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A regularized kernel-based method for learning a module in a dynamic
network with correlated noise

Venkatakrishnan C. Rajagopal, Karthik R. Ramaswamy and Paul M.J. Van den Hof

Abstract— In this paper, we consider the problem of identi-
fying one system (module) embedded in a dynamic network
that is disturbed by colored process noise sources, which
can possibly be correlated. To achieve this using the direct
method for single module identification, we need to formulate a
Multi-Input-Multi-Output (MIMO) estimation problem which
requires model order selection step for each module in the
setup and estimation of large number of parameters. This
results in a larger variance in the estimates and an increase
in computation complexity. Therefore, we extend the Empirical
Bayes Direct Method [1], which handles the above mentioned
problems for a Multi-Input-Single-Output (MISO) setup to a
MIMO setting by suitably modifying the framework. We keep
a parametric model for the desired target module and model
the impulse response of all the other modules as independent
zero mean Gaussian process governed by a first-order stable
spline kernel. The parameters of the target module are obtained
by maximizing the marginal likelihood of the output using
the Empirical Bayes (EB) approach. To solve this, we use
the Expectation Maximization (EM) algorithm which offers
computational advantages. Numerical simulation illustrate the
advantages of the developed method over existing classical
methods.

I. INTRODUCTION

Dynamic networks are interconnections of multiple sys-
tems and can be defined as a set of measurable signals (node
signals) interconnected through linear time-invariant (LTI)
dynamic systems (modules), possibly driven by external ex-
citation signals. Over the past decade, data-driven modeling
has garnered increased attention from researchers in the field
of dynamic networks. Two major research problems in this
field are the full network identification, which focuses on
identifying the whole network dynamics [2]–[5], including
aspects of identifiability ( [6]–[8] ), and single module
identification which focuses on identifying a single module
embedded in a network with known topology [1], [9]–[17].

In this paper, we focus on the problem of local module
identification. In [9], the direct method for single module
identification in dynamic networks has been introduced by
extending the direct method for closed loop identification
[18]. In this method, a Multi-Input-Single-Output (MISO)
identification problem is formulated considering all node
signals directly connected to the output of target module as
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inputs. However, the target module can be consistently esti-
mated with limited number of inputs in the MISO problem
provided the situation of confounding variables1 (see [16],
[19] for details) are dealt with properly. An algorithm for
the limited predictor input selection has been presented in
[12]. However, the above direct method approaches provide
consistent (and Maximum Likelihood (ML)) estimates only
under the situation of process noise acting on the nodes being
uncorrelated.

The situation of correlation in process noise can be han-
dled using the indirect method [15] and its variants like
the two stage method [9], [12] and instrumental variable
methods [10], [20]. However, these methods require a strong
presence of measured external excitation signals to serve as
predictor inputs, and might increase the cost of experiments.

On the contrary, the direct approaches use the entire infor-
mation of the node signal (both excitation and noise signal),
but suffers from handling correlated noise. A solution to this
problem has been provided in [16] as the local direct method.
In this method, we handle the effect of noise correlation
in dynamic networks by moving from a MISO to Multi-
Input-Multi-Output (MIMO) identification setup, where the
single module identification problem becomes embedded in
a network MIMO identification problem, resulting in the
problem of estimating high number of parameters that are of
no prime interest to the experimenter. In addition, all these
additional modules need to be suitably parameterized based
on complexity criteria like AIC, BIC, or Cross Validation
(CV) [18]. This step involves permuting candidate model
orders for all modules which increases exponentially with the
number of modules or their orders. Also, algorithms to solve
the network MIMO estimation problem for arbitrary model
structures (except ARX, ARMAX [21]) are not available.

To eliminate the model order selection step and reduce
the number of estimated parameters, we build on [1] and
develop a regularized kernel based method (see [22] for a
survey) that extends the semi-parametric approach of [1] in
a MISO setting to a MIMO setting. Preserving the approach
of [1], we maintain a parametric model for the target module
to accurately capture the dynamics, while using independent
Gaussian processes to model the impulse responses of other
modules. The covariance matrix of these processes are given
by the first-order stable spline kernel [23] which enforces
stability and smoothness of the impulse response coefficients.
The parameters of the target module, hyperparameters of the

1unmeasured variables that directly or indirectly influence the input and
output of an estimation problem.



kernel and the covariance of the process noise are estimated
by maximizing the marginal likelihood of the data, achieved
by an Expectation-Maximization (EM) method having attrac-
tive computational properties.

