = (I2N −UU�)(J2NY Z − Y Z J�
2n)S

−1, t ∈ T ,

U (t0)Z(t0)� = U0Z�
0 .

(4.10)

The reduced problem (4.10) is analogous to the system derived in [28, Proposition
6.9]. The evolution equations for the coefficients Z form a system of p equations in
2n unknowns and correspond to the Galerkin projection onto the space spanned by
the columns of U , as obtained with a standard reduced basis method. Here, however,
the projection is changing over time as the reduced basis U is evolving. For U fixed,
the flow map characterizing the evolution of each Z j , for 1 ≤ j ≤ p, is a symplec-
tomorphism (cf. Definition 2.2), i.e. the dynamics is canonically Hamiltonian. The
evolution problem satisfied by the basisU is a matrix equation in 2N × 2n unknowns
on the manifold of orthosymplectic rectangular matrices introduced in Definition 3.2,
as shown in the following result.

Proposition 4.5 If U (t0) ∈ M thenU (t) ∈ R
2N×2n solution of (4.10) satisfies U (t) ∈

M for all t ∈ T .

Proof We first show that, for any matrix W (t) ∈ R
2N×2n , if W (t0) ∈ M and

Ẇ ∈ HW , with HW defined in (4.7), then W (t) ∈ M for any t > t0. The
condition Ẇ�W = 0 implies dt (W�(t)W (t)) = Ẇ�W + W�Ẇ = 0, hence
W�(t)W (t) = W�(t0)W (t0) = I2n by the assumption on the initial condition.
Moreover, the condition Ẇ = J�

2N Ẇ J2n together with the dynamical orthogo-
nality Ẇ�W = 0 results in dt (W�(t)J2NW (t)) = Ẇ� J2NW + W� J2N Ẇ =
J�
2nẆ

�W + W�Ẇ J�
2n = 0. Hence, the symplectic constraint on the initial condi-

tion yields W�(t)J2NW (t) = W�(t0)J2NW (t0) = J2n .
Owing to the reasoning above, we only need to verify that the solution of (4.10)

satisfies U̇ ∈ HU . The dynamical orthogonal condition U̇�U = 0 is trivially satisfied.
Moreover, since SJ2n = J2n S, the constraint U̇ = J�

2NU̇ J2n is satisfied if U̇ S J�
2n =

J�
2NU̇ S. One can easily show that A := J2NY Z − Y Z J�

2n = J2N AJ�
2n . Therefore,

U̇ S J�
2n = (I2N −UU�)AJ�

2n = J�
2N (I2N −UU�)J2N AJ�

2n = J�
2NU̇ S. ��

Remark 4.6 Observe that the dynamical reduced basis technique proposed in the pre-
vious Section can be extended to more general Hamiltonian systems endowed with
a degenerate constant Poisson structure. The idea is to proceed as in [16, Sect. 3] by
splitting the dynamics into the evolution on a symplectic submanifold of the phase
space and the trivial evolution of the Casimir invariants. The symplectic dynamical
model order reduction developed in Sect. 4 can then be performed on the symplectic
component of the dynamics.
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4.2 Conservation properties of the reduced dynamics

The velocity field of the reduced flow (4.9) is the symplectic projection of the full
model velocity onto the tangent space of the reducedmanifold. For any fixed parameter
η j ∈ �h , let H j := H(·, η j ). In view of Proposition 4.3, the reduced solution R ∈
C1(T ,Mspl

2n ) satisfies the symplectic variational principle

p∑
j=1

ω j
(
Ṙ − J2N∇H j (R), y

) = 0, ∀ y ∈ TRMspl
2n .

This implies that the HamiltonianH is a conserved quantity of the continuous reduced
problem (4.10). Indeed,

p∑
j=1

d

dt
H j (R(t)) =

p∑
j=1

(∇R jH j (R), Ṙ j
) =

p∑
j=1

ω
(
J2N∇R jH j (R), Ṙ j

)

=
p∑

j=1

ω j (Ṙ, Ṙ) = 0.

Therefore, ifR0(ηh) ∈ span{U0} then the Hamiltonian is preserved,

p∑
j=1

(
H j (R(t)) − H j (R(t))

) =
p∑

j=1

(
H j (R0) − H j (R(t0))

)

=
p∑

j=1

(
H j (R0) − H j (U0U

�
0 R0)

)
.

To deal with the other invariants of motion, let us assume for simplicity that p = 1.
Since the linear map R

2N → span{U (t)} associated with the reduced basis at any
time t ∈ T cannot be symplectic, the invariants of motion of the full and reduced
model cannot be in one-to-one correspondence. Nevertheless, a result analogous to
[16, Lemma 3.9] holds.

Lemma 4.7 Let π∗+,t be the pullback of the linear map associated with the reduced
basis U�(t) at time t ∈ T . Assume that H ∈ Im(π∗+,t ) for any t ∈ T . Then, I(t) ∈
C∞(R2n) is an invariant of �t

Xπ∗+,tH
if and only if (π∗+,tI)(t) ∈ C∞(R2N ) is an

invariant of �t
XH in Im(π∗+,t ).

4.3 Convergence estimates with respect to the best low-rank approximation

In order to derive error estimates for the reduced solution of problem (4.9), we extend
to our setting the error analysis of [14, Sect. 5] which shows that the error committed
by the dynamical approximation with respect to the best low-rank approximation is
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bounded by the projection error of the full model solution onto the reduced manifold
of low-rank matrices. To this aim, we resort to the isomorphism between the reduced
symplectic manifold Mspl

2n defined in (4.3) and the manifold Mn of rank-n complex
matrices, already established in [28, Lemma 6.1]. Then, we derive the dynamical
orthogonal approximation of the resulting problem in the complex setting and prove
that it is isomorphic to the solution of the reduced Hamiltonian system (4.9). The
differentiability properties of orthogonal projections onto smooth embeddedmanifolds
and the trivial extension to complex matrices of the curvature bounds in [14] allows
to derive an error estimate.

Let L(�) denote the set of functions with values in the vector space �, and let
F : L(R2N×p) → L(CN×p) be the isomorphism

R(·) =
(
Rq(·)
Rp(·)

)
�−→ F(R)(·) = Rq(·) + i Rp(·). (4.11)

Then, problem (4.1) can be recast in the complex setting as: For R0(ηh) ∈ R
2N×p,

find C ∈ C1(T ,CN×p) such that

{
Ċ(t) = F(XH)(C(t), ηh) =: X̂H(C(t), ηh), for t ∈ T ,

C(t0) = F(R0)(ηh).
(4.12)

Similarly to dynamically orthogonal approximations we consider the manifold of
rank-n complex matrices Mn := {C ∈ C

N×p : rank(C) = n}. Any C ∈ Mn

can be decomposed, up to unitary n × n transformations, as C = WY� where W ∈
St(n,CN ) = {M ∈ C

N×n : MHM = In}, and Y ∈ V p×n := {M ∈ C
p×n :

rank(M) = n}. Analogously to [28, Lemma 6.1] one can establish the following
result.

Lemma 4.8 The manifolds Mn and Mspl
2n are isomorphic via the map

(U , Z) ∈ M × V p×2n �−→
(
F(A),F

(
Z�)�)

∈ St
(
n,CN ) × V p×n, (4.13)

where F is defined in (4.11) and A ∈ R
2N×n is such that U = [A | J�

2N A] in view of
Lemma 3.3.

ForC(t0) ∈ Mn associatedwith R(t0) ∈ Mspl
2n via themap (4.13), we can therefore

derive the DO dynamical system: find C ∈ C1(T ,Mn) such that

Ċ(t) = 
TCMn X̂H(C(t), ηh), for t ∈ T , (4.14)

where 
TCMn is the projection onto the tangent space of Mn at C = WY�, defined
as

TCMn =
{
X ∈ C

N×p : X = XWY� + WX�
Y with XY ∈ C

p×n,

XW ∈ C
N×n, XH

WW + WHXW = 0
}

.
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The so-called dynamically orthogonal condition XH
WW = 0, allows to uniquely param-

eterize the tangent space TCMn by imposing that the complex reduced basis evolves
orthogonally to itself.

