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Chapter 1

Introduction

The exploration of thermally driven turbulent convection dates back to 1900,
when Bénard [1–3] experimented with very thin layers of fluid sitting on top of a
hot metallic plate. He observed the development of flow motion that organized
itself into a regular pattern of convective cells. Some years later, inspired by
Bénard’s experiment, Rayleigh [4] presented the theoretical analysis of the
convective instability of such fluid layers bounded by two infinite horizontal
planes. The thermally driven flow confined between a hot bottom plate and
a cooler top plate is therefore known as Rayleigh–Bénard convection (RBC).
A variant to this classical setup was considered by Chandrasekhar [5], who
theoretically investigated, quite thoroughly, the stability of the fluid layer in
presence of Coriolis forces [5]. Through linear stability analysis, he provided
explicit expressions for the critical Rayleigh numbers (defined below) necessary
for the onset of convection. The experimental verification of Chandrasekhar’s
predictions was given by Nakagawa & Frenzen [6]. Later studies by Rossby [7]
showed that sufficiently large Rayleigh numbers lead to transitions from near-
onset stable rotating cells to a time-dependent three-dimensional flow and to
turbulence. These studies have shown that the stability of the fluid is mainly
dependent on three parameters: the Rayleigh number Ra that characterises
the strength of the thermal forcing, the Ekman number Ek that measures the
strength of rotation (although Rossby used the Taylor number Ta = Ek−2;
note that small Ek indicates rapid rotation), and the Prandtl number Pr that
parametrises the diffusive properties of the fluid.

Rotating Rayleigh–Bénard convection (RRBC) turns out to be incredibly rel-
evant for the fundamental study of numerous geo- and astrophysical flows and
for many technological applications. Large-scale motions in Earth’s interior,
oceans and atmosphere are primarily driven by temperature-induced buoyancy,
and develop over length scales that are large enough to make them susceptible
to the Earth’s rotation. For example, in the liquid-metal outer core, rotating
convection is believed to be the energy source of its self-sustained dynamo
action [8–11]. Open-ocean deep convection, an integral part of the global ther-
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Chapter 1. Introduction

mohaline circulation, is driven by cold sinking fluid from the air-water surface
of the seas [12–15]. In the atmosphere, the combined effects of buoyancy and
rotation lead to the formation of so-called Hadley cells [16], which are respon-
sible for trade winds near the Earth’s surface. Hadley cells at low latitudes,
Ferrel cells at mid-latitudes and polar cells at high latitudes are the backbone
of the large-scale dynamics of the atmosphere. The effects of rotation and
convection can also be evidenced in the interior and atmosphere of the gaseous
planets in the solar system: Jupiter, Saturn, Uranus and Neptune exhibit deep
convection in their interior [17,18] and zonal flows in their atmosphere [19–22]).
In stars, like our Sun, convective currents of plasma in the convection zone
are also affected by rotation [23–25]. Finally, rotating convection can also be
present in technological applications, such as the convective cooling in rotating
turbomachinery blades [26,27], chemical vapour deposition on rotating heated
substrates [28], and centrifugal gas separation [29,30].

Hence, rotating Rayleigh–Bénard convection offers a relatively simple, but
highly relevant framework to investigate many complex flows in nature and
industry. Because of this, RRBC has been extensively studied by means of
numerical simulations (e.g. Refs. [31–59]), laboratory experiments (see e.g.
Refs. [7, 34, 35, 38, 40, 43, 54, 55, 60–77]) and theoretical analysis (e.g. Refs. [78–
83]). One of the main goals of many RRBC studies is to approximate the typical
conditions of thermal forcing, rotation and fluid properties of geophysical and
astrophysical settings. These large-scale flows are characterized by extreme
values of the governing parameters, combining very large Rayleigh numbers
Ra > 1015 and very small Ekman numbers Ek < 10−10; in Table 1.1 we provide
two examples: the Earth’s outer core and Jupiter’s atmosphere. The Prandtl
number can attain quite different values depending on the application: for liquid
metals Pr ∼ O(10−2), for most gases under normal atmospheric conditions
0.7 . Pr . 0.8, for water at various operating temperatures 3 . Pr . 8, and
for highly viscous liquids Pr may take on even larger values. Table 1.1 also
provides the range of parameters covered by most direct numerical simulations
and by experiments. As we can see, there is a massive separation of several
orders of magnitude between simulation/experimental conditions and large-
scale natural flows.

While geophysical and astrophysical flow conditions are certainly unfeasible
for present-day simulations, in this thesis we investigate RRBC at quite extreme
parameter values compared to those explored in previous studies. We perform
optimised direct numerical simulations at Rayleigh numbers up to Ra ∼ 1012

and Ekman numbers Ek ∼ 10−7. We consider Prandtl number Pr = 0.1,
relevant to liquid metals as in the Earth’s outer core, Pr ≈ 5, that corresponds
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Earth’s outer Jupiter’s

Parameter core [84–86] atmosphere [87] Simulations Experiments

Thermal forcing Ra ∼ 1020 − 1030 ∼ 1024 ∼ 103 − 1011 ∼ 105 − 1015

Rotation Ek ∼ 10−15 ∼ 10−12 ∼ 10−7 −∞ ∼ 10−8 −∞
Fluid properties Pr ∼ 10−2 − 10−1 ∼ 1 ∼ 10−2 − 102 ∼ 10−2 − 102

Table 1.1.: Comparison of estimated parameters for the Earth’s outer core and Jupiter’s
atmosphere with the most extreme parameter values achieved in numerical simulations and
laboratory experiments of RRBC.

to water that is commonly used in experiments and is applicable to oceanic
processes, and Pr = 100, representative of highly viscous fluids. The parameter
space of RRBC is partitioned into several regimes where the flow manifests as:
steady cells [81], convective Taylor columns (only at Pr & 2) [33, 40, 41, 63,72,
77, 88–91], plumes [33, 41, 72, 88], large-scale vortices [33, 41, 44–46, 50, 58, 92],
rotation-affected convection [50, 70] or non-rotating convection [93–96]. We
explore a wide range of parameter values that allows the observation of most
of these structures. We provide their detailed description in Chapter 4. In this
thesis, we characterise the flow regimes according to their specific force balance
and flow statistics.

Besides large parameter values, another challenge for RRBC simulations is
that under rapid rotation Ekman-type kinetic boundary layers develop at the
no-slip top and bottom wall [97]. These Ekman layers are very thin (character-
istic thickness O(E1/2)), which means that the numerical resolution near the
boundaries must be significantly increased in order to resolve these thin layers.
This challenge has inhibited direct numerical simulations of the incompressible
Navier–Stokes equations from an exhaustive analysis of the flow at large rota-
tion rates. Many studies have then adopted an alternative approach where the
flow is simulated in presence of stress-free boundaries, thereby preventing the
flow from “sticking” to the walls, and so hindering the development of Ekman
layers. Another approach consists of studying the flow in the limit of rapid rota-
tion (Ek →∞), such that the specific boundary conditions become irrelevant.
Under these assumptions a set of asymptotically reduced equations can be
derived to describe the rotation-dominated flow. Most of our understanding of
RRBC relies on simulations of these asymptotic equations [33,41,51,59]. Labo-
ratory experiments inherently deal with no-slip boundaries, nevertheless, direct
flow measurements in the boundary layers remain beyond reach for present-day
experiments. This problem is caused by the fact that the Ekman boundary
layer is very thin; of the order of one millimetre in typical water-based experi-
ments (at ν ∼ 10−6 m2 s−1 and rotation rate Ω ∼ 1 rad s−1) regardless of the
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Chapter 1. Introduction

container’s height. Therefore, research on the dynamics of the flow close to no-
slip boundaries has been limited to direct numerical simulations. From these,
we know that kinetic boundary layers in rapidly rotating Rayleigh–Bénard
convection are indeed of Ekman-type, and that they can markedly influence
the bulk dynamics and heat transfer across the fluid layer, unlike those formed
in the non-rotating case [45, 52, 63, 64, 88, 97, 98]. However, some questions
remain: how does their specific dynamics connect to the above-mentioned bulk
regimes? And, does this dynamics change from one regime to another? In the
interest of shedding light on these matters, most of the numerical simulations
presented in this thesis do employ no-slip walls.

An interesting regime of RRBC manifests when the flow is rotationally
constrained and yet it remains turbulent due to strong thermal forcing. The
resulting dynamics may lead to the development of long-lived, large-scale vor-
tices (LSVs) in the flow [41,44,46,51,92]. A customary decomposition of this
flow consists of a so-called barotropic component that represents the dominant
2D (depth-averaged) dynamics of the flow, and a baroclinic component to de-
note the 3D (depth-dependent) convective motion. These coherent structures
are most clearly observed in the stress-free case, whereas their formation is
inhibited in simulations with no-slip boundaries [45, 50,51]. In the latter case,
the premise is that vertical disturbances due to Ekman pumping from the
boundary layers disrupt the development of large scales in the flow. It is be-
lieved that this adverse role of the Ekman layers weakens at very large rotation
rates [41,99,100]. The question is whether the increased rotation can suppress
vertical disturbances to a degree where the condition for LSV formation are
effectively met. Addressing this issue is challenging, because the thermal forc-
ing must then be increased too in order to ensure turbulence. In this thesis we
evaluate the formation of large-scale vortices for our rather extreme suite of
explored parameter values.

Up until now, the effect of lateral boundaries has been mostly ignored. This
configuration is of course appropriate for certain natural phenomena where, for
example, the lateral dimensions of the system are much larger than the vertical,
as in oceans, planetary atmospheres and the solar convection zone. Because
this thesis is inspired by these large-scale geophysical and astrophysical flows,
most of our simulations consider a Cartesian domain with periodic lateral
boundaries. However, this setup is impossible to achieve experimentally. Most
experiments are carried out in cylindrical vessels sitting on a rotating table.
It is therefore paramount to establish connections between experiments on a
confined cylindrical domain and simulations on a laterally unconfined periodic
domain [53,55, 56,101]. To bridge this gap, we also perform direct numerical
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simulations on a cylindrical domain.

Thesis outline

This work is structured as follows. Chapter 2 introduces the theoretical foun-
dations of rotating Rayleigh–Bénard convection needed for the present inves-
tigation. Chapter 3 presents a brief review of the methodology of the direct
numerical simulations, as well as details on the validation of the numerical
results. A list of the simulation cases explored is included. In Chapter 4 we
analyse the interplay between the forces acting on the fluid in RRBC. We do so
for the various observed flow states, and compare the force balance in the bulk
with that near the no-slip plates. We also present a discussion on the nature
of the transitions among flow regimes. In Chapter 5 we examine the statistical
properties of the bulk and near-wall flow and their transitional behaviours
between flow regimes in laterally unconfined RRBC. In Chapter 6 we focus
on the regime of large-scale vortices, as their formation in presence of no-slip
boundaries is a novel result. We investigate their structure, conditions for de-
velopment, energy transfer properties and near-wall dynamics. In Chapter 7
we study turbulent convection in a confined domain, i.e. in a cylindrical vessel
as in laboratory experiments, where the development of a so-called sidewall
circulation is observed. We characterise its size, dynamics and, especially, its
contribution to the convective heat transfer. We also discuss how this sidewall
circulation interacts with the bulk, and its implications on the development of
bulk structures such as those found in laterally unconfined domains, discussed
in the previous chapters. Finally, in Chapter 8 we provide an overall conclu-
sion to the thesis and an outlook to further research on turbulent rotating
convection.
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Chapter 2

Theoretical Background

This chapter provides a brief summary of the theoretical background necessary
for the following chapters. We present the equations of motion of rotating
Rayleigh–Bénard convection, the related dimensionless parameters, and discuss
the effects of rotation on the flow in the fluid bulk and near solid boundaries.