II. PROBLEM STATEMENT

Following the setting in [9], we consider a dynamic
network built up of L measurable internal variables or nodes
wj(t), j = 1, . . . , L. This network is defined as2


w1

w2

...
wL


︸ ︷︷ ︸
w

=


0 G12 · · · G1L

G21 0
. . .

...
...

. . . . . . GL−1L
GL1 · · ·GLL−1 0


︸ ︷︷ ︸

G


w1

w2

...
wL

+


u1

u2

...
uL

+


v1

v2

...
vL

 ,

(1)
where q−1 is the delay operator i.e. q−1u(t) = u(t− 1).

• Gjl is a strictly proper rational transfer function for
j = 1, . . . , L and l = 1, . . . , L, referred to as a module,

• There are no self loops in the network i.e. nodes are
not directly related to itself, i.e. Gjj = 0,

• The topology of the network is known i.e. which entries
of G are non-zero are known a priori.

• vj is the process noise entering the node wj . The
vector process v =

[
v1 . . . vL

]>
is modelled as

a stationary stochastic process with rational spectral
density, Φv(ω), such that v = H(q)e, where e =[
e1 . . . eL

]>
is a Gaussian white noise process with

covariance, Λ > 0, and H(q) is square, stable, monic,
minimum phase transfer matrix. The correlated noise
situation, considered in this paper, refers to the situation
of non-diagonal Φv(ω) and H(q).

• uj is generated by the external variables rk, that can be
directly manipulated by the user and is given by uj =∑K
k=1Rjkrk, where Rjk are stable and proper rational

transfer functions. Therefore, u =
[
u1 . . . uL

]>
can

be represented as u = Rr where, r =
[
r1 . . . rK

]>
and R is the matrix of rational transfer functions Rjk.

Assumption 1: In a dynamic network represented by (1),
we consider the following assumptions:

• The dynamic network is stable i.e. (I −G)−1 is stable,
and well posed (see [9] for details).

• The structure of process noise correlation is known i.e.
we know a priori which entries of Φv(ω) are nonzero.

According to the local direct method [16], a module Gji
embedded in a dynamic network with correlated noise can
be consistently identified with a MIMO estimation setup,
wD → wY . Here, predictor inputs wD and predicted outputs
wY may have common signals to handle the confounding
variables that arise due to correlated disturbances. Therefore,
by exploiting a multivariate noise model, the effect of corre-
lated disturbances are covered. The estimation setup results

2time and frequency dependency is dropped for convenience.

from the network equation[
wQ
wo

]
︸ ︷︷ ︸
wY

=

[
ḠQQ ḠQU
ḠoQ ḠoU

]
︸ ︷︷ ︸

Ḡ

[
wQ
wU

]
︸ ︷︷ ︸
wD

+

[
H̄QQ H̄QU
H̄oQ H̄oU

]
︸ ︷︷ ︸

H̄

[
ξQ
ξo

]
︸︷︷︸
ξY

, (2)

where wQ are the set of nodes that are common to both inputs
and outputs that are needed to handle the noise correlations
and confounding variable as discussed in [16], wU and wo
are the sets of nodes that are exclusively inputs and outputs
respectively. The vector ξY is a Gaussian white noise process
constructed by spectral decomposition and H̄ is square,
stable, monic and minimum phase. The desired target module
is represented in Ḡji i.e. Ḡji = Gji and ḠQQ is a hollow
matrix and thus does not lead to transfers between signals
that are the same. Also, the non-zero entries in Ḡ can be
computed (refer to [16]). Without loss of generality, r = 0
is considered for simplicity.