Let M∗ indicate the complex conjugate of a given matrix M . The projection onto
the tangent space of Mn can be characterized as in the following result.

Lemma 4.9 At every C = WY� ∈ Mn, the map


TCMn : CN×p −→ TCMn

w �−→ (
IN − WWH

)
w Y ∗(Y�Y ∗)−1

Y� + WWHw,
(4.15)

is the ‖·‖-orthogonal projection onto the tangent space ofMn at C.

Proof The result can be derived similarly to the proof of [14, Proposition 7] by min-
imizing the convex functional J(XW , XY ) := 1

2‖w − XWY� − WX�
Y ‖2 under the

constraint XH
WW = 0. ��

Using the expression (4.15) for the projection onto the tangent space of Mn ,
we can derive from (4.14) evolution equations for the terms W and Y : Given
C0 = 
MnC(t0) ∈ C

N×p orthogonal projection onto Mn , find (W ,Y ) ∈
C1(T ,St(n,CN )) × C1(T ,V p×n) such that

{
Ẏ ∗(t) = X̂H

H(WY�, ηh)W , t ∈ T ,

Ẇ ∗(t) = (IN − W ∗W�)X̂ ∗
H(WY�, ηh)Y (YHY )−1, t ∈ T .

(4.16)

Proposition 4.10 Under the assumption of well-posedness, problem (4.9) is equivalent
to problem (4.14).

Proof The proof easily follows from algebraic manipulations of the field equations
(4.10) and (4.16) and from the definition of the isomorphism (4.13). ��

In view of Proposition 4.10, we can revert to the error estimate established in [14].

Theorem 4.11 ([14, Theorem 32]). Let C ∈ C1(T ,CN×p) denote the exact solution
of (4.12) and let C ∈ C1(T ,Mn) be the solution of (4.14) at time t ∈ T . Assume that
no crossing of the singular values of C occurs, namely

σn(C(t)) > σn+1(C(t)), ∀ t ∈ T .

Let 
Mn be the ‖·‖-orthogonal projection onto Mn. Then, at any time t ∈ T , the
error between the approximate solution C(t) and the best rank-n approximation of
C(t) can be bounded as

‖C(t) − 
MnC(t)‖ ≤
∫
T

ν‖C(s) − 
MnC(s)‖eμ(t−s) ds,

where μ ∈ R and ν ∈ R are defined as

μ := LX + 2 sup
t∈T

‖XH(C(t), ηh)‖
σn(C(t))

, ν := LX + ‖XH(C(s), ηh)‖
σn(C(s)) − σn+1(C(s))

,
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and LX ∈ R denotes the Lipschitz continuity constant of XH.

The remainder of this work pertains to numerical methods for the temporal dis-
cretization of the reduced dynamics (4.10). Since we consider splitting techniques,
see e.g. [15, Sect. II.5], the evolution problems for the expansion coefficients and
for the reduced basis are examined separately. The coefficients Z(t) ∈ V p×2n of
the expansion (4.2) satisfy a Hamiltonian dynamical system (4.10) in the reduced
symplectic manifold of dimension 2n spanned by the evolving orthosymplectic basis
U (t) ∈ M. The numerical approximation of the evolution equation for Z(t) can,
thus, be performed using symplectic integrators, cf. [15, Sect. VI]. Observe that the
use of standard splitting techniques might require the approximate reduced solution,
at a given time step, to be projected into the space spanned by the updated basis.
This might cause an error in the conservation of the invariants due to the projection
step, that, however, can be controlled under sufficiently small time steps. In princi-
ple, exact conservation can be guaranteed if the evolution of the reduced basis evolves
smoothly at the interface of temporal interval (or temporal subintervals associatedwith
the splitting), or, in other words, if the splitting is synchronous and the two systems
are concurrently advanced in time. We postpone to future work the investigation and
the numerical study of splitting methods that exactly preserve the Hamiltonian.

5 Numerical methods for the evolution of the reduced basis

Contrary to global projection-based model order reduction, dynamical reduced basis
methods eschew the standard online-offline paradigm. The construction and evolution
of the local reduced basis (4.10) does not require queries of the high-fidelity model
so that the method does not incur a computationally expensive offline phase. How-
ever, the evolution of the reduced basis entails the solution of a matrix equation in
which one dimension equals the size of the full model. Numerical methods for the
solution of (4.10) will have arithmetic complexity min{CR,CF } where CF is the
computational cost required to evaluate the velocity field of (4.10), and CR denotes
the cost associated with all other operations. Assume that the cost to evaluate the
Hamiltonian at the reduced solution has order O(α(N )). Then, a standard algorithm
for the evaluation of the right hand side of (4.10) will have arithmetic complexity
CF = O(α(N )) + O(Nn2) + O(Np n) + O(n3), where the last two terms are asso-
ciated with the computation of Y Z , and the inversion of C + J�

2nC J2n , respectively.
This Section focuses on the development of structure-preserving numerical methods
for the solution of (4.10) such that CR is at most linear in N . The efficient treatment
of the nonlinear terms is out of the scope of the present study and will be the subject
of future investigations on structure-preserving hyper-reduction techniques.

To simplify the notation,we recast (4.10) as: For Q ∈ M, findU ∈ C1(T ,R2N×2n)

such that

{
U̇ (t) = F(U (t)), for t ∈ T ,

U (t0) = Q,
(5.1)
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where, for any fixed t ∈ T ,

F(U ) := (
I2N −UU�)(

J2NY Z − Y Z J�
2n

)(
Z�Z + J�

2n Z
�Z J2n

)−1
. (5.2)

Observe that F : U ∈ M �→ F(U ) ∈ HU ⊂ TUM, where HU is defined as in (4.7),
and TUM = {V ∈ R

2N×2n : U�V ∈ g2n}. In a temporal splitting perspective, we
assume that the matrix Z(t) ∈ V p×2n is given at each time instant t ∈ T . Owing
to Proposition 4.5, if Q ∈ M, then U (t) ∈ M for all t ∈ T . Then, the goal is to
develop an efficient numerical scheme such that the discretization of (5.1) yields an
approximate flow map with trajectories belonging toM.

We propose two intrinsic numerical methods for the solution of the differential
equation (5.1)within the class of numericalmethods based on local charts onmanifolds
[15, Sect. IV.5]. The analyticity and the favorable computational properties of the
Cayley transform, cf. Proposition 5.2 and [17], makes it our choice as coordinate map
on the orthosymplectic matrix manifold.

5.1 Cayley transform as coordinate map

Orthosymplectic square matrices form a subgroup U(2N ) of a quadratic Lie group.
We can, therefore, use the Cayley transform to induce a local parameterization of the
Lie group U(2N ) near the identity, with the corresponding Lie algebra as parameter
space. The following results extend to orthosymplectic matrices the properties of the
Cayley transform presented in e.g. [15, Sect. IV.8.3].

Lemma 5.1 Let G2N be the group of orthosymplectic square matrices and let g2N be
the corresponding Lie algebra. Let cay : g2N → R

2N×2N be the Cayley transform
defined as

cay(�) =
(
I − �

2

)−1 (
I + �

2

)
, ∀� ∈ g2N . (5.3)

Then,

(i) cay maps the Lie algebra g2N into the Lie group G2N .
(ii) cay is a diffeomorphism in a neighborhood of the zero matrix 0 ∈ g2N . The

differential of cay at� ∈ g2N is the map dcay� : T�g2N ∼= g2N → Tcay(�)G2N ,

dcay�(A) =
(
I − �

2

)−1

A

(
I + �

2

)−1

, ∀ A ∈ g2N ,

and its inverse is

dcay−1
� (A) =

(
I − �

2

)
A

(
I + �

2

)
, ∀ A ∈ Tcay(�)G2N . (5.4)

(iii) [12, Theorem 3] Let σ(A) denote the spectrum of A ∈ R
2N×2N . If � ∈

C1(R, g2N ) then A := cay(�) ∈ C1(R,G2N ). Conversely, if A ∈ C1(R,G2N )
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and −1 /∈ ⋃
t∈R σ(A(t)) then there exists a unique � ∈ C1(R, g2N ) such that

� = cay−1(A) = 2(A − I2N )(A + I2N )−1.

