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A Simple Pipeline for Coherent Grid Maps
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Fig. 1. Our 3-step pipeline to automatically compute a grid map, illustrated on the Dutch municipalities: (1) decompose the containing
shape into parts; (2) compute a tile-based Mosaic Cartogram using these parts; (3) assign elements to tiles per part.

Abstract— Grid maps are spatial arrangements of simple tiles (often squares or hexagons), each of which represents a spatial element.
They are an established, effective way to show complex data per spatial element, using visual encodings within each tile ranging from
simple coloring to nested small-multiples visualizations. An effective grid map is coherent with the underlying geographic space: the
tiles maintain the contiguity, neighborhoods and identifiability of the corresponding spatial elements, while the grid map as a whole
maintains the global shape of the input. Of particular importance are salient local features of the global shape which need to be
represented by tiles assigned to the appropriate spatial elements. State-of-the-art techniques can adequately deal only with simple
cases, such as close-to-uniform spatial distributions or global shapes that have few characteristic features. We introduce a simple
fully-automated 3-step pipeline for computing coherent grid maps. Each step is a well-studied problem: shape decomposition based on
salient features, tile-based Mosaic Cartograms, and point-set matching. Our pipeline is a seamless composition of existing techniques
for these problems and results in high-quality grid maps. We provide an implementation, demonstrate the efficacy of our approach on
various complex datasets, and compare it to the state-of-the-art.

Index Terms—Grid maps, algorithms, tile maps, small multiples, geovisualization

1 INTRODUCTION

Data often has a spatial dimension which is an important factor when
trying to understand relations and discrepancies between data at dif-
ferent locations. Correspondingly, many techniques exist to show
data on a map, typically with high spatial accuracy – the traditional
realm of thematic cartography. But as data complexity rises, maps that
place information at the correct spatial location become unreadable,
as visual elements necessarily become cluttered. Hence, some form
of schematization, that is, controlled and deliberate distortion of the
spatial dimension, is generally necessary to support visualizations of
complex data while maintaining the spatial relations as well as possible.

One established and effective spatial schematization technique is
the grid map. Primarily, each spatial element, such as a region or a
site, is schematized into the same, simple tile – often a square, hexagon
or other geometry that easily tiles the Euclidean plane. These tiles
are then arranged in such a way as to reflect important characteristics
of the spatial dimension, often using whitespace to capture salient
local features. Grid maps are used to visualize geospatial data by
popular news outlets [1, 2, 7, 10, 26, 28, 29, 44], discussed by mapping
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enthusiasts and professionals [12, 30–36, 48, 49], and applied in the
academic literature [15, 40, 42, 43, 50, 52].

The tiles of a grid map allow for visualizing data in a small-multiples
style as popularized by Tufte [45]. Small-multiples are data-dense
visualizations that juxtapose frames in a grid structure. Each frame
displays the same visualization for different subsets of the data, for
example, according to time steps or based on values in a categorical
dimension. In a grid map, the spatial dimension determines both the
subsets of the data as well as the arrangement of the juxtaposed frames.
Guo et al. [15] present an intermediate variant, where space is linearized
and used as one axis of a traditional small-multiples grid arrangement.

Small-multiple displays typically fill the available graphical space
and arrange the frames according to their inherent order (time, data
values, etc.). The spatial case presented by grid maps is inherently
different. Viewers typically have a mental map of the geographic area
and thus aspects such as recognizability and the ability to locate spatial
elements based on expected location play a role. An effective grid map
is coherent with the underlying geographic space: the tiles maintain
properties such as contiguity, neighborhoods and identifiability of the
corresponding spatial elements, while the grid map as a whole maintains
the global shape of the input. Of particular importance are salient local
features of the global shape which need to be represented by tiles
assigned to the appropriate spatial elements.

Contributions and organization. In Section 2 we review related
work and discuss the various facets of coherence in grid maps. As with
any spatial deformation, perfectly coherent grid maps are generally im-
possible and one must make a trade-off between the facets. Computing
a coherent grid map is hence a challenging multi-criteria optimization
problem. However, the state-of-the-art shows that simple cases, such
as close-to-uniform spatial distributions or global shapes that have few
characteristic features, can be solved well, essentially using simple tile
selection and assignment techniques (as long as sufficient care is taken
to guarantee that connected input stays connected in the grid map). Our
major contribution is the observation that any input can be decomposed
into simple cases and that coherent solutions for the resulting simple
subproblems can be combined into a coherent solution for the whole.

Based on this observation, we introduce a simple fully-automated
pipeline to compute coherent grid maps in three steps; see Section 3.
Each step is a well-studied problem: shape decomposition based on
salient features (Section 4), tile-based Mosaic Cartograms (Section 5),
and point-set matching (Section 6). Our pipeline is a seamless com-
position of existing techniques for these problems; we implement it
in an open-source prototype1. In Section 7 we showcase the resulting
high-quality grid maps, demonstrate the efficacy of our approach on
various complex datasets, and compare it to the state-of-the-art.

2 PROBLEM EXPLORATION

Computing grid maps has two main components: ways to capture the
various facets of coherence and algorithms to compute the actual grid
maps. After exploring coherence in Section 2.1, we discuss algorithms
in Section 2.2 by reviewing existing techniques and variations. But first
we define the terminology we use throughout this paper.

Preliminaries. Our input consists of a set of spatial elements. These
spatial elements can be either sites – specific point locations where data
was obtained – or regions – typically, administrative boundaries such
as countries or municipalities. In either case, we assume these to be
contained in a containing shape. For sites, this is provided explicitly, as
the (administrative) geographic shape that contains all sites. For regions,
we typically assume that the regions partition the containing shape and
thus it can be easily derived from the geometry of the regions. Typically,
spatial elements are related through a topology, indicating pairs of
adjacent spatial elements: elements that are connected or neighbors. For
sites, these can be supplied explicitly (e.g., road connectivity between
cities) or derived implicitly from their locations. For regions, the
topology is implicitly represented through the shared boundaries of the
geometry. We emphasize that our pipeline does not require a topology
to be specified or derived, and a consideration of how such topologies

1Available at https://github.com/tue-aga/Gridmap

can be derived is beyond the scope of this paper; we thus implicitly
assume that a topology exists in the remainder of this paper.

We assume that a tile is a simple geometric shape that tiles the
Euclidean plane. Typical shapes are squares or hexagons. A tile ar-
rangement is a composition of a number of these tiles following the
tiling of the plane; a tile arrangement selects a number of tiles from
the infinite tiling. A grid map is a tile arrangement combined with an
assignment: a one-to-one mapping between tiles and spatial elements.

2.1 Facets of coherence
There are myriad facets to coherence and these can be formalized in
different ways; see e.g. the work by Meulemans et al. [24] for an exten-
sive exposition. For the purpose of this paper, we categorize facets into
local facets and global facets. The former represent facets of coherence
with respect to individual spatial elements and their placement within a
grid map; the latter capture facets of coherence with respect to groups
of spatial elements and even aspects of the tile arrangement with respect
to the containing shape. Based on existing work [11, 23, 24, 49], we
identify the following facets (see Fig. 2).

Local distance [24]: distances between spatial elements should corre-
late to distances between their tiles. Displacement [11, 23, 24] is
often used as proxy: the distance between a spatial element and
its tile should be low. For example, in an overlay of Europe with
a corresponding grid map, the distance between (the centroids of)
each country and its representing tile should be small.

Local adjacency [11, 23, 24, 49]: spatial elements that are adjacent in
the topology should be assigned to adjacent tiles in the grid map,
and vice versa. For example, as Germany borders Denmark but
not Italy, the tile for Germany should be adjacent to Denmark’s
tile but not to Italy’s tile in a grid map of Europe.

Local direction [11, 23, 24, 49]: compass directions between spatial
elements should match the directions between their tiles. For
example, as the United Kingdom is north of Spain, the UK’s tile
should be above Spain’s tile. Note that this is a local facet as it
considers individual tiles, even though the spatial elements and
their tiles need not be close in terms of distance. The global
position [23] (referred to as location in [11]) of an element in the
map can be seen as a variant of local direction.

Local shape: tiles on identifiable positions in the tile arrangement
should be assigned to spatial elements that belong to that identifi-
able part in the containing shape. For example, Portugal should be
the left-bottom most tile in a grid map of Europe; Florida should
be the right-bottom most tile in a grid map of the US states. This
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Fig. 2. Facets of coherence for grid maps. Displacement is not a facet in itself, but often used as proxy for distance and other facets.
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Fig. 1. Our 3-step pipeline to automatically compute a grid map, illustrated on the Dutch municipalities: (1) decompose the containing
shape into parts; (2) compute a tile-based Mosaic Cartogram using these parts; (3) assign elements to tiles per part.

Abstract— Grid maps are spatial arrangements of simple tiles (often squares or hexagons), each of which represents a spatial element.
They are an established, effective way to show complex data per spatial element, using visual encodings within each tile ranging from
simple coloring to nested small-multiples visualizations. An effective grid map is coherent with the underlying geographic space: the
tiles maintain the contiguity, neighborhoods and identifiability of the corresponding spatial elements, while the grid map as a whole
maintains the global shape of the input. Of particular importance are salient local features of the global shape which need to be
represented by tiles assigned to the appropriate spatial elements. State-of-the-art techniques can adequately deal only with simple
cases, such as close-to-uniform spatial distributions or global shapes that have few characteristic features. We introduce a simple
fully-automated 3-step pipeline for computing coherent grid maps. Each step is a well-studied problem: shape decomposition based on
salient features, tile-based Mosaic Cartograms, and point-set matching. Our pipeline is a seamless composition of existing techniques
for these problems and results in high-quality grid maps. We provide an implementation, demonstrate the efficacy of our approach on
various complex datasets, and compare it to the state-of-the-art.

Index Terms—Grid maps, algorithms, tile maps, small multiples, geovisualization

1 INTRODUCTION

Data often has a spatial dimension which is an important factor when
trying to understand relations and discrepancies between data at dif-
ferent locations. Correspondingly, many techniques exist to show
data on a map, typically with high spatial accuracy – the traditional
realm of thematic cartography. But as data complexity rises, maps that
place information at the correct spatial location become unreadable,
as visual elements necessarily become cluttered. Hence, some form
of schematization, that is, controlled and deliberate distortion of the
spatial dimension, is generally necessary to support visualizations of
complex data while maintaining the spatial relations as well as possible.

