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Routing and Rebalancing Intermodal Autonomous
Mobility-on-Demand Systems in Mixed Traffic

Salomón Wollenstein-Betech1, Mauro Salazar2, Arian Houshmand1,
Marco Pavone3, Ioannis Ch. Paschalidis1, and Christos G. Cassandras1.

Abstract— This paper studies congestion-aware route-
planning policies for intermodal Autonomous Mobility-on-
Demand (AMoD) systems, whereby a fleet of autonomous ve-
hicles provides on-demand mobility jointly with public tran-
sit under mixed traffic conditions (consisting of AMoD and
private vehicles). Specifically, we first devise a network flow
model to jointly optimize the AMoD routing and rebalancing
strategies in a congestion-aware fashion by accounting for the
endogenous impact of AMoD flows on travel time. Second, we
capture the effect of exogenous traffic stemming from private
vehicles adapting to the AMoD flows in a user-centric fashion
by leveraging a sequential approach. Since our results are in
terms of link flows, we then provide algorithms to retrieve the
explicit recommended routes to users. Finally, we showcase our
framework with two case-studies considering the transportation
sub-networks in Eastern Massachusetts and New York City,
respectively. Our results suggest that for high levels of demand,
pure AMoD travel can be detrimental due to the additional
traffic stemming from its rebalancing flows. However, combining
AMoD with public transit, walking and micromobility options
can significantly improve the overall system performance.

Index Terms—Mobility-on-Demand, System-Optimal Routing,
Rebalancing, Mixed Autonomy.

I. INTRODUCTION

IN THE last century, urban mobility has been dominated
by the use of private vehicles. The success of this mode

of transport relies on its fast and convenient point-to-point
transportation service. However, even if this technology has
been widely adopted, it has been recently criticized due to
its dependency on gasoline, its harmful emissions to the
environment, its underutilization (according to [1], private
vehicles are parked for more than 95% of the time), its
impact on traffic congestion, and its land and infrastructure
requirements for wider roads and parking spaces. Hence, some
have acknowledged that private vehicles are an unsustainable
solution for urban mobility [2]. As we think and plan for
the cities of the future, mobility-on-demand (MoD), or Au-
tonomous Mobility-on-Demand (AMoD) systems enabled by
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Fig. 1. I-AMoD network (supergraph) consisting of three layers: the road
network (blue with black AMoD cars and grey private vehicles, respectively),
walking pathways (green) and subway lines (red); the dashed arrows represent
switching arcs.

autonomous vehicles, offer a new way to provide a comparable
fast and comfortable point-to-point service while maintaining
low congestion levels. As defined by the Federal Transit
Administration of the United States, a MoD system is a
“multimodal, integrated, automated, accessible, and connected
transportation system with personalized mobility at its core
which uses on-demand information, real-time data, and predic-
tive analysis to provide travelers with transportation choices
that best serve their needs and circumstances” [3].

In this paper we focus on methodologies that optimize the
operations of AMoD systems with the goal of reducing traffic
congestion. To achieve this, we develop a coordinated inter-
modal routing procedure that seeks to minimize the overall
commuters travel time while ensuring that all travelers are
being served by the same platform. In particular, we study the
routing and load-balancing processes of a fleet of vehicles
belonging to an AMoD service when they interact with self-
interested vehicles in the network. In contrast with today’s
platforms (e.g., Uber, Lyft, DiDi), our objective is to take these
two decisions jointly rather than separately. If the vehicles
belonging to the fleet are controlled by self-interested humans,
this joint optimization is harder to carry out as one would
have to design compensation schemes in order to steer the
selfish behavior to a system-optimal solution [4], [5]. However,
as the level of automation of these platforms increases, with
many already testing their Connected and Automated Vehicles
(CAVs) in our streets [6], [7], thinking whether these processes
should be addressed jointly becomes relevant.

Literature review: We first review techniques to solve the
routing and load-balancing (also referred to as rebalancing)
problems individually and then focus on the joint problem.

Current drivers in MoD platforms, such as Uber, Lyft
or DiDi, choose their paths by using routing apps (e.g.,
Waze and Google Maps). These apps recommend routes
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using traditional shortest path algorithms such as Dijkstra’s
[8], Bellman-Ford [9], and incremental graph [10] that find
provable optimal routes. Also, widely employed are heuristics
such as A-star [11], tabu search [12] and genetic algorithms
[13] given that they provide a balance between solution qual-
ity and computation time. This User-Centric (UC) approach
to routing, in which every driver minimizes its own travel
time, is suboptimal compared to System-Optimal (SO) routing
schemes achievable when vehicles are coordinated by a central
controller. The bounds on the inefficiencies of the UC solution
compared to the SO have been studied in [14], showing that
for linear travel time functions, the cost of the UC is bounded
by 4/3 the cost of the SO solution. The gap between UC
and SO is commonly known as the Price of Anarchy and
has been studied in [15] . SO routing algorithms have been
studied and it has been established that mild modifications to
the UC Traffic Assignment Problem (TAP) can solve the SO
[16]. Therefore using algorithms to solve the TAP such as
the Method of Successive Averages [16], Frank-Wolfe [17]–
[19], or the Traffic Assignment by Paired Alternative Segments
(TAPAS) [20] is sufficient to solve a SO problem. A relevant
feature of SO routing is its fairness implications (users taking
longer routes than their shortest route), which has been studied
in [21] where an optimization algorithm termed Partran (a
revised version of the Frank-Wolfe method) was proposed.
In a mixed traffic setting, the interaction between a fleet of
CAVs using SO routing coupled with reactive UC private
vehicles has been investigated theoretically by [22], where
a reduction in headways is considered thanks to adaptive
cruise control technology included in CAVs. However, this
analysis requires a network configuration of parallel links
and it is not suitable for general transportation networks. To
overcome this, [23]–[25] propose an iterative approach to find
a solution between these two classes of vehicles known as
diagonalization scheme. In [23] the authors show that both
CAVs and private vehicles can achieve better performance in
terms of travel time and energy savings as the percentage of
CAVs in the network increases. However, neither of these
approaches addresses the rebalancing of CAVs nor does it
consider the possibility of intermodal (or multimodal) routing.
Both limitations are addressed in this paper.

Aside from routing, rebalancing is tackled in practice by
providing drivers with a real-time heat-map of users’ demand
such that the driver is incentivized to relocate to an area that
will maximize its profits. Rebalancing has been studied by
researchers using proactive (or planning) strategies that redis-
tribute the fleet across regions in order to meet a forecasted
demand.1 Using this perspective, [29] shows that rebalancing
is necessary to avoid building unbounded customer queues and
to stabilize the system. [29] proposes a rebalancing policy that
minimizes the empty vehicle travel time under static (steady-
state) conditions using a fluidic model. Furthermore, [30]
proposed a queueing-theoretical approach to account for cus-
tomers leaving the system when their waiting times are long.
This method solves a Linear Program (LP) recursively that
balances the fleet availability across the regions. Moreover, the

1Note that this process finds good coverage of vehicles over regions of the
system and it is not focused on matching or assigning vehicles to customers.
This vehicle-passenger assignment has been studied in [26]–[28]

authors show Pareto optimal curves relating desired quality of
service and fleet size. Similarly, [31] proposed a method that
minimizes the number of customer dropouts instead of the
empty driven miles to focus on service quality. Different than
these queueing models, simulation-based methods have also
been employed [32]–[34].