Proof Let � ∈ g2N and let � := �/2. Since � is skew-symmetric then I − � is
invertible.
(i) The Cayley transform defined in (5.3) can be recast as

cay(�) = −(I − �)−1(−2I + (I − �)) = 2(I − �)−1 − I

= −(−2I + (I − �))(I − �)−1 = (I + �)(I − �)−1.
(5.5)

Then, using (5.5) and the skew-symmetry of � ∈ g2N results in

cay(�)�cay(�) = (I − �)−�(I + �
�
�)(I − �)−1

= (I − �)−�(I − � − �
� + �

�
�)(I − �)−1 = I .

Moreover, cay(�)J2N = J2N cay(�) since

cay(�)J2N = (I + �)(−J2N + �J2N )−1 = (I + �)(−J2N + J2N�)−1

= (I + �)J2N (I − �)−1 = (J2N − J2N�
�
)(I − �)−1

= (J2N + J2N�)(I − �)−1 = J2N cay(�).

(ii) The map cay (5.3) has non-zero derivative at 0 ∈ g2N . Therefore, by the inverse
function theorem, it is a diffeomorphism in a neighborhood of 0 ∈ g2N . Standard rules
of calculus yield the expression (5.4), cf. [15, Sect. IV.8.3, Lemma 8.8]. ��

The factor 1/2 in the definition (5.3) of the Cayley transform is arbitrary and has
been introduced to guarantee that dcay0 = I2N , which will be used in Sect. 5.3 for the
construction of retraction maps.

To derive computationally efficient numerical schemes for the solution of the basis
evolution equation (5.1) we exploit the properties of analytic functions evaluated at
the product of rectangular matrices.

Proposition 5.2 Let � ∈ g2N and Y ∈ R
2N×r . If � has rank k ≤ 2N, then cay(�)Y

can be evaluated with computational complexity of order O(Nrk)+O(k2r)+O(k3).

Proof Since � has rank k it admits the splitting � = αβ� for some α, β ∈ R
2N×k .

To evaluate the Cayley transform in a computationally efficient way we exploit the
properties of analytic functions of low-rank matrices. More in details, let f (z) :=
z−1(cay(z) − 1) for any z ∈ C. The function f has a removable pole at z = 0. Its
analytic extension reads,

f (z) =
∞∑

m=0

2−mzm .
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For any m ∈ N \ {0} it holds �m = (αβ�)m = α(β�α)m−1β�. Hence,

cay(�) = I2N +
∞∑

m=1

21−m�m = I2N +
∞∑

m=1

21−mα(β�α)m−1β�

= I2N + α f (β�α)β�.

The cost to compute A := β�α ∈ R
k×k is O(Nk2). Moreover,

cay(�)Y = (IN + α f (β�α)β�)Y = Y + α(β�α)−1(cay(β�α) − Ik
)
β�Y .

The evaluation of f (A) = A−1(cay(A) − Ik) ∈ R
k×k requires O(k3) operations.

Finally, thematrixmultiplications α f (A)β�Y can be performed in O(Nrk)+O(k2r)
operations.

The approach suggested hitherto is clearly not unique. The invertibility of thematrix
A is ensured under the condition that the low-rank factors α and β are full rank.
Although a low-rank decomposition with full rank factors is achievable [8, Proposi-
tion 4], one could alternatively envision the use of Woodbury matrix identity [33] to
compute the matrix inverse appearing in the definition (5.3) of the Cayley transform.
This yields the formula

cay(�)Y = Y + 1

2
α
(
cay(β�α) + Ik

)
β�Y = Y − α

(
1

2
β�α − Ik

)−1

β�Y ,

which can also be evaluated in O(Nrk) + O(k2r) + O(k3) operations. ��

5.2 Numerical integrators based on Lie groups acting onmanifolds

In this Section we propose a numerical scheme for the solution of (5.1) based on Lie
groupmethods, cf. [18]. The idea is to considerM as a manifold acted upon by the Lie
group G2N = U(2N ) of square orthosymplectic matrices. Then, since the local struc-
ture in a neighbourhood of any point of G2N can be described by the corresponding
Lie algebra g2N , a local coordinate map is employed to derive a differential equation
on g2N . Since Lie algebras are linear spaces, using Runge–Kutta methods to solve the
equation on g2N allows to derive discrete trajectories that remain on the Lie algebra.
This approach falls within the class of numerical integration schemes based on canon-
ical coordinates of the first kind, also known as Runge–Kutta Munthe-Kaas (RK-MK)
methods [24–27].

Proposition 5.3 The evolution equation (5.1) with arbitrary F : M → TM is equiv-
alent to the problem: For Q ∈ M, find U ∈ C1(T ,M) such that

{
U̇ (t) = L(U (t))U (t), for t ∈ T ,

U (t0) = Q,
(5.6)
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with L : M → g2N defined as

L(U ) := 1

2

(
S(U ) + J�

2NS(U )J2N
)
, (5.7)

where S(U ) := (I2N − UU�)F(U )U� − UF(U )�. Furthermore, if F(U ) ∈ HU ,
for any U ∈ M, then,

L(U ) = F(U )U� −UF(U )�. (5.8)

Proof Let us consider, at each time t ∈ T , an orthosymplectic extension Y (t) ∈
R
2N×2N ofU (t) by thematrixW (t) ∈ R

2N×2(N−n), such that Y (t) = [U (t) |W (t)] ∈
U(2N ). Since Y is orthosymplectic by construction, it holds

0 = d

dt

(
Y�Y

) = Ẏ�Y + Y�Ẏ , �⇒ Ẏ = −Y Ẏ�Y ,

0 = d

dt

(
Y� J2NY

) = Ẏ� J2NY + Y� J2N Ẏ , �⇒ Ẏ = −J�
2NY Ẏ

� J2NY .

It follows that Ẏ (t) = A(Y , Ẏ )Y (t), for all t ∈ T , with

A(Y , Ẏ ) := −1

2

(
Y Ẏ� + J�

2NY Ẏ
� J2N

)
∈ g2N ,

and Y Ẏ� = UU̇� +WẆ�. ExpressingA(Y , Ẏ ) explicitly in terms ofU andW , and
using the evolution equation satisfied by U , yields

A(Y , Ẏ ) = −1

2

(
UF(U )� + J�

2NUF(U )� J2N + WẆ� + J�
2NWẆ� J2N

)
. (5.9)

Moreover, since A is skew-symmetric, it holds

ẆW� + WẆ� = −UF(U )� − F(U )U�. (5.10)

If W ∈ R
2N×2(N−n) is such that ẆW� = −UF(U )�(I2N − UU�), then (5.10) it

satisfied, owing to the fact that F(U ) ∈ TUM. Substituting this expression in (5.9)
yields expression (5.7) with L(U ) = A(Y , Ẏ ).

Finally, ifF(U ) belongs to HU thenU�F(U ) = 0. Substituting in (5.7) and using
the fact that J�

2NF(U )U� J2N = F(U )U� yields (5.8). ��
Once we have recast (5.1) into the equivalent problem (5.6), the idea is to derive

an evolution equation on the Lie algebra g2N via a coordinate map. A coordinate map
of the first kind is a smooth function ψ : g2N → G2N such that ψ(0) = Id ∈ G2N
and dψ0 = Id , where dψ : g2N × g2N → g2N is the right trivialized tangent of ψ

defined as

d

dt
ψ(A(t)) = dψA(t)( Ȧ(t))ψ(A(t)), ∀ A : R → g2N . (5.11)
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For sufficiently small t ≥ t0, the solution of (5.6) is given by U (t) = ψ(�(t))U (t0)
where �(t) ∈ g2N satisfies

{
�̇(t) = dψ−1

�(t)

(
L

(
U (t)

))
, for t ∈ T ,

�(t0) = 0.
(5.12)

Problem (5.12) can be solved using traditional RK methods. Let (bi , ai, j ), for
i = 1, . . . , s and j = 1, . . . , s, be the coefficients of the Butcher tableau describing
an s-stage explicit RK method. Then, the numerical approximation of (5.12) in the
interval (tm, tm+1] is performed as in Algorithm 1.