One established and effective spatial schematization technique is
the grid map. Primarily, each spatial element, such as a region or a
site, is schematized into the same, simple tile – often a square, hexagon
or other geometry that easily tiles the Euclidean plane. These tiles
are then arranged in such a way as to reflect important characteristics
of the spatial dimension, often using whitespace to capture salient
local features. Grid maps are used to visualize geospatial data by
popular news outlets [1, 2, 7, 10, 26, 28, 29, 44], discussed by mapping
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enthusiasts and professionals [12, 30–36, 48, 49], and applied in the
academic literature [15, 40, 42, 43, 50, 52].

The tiles of a grid map allow for visualizing data in a small-multiples
style as popularized by Tufte [45]. Small-multiples are data-dense
visualizations that juxtapose frames in a grid structure. Each frame
displays the same visualization for different subsets of the data, for
example, according to time steps or based on values in a categorical
dimension. In a grid map, the spatial dimension determines both the
subsets of the data as well as the arrangement of the juxtaposed frames.
Guo et al. [15] present an intermediate variant, where space is linearized
and used as one axis of a traditional small-multiples grid arrangement.

Small-multiple displays typically fill the available graphical space
and arrange the frames according to their inherent order (time, data
values, etc.). The spatial case presented by grid maps is inherently
different. Viewers typically have a mental map of the geographic area
and thus aspects such as recognizability and the ability to locate spatial
elements based on expected location play a role. An effective grid map
is coherent with the underlying geographic space: the tiles maintain
properties such as contiguity, neighborhoods and identifiability of the
corresponding spatial elements, while the grid map as a whole maintains
the global shape of the input. Of particular importance are salient local
features of the global shape which need to be represented by tiles
assigned to the appropriate spatial elements.

Contributions and organization. In Section 2 we review related
work and discuss the various facets of coherence in grid maps. As with
any spatial deformation, perfectly coherent grid maps are generally im-
possible and one must make a trade-off between the facets. Computing
a coherent grid map is hence a challenging multi-criteria optimization
problem. However, the state-of-the-art shows that simple cases, such
as close-to-uniform spatial distributions or global shapes that have few
characteristic features, can be solved well, essentially using simple tile
selection and assignment techniques (as long as sufficient care is taken
to guarantee that connected input stays connected in the grid map). Our
major contribution is the observation that any input can be decomposed
into simple cases and that coherent solutions for the resulting simple
subproblems can be combined into a coherent solution for the whole.

Based on this observation, we introduce a simple fully-automated
pipeline to compute coherent grid maps in three steps; see Section 3.
Each step is a well-studied problem: shape decomposition based on
salient features (Section 4), tile-based Mosaic Cartograms (Section 5),
and point-set matching (Section 6). Our pipeline is a seamless com-
position of existing techniques for these problems; we implement it
in an open-source prototype1. In Section 7 we showcase the resulting
high-quality grid maps, demonstrate the efficacy of our approach on
various complex datasets, and compare it to the state-of-the-art.

2 PROBLEM EXPLORATION

Computing grid maps has two main components: ways to capture the
various facets of coherence and algorithms to compute the actual grid
maps. After exploring coherence in Section 2.1, we discuss algorithms
in Section 2.2 by reviewing existing techniques and variations. But first
we define the terminology we use throughout this paper.

Preliminaries. Our input consists of a set of spatial elements. These
spatial elements can be either sites – specific point locations where data
was obtained – or regions – typically, administrative boundaries such
as countries or municipalities. In either case, we assume these to be
contained in a containing shape. For sites, this is provided explicitly, as
the (administrative) geographic shape that contains all sites. For regions,
we typically assume that the regions partition the containing shape and
thus it can be easily derived from the geometry of the regions. Typically,
spatial elements are related through a topology, indicating pairs of
adjacent spatial elements: elements that are connected or neighbors. For
sites, these can be supplied explicitly (e.g., road connectivity between
cities) or derived implicitly from their locations. For regions, the
topology is implicitly represented through the shared boundaries of the
geometry. We emphasize that our pipeline does not require a topology
to be specified or derived, and a consideration of how such topologies

1Available at https://github.com/tue-aga/Gridmap

can be derived is beyond the scope of this paper; we thus implicitly
assume that a topology exists in the remainder of this paper.

We assume that a tile is a simple geometric shape that tiles the
Euclidean plane. Typical shapes are squares or hexagons. A tile ar-
rangement is a composition of a number of these tiles following the
tiling of the plane; a tile arrangement selects a number of tiles from
the infinite tiling. A grid map is a tile arrangement combined with an
assignment: a one-to-one mapping between tiles and spatial elements.

2.1 Facets of coherence
There are myriad facets to coherence and these can be formalized in
different ways; see e.g. the work by Meulemans et al. [24] for an exten-
sive exposition. For the purpose of this paper, we categorize facets into
local facets and global facets. The former represent facets of coherence
with respect to individual spatial elements and their placement within a
grid map; the latter capture facets of coherence with respect to groups
of spatial elements and even aspects of the tile arrangement with respect
to the containing shape. Based on existing work [11, 23, 24, 49], we
identify the following facets (see Fig. 2).

Local distance [24]: distances between spatial elements should corre-
late to distances between their tiles. Displacement [11, 23, 24] is
often used as proxy: the distance between a spatial element and
its tile should be low. For example, in an overlay of Europe with
a corresponding grid map, the distance between (the centroids of)
each country and its representing tile should be small.

Local adjacency [11, 23, 24, 49]: spatial elements that are adjacent in
the topology should be assigned to adjacent tiles in the grid map,
and vice versa. For example, as Germany borders Denmark but
not Italy, the tile for Germany should be adjacent to Denmark’s
tile but not to Italy’s tile in a grid map of Europe.

Local direction [11, 23, 24, 49]: compass directions between spatial
elements should match the directions between their tiles. For
example, as the United Kingdom is north of Spain, the UK’s tile
should be above Spain’s tile. Note that this is a local facet as it
considers individual tiles, even though the spatial elements and
their tiles need not be close in terms of distance. The global
position [23] (referred to as location in [11]) of an element in the
map can be seen as a variant of local direction.

Local shape: tiles on identifiable positions in the tile arrangement
should be assigned to spatial elements that belong to that identifi-
able part in the containing shape. For example, Portugal should be
the left-bottom most tile in a grid map of Europe; Florida should
be the right-bottom most tile in a grid map of the US states. This
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Fig. 2. Facets of coherence for grid maps. Displacement is not a facet in itself, but often used as proxy for distance and other facets.
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(a) (b) (c) (d) (e)

IJsselmeer
Crossing
elements

Shifting
elements

Fig. 3. (a) Dutch municipalities. (b) Tile arrangement which minimizes displacement is discontiguous. (c) Tile arrangement with good global shape,
followed by displacement minimization. Note the municipalities crossing the characteristic gap in the center (the IJsselmeer) from west to east. (d)
Tile arrangement optimized for displacement under the geodesic distance. Now the municipalities from the west shift around the IJsselmeer. (e) Our
pipeline: mild deformation in the west to accommodate its municipalities, while maintaining the characteristic global shape.

facet is not explicitly mentioned in current work, but could be
seen as a new interpretation combining the concepts of global
position [11, 23] with (global) shape. It is somewhat implicit in
the “locate” task [11], though here the consideration of (nearly)
full matrices avoids the need for shape in this facet.

Global distance, adjacency & direction: the containing shape may
have different identifiable parts, due to recognizable features
or a known subdivision of the containing shape. For example,
Germany may be subdivided into its Bundesländer (states) for a
grid map of its municipalities. The principles of local distance,
adjacency and direction can be applied to these global parts. As
generalizations of local variants, these are typically not explicitly
mentioned in literature.

Global shape [23, 24, 49]: the overall appearance of the tile arrange-
ment should resemble the containing shape. For example, a grid
map of the Dutch municipalities should look like the Nether-
lands. Note that this facet is agnostic to the assignment of spatial
elements to tiles.

Contiguity: this global facet captures topology on a coarser level.
Specifically, contiguous parts of the containing shape should be
represented by a contiguous set of tiles in the arrangement, and
all and only spatial elements within the contiguous part should
be assigned to this set of tiles. Note that contiguity does not
require a topology to be given as it relies on the containing shape.
For example, in a grid map of the US states, tiles for Alaska
and Hawaii should not touch any other tiles; the tiles for the
remaining contiguous states form one contiguous shape in the
grid map. This criteria seems to be implicit in the considerations
of Meulemans et al. [24] when discussing global shape.

Observe that satisfying all of the above facets is generally impossible.
For example, not all adjacencies can be represented, distances will
need to distort, and there may simply not be enough tiles to show all
characteristic features well. Moreover, some facets readily conflict. For
example, contiguity generally conflicts with direction and adjacency,
adjacency in turn can conflict with direction, and shape (either local of
global) can conflict with distance. Generally, we aim to optimize a trade-
off between these facets. We consider contiguity to be a hard constraint,
one that must be satisfied, as visual discontiguities are salient features,
useful to identify e.g. islands. Unnecessary discontiguity thus has a
high negative impact on local shape. Various facets can be captured
through adequate measures, see [11, 23, 24, 49]. However, global and
local shape are particularly difficult to capture, while these facets are
crucial to solving complex cases; see also our discussion Section 7.