More recently, schemes that consider the effects of rebalanc-
ing in routing and congestion have been analyzed. Threshold
approximations of the travel time function have been used
to study congestion effects [35], sometimes capturing the
interaction with public transit [36], [37] or with the power-
grid [38]. These threshold schemes work as binary decisions
allowing or rejecting the use of a road depending on whether
the flow has exceeded the threshold or not, but do not capture
different travel times for different flow levels on each link. To
account for flow-based routing schemes most work leverages
the classical Bureau of Public Roads (BPR) congestion model
[39] together network optimization methods. In particular, [40]
provides a Frank-Wolfe algorithm, where dummy nodes are
added to the transportation network to account for rebalancing
flows and where the BPR function is evaluated when designing
routes. However, this approach cannot include other modes
of transportation such as walking, micromobility options,
or public transit. Against this backdrop, a piecewise-affine
approximation of the travel time function is introduced in [41]
which converts the joint problem to a quadratic program. In
this work, we extend this approximation in order to account
for more accurate, fast and implementable models.

Statement of contributions: The contribution of this paper
is threefold. First, we present a method to optimize inter-
modal congestion-aware routing and rebalancing policies of
an AMoD service. The objective is to improve the quality of
service by jointly reducing the overall user travel time while
ensuring vehicle availability in every region. We allow AMoD
users to use multiple modes of transportation such as public
transportation, walking or micromobility (e.g., bikes and e-
scooters) in order to reduce the overall travel time. To solve
the routing and rebalancing problem, we approximate the non-
linear travel latency function with a piecewise-affine function.
This slight modification allows us to write the problem as
a tractable quadratic program and later to a relaxed linear
program, making it easier and faster to solve. We prove that
this approximation is asymptotically optimal in the number
of segments defining the piecewise function and we leverage
origin-based formulations of the problem to improve the com-
putational efficiency. Second, we extend the joint formulation
to a mixed traffic setting capturing the interaction between
AMoD users and private vehicle and providing routing deci-
sions for the AMoD users that anticipate the behavior of the
private vehicles. To do so, we leverage a sequential method
that finds a steady-state solution for these two user types.
Third, given that the proposed methods retrieve solutions
expressed in terms of traffic flows, we propose distributed
algorithms to convert the flows to viable routes, enabling real-
time route recommendations for the AMoD users. Finally, we
present experiments to (i) empirically show the asymptotic
behavior of the approximated model; (ii) capture the trade-off
between the benefits of SO routing and the excess flow due to
rebalancing; (iii) observe the effect of intermodality on travel
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times; and (iv) show the applicability of the route-recovery
strategies.

Building on the model and preliminary analysis in [42], this
paper provides the following contributions: (i) extension of the
approximated model from 3-segment to an n-segment model;
(ii) new theoretical and empirical results on the asymptotic
behavior of the approximated model; (iii) introduction of an
origin-based formulation to improve the computational effi-
ciency; (iv) development of route-recovery algorithms from
the flow-based solution; (v) additional experimental results
including a case study on a larger network of New York City
incorporating the subway system as an intermodal option.

Organization: The rest of the paper is organized as follows:
In Section II we present the models used and the problem
formulation. In Section III we develop the piecewise-affine
approximation formulation along with the main analytical
results of this paper. In Sections IV and V, we provide a
framework for the mixed traffic problem and route-recovering
strategies, respectively. Finally, we present experiments using
the Eastern Massachusetts and New York City transportation
networks in Section VI and we conclude in Section VII.

II. PROBLEM FORMULATION

Consider an AMoD system which provides a mobility
service through multiple modes of transportation (e.g., au-
tonomous taxi-rides, walking and mass transit). To model the
system, let G be a network composed by the road layer and L
additional layers, each representing a different transportation
mode (Fig. 1). We denote by GR = (VR,AR) the road layer
and by Gl = (Vl,Al), for l = 1, . . . , L, the other layers where
(VR,AR) and (Vli ,Ali) are the sets of vertices and arcs for
each layer. Then, the supergraph G = (V,A) is composed of
all layers and a set of switching arcs, denoted by AS, that
connect the network layers to allow AMoD users to switch
modes (see dotted lines in Fig. 1). Formally G is composed
of the set of vertices V = VR ∪ V1 ∪ . . . ∪ VL and arcs
A = AR ∪ A1 ∪ . . . ∪ AL ∪ AS.

In order to model the demanded trips, let w = (ws, wt)
denote an Origin-Destination (OD) pair and dw ≥ 0 the
demand rate at which customers request service per unit time
from origin ws to destination wt. Let W be the total number of
OD pairs and W = {wk : wk = (wsk, wtk), k = 1, . . . ,W}
the set of OD pairs. Let a vectorized version of the demand
be g = (dwk

; k = 1, . . . ,W ).
To keep track of the AMoD user flow on a link, we let xwij

denote the AMoD flow induced by OD pair w on link (i, j) ∈
A. Given that the AMoD system needs to rebalance its vehicles
to ensure service, we let xrij be the rebalancing flow on link
(i, j) ∈ AR. Finally, to consider the interaction between the
AMoD provider and the other (private) vehicles, we let xpij be
the self-interested private vehicle flow on (i, j) ∈ AR. We use
the term “private” as we assume that self-interested users must
arrive at their destination with their vehicle and do not have
the option of switching transportation mode since they have
a parking constraint. To simplify notation, we let the AMoD
user flow on any link to be

xuij =
∑
w∈W

xwij , ∀(i, j) ∈ A, (1)

and the total flow on a link to be

xij = xuij + xrij + xpij , ∀(i, j) ∈ A. (2)

Note that neither rebalancing flow xr nor private vehicle flow
xp exist on layers l = 1, . . . , L nor on the switching links in
Fig. 1. Hence, for those links we set xrij = xpij = 0 for all
(i, j) ∈ A \ AR.

We specify the time it takes to cross link (i, j) as tij(x) :
R|A|+ 7→ R+. Using the same structure as in [43], we charac-
terize tij as a travel time function that maps the flow xij on
a link to a travel time as follows:

tij(xij) = t0ijf(xij/mij), (3)

where mij is the link capacity, t0ij is the free-flow travel time
on link (i, j), and f(·) is a strictly increasing, positive, and
continuously differentiable function. To ensure that if there
is no flow on the link the travel time is equal to the free-
flow travel time, we consider functions with f(0) = 1. These
functions are typically increasing polynomials that are hard
to estimate [44]. Despite this, a widely used function by
transportation engineers is the Bureau of Public Roads (BPR)
function [39] denoted by

tij(xij) = t0ij(1 + α(xij/mij)
β). (4)

where typically α = 0.15 and β = 4. For a discussion on how
to estimate these functions see [45].