Algorithm 1 Explicit RK-MK scheme in (tm, tm+1]
Input: Um ∈ M, {bi }si=1, {ai, j }si, j=1

1: �1
m = 0, U 1

m = Um

2: for i = 2, . . . , s do

3: �i
m = �t

i−1∑
j=1

ai, j dψ
−1
�

j
m

(
L(U j

m)
)
,

4: Ui
m = ψ(�i

m)Um ,
5: end for

6: �m+1 = �t
s∑

i=1
bi dψ

−1
�i
m

(
L(Ui

m)
)
,

7: return Um+1 = ψ(�m+1)Um ∈ M

As anticipated in Sect. 5.1, we resort to the Cayley transform as coordinate map in
Algorithm 1. The use of the Cayley transform in the solution of matrix differential
equations on Lie groups was proposed in [12,17,22]. Analogously to [12, Theorem
5], it can be shown that the invertibility of cay and dcay is guaranteed if U (t) ∈ M
solution of (5.6) satisfies−1 /∈ ⋃

t∈T σ(U (t)). Note that choosing a sufficiently small
time step for the temporal integrator can prevent the numerical solution from having
an eigenvalue close to −1, for some t ∈ T . Alternatively, restarting procedures of the
Algorithm 1 can be implemented similarly to [12, pp. 323, 324].

The computational cost of Algorithm 1 with ψ = cay is assessed in the following
result.

Proposition 5.4 Consider the evolution problem (5.12) on a fixed temporal interval
(tm, tm+1] ⊂ T . Assume that the problem is solved with Algorithm 1 where the
coordinate map ψ is given by the Cayley transform cay defined in (5.3). Then, the
computational complexity of the resulting scheme is of order O(Nn2s2)+ O(n3s4)+
CF , where CF is the complexity of the algorithm to compute F(U ) in (5.2) at any
given U ∈ M.

Proof We need to assess the computational cost of two operations in Algorithm 1:
the evaluation of the map �i := dcay−1

�i
m
(L(Ui

m)) and the computation of Ui
m =

cay(�i
m)Um , for any i = 2, . . . , s and withUm ∈ M. First we prove that rank(�i ) ≤
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4n. Observe that each term {L(Ui
m)}si=1, with L defined in (5.8), can be written as

L(Ui
m) = γiδ

�
i where

γi := [
F(Ui

m) | −Ui
m

] ∈ R
2N×4n, δi := [

Ui
m |F(Ui

m)
] ∈ R

2N×4n . (5.13)

For i = 1,�1
m = 0 and, hence,�1 = L(U 1

m) = γ1δ
�
1 owing to (5.13). Using definition

(5.4), it holds

�i = dcay−1
�i
m
(γiδ

�
i ) =

(
I2N − �i

m

2

)
γiδ

�
i

(
I2N + �i

m

2

)
=: ei f �

i , ∀ i ≥ 2,

where ei , fi ∈ R
2N×4n are defined as

ei :=
(
I2N − �i

m

2

)
γi , fi :=

(
I2N + (�i

m)�

2

)
δi .

Using Line 3 of Algorithm 1, the rank of �i
m can be bounded as

rank(�i
m) = rank

(
�t

i−1∑
j=1

ai, j�i

)
≤

i−1∑
j=1

rank(�i ) ≤ 4n(i − 1),

and similarly rank(�m+1) ≤ 4ns. Since the cost to compute each factor ei , fi is
O(Nn rank(�i

m)), the computation of all �i , for 1 ≤ i ≤ s, requires O(Nn2s2)
operations. Furthermore, in view of Proposition 5.2, each Ui

m can be computed with
O(Nn2i)+ O(n3i3) operations. Summing over the number s of stages of the Runge–
Kutta scheme, the computational complexity of Algorithm 1 becomes O(Nn2s2) +
O(n3s4). ��

In principle one can solve the evolution equation (5.12) on the Lie algebra g2N
using the matrix exponential as coordinate map instead of the Cayley transform, in
the spirit of [26]. However, there is no significant gain in terms of computational cost,
as shown in details in Appendix A.

Although the computational complexity of Algorithm 1 is linear in the full dimen-
sion, it presents a suboptimal dependence on the number s of stages of the RK scheme.
However, in practical implementations, the computational complexity of Proposi-
tion 5.4 might prove to be pessimistic in s, and might be mitigated with techniques
that exploit the structure of the operators involved.

In the following Section we improve the efficiency of the numerical approximation
of (5.1) by developing a schemewhich is structure-preserving and has a computational
cost O(Nn2s), namely only linear in the dimension N of the full model and in the
number s of RK stages.
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5.3 Tangent methods on the orthosymplectic matrix manifold

In this Section we derive a tangent method based on retraction maps for the numerical
solution of the reduced basis evolution problem (5.1). The idea of tangent methods is
presented in [9, Sect. 2] and consists in expressing any U (t) ∈ M in a neighborhood
of a given Q ∈ M, via a smooth local map RQ : TQM → M, as

U (t) = RQ(V (t)), V (t) ∈ TQM. (5.14)

LetRQ be the restriction of a smooth mapR to the fiber TQM of the tangent bundle.
Assume thatRQ is defined in some open ball around 0 ∈ TQM, andRQ(V ) = Q if
and only if V ≡ 0 ∈ TQM. Moreover, let dRQ : T TQM ∼= TQM×TQM −→ TM
be the (right trivialized) tangent of the mapRQ , cf. definition (5.11). Let us fix the first
argument of dRQ so that, for any U , V ∈ M, the tangent map dRQ

∣∣
U

: TQM →
TRQ(U )M is defined as dRQ

∣∣
U

(V ) = dRQ(U , V ). Assume that the local rigidity

condition dRQ
∣∣
0

= Id TQM is satisfied. Under these assumptions, R is a retraction

and, instead of solving the evolution problem (5.1) for U , one can derive the local
behavior ofU in a neighborhood of Q by evolving V (t) in (5.14) in the tangent space
of M at Q. Indeed, using (5.1) we can derive an evolution equation for V (t) as

U̇ (t) = dRQ
∣∣
V (t)

(V̇ (t)) = F
(
RQ(V (t))

)
.

By the continuity of V and the local rigidity condition, the map dRQ
∣∣
V (t)

is invertible

for sufficiently small t (i.e., V (t) sufficiently close to 0 ∈ TQM) and hence

V̇ (t) =
(
dRQ

∣∣
V (t)

)−1

F
(
RQ(V (t))

)
. (5.15)

Since the initial condition is U (t0) = Q it holds V (t0) = 0 ∈ TQM.
This strategy allows to solve the ODE (5.15) on the tangent space TM, which is

a linear space, with a standard temporal integrator and then recover the approximate
solution on the manifold M via the retraction map as in (5.14). If the retraction map
can be computed exactly, this approach yields, by construction, a structure-preserving
discretization. The key issue here is to build a suitable smooth retractionR : TM →
M such that its evaluation and the computation of the inverse of its tangent map can be
performed exactly at a computational cost that depends only linearly on the dimension
of the full model.