We want to identify a parametric model for the module
directly linking node wi and wj , represented as Gji(q, θ)
that describes the dynamics of the module of interest for a
certain parameter vector θ ∈ Rnθ , from N measurements
of the node signals wD and wY . In the local direct method,
not only the target module Gji but all the modules in Ḡ
are parameterized, resulting in high number of parameters to
estimate which causes a detrimental effect on the variance of
the parameter estimates when N is not very large. Therefore,
we focus on estimating a parametric model for the target
module while reducing the number of parameters for the
remaining modules in the MIMO identification setup.

III. DEVELOPING THE BAYESIAN MODEL

In this section, we discuss how we avoid parameterizing
all but the target module using regularized kernel-based
methods. As the starting point of the methodology in this
paper, we use the MIMO structure in (2), as opposed to
a MISO structure in the Empirical Bayes Direct Method
(EBDM) [1]. Following (2), while maintaining the monicity
of the noise model, the equation can be re-ordered as[

wj
wỸ

]
︸ ︷︷ ︸
w̃Y(t)

=

[
Gji ḠjD̃
ḠỸi ḠỸD̃

]
︸ ︷︷ ︸

Ǧ

[
wi
wD̃

]
︸ ︷︷ ︸
w̃D(t)

+

[
H̄jj H̄jỸ

H̄Ỹj H̄ỸỸ

]
︸ ︷︷ ︸

Ȟ

[
ξj
ξỸ

]
︸︷︷︸
ξ̃Y(t)

, (3)

where Ỹ = Y\{j} and D̃ = D\{i}. The signals w̃Y , w̃D, and
ξ̃Y are suitably rearranged. To parameterize only Gji in Ǧ, we
first define the following quantities: S(q) = I|Y| − Ȟ(q)−1,

G̃(q) =

[
0 ḠjD̃
ḠỸi ḠỸD̃

]
, and SD(q) = (I − S(q))G̃(q), where

|X | denotes the cardinality of set X . With these definitions,
we build a predictor from (3) with a parameterized Gji as

w̃Y(t)=(I − S(q))

[
Gji(q, θ)
0(|Y|−1)×1

]
wi(t) + SD(q)w̃D(t)

+ S(q)w̃Y(t) + ξ̃Y(t). (4)

It is to be noted that the first element of SD(q) is zero
if ḠỸi = 0, else SD(q) becomes a full matrix due to the
multiplication of (I − S(q)) and G̃(q).



A. Vector description of network dynamics

Keeping a parametric model for the target module, we
now need to model the other modules. First, we obtain a
vector description of the network dynamics for the available
N measurements using impulse response of the modules. We
stack the first ` coefficients of the impulse response of each

module in SD(q) and S(q) as sD =
[
s>Y1D1

, . . . , s>Y|Y|D|D|

]>
,

and sY =
[
s>Y1Y1

, . . . , s>Y|Y|Y|Y|

]>
, where Y1, . . . , Y|Y| and

D1, . . . , D|D| are elements of set Y and D respectively. ` is
chosen sufficiently large to capture the impulse response dy-
namics. We also represent the target module Gji(q, θ) as an
impulse response, where the first N coefficients are collected
in gji (the dependence on θ is implicit and dropped).

Next we introduce a vector notation for the signal
w̃Y(t): w̃Y :=

[
w̃Y1(1) . . . w̃Y1(N) w̃Y2(1) . . . w̃Y|Y|(N)

]
.

Then, we denote Gθ ∈ RN×N as the Toeplitz ma-
trix of gji, W̄i ∈ RN×̀ as the Toeplitz matrix of[
0 0 wi(1) . . . wi(N − 2)

]>
, and Wi ∈ RN×N as the

Toeplitz matrix of
[
0 wi(1) . . . wi(N − 1)

]>
, and W̆k ∈

RN×` as the Toeplitz of
[
0 wk(1) . . . wk(N − 1)

]>
where

k belongs to the elements in Y and D. We also define the
following:

WY =
[
WY1

. . . WY|Y|

]
WD =

[
WD1

. . . WD|D|

]
W̃i = [GθW̄i 0] ∈ RN×`|Y|,

W̃ i = diag(W̃i, . . . , W̃i) ∈ RN |Y|×`|Y|
2

,

WD = diag(WD, . . . ,WD) ∈ RN |Y|×`|D|
2

,

WY = diag(WY , . . . ,WY) ∈ RN |Y|×`|Y|
2

.