Throughout this paper, we will use this function to decide
the routes of AMoD users and private vehicles, given the
network flow levels. However, our analysis allows for any
strictly increasing travel time function. For the L layers
(excluding the road layer) we consider a constant travel time
(independent of the flow) on every link.

A. System-Optimal Routing and Rebalancing of AMoD Sys-
tems

Recall that our goal is to find the system-optimal
congestion-aware routes and rebalancing policies of an AMoD
provider. Let duw be customer rate requests to the AMoD
system for passengers traveling from ws to wt, and 1i=j be
the indicator function equal to 1 when i = j and 0 otherwise.
The problem we aim to solve is then expressed by

min
xW ,xr

J(x) :=
∑

(i,j)∈A

tij(xij)x
u
ij +

∑
(i,j)∈AR

cijx
r
ij (5a)

s.t.
∑

i:(i,j)∈A

xwij + 1j=ws
duw =

∑
k:(j,k)∈A

xwjk + 1j=wt
duw, (5b)

∀w ∈ W, j ∈ V,∑
i:(i,j)∈AR

(
xrij + xuij

)
=
∑

k:(j,k)∈AR

(
xrjk + xujk

)
, ∀j ∈ VR, (5c)

xW ,xr ≥ 0, (5d)

where we use bold notation x to represent a vector containing
all the elements of xij . The dimensions of the decision
vectors xr and xW are given by xr ∈ R|AR|, and xW =
{xw ∈ R|A| | w ∈ W}. Constraints (5b) take care of flow
conservation and demand compliance as in a multi-commodity
transportation setting. Constraints (5c) ensure the rebalancing
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of the AMoD fleet (only on the road network). The last sets
of constraints (5d) restrict the flows to non-negative values.

The objective J(x) is composed of two terms. The first
term considers the total travel time of AMoD users. This
evaluates the travel time function tij(xij) with respect to the
total flow given by (2) which includes variables corresponding
to private vehicle flow xpij (assumed to be fixed), and the
rebalancing flow xrij . When taking the product tij(xij)xuij ,
we obtain a non-convex function which makes the problem
hard to solve. To address this issue, we use a piecewise-
affine approximation of tij(xij) which is further developed in
Section III. The second term acts as a linear regularizer whose
purpose is to penalize rebalancing flows. This will ensure that
a cost for rebalancing of the fleet is taken into account in
the optimization problem. We use cij = λt0ij where λ is a
constant. Therefore, we use a small λ to guide the rebalancing
flow through good paths, without dominating the AMoD user
routing decisions. Note that, if normalization is needed to
ensure a good regularization parameter, we can always bound
each component on (5a) using the link capacities an a large
enough value for t(·).

B. Private Vehicles Flow Modeling
Aiming to understand the interaction between a SO AMoD

fleet and private vehicles, we assume some user-choice model
behind private vehicle decisions. To do so we use the User-
Centric (UC) routing as in the Traffic Assignment Problem
(TAP) [16]. Given OD demands, this model finds the flows in
the network which achieve a Wardrop equilibrium [46]. This
is equivalent to each private user deciding to take the route
that minimizes their own travel time. In addition to this, we
impose that private vehicles can travel exclusively through the
road network GR as opposed to in the full network G. Let xp,wij
be the flow on link (i, j) induced by private vehicle demand
dpw of OD pair w. Then, we assume private vehicles decide
their routes by using the UC approach. This is equivalent to
solving the following (see more details of the derivation of
this model in [16])

min
xp

∑
(i,j)∈AR

xij∫
xu
ij+x

r
ij

tij(s)ds (6a)

s.t
∑

i:(i,j)∈AR

xp,wij + dpw1j=ws
=
∑

k:(j,k)∈AR

xp,wjk + dpw1j=wt
, (6b)

∀w ∈ W, j ∈ VR,
xp,w ≥ 0. (6c)

Notice that this version of the UC TAP is slightly different
from the classic one [16] since it considers the AMoD flow
in its objective (see limits of the integral on (6a)). To solve
this problem we assume that the AMoD flow is fixed and
private vehicles plan their routes considering AMoD flows as
exogenous. By assuming this, we can use the Frank-Wolfe
algorithm [17] to solve (6). Let us use the shorthand notation
of TAP(g,xe) to indicate the solution of (6) with xe equal to
any generic exogenous flow. Hence xp ∈ TAP(gp,xu + xr).

C. AMoD in Mixed Traffic
Critically, AMoD flows react to the decisions made by

private vehicles and these, in turn, react to private vehicles’

flows. Hence, whenever private vehicles make their routing
decisions, the AMoD fleet adjusts theirs, and vice versa.
This creates a nested optimization problem between these two
classes of vehicles. To give a formal definition of this game-
theoretical problem we use the following bilevel optimization
formulation

min
{xw}w∈W ,xr,xp

J(x) (7a)

s.t. (5b)− (5d),
xp ∈ TAP(gp,xu + xr), (7b)

which has the same structure as (5) with the additional
constraint (7b). The latter constraint refers to the TAP (the
lower-level problem), which depends on the solution of the
full problem (upper-level). Note that the upper-level problem is
minimizing over the AMoD users, rebalancing, and privately-
owned vehicle flows. This phenomenon has been identified
and is often described as a Stackelberg game framework [47].
In this setting, there is a leader agent (in our case the AMoD
manager) and a follower (the private vehicles). In the context
of transportation networks, [47] derived sufficient conditions
to solve this problem when the network has parallel links.
Although these models enable for a better understanding of
the phenomenon, they are not applicable to general networks
and one can hardly assess mixed traffic routing in realistic
networks. To address this limitation, we leverage the iterative
approach in [23] to compute the private vehicles’ and AMoD
flows. The formal convergence of this sequential method is
not studied in this paper.

III. AMOD ROUTING AND REBALANCING PROBLEM

The problem of routing and rebalancing as stated in (5)
is non-convex for typical travel time functions such as the
BPR. This happens due to the term t(xij)x

r
ij in the objective

function. To address this issue, we approximate the travel time
function with a piecewise-affine function.

A. Piecewise-affine Approximation (CARSn)

Let the function approximating t(x) be of the form:

t̂ij(x) =



t0ij

(
1 + a1

(x− θ(1)ij )

mij

)
, if θ(1)ij ≤ x ≤ θ

(2)
ij

...

t0ij

(
1 +

n∑
l=1

(al(θ(l)ij −θ(l−1)ij )

mij

)
+
an(x−θ(n)ij )

mij

)
,

if θ(n)ij ≤ x,

where al is the slope of segment l = 1, . . . , n of t̂ with a1 ≤
. . . ≤ an < ∞, and θ

(l)
ij is a threshold dividing segments

on the travel time function for link (i, j). In our case, we
let θ(l)ij = θ(l)mij where θ(l) is the normalized threshold in
the travel time and capacity normalized function depicted in
Fig. 2.