In order to locally solve the evolution problem (5.15) on the tangent space to the
manifold M at a point Q ∈ M we follow a similar approach to the one proposed in
[10] for the solution of differential equations on the Stiefel manifold. Observe that, for
any Q ∈ M, the velocity field F(Q) in (5.2), which describes the flow of the reduced
basis on the manifoldM, belongs to the space HQ defined in (4.7). We thus construct
a retractionRQ : HQ → M as composition of three functions: a linear mapϒQ from
the space HQ to the Lie algebra g2N associated with the Lie group G2N acting on the
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manifold M, the Cayley transform (5.3) as coordinate map from the Lie algebra to
the Lie group and the group action � : G2N × M → M,

�(G, Q) = �Q(G) = GQ, �Q : G2N −→ M,

that we take to be the matrix multiplication. This is summarized in the diagram below,

TG2N g2N G2N

HQ M

dcay cay

�Qd�Q
�Q ϒQ

RQ

In more details, we take ϒQ to be, for each Q ∈ M, the linear map ϒQ :
HQ ⊂ TQM → g2N such that �Q ◦ ϒQ = Id HQ , where �Q = d�Q

∣∣
e

◦ dcay0,

and TQM = {V ∈ R
2N×2n : Q�V ∈ g2n}. The space TQM can be characterized as

follows.

Proposition 5.5 Let Q ∈ M be arbitrary. Then, V ∈ TQM if and only if

∃ � ∈ R
2N×2n with Q�� ∈ sp(2n) such that V = (�Q� − Q��)Q.

Proof (⇐�) Assume that V ∈ R
2N×2n is of the form V = (�Q� − Q��)Q for

some � ∈ R
2N×2n with Q�� ∈ sp(2n). To prove that V ∈ TQM, we verify that

Q�V ∈ g2n . Using the orthogonality of Q, and the assumption Q�� ∈ sp(2n) results
in

Q�V = Q� (
�Q� − Q��)

Q = −Q� (
Q�� − �Q�)

Q = −V�Q.

Q�V J2n =
(
Q�� − ��Q

)
J2n = −J2n

(
��Q − Q��

)
= −J2nV

�Q.

(�⇒) Let V ∈ TQM, i.e. Q�V ∈ g2n . Let � := V + Q
(
S − Q�V

2

)
with

S ∈ Sym(2n) ∩ sp(2n) arbitrary. We first verify that Q�� ∈ sp(2n). Using the
orthogonality of Q, the fact that V ∈ TQM and S ∈ sp(2n) results in

Q��J2n + J2n�
�Q = Q�V

2
J2n + J2n

V�Q

2
+ SJ2n + J2n S

�

= SJ2n + J2n S
� = 0.

We then verify that, with the above definition of �, the matrix (�Q� − Q��)Q =
�−Q��Q coincides with V . Using the fact that S ∈ Sym(2n) and V ∈ TQM yields
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� − Q��Q = V + QS − Q
Q�V
2

− QV�Q − Q

(
S� − V�Q

2

)

= V − Q
Q�V
2

− Q
V�Q

2
= V .

(5.16)

��
We can therefore characterize the tangent space of the orthosymplectic matrix

manifold as

TQM = {V ∈ R
2N×2n : V =

(
�S

Q(V )Q� − Q�S
Q(V )�

)
Q,

with �S
Q(V ) := V + Q

(
S − Q�V

2

)
, for S ∈ Sym(2n) ∩ sp(2n)}.

This suggests that the linear map ϒQ can be defined as

ϒQ : HQ −→ g2N ,

V �−→ �S
Q(V )Q� − Q�S

Q(V )�.
(5.17)

Indeed, since d�Q
∣∣
e

(G) = GQ anddcay0 = I , it holds (�Q◦ϒQ)(V ) = ϒQ(V )Q =
V for any V ∈ HQ . This stems from the definition of ϒQ in (5.17) since

�Q(ϒQ(V )) = (
�Q

∣∣
e

◦ dcay0 ◦ ϒQ
)
(V ) = �Q

∣∣
e

(ϒQ(V ))

= ϒQ(V )Q = (
�S

Q(V )Q� − Q�S
Q(V )�

)
Q = V ,

where the last equality follows by (5.16). Note that �Q = d�Q
∣∣
e

◦ dcay0 is not

injective as ϒQ(HQ) is a proper subspace of g2N . Observe that, for any V ∈ TQM,
it holds ϒQ(V ) = V Q� − QV� + QV�QQ� and, hence, ϒQ(V ) ∈ g2N .

Proposition 5.6 Let cay : g2N → G2N be the Cayley transform defined in (5.3). For
any Q ∈ M and S ∈ Sym(2n) ∩ sp(2n), we define

�S
Q : TQM −→ TQ Sp(2n,R2N ) = {M ∈ R

2N×2n : Q�M ∈ sp(2n)}
V �−→ V + Q

(
S − 1

2
Q�V

)
.

Then the map RQ : HQ → M defined for any V ∈ HQ as

RQ(V ) = cay(�S
Q(V )Q� − Q�S

Q(V )�)Q, (5.18)

is a retraction.

Proof We follow [10, Proposition 2.2]. Let V = 0 ∈ TQM, then �S
Q(0) = QS

and then, using the fact that S ∈ Sym(2n) and cay(0) = I2N , it holds RQ(0) =
cay

(
Q(S − S�)Q�)

Q = cay(0)Q = Q.
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Let ϒQ be defined as in (5.17). Since, by construction ϒQ admits left inverse it
is injective and then ϒQ(V ) = 0 if and only if V = 0 ∈ HQ . Then, RQ(V ) = Q
if and only if cay(ϒQ(V )) = I2N , which implies V = 0 ∈ HQ . Moreover, since
RQ = �Q ◦ cay ◦ ϒQ , the definition of group action and the linearity of ϒ result
in dRQ

∣∣
0

= �Q ◦ ϒQ = Id HQ . It can be easily verified that RQ(V ) ∈ M for any

V ∈ HQ . ��
Note that the matrix S ∈ Sym(2n)∩sp(2n) in the definition of the retraction (5.18)

is of the form

S =
(
A B
B −A

)
, with A, B ∈ Sym(n).

Its choice affects the numerical performances of the algorithm for the computation of
the retraction and its inverse tangent map, as pointed out in [10, Sect. 3].

In the following Subsections we propose a temporal discretization of (5.15) with
an s-stage explicit Runge–Kutta method and show that the resulting algorithm has
arithmetic complexity of order CF + O(Nn2) at every stage of the temporal solver.

5.3.1 Efficient computation of retraction and inverse tangent map

In the interval (tm, tm+1] the local evolution on the tangent space, corresponding to
(5.15), reads

V̇ (t) =
(
dRUm

∣∣
V (t)

)−1

F
(
RUm (V (t))

) =: fm(V (t)).

Let (bi , ai, j ) for i = 1, . . . , s and j = 1, . . . , i − 1 be the coefficients of the
Butcher tableau describing the s-stage explicit Runge–Kutta method. Then the numer-
ical approximation of (5.15)–(5.14) withU0 := Q ∈ M and V0 = 0 ∈ TQM is given
in Algorithm 2.

Algorithm 2 Explicit RK-tangent scheme in (tm, tm+1]
Input: Um ∈ M, {bi }si=1, {ai, j }si, j=1

1: A1
m = F(Um)

2: for i = 2, . . . , s do

3: Ai
m = fm

(
�t

i−1∑
j=1

ai, j A
j
m

)
,

4: end for

5: Vm+1 = �t
s∑

i=1
bi Ai

m ,

6: return Um+1 = RUm (Vm+1) ∈ M

Other than the evaluation of the velocity field F at RUm (V ), the crucial points of
Algorithm 2 in terms of computational cost, are the evaluation of the retraction and
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the computation of its inverse tangent map. If we assume that both operations can
be performed with a computational cost of order O(Nn2), then Algorithm 2 has an
overall arithmetic complexity of order O(Nn2s) + CF s, where CF is the cost to
compute F(U ) in (5.2) at any given U ∈ M.