(5)

Having defined the above terms, (4) can be rewritten in vector
form as

w̃Y = Wjigji − W̃ isY + WDsD + WYsY + ξ, (6)

where Wji =
[
W>i 0>

]>
, and ξ ∈ RN |Y|×1 is the vectorized

noise.

B. Modeling the additional modules as GP

We now discuss our modeling strategy for the additional
modules. Our aim is to increase the accuracy of the desired
parameter θ by limiting the number of parameters to be esti-
mated to describe w̃Y in (6). Therefore, we keep a parametric
model for gji and model the remaining impulse responses
in (6) as independent zero mean Gaussian Processes (GP)
[24]. GP are effective in reducing the variance of the impulse
response estimate with suitable choice of a prior covariance
matrix (kernel) [22], which we chose to be the First order
Stable Spline kernel [23]. The kernel structure is given by
K := λKβ with [Kβ ]x,y = βmax(x,y), where β ∈ [0, 1)
and λ ≥ 0. λ and β are hyperparameters that govern the
amplitude and exponential decay of the realization of the
Gaussian vector respectively. Therefore, impulse response of
any length ` can be represented using only the above two
hyperparameters λ and β. In addition, the chosen kernel

enforces smoothness and stability of the estimate of the
impulse responses. Therefore, we have:

sYpDk ∼ N (0, λDpkKβDpk
), p = 1, . . . , |Y|, k = 1, . . . , |D|

sYpYk ∼ N (0, λYpkKβYpk
), p = 1, . . . , |Y|, k = 1, . . . , |Y|.

(7)
Each impulse response prior is assigned with independent
hyperparameters λ and β for flexibility of modeling. Let us
now define, s =

[
s>Y s>D

]>
, W =

[
WY − W̃ i WD

]
and let K be the block diagonal matrix constructed with the
covariance of the impulse response priors. Using the above
definitions, (6) can be written as,

w̃Y = Wjigji + Ws + ξ. (8)

In (8), s is modeled as Gaussian process. Therefore by
considering a Gaussian distribution for noise ξ and also
taking into account the noise correlations

ξ ∼ N (0, Σ̄⊗ IN ), Σ̄ :=


σ2

11 σ2
12 . . . σ2

1|Y|
∗ σ2

22 . . . σ2
2|Y|

...
...

. . .
...

∗ ∗ . . . σ2
|Y||Y|


we can write a joint probabilistic description of s and w̃Y ,
which is jointly Gaussian, as:

p

([
s
w̃Y

]
; η

)
∼ N

([
0

Wjigji

]
,

[
K KW>

WK P

])
(9)

where, P := Σ + WKW>, Σ := Σ̄⊗ IN , and

η = [θ λD11 . . . λD|Y||D| λ
Y
11 . . . λY|Y||Y| β

D
11 . . . βD|Y||D|

βY11 . . . βY|Y||D| σ
2
11 . . . σ2

1|Y| . . . σ
2
2|Y| . . . σ

2
|Y||Y|]

>.
(10)

The parameter vector η governs the probability distribution
function in (9). It consists of the parameters of Gji(θ),
the hyperparameters of the kernels of the impulse response
models and the elements of the covariance of the noise
acting on w̃Y . It is important to note that in EBDM [1]
we estimate the variance of the noise corrupting only the
output of the target module wj(t), in contrast to all elements
of the covariance matrix of the noise corrupting the signals
wY(t) to capture the effect of noise correlations. Therefore, to
estimate the θ contained in η, we adopt an Empirical Bayes
(EB) framework [25]. To this end, we consider the marginal
pdf of w̃Y by integrating out the effect of s and maximizing
the marginal likelihood of wY . The corresponding objective
function is

η̂= argmax
η

p(w̃Y ; η)

=argmin
η

log |P|+(w̃Y−Wjigji)
>
P−1(w̃Y−Wjigji) .

(11)

This optimization problem is complex and non-convex, and
solving such a problem is cumbersome. Therefore, in the next
section, we introduce a method to solve the marginal likeli-
hood maximization problem through an iterative scheme.