2.2 Algorithms
The algorithmic problems arising from computing grid maps have been
studied in various forms. Many specific formulations are computation-
ally hard: for example, optimizing for even a simple version of local
topology is NP-hard [5], and optimizing global shape under contiguity
constraints is NP-hard as well, even to approximate [4,20]. Minimizing
local directions with a given grid of tiles can be approximated [11], but
its computational complexity is open.
Simple cases. If the tile arrangement for a grid map is a complete grid –
the classic small-multiples setting – and the input has a close-to-uniform
spatial distribution (for example, the majority of the départements of
France have roughly the same area), then computing a grid map readily
reduces to one-to-one point-set matching (of the region centroids to the
grid) [11]. Given an alignment, minimizing the sum of Manhattan (L1)
or Euclidean distances can be solved efficiently [46], and an optimal
alignment in terms of translation or scaling can be computed, though
at significant computational cost [11]. The sum of squared Euclidean
distances (L2

2) can be minimized efficiently as well, including a simple
optimal alignment in terms of translation [9]. The experiments by
Eppstein et al. [11] show that optimizing L2

2 also results in good local
directions and adjacencies for a complete grid. This approach works
well for other simple cases, for example, roughly convex containing
shapes, such as the boroughs of London. These findings are corrobo-
rated by Meulemans et al. [24]: if the density of the regions is uniform,
or the containing shape is mostly convex, or a mostly convex set of
tiles is preselected, then aligning and minimizing displacement under
L2

2 yields coherent grid maps.
Complex cases. The situation is significantly more difficult when
the containing shape has salient characteristic features, such as the IJs-
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Fig. 4. Strongly varying region sizes in the Dutch municipalities. Regions
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Fig. 7. UK local authorities using our pipeline: global and local shape are maintained.

selmeer in the Netherlands (see Fig. 3(a) – the large body of water in the
middle), the Florida pan handle, or the west coast of the UK. A coherent
grid map for such cases should use a tile arrangement that captures the
global shape well. A priori, it is not clear how such a tile arrangement
should be chosen from the infinite tiling. One could consider to simply
select the tiles that subsequently allows for an assignment with the least
displacement. Unfortunately, this approach generally leads to discon-
tiguous tile arrangements: see Fig. 3(b). Meulemans et al. [24] show
how to compute tile arrangements which make good use of whitespace
(unselected tiles) and exhibit good global shape. However, if the re-
gion distribution is not uniform, then subsequent tile assignment while
minimizing displacement under L2

2 results in severe violations of local
shape, see Fig. 3(c): municipalities from the densely populated west
of the Netherlands travel across the IJsselmeer (municipality sizes as
a proxy for density are shown in Fig. 4). Using a distance measure
that is more aware of topology, such as the geodesic distance, does
not alleviate the problem: see Fig. 3(d) where the tile assignment is
optimized for the geodesic distance and as a result the municipalities
now shift around the IJsselmeer.

As the above illustrates, the major challenge to resolve is the combi-
nation of varying density of spatial elements with characteristic features
of the containing shape. Note that this combination is certainly not
unique to the Netherlands and is also present e.g. in the UK constituen-
cies: see Fig. 5 for a density overview.

McNeill and Hale [23]. To the best of our knowledge, McNeill and
Hale [23] present the only automated method that aims to explicitly

address complex cases, that is, the varying densities of spatial elements.
Their method translates the spatial elements (regions only) and their
topology into a graph. To obtain uniform distances between neighbors,
they employ an approach that uses a form of spring-embedder: vertices
are attached by springs to both their neighbors in the graph and to
the centroids of their corresponding regions. The containing shape
is deformed along with the vertices; the authors find a scale factor
such that the deformed shape contains exactly the right number of tiles.
Finally, the regions are assigned to tiles using a point-set matching
algorithm to minimizes displacement under L2

2.
We identify two major drawbacks of their method. (1) The tile

arrangement is not necessarily contiguous, even if the input is con-
tiguous. Their method ensures only that the scaled deformed shape
contains the correct number of tiles, but not that these tiles are actually
connected. See, for example, the five brown regions in Fig. 8, from an
online implementation2 by McNeill. (2) Characteristic features of the
containing shape are eroded if parts need to grow or shrink consider-
ably due to varying density, thereby reducing global and local shape.
See, for example, Fig. 6 which shows the local authorities in the UK 3:
Scotland has been eroded and Wales lost most of its characteristic coast
line. In comparison, our pipeline (Fig. 7) preserves global and local

2https://observablehq.com/@gjmcn/make-a-tile-map, 28.04.2020
3The mapping from authorities to cells could not be reproduced

after correspondence with the authors due to non-deterministic behav-
ior. Fig. 6 (right) is the closest match generated by their demo tool
https://gjmcn.github.io/tile-maps-eurovis-demo/, 28.07.2020
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(a) (b) (c) (d) (e)

IJsselmeer
Crossing
elements

Shifting
elements

Fig. 3. (a) Dutch municipalities. (b) Tile arrangement which minimizes displacement is discontiguous. (c) Tile arrangement with good global shape,
followed by displacement minimization. Note the municipalities crossing the characteristic gap in the center (the IJsselmeer) from west to east. (d)
Tile arrangement optimized for displacement under the geodesic distance. Now the municipalities from the west shift around the IJsselmeer. (e) Our
pipeline: mild deformation in the west to accommodate its municipalities, while maintaining the characteristic global shape.

facet is not explicitly mentioned in current work, but could be
seen as a new interpretation combining the concepts of global
position [11, 23] with (global) shape. It is somewhat implicit in
the “locate” task [11], though here the consideration of (nearly)
full matrices avoids the need for shape in this facet.

Global distance, adjacency & direction: the containing shape may
have different identifiable parts, due to recognizable features
or a known subdivision of the containing shape. For example,
Germany may be subdivided into its Bundesländer (states) for a
grid map of its municipalities. The principles of local distance,
adjacency and direction can be applied to these global parts. As
generalizations of local variants, these are typically not explicitly
mentioned in literature.

Global shape [23, 24, 49]: the overall appearance of the tile arrange-
ment should resemble the containing shape. For example, a grid
map of the Dutch municipalities should look like the Nether-
lands. Note that this facet is agnostic to the assignment of spatial
elements to tiles.

Contiguity: this global facet captures topology on a coarser level.
Specifically, contiguous parts of the containing shape should be
represented by a contiguous set of tiles in the arrangement, and
all and only spatial elements within the contiguous part should
be assigned to this set of tiles. Note that contiguity does not
require a topology to be given as it relies on the containing shape.
For example, in a grid map of the US states, tiles for Alaska
and Hawaii should not touch any other tiles; the tiles for the
remaining contiguous states form one contiguous shape in the
grid map. This criteria seems to be implicit in the considerations
of Meulemans et al. [24] when discussing global shape.

Observe that satisfying all of the above facets is generally impossible.
For example, not all adjacencies can be represented, distances will
need to distort, and there may simply not be enough tiles to show all
characteristic features well. Moreover, some facets readily conflict. For
example, contiguity generally conflicts with direction and adjacency,
adjacency in turn can conflict with direction, and shape (either local of
global) can conflict with distance. Generally, we aim to optimize a trade-
off between these facets. We consider contiguity to be a hard constraint,
one that must be satisfied, as visual discontiguities are salient features,
useful to identify e.g. islands. Unnecessary discontiguity thus has a
high negative impact on local shape. Various facets can be captured
through adequate measures, see [11, 23, 24, 49]. However, global and
local shape are particularly difficult to capture, while these facets are
crucial to solving complex cases; see also our discussion Section 7.

2.2 Algorithms
The algorithmic problems arising from computing grid maps have been
studied in various forms. Many specific formulations are computation-
ally hard: for example, optimizing for even a simple version of local
topology is NP-hard [5], and optimizing global shape under contiguity
constraints is NP-hard as well, even to approximate [4,20]. Minimizing
local directions with a given grid of tiles can be approximated [11], but
its computational complexity is open.
Simple cases. If the tile arrangement for a grid map is a complete grid –
the classic small-multiples setting – and the input has a close-to-uniform
spatial distribution (for example, the majority of the départements of
France have roughly the same area), then computing a grid map readily
reduces to one-to-one point-set matching (of the region centroids to the
grid) [11]. Given an alignment, minimizing the sum of Manhattan (L1)
or Euclidean distances can be solved efficiently [46], and an optimal
alignment in terms of translation or scaling can be computed, though
at significant computational cost [11]. The sum of squared Euclidean
distances (L2

2) can be minimized efficiently as well, including a simple
optimal alignment in terms of translation [9]. The experiments by
Eppstein et al. [11] show that optimizing L2

2 also results in good local
directions and adjacencies for a complete grid. This approach works
well for other simple cases, for example, roughly convex containing
shapes, such as the boroughs of London. These findings are corrobo-
rated by Meulemans et al. [24]: if the density of the regions is uniform,
or the containing shape is mostly convex, or a mostly convex set of
tiles is preselected, then aligning and minimizing displacement under
L2

2 yields coherent grid maps.
Complex cases. The situation is significantly more difficult when
the containing shape has salient characteristic features, such as the IJs-

1

46

91

135

180

225

270

314

359

403
rank

0

11

22

33

44

56

67

78

89

100
area

Fig. 4. Strongly varying region sizes in the Dutch municipalities. Regions
are colored according to nine bins of equal quantiles (rank,left) or of
equal area, indicated as a percentage of the largest region (area,right).
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Fig. 6. UK local authorities. Left+Middle: Fig. 6 from [23]. Right:
Reproduced and colored by authority locations. Scotland is eroded.
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Fig. 7. UK local authorities using our pipeline: global and local shape are maintained.

selmeer in the Netherlands (see Fig. 3(a) – the large body of water in the
middle), the Florida pan handle, or the west coast of the UK. A coherent
grid map for such cases should use a tile arrangement that captures the
global shape well. A priori, it is not clear how such a tile arrangement
should be chosen from the infinite tiling. One could consider to simply
select the tiles that subsequently allows for an assignment with the least
displacement. Unfortunately, this approach generally leads to discon-
tiguous tile arrangements: see Fig. 3(b). Meulemans et al. [24] show
how to compute tile arrangements which make good use of whitespace
(unselected tiles) and exhibit good global shape. However, if the re-
gion distribution is not uniform, then subsequent tile assignment while
minimizing displacement under L2

2 results in severe violations of local
shape, see Fig. 3(c): municipalities from the densely populated west
of the Netherlands travel across the IJsselmeer (municipality sizes as
a proxy for density are shown in Fig. 4). Using a distance measure
that is more aware of topology, such as the geodesic distance, does
not alleviate the problem: see Fig. 3(d) where the tile assignment is
optimized for the geodesic distance and as a result the municipalities
now shift around the IJsselmeer.

As the above illustrates, the major challenge to resolve is the combi-
nation of varying density of spatial elements with characteristic features
of the containing shape. Note that this combination is certainly not
unique to the Netherlands and is also present e.g. in the UK constituen-
cies: see Fig. 5 for a density overview.