Computation of the retraction. A standard algorithm to compute the retractionRQ

(5.18) at the matrix V ∈ R
2N×2n requires O(N 2n) for the multiplication between

cay(ϒQ(V )) and Q, plus the computational cost to evaluate the Cayley transform at
ϒQ(V ) ∈ R

2N×2N . However, for any V ∈ HQ , the matrix ϒQ(V ) ∈ g2N admits the
low-rank splitting

ϒQ(V ) = �S
Q(V )Q� − Q�S

Q(V )� = αβ�,

where

α := [
�S

Q(V ) | −Q
] ∈ R

2N×4n, β := [
Q | �S

Q(V )
] ∈ R

2N×4n . (5.19)

We can revert to the results of Proposition 5.2 (with k = 4n) so that the retraction
(5.18) can be computed as

RQ(V ) = cay(ϒQ(V ))Q = Q + α(β�α)−1(cay(β�α) − I4n
)
β�Q,

with computational cost of order O(Nn2).

Computation of the inverse tangent map of the retraction. Let Q ∈ M and V ∈
HQ . Using the definition of retraction (5.18) we have

RQ(V ) = cay(ϒQ(V ))Q = (�Q ◦ cay ◦ ϒQ)(V ).

Then, the tangent map dRQ reads

dRQ = d�Q ◦ dcay ◦ dϒQ : T HQ −→ Tg2N ∼= g2N −→ TG2N −→ TQM.

Fixing the fiber on T HQ corresponding to V ∈ HQ results in

dRQ
∣∣
V

(Ṽ ) = dRQ
(
V , Ṽ

) = d�Q
∣∣
cay

(
ϒQ (V )

) ◦ dcayϒQ(V )

(
ϒQ(Ṽ )

)

= dcayϒQ(V )

(
ϒQ(Ṽ )

)
cay

(
ϒQ(V )

)
Q = dcayϒQ(V )

(
ϒQ(Ṽ )

)
RQ(V ),

where we have used the linearity of the map ϒQ .
Assume we know W ∈ HRQ(V ). We want to compute Ṽ ∈ HQ such that

dRQ
∣∣
V

(Ṽ ) = dcayϒQ(V )

(
ϒQ(Ṽ )

)
RQ(V ) = W . (5.20)

It is possible to solve problem (5.20) with arithmetic complexity O(Nn2) by pro-
ceeding as in [10, Sect. 3.2.1]. Since, for our algorithm, the result of [10] can be
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extended to the case of arbitrary matrix S ∈ Sym(2n) ∩ sp(2n) in (5.18), we report
the more general derivation in Appendix A. Note that, for S = 0 and explicit Euler
scheme, the two Algorithms 1 and 2 are equivalent.

5.3.2 Convergence estimates for the tangent method

Since the retraction and its inverse tangent map in Algorithm 2 can be computed
exactly, the smoothness properties ofR allow to derive error estimates for the approx-
imate reduced basis in terms of the numerical solution of the evolution problem (5.15)
in the tangent space.

Proposition 5.7 The retraction map R : TM → M defined in (5.18) is locally
Lipschitz continuous in the Frobenius ‖·‖-norm, namely for any Q ∈ M, RQ :
HQ → M satisfies

‖RQ(V ) − RQ(W )‖ ≤ 3‖V − W‖, ∀ V , W ∈ HQ .

Proof Let U := RQ(V ) = cay(ϒQ(V ))Q and Y := RQ(W ) = cay(ϒQ(W ))Q.
Using the definition of Cayley transform (5.3) we have, for ϒQ(·) := ϒQ(·)/2,

0 = (
I2N − ϒQ(V )

)
U − (

I2N − ϒQ(W )
)
Y

− (
I2N + ϒQ(V )

)
Q − (

I2N + ϒQ(W )
)
Q

= (
I2N − ϒQ(V )

)
(U − Y ) − (

ϒQ(V ) − ϒQ(W )
)
(Q + Y ).

Since ϒQ is skew-symmetric
(
I2N − ϒQ(V )

)−1 is normal. Then,

‖(I2N − ϒQ(V )
)−1‖2 = ρ

[(
I2N − ϒQ(V )

)−1] ≤ 1.

Hence, since Q and Y are (semi-)orthogonal matrices, it holds

‖U − Y‖ ≤ ‖(I2N − ϒQ(V )
)−1‖2‖ϒQ(V ) − ϒQ(W )‖ ≤ ‖ϒQ(V ) − ϒQ(W )‖.

Using the definition of ϒQ from (5.17) results in

‖ϒQ(V ) − ϒQ(W )‖ = ‖(V − W )Q� − Q(V − W ) + Q(V� − W�)QQ�‖
≤ 3‖V − W‖.

��
It follows that the solution of Algorithm 2 can be computed with the same order of

accuracy of the RK temporal scheme.

Corollary 5.8 For Q ∈ M given, let RQ be the retraction map defined in (5.18). Let
U (tm) = RQ(V (tm)), where V (tm) is the exact solution of (5.15) at a given time
tm and let Um = RQ(Vm), where Vm is the numerical solution of (5.15) at time tm
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obtained with Algorithm 2. Assume that the numerical approximation of the evolution
equation for the unknown V on the tangent space of M is of order O(�t k). Then, it
holds

‖U (tm) −Um‖ = O(�t k).

6 Numerical experiment

To gauge the performances of the proposed method, we consider the numerical sim-
ulation of the finite-dimensional parametrized Hamiltonian system arising from the
spatial approximation of the one-dimensional shallow water equations (SWE). The
shallow water equations are used in oceanography to describe the kinematic behavior
of thin inviscid single fluid layers flowing over a changing topography. Under the
assumptions of irrotational flow and flat bottom topography, the fluid is described by
the scalar potential φ and the height h of the free-surface, normalized by its mean
value, via the nonlinear system of PDEs

⎧⎨
⎩

∂t h + ∂x (h ∂xφ) = 0, in (−L, L) × (0, T ],
∂tφ + 1

2
|∂xφ|2 + h = 0, in (−L, L) × (0, T ], (6.1)

where L = 10, T = 7, h, φ : [−L, L] × (0, T ] × � → R are the state variables, and
� ⊂ R

2 is a compact set of parameters. Herewe consider� := [0.1, 0.15]×[0.2, 1.5].
The system is provided with periodic boundary conditions for both state variables, and
with parametric initial conditions (h0(x; η), φ0(x; η)) = (1 + αe−βx2 , 0), where α

controls the amplitude of the initial hump in the depth, β describes its width, and
η = (α, β).

For the numerical discretization in space, we consider a Cartesian mesh on [−L, L)

with N−1 equispaced intervals and we denote with �x the mesh width. The degrees
of freedom of the problem are the nodal values of the height and potential, i.e.
(hh(t; η), φh(t; η)) = (h1, . . . , hN , φ1, . . . , φN ). The discrete set of parameters �h

is obtained by uniformly sampling � with 10 samples per dimension, for a total of
p = 100 different configurations. This implies that the full model variableR in (4.1) is
the N×pmatrix given byRi,k(t) = hi (t; ηkh) if 1 ≤ i ≤ N andRi,k(t) = φi−N (t; ηkh)

if N+1 ≤ i ≤ 2N , for any k ∈ {1, . . . , p}, where ηkh denotes the k-th entry of the
vector ηh ∈ R

p containing the samples of the parameters. We consider second order
accurate centered finite difference schemes to discretize the first order spatial deriva-
tive in (6.1). The evolution problem (6.1) admits a canonical symplectic Hamiltonian.
Spatial discretization with centered finite differences yields a Hamiltonian dynamical
system where the Hamiltonian associated with the k-th parameter is given by
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Fig. 1 SWE-1D: Error between
the full model solution and the
reduced solution at final time vs.
the algorithm runtime

Hk(R(t)) = 1

2

N∑
i=1

(
hi (t; ηkh)

(
φi+1(t; ηkh) − φi−1(t; ηkh)

2�x

)2

+ h2i (t; ηkh)

)
.