To model this piecewise-affine function in the optimization
problem, we introduce the following set of slack variables
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Fig. 2. Travel time function approximation

ε
(n)
ij = max{0, xij − θ(n)ij }, (9a)

...
ε
(k)
ij = max{0, xij − θ(k)ij −

n∑
l=k+1

ε
(l)
ij }, (9b)

...
ε
(0)
ij = max{0, xij −

n∑
l=1

ε
(l)
ij }, (9c)

where each ε
(k)
ij denotes the extra flow exceeding threshold

θ
(k)
ij and up to θ

(k+1)
ij − θ(k)ij , thus, ε(k)ij ∈ [0, θ

(k+1)
ij − θ(k)ij ].

We include these variables in the problem by adding the linear
constraints ε(k)ij ≥ 0 and ε(k)ij ≥ θ

(k)
ij −

∑n
l=k+1 ε

(l)
ij , provided

that the objective is a function of ε(k)ij .
Using these definitions we can generate a tractable cost

function. We focus our attention on an element-wise analysis
of the first term (non-convex part) of objective (5a) using t̂
instead of t for which we obtain the objective function

Ĵ(xij , εij) := t0ij

(
xuij +

n∑
l=1

(alε
(l)
ij /mij)

)( n∑
k=1

ε
(k)
ij − x

c
)
,

(10)
which is derived as follows:

t̂ij(xij)x
u
ij = t0ij

(
xuij +

n∑
l=1

(alε
(l)
ij /mij)

)
xuij , (11a)

= t0ij

(
xuij +

n∑
l=1

(alε
(l)
ij /mij)

)( n∑
k=1

ε
(k)
ij− x

r− xc
)
,

(11b)

≤ t0ij
(
xuij +

n∑
l=1

(alε
(l)
ij /mij)

)( n∑
k=1

ε
(k)
ij− x

c
)
. (11c)

In (11b) we express xuij by using a combination of (2)
and (9). In the last step (11c), we add to Ĵij the term∑n
l=1 t

0
ijalεijx

r
ij/mij . By adding this term, we consider a

relaxation of the original problem (i.e., an upper bound of Ĵij).
This modification, for which we provide intuition later (see
Remark III.1), allows the proposed objective to be a convex
quadratic function.

Hence, we define the AMoD problem to be

min
xW ,xr,ε

∑
(i,j)∈A

Ĵ(xij , εij) +
∑

(i,j)∈AR

cijx
r
ij , (12a)

s.t. (5b)− (5d)

ε
(k)
ij ≥ θ

(k)
ij −xij , ∀(i, j)∈A, k= 1, . . . , n, (12b)

ε
(k)
ij ≥ 0, ∀(i, j)∈A, k= 1, . . . , n, (12c)

where ε = {ε(j)ij | (i, j) ∈ A, k = 1, . . . , n}.

Theorem III.1. Problem (12) is a linearly constrained convex
Quadratic Program (QP) with linear equality constraints.

Proof. We prove this by construction. We show that the Q
matrix in the QP standard form (i.e., minx x

′Qx, s.t. Ax ≤ b)
can be modified to be positive semidefinite (PSD). Note, that
in (12a), the only quadratic term is of the form ε

(l)
ij ε

(k)
ij and its

matrix representation (i.e., ε′Qε) does not guarantee that Q
is PSD. However, we observe that since we are minimizing,
when xij ≤ θ

(k)
ij then ε

(k)
ij = 0 and that when xij ≥ θ

(k+1)
ij

then ε(k)ij = (θ
(k+1)
ij − θ(k)ij ). Therefore,

ε
(l)
ij ε

(k)
ij =


(θ

(l+1)
ij − θ(l)ij )ε

(k)
ij , if l < k,

ε
(l)
ij ε

(l)
ij , if l = k,

ε
(l)
ij (θ

(k+1)
ij − θ(k)ij ), if l > k,

where the first case comes from the fact that in order for
ε
(k)
ij to be greater than zero, the flow xij must have exceeded
θ
(l+1)
ij for l < k. Therefore, ε(l)ij is at its maximum value of
(θ

(l+1)
ij − θ(l)ij ). The same analogy applies to the third case.

Hence, the link-wise objective function of the QP without the
rebalancing term is rewritten as

ĴQP
ij (xuij , εij) = t0ij

(
xuij +

n∑
l=1

al
mij

( l−1∑
k=1

(θ
(k+1)
ij − θ(k)ij )ε

(l)
ij

+ (ε
(l)
ij )

2 +

n∑
k=l+1

(θ
(l+1)
ij − θ(l)ij )ε

(k)
ij

))
.

Using this new formulation, we note that the Q matrix is the
identity matrix which is PSD and therefore JQP

ij is convex
quadratic using [48, Prop. 3.1.1].

In contrast with our previous 3-segment method in [42],
we obtain a better approximation of the original travel latency
function while formulating the problem as a QP.

Remark III.1. We observe that the effect of adding∑n
l=1 t

0
ijalεijx

r
ij/mij to (11a) implies taking into ac-

count congestion-aware rebalancing routing. However, this
congestion-aware routing of the rebalancing vehicles has a
lower impact in JQP

ij than the AMoD users. This is because
a0 = 0 for xr (i.e., the first term in (11c) does not include
xr). Hence, the interpretation of this addition is that the
rebalancing flows evaluate the travel latency function with the
same structure as the AMoD flows but with t0ij = 0.

Remark III.2. A relevant trade-off worth noting is on the
number of piecewise affine segments used to approximate the
travel function. Even though a larger n will provide better
approximations of t(·), and hence a better solution to the
problem, this implies adding |A| additional variables and linear
constraints to the formulation.

B. Linear Relaxation
Seeking a simpler formulation and faster computation per-

formance of (12), we notice that it is possible to relax the
QP to a Linear Program (LP) by modifying the only quadratic
term in (12a), i.e., (ε(l)ij )

2. We approximate this using ε(l)ij θ
(l+1)
ij

and observe that when xij ≤ θ
(l)
ij or xij ≥ θ

(l+1)
ij we recover
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exactly (ε
(l)
ij )

2. However, a gap exists when xij ∈ (θ
(l)
ij , θ

(l+1)
ij )

which can be diminished by adding more linear segments to
t̂(·) and consequently decreasing the range of (θ(l)ij , θ

(l+1)
ij ).

Lemma III.1. Assuming the distance between the break points
of the linear segments is uniform, i.e., θ(l+1)

ij − θ(l)ij = θ(n)/n,
for l = 1, . . . , n − 1, then the objective function of the LP
formulation approximates the QP objective function by an
error upper-bounded by an(θ(n))2/4n2)

∑
(i,j)∈A t

0
ijmij .