IV. MAXIMIZING MARGINAL LIKELIHOOD

For maximizing the marginal likelihood, we consider the
iterative method of Expectation Maximization (EM) method
[26] for obtaining the estimate of η. For this, we need to
first define the latent variable whose estimation simplifies
the calculation of the marginal likelihood. In this case, we
choose s. The EM method guarantees convergence to a local
minima [27] and the optimization problem is simplified as
seen in Lemma 1 compared to solving the original problem
in (11). The EM method has two steps,
• E-step: Given η̂(n) at the nth iteration, compute

Q(n)(η) = Ep(s|w̃Y ;η̂(n))[log p(w̃Y , s; η)], (12)

• M-step: Compute η̂(n+1) from

η̂(n+1) = argmax
η

Q(n)(η). (13)

The estimate η̂ is obtained by iterating between (12) and
(13) until the parameters converge. Although the procedure
is iterative, the EM algorithm significantly simplifies solving
(11), reasons for which are shown in our next steps.

The posterior distribution of s given w̃Y for an estimate of
η is Gaussian, given by p(s|w̃Y ; η) ∼ N (sm, Ps) [28] where

Ps = K−KW>(WKW> + Σ)−1WK,

sm = (KW>(WKW> + Σ)−1)(w̃Y −Wjigji).
(14)

Let ŝ(n) and P̂
(n)
s be the posterior mean and covariance

of s obtained from (14) using η̂(n), we define Ŝ
(n)

:=

P̂
(n)
s + ŝ(n)ŝ(n)> and each of its ` × ` diagonal block as

Ŝ
(n)

m which are the posterior second moment of ŝ(n)
m . Here,

m corresponds to each combination of the impulse response
in (7) and its respective hyperparameters.

The structure of Q(n)(η) in (12) for the setup in (11) is
provided in the following lemma.

Lemma 1: Let η̂(n) be the estimate of η at nth iteration
of the EM algorithm according to (13), then

Q(n)(η) = Q
(n)
0 (θ,Σ) +

∑
m

Q(n)
sm (λm, βm) (15)

where,

Q
(n)
0 (θ,Σ) = − log det Σ− tr

(
Σ−1

(
w̃Yw̃

>
Y +WŜ

(n)
W>

+Wjigjig
>
jiW

>
ji −Wjigjiw̃

>
Y −w̃Yg>jiW>ji −Wŝ(n)w̃>Y

− w̃Y ŝ(n)>W> + Wŝ(n)g>jiW
>
ji +Wjigjiŝ

(n)>W>
))
,

Q(n)
sm (λm, βm)=− log detλmKβm−

1

λm
tr
(
K−1
βm

Ŝ
(n)

m

)
.

It is indeed seen that (12) splits into a summation of simpler
terms that depend on different elements of parameter vector
η. Therefore, the update of η splits into many independent
and simpler optimization problems, that can be computed in
parallel.

1) Update of kernel hyperparameters: It can be seen that
the kernel hyperparameters can be updated independently of
the rest of the parameters. The kernel hyperparameters are
updated as per the Theorem 1 [14], [29].

Theorem 1: Define

Q
(n)
βm

(βm) = ` log tr(K−1
βm

Ŝ
(n)

m ) + log detKβm . (16)

Then,
β̂(n+1)
m = argmin

βn∈[0,1)

Q
(n)
βm

(βm)

λ̂(n+1)
m =

1

`
tr(K−1

β̂
(n+1)
m

Ŝ
(n)

m ).

(17)

The optimization problem in (16) is a scalar optimization
in the domain [0,1) and computationally fast. The update of
λ̂

(n+1)
m has a closed form solution, requiring no optimization.

Therefore, the hyperparameters update becomes simple.
2) Update of θ and noise covariance: The updates of θ

and the noise covariance parameters in η are independent of
the kernel hyperparameters. Following a similar reasoning in
[30], θ and Σ are updated as per the Theorem 2.

Theorem 2: Define

Q
(n)
θ (θ) = det

(
N∑
t=1

P̂
(n)
ξ (t)

)
.

Then
θ̂(n+1) = argmin

θ
Q

(n)
θ (θ) ,

Σ̂(n+1) =
1

N

(
N∑
t=1

P̂
(n+1)
ξ (t)

)
⊗ IN .