2.1. Preliminary remarks

In this section we set the stage for this chapter, where we motivate the concepts
to be discussed. We start off by deriving the governing equations of RRBC in
Section 2.2. For the task, we first introduce the equations of motion of thermal
convection, then we employ the Oberbeck–Boussinesq approximation, and fi-
nally we derive these equations in a rotating frame of reference. In Section 2.3,
we nondimensionalise the governing equations and present the relevant dimen-
sionless parameters. These parameters dictate the convective state of the flow.
In Section 2.4, we present the critical values of these parameters that lead to
the onset of convection. The response of the system to these convective motions
is measured by the Nusselt number Nu. We introduce this output parameter
in Section 2.5. As mentioned in Chapter 1, planetary-scale flows are greatly
influence by the rotation of the celestial body. As a result, their dynamics is
directed by the so-called geostrophic balance. In Section 2.6, we derive and dis-
cuss this balance as well as the Taylor–Proudman theorem. These concepts are
needed later on in Chapters 4 and 5, where we discuss the rotation-dominated
regimes of RRBC. In these two chapters we also investigate the flow dynamics
close to no-slip top and bottom boundaries, where Ekman-type viscous bound-
ary layers develop. We thus dedicate Section 2.7 to introduce the fundamental
properties of these layers. In this section we also discuss the boundary layers
that develop along the sidewalls in confined domains: the Stewartson boundary
layers. The role of lateral confinement is investigated in Chapter 7. Finally, in
Section 2.8, we address the presence of turbulence in RRBC by introducing
useful definitions of convective turbulence.
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Chapter 2. Theoretical Background

2.2. Equations of motion

In the Rayleigh–Bénard convection setup, a fluid layer between two parallel
horizontal plates is heated from below and cooled from above in order to
induce a buoyancy-driven flow. The incompressible flow of a Newtonian fluid
is described by the Navier–Stokes equations

ρ

(
∂uuu

∂t
+ (uuu · ∇∇∇)uuu

)
= −∇∇∇p+∇∇∇ · τττ − ρgẑzz (2.1)

and temperature by the advection-diffusion equation

ρcp

(
∂T

∂t
+ uuu · ∇∇∇T

)
= k∇2T, (2.2)

subject to the incompressibility constraint

∇∇∇ · uuu = 0. (2.3)

In these equations, ρ is the density of the fluid, uuu = (u, v, w) is the fluid
velocity, t is time, p is pressure, τττ is the viscous stress tensor, g is gravitational
acceleration, ẑzz is the unit vector in the vertical direction, T is temperature, cp
is the specific heat at constant pressure, and k is the thermal conductivity of
the fluid. Moreover, the viscous stress tensor for a Newtonian fluid is given by

τττ = 2µεεε (2.4)

where

εεε =
1

2

(
∇∇∇uuu+∇∇∇uuuT

)
(2.5)

is the rate-of-strain tensor and µ is the dynamic viscosity of the fluid. Equa-
tions (2.1) to (2.3) express respectively the conservation of momentum, energy
and mass [102].

Oberbeck–Boussinesq approximation

Rayleigh–Bénard convection is often studied in the Oberbeck–Boussinesq (OB)
approximation [103, 104], where fluid properties are assumed constant (i.e.
independent of temperature) and density variations are only important in the
buoyancy term. The assumption is that density differences do not lead to
significant changes in inertia, yet the gravitational acceleration g is sufficiently
strong to drive the convective flow. Furthermore, density variations ρ′ are
assumed to be linearly dependent on the temperature variations T ′ as

8



2.2. Equations of motion

ρ′

ρ0
= −αT ′ (2.6)

where α is the thermal expansion coefficient of the fluid. Here, density and
temperature fluctuations are relative to, and much smaller, than their cor-
responding static constant equilibrium values ρ0 and T0. That is, the total
density is ρ = ρ0 + ρ′ with ρ′ � ρ0, and the total temperature is T = T0 + T ′

with T ′ � T0. Similarly, the total pressure can be written as p = p0 + p′ with
p′ � p0.

Based on these approximations, the term −∇∇∇p − ρgẑzz in Eq. (2.1) can be
simply written as−∇∇∇p′−ρ′gẑzz (because∇∇∇p0 = −ρ0gẑzz is the hydrostatic balance)
and the divergence of the viscous stress tensor in Eq. (2.4) is ∇∇∇ · τττ = µ∇2uuu
(because µ is constant due to the OB approximation). Therefore, dropping the
primes, the set of governing equations are [81]

∂uuu

∂t
+ (uuu · ∇∇∇)uuu = − 1

ρ0
∇∇∇p+ ν∇2uuu+ gαTẑzz (2.7)

∂T

∂t
+ uuu · ∇∇∇T = κ∇2T (2.8)

∇∇∇ · uuu = 0 (2.9)

where ν = µ/ρ0 and κ = k/(cpρ0) are the kinematic viscosity and thermal
diffusivity of the fluid, respectively.

The OB approximation is reasonably valid for small temperature differences,
such that αT ′ � 1. In practice, a rule of thumb for their validity, often applied
in convection, is that α∆T . 0.2 [105,106], where ∆T = Tbottom − Ttop > 0 is
the temperature difference between bottom and top plates.

Background rotation

Equations (2.7) to (2.9) describe Rayleigh–Bénard convection in an inertial
frame of reference. In a rotating reference frame, like on our Earth, for example,
the equations need to be adjusted. For details of this derivation we refer the
reader to references [107] and [108]. Concretely, the acceleration aaa = duuu/dt in
the inertial frame is related to the acceleration in the rotating frame aaaR by the
expression

aaa = aaaR + 2ΩΩΩ× uuuR − Ω2rrr⊥ (2.10)

where ΩΩΩ is the constant angular velocity of the rotating coordinate system
and uuuR the velocity vector in this frame. The position in the rotating frame

9



Chapter 2. Theoretical Background

is given by rrr, and rrr⊥ denotes its projection on the plane perpendicular to
ΩΩΩ = Ωẑzz. The last term, Ω2rrr⊥, can also be written in the form of a gradient as
∇∇∇
(

1
2Ω2r2

⊥
)
. This allows, without loss of generality, to incorporate this term in

the pressure gradient, such that ∇∇∇p becomes ∇∇∇
(
p− 1

2Ω2r2
⊥
)
, where the latter

term is commonly referred to as the reduced pressure. Therefore, dropping the
subscripts, the momentum equation that describes rotating Rayleigh–Bénard
convection is

∂uuu

∂t
+ (uuu · ∇∇∇)uuu+ 2ΩΩΩ× uuu = − 1

ρ0
∇∇∇p+ ν∇2uuu+ gαTẑzz (2.11)

where the Coriolis acceleration is represented by the third term on the left-hand
side.

2.3. Dimensionless parameters

Equations (2.8), (2.9) and (2.11) involve a large number of dimensional quan-
tities: parameters (Ω, ρ0, ν, κ, α, g), dependent variables (uuu, p, T ) and inde-
pendent variables (xxx, t). A reduction of the parameter space can be attained
through nondimensionalisation. For the task, we normalise length by the do-
main height H (distance between bottom and top walls), velocity by the char-
acteristic velocity scale U , time by H/U , temperature fluctuations by ∆T and
pressure by ρ0U

2 (typical for inertia-dominated flows). The result is

∂uuu

∂t
+ (uuu · ∇∇∇)uuu+

2ΩH

U
ẑzz × uuu = −∇∇∇p+

ν

UH
∇2uuu+

gα∆TH

U2
Tẑzz, (2.12)

∂T

∂t
+ (uuu · ∇∇∇)T =

κ

UH
∇2T, (2.13)

∇∇∇ · uuu = 0. (2.14)

In RRBC, it is reasonable to assume the leading role of the buoyancy force
by setting gα∆TH/U2 ∼ O(1), which leads to a relevant and convenient ve-
locity scale: the so-called “free-fall” convective velocity Uff =

√
gα∆TH [109].

This velocity scale serves as an upper bound for buoyancy-generated velocity,
as it evaluates the limit case where all the heating power goes towards fluid
motions [31, 110, 111]. We now introduce the “traditional” dimensionless pa-
rameters in rotating Rayleigh–Bénard convection: the Rayleigh number, the
Prandtl number and the Rossby number [81]

10



2.4. Parameter values for onset of convection

Ra =
gα∆TH3

νκ
, (2.15)

Pr =
ν

κ
, (2.16)

Ro =
U

2ΩH
, (2.17)

respectively. The Rayleigh number measures the strength of the thermal forcing
as the ratio between buoyancy and dissipation, the Prandtl number involves
the diffusive properties of the fluid, and the Rossby number parametrises the
strength of rotation as the ratio between inertial force and Coriolis force. We
immediately see that, in Eq. (2.12),

2ΩH

U
=

1

Ro
,

ν

UH
=

√
Pr

Ra
and

κ

UH
=

1√
RaPr

.

which yields the desired reduction of the parameter space. That is, the original
number of parameters is reduced to three dimensionless parameters: Ra, Pr
and Ro.

Note that we assumed that the characteristic velocity scale U is equal to the
free-fall convective velocity Uff. Under this assumption, a convective Rossby
number can be defined as

RoC =

√
gα∆T/H

2Ω
. (2.18)

Such that buoyancy is dominant for RoC � 1, whereas Coriolis forces are
stronger for RoC � 1.

Alternatively, the strength of rotation can be parametrised by means of the
Ekman number

Ek =
ν

2ΩH2
, (2.19)

which provides the ratio of viscous to Coriolis force. A convenient relation
between the various dimensionless parameters is RoC = Ek

√
Ra/Pr.

2.4. Parameter values for onset of convection

Rotation, contrary to convection, has a stabilizing effect on the flow. Therefore,
at low values of the Rayleigh number and sufficiently strong rotation (low
Ek and RoC), no convective motions take place, and the heat transfer from
bottom to top boundary is exclusively due to conduction. In an infinite fluid
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layer subject to rapid rotation (Ek . 10−3), the critical Rayleigh number Rac
for the onset of convection is given by [74,81]

Rac =

{
17.4 (Ek/Pr)−4/3 for Pr < 0.68

8.7Ek−4/3 for Pr & 0.68
. (2.20)

Passed this threshold, bulk convection starts in the form of oscillatory structures
for Pr < 0.68 and steady cells for Pr & 0.68. Based on this critical value
we define supercriticality as Ra/Rac, where Rac takes either definition in
Eq. (2.20) depending on the Prandtl number of a given study case. Our results
are presented as a function of Ra/Rac throughout this work.

The characteristic horizontal length scale `c of the onset structures is given
by [81,112,113]

`c =

{
2.4 (Ek/Pr)1/3 for Pr < 0.68

2.4Ek1/3 for Pr & 0.68
, (2.21)

again, valid for an infinite layer of fluid and rapid rotation (Ek . 10−3).