Proof. Notice that the maximum total error between the LP
and QP is expressed by:∑

(i,j)∈A

max
l=1,...,n

{alt0ij
mij

((θ
(l+1)
ij − θ(l)ij )ε

(l)
ij − (ε

(l)
ij )

2)
}

(14a)

=
∑

(i,j)∈A

max
l=1,...,n

{alt0ij
mij

(
θnij
n
ε
(l)
ij − (ε

(l)
ij )

2)
}

(14b)

=
∑

(i,j)∈A

max
l=1,...,n

{alt0ij
mij

(
θnij
n

θnij
2n
− (

θnij
2n

)2
}

(14c)

=
∑

(i,j)∈A

ant
0
ij

mij

( (θnij)2
4n2

)
(14d)

=
an(θ

(n))2

4n2

∑
(i,j)∈A

t0ijmij , (14e)

where the first equality comes from the fact that we use
uniform distances for the piecewise regions, and the second
equality comes from the fact that ε(l)∗ij = θ2ij/2n maximizes
equation (14b). Finally the last step selects the last segment n
by observing that an has the steepest slope by assumption.

Theorem III.2. Let the total flow and the capacity of every
link be upper-bounded and assume a0 ≤ a1 ≤, . . . ,≤ an <
∞. Then, as n −→∞, the solution of the LP problem recovers
the solution of the QP.

Proof. Without loss of generality, let us select the thresholds
θ in a uniform manner as in Lemma III.1. The proof follows
immediately after observing in (14e) that, for a bounded an,
mij and t0ij , the error goes to zero as n −→∞.

Interestingly, these two reformulations, QP and LP, together
with Theorems III.1 and III.2 show that a LP can be solved
instead of the original convex program described in (5).
This LP approximates the solution of the QP which in turn
approximates the solution of the original problem. These two
are asymptotically optimal in the number of segments used to
describe the nonlinear function t(·) in the objective.

C. Origin-based Formulation (Flow-bundling)

So far, we have formulated the problem such that for every
OD pair w ∈ W we introduce |A| decision variables. The
total number of variables in our QP (or LP) is then (n +
1 + |W|)|A|, which is typically dominated by the number of
OD pairs |W|. In practice, this number can be very large,
sometimes up to |V|2. Hence, solving the problem using the
previous formulations may require large memory capabilities.

To mitigate this issue, we leverage similar ideas to [38]
which aggregate flows by origin with the objective to reduce
the number of variables and constraints of the QP and LP

without losing information. This flow aggregation by origin
allows us to reduce the number of variables to be in the order
of (n + 1 + |V|)|A|, which makes the problem significantly
faster to solve. Let us denote the set of origin (sources) S =
{ws | du(ws,wt)

> 0, (ws, wt) ∈ W} and the flow on the
network with s as it source by xs; the total user flow on a
link is then xu =

∑
s∈S x

s and the set of user origin-link
variables be xS = {xs | s ∈ S}. For every origin s, let ψs(j)
be the node imbalance describing the excess demand or supply
at each node. This is

ψs(j) =


∑

t:(s,t)∈W

−du(s,t), if j = s,

0, if j 6= s, t,

du(s,t), if j = t.

With this definition in hand, we establish the origin-based
problem as follows

min
xS≥0,xr≥0

∑
(i,j)∈A

Ĵij(xij , εij) +
∑

(i,j)∈AR

cijx
r
ij (16a)

s.t.
∑

i:(i,j)∈A

xsij −
∑

k:(j,k)∈A

xsjk = ψs(j), (16b)
∀j ∈ N , ∀s ∈ S,

(5c), (12b), (12c),

where xij = xuij + xrij + xpij =
∑
s∈S x

s
ij + xrij + xpij .

Now, we show that the resulting flows of the solution of
the origin-based problem (16) are the same as the OD-based
problem (12). To accomplish this, we use the next result.

Lemma III.2. Let xS∗ be the solution to the origin-based
problem (16) and xs∗ the flows associated with origin s. Then,
the subset of arcs As∗ = {(i, j) | xsij > 0, (i, j) ∈ A)} with
positive flow from origin s has no direct cycles.

Proof. We use contradiction. Assume that there is a cycle C
where (i1, i2), (i2, i3), . . . , (ik, i1) ∈ As and let hsi be the
marginal cost (related to the SO solution) of the cheapest path
from s to i. Then, consider any (i, j) ∈ As, which implies
that (i) there exists a positive flow path from s to i and (ii)
xsij > 0. Since we are minimizing a function where tij(x) and
t̂ij(x) are strictly positive and monotonically increasing for all
(i, j) ∈ A, the path connecting s to i has to be a minimum cost
path. Assume this cost to be Tsi and since xsij > 0, the cost
to j is Tsj = Tsi+ tij . Note that by definition Tsj ≤ Tsi+ tij .
However, if Tsj < Tsi+ tij then there must exist a lower-cost
path to j than any of those passing through i. Hence, we must
have Tsj = Tsi+tij for all the links in As. Using the fact that
all travel times are strictly positive, this implies that for the
cycle C we have T1 < T2 < . . . < Tk < T1 which is logically
inconsistent.

Lemma III.3. The link-flow solution of the origin-based prob-
lem (16) is equivalent to the solution of the OD-based problem
(12). i,e,. for any origin s , we have

∑
t:(s,t)∈W xw∗ = xs∗.

Proof. Similar to [38], we prove this by construction and use
the flow decomposition algorithms and results in [49, Thm.
3.5]. We begin by decomposing the origin-based solution xs

of origin s to a set of acyclic paths Ps such that x(ws,wt) = xst
where xst is the acyclic decomposed flow from xs going from
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s to t. We conclude the proof by observing that the origin-
based solution has no cycle (by Lemma III.2) and the fact that
it is possible to decompose the problem to flows using [49,
Thm. 3.5].

Therefore, using the result of Lemma III.3, we can restate
the network model in terms of the origin-based flows which
reduces the size of the model, memory requirements, and
solution time.

D. Disjoint Strategy

We have discussed methods to solve the SO routing and
rebalancing problem jointly. However, a different approach is
to tackle these two problems separately. That is, we first solve
the routing problem followed by the load-balancing problem.
Mathematically, this is to first solve

min
xW≥0

∑
(i,j)∈A

tij(xij)x
u
ij , s.t. (5b), (17)

and then, use the optimal xu∗, to solve

min
xr≥0

c′xr, s.t. (5c). (18)

It is relevant to highlight that this strategy is interesting
given its fast computation. Problem (17) is a constrained
nonlinear program (NLP) which can be solved using any of
the typical algorithms for the TAP, for example Frank-Wolfe
or TAPAS; and problem (18) is a LP with |V| variables.