Wave-type phenomena often exhibit a low-rank behavior only locally in time, and,
hence, global (in time) model order reduction proves ineffective in these situations.
We show this behavior by comparing the performances of our dynamical reduced basis
method with the global symplectic reduced basis approach of [30] based on complex
SVD.For the latter, a symplectic reduced space is obtained from the fullmodel obtained
by discretizing (6.1) with centred finite differences in space, with N = 1000, and the
implicit midpoint rule in time, with �t = 10−3. We consider snapshots every 10
time steps and 4 uniformly distributed samples of � per dimension. Concerning the
dynamical reduced model, we evaluate the initial condition (hh(0; ηh), φh(0; ηh))

at all values ηh and compute the matrix R0 ∈ R
2N×p having as columns each of

the evaluations. As initial condition for the reduced system (4.10), we use U (0) =
U0 ∈ R

2N×2n obtained via complex SVD of the matrix R0 truncated at n, while
Z(0) = UT

0 R0. Then, we solve system (4.10) with a 2-stage partitioned Runge-Kutta
method obtained as follows: the evolution equation for the coefficients Z is discretized
with the implicit midpoint rule; while the evolution equation (5.1) for the reduced basis
is solved using the tangent method described in Algorithm 2with the explicit midpoint
scheme, i.e. s = 2, b1 = 0, b2 = 1, and a1,1 = a1,2 = a2,2 = 0, a2,1 = 1/2. Note
that the resulting partitioned RK method has order of accuracy 2 and the numerical
integrator for Z is symplectic [15, Sect. III.2]. Finally, the nonlinear quadratic operator
in (6.1), is reduced by using tensorial techniques [32].

In Fig. 1 we report the error in the Frobenius norm, at final time, between the full
model solution and the reduced solution obtained with the two different approaches
and various dimensions of the reduced space. Note that the runtime includes also the
offline phase for the global approach.

The results of Fig. 1 show that the dynamical reduced basis method outperforms the
global approach by reaching comparable accuracy at a reduced computational cost.
Moreover, as the dimension of the reduced space increases, the runtime of the global
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Fig. 2 Evolution of the error in
the conservation of the
Hamiltonian

method becomes comparable to the one required to solve the high-fidelity problem,
meaning that there is no gain in performing global model order reduction.

Figure 2 shows the evolution of the error in the conservation of the discrete Hamil-
tonian, averaged over all p values of the parameter. Since the Hamiltonian is a cubic
quantity, we do not expect exact conservation associated with the proposed partitioned
RK scheme. In addition, as pointed out at the end of Sect. 4, we cannot guarantee
exact preservation of the invariants at the interface between temporal intervals, since
the reduced solution is projected into the space spanned by the updated basis. How-
ever, the preservation of the symplectic structure both in the reduction and in the
discretization yields a good control on the Hamiltonian error, as it can be observed in
Fig. 2.

7 Concluding remarks and future work

Nonlinear dynamical reduced basis methods for parameterized finite-dimensional
Hamiltonian systems have been developed to mitigate the computational burden of
large-scale, multi-query and long-time simulations. The proposed techniques provide
an attractive computational approach to deal with the local low-rank nature of Hamil-
tonian dynamics while preserving the geometric structure of the phase space even at
the discrete level.

Possible extensions of this work involve the numerical study of the proposed algo-
rithm including high order splitting temporal integrators, numerical approximations
ensuring the exact conservation of Hamiltonian, and restarting procedures of the
Cayley RK algorithm. Moreover, the extension of dynamical reduced basis meth-
ods to Hamiltonian systems with a nonlinear Poisson structure would allow nonlinear
structure-preserving model order reduction of a large class of problems, including
Euler and Vlasov–Maxwell equations. Some of these topics will be investigated in
forthcoming works.
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A Exponential map

Let us consider Algorithm 1 with the exponential as coordinate map, namely ψ =
exp : g2N → g2N . For any �i

m ∈ g2N and Ui
m ∈ M, the matrix dexp−1

�i
m
(L(Ui

m))

in Line 3 can be approximated by truncating the Baker–Campbell–Hausdorff (BCH)
formula as

dexp−1
�i
m
(L(Ui

m)) ≈ �̂i :=
q∑

k=0

Bk

k! adk
�i
m
(L(Ui

m)), for some q ∈ N, (A.1)

where Bk denotes the k-th Bernoulli number and ad0
�i
m
(L(Ui

m)) = L(Ui
m). Observe

that �̂i ∈ R
2N×2N belongs to the Lie algebra g2N , and, hence, each �i

m is in g2N and
the solution of the RK-MK method remains on M, see e.g. [15, Theorem 8.4].

To assess the computational complexity of Algorithm 1, we need to consider two
operations: the evaluation of �̂i and the computation of Ui

m = exp(�i
m)Um , for any

i = 2, . . . , s. To this aim, we first rewrite each commutator in (A.1) as a matrix
polynomial.

Lemma A.1 Let A, B ∈ R
2N×2N . For any fixed k ≥ 0, there exist coefficients

{c(k)
h }kh=0 ⊂ R such that

adkA(B) =
k∑

h=0

c(k)
h Ah BAk−h . (A.2)

Proof We proceed by induction on k. For k = 0, ad0A(B) = B and c(0)
0 = 1. For k = 1,

adA(B) = [A, B] = AB − BA = c(1)
0 BA + c(1)

1 AB, with c(1)
0 = −1 and c(1)

0 = 1.
Assume that adk−1

A (B), with k ≥ 2, can be expressed in polynomial form. Then,

adkA(B) = [A, adk−1
A (B)] =

k−1∑
h=0

c(k−1)
h Ah+1BAk−1−h −

k−1∑
h=0

c(k−1)
h Ah BAk−h,
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which is of the form (A.2)with c(k)
0 = −c(k−1)

0 , c(k)
k = c(k−1)

k−1 and c(k)
h = c(k−1)

h−1 −c(k−1)
h

for any 1 ≤ h ≤ k − 1. ��
The matrix polynomial form (A.2) allows to estimate the rank of the {�̂i }si=1.

Lemma A.2 Let �̂i ∈ g2N be defined as in (A.1). Then,

rank(�̂i ) ≤ min{2i−1, q + 1} rank(L(Ui
m)). (A.3)

Proof Using Lemma A.1, we have that, for any A, B ∈ g2N ,

C :=
q∑

k=0

adkA(B) =
q∑

k=0

k∑
h=0

c(k)
h Ah BAk−h =

q∑
h=0

AhB
q∑

k=h

c(k)
h Ak−h .

Since the rank of a matrix product is bounded by the minimum among the ranks of
the factors, this implies that rank(C) ≤ (q + 1)rank(B) and, hence, rank(�̂i ) ≤
(q + 1) rank(L(Ui

m)).
We nowprove that, for any 0 ≤ k ≤ q, there existsmatrices Ek , Dk ∈ R

2N×2N such
that adkA(B) = AEk + BDk . We proceed by induction on k. For k = 0, ad0A(B) = B
so that E0 = 0 and D0 = I2N . For k = 1, adA(B) = [A, B] = AB − BA so that
E1 = B and D1 = −A. Assume that the statement holds for k − 1, with k ≥ 3, then
adkA(B) = A adk−1

A (B)−adk−1
A (B)A = A(AEk−1+BDk−1)−(AEk−1+BDk−1)A =

AEk + BDk with Ek = AEk−1 + BDk−1 − Ek−1A and Dk = −Dk−1A. Therefore,

C =
q∑

k=0

(AEk + BDk) = A

( q∑
k=1

Ek

)
+ B

( q∑
k=1

Dk

)
,

and, hence, rank(C) ≤ rank(A) + rank(B). This is equivalent to rank(�̂i ) ≤
rank(�i

m) + rank(L(Ui
m)). Using the definition of �i

m from Line 3 of Algorithm 1,
the rank of �̂i , for any i ≥ 2, can be bounded as

rank(�̂i ) ≤ rank(L(Ui
m)) +

i−1∑
j=1

rank(�̂ j ).