(18)

Here, P̂ (n)
ξ is computed based on η̂(n) and ŝ(n), whereas

P̂
(n+1)
ξ is computed based on θ̂(n+1), λ̂(n)

m , β̂(n)
m and ŝ(n).

The expression for computing P̂ξ is provided in the ap-
pendix. From Theorem 2, Σ is updated using a closed form
expression, requiring minimal computation. Except for θ that
requires solving a non-linear optimization problem at each
iteration, all other updates are simple and computationally
effective, which is significantly more efficient compared to
solving the non-linear optimization problem in PEM with all
modules parameterized in the MIMO setup. The steps for
estimating η̂ is provided in Algorithm 1. Initialization can
be done by randomly choosing η subject to the constraints
of the hyperparameters. For terminating the algorithm, the

convergence criteria is defined as ‖η̂
(n)−η̂(n−1)‖
‖η̂(n−1)‖ < 10−5.

V. NUMERICAL SIMULATIONS

Numerical simulations are performed to validate and il-
lustrate the developed method. To this end, we consider
the dynamic network shown in Figure 1 with 3 nodes. The
network is excited using known external excitation signals
r1(t) and r3(t) that are realizations of white noise with unit
variance. The process noises of node 2 and 3 are correlated.
In this network, we intend to identify the dynamics of the
module G0

21 (green module). We run 50 independent Monte



Algorithm 1: Algorithm for identifying a local mod-
ule in a dynamic network with correlated noise

Input:{wk}Nt=1, k ∈ Y ∪ D
Output: θ̂

1) Set n = 0, Initialize η̂(0).
2) Compute P̂ s

(n)
, ŝ, and Ŝ

(n)
.

3) Update the kernel hyperparameters of all the impulse
responses in (7), β̂(n+1)

m and λ̂(n+1)
m using (17).

4) Update θ̂(n+1) and Σ̂(n+1) using (18).
5) Set η̂(n+1) based on (10).
6) Set n = n+ 1.
7) Repeat steps (2) to (6) until convergence.

Fig. 1. A 3 node network with process noise correlated between the nodes
2 and 3: The target module is G21 (green box).

Carlo simulations obtaining N = 500 data each time. The
noise sources e1(t), e2(t) and e3(t) have variances of 0.1,
0.2 and 0.3 respectively. We assume that we know the model
order of G0

21. The dynamics of all the modules and the noise
models are given in (19).

G0
21 = b1q

−1+b2q
−2

1+a1q−1+a2q−2 = 1q−1+0.5q−2

1+0.8q−1+0.6q−2

G0
31 = −2.1q−1+2.4q−2

1−0.9q−1−0.1q−2 G0
12 = 0.03(q−1+q−2)

1+1.9q−1+0.9q−2

G0
23 = −0.2q−1+0.02q−2

1−0.2q−1−0.1q−2 H0
11 = 1+0.1q−1−0.03q−2

1+0.5q−1+0.1q−2

H0
22 = 1+1.5q−1−0.2q−2

1+0.1q−1−0.01q−2 H0
33 = 1−0.4q−1+0.1q−2

1−0.4q−1+0.1q−2

H0
23 = 0.3q−1−0.01q−2

1−0.4q−1−0.6q−2 H0
32 = q−1−q−2

1−1.9q−1+0.9q−2 .
(19)

According to the local direct method [16], among the
inputs {w1, w3} that contribute to the output of the target
module w2, the noise correlation between the input w3 and
output w2 can be handled by adding w3 (common signal) to
the output, thereby covering the noise correlation by a (2×
2) noise modeling. Therefore, the input and output nodes of
the MIMO estimation setup are given by wD = {w1, w3} and
wY = {w2, w3}. We choose ` = 100 for the length of impulse
response vectors of the additional modules. To assess the
performance of the developed method (named as Empirical
Bayes Local Direct Method (EBLDM) for comparison), we
compare it with the Direct method (DM) [9] and the Two
Stage Method (TS) [9]. In the case of DM, we solve a
2-input/1- output MISO identification problem with w1(t)