IV. AMOD IN MIXED TRAFFIC

We have not yet discussed how to address the nested
problem (7) which considers the interaction between the fleet
of AMoDs vehicles and self-interested private vehicles. We
utilize the framework in [23] which applies a sequential
approach (diagonalization scheme [24], [25]) to find an equi-
librium between the AMoD and private flows (Fig. 3).

Rather than addressing the bi-level problem (7), we solve (6)
for the private vehicles and (5) for the AMoD fleet (using
any of the methods in the previous section) and iterate until
convergence. Namely, for a private vehicle demand gu we
solve xp = TAP(gp,0). Next, we solve (5) for AMoD demand
gu with fixed input xp (the output of the earlier solved TAP).
Since private vehicles were not aware of the AMoD flow in
the system while finding their routes, we re-solve the TAP by
considering a fixed AMoD flow equal to xu + xr, i.e., we
solve xp = TAP(gp,xu + xr). Then, we iterate this process
until it converges. An example is shown in Fig. 3b.

In this paper, we do not establish theoretical results on
the stability or uniqueness of the players (AMoD fleet and
private vehicles) equilibria. These results are hard to achieve
due to the non-separability of the cost function regarding the
players’ strategies as pointed out in [24]. Still, empirically, this
sequential approach always converges in a few iterations.

Remark IV.1. Notice that when using this iterative method,
some of the parameters can be updated. In particular if one
uses the disjoint strategy in Sec. III-D to solve the routing
and rebalancing problem, one could update the c vector at
each subsequent iteration by the calculated travel times t(x)

Solve user-centric for
private-vehicle (6)

Solve system-centric
for AMoDs (5)

Fix
A

M
oD

flow

Fi
x

pr
iv

at
e-

ve
hi

cl
e
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w

(a)

0 5 10 15
Iteration number

0.325

0.330

0.335

0.340

J

γ =0.5

(b)

Fig. 3. (a): A sketch of the procedure for solving the bi-level problem (7).
(b): An example of the total cost converging for an AMoD penetration rate
of 0.5 on the NYC sub-network

at the current iteration. When doing this, one obtains a more
precise cost function by weighting vector c with the updated
travel times.

V. ROUTE RECOVERY STRATEGIES

All methods discussed thus far solve the routing and re-
balancing problem by choosing xu and xr that minimize a
performance metric. Even if this flow solution allows us to
assess the network deficiencies and to plan for infrastructure
improvements, flows do not give explicit routes to a given
vehicle. Therefore, we need to extract the routes to implement
the desired flow-based solution we derive. An advantage of the
proposed models in (12) and (16) in contrast to classical link-
based TAP, is that they allow for tracing and recovering the
routes (or paths). We present simple and distributed algorithms
to recover the routes from the OD-based or origin-based
solutions presented in Sec. III, as well as an algorithm to
retrieve the rebalancing routes.

A. AMoD User Flow
1) OD-pair model: Let the optimal solution of the routing

and rebalancing problem be (xW∗,xr∗) and denote with Rw a
set of routes for OD pair w. For each w, we let π ∈ [0, 1]|Rw|

be a vector with elements denoting the fraction of vehicle flow
routed trough route i ∈ Rw. We denote with A the route-link
incidence matrix of Rw. With these definitions, we provide a
column-generation approach in which we find the routes of an
OD-pair by sequentially solving the linear program:

min
π∈[0,1]

‖Aπdw − xw∗‖ (19a)

s.t. π′1 = 1, (19b)

where the product Aπdw is equal to the estimated link flow
induced by routing dwπi flow trough each route and the con-
straint ensures that the vector π is a probability distribution.

The problem of selecting which routes to include in Rw

(column selection) is yet to be addressed. We use the greedy
approach of adding the next shortest route to Rw and re-
solving problem (19). To terminate the algorithm, we use a
user-defined parameter ξ (as shown in Alg. 1). It is worth
pointing out that this procedure can run in parallel for each OD
pair. For uncongested networks, we expect it to converge fast.
This is because when there is little congestion, the majority
of vehicles will be routed trough the shortest paths, which are
the first ones to be added into the set Rw. Finally, note that
this formulation is only available if we have information on
xw∗ for all w ∈ W .
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Algorithm 1 Route-recovery for a specific OD pair
1: procedure ROUTERECOVERY(A, dw, xw∗, ξ)
2: Initialize: xij ← dw1(i,j)∈shortest route for w
3: while ‖x− xw∗‖ > ξ do
4: Rw ← append next shortest path
5: πw ← solve (19)
6: end while
7: end procedure

2) Origin-based model: Let xs∗ be the solution of (16) and
let Ts = {j | ψs(j) < 0, j ∈ V} be the set of destinations
(targets) from origin s. Let ψs(j) be the node imbalance of
node j of the origin-based flows initialized at s. For each
origin s, one can decompose its OD-flow solution by solving
the following LP:

min
{xt}t∈Ts≥0

t0
′
x (20a)

s.t
∑

i:(i,j)∈A

xij −
∑

k:(j,t)∈A

xtj = ψs(t), ∀j ∈ V, (20b)

∑
i:(i,j)∈A

xtij −
∑

k:(j,k)∈A

xtij ≥ 0, ∀j ∈ V\{s}, (20c)

∑
i:(i,s)∈A

xtis −
∑

k:(s,k)∈A

xtsj = ψs(t), (20d)

xs∗ − x = 0. (20e)

Here x is the origin-based flow (equivalent to xs) defined
as x =

∑
t∈Ts x

t. The first constraint, (20c), takes care of
demand satisfaction and flow conservation. The second con-
straint, (20c), considers flow conservation but allows certain
target nodes to have excess flow, allowing them to be a desti-
nation. Constraint (20d) ensures that the decision variables are
designed for that specific origin s by ensuring that the required
flow is leaving that node. Then, (20e), forces the solution to
equal the origin-based flows. Finally, the objective (20a) is
defined with the purpose of breaking ties in case multiple
combinations of flows can satisfy the constraints (e.g. cycles).

Notice that as a result of Lemma III.3, this problem is
always feasible and recovers the OD-based solution. Once
this is found, we could use Alg. 1 to find the path-based
solution. Problem (20) is stated as a linear program that could
be solved in parallel for each origin-based solution s, therefore,
we expect this optimization process to be computationally
efficient.

B. Rebalancing Flows
The problem of finding the paths of the rebalancing flows

is more complex than that of finding the AMoD routes.
This is because we have no information about their origin
and destinations. Rather, the only information available is
the aggregated link flows that the rebalancing vehicles are
taking to minimize (5a) and comply with the load-balancing
constraint (5c). Hence, a first step to recover the paths is to
calculate the rebalancing node imbalances φ(j) for every node
j defined over the available rebalancing solution xr:

φ(j) =
∑

i:(i,j)∈AR

xrij −
∑

k:(j,k)∈AR

xrjk.