McNeill and Hale [23]. To the best of our knowledge, McNeill and
Hale [23] present the only automated method that aims to explicitly

address complex cases, that is, the varying densities of spatial elements.
Their method translates the spatial elements (regions only) and their
topology into a graph. To obtain uniform distances between neighbors,
they employ an approach that uses a form of spring-embedder: vertices
are attached by springs to both their neighbors in the graph and to
the centroids of their corresponding regions. The containing shape
is deformed along with the vertices; the authors find a scale factor
such that the deformed shape contains exactly the right number of tiles.
Finally, the regions are assigned to tiles using a point-set matching
algorithm to minimizes displacement under L2

2.
We identify two major drawbacks of their method. (1) The tile

arrangement is not necessarily contiguous, even if the input is con-
tiguous. Their method ensures only that the scaled deformed shape
contains the correct number of tiles, but not that these tiles are actually
connected. See, for example, the five brown regions in Fig. 8, from an
online implementation2 by McNeill. (2) Characteristic features of the
containing shape are eroded if parts need to grow or shrink consider-
ably due to varying density, thereby reducing global and local shape.
See, for example, Fig. 6 which shows the local authorities in the UK 3:
Scotland has been eroded and Wales lost most of its characteristic coast
line. In comparison, our pipeline (Fig. 7) preserves global and local

2https://observablehq.com/@gjmcn/make-a-tile-map, 28.04.2020
3The mapping from authorities to cells could not be reproduced

after correspondence with the authors due to non-deterministic behav-
ior. Fig. 6 (right) is the closest match generated by their demo tool
https://gjmcn.github.io/tile-maps-eurovis-demo/, 28.07.2020
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Fig. 8. Output of [23]: municipalities of Denmark; the five brown contigu-
ous regions of Nørrejyske Ø (inset) map to discontiguous tiles.2

shape. McNeill and Hale focus on achieving a uniform distribution – a
“simple case” – but they do so for the complete containing shape at once
and hence lose control (to some degree) over contiguity and shape. In
contrast, our pipeline uses decomposition into simple containing shapes
to arrive at simple cases, which offers us more control over global and
local shape and allows us to guarantee contiguity.

Cartograms. In some sense a grid map is a cartogram, where every
spatial element (region) has unit weight. There are many cartogram
techniques which focus on optimizing e.g. adjacencies, aspect ratio and
cartographic error (difference between the target size of a region and the
actual size in the output). However, most cartograms are neither aligned
on a grid nor able to produce the desired tile shape. One could of course
consider to rasterize the output of the density-equalizing cartogram algo-
rithms proposed by Gastner and Newman [13] and by Gastner et al. [14].
However, it will generally be impossible to guarantee contiguity, as
smaller regions tend to become rather elongated. Spatially Ordered
Treemaps [51] combine ideas of tree maps and cartograms to show
hierarchical data; also non-space-filling variants exist [41]. However,
such tree maps do not align with tiles on a grid.

One type of cartogram, however, is in principle well suited for the
computation of grid maps: the Mosaic Cartograms by Cano et al. [6]
represent regions with multiple tiles, where the number of tiles corre-
sponds to (integer) data values associated with each region. As such,
Mosaic Cartograms cannot directly be used to compute coherent grid
maps, but they are an integral part of our pipeline.

Semi-automatic. Wongsuphasawat [48] describes a semi-automatic
pipeline to create grid maps. The first step computes a coarse, dis-
contiguous grid map, using overlap removal and grid snapping. The
result has significant discontiguities, which are then patched in a second
step, by manually shifting parts of the arrangement until the result is
contiguous and has a suitable global shape.

3 A 3-STEP PIPELINE FOR COHERENT GRID MAPS

Our discussion in the previous section points directly towards a natural
pipeline to compute coherent grid maps: decompose the problem into
one or more simple cases and then apply point-set matching. The simple
case our pipeline achieves is arguably the simplest – that of convex
containing shapes: we decompose the containing shape into relatively
simple, mostly convex parts. Then we compute a Mosaic Cartogram [6]
based on the parts and the number of spatial elements in each part.
The Mosaic Cartogram grows or shrinks each part accordingly, while
ensuring contiguity and maintaining shape: the tile arrangement per
part is thus mostly convex as well. Point-set matching for the tile
arrangement of each part completes the pipeline. Concretely, we use
the following three steps, each of which is discussed in detail in the
subsequent sections (see also Fig. 1).

Step 1 – Decompose into parts: we decompose the containing shape
based on salient features into simple, mostly convex parts and
note how many and which spatial elements each part contains.

Step 2 – Arrange tiles: we compute a Mosaic Cartogram, based on
the parts, using the number of spatial elements as weight. The
Mosaic Cartogram by design maintains shape, adjacencies and
directions, and also ensures contiguity. The result is a tile arrange-
ment where each tile is associated with one part and each part is
represented by the correct number of tiles.

Step 3 – Assign elements: per part, we use point-set matching to com-
pute an assignment that minimizes the sum of squared Euclidean
distances between the spatial elements and the tiles.

Each step of the pipeline is thus a well-studied problem. In principle,
different techniques could be used for each step – especially for Step 1 –
though the literature suggests that our proposed composition is effective.
To seamlessly create the complete pipeline, we made small changes to
existing techniques or simplified existing approaches.

4 DECOMPOSE SHAPE BASED ON SALIENT FEATURES

The first step of the pipeline decomposes the containing shape into parts,
based on salient features. We can treat each contiguous part of the input
separately, and hence can restrict our attention to the decomposition
of a simple polygon P. Our output are the parts of P together with the
spatial elements contained in each part.
Related work. Shape decomposition is an extremely well-studied
problem. Below we sketch some of the most important considerations
and approaches. An important related field is that of object recognition,
which considers many aspects of objects such as shape, color, texture,
motion, context, etc. It has been observed, though, that humans can
often recognize an object solely by its shape [17], based on a decom-
position into visually salient parts [17, 27, 37–39], via so-called cuts:
straight boundary-to-boundary line segments fully within the shape.

Based on psycho-physical findings, a number of rules and constraints
have been proposed in the literature to mimic the human visual decom-
position in finding cuts. Though more general, we present them here for
the case of simple polygons, as this is the setting for our pipeline. The
most recognized of these rules are the minima rule [17] (a cut should
always start at a reflex vertex) and the short-cut rule [39] (shorter cuts
are preferred over longer cuts if they are otherwise equivalent).

To determine candidate cuts, the definition of a part-cut [38] is often
used which stipulates that a cut should cross a local axis of symmetry, in
addition to being contained within the shape and following the minima
rule. Local symmetry can be seen as a weak form of symmetry: the
two sides along each axis of local symmetry are shape-wise similar, but
are not strictly symmetric. The medial axis [3] is often used for this
purpose (e.g. [27]), but different formulations are possible.

Typically, there are many candidate cuts, and thus there is a need
to filter and select an appropriate set of (final) cuts, see for exam-
ple [18, 21, 25, 27]. Our implementation is inspired by the work of
Papanelopoulos et al. [27] who use the medial axis to construct a candi-
date set, which is hence based on local symmetry.
Our implementation. Using the medial axis to identify candidate cuts
guarantees that all cuts are pairwise disjoint. Hence, any combination
of candidate cuts yields a valid decomposition into parts. Specifically,
let µ(P) denote the medial axis of our input polygon P and consider a
single segment s of µ(P). Note that µ(P) consists of both straight line

g2(s)

s

g1(s)

g2(s)

s

g1(s)(a) (b)

Fig. 9. Candidate cuts (dotted lines): medial axis segment s is (a) a
straight segment, or (b) a parabolic arc. Inscribed circles (blue and
orange) centered on endpoints of s define line segments g1(s) and g2(s).

c

Fig. 10. Candidate cut c with dilation 14.5 and productivity 3. Shortest
length along the boundary in blue; dots represent spatial elements.

edges and parabolic arcs. Let g1(s) and g2(s) denote the two shortest
distinct line segments along the boundary of P, such that all inscribed
circles of P with their center on s touch both g1(s) and g2(s). Note that
either one or both of g1(s) or g2(s) can be a reflex vertex. If both are
reflex vertices, then we add a single candidate cut between them (see
Fig. 9(a)). If one is a reflex vertex, then the other is a line segment and
we add two candidate cuts (see Fig. 9(b)): from the reflex vertex to the
two endpoints of the line segment. Since at least one endpoint of each
cut is a reflex vertex, all candidate cuts follow the minima rule.

Our filtering scheme uses a dilation threshold d and a productivity
threshold p (see Fig. 10). The dilation (or detour factor) of a cut is
the shorter of the two lengths along the boundary of P divided by
its Euclidean length. This ratio is always at least 1 due to triangle
inequality. The productivity of a cut is a new concept, tailored to the
construction of grid maps. Each cut partitions (the centroids of) the
spatial elements into two sets. The productivity of a cut is the number
of elements in the smaller set. Our pipeline does not allow cuts with low
productivity to ensure that each part has sufficient tiles at its disposal to
achieve good local and global shape.

We select candidate cuts as follows. First, we sort them by increasing
length following the short-cut rule and then process cuts one-by-one.
If the dilation of a cut is above d and its productivity is above p, then
we apply the cut: we partition P and its spatial elements and recurse on
the resulting two subpolygons. In this recursive step, we update both
dilation and productivity of each candidate cut with respect to its new
subpolygon. See Fig. 11(b) for an example of the eventual result.

Let n denote the complexity of the containing shape and m the
number of spatial elements. As the medial axis takes O(n) time to
compute and has linear complexity [8], we compute our O(n) candidate
cuts and sort them in O(n logn) time. Per candidate cut we keep track
of the length along the (sub)polygon boundary and the number of
elements on both sides of the cut, from which we can derive dilation
and productivity in O(1) time. Initializing these values takes O(n2 +
nm) time in total, using a straightforward implementation. When a
candidate cut is selected, we can update these values in O(1) time
each. We leverage the medial-axis structure to traverse the candidates
on both sides and update all values in O(n) total time. As such, the

selection process can be executed in O(n2) time. The bottleneck is
hence initializing the selection process in O(n2 +nm) time.

Using other methods. Our specific implementation can easily be
replaced by other algorithms that detect cuts based on salient features.
However, for the next step in the pipeline, it is important to avoid cuts
with low or even zero productivity. A part with zero spatial elements
cannot be represented by a Mosaic Cartogram and will hence violate
topology and thereby contiguity.

5 ARRANGE TILES USING MOSAIC CARTOGRAMS

The second step of our pipeline uses the parts – the decomposition result
– to compute a tile arrangement. We do so for all parts simultaneously,
to ensure that tiles do not overlap, to ensure contiguity, and to optimize
other global facets of coherence. The inputs for this step are the parts,
that is, a subdivision of the simple polygon P, together with the number
of spatial elements that each part represents. The output of this step is a
Mosaic Cartogram: a contiguous tile arrangement, including a mapping
from parts to contiguous sets of tiles of the correct cardinality.