2.5. Convective heat transfer

Upon the onset of convection, one of the primary results of many investigations
of Rayleigh–Bénard convection is the convective heat transport from the bot-
tom to the top wall. A convenient way to express this convective heat transport
in dimensionless form consists of scaling the total heat transfer (convection and
conduction) with the heat transfer by conduction alone. This ratio is known
as the Nusselt number

Nu ≡ 〈q〉H
k∆T

, (2.22)

where 〈q〉 is the mean total heat-current density, which is equal to the sum of
the vertical contributions of the mean local convective flux 〈qconv〉 = ρcp〈wT 〉 =
(k/κ) 〈wT 〉 and its conductive counterpart 〈qcond〉 = −k〈∂T/∂z〉. Therefore,
making velocity, temperature and length dimensionless as above, we arrive at
the fully dimensionless formulation

Nu =
√
RaPr 〈wT 〉 −

〈
∂T

∂z

〉
. (2.23)

In practice, two forms of this equation are very useful for the calculation of
Nu in numerical simulations. The first one considers the estimation of Nu at
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the horizontal plates, where convection is zero (because w = 0) and the entire
heat flux is solely provided by conduction:

Nu = −
〈
∂T

∂z

〉
A,t

at z = 0, 1, (2.24)

with 〈·〉A,t indicating averaging over the area of the (bottom or top) plate and
in time. The second form involves the averaging of Eq. (2.23) over the entire
volume, such that the conductive part is −〈∂T/∂z〉V,t = 1, and thus

Nu = 1 +
√
RaPr 〈wT 〉V,t . (2.25)

where 〈·〉V,t denotes averaging over the entire fluid volume and in time.
In the absence of rotation, the Nusselt number can be related to the thickness

of the thermal boundary layer, δθ, which develops near the top/bottom wall.
That is, without rotation, turbulent convection tends to mix the fluid in the
bulk very well. As a consequence, the temperature in this region is constant. In
turn, the temperature drop across the fluid layer, ∆T , is accomplished almost
entirely within the thermal boundary layers [114,115]. Within these layers, each
one of thickness δθ, the transfer of heat is nearly entirely conductive. Therefore,
〈q〉 ≈ 〈qcond〉 ≈ k|∆T |/(2δθ), where the total heat flux 〈q〉 relates to the Nusselt
number Nu through Eq. (2.22). Hence, a very appropriate approximation for
the thermal boundary layer thickness δθ is found:

δθ
H

=
1

2Nu
. (2.26)

2.6. Geostrophic flow

The dynamics of large-scale flows in geophysics and astrophysics is predom-
inantly controlled by the Coriolis force and the pressure-gradient force. The
equilibrium between these two forces is known as the geostrophic balance [116].
Thus, regimes of RRBC that exhibit such leading contribution of Coriolis force
and the pressure-gradient force are of particular importance to these natural
flows. In Chapter 4 we investigate, thoroughly, the force balance of the distinct
flow regimes observed in our explored parameter space. In this section, we
discuss the fundamental aspects of geostrophic flows.

We start off by considering the quasi-steady flow of a homogeneous fluid
(i.e. density variation ρ′ = 0) subject to rapid rotation (i.e. Ro � 1 and
Ek � 1). In such a case, inertial and viscous forces are negligible compared to
the Coriolis force. Several terms in Eq. (2.11) can then be discarded, leading
to the following force balance per component

13
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−2Ωv = − 1

ρ0

∂p

∂x
, (2.27)

2Ωu = − 1

ρ0

∂p

∂y
, (2.28)

0 = − 1

ρ0

∂p

∂z
. (2.29)

The horizontal balance between the Coriolis and pressure-gradient forces es-
tablishes the geostrophic balance [116]. This states that fluid particles move
along isobars, and thus that isobars are streamlines.

Using Eqs. (2.27) to (2.29), it can be shown that ∂u/∂z = ∂v/∂z = 0.
Furthermore, from Eqs. (2.27) and (2.28), and the incompressibility condition
∇∇∇ · uuu = 0, it can be shown that ∂w/∂z = 0. Therefore,

∂uuu

∂z
= 0. (2.30)

This result is known as the Taylor–Proudman theorem [117, 118], and states
that the horizontal velocity field has no vertical shear and that all particles on
the same vertical move in concert. It also establishes that the vertical velocity,
too, is independent of height. Thus, if the fluid is limited in the vertical by an
impenetrable boundary, such that the vertical velocity w is zero there, then
w is zero everywhere. As a consequence, the flow is strictly two-dimensional.
In reality, geostrophic flows in nature do exhibit non-zero vertical velocities as
well. The existence of these flows, so called ageostrophic, entails a relaxation
of the idealised Taylor–Proudman constraint.

2.7. Boundary layers

Until now, we have introduced theoretical concepts that pertain solely to the
flow far from any boundaries. Yet, in realistic settings, flows are heavily affected
by the bounding surfaces. In Chapters 4 to 6 we investigate the flow dynamics
near the vertical boundaries, where Ekman layers develop. In Chapter 7 we
study RRBC in a domain with lateral boundaries, where a recently observed
sidewall circulation is established, along with the Stewartson boundary layers.
In this section, we present the fundamental aspects of Ekman and Stewartson
boundary layers.
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2.7. Boundary layers

Ekman boundary layer

We begin by considering the quasi-steady, rapidly rotating flow (Ro� 1) of a
homogeneous fluid (ρ′ = 0) near a solid wall at z = 0. Here, the angular velocity
vector ΩΩΩ is perpendicular to the wall. In this scenario the velocity is geostrophic
in the bulk, i.e. uuu = uuub at z →∞, but it rapidly reduces to uuu = 000 at z = 0 as
the no-slip condition must be met at the wall. This reduction is carried out by
viscous forces within a thin region adjacent to the wall, the so-called Ekman
boundary layer [97]. It is then assumed that wall-normal derivatives are much
larger than derivatives along the wall [116]. Thus, for example, ∂u/∂x� ∂u/∂z
and ∂v/∂y � ∂v/∂z. Applying these approximations on Eq. (2.11), the near-
wall flow is described by [116]

−2Ωv = − 1

ρ0

∂p

∂x
+ ν

∂2u

∂z2
, (2.31)

2Ωu = − 1

ρ0

∂p

∂y
+ ν

∂2v

∂z2
, (2.32)

0 = − 1

ρ0

∂p

∂z
, (2.33)

whereas in the bulk

−2Ωvb = − 1

ρ0

∂pb
∂x

, (2.34)

2Ωub = − 1

ρ0

∂pb
∂y

, (2.35)

0 = − 1

ρ0

∂pb
∂z

. (2.36)

From Eq. (2.33) we notice that ∂(∂p/∂x)/∂z = ∂(∂p/∂z)/∂x = 0 (likewise
in the y-direction). This indicates that the horizontal pressure gradient is
independent of z near the wall. The same conclusion can be drawn in the bulk
by means of Eq. (2.36). Therefore, the horizontal pressure gradient near the
wall is actually equal to that in the bulk. The horizontal pressure gradient
is therefore determined entirely by the geostrophic velocity uuub far from the
boundary:

1

ρ0

∂p

∂x
=

1

ρ0

∂pb
∂x

= 2Ωvb and
1

ρ0

∂p

∂y
=

1

ρ0

∂pb
∂y

= −2Ωub,

and Eqs. (2.31) and (2.32) can now be written as
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−2Ωv = −2Ωvb + ν
∂2u

∂z2
, (2.37)

2Ωu = 2Ωub + ν
∂2v

∂z2
. (2.38)

The exact solutions to Eqs. (2.37) and (2.38), that satisfy the boundary
conditions: uuu = uuub at z →∞ and uuu = 000 at z = 0, are

u = ub − [ub cos (z/δu) + vb sin (z/δu)] exp (−z/δu) , (2.39)

v = vb + [ub sin (z/δu)− vb cos (z/δu)] exp (−z/δu) , (2.40)

where δu =
√
ν/Ω is a length scale that characterizes the thickness of the

Ekman boundary layer. Note that

δu
H
∼ Ek1/2 (2.41)

according to Eq. (2.19).
The vertical velocity w can be determined by using Eqs. (2.39) and (2.40) in

the incompressibility condition ∂w/∂z = −(∂u/∂x+∂v/∂y). After integration
(and noting that uuu = 000 at z = 0), we obtain:

w =
ωbδu

2
{1− exp (−z/δu) [sin (z/δu) + cos (z/δu)]} , (2.42)

where ωb = ∂vb/∂x− ∂ub/∂y is the vertical vorticity in the bulk. At z → ∞,
where uuu = uuub:

wb =
ωbδu

2
. (2.43)

That is, the Ekman boundary layer is able to actively influence the bulk flow
through vertical motion, which is known as Ekman pumping. For ωb < 0, the
flux is from the bulk into the boundary layer; this is referred to as Ekman
suction. Eq. (2.43) is valid near the bottom wall. Near the top wall, a minus
sign needs to be added in Eq. (2.43).

To illustrate the dynamics of the Ekman boundary layer, let us assume vb = 0
for simplicity, so that Eqs. (2.39) and (2.40) become

u = ub [1− cos (z/δu) exp (−z/δu)] , (2.44)

v = ub sin (z/δu) exp (−z/δu) . (2.45)
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2.7. Boundary layers

Figure 2.1.: Vertical profile of the x- and y-component of the flow velocity scaled by the
geostrophic velocity ub, i.e. u/ub and v/ub, respectively. The vertical coordinate z is scaled
by the Ekman-layer thickness δu.

Figure 2.1 shows the profiles of the velocity components u and v. Far from the
wall the velocity is equal to the geostrophic velocity, i.e. (u, v) = (ub, 0), and
so it is entirely in the x-direction. The pressure gradient in the y-direction,
independent of z, is balanced at infinity by the y-component of the Coriolis
force (see Eq. (2.35)). As the wall is approached, friction decreases u, weakening
the Coriolis force. As a consequence, the now unbalanced pressure force in the
y-direction produces a velocity v in that direction, which is reduced by friction
alone. Therefore, in the presence of the wall, the effect of friction is to break
the constraint of exact geostrophic balance (as represented by Eqs. (2.31)
and (2.32)) and produce a flow across the isobars from high to low pressure.
This implies that work is being done on the fluid in the Ekman layer by the
pressure force of the geostrophic flow. This work supplies the necessary energy
to maintain the Ekman layer in the presence of frictional dissipation.

Stewartson boundary layer

In confined domains, the bottom/top Ekman layers can drive a secondary
circulation, of magnitude O(Ek1/2) (see Eq. (2.41)), which must be somehow
compensated. It turns out that this inward or outward flux is typically balanced
by the boundary layer on the sidewall. Such boundary layers are known as
Stewartson layers [107,119,120].

Consider an upright cylindrical vessel bounded by no-slip walls (simulations
in this geometry are considered much later in Chapter 7). The cylinder height
and diameter are both H. As before, the bulk is geostrophic, and Ekman layers
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are found next to the top and bottom plates. Let us assume that the geostrophic
flow has a negative constant vorticity ωb. Because of the Ekman suction, there
is a net O(Ek1/2) radial outward flux found in each of the Ekman layers. These
fluxes flow into the Stewartson layer on the sidewall, which hence must contain
an O(Ek1/2) vertical flux.

In Refs. [119–121], it is shown that a layer of thickness

δS,1/4 ∼ HEk1/4 (2.46)

can carry the O(Ek1/2) vertical flux and, moreover, match the O(1) bulk flow.
However, this layer cannot subsequently connect to the sidewall where v = 0.
Instead, an additional layer is found within the Ek1/4 layer. The extra layer
has a thickness

δS,1/3 ∼ HEk1/3 (2.47)

from the sidewall. The flows inside these two layers close the circulation set
up by the Ekman layers.

2.8. Convective turbulence

In Section 2.6 we discussed RRBC in the limit of high rotation rates, which led
to a simplified description of the flow where its temporal and spatial variations
were neglected. Nevertheless, large-scale geostrophic flows in nature can exhibit
turbulent behaviour at smaller scales. In this section, we introduce some useful
definitions of convective turbulence.