We define a rebalancing origin to be a deficit flow node, and
its set Sr = {j | φ(j) < 0, j ∈ AR}; similarly, the rebalancing
destination set is defined as Tr = {j | φ(j) > 0, j ∈ AR}.
Notice that these definitions are made in AR instead than in
A as the rebalancing vehicles only exist in GR. Then, we aim
to recover an OD rebalancing solution by solving

min
{xs}s∈Sr≥0

t0
′
x (21a)

s.t
∑

i:(i,j)∈AR

xij −
∑

k:(j,k)∈AR

xjk = φ(j), ∀j ∈ VR, (21b)

∑
i:(i,j)∈AR

xsis −
∑

k:(s,k)∈AR

xssj = φ(s), ∀s ∈ Sr, (21c)

∑
i:(i,j)∈AR

xsij −
∑

k:(j,k)∈AR

xsij ≥ 0, ∀j ∈ VR\{s}, (21d)
∀s ∈ Sr,

x− xr = 0, (21e)

where we define x =
∑
s∈Sr x

s and xr is the available link
flow solution of (5a). Notice that the model follows the same
intuition as (20). Constraint (21b) takes care of the total flow
conservation of the rebalancing flow, constraint (21c) ensures
that, for each origin variables xs, the outflow of node s is equal
to the excess of vehicles. Constraint (21d) allows any node
different than s be a potential destination of the rebalancing
flow. Finally, (21e) ensures that the aggregated rebalancing
flows by origin matches the rebalancing flow obtained in the
AMoD users problem.

Once we have decomposed the rebalancing flow by origins,
we have for each rebalance origin s an origin-based rebal-
ancing flow. Then, since now we have available the flows in
an origin-based form, we can apply (20) in parallel for each
s ∈ Sr to decompose to an OD-flow solution, and finally use
Alg. 1 to recover the routes.

Remark V.1. For both of (20) and (21) it is possible to dualize
the last constraint (i.e., penalize ‖x−xr‖ on the cost function).
This will make the optimization less restrictive and improves
the solution time by lowering the quality of the solution. It is
hard to estimate exactly what would be the impact of this
dualization in terms of efficiency. However, for low-traffic
networks, we expect (20) and (21) to be faster to solve as
we expect the total flow on every link will belong to less OD
pairs. In contrast, when dealing with high-traffic scenarios, the
total flow on a link might be composed of many OD pairs,
making the problem harder (slower) to decompose. In practice
we have observed that for low-traffic networks less than 3
routes per OD pair are enough to get an accurate solution,
whereas for high-traffic cases, the number of routes required
for good solutions are in the order of 6 to 8. Still, the problems
as stated in this paper can be solved to optimality.

VI. NUMERICAL RESULTS AND CASE STUDIES

To validate our proposed routing algorithms, we consider
two data-driven case studies on sub-networks of Eastern
Massachusetts interstate highways (EMA) and New York City
(NYC). The EMA road network (Fig. 4a) consists of 74 nodes,
258 links, and 1113 OD pairs, and it captures the dynamics
in the context of suburban/urban mobility. Complementary
to EMA, the NYC network focuses on urban mobility. The
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(a) EMA subnetwork (b) NYC subnetwork

Fig. 4. Subnetworks used for the experiments.

NYC topology was constructed using OpenStreetMaps [50]
and contains 3317 arcs, 1351 nodes. The OD demand was built
using historical data taxi rides (courtesy of the New York Taxi
Commission [51]) that occurred on March 1, 2012, between
18:00 and 20:00 hrs which accounts for 8658 OD pairs.

A. Convergence of the approximated model

Our first experiment shows empirically our results of Theo-
rem III.1 and the observation that as n increases, the approx-
imation of t̂(·) to t(·) is tighter and therefore the QP and LP
problems approximate the original problem more accurately.
To generate this experiment, we consider a problem with no
rebalancing (not including the rebalancing constraints) and
with no exogenous flow (i.e., xc = 0). This is exactly the
SO formulation of the TAP for which we use the Frank-Wolfe
algorithm to find its solution (we solve the UC problem using
the same method). Then, we solve the QP and LP versions of
the CARSn model for different values of n and observe that,
as we increase n, the objective of CARSn converges to the
objective of the SO. For example, for both networks shown
in Fig. 5, we observe that for n = 6 the objective of the
approximated models QP and LP are very close to the SO
solution.

B. Joint vs. Disjoint Solution

This experiment aims to compare the solution of the joint
and disjoint formulation of the problem. That is, solving (12)
against the disjoint method in Sec. III-D. We compare this
by showing the improvement (ratio between the value of the
objective functions) of the joint over the disjoint approach. For
EMA and NYC we observe an improvement in the objective
of 3.85% and 0.91%, respectively. Moreover, we consider
the case of NYC network with a higher demand, which we
simulate by multiplying the demand vector g by 2. The
improvement of the joint formulation over the disjoint model
for this demand level is 5.85%. These results highlight the
achievable benefits, especially for high demand scenarios, of
jointly solving the routing and rebalancing problems, rather
than separately.

C. System-Optimal Routing and Rebalancing Trade-off

Considering the existence of selfish privately-owned vehi-
cles and centrally-controlled AMoD vehicles, we analyze the

0

10

20

E
M

A

UC
LP
QP

2 3 4 5 6 7
n

0

20

40

N
Y

C

Fig. 5. Deviation in percentage terms between the approximated model
and the optimal solution of the non-rebalancing SO problem (baseline). UC
indicates how much the solution of the UC deviates from the SO. This gap
between the UC and SO models is referred to as the Price of Anarchy [15].
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Fig. 6. Travel times for AMoD users, private vehicles and all vehicles (total)
for different penetration rates of AMoDs in the network.“R” stands for an
approach that considers rebalancing while “NR” does not.

trade-off that exists between system-optimal AMoD routing
and the additional traffic due to AMoD rebalancing in terms
of average travel times. We tackle the bilevel Problem (7)
following the iterative methodology presented in Sec. IV.
We use different penetration rates of AMoD customers with
respect to the total demand, i.e., a penetration rate of 0.3 will
indicate that 30% of total demand uses the AMoD service
while the rest use private vehicle. More specifically, we let
γ ∈ [0, 1] be the penetration rate and g the total OD demand.
Then, we assume that gu = γg and gp = (1 − γ)g
are the AMoD’s and private vehicles’ demand, respectively.
However, different demand separation criteria can be readily
implemented in this framework.