To the best of our knowledge, the original algorithm for Mosaic
Cartograms [6] is currently the only method to solve the given problem.
However, other algorithms could in principle replace this technique, as
long as they can guarantee contiguity and represent each part with the
exact number of tiles – see also Section 7.

Our implementation. We use Mosaic Cartograms [6], which deform
in a shape-aware manner, while maintaining contiguity and global
adjacencies between the parts, while optimizing for global directions
between neighboring parts; see Fig. 11(c) for an example result.

A Mosaic Cartogram is roughly computed as follows (refer to [6] for
details). First, an initial tile arrangement is computed, such that each
part has the correct adjacencies, without accounting for shape or the
necessary number of tiles. Then, for each part, the algorithm computes
a guiding shape: a contiguous set of tiles that resembles the shape of
the part. The tile arrangement is then iteratively modified, by moving
guiding shapes and changing tiles, while ensuring that adjacencies are
maintained. Movement is based on the desired direction between two
parts, and tiles are changed to also converge on the required number.
This process stops when the guiding shapes no longer move and tiles
no longer change. At this point the exact number of tiles per part might
not yet be achieved, but typically it is close. A final post-processing
step corrects the number of tiles and fills any unwarranted gaps in the
tile arrangement, while still maintaining the correct adjacencies.

The correct number of tiles and correct adjacencies might not be
compatible (e.g., a part with only a single tile that needs to be adjacent
to many other parts). Indeed, this can be expected with a low produc-
tivity threshold in the first step, though parts with few spatial elements
typically have few adjacent parts. Whereas Mosaic Cartograms opt for
a slight deviation in the number of tiles (cartographic error) to ensure
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Fig. 11. UK constituencies, computed with dilation d = 3 and productivity p = 20. Numbers in (b) indicate number of spatial elements per part.
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Fig. 8. Output of [23]: municipalities of Denmark; the five brown contigu-
ous regions of Nørrejyske Ø (inset) map to discontiguous tiles.2

shape. McNeill and Hale focus on achieving a uniform distribution – a
“simple case” – but they do so for the complete containing shape at once
and hence lose control (to some degree) over contiguity and shape. In
contrast, our pipeline uses decomposition into simple containing shapes
to arrive at simple cases, which offers us more control over global and
local shape and allows us to guarantee contiguity.

Cartograms. In some sense a grid map is a cartogram, where every
spatial element (region) has unit weight. There are many cartogram
techniques which focus on optimizing e.g. adjacencies, aspect ratio and
cartographic error (difference between the target size of a region and the
actual size in the output). However, most cartograms are neither aligned
on a grid nor able to produce the desired tile shape. One could of course
consider to rasterize the output of the density-equalizing cartogram algo-
rithms proposed by Gastner and Newman [13] and by Gastner et al. [14].
However, it will generally be impossible to guarantee contiguity, as
smaller regions tend to become rather elongated. Spatially Ordered
Treemaps [51] combine ideas of tree maps and cartograms to show
hierarchical data; also non-space-filling variants exist [41]. However,
such tree maps do not align with tiles on a grid.

One type of cartogram, however, is in principle well suited for the
computation of grid maps: the Mosaic Cartograms by Cano et al. [6]
represent regions with multiple tiles, where the number of tiles corre-
sponds to (integer) data values associated with each region. As such,
Mosaic Cartograms cannot directly be used to compute coherent grid
maps, but they are an integral part of our pipeline.

Semi-automatic. Wongsuphasawat [48] describes a semi-automatic
pipeline to create grid maps. The first step computes a coarse, dis-
contiguous grid map, using overlap removal and grid snapping. The
result has significant discontiguities, which are then patched in a second
step, by manually shifting parts of the arrangement until the result is
contiguous and has a suitable global shape.

3 A 3-STEP PIPELINE FOR COHERENT GRID MAPS

Our discussion in the previous section points directly towards a natural
pipeline to compute coherent grid maps: decompose the problem into
one or more simple cases and then apply point-set matching. The simple
case our pipeline achieves is arguably the simplest – that of convex
containing shapes: we decompose the containing shape into relatively
simple, mostly convex parts. Then we compute a Mosaic Cartogram [6]
based on the parts and the number of spatial elements in each part.
The Mosaic Cartogram grows or shrinks each part accordingly, while
ensuring contiguity and maintaining shape: the tile arrangement per
part is thus mostly convex as well. Point-set matching for the tile
arrangement of each part completes the pipeline. Concretely, we use
the following three steps, each of which is discussed in detail in the
subsequent sections (see also Fig. 1).

Step 1 – Decompose into parts: we decompose the containing shape
based on salient features into simple, mostly convex parts and
note how many and which spatial elements each part contains.

Step 2 – Arrange tiles: we compute a Mosaic Cartogram, based on
the parts, using the number of spatial elements as weight. The
Mosaic Cartogram by design maintains shape, adjacencies and
directions, and also ensures contiguity. The result is a tile arrange-
ment where each tile is associated with one part and each part is
represented by the correct number of tiles.

Step 3 – Assign elements: per part, we use point-set matching to com-
pute an assignment that minimizes the sum of squared Euclidean
distances between the spatial elements and the tiles.

Each step of the pipeline is thus a well-studied problem. In principle,
different techniques could be used for each step – especially for Step 1 –
though the literature suggests that our proposed composition is effective.
To seamlessly create the complete pipeline, we made small changes to
existing techniques or simplified existing approaches.

4 DECOMPOSE SHAPE BASED ON SALIENT FEATURES

The first step of the pipeline decomposes the containing shape into parts,
based on salient features. We can treat each contiguous part of the input
separately, and hence can restrict our attention to the decomposition
of a simple polygon P. Our output are the parts of P together with the
spatial elements contained in each part.
Related work. Shape decomposition is an extremely well-studied
problem. Below we sketch some of the most important considerations
and approaches. An important related field is that of object recognition,
which considers many aspects of objects such as shape, color, texture,
motion, context, etc. It has been observed, though, that humans can
often recognize an object solely by its shape [17], based on a decom-
position into visually salient parts [17, 27, 37–39], via so-called cuts:
straight boundary-to-boundary line segments fully within the shape.

Based on psycho-physical findings, a number of rules and constraints
have been proposed in the literature to mimic the human visual decom-
position in finding cuts. Though more general, we present them here for
the case of simple polygons, as this is the setting for our pipeline. The
most recognized of these rules are the minima rule [17] (a cut should
always start at a reflex vertex) and the short-cut rule [39] (shorter cuts
are preferred over longer cuts if they are otherwise equivalent).

To determine candidate cuts, the definition of a part-cut [38] is often
used which stipulates that a cut should cross a local axis of symmetry, in
addition to being contained within the shape and following the minima
rule. Local symmetry can be seen as a weak form of symmetry: the
two sides along each axis of local symmetry are shape-wise similar, but
are not strictly symmetric. The medial axis [3] is often used for this
purpose (e.g. [27]), but different formulations are possible.

Typically, there are many candidate cuts, and thus there is a need
to filter and select an appropriate set of (final) cuts, see for exam-
ple [18, 21, 25, 27]. Our implementation is inspired by the work of
Papanelopoulos et al. [27] who use the medial axis to construct a candi-
date set, which is hence based on local symmetry.
Our implementation. Using the medial axis to identify candidate cuts
guarantees that all cuts are pairwise disjoint. Hence, any combination
of candidate cuts yields a valid decomposition into parts. Specifically,
let µ(P) denote the medial axis of our input polygon P and consider a
single segment s of µ(P). Note that µ(P) consists of both straight line

g2(s)

s

g1(s)

g2(s)

s

g1(s)(a) (b)

Fig. 9. Candidate cuts (dotted lines): medial axis segment s is (a) a
straight segment, or (b) a parabolic arc. Inscribed circles (blue and
orange) centered on endpoints of s define line segments g1(s) and g2(s).

c

Fig. 10. Candidate cut c with dilation 14.5 and productivity 3. Shortest
length along the boundary in blue; dots represent spatial elements.

edges and parabolic arcs. Let g1(s) and g2(s) denote the two shortest
distinct line segments along the boundary of P, such that all inscribed
circles of P with their center on s touch both g1(s) and g2(s). Note that
either one or both of g1(s) or g2(s) can be a reflex vertex. If both are
reflex vertices, then we add a single candidate cut between them (see
Fig. 9(a)). If one is a reflex vertex, then the other is a line segment and
we add two candidate cuts (see Fig. 9(b)): from the reflex vertex to the
two endpoints of the line segment. Since at least one endpoint of each
cut is a reflex vertex, all candidate cuts follow the minima rule.

Our filtering scheme uses a dilation threshold d and a productivity
threshold p (see Fig. 10). The dilation (or detour factor) of a cut is
the shorter of the two lengths along the boundary of P divided by
its Euclidean length. This ratio is always at least 1 due to triangle
inequality. The productivity of a cut is a new concept, tailored to the
construction of grid maps. Each cut partitions (the centroids of) the
spatial elements into two sets. The productivity of a cut is the number
of elements in the smaller set. Our pipeline does not allow cuts with low
productivity to ensure that each part has sufficient tiles at its disposal to
achieve good local and global shape.

We select candidate cuts as follows. First, we sort them by increasing
length following the short-cut rule and then process cuts one-by-one.
If the dilation of a cut is above d and its productivity is above p, then
we apply the cut: we partition P and its spatial elements and recurse on
the resulting two subpolygons. In this recursive step, we update both
dilation and productivity of each candidate cut with respect to its new
subpolygon. See Fig. 11(b) for an example of the eventual result.

Let n denote the complexity of the containing shape and m the
number of spatial elements. As the medial axis takes O(n) time to
compute and has linear complexity [8], we compute our O(n) candidate
cuts and sort them in O(n logn) time. Per candidate cut we keep track
of the length along the (sub)polygon boundary and the number of
elements on both sides of the cut, from which we can derive dilation
and productivity in O(1) time. Initializing these values takes O(n2 +
nm) time in total, using a straightforward implementation. When a
candidate cut is selected, we can update these values in O(1) time
each. We leverage the medial-axis structure to traverse the candidates
on both sides and update all values in O(n) total time. As such, the

selection process can be executed in O(n2) time. The bottleneck is
hence initializing the selection process in O(n2 +nm) time.

Using other methods. Our specific implementation can easily be
replaced by other algorithms that detect cuts based on salient features.
However, for the next step in the pipeline, it is important to avoid cuts
with low or even zero productivity. A part with zero spatial elements
cannot be represented by a Mosaic Cartogram and will hence violate
topology and thereby contiguity.