In rotating Rayleigh–Bénard convection, the flow becomes turbulent when
the temperature difference between the bottom/top plates is sufficiently large.
The energy introduced into the system, in the form of buoyant production, is
transferred to ever smaller length scales up until it is dissipated by viscosity at
the Kolmogorov length scale (defined below). Thus, in equilibrium, a continuous
input of energy is matched by dissipation. The rate of dissipation of kinetic
energy εu and of thermal variance εθ are [122], in dimensionless form:

εu =
√
Pr/Ra |∇∇∇uuu|2 , (2.48)

εθ =
1√
PrRa

|∇∇∇T |2 , (2.49)

respectively. The corresponding smallest, active length scales for energy and
thermal dissipation are given by the (nondimensionalised) Kolmogorov and
Batchelor length scales [122]
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ηK =

(
Pr

Ra

)3/8

εu
−1/4, (2.50)

ηB = ηKPr
−1/2. (2.51)

In direct numerical simulations, as those performed in this study, these length
scales determine the grid resolution. Namely, the grid spacings should be small
enough so that these lengths are still resolved (see Section 3.5).

The local dissipation rates, εu and εθ, are a function of the vertical posi-
tion (and the radial position, in cylindrical geometries). In particular, near
the boundaries they may attain considerably larger values than in the bulk.
Exact relations for their global (volume-averaged) values can be derived for
(non)rotating Rayleigh–Bénard convection as [123,124]

〈εu〉V,t =
Nu− 1√
PrRa

(2.52)

〈εθ〉V,t =
Nu√
PrRa

(2.53)

where 〈·〉V,t, as before, denotes averaging over the entire fluid volume and in
time.

Equations (2.52) and (2.53) provide two estimates for the convective heat
transport Nu, which can be compared to those given by Eqs. (2.24) and (2.25).
The agreement of these estimates provides further validation of the accuracy
of the simulations, as it is discussed in Section 3.5.
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Chapter 3

Numerical methods

In this chapter we introduce the numerical methodology used in this thesis. First,
we present the governing equations of rotating Rayleigh–Bénard convection in
dimensionless form, which are solved by means of direct numerical simulations.
We motivate the use of three codes for the simulations: a single-grid Carte-
sian code, a multiple-grid Cartesian code, and a (single-grid) cylinder code. A
detailed description of these codes, as well as details on their performance, is
provided. We then discuss the domain aspect-ratio, boundary conditions and
initial conditions, and describe the validation process of the numerical results.
In the last section, we present a complete list of the explored simulation cases.

3.1. Direct numerical simulations

The set of equations of motion, in dimensionless form, to be solved numerically
are

∂uuu

∂t
+ (uuu · ∇∇∇)uuu+

1

RoC

ẑzz × uuu = −∇∇∇p+

√
Pr

Ra
∇2uuu+ Tẑzz, (3.1)

∂T

∂t
+ (uuu · ∇∇∇)T =

1√
RaPr

∇2T, (3.2)

∇∇∇ · uuu = 0. (3.3)

where the parametersRa,Pr andRoC are given by Eqs. (2.15), (2.16) and (2.18),
respectively. The direct numerical simulations (DNSs) are performed using
three codes, all of them based on the principal setup of the Verzicco code [125,
126], well-known in the convection community. Two of them solve Eqs. (3.1)
to (3.3) in a Cartesian domain with periodic lateral boundaries. This setup is
relevant to natural settings where the horizontal dimensions are much larger
than the vertical. The last code simulates the flow confined in a cylinder. This
geometry is widely used in laboratory experiments of rotating Rayleigh–Bénard
convection.
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The difference between the two Cartesian codes lies in their approach to
resolve the temperature field: one of them resolves both velocity and tempera-
ture on a single grid, whereas the other resolves velocity on a coarse grid and
temperature on a finer grid. This distinction is closely related to the diffusive
properties of the fluid, parametrised by the Prandtl number. More specifically,
Eqs. (2.50) and (2.51) provide the smallest active length scales for velocity and
temperature fluctuations, i.e. the Kolmogorov length scale ηK and the Batch-
elor length scale ηB, respectively. Equation (2.51) reveals that ηK < ηB for
fluids with low Prandtl number Pr < 1, whereas ηB is smaller for high Pr > 1.
In other words, fluids with relatively lower momentum diffusion (i.e. ν < κ)
exhibit smaller flow features, whilst relatively larger momentum diffusion in-
stead leads to smaller temperature features. The latter property is exploited by
the multiple-grid code mentioned above, which uses a fine grid to resolve the
smaller temperature features, and a coarser grid to resolve the velocity field
(i.e. all three velocity components). In conclusion, we use the single-grid code
to simulate low-Pr fluid flows, and the multiple-grid code for cases at high Pr;
both of them, again, for a Cartesian geometry with periodic lateral boundaries.

3.2. DNS codes

Single-grid Cartesian code

For cases at low Prandtl number (Pr < 1), we use a version of the original
Verzicco cylinder convection code [125, 127] adapted to a Cartesian domain.
Most of the numerical approaches remain the same. Equations (3.1) to (3.3)
are discretised by second-order finite-differences on a staggered grid. For the
time advancement of the discretized system, the time-step size is computed
dynamically by maintaining the stability limit CFL <

√
3, required by the

third-order Runge–Kutta scheme. The non-linear terms are treated explicitly
in time, and the viscous/diffusive terms implicitly. The Poisson equation for
pressure is solved with a 2D Fast Fourier Transform in the periodic directions
and a direct tridiagonal solver in the vertical direction.

Multiple-grid Cartesian code

For simulation cases at high Prandtl number (Pr ≥ 1), we use the same
code described before with an extension, the multiple-grid strategy detailed
in Ref. [126]. The numerical scheme stays the same, but now the temperature
field is evaluated on a grid with high spatial resolution, whilst the velocity
field is resolved on a coarser grid. In this way, the unnecessary computational
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overhead produced by integrating both fields on a single grid tailored to the
most demanding variable is avoided. In particular, the multiple-grid Cartesian
code allows to refine the grid for temperature in the x-, y- and z-direction
independently, through the refinement factors mx, my and mz. In this research
we consider Cartesian domains with lateral sides of equal length, thus my = mx.
The refinement factors for temperature, relative to the grid for velocity, can then
be selected based on the reference value provided by the ratio ηK/ηB = Pr1/2

(see Eq. (2.51)) and making sure to allocate an appropriate number of grid
points within the thermal boundary layers (discussed in detail in Section 3.5).
A multiple resolution strategy is also used in the time integration in order to
maintain the stability of the temperature field on the finer grid. The optimal
refinement factor for time coincides with max(mx,my,mz). The multiple-grid
method becomes more advantageous as the thermal diffusivity κ decreases with
respect to the kinematic viscosity ν, therefore it is particularly well suited for
high-Pr fluid flows (see Eq. (2.16)).

Cylinder code

The cylinder code is an updated version of the original Verzicco code [125] with
extensions for better parallel performance. The finite-difference discretisation
of the governing equations is done in cylindrical coordinates as further detailed
in [125,127]. This numerical setup is aimed to replicate the conditions of the
laboratory experiment TROCONVEX [76,128]. The comparison of simulation
results with those from the experimental setup are presented in Chapter 7.

3.3. Performance

The simulations are performed on the Dutch national supercomputer: Cartesius,
which consists of 47,776 Intel R© Xeon R© CPU cores (processor frequency of 2.4-
2.6 GHz) [129]. To determine the optimum number of CPU cores to use per
run, we evaluate the real-time performance (iterations per minute) and CPU-
time performance (iterations per CPU-hour) of the codes as a function of
the number of cores. The results of this performance assessment are shown
in Fig. 3.1. We use 384 cores (or 16 so-called thin nodes) on Cartesius for
simulations using the single-grid Cartesian code, 192 cores (or 6 so-called fat
nodes) for cases using the multiple-grid Cartesian code, and 192 cores (or 8
thin nodes) for cases using the cylinder code. It can be observed in Fig. 3.1
that these numbers of CPU cores provide an appropriate trade-off between
real-time and CPU-time performance. For reference, the example case shown
in Fig. 3.1(a), which, recall, is carried out at low Pr (specifically at Pr = 0.1),
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Figure 3.1.: Real-time performance (iterations per minute) and CPU-time performance
(iterations per CPU-hour) of the numerical codes as a function of the numbers of CPU cores.
The tests are carried out using (a) the single-grid Cartesian code with 640× 640× 1280 grid
points, (b) the multiple-grid Cartesian code with 384× 384× 768 grid points for velocity and
refinement factor of 2 (i.e. 768× 768× 1536 points) for temperature (refinement factor for
time is also 2), and (c) the cylinder code with 769× 351× 1025 grid points in the azimuthal,
radial and vertical direction.

requires about 430,000 CPU-hours to simulate the flow over 500 convective
time units (approximately 600,000 iterations). This is about 1.5 months on
384 CPU cores. This low-Pr case is amongst the ones with lowest resolution
(see Table 3.1 at the end of the chapter for a complete list of the simulation cases
at Pr = 0.1). In general, the computational resources for one of our simulation
cases ranges between 150,000 and 650,000 CPU-hours to be completed.

3.4. Numerical setup, transient state and statistical
equilibrium

For all simulations the domain aspect ratio Γ = W/H is selected to permit a
sufficiently large sampling of convective structures, whose characteristic length
scale `c is given by Eq. (2.21). This procedure ensures the convergence of
spatially averaged statistics. At low Pr, we use domains of size 10`c × 10`c × 1
(normalised by the domain height H). As discussed in Sections 3.1 and 3.2,
the multiple-grid strategy allows to simulate high-Pr fluid flows much more
efficiently compared to the single-grid Cartesian code. This facilitates the
exploration of wider domains of size 20`c × 20`c × 1 at high Pr. Equivalent
low-Pr simulations using the single-grid code would demand four times more
computational resources than in their current setup. For instance, the case in
Fig. 3.1(a) would require a minimum of 1.7 million CPU-hours to be completed
instead of 430,000 (i.e. a minimum of 6 months instead of 1.5 months on 384
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cores). Whilst such expensive lasting runs are certainly possible, we divert
our limited computational resources (∼ 8 million CPU-hours per year) to
the exploration of a wider range of parameter values. Finally, in a cylindrical
geometry, Γ = D/H, whereD is the diameter of the cylinder. The simulations in
this geometry are aimed to replicate the operating conditions of the laboratory
experiment TROCONVEX in our group, for which Γ = 0.2. We thus use this
aspect ratio instead of Γ = 20`c = 0.224 (at Ek = 10−7).

At the top and bottom walls of both Cartesian and cylindrical domains, we
consider the following impenetrable, no-slip boundary conditions:

uuu = 000 at z = 0, 1. (3.4)

Nonetheless, for comparison, we do simulate some selected Cartesian cases with
stress-free boundary conditions

∂u

∂z
=
∂v

∂z
= 0 and w = 0 at z = 0, 1. (3.5)

On the other hand, for all cases (no-slip and stress-free), we consider the
constant-temperature boundary conditions

T = 1 at z = 0 and T = 0 at z = 1. (3.6)

For simulations in a cylinder, the sidewalls are also no-slip, and adiabatic:

∂T

∂r
= 0 at the sidewalls, (3.7)

where r represents the radial coordinate in the cylinder.

The simulations are started either from the fluid at rest (and a linearly
unstable temperature profile perturbed by small-amplitude random noise) or
from an already developed turbulent flow from a previous simulation. In either
case, the flow exhibits an initial transient state, albeit shorter when the latter
approach is used, allowing savings in computation time. Figure 3.2 shows an
example where the fluid is started at rest. Figure 3.2(a) plots the root-mean-
square (RMS) of all three velocity components as a function of time, where, for
instance, uRMS =

√
〈u2〉V with 〈·〉V denoting volume averaging; a similar pro-

cedure yields vRMS and wRMS. Figure 3.2(b) shows the convective heat transfer
measured through five different methods (discussed in Section 3.5 in detail)
also as a function of time. From the initial stagnant state, the system takes a
few time units before convection starts. Once the flow is established, a large
overshoot peak is observed. In the following time units, the system describes a

25



Chapter 3. Numerical methods

period of adjustment where the distinct measurements start to converge, statis-
tically, towards a common value. Notice that the time advancement is carried
out with respect to the convective time unit τff = H/Uff. As the system evolves
in time, the velocity fluctuations and heat transport converge to a statistical
equilibrium state, at approximately 100 convective time units in Figs. 3.2(a)
and 3.2(b). From this point on, the time averaging of several physically relevant
quantities starts. The flow is simulated for long enough to ensure statistical
converge of these quantities. It is observed (in the literature and in our re-
search) that relevant statistical quantities (such as mean, variance, skewness
and kurtosis of several physical quantities) converge over simulation times of
the order of 102 convective time units. The quality of the convergence of the
heat transport measurements, for example, is discussed in the next section.