As shown in Fig. 6, the introduction of AMoD users into
the system not only improves the overall travel time of AMoD
users themselves, but reduces the travel time of private vehi-
cles even more. This is because “smart” routing decisions of
AMoD vehicles reduce the traffic intensity on congested roads,
which consequently allows private vehicles to travel faster. For
EMA, the impact of rebalancing is negligible, and increasing
the percentage of AMoD users in the network allows to reduce
travel time by up to 3%. For NYC, we observe that rebalancing
indeed is detrimental for low penetration rates, but as the
percentage of SO vehicles increases, social routing improves
travel times for both AMoD users and private vehicles. Yet,
in general, the impact of rebalancing on the system-level
performance depends on the network topology, and on the
symmetry and intensity of the OD demand distribution.
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D. Intermodal AMoD
We study the impact of intermodal SO routing against UC

private vehicle routing for the NYC network. We consider high
congestion levels and run the experiments by multiplying the
demand distribution vector g by a factor of 1.5 (see details
of the demand in the online repository [52]). Similar to our
last experiment, we run the analysis for different penetration
rates. We assume that AMoD users are able to take public
transit (subway), walk, or bike towards their destination and
switch between modes in their route. In contrast to the AMoD
users, we limit the flexibility of private vehicles to exclusively
use the road network (no subway, biking or walking) due to
parking constraints. The top row of plots on Fig. 7 display,
on the left, the travel time for the two user types as the
penetration rate of AMoD users increases, and on the right,
the modal distribution of the total kilometers traveled. The
top row shows the results when only taxi-type service is
offered to AMoD users (no subway, walking or biking). We
observe that the extra rebalancing flow increases the overall
travel times of the system more than what SO routing can
reduce it. This result confirms the fact that pure vehicle-based
MoD systems can have detrimental effects on the overall travel
time [53]. The subsequent plots show that by considering the
flexibility of other modes of transportation, AMoD mobility
can reduce traffic congestion. The second row of plots in
Fig. 7 includes a public transit option, the third row adds a
pedestrian option (6 km/h), and the last one also considers
biking (10 km/h) as an option2. In general, we see that the
more modes of transportation are offered, the lower the travel
times for everyone. In addition, when new options for mobility
are offered, AMoD users could reach lower travel times than
private vehicles, something which is impossible to achieve
when only taxi-rides are available (due to the assumption on
UC routing). This happens because they are more flexible
and their overall transportation capacity is larger than the
available capacity for private vehicles. However, at almost
100% penetration rates, it still seems that being selfish is
benefited, raising interesting questions on how to incentivize
users to act in a system-centric fashion. Finally, one can
observe by comparing the first three rows of plots in Fig. 7,
that when a tiny fraction of flow is accessible via subway or
walking, the travel times were reduced by almost 50%.

To account for more traffic intensities, Table I presents the
results for an AMoD system with taxi-type (Veh), subway
(Sub), pedestrian (Ped), and biking (Bike) layers when demand
is multiplied by a factor of 1, 1.5, (corresponding to the last
subplots of Fig 7) and 2. The Table shows results for the
overall travel times and modal distributions of the I-AMoD
kilometers traveled for penetration rates equal to 0, 50%, and
100%. In general we see that the higher the congestion, the
larger benefit in travel times due to the enlarged capacity
resulting form intermodal options. In addition, we see that
subway and biking options are critical to improve travel times.

In conclusion, we observe that while pure AMoD sys-
tems might decrease the system-level performance due to the

2For biking, we include a set of constraints in the same spirit as (5c) but for
the bike layer. This ensures the balance between the incoming and outgoing
flow of bikes at each node which goes in line with the dynamics of bike
sharing systems [54].

TABLE I
INTERMODAL AMOD RESULTS FOR DIFFERENT TRAFFIC INTENSITIES.

Demand Pen. Rate Avg. Travel Time (min) I-AMoD Modal Distribution
I-AMoD Private Veh Veh Reb Bike Sub Ped

1
0 5.2 5.7 80% 15% 0% 5% 0%

0.5 5.2 5.4 81% 14% 0% 5% 0%
1 5.0 5.0 82% 13% 0% 4% 0%

1.5
0 7.5 8.8 69% 23% 2% 6% 0%

0.5 7.0 6.9 74% 17% 4% 5% 0%
1 6.3 5.7 78% 13% 4% 5% 0%

2
0 10.7 15.8 52% 28% 12% 7% 1%

0.5 9.1 8.5 68% 13% 12% 6% 0%
1 7.7 6.2 75% 8% 11% 6% 0%
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Fig. 7. System performance with alternative modes of transport for a relatively
high-demand scenario in NYC (we increase demand by a factor of 1.5).
The first column of plots show the average travel time for different AMoD
penetration rates while the second row depicts the miles traveled per mode
of transportation for each penetration rate.

additional congestion resulting from rebalancing, intermodal
centralized-routing can significantly improve the overall travel
times. Especially at high levels of demand, we see that, while
SO intermodal routing can significantly improve travel times,
it comes with the social dilemma that, from a UC perspective,
being selfish would still be optimal.

E. Route Recovery Example
We show the applicability of our route-recovery strategies

presented in Section V. We implement the distribute version
of the route-recovery algorithm described in Section V-A2
on the solution flows of the origin-based problem (16). We
compute the routes using a commercial laptop with 8 cores
for which we recover the routes in the order of 30 seconds to
one minute making it accessible for real-time implementation.
Fig. 8 shows the different SO routes connecting a single OD
pair. The left plot shows the recommended routes which only
include taxi-type service. Furthermore, the right plot shows
an intermodal route composed of taking taxi (solid lines) and
subway (dotted line).
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Fig. 8. Example of the SO routes connecting an OD pair. Green and red dots
represent origin and destinations, respectively. Solid lines portray traveling
flow in the road network while dotted lines describe flow traveling via subway.

VII. CONCLUSIONS

In this paper, we proposed a methodology to optimize
the routes and rebalancing policies of a congestion-aware in-
termodal Autonomous Mobility-on-Demand (AMoD) system
when it interacts with exogenous private traffic. To address the
issue of non-convexity for this problem, we used a piecewise
affine approximation of the travel latency function and proved
that as the number of piecewise affine segments increases,
the solution to the problem converges to the solution of the
relaxed original problem. Using examples with the Eastern
Massachusetts Area (EMA) and New York City (NYC) net-
works, (i) we empirically showed that the piecewise affine
relaxation is asymptotically optimal, (ii) we captured the
benefits of centrally controlling an intermodal AMoD system
under mixed traffic conditions when different modes of trans-
portation are available, (iii) we measured the advantage of
using the approximated joint method versus a method that
separately optimizes the routing and rebalancing policies, (iv)
we revealed the existing trade-off between extra rebalancing
flow and smart routing decisions, and (v) we tested the
applicability of our proposed route-recovery algorithms in a
real case study using the NYC network.

This paper opens the field for the following extensions. First,
we would like to use these methodologies for solving a larger
class of problems characterized as Traffic Assignment Prob-
lem with side constraints (TAPSC), i.e., Traffic Assignment
Problems (TAPs) with arbitrary constraints such as the link-
capacitated TAP [55]. Second, we are interested in leveraging
our route-recovery strategies for real-time routing. Finally, we
would like to devise pricing and incentive schemes to align the
interests of selfish users with the system optimum and realize
the full potential of smart intermodal mobility systems [45],
[56].
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