5 ARRANGE TILES USING MOSAIC CARTOGRAMS

The second step of our pipeline uses the parts – the decomposition result
– to compute a tile arrangement. We do so for all parts simultaneously,
to ensure that tiles do not overlap, to ensure contiguity, and to optimize
other global facets of coherence. The inputs for this step are the parts,
that is, a subdivision of the simple polygon P, together with the number
of spatial elements that each part represents. The output of this step is a
Mosaic Cartogram: a contiguous tile arrangement, including a mapping
from parts to contiguous sets of tiles of the correct cardinality.

To the best of our knowledge, the original algorithm for Mosaic
Cartograms [6] is currently the only method to solve the given problem.
However, other algorithms could in principle replace this technique, as
long as they can guarantee contiguity and represent each part with the
exact number of tiles – see also Section 7.

Our implementation. We use Mosaic Cartograms [6], which deform
in a shape-aware manner, while maintaining contiguity and global
adjacencies between the parts, while optimizing for global directions
between neighboring parts; see Fig. 11(c) for an example result.

A Mosaic Cartogram is roughly computed as follows (refer to [6] for
details). First, an initial tile arrangement is computed, such that each
part has the correct adjacencies, without accounting for shape or the
necessary number of tiles. Then, for each part, the algorithm computes
a guiding shape: a contiguous set of tiles that resembles the shape of
the part. The tile arrangement is then iteratively modified, by moving
guiding shapes and changing tiles, while ensuring that adjacencies are
maintained. Movement is based on the desired direction between two
parts, and tiles are changed to also converge on the required number.
This process stops when the guiding shapes no longer move and tiles
no longer change. At this point the exact number of tiles per part might
not yet be achieved, but typically it is close. A final post-processing
step corrects the number of tiles and fills any unwarranted gaps in the
tile arrangement, while still maintaining the correct adjacencies.

The correct number of tiles and correct adjacencies might not be
compatible (e.g., a part with only a single tile that needs to be adjacent
to many other parts). Indeed, this can be expected with a low produc-
tivity threshold in the first step, though parts with few spatial elements
typically have few adjacent parts. Whereas Mosaic Cartograms opt for
a slight deviation in the number of tiles (cartographic error) to ensure
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Fig. 11. UK constituencies, computed with dilation d = 3 and productivity p = 20. Numbers in (b) indicate number of spatial elements per part.
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the right adjacencies between parts, this is not an option in our pipeline:
each part must be represented by as many tiles as the number of spatial
element it contains. If every part is adjacent to the “outside” (i.e., the
adjacency graph is outerplanar), the post-processing step has significant
freedom, and typically sufficiently so to achieve the right number of
tiles. This is the case in all our test instances; without subdivisions (see
Section 7) the topology is even a tree, by design of our decomposition
step. We therefore did not observe any deviation from the exact number
of tiles, even while perfectly representing adjacencies of the parts.

If needed, one could add a second post-processing step, similar to
the first; but rather than requiring that adjacencies are preserved, we
enforce only that the result remains contiguous. In this way we can
ensure that the resulting Mosaic Cartogram has zero cartographic error
and is contiguous, at the possible cost of small topological violations.
It is an interesting direction for future work to compute good Mosaic
Cartograms with zero cartographic error more directly.

The algorithm for Mosaic Cartograms assumes a contiguous input.
We generate such a cartogram for each contiguous piece of our input
and compose them. Our implementation features some automation,
based on direction. Specifically, we start with the largest piece (for
example, mainland UK or mainland NL) and simply use its result. For
any subsequent piece (usually islands of decreasing size), we use the
direction between the closest spatial element of the new piece towards
any of the already-placed pieces. This gives a starting tile to place the
new piece, from which we search locally for a placement that does not
cause overlap or new adjacencies. This automation works reasonably in
simple situations (e.g., UK: mainland with six well distributed islands)
but requires manual post-processing for maps with more intricate layout
(e.g., Netherlands: mainland with seven clustered islands). We apply
this optional manual step in all our results, and leave better placement
of separate pieces in Mosaic Cartograms to future work.

6 ASSIGN ELEMENTS TO TILES VIA POINT-SET MATCHING

All that remains now, is to assign spatial elements to tiles in the tile
arrangement computed in Step 2. As the sets of tiles and the number
of spatial elements per part match exactly, we can execute this step
separately for each part. The input is thus a set of contiguous tiles for
one (mostly convex, and hence simple) part, together with the spatial
elements for that part. The output is the tile assignment for this subset
of the spatial elements. Combining all assignments yields the grid map.
Related work. There are various ways to assign spatial elements to a
tile arrangement. For tile arrangements (close to) a grid, one can use a
greedy assignment as proposed by Wood and Dykes [51] for Spatially
Ordered Treemaps and adapted by Eppstein et al. [11] for grid maps
(called SpatialGrid in [11]). Eppstein et al. [11] propose a variety
of other methods for this case, including displacement optimization
under the sum of squared Euclidean distances (L2

2). They show that
optimizing L2

2 also results in good local directions and adjacencies;
these findings are corroborated by Meulemans et al. [24]. Since we
can minimize L2

2 efficiently [9], this approach is generally the method
of choice and also the one we employ in our pipeline. Later work by
Liu et al. [19] proposes a form of constrained multi-dimensional scaling
to assign regions to a grid. However, in addition to the restriction to the
grid, the assignment quality is generally lower than the one via L2

2.

Our implementation. As stated above, we optimize for L2
2, which

yields good results in local facets of coherence for the simple cases that
the earlier steps in the pipeline create. To align the spatial elements
and the set of tiles of a part, we compute the affine transformation such
that the bounding box of the set of tiles is equal to that of the centroids
of the spatial elements. Subsequently, we use point-set matching from
centroid to centroid to minimize the sum of squared Euclidean distances
in this transformed space, implemented as a linear program [9].

7 RESULTS AND DISCUSSION

Here we investigate the efficacy of our pipeline in three aspects: (1)
parametrization of our shape-decomposition step; (2) a comparison to
state-of-the art; (3) using a known subdivision of the containing shape.
We end this section with a general discussion and future work.

Parametrization. Contrasting the other two steps in our pipeline, the
first step of decomposing the containing shape is parametrized. Setting
suitable thresholds is important to achieve the best results. Here we
briefly investigate the effect of these parameters via the result of the
subsequent step: the tile arrangement.

Fig. 12 shows results for the Dutch municipalities, using a dilation
threshold d ∈ {2,3,5} and productivity p ∈ {4,10,30}. The effect
of d is quite straightforward: a lower value of d means that more
candidate cuts can be selected and thus results in more identified parts.
Productivity p has a similar effect: parts are required to contain more
spatial elements and thus higher values lead to fewer parts. With too
many parts, the computed Mosaic Cartogram is too detailed, resulting
in a jagged, uneven appearance in places where this is not necessary for
global shape – this is because Mosaic Cartograms consider shape purely
on a part-level. Yet, with too few parts we do not obtain the simple
case within each part due to uneven distributions of the spatial elements
while still having recognizable features. Hence, both need to work
together to obtain parts that represent simple cases and that are both
visually salient as well has having enough elements to be represented
reasonably. Of these provided figures, we deem that the case of (d =
3,p = 4) strikes this balance well and nicely places southern Flevoland
(four municipalities in the central brown region in the figure) along the
IJsselmeer. We use these settings and hence this Mosaic Cartogram
also in Figs. 1, 3(e) and 14(c) showing the Dutch municipalities.

Productivity p can likely be configured similarly across instances of
similar size, though effects of geography can be expected as culturally
significant features bias towards certain decompositions. However,
dilation threshold d faces a difficulty arising from a well-known ge-
ographic phenomenon: the coastline paradox [22]. In our situation,
the detail at which the containing shape is represented immediately
and potentially greatly affects the length along the polygon boundary,
used to determine dilation; yet, the length of a candidate cut is largely
unaffected. As a result, the dilation threshold for a particular instance
depends on the resolution of the input map. A normalization of the
shape boundary is not quite enough, as shape complexity remains a
factor and borders may locally vary in semantics and thus in their ef-
fect on the local boundary length – consider, e.g., differences between
actual coastlines and borders with other countries such as Norway with
its fjords and straight border with Sweden. A suitably normalizing
simplification of the containing shape might provide a solution to this
resolution-dependence; we leave this investigation to future work.

Comparison. With Figs. 6 and 7 shown earlier, we compare our
method to the approach of McNeill and Hale [23], using a hexagonal
grid map for the UK local authority districts. These figures clearly show
that our pipeline retains more of the characteristic features, especially
around Scotland and Wales. The smooth gradient of colors in our result
also shows that local facets are preserved well. To further compare
the two methods on the local facets of coherence, we use the measures
proposed by Meulemans et al. [24] for local adjacency and local direc-
tion: The percentage of adjacencies maintained (ADJ), the percentage
of orthogonal directions maintained (DIRA), and the percentage of
orthogonal directions between neighbours maintained (DIRN). The two
methods have comparable scores for the UK map. We also provide a
grid map with square tiles in Fig. 11 on the UK constituencies, showing
that this improved shape is also achieved with other tile shapes.

Fig. 13(d,h) shows the result of our pipeline on the contiguous states
of the US without and with Washington DC, a common example and use
case of grid maps. We observe that this case is not necessarily complex,
as evidenced by the few parts in the decomposition (Fig. 13(b,f)),
but not quite simple either: e.g., Florida and the Great Lakes give
characteristic features for local shape that can be preserved, and states
along the (north)eastern coast are significantly smaller than the other
states. That only few parts are identified signals that our pipeline can
adequately cope with simpler cases as well, without the earlier steps
in the pipeline needlessly distorting the eventual result. That is, it can
be applied nearly agnostic to the input, beyond the configuration of the
dilation and productivity thresholds as discussed above. For comparison
with Fig. 13(h), a result of McNeill and Hale [23] is shown in Fig. 13(e)
using our color scheme. The maps are roughly of comparable quality,
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Fig. 12. Results of varying productivity and dilation thresholds on the decomposition and subsequent Mosaic Cartogram.
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Fig. 13. (a) Contiguous states of the US. (b-d) Result computed by our pipeline (d = 5,p = 4). (e) Grid map based on Fig. 5a in [23], which includes
Washington DC. (f-h) Result computed by our pipeline (d = 5,p = 4), for input including Washington DC.

which the metrics again further support, but our map has some points
that we consider to work specifically well in comparison: Florida is the
bottom-rightmost state; Michigan can be seen to be located between
the Great Lakes. McNeill and Hale’s result on the other hand nicely
preserves Washington as the northwestern-most state, and is slightly
more compact for the northeastern states.