Figure 3.2.: (a) Root-mean-square of all velocity components and (b) heat transport mea-
surements through five different methods (discussed in Section 3.5) as a function of time. The
initial transient behaviour displayed by the time series converges to a statistically stationary
state after approximately 100 convective time units. The data is shown for a case at Pr = 0.1,
Ra = 1010 and RoC = 0.253, nonetheless similar curves are observed for the rest of the
simulation cases.

3.5. Validation

The Cartesian codes described above in Section 3.2 consider a grid with uniform
horizontal spacing and non-uniform vertical distribution. In this way, a larger
density of grid points can be attained near the walls in order to resolve the
thin boundary layers. We verify, a posteriori, that a minimum of 11 grid points
is allocated within the thinner (Ekman or thermal) boundary layer, which is
enough to appropriately resolve it.

To validate the bulk resolution, we compare the grid spacing with the Kol-
mogorov and Batchelor length scales, ηK and ηB. The range of scales that need
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to be accurately represented is dictated by the physics. In turbulent flows, it
is well-known that reliable statistics are achieved for resolutions of the order
of ηK , as they accurately capture most of the energy dissipation [130, 131].
We estimate height-dependent values of ηK and ηB by computing the time-
and plane-average of the energy dissipation rate εu (given by Eq. (2.48)) and
employing Eqs. (2.50) and (2.51), respectively. We find that for low-Pr runs
the bulk resolution is ∆zu/ηK < 3 and ∆zθ/ηB < 1, where ∆zu and ∆zθ are
the vertical grid spacing for the velocity and temperature field, respectively.
For simulations at high Pr, we find ∆zu/ηK < 3 and ∆zθ/ηB < 3.7. For all
cases the horizontal grid spacing is smaller than the vertical one.

In the cylinder code the points are evenly spaced along the azimuthal di-
rection. In the radial and axial directions the grids become finer near the
sidewalls, more so in the axial direction given that the Ekman boundary layers
forming near bottom and top plates are significantly thinner than the sidewall
boundary layer. We find that there are 15 grid points within the Ekman layers.
For the bulk resolution we find that ∆zu/ηK < 3.5 and ∆zθ/ηB < 4. We see
that the largest grid-point separation never exceeds four times the local ηB, as
deemed adequate in [127], but for the largest-Ra simulation where the maximal
grid-point separation always remains below five times the local ηB.

The time-step size for the time integration is also subject to physical con-
straints. It can be shown that at RoC < 1 (and at any Pr), the shortest time
scale is the rotational time scale τΩ = 1/(2Ω). We must therefore ensure that
τΩ = RoCτff is resolved. We do so by setting the maximum time-step size to be
smaller than RoC. For runs where RoC > 1, the smallest time scale is τff, which
is immediately resolved as this is the time unit over which the time integration
of the governing equations is carried out.

To further confirm the adequacy of the grid, we compute the time-averaged
convective heat transfer Nu in five different ways:

• Two of the them at the walls: as the plane-averaged wall-normal temper-
ature gradient at the bottom and at the top wall, given by Eq. (2.24).

• As the volume-averaged convective flux, as in Eq. (2.25).

• And the last two from the dissipation rates of kinetic energy, as in
Eq. (2.52), and of thermal variance, as in Eq. (2.53) [123].

These estimates are susceptible to insufficient resolution. Specifically, the Nus-
selt numbers calculated near the walls are susceptible to under-resolution of
the boundary layers, whereas Nu computed using velocity and temperature
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gradients (as in the last two methods) are greatly affected by inadequate res-
olution of the velocity and temperature field, respectively. For most of our
cases (about two-thirds of them) the maximum difference between a given Nu
and the mean of all Nu’s converges to better than 2% (see, e.g., Fig. 3.3), the
others converge to better than 5%. The relatively larger discrepancy is caused
by slow convergence of the heat transfer measurements. Two causes for this
are identified. First, for near-onset cases the flow is quasi steady, and thus its
time evolution is rather slow. Specifically, the Nusselt number measurements
converge for simulation times of the order of 103 convective time units, instead
of 102 as seen for the turbulent case in Fig. 3.3. Second, for turbulent flows
the increased temporal- and spatial-resolution requirements lead to very de-
manding computations. The statistical equilibrium state of these cases is then
simulated for about 100 convective times units, which requires about 600,000
CPU-hours. We refer the reader to the discussion presented in Section 3.3.

Finally, our results in cylindrical domains are moreover validated by the
excellent agreement with the experimental measurements. We present these
results in Chapter 7.

Figure 3.3.: Cumulative moving average of the various Nusselt numbers in Fig. 3.2(b). The
averaging is done in the statistically stationary state, i.e. for times larger than 100 convective
time units. The horizontal dashed lines serve as a reference of ±2% of the average of all
Nusselt numbers.

28



3.6. Summary of simulation cases

3.6. Summary of simulation cases

Our RRBC survey spans over a wide range of parameter values that jointly
resolve over three decades of supercriticality Ra/Rac. This allows us to identify
distinct flow states: from quasi-steady cellular convection to more turbulent
states. Specifically, we identify rotating convection regimes displaying cells (C),
convective Taylor columns (T), plumes (P), large-scale vortices (LSVs) and
rotation-affected (RA) convection. These flow structures will be described in
more detail in Chapter 5. A complete list of the cases investigated can be found
in Table 3.1 for simulations in a horizontally periodic layer, and in Table 3.2
for cases confined in a cylinder. The tables also list the domain aspect ratio,
numerical resolution and flow type.
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Pr Ek Ra RoC Ra/Rac Γ Nx Nz mx mz Flow

0.1 2.00× 10−7 1.00× 1010 0.063 14.48 0.302 1024 1408 - - LSV

0.1 2.24× 10−7 1.00× 1010 0.071 16.84 0.314 1024 1408 - - LSV

0.1 2.50× 10−7 1.00× 1010 0.079 19.50 0.326 768 1280 - - LSV
∗

0.1 3.00× 10−7 1.00× 1010 0.095 24.87 0.346 768 1280 - - LSV

0.1 4.00× 10−7 1.00× 1010 0.126 36.49 0.381 640 1280 - - LSV

0.1 8.00× 10−7 1.00× 1010 0.253 91.95 0.480 640 1280 - - RA

0.1 1.05× 10−6 1.00× 1010 0.332 132.14 0.526 768 1280 - - RA

0.1 2.80× 10−6 1.00× 1010 0.885 488.65 0.729 1088 1280 - - RA

0.1 6.00× 10−6 1.00× 1010 1.897 1349.95 0.940 1408 1280 - - RA

5.5 3.00× 10−7 5.50× 109 0.009 1.27 0.323 256 640 2 1 C

5.5 3.00× 10−7 8.00× 1010 0.011 1.85 0.323 256 640 2 1 C

5.5 3.00× 10−7 1.00× 1010 0.013 2.31 0.323 384 640 2 1 T

5.5 3.00× 10−7 1.50× 1010 0.016 3.46 0.323 384 640 2 1 T

5.5 3.00× 10−7 2.00× 1010 0.018 4.62 0.323 384 640 2 1 T

5.2 1.00× 10−7 1.40× 1011 0.016 7.47 0.224 384 640 2 2 P
∗

5.2 1.00× 10−7 2.10× 1011 0.020 11.20 0.224 384 640 2 2 P

5.2 1.00× 10−7 3.20× 1011 0.025 17.07 0.224 512 640 2 2 P
∗

5.2 1.00× 10−7 6.00× 1011 0.034 32.01 0.224 512 640 2 2 P
†

5.2 1.00× 10−7 9.50× 1011 0.043 50.68 0.224 640 896 2 2 LSV

5.2 1.00× 10−7 1.50× 1012 0.054 80.03 0.224 768 1024 2 2 LSV

100 3.00× 10−7 1.30× 1011 0.011 30.01 0.323 384 512 3 3 P

100 3.00× 10−7 2.10× 1011 0.014 48.48 0.323 384 512 3 3 P

100 3.00× 10−7 3.40× 1011 0.017 78.49 0.323 512 512 3 3 P

100 3.00× 10−7 6.00× 1011 0.023 138.50 0.323 512 768 3 3 P

100 3.00× 10−7 9.50× 1011 0.029 219.30 0.323 512 768 3 3 P

100 3.00× 10−7 1.50× 1012 0.037 346.26 0.323 512 768 3 3 P

100 3.00× 10−7 2.50× 1012 0.047 577.10 0.323 384 768 4 4 P
∗

Also independently simulated with stress-free boundaries.
†
Even though there is evidence of upscale energy transfer, no LSVs develop.

Table 3.1.: Parameters for the simulations: Prandtl number Pr, Ekman number Ek, Rayleigh
number Ra, convective Rossby number RoC and supercriticality Ra/Rac. The slight difference
in Pr between the Pr ≈ 5 simulation series is for comparison with (ongoing) experiments in
our group [76,128]. Also included, the domain aspect-ratio Γ, number of grid points Nx, Ny =
Nx and Nz used to resolve the velocity field, and refinement factors mx, my = mx and mz

used for temperature. For instance, at Pr = 100, Ek = 3×10−7 and Ra = 2.5×1012, a coarse
grid with 384×384×768 points resolves velocity, whereas a finer grid with 1536×1536×3072 is
used for temperature. The last column indicates the flow morphology in each case: convective
cells (C), convective Taylor columns (T), plumes (P), large-scale vortices (LSVs) or rotation-
affected convection (RA). All cases are simulated with no-slip top/bottom boundaries. Some
cases, denoted with the superscript “∗”, are also independently simulated with stress-free
boundaries.
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Pr Ek Ra RoC Ra/Rac Γ Nθ ×Nr ×Nz
5.2 1.00× 10−7 5.00× 1010 0.010 2.67 0.200 769× 351× 1025

5.2 1.00× 10−7 7.00× 1010 0.012 3.73 0.200 769× 351× 1025

5.2 1.00× 10−7 1.40× 1011 0.016 7.47 0.200 769× 351× 1025

5.2 1.00× 10−7 3.20× 1011 0.025 17.07 0.200 769× 351× 1025

5.2 1.00× 10−7 4.30× 1011 0.029 22.94 0.200 769× 351× 1025

Table 3.2.: Parameters for simulations in cylindrical domains: Pr, Ek, Ra,RoC, Ra/Rac and
Γ are as in Table 3.1. The last column displays the number of grid points Nθ, Nr and Nz in
the azimuthal, radial and vertical direction, respectively.
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Chapter 4

Force balances

In this chapter we investigate the interplay between the governing forces of
RRBC as a function of the supercriticality Ra/Rac of the flow. We analyse
the force balance, and changes therein between flow regimes, in the bulk and
near the no-slip walls. We find that geostrophy is indeed the primary force
balance in the so-called geostrophic regime, but that this rotational constraint
is lost at larger values of Ra/Rac. As a result, the flow displays a transition
to a rotation-affected state of convection. Near the no-slip walls, the flow is
also found to be dominated by geostrophy in the geostrophic regime. Although,
remarkably, inertia becomes increasingly more important near the boundaries
compared to the bulk.