DM+TO DM+MOS TS+MOS EBLDM
0

0.2

0.4

0.6

0.8

1

TS+MOS EBLDM

0.975

0.98

0.985

0.99

0.995

1

Fig. 2. Box plot of fit of the impulse response of Ĝ21 obtained by the
two stage method, direct method and the developed method.

and w3(t) as inputs and w2(t) as output. In the two-stage
method, the projection of the two inputs on the external
signals r1(t) and r3(t) are used as inputs to the MISO
identification problem. Furthermore, to improve the accuracy
of the estimate obtained by the Two Stage method, we also
identify the noise model. For both these methods, we use the
Akaike Information Criteria (AIC) for selecting a suitable
model order.

DM+TO TS+MOS EBLDM
-0.1

-0.05

0

0.05

0.1

DM+TO TS+MOS EBLDM
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1

DM+TO TS+MOS EBLDM
-1.5

-0.75

0

0.75

1.5

DM+TO TS+MOS EBLDM
-1

-0.5

0

0.5

1

Fig. 3. Bias and standard deviation of the estimate of target module
parameters

The box plot of the fit of impulse response of G0
21 is

shown in Figure 2, where we have compared the perfor-
mances of the direct method with true model order and the
same method with model order selection step (‘DM+TO’
& ‘DM+MOS’), the two stage method with model order
selection step (‘TS+MOS’) and the EBLDM. The EBLDM
has better overall fit of the impulse response than the classical
methods. On comparing the bias and standard deviation plot
of the parameters of Ĝ21, shown in Figure 3, it is evident
that the EBLDM provides a smaller bias and substantially
reduced variance of the estimated parameters. The reduced
variance is attributed to the regularization approach of this
method. Among the other methods, the two stage method
achieves smaller bias and variance than the direct method. A
significant bias in the estimated parameters can be witnessed
in the case of ‘DM+TO’ from Figure 3. This is in accordance
with the theory that the direct method with the chosen MISO
identification setup provides biased estimates under the sit-
uation of correlated noise, however, a MIMO identification
setup (as in EBLDM) does not (see [16]). Overall, the de-
veloped EBLDM method proves effective for the considered



relatively small network. As the size of the network grows,
the results of the classical methods may further deteriorate
due to the increase in number of parameterized modules and
model order selection step that needs to be performed for
it. Concerning this situation, EBLDM can stand out as an
effective method by circumventing the model order selection
step and providing reduced variance for large sized networks.

VI. CONCLUSION

Building on the EBDM, an effective approach for the
network MIMO estimation problem that is required to iden-
tify a module in a dynamic network with correlated noise
has been developed. The developed method circumvents the
model order selection step for all the modules that are not
of interest to the experimenter but needs to be identified for
unbiased estimate of the target module. Furthermore, it uses
the regularized non-parametric methods to reduce the number
of estimated parameters, which reduces mean squared error
of the estimated target module. Numerical simulation with an
example network emphasize the potential of the introduced
method in comparison with the available classical methods.
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APPENDIX

Let us define the matrices

W1(t) =
[
W(t, ∗)>W(t+N, ∗)> . . .W(t+(NY − 1)N, ∗)>

]>
W2(t) =

[
Wji(t, ∗)>Wji(t+N, ∗)> . . . Wji(t+(NY−1)N, ∗)>

]>
where, W(t, ∗) corresponds to the tth row of the matrix W.
With the above definitions, we define

P̂
(n)
ξ (t) = w̃Y(t)w̃>Y (t) +W2(t)ĝ

(n)
ji ĝ

(n)>
ji W>2 (t)

+W1(t)Ŝ
(n)
W>1 (t)−W2(t)ĝ

(n)
ji w̃

>
Y (t)−W1(t)ŝ(n)w̃>Y (t)

− w̃Y(t)ĝ
(n)>
ji W>2 (t) +W1(t)ŝ(n)ĝ

(n)>
ji W>2 (t)

− w̃Y ŝ(n)>W>1 (t) +W2(t)ĝ
(n)
ji ŝ(n)>W>1 (t)

(20)
P̂

(n+1)
ξ (t) is obtained by updating ĝ

(n+1)
ji and recomputing

(20).