Since rank(�̂1) = rank(L(Um)), it easily follows by induction that rank(�̂i ) ≤
2i−1 rank(L(Ui

m)). ��
Observe that the factorization (5.13) implies that each term {L(Ui

m)}si=1, with L
defined in (5.8), has rank at most 4n. Therefore, from Lemma A.2, it follows that

ri := rank(�i
m) ≤

i−1∑
j=1

rank(�̂ j ) ≤ 4n
i−1∑
j=1

min{2i−1, q + 1}. (A.4)

It can be inferred from (A.4) that the bound q + 1 is the one dominating in the
computation of �i

m whenever the number s of RK stages is sufficiently large. An
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optimal number qopt of commutators to achieve the accuracy of the corresponding RK
method can be derived as in [3,7]. We consider a few examples from [7, Table 3.1]:
RKF45 has s = 6, qopt = 5, and hence qopt + 1 ≤ 2i−1 for i ≥ 4; DVERK has s = 8,
qopt = 10, and hence qopt + 1 ≤ 2i−1 for i ≥ 5; Butcher7 has s = 9, qopt = 21,
and hence qopt + 1 ≤ 2i−1 for i ≥ 6. In light of these considerations, we consider the
bound ri ≤ 4n(i − 1)(q + 1) although for small i this might not be sharp. With the
estimate (A.4) on the rank of�i

m , we can assess the cost of computingUi
m at each stage

of the RK-MK Algorithm 1. The computation of the exponential of a matrix in g2N
requires O(N 3) operations, but this cost can bemitigatedwhenever the argument of the
exponential is of low-rank. Similarly to Proposition 5.2, it can be shown that the cost
to compute exp(uv�)Y with u, v ∈ R

2N×k and Y ∈ R
2N×2n is O(k3 + k2n + Nnk)

[8, Proposition 3]. In Algorithm 1 we need to evaluate the exponential of {�i
m}si=1,

with rank(�i
m) ≤ 4n(i − 1)(q + 1). Therefore, the computation of all Ui

m in Line 4,
for 2 ≤ i ≤ s, requires O(Nn2s2q + n3s4q3).

The other contribution to the computational cost of Algorithm 1 comes from the
evaluation of each �̂i in (A.1). To estimate this cost, we resort to the polynomial
expression (A.2) and the low-rank splitting of�i

m = αiβ
�
i , with αi , βi ∈ R

2N×ri , and

of L(Ui
m) = γiδ

�
i with γi , δi ∈ R

2N×4n . Let ĉ(k)
j := c(k)

j Bk/k!, for any 0 ≤ k, j ≤ q,
then

�̂i = ĉ(0)
0 γiδ

�
i +

q∑
j=1

(
ĉ( j)
0 γiδ

�
i (αiβ

�
i ) j + ĉ( j)

j (αiβ
�
i ) jγiδ

�
i

)

+
q∑
j=1

αi (β
�
i αi )

j−1β�
i γiδ

�
i αi

( q∑
k= j+1

ĉ(k)
j (β�

i αi )
k− j−1

)
β�
i

= ĉ(0)
0 γiδ

�
i +

q∑
j=1

(
ĉ( j)
0 γiδ

�
i αi (β

�
i αi )

j−1β�
i + ĉ( j)

j αi (β
�
i αi )

j−1β�
i γiδ

�
i

)

+
q∑
j=1

αi (β
�
i αi )

j−1β�
i γiδ

�
i αi Pjβ

�
i , with Pj :=

q− j−1∑
k=0

ĉ(k+ j+1)
j (β�

i αi )
k .

The terms:

• {Pj }qj=1 can be computed in O(Nr2i + q2r3i ) operations;

• {(β�
i αi )

j }qj=1 can be computed in O(qr3i ) operations;

• {β�
i γiδ

�
i αi Pj }qj=1 can be computed in O(nqr2i + Nnri ) operations.

Therefore, the overall computational cost to evaluate each �̂i is O(Nr2i + q2r3i +
nqr2i +Nnri ). Using ri = rank(�i

m) ≤ 4n(i−1)(q+1) and summing over the stages
of the RK scheme, all terms involved in Algorithm 1 can be evaluated with arithmetic
complexity O(Nn2q2s3+n3q5s4)+CF , whereCF is the complexity of the algorithm
to compute F(U ) in (5.2) at any given U ∈ M. The latter is, thus, the computational
complexity of Algorithm 1 withψ = exp. Since each�i

m can be written as the sum of
elements in the Lie algebra g2N , namely �i

m = ∑i−1
j=1 α jβ

�
j with α j , β j ∈ R

2N×ri ,
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one might suggest to approximate exp(�i
m) with E(�i

m) := 
i−1
j=1exp(α jβ

�
j ) in the

spirit of [8]. However, such an approximation does not bring significant computational
savings nor it is guaranteed to provide a good approximation of the exponential map.

A Efficient computation of the inverse tangent map

We propose an algorithm to solve (5.20) with a computational cost of order O(Nn2).
We proceed exactly as in [10, Sect. 3.2.1] with the only difference that we consider
any arbitrary S ∈ Sym(2n) ∩ sp(2n).

Using the definition of the derivative of the Cayley transform (5.4) we can recast
(5.20) as

ϒQ(Ṽ )(I2N + ϒQ(V ))−1RQ(V ) − (I2N − ϒQ(V ))W = 0,

ϒQ(V ) := ϒQ(V )

2
. (A.1)

Moreover, using the definition of RQ(V ) in (5.18) results in

2RQ(V ) = (
I2N + ϒQ(V )

)RQ(V ) + (
I2N − ϒQ(V )

)RQ(V )

= (
I2N +ϒQ(V )

)RQ(V )+(
I2N −ϒQ(V )

)(
I2N −ϒQ(V )

)−1(
I2N +ϒQ(V )

)
Q

= (
I2N + ϒQ(V )

)(RQ(V ) + Q
)
.

Therefore, substituting in (A.1) and using the definition of ϒQ from (5.17) gives

�S
Q(Ṽ )Q�(RQ(V )+Q)−Q�S

Q(Ṽ )�(RQ(V )+Q)−(
2I2N − ϒQ(V )

)
W =0.

(A.2)

We proceed by solving problem (A.2) for �̃ := �S
Q(Ṽ ) ∈ TQ Sp(2n,R2N ) and then,

in view of (5.16), we recover Ṽ ∈ HQ as Ṽ = �̃ − Q�̃�Q, at a computational cost
of order O(Nn2).

It is possible to recast problem (A.2) as �S
Q(Ṽ ) = QT1(Ṽ ) + T2, where

T1(Ṽ ) := �S
Q(Ṽ )�(RQ(V ) + Q)(Q�RQ(V ) + I2n)

−1,

T2 := (
2I2N − ϒQ(V )

)
W (Q�RQ(V ) + I2n)

−1.

The term T2, independent of Ṽ , can be computed in O(Nn2 +n3) operations. Indeed,
since ϒQ(V ) = αβ� as defined in (5.19), the term ϒQ(V )W can be computed as
α(β�W ) inO(Nn2)flops. The term T1(Ṽ ) can be expressed as T1(Ṽ ) = Q��S

Q(Ṽ )+
QT2. Using the fact that Q��S

Q(Ṽ ) + �S
Q(Ṽ )�Q = 2S, the symmetric part of T1
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reads T1 + T�
1 = 2S − Q�T2 + T�

2 Q. Moreover,

(RQ(V ) + Q)��S
Q(Ṽ ) = (RQ(V ) + Q)�T2 + (RQ(V )�Q + I2n)T1(Ṽ ),

(RQ(V )�Q + I2n)T1(Ṽ )�

= (Q�RQ(V ) + I2n)
�(Q�RQ(V ) + I2n)

−�(RQ(V ) + Q)��S
Q(Ṽ ).

The skew-symmetric part of T1 is then T1 −T�
1 = −(RQ(V )�Q+ I2n)−1(RQ(V )+

Q)�T2. Therefore,

2T1(Ṽ ) = (
(T1(Ṽ ) + T1(Ṽ )�) + (T1(Ṽ ) − T1(Ṽ )�)

)
= 2S − (Q�T2 − T�

2 Q) − (RQ(V )�Q + I2n)
−1(RQ(V ) + Q)�T2.

It is straightforward to show that all operations involved in the computation of T1 can
be done with complexity of order O(Nn2).
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