Comparing Fig. 13(d,h), the addition of the single tile for Washington
DC has quite an effect on the Mosaic Cartogram and thus the eventual
result. Though the overall structure is the same, the shape around
the Great Lakes is less clear in (d), but the northeastern states are

represented more compactly. It is also worth noting that the projection
of the input (here, Albers projection) for such large areas may have an
effect on the coherence of the grid map [24].

Our method is somewhat slower to compute. For the 374 UK local
authorities, McNeill and Hale report a running time of four seconds [23]
for the result in Fig. 6. Our result shown in Fig. 7 takes 84 seconds
to compute, with 21 seconds spent on generating the partition, and
60 seconds spent on computing a Mosaic Cartogram on a standard
laptop. Improving this running time substantially thus requires a faster
algorithm to compute Mosaic Cartograms.
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the right adjacencies between parts, this is not an option in our pipeline:
each part must be represented by as many tiles as the number of spatial
element it contains. If every part is adjacent to the “outside” (i.e., the
adjacency graph is outerplanar), the post-processing step has significant
freedom, and typically sufficiently so to achieve the right number of
tiles. This is the case in all our test instances; without subdivisions (see
Section 7) the topology is even a tree, by design of our decomposition
step. We therefore did not observe any deviation from the exact number
of tiles, even while perfectly representing adjacencies of the parts.

If needed, one could add a second post-processing step, similar to
the first; but rather than requiring that adjacencies are preserved, we
enforce only that the result remains contiguous. In this way we can
ensure that the resulting Mosaic Cartogram has zero cartographic error
and is contiguous, at the possible cost of small topological violations.
It is an interesting direction for future work to compute good Mosaic
Cartograms with zero cartographic error more directly.

The algorithm for Mosaic Cartograms assumes a contiguous input.
We generate such a cartogram for each contiguous piece of our input
and compose them. Our implementation features some automation,
based on direction. Specifically, we start with the largest piece (for
example, mainland UK or mainland NL) and simply use its result. For
any subsequent piece (usually islands of decreasing size), we use the
direction between the closest spatial element of the new piece towards
any of the already-placed pieces. This gives a starting tile to place the
new piece, from which we search locally for a placement that does not
cause overlap or new adjacencies. This automation works reasonably in
simple situations (e.g., UK: mainland with six well distributed islands)
but requires manual post-processing for maps with more intricate layout
(e.g., Netherlands: mainland with seven clustered islands). We apply
this optional manual step in all our results, and leave better placement
of separate pieces in Mosaic Cartograms to future work.

6 ASSIGN ELEMENTS TO TILES VIA POINT-SET MATCHING

All that remains now, is to assign spatial elements to tiles in the tile
arrangement computed in Step 2. As the sets of tiles and the number
of spatial elements per part match exactly, we can execute this step
separately for each part. The input is thus a set of contiguous tiles for
one (mostly convex, and hence simple) part, together with the spatial
elements for that part. The output is the tile assignment for this subset
of the spatial elements. Combining all assignments yields the grid map.
Related work. There are various ways to assign spatial elements to a
tile arrangement. For tile arrangements (close to) a grid, one can use a
greedy assignment as proposed by Wood and Dykes [51] for Spatially
Ordered Treemaps and adapted by Eppstein et al. [11] for grid maps
(called SpatialGrid in [11]). Eppstein et al. [11] propose a variety
of other methods for this case, including displacement optimization
under the sum of squared Euclidean distances (L2

2). They show that
optimizing L2

2 also results in good local directions and adjacencies;
these findings are corroborated by Meulemans et al. [24]. Since we
can minimize L2

2 efficiently [9], this approach is generally the method
of choice and also the one we employ in our pipeline. Later work by
Liu et al. [19] proposes a form of constrained multi-dimensional scaling
to assign regions to a grid. However, in addition to the restriction to the
grid, the assignment quality is generally lower than the one via L2

2.

Our implementation. As stated above, we optimize for L2
2, which

yields good results in local facets of coherence for the simple cases that
the earlier steps in the pipeline create. To align the spatial elements
and the set of tiles of a part, we compute the affine transformation such
that the bounding box of the set of tiles is equal to that of the centroids
of the spatial elements. Subsequently, we use point-set matching from
centroid to centroid to minimize the sum of squared Euclidean distances
in this transformed space, implemented as a linear program [9].

7 RESULTS AND DISCUSSION

Here we investigate the efficacy of our pipeline in three aspects: (1)
parametrization of our shape-decomposition step; (2) a comparison to
state-of-the art; (3) using a known subdivision of the containing shape.
We end this section with a general discussion and future work.

Parametrization. Contrasting the other two steps in our pipeline, the
first step of decomposing the containing shape is parametrized. Setting
suitable thresholds is important to achieve the best results. Here we
briefly investigate the effect of these parameters via the result of the
subsequent step: the tile arrangement.

Fig. 12 shows results for the Dutch municipalities, using a dilation
threshold d ∈ {2,3,5} and productivity p ∈ {4,10,30}. The effect
of d is quite straightforward: a lower value of d means that more
candidate cuts can be selected and thus results in more identified parts.
Productivity p has a similar effect: parts are required to contain more
spatial elements and thus higher values lead to fewer parts. With too
many parts, the computed Mosaic Cartogram is too detailed, resulting
in a jagged, uneven appearance in places where this is not necessary for
global shape – this is because Mosaic Cartograms consider shape purely
on a part-level. Yet, with too few parts we do not obtain the simple
case within each part due to uneven distributions of the spatial elements
while still having recognizable features. Hence, both need to work
together to obtain parts that represent simple cases and that are both
visually salient as well has having enough elements to be represented
reasonably. Of these provided figures, we deem that the case of (d =
3,p = 4) strikes this balance well and nicely places southern Flevoland
(four municipalities in the central brown region in the figure) along the
IJsselmeer. We use these settings and hence this Mosaic Cartogram
also in Figs. 1, 3(e) and 14(c) showing the Dutch municipalities.

Productivity p can likely be configured similarly across instances of
similar size, though effects of geography can be expected as culturally
significant features bias towards certain decompositions. However,
dilation threshold d faces a difficulty arising from a well-known ge-
ographic phenomenon: the coastline paradox [22]. In our situation,
the detail at which the containing shape is represented immediately
and potentially greatly affects the length along the polygon boundary,
used to determine dilation; yet, the length of a candidate cut is largely
unaffected. As a result, the dilation threshold for a particular instance
depends on the resolution of the input map. A normalization of the
shape boundary is not quite enough, as shape complexity remains a
factor and borders may locally vary in semantics and thus in their ef-
fect on the local boundary length – consider, e.g., differences between
actual coastlines and borders with other countries such as Norway with
its fjords and straight border with Sweden. A suitably normalizing
simplification of the containing shape might provide a solution to this
resolution-dependence; we leave this investigation to future work.

Comparison. With Figs. 6 and 7 shown earlier, we compare our
method to the approach of McNeill and Hale [23], using a hexagonal
grid map for the UK local authority districts. These figures clearly show
that our pipeline retains more of the characteristic features, especially
around Scotland and Wales. The smooth gradient of colors in our result
also shows that local facets are preserved well. To further compare
the two methods on the local facets of coherence, we use the measures
proposed by Meulemans et al. [24] for local adjacency and local direc-
tion: The percentage of adjacencies maintained (ADJ), the percentage
of orthogonal directions maintained (DIRA), and the percentage of
orthogonal directions between neighbours maintained (DIRN). The two
methods have comparable scores for the UK map. We also provide a
grid map with square tiles in Fig. 11 on the UK constituencies, showing
that this improved shape is also achieved with other tile shapes.

Fig. 13(d,h) shows the result of our pipeline on the contiguous states
of the US without and with Washington DC, a common example and use
case of grid maps. We observe that this case is not necessarily complex,
as evidenced by the few parts in the decomposition (Fig. 13(b,f)),
but not quite simple either: e.g., Florida and the Great Lakes give
characteristic features for local shape that can be preserved, and states
along the (north)eastern coast are significantly smaller than the other
states. That only few parts are identified signals that our pipeline can
adequately cope with simpler cases as well, without the earlier steps
in the pipeline needlessly distorting the eventual result. That is, it can
be applied nearly agnostic to the input, beyond the configuration of the
dilation and productivity thresholds as discussed above. For comparison
with Fig. 13(h), a result of McNeill and Hale [23] is shown in Fig. 13(e)
using our color scheme. The maps are roughly of comparable quality,
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Fig. 12. Results of varying productivity and dilation thresholds on the decomposition and subsequent Mosaic Cartogram.
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Fig. 13. (a) Contiguous states of the US. (b-d) Result computed by our pipeline (d = 5,p = 4). (e) Grid map based on Fig. 5a in [23], which includes
Washington DC. (f-h) Result computed by our pipeline (d = 5,p = 4), for input including Washington DC.

which the metrics again further support, but our map has some points
that we consider to work specifically well in comparison: Florida is the
bottom-rightmost state; Michigan can be seen to be located between
the Great Lakes. McNeill and Hale’s result on the other hand nicely
preserves Washington as the northwestern-most state, and is slightly
more compact for the northeastern states.

Comparing Fig. 13(d,h), the addition of the single tile for Washington
DC has quite an effect on the Mosaic Cartogram and thus the eventual
result. Though the overall structure is the same, the shape around
the Great Lakes is less clear in (d), but the northeastern states are

represented more compactly. It is also worth noting that the projection
of the input (here, Albers projection) for such large areas may have an
effect on the coherence of the grid map [24].

Our method is somewhat slower to compute. For the 374 UK local
authorities, McNeill and Hale report a running time of four seconds [23]
for the result in Fig. 6. Our result shown in Fig. 7 takes 84 seconds
to compute, with 21 seconds spent on generating the partition, and
60 seconds spent on computing a Mosaic Cartogram on a standard
laptop. Improving this running time substantially thus requires a faster
algorithm to compute Mosaic Cartograms.
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(b)(a) (c) (d)

Limburg

Fig. 14. Effect of applying a subdivision, illustrated with the Dutch municipalities and provinces. Thick white boundaries separate provinces. (a) Input
map. (b) Result of our pipeline without decomposition, using provinces as parts. (c) Result of our pipeline (d = 3,p = 4) without using provinces. (d)
Result of our pipeline (d = 3,p = 10) by applying decomposition to each province.