4.1. Introduction

In Chapter 1 (also in Tables 3.1 and 3.2) we anticipated the observation of
several different flow states for the explored parameter values. In general, the
parameter space can be divided into three main regimes: “rotation-dominated”,
“rotation-affected” and “non-rotating” regime. As their names suggest, the
partition is based on the importance of rotational forces in the flow dynamics.
In particular, in the rotation-dominated regime, Coriolis forces exert a dominant
role on the flow, that is primarily balanced by pressure-gradient forces. As
a result, the flow is prominently geostrophic [33, 41, 51, 132]. This regime,
which is therefore also known as the “geostrophic” regime, can be moreover
subdivided into several other regimes. They display cells, convective Taylor
columns, plumes and geostrophic turbulence (where large-scale vortices may
develop). In Fig. 4.1 we present visualisations of the temperature fluctuations in
these regimes (from Ref. [45]). The cellular regime (in Fig. 4.1(a)) is typically
found in the range 1 . Ra/Rac . 2 and consists of quasi-steady cells
with horizontal size `c given by Eq. (2.21) [81]. Convective Taylor columns
(Fig. 4.1(b)) manifest at larger values ofRa/Rac, and consist of vortical columns
surrounded by “shields” of opposite vertical vorticity and opposite temperature
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Figure 4.1.: Temperature fluctuations in direct numerical simulations at Ek = 10−7 with
no-slip boundary conditions. (a) Cells at Ra/Rac ≈ 1.1 and Pr = 1, (b) convective Taylor
columns at Ra/Rac ≈ 2.9 and Pr = 7, (c) plumes at Ra/Rac ≈ 8 and Pr = 7, (d) geostrophic
turbulence at Ra/Rac ≈ 10.3 and Pr = 1. The domains are stretched horizontally by a factor
of 4.5 for better visibility. Source: [45].

(stronger near the walls) [33, 40, 41,63, 72, 77,88–91]. With increasing Ra/Rac,
the shields are weaker and the vortical columns interact with each other. As
a consequence, their vertical coherence is affected, leading to the development
of plumes (Fig. 4.1(c)) [33, 41, 72, 88]. In the geostrophic turbulence regime
(Fig. 4.1(d)), the flow becomes turbulent, albeit it does remain rotationally
constrained. The combination leads to a quasi-two-dimensional dynamics that
enables the transfer of kinetic energy from small to large spatial scales. This
upscale energy transfer can lead to the development of large-scale vortices
(LSVs) in the flow [33,41,44–46,50,58,92]. We will discuss several aspects of
this phenomenon in Chapter 6.

To identify flow regimes in our simulation cases we consider the force bal-
ance of the flow (to be discussed in Section 4.3) and its statistical properties
(addressed in Chapter 5). In our set of simulations at Pr ≈ 5, we also observe
the regimes of cells, convective Taylor columns, plumes and large-scale vortices.
We present visualisations of the temperature fluctuations in these regimes in
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Figs. 4.2(a) to 4.2(d), respectively. The large-scale vortices in Fig. 4.2(d) are
better visualised in terms of the horizontal kinetic energy of the flow, as we
show in Fig. 6.3(c). All of our simulation cases at Pr = 100 lie within the
plumes regime; we show two example cases in Figs. 4.2(e) and 4.2(f). For the
exploration of highly supercritical regimes we make use of a lower Prandtl num-
ber, Pr = 0.1. The reason is that sufficiently small values of Pr (i.e. smaller
than 0.68, see Eq. (2.20)) act to decrease the critical Rayleigh number for onset
of convection Rac. Thus, for a given value of Ra and Ek, low-Pr fluid flows
can achieve a larger degree of supercriticality than those at high Pr. In other
words, inertial effects are amplified in low-Pr fluids [41,74]. At Pr = 0.1 we also
observe large-scale vortices and, at larger Ra/Rac, we identify rotation-affected
convection; see Figs. 4.2(g) and 4.2(h), respectively. Just like at Pr ≈ 5, LSVs
are more clearly visualised in terms of the horizontal kinetic energy of the flow;
we show this in Fig. 6.3(a). In the rotation-affected regime, rotation no longer
exerts a dominant role, and thus convection becomes more three-dimensional.
In the particular case displayed in Fig. 4.2(h), the large parcel of hot fluid (red
patch at the top) and large parcel of cold fluid (blue patch) resemble a large
overturning cell similar to that observed in non-rotating convection. However,
the magnitude of the Coriolis force is still appreciable as we shall discuss in
Section 4.3. Finally, in order to discuss the observed flow regimes with increas-
ing supercriticality, we present our results starting from simulations at Pr ≈ 5
and 100, and then at Pr = 0.1.

Numerous investigations on the interplay amongst the forces governing
RRBC are primarily focussed on the determination of the relevant forces in
geophysical and astrophysical settings. These studies aim to determine the
dominant force balance of the large-scale flows in order to estimate the charac-
teristic flow velocity and length scale of convection [42,133–139]. However, the
role of subdominant forces has not been addressed extensively. In particular,
a complete view of the interplay between all forces is required to effectively
characterise the flow and the transitions between regimes. In this chapter, we
focus on fully understanding the force balance, from the leading contributors
to the subdominant forces. Previous efforts have been made in this direction
in the field of rotating magneto-convection [140–145]. Self-sustained convective
dynamos in planetary systems operate in a rotationally constrained regime.
There, a balance is thought to hold between the Coriolis, pressure-gradient,
buoyancy and Lorentz forces, also known as magneto-Archimedean-Coriolis
(MAC) balance. Hence, many studies seek to determine the specific parameter
values and length scales at which the contribution of viscous and inertial forces
becomes negligible, and therefore a MAC balance is possible. In our simulations
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4.2. Magnitudes of the governing forces

of non-magnetic, rotating convection in a horizontal plane fluid layer, we access
both low-supercriticality flow regimes, where viscous effects are expected to
be significant, and highly-supercritical regimes, where we foresee an increased
importance of inertial forces. Similar low- and high-supercriticality RRBC
flows have been studied by means of asymptotically reduced equations [33, 41,
51, 59], valid at Ek,Ro → 0. In these studies the geostrophic regime (where
cells, columns, plumes and large-scale vortices manifest) is charted. Here, we
assess the force balance of the full Navier–Stokes equations in the geostrophic
regime, but also at larger Ra/Rac beyond this regime. A particular aspect
of the asymptotic studies is the intrinsic consideration of stress-free top and
bottom boundaries. Here, we consider the case of no-slip walls. This type of
boundary condition is specially relevant to realistic settings such as laboratory
experiments and large-scale flows in nature. Yet we do consider some stress-free
cases for comparison (simulation cases denoted with the superscript “∗” in
Table 3.1).

This chapter is structured as follows. In Section 4.2 we briefly introduce the
equations used to calculate the magnitude of the governing forces. In Section 4.3
we discuss the estimated values of the forces at mid-height plotted as a function
of the supercriticality Ra/Rac. Moreover, we identify the characteristic force
balance of the distinct flow regimes. In Section 4.4 we investigate the interplay
amongst the forces close to the walls, where the no-slip boundary condition is
imposed. Finally, in Section 4.5 we present our conclusions.

4.2. Magnitudes of the governing forces

We begin our analysis by explicitly calculating the various forces governing
rotating convection. From Eq. (3.1), in dimensionless form, the inertial, Coriolis,
pressure-gradient, viscous, and buoyancy forces are

FFF I = (uuu · ∇∇∇)uuu, (4.1)

FFFC =
1

RoC

ẑzz × uuu, (4.2)

FFFP =∇∇∇p, (4.3)

FFF V =

√
Pr

Ra
∇2uuu, (4.4)

FFFB = Tẑzz, (4.5)

respectively. Thus, the geostrophic balance RoC
−1ẑzz × uuu = −∇∇∇p, discussed in

Section 2.6, can be written as FFFC = −FFFP . Concretely, we compare the plane-
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averaged root-mean-square (RMS) value of these forces. That is, for a given
force FFF (xxx) with x-, y- and z-components Fx(xxx), Fy(xxx) and Fz(xxx), the RMS
value is here defined as

F (z) =

√〈
(Fx − 〈Fx〉)2 + (Fy − 〈Fy〉)2 + (Fz − 〈Fz〉)2

〉
, (4.6)

where 〈·〉 denotes averaging along the horizontal directions and, therefore, F is
a function of the vertical coordinate z only. In practice, the force components
are calculated at each grid position on a horizontal cross-section. For that, we
consider one single-time volume snapshot well within the statistically stationary
state; for other snapshots within this state the results agree within 5% in
average. The underlying consideration behind the plane-averaging process
is that the flow is statistically homogeneous in the horizontal directions. In
other words, it is assumed that the average flow dynamics does not depend
on the horizontal coordinate. This is a valid assumption in our horizontally
periodic domains. Hence, we are able to evaluate the spatial dependence of
the force balance solely in terms of the vertical coordinate. Note that we use
the deviations from the mean force components, e.g. Fx − 〈Fx〉, in order to
disregard the underlying mean vertical profiles of pressure and temperature
(〈p〉 (z) and 〈T 〉 (z); e.g., see Fig. 5.1(a)).

4.3. Force balance in the bulk

In Figs. 4.3(a), 4.3(c) and 4.3(e) we plot the magnitudes of the governing forces
as a function of Ra/Rac. The plots correspond to our results from simulations
at Prandtl numbers Pr ≈ 5, 100 and 0.1, respectively. The forces are calcu-
lated at half the domain height; we find that these results are representative
of the bulk dynamics. Figure 4.3(a) shows the forces at Pr ≈ 5, where we
observe cells (C), convective Taylor columns (T), plumes (P) and large-scale
vortices (LSVs). The figure shows that in these regimes not only the Coriolis
and pressure-gradient forces are larger than the other forces in the flow, but
they also are in close balance with each other. Thus, the flows are indeed
in geostrophic balance at leading order. This is also observed for plumes at
Pr = 100, in Fig. 4.3(c), and LSVs at Pr = 0.1, in Fig. 4.3(e). The simulation
cases with stress-free boundary conditions at Pr ≈ 5 and 0.1 are also directed
by the geostrophic balance, as seen in Figs. 4.3(a) and 4.3(e), respectively.
The presence of a leading-order geostrophy balance in rotationally constrained
convection is exploited in quasi-geostrophic models [8, 33,41,92,113,146–153]
to simplify the governing equations in the limit of rapid rotation. To further
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Figure 4.3.: Force balance (left column) and local Rossby number Ro` (right column), both
at mid-height, as a function of supercriticality Ra/Rac for simulations at (a,b) Pr ≈ 5, (c,d)
100 and (e,f) 0.1. Filled and open symbols correspond to simulations with no-slip and stress-
free boundary conditions, respectively. Vertical dotted lines denote our estimated transition
between cells (C) and convective Taylor columns (T). Vertical dash-dotted and dashed lines
are the predicted transitions between convective Taylor columns (T) and plumes (P) in
Ref. [71] and [132], respectively. Vertical solid lines are our estimated transitions between
plumes and large-scale vortices (LSVs; at Pr ≈ 5), and between LSVs and rotation-affected
(RA) convection (at Pr = 0.1). Horizontal dashed lines indicate Ro` = 1, the red dotted line
is the predicted scaling in Ref. [42], and the blue dotted line is the least-squares fit of cases
with plumes at Pr ≈ 5.
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illustrate the dominant role of rotation, we directly compute the Rossby number
as the ratio of inertial to Coriolis forces Ro = FI/FC as a function of Ra/Rac.
Notice that this Rossby number is different from the convective Rossby number
RoC in Eq. (3.1). Because FI and FC represent local estimates of the inertial
and Coriolis forces, we henceforth refer to Ro as the local Rossby number Ro`.
Figure 4.3(b) shows that Ro` < 1 for all cases in the geostrophic regime (i.e.
cellular, columnar, plumes and LSVs regimes), which is a clear sign of rotational
constraint. Figures 4.3(d) and 4.3(f) reveal the same for plumes at Pr = 100
and LSVs at Pr = 0.1, respectively. Nevertheless, in Fig. 4.3(f) for Pr = 0.1
cases, we see that Ro` becomes larger than 1 for values of supercriticality larger
than 60. This is due to the decrease in strength of the Coriolis force and the
increase in inertial force at Ra/Rac > 60, as evidenced in Fig. 4.3(e). This
indicates that the flow transitions to a state where rotation affects the flow,
but no longer dominates it. In this so-called regime of rotation-affected (RA)
convection, geostrophy does not constitute the primary force balance in the
flow. Instead, pressure-gradient and inertial forces are dominant. The green
symbols in Fig. 4.3(e) represent the quantity |FC + FP |, which is only com-
parable to FP in this regime because FC is much smaller; we shall discuss
this quantity below. In Fig. 4.3(b), the local Rossby number Ro` for cells and
columns is fitted by the predicted scaling Ra2 for rotationally constrained
convection in Ref. [42] with a root-mean-square error of 3.7%. This scaling is
suggested for RaEk3/2 < 10, or Ra/Rac . 14 at Ek = 3 × 10−7, as in our
simulations (see Table 3.1). Moreover, the predicted scaling is for a flow in
visco-Archimedean-Coriolis (VAC) balance, i.e. the triple balance between vis-
cous, buoyancy and rotational forces. Below we confirm that these regimes do
exhibit this force balance, and show that it is subdominant in our simulations
(see, e.g., Table 4.1). Also in Fig. 4.3(b), a least-squares fit of the Ro` values
for plumes at Pr ≈ 5 yields a scaling (Ra/Rac)

0.8. This scaling fits the Ro`
data of plumes at Pr = 100, too, with an RMS error of about 10%.

Whilst the force balances for cells, columns, plumes and LSVs are led by Cori-
olis and pressure-gradient forces, Figs. 4.3(a), 4.3(c) and 4.3(e) reveal that other
forces (buoyancy, viscous and inertial) also participate in the force balance. The
deviations from geostrophic balance, denoted by the difference between Coriolis
and pressure-gradient forces |FC + FP |, are caused by the presence of these
forces. This indicates that these geostrophic flows are actually ageostrophic
at higher order. Namely, a relaxation of the Taylor–Proudman constraint (see
Eq. (2.30) in Section 2.6) is permitted at higher order. Figure 4.3(a) shows
that for cells and columns, at Ra/Rac < 6, |FC + FP | mostly originates from
buoyancy with some contribution of the viscous force, whereas the inertial
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force remains relatively small. The absence of inertial forces, and thus the
presence of a VAC balance in rotationally constrained convection is leveraged
in single-mode theories in Refs. [89, 154] to provide an analytical model for
the convective Taylor columns. Nonetheless, inertia does increase rapidly with
Ra/Rac. In fact, at Ra/Rac & 6, inertia becomes part of the subdominant force
balance. The participation of inertial forces in this subdominant balance affects
the vertical coherence of the flow, which results in its transition from vertically
aligned columns to plumes with weaker vertical coherence. For the Pr = 100
cases shown in Fig. 4.3(c), the magnitude of the inertial force is smaller due the
larger kinematic viscosity of the fluid (relative to its thermal diffusivity). How-
ever, inertia becomes increasingly important with Ra/Rac, leading to plumes
with an ever greater degree of vertical incoherence, as displayed in Figs. 4.2(e)
and 4.2(f). In the LSV regime at Pr ≈ 5 and Ra/Rac & 37, inertia becomes
larger than |FC + FP |, although it does remain smaller than FC and FP . This
is also observed at Pr = 0.1, see Fig. 4.3(e). Whilst inertial forces are the main
source of ageostrophy for plumes and LSVs, buoyancy also participates in the
force balance. This is more clearly evidenced in Fig. 4.4, where the force balance
of cases at Pr ≈ 5 is decomposed into its horizontal and vertical component
(similar results are obtained at Pr = 0.1 and 100; combination of the horizontal
and vertical components according to Eq. (4.6) results in the full force balance
displayed in Fig. 4.3(a)). In Fig. 4.4(a), as expected, the geostrophic balance
in all cases is seen to dominate the horizontal force balance, whereas the role
of inertia as the primary cause of ageostrophy in the plumes and LSV regimes
is also observed. On the other hand, Fig. 4.4(b) reveals that for all cases there
is an approximate balance between the buoyancy force and vertical pressure-
gradient force. The presence of this so-called hydrostatic balance highlights the
importance of buoyancy. It is therefore reasonable to assume that the dynamics
of plumes and LSVs results from the balance between the Coriolis, inertial
and buoyancy forces, also known as Coriolis-Inertia-Archimedean (CIA) bal-
ance, with some contribution of the viscous force in the plumes regime. These
observations are consistent with results from asymptotic simulations [41]. In
Fig. 4.3(e), we see that at Ra/Rac & 60 the inertial force becomes part of the
dominant force balance, and the flow transitions to the rotation-affected regime.
Finally, from Figs. 4.3(a) and 4.3(b), we can estimate an upper limit for the
LSV regime or, equivalently, the transition to RA convection, as the Ra/Rac
value at which the inertial force becomes part of the dominant force balance
or, similarly, the value at which Ro` becomes larger than one. We estimate
that this occurs at Ra/Rac ≈ 400. In Table 4.1 we present a summary of the
dominant and subdominant force balances in all flow states.
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Figure 4.4.: (a) Horizontal and (b) vertical force balance at mid-height as a function of the
flow supercriticality Ra/Rac, for simulations at Pr ≈ 5. Symbols and vertical lines are as in
Fig. 4.3.

To further illustrate how changes in the force balance affect the flow, we
analyse the RMS values of the horizontal velocity uRMS and vertical velocity
wRMS as a function of Ra/Rac. Here, uRMS =

√
〈u2〉+ 〈v2〉 and wRMS =

√
〈w2〉

are also computed at mid-height (〈·〉 denotes time- and plane-averaging). At
all heights, we have verified that 〈u〉 ≈ 〈v〉 ≈ 0, so that no mean horizontal
flows are established across the periodic domain and that 〈w〉 ≈ 0 owing to the
incompressibility constraint. Figure 4.5 shows that for cells and columns, at
Ra/Rac . 6, the participation of buoyancy in the subdominant force balance
yields large vertical velocity fluctuations. Conversely, the smaller contribution
of inertial forces may be associated with low variability of horizontal velocities,
which moreover can be attributed to the strong vertical alignment of the flow
structures in this regime. In the plumes regime, where inertial forces are as

Flow Dominant force balance Subdominant force balance

Cells FC = −FP Fageos = FV + FB

Columns FC = −FP Fageos = FV + FB

Plumes FC = −FP Fageos = −FI + FV + FB

LSVs FC = −FP Fageos = −FI
RA convection FI = −FP FC = FV + FB

Table 4.1.: Dominant and subdominant force balances at mid-height (z = 0.5) for each flow
regime. Here, Fageos ≡ |FC + FP | measures the ageostrophy of the flow, i.e. the deviation from
geostrophic balance caused by the presence of the remaining forces.
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4.3. Force balance in the bulk

Figure 4.5.: Root-mean-square (RMS) of horizontal and vertical velocities, uRMS and wRMS,
respectively, at mid-height z = 0.5. Filled and open symbols correspond to simulations with
no-slip and stress-free boundary conditions, respectively. Red, green and blue symbols are
results from simulations at Pr ≈ 5, 100 and 0.1, respectively. Colour-coded vertical lines and
regime labels are as in Fig. 4.3.

important as buoyancy, we see that the magnitude of horizontal velocity fluc-
tuations is comparable to that of vertical fluctuations. Throughout the LSV
regime at both Pr ≈ 5 and 0.1, where the magnitude of inertial forces is even
larger, horizontal velocity fluctuations are larger. As a consequence, the flow
becomes largely dominated by a 2D (depth-independent) barotropic mode. In
this nearly two-dimensional turbulent state, energy can be transferred from
small to large scales, leading to the formation of LSVs (see Chapter 6). Finally,
in the rotation-affected regime, seen at Pr = 0.1 and Ra/Rac & 60, uRMS shows
little variation with Ra/Rac, whereas the loss of rotational constraint (i.e. the
decreasing importance of the Coriolis force) allows for larger vertical velocity
fluctuations. In fact, their magnitude becomes as large as the horizontal fluc-
tuations. This suggests that the flow approaches a rather isotropic dynamics,
such as the one for non-rotating convection.

We have thus identified and discussed the characteristic force balance of the
observed flow regimes of RRBC. In particular, we have evaluated the RMS
value of the governing forces at mid-height, and as such representative of the
bulk. In the next section, we analyse the force balance close to the no-slip walls,
and provide a comparison with the balance in the bulk.
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4.4. Force balance near no-slip walls

In this section, we investigate the interplay between forces at a close distance
from the no-slip walls. Specifically, we analyse the force balance at a distance
δu from the bottom wall, where δu is the thickness of the kinetic boundary
layer. The discrepancy between the force balances at this height and those at a
distance δu from the top wall is better than 5%. To determine the thickness δu
of this layer, we adopt the conventional definition that uses the location of the
peak value in the vertical profile of the RMS horizontal velocity uRMS(z) (the
profiles are time- and plane-averaged; the profile of selected cases are shown
in Fig. 5.2(b)). We then employ Eq. (4.6) to determine the magnitudes of the
forces at this height. The results are shown in Figs. 4.6(a), 4.6(c) and 4.6(e)
for simulations at Pr ≈ 5, 100 and 0.1, respectively. These figures show that
also near the walls the flow is primarily geostrophic in regimes displaying cells,
columns, plumes and LSVs, whereas the rotational constraint is lost once it
transitions to the rotation-affected regime. In particular, in Fig. 4.6(f), the
transition from rotation-dominated (Ro` . 1) to rotation-affected (Ro` & 1)
convection occurs at approximately the same supercriticality as at mid-height,
i.e. Ra/Rac ≈ 60 (at Pr = 0.1; compare Figs. 4.3(f) and 4.6(f)). Therefore,
with increasing supercriticality, the flow loses rotational constraint at roughly
equal Ra/Rac at both considered heights.

Figures 4.6(a) and 4.6(c) shows that, overall, the near-wall magnitude of
the forces in the subdominant balance of cells, columns, plumes and LSVs is
considerably larger than in the bulk. For instance, |FC + FP | ∼ 10−2 in the
bulk and 10−1 near the walls (compare, e.g., the green symbols in Figs. 4.3(a)
and 4.6(a)). This indicates that the flow is more ageostrophic near the walls. In
the cellular and columnar regimes, such ageostrophy is largely caused by viscous
forces (see Fig. 4.6(a)). An analysis of the force balance per component, as the
one employed in the bulk (discussed in Section 4.3), reveals that the buoyancy
force is closely balanced by the vertical pressure-gradient force (also in the
plumes and LSV regime). Thus, cells and columns also exhibits a VAC balance
close to the walls, in fair agreement with asymptotic simulations. Nonetheless,
as in the bulk, the inertial force is seen to steeply increase with Ra/Rac, in
fact, more sharply and dominantly near the walls than in the bulk (compare
the gray stars in Figs. 4.3(a) and 4.6(a)). Consequently, FI is part of the
subdominant force balance in the columnar regime. The effects of inertia persist
in the subdominant balance of plumes and LSVs. Therefore, in these two
regimes, similar to the bulk, the near-wall flow adopts a CIA balance, with
some participation of viscous forces. Eventually, FI takes over the dominant
force balance that, along with the reduction of the Coriolis force, leads to the

44



4.4. Force balance near no-slip walls

Figure 4.6.: Force balance (left column) and local Rossby number Ro` (right column), both
at the kinetic boundary layer, as a function of Ra/Rac for simulations at (a,b) Pr ≈ 5,
(c,d) 100 and (e,f) 0.1. Filled and open symbols correspond to simulations with no-slip and
stress-free boundary conditions, respectively. Vertical and horizontal lines, as well as regime
labels, are as in Fig. 4.3.
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transition to the rotation-affected regime. A summary of the dominant and
subdominant force balances for all regimes is shown in Table 4.2.