Subdivisions. So far, we have shown inputs of a single containing
shape with spatial elements. However, the containing shape can often
be subdivided into several administrative units: e.g., a country is often
subdivided into provinces or states. The question is whether such
known subdivisions of the containing shape can be used instead of,
or in addition to, decomposition in our pipeline. To explore this, we
consider again the Dutch municipalities. As these are hierarchically
organized into provinces, we use province boundaries to subdivide the
containing shape; see Fig. 14(a).

Fig. 14(b) shows the result of applying our pipeline without applying
Step 1 – shape decomposition. Instead, we simply use the provinces as
parts and start from Step 2. To compare, Fig. 14(c) shows our pipeline
solution without subdividing by provinces, but with the province bor-
ders indicated. The main advantages of using the provinces as parts,
is that (contiguous parts of) provinces remain contiguous in the result,
and that adjacencies between provinces are exactly the same to those in
the input map, as achieved by the Mosaic Cartogram. Without using
the province subdivision, this is not guaranteed, and indeed we can
observe slight discontiguities in Fig. 14(c) for some provinces. Note,
however, that the provinces are only discontiguous when considering
rook’s adjacency (sharing a side of the square), but are in fact contigu-
ous in queen’s adjacency (sharing a corner is sufficient to be considered
connected). As such, the deviation is indeed only minor.

At a glance, using the subdivision improves global shape in some
places, such as southern Limburg (the southernmost province). How-
ever, this does not readily imply a good grid map: without decom-
position, we see the same problems as discussed in Section 2.2 now
appearing at a smaller scale: the tile indicated by the red arrow in
Fig. 14(b) is assigned to the municipality in Fig. 14(a) indicated by the
arrow of the same color; based on shape one would rather expect this
tile to represent the municipality indicated by the blue arrow. That is,
this map has poor coherence in terms of local shape. With decomposi-
tion, this improves significantly, as illustrated by the colored arrows for
these same municipalities.

This raises the question whether we can effectively combine these
two ideas. That is, rather than applying the decomposition step to
the entire containing shape, we refine the subdivision into parts, by
applying decomposition to each polygon it defines, i.e., to each province
in our example. We then obtain parts that respect the subdivision; the
Mosaic Cartogram ensures the correct topology between parts and thus
we achieve contiguity for each province. The result of this is shown in
Fig. 14(d). Whereas it indeed maintains contiguity of each province
(and the entire shape), we see global shape deteriorating slightly, again
mostly in terms of smoothness along the boundary. We attribute this to
the increased number of parts with typically fewer spatial elements: as
a result, the algorithm for Mosaic Cartograms is less sensitive to small
changes along the boundary in capturing shape.

Future work. One major benefit of our pipelined approach is that
improvements within each step can be carried over to improve grid-map
computation – though especially for Step 1 it remains to be assessed
how improvements in shape decomposition interact with the subse-
quent steps. We specifically see potential to improve Step 2. Whereas
Mosaic Cartograms generally produce good tile arrangements, there
are some limitations to the method. Specifically, the outline of the tile
arrangement can capture shape well, but may also cause a somewhat
jagged boundary where the containing shape did not necessarily feature
such. As also observed in [23], boundary smoothness can improve
grid-map quality. We expect that an extra post-processing step of the
Mosaic Cartogram may reduce the jagged boundary.

Our pipeline also makes it straightforward to interact with the inter-
mediate results: one can manually add or remove cuts in Step 1 that
do not quite follow readily from the input geometry, but rather from a
user’s understanding of the local geography – as it is well known that
small geometric features on a map may be relevant from a cultural or
geographic point of view. Especially the Mosaic Cartogram can be in-
teracted with easily and in a predictable manner. By simply shifting and
swapping tiles, one can steer the input for the final step to an even more
polished result. With Step 3 being efficiently computed, this can be
done interactively with the tile assignment being updated on-the-fly, to
ensure the best result. We emphasize that all results in this paper were
not changed manually, beyond improving the placement of separate
pieces (islands) of the Mosaic Cartogram (see Section 5).

We have compared our results to that of McNeill and Hale [23]
qualitatively. A general and impartial quantitative evaluation would be
useful, either in the form of user studies or computational experiments.
The difficulty in achieving the latter is how to capture each facet of
coherence well. Though Meulemans et al. [24] provide a suite of
metrics, global shape poses a particular challenge: common shape
similarity measures are not suitable for handling distortion which is a
necessity in obtaining a high-quality grid map. Yet, not all distortion is
equal; it must be applied effectively and in a structured way as to still
have a sense of local scale for salient features, even though the larger
structures are distorted. The ideal of “no distortion” in shape is not only
unachievable but also undesirable. That is, current measures cannot
easily operate within the context of density differences that force the
distortion. Possibly, ideas from focus-and-context maps to measure
distortion based on a local scale [16, 47] might be useful in designing
a locally scale-aware shape-similarity measure. Local shape similarly
poses challenges, as it relies on automatically identifying and relating
characteristic features in both the grid map and the input map.
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(b)(a) (c) (d)

Limburg

Fig. 14. Effect of applying a subdivision, illustrated with the Dutch municipalities and provinces. Thick white boundaries separate provinces. (a) Input
map. (b) Result of our pipeline without decomposition, using provinces as parts. (c) Result of our pipeline (d = 3,p = 4) without using provinces. (d)
Result of our pipeline (d = 3,p = 10) by applying decomposition to each province.

Subdivisions. So far, we have shown inputs of a single containing
shape with spatial elements. However, the containing shape can often
be subdivided into several administrative units: e.g., a country is often
subdivided into provinces or states. The question is whether such
known subdivisions of the containing shape can be used instead of,
or in addition to, decomposition in our pipeline. To explore this, we
consider again the Dutch municipalities. As these are hierarchically
organized into provinces, we use province boundaries to subdivide the
containing shape; see Fig. 14(a).

Fig. 14(b) shows the result of applying our pipeline without applying
Step 1 – shape decomposition. Instead, we simply use the provinces as
parts and start from Step 2. To compare, Fig. 14(c) shows our pipeline
solution without subdividing by provinces, but with the province bor-
ders indicated. The main advantages of using the provinces as parts,
is that (contiguous parts of) provinces remain contiguous in the result,
and that adjacencies between provinces are exactly the same to those in
the input map, as achieved by the Mosaic Cartogram. Without using
the province subdivision, this is not guaranteed, and indeed we can
observe slight discontiguities in Fig. 14(c) for some provinces. Note,
however, that the provinces are only discontiguous when considering
rook’s adjacency (sharing a side of the square), but are in fact contigu-
ous in queen’s adjacency (sharing a corner is sufficient to be considered
connected). As such, the deviation is indeed only minor.

At a glance, using the subdivision improves global shape in some
places, such as southern Limburg (the southernmost province). How-
ever, this does not readily imply a good grid map: without decom-
position, we see the same problems as discussed in Section 2.2 now
appearing at a smaller scale: the tile indicated by the red arrow in
Fig. 14(b) is assigned to the municipality in Fig. 14(a) indicated by the
arrow of the same color; based on shape one would rather expect this
tile to represent the municipality indicated by the blue arrow. That is,
this map has poor coherence in terms of local shape. With decomposi-
tion, this improves significantly, as illustrated by the colored arrows for
these same municipalities.

This raises the question whether we can effectively combine these
two ideas. That is, rather than applying the decomposition step to
the entire containing shape, we refine the subdivision into parts, by
applying decomposition to each polygon it defines, i.e., to each province
in our example. We then obtain parts that respect the subdivision; the
Mosaic Cartogram ensures the correct topology between parts and thus
we achieve contiguity for each province. The result of this is shown in
Fig. 14(d). Whereas it indeed maintains contiguity of each province
(and the entire shape), we see global shape deteriorating slightly, again
mostly in terms of smoothness along the boundary. We attribute this to
the increased number of parts with typically fewer spatial elements: as
a result, the algorithm for Mosaic Cartograms is less sensitive to small
changes along the boundary in capturing shape.

Future work. One major benefit of our pipelined approach is that
improvements within each step can be carried over to improve grid-map
computation – though especially for Step 1 it remains to be assessed
how improvements in shape decomposition interact with the subse-
quent steps. We specifically see potential to improve Step 2. Whereas
Mosaic Cartograms generally produce good tile arrangements, there
are some limitations to the method. Specifically, the outline of the tile
arrangement can capture shape well, but may also cause a somewhat
jagged boundary where the containing shape did not necessarily feature
such. As also observed in [23], boundary smoothness can improve
grid-map quality. We expect that an extra post-processing step of the
Mosaic Cartogram may reduce the jagged boundary.

Our pipeline also makes it straightforward to interact with the inter-
mediate results: one can manually add or remove cuts in Step 1 that
do not quite follow readily from the input geometry, but rather from a
user’s understanding of the local geography – as it is well known that
small geometric features on a map may be relevant from a cultural or
geographic point of view. Especially the Mosaic Cartogram can be in-
teracted with easily and in a predictable manner. By simply shifting and
swapping tiles, one can steer the input for the final step to an even more
polished result. With Step 3 being efficiently computed, this can be
done interactively with the tile assignment being updated on-the-fly, to
ensure the best result. We emphasize that all results in this paper were
not changed manually, beyond improving the placement of separate
pieces (islands) of the Mosaic Cartogram (see Section 5).

We have compared our results to that of McNeill and Hale [23]
qualitatively. A general and impartial quantitative evaluation would be
useful, either in the form of user studies or computational experiments.
The difficulty in achieving the latter is how to capture each facet of
coherence well. Though Meulemans et al. [24] provide a suite of
metrics, global shape poses a particular challenge: common shape
similarity measures are not suitable for handling distortion which is a
necessity in obtaining a high-quality grid map. Yet, not all distortion is
equal; it must be applied effectively and in a structured way as to still
have a sense of local scale for salient features, even though the larger
structures are distorted. The ideal of “no distortion” in shape is not only
unachievable but also undesirable. That is, current measures cannot
easily operate within the context of density differences that force the
distortion. Possibly, ideas from focus-and-context maps to measure
distortion based on a local scale [16, 47] might be useful in designing
a locally scale-aware shape-similarity measure. Local shape similarly
poses challenges, as it relies on automatically identifying and relating
characteristic features in both the grid map and the input map.
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