The early influence of inertial forces near the walls can be associated with the
presence of large horizontal velocity fluctuations uRMS at the site of convergence
(divergence) of fluid due to Ekman pumping (suction); compare the red squares
in Figs. 4.5 and 4.7. That is, the vertical flux wAcross in a column/plume
of cross-sectional area Across = πR2 is fed by a boundary-layer flux uAcyl

Flow Dominant force balance Subdominant force balance

Cells FC = −FP Fageos = FV

Columns FC = −FP Fageos = −FI + FV

Plumes FC = −FP Fageos = −FI + FV

LSVs FC = −FP Fageos = −FI
RA convection FI = −FP FC = FV + FB

Table 4.2.: Dominant and subdominant force balances at the kinetic boundary layer (z = δu)
for each flow regime. As in Table 4.1, Fageos ≡ |FC + FP | measures the ageostrophy of the
flow.

Figure 4.7.: Root-mean-square (RMS) of horizontal and vertical velocities, uRMS and wRMS,
respectively, at the kinetic boundary layer z = δu. Filled and open symbols correspond to
simulations with no-slip and stress-free boundary conditions, respectively. Red, green and
blue symbols are results from simulations at Pr ≈ 5, 100 and 0.1, respectively. Colour-coded
vertical lines and regime labels are as in Fig. 4.3.
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through a cylindrical area Acyl = 2πRδu, where R is the typical radius of the
columns/plumes. Hence, the fluxes must be equal, i.e. wAcross = uAcyl, from

which we get w/u = 2δu/R. From Eqs. (2.21) and (2.41), R ≈ `c/2 ∼ Ek1/3

and δu ∼ Ek1/2. Therefore, w/u ∼ Ek1/6 � 1. Thus, based on the Ekman
boundary layer theory [116] we expect that horizontal flow (∼ uRMS) near
the wall (inside the Ekman layer) is much larger than vertical flow (∼ wRMS)
emanating from the boundary layer. This is observed in Fig. 4.7. We note that
also for stress free cases (open symbols in Fig. 4.7), uRMS is larger than wRMS. In
this case, a near-wall flux is also expected to feed the columns/plumes, though
no estimation on its scaling can be currently made due to the scarcity of stress-
free cases. Finally, the presence of inertial forces in the near-wall subdominant
force balance does not necessarily imply the loss of vertical coherence as it
does in the bulk (which causes the regime transition between columns and
plumes). Yet, at larger Ra/Rac, the loss of rotational constraint close to the
walls, which happens at roughly the same Ra/Rac as in the bulk, does suggest
a nearly complete relaxation of the Taylor–Proudman constraint. This has a
great impact on the structure of the kinetic boundary layer. We discuss this
topic in Chapter 5.

4.5. Conclusions

To summarise, we find that in rapidly rotating Rayleigh–Bénard convection the
dominant force balance is geostrophy, the balance between the Coriolis force and
the pressure-gradient force, as anticipated in previous literature [33,41,51,132].
The geostrophic regimes display cells, convective Taylor columns, plumes and
large-scale vortices. Furthermore, we find that in these regimes the flow is also
in leading geostrophic balance near the no-slip walls.

In simulations at Pr = 0.1, we find that the geostrophic balance breaks down
at large supercriticality past the geostrophic regime. This results in the flow
transition from the rotation-dominated state to rotation-affected convection.
Specifically, the transition originates from the sudden decrease of the magnitude
of the Coriolis force, along with an increment in the strength of inertial forces.
Remarkably, we find that this loss of rotational constraint occurs synchronously
(at about the same Ra/Rac) in the bulk and in the boundary-layer region.

The geostrophic flows are ageostrophic at higher order, caused by the con-
tribution of the remaining forces (inertia, viscous and buoyancy forces). For
cells and columns, ageostrophy is due to viscosity and buoyancy, thus leading
to a VAC balance. Inertia is smaller, but steeply increases with Ra/Rac. For
plumes, inertial forces enter the subdominant balance, along with viscous and
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buoyancy forces. For LSVs, inertia becomes the main source of ageostrophy.
Plumes and LSVs can be considered in CIA balance, with some participation
of viscous forces in the plumes regime. In rotation-affected convection, iner-
tial and pressure-gradient forces constitute the dominant force balance; the
subdominant balance is formed by the Coriolis, viscous and buoyancy forces.

In the bulk, the presence of inertial forces in the subdominant force balance
marks the loss of vertical coherence of the columnar structures in the flow, and
thus the commencement of the plumes regime. Near the no-slip boundaries,
inertial effects become part of the subdominant force balance at smallerRa/Rac
within the columnar regime, although, remarkably, without deteriorating their
structure. The reason is that, near the walls, this enhanced inertial force results
from the convergence (and divergence) of fluid to the site of formation of vortical
structures at the Ekman boundary layer.

In contrast with the bulk, the buoyancy force does not form part of the
subdominant balance near the walls for cells, columns and plumes. This is
despite having about the same order of magnitude (∼ 10−2) at both locations.
The reason is that viscous forces (for cells, columns and plumes) and inertial
forces (for columns and plumes) are about one order of magnitude larger close
to the boundaries, thus increasing the overall degree of ageostrophy of the flow
by one order of magnitude in this region.
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Chapter 5

Flow statistics

In this chapter, we investigate the flow and temperature structures that result
from the dynamical balances presented in Chapter 4. The resulting thermal
mixing in the fluid layer and the heat transfer are discussed in terms of the mean
temperature profile and the RMS values of temperature as well as horizontal
and vertical velocity. The near-wall profile of the RMS horizontal velocity is
used to determine the thickness δu of the kinetic boundary layer. We find
that δu ∼ Ek1/2, consistent with linear Ekman boundary layer theory, in the
geostrophic regime. Deviations from this scaling are observed in the rotation-
affected regime. There, the thermal boundary layer thickness δθ approaches
the non-rotating scaling 1/(2Nu). Finally, we find that the distribution of
temperature at the kinetic boundary layer depends on the relative thickness of
the kinetic and thermal boundary layers.

5.1. Introduction

In Chapter 4, we performed a thorough investigation on the interplay between
the governing forces of rotating Rayleigh–Bénard convection. The results were
used to characterise the observed flow regimes according to their specific force
balance. In this chapter, we investigate the flow and temperature structures
that result from these dynamical balances. For the task, we adopt a statistical
approach. In Chapter 4, we already presented some of the results derived from
statistical analysis of the flow. Namely, we utilised measurements of the RMS
of horizontal and vertical velocity to illustrate the connections between the
force balance and actual flow features in each regime. Here, we discuss how
variations of the magnitude of horizontal and vertical velocity fluctuations
relate to changes of the mean temperature profile across the fluid layer and the
convective heat transfer Nu. In the literature special interest is given to these
measurements. This is, on the one hand, due to their feasibility in laboratory
experiments of rotating convection [71, 76] and, on the other hand, because
they can be used to identify transitions between the flow regimes [41,50,71,76].
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For instance, the mean temperature profile, often characterised by its gradi-
ent −d〈T 〉/dz at mid-height (〈·〉 indicates time- and plane-averaging), varies
non-monotonically with Ra/Rac, giving it diagnostic properties of the various
flow phenomenologies. Concretely, the mean temperature gradient decreases
with Ra/Rac in the cellular and columnar regimes, it then increases in the
plumes regime, and saturates in the geostrophic turbulence regime [41]. Beyond
the latter regime, it has been observed that −d〈T 〉/dz decreases again with
Ra/Rac [76]. Eventually, it is expected that −d〈T 〉/dz ≈ 0 at sufficiently large
Ra/Rac, as the flow becomes insensitive to rotation and the bulk becomes
nearly isothermal.

Close to the walls, the peak maxima in the vertical profiles of RMS temper-
ature and horizontal velocity are often used to determine the thickness of the
thermal boundary layer δθ and the kinetic boundary layer δu (see, e.g., [50]).
The scaling of δu with Ek is fundamentally relevant to assess rotational control
in the boundary layer. In linear Ekman boundary layer theory it is established
that δu ∼ Ek1/2 for geostrophic flows [107] (see Section 2.7). In this chapter,
we evaluate whether the observed regimes of cells, columns, plumes and LSVs
abide by this scaling. We certainly do not expect this for the kinetic boundary
layer in the rotation-affected regime, as we found that the flow therein is not
rotationally constrained (see Section 4.4); we shall verify this.

Detailed information on the spatial organisation of the flow and tempera-
ture structures can be obtained through characterisation of the probability
distribution of the related physical quantities. This can be done by estimating
their skewness and kurtosis. The skewness provides a measure of the asym-
metry of the probability distribution. For instance, when the distribution of
temperature is positively skewed, large above-average temperature fluctuations
are preferred by the system, with smaller below-average values occupying a
larger portion of the domain; the opposite is true for a negatively skewed dis-
tribution. The vertical profile of the skewness of vertical velocity (similar to
temperature) is found to be antisymmetric about mid-height [31,32,155,156].
For example, in Ref. [32], it is found that the fluid flow directed away from the
walls is dominated by localised intense structures, so that the vertical velocity
skewness is positive near the bottom and negative near the top wall. In this
situation, the profile of vertical vorticity skewness is, on the other hand, sym-
metric about mid-height [31,63,157]: both the localised rising flows from the
bottom and the localised sinking flows from the top display positive vertical
vorticity. Finally, the kurtosis of the probability distribution of a certain quan-
tity measures the feasibility of extreme values in the distribution, e.g. large
values of kurtosis indicate that extreme fluctuations are very likely to occur.
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In homogeneous isotropic turbulence, the distribution of velocity fluctuations
is practically Gaussian, with kurtosis equal to 3 [158,159], whereas the distri-
bution of vorticity is strongly non-Gaussian, with kurtosis larger than 3 and
increasing with the turbulence intensity [160]. The presence of localised coher-
ent structures (plumes) in the flow raises the probability of extreme events, so
that kurtosis larger than 3 is expected. Interestingly, in Ref. [41], low values
of vertical velocity kurtosis at mid-height, close to 3, are also reported in the
cellular regime, i.e. similar to the kurtosis value in turbulent flows. Whilst
we do not doubt that this value does indeed characterise this nearly laminar
regime, we would like to briefly discuss the underlying averaging process from
which it derives. In [72, 132], temporal autocorrelations of temperature show
that these vertically coherent structures remain nearly stagnant in time. The
cellular regime is found to display slow modulations in time and space. This
indicates that the assumption of a temporal and spatial ensemble average of
independently fluctuating variables, often employed in the literature and in this
thesis, merits careful use. To further illustrate this point, we refer the reader
to Fig. 6 in Ref. [132], where the probability density functions of temperature
time series for cells (panel a) and geostrophic turbulence (panel d) are shown.
There, it can be seen that these distributions exhibit a similar Gaussian shape
(their exact kurtosis values are quantified in Ref. [41]), even though the flows
are markedly different.

The relevance of this study resides in the possibility to compare our numeri-
cal results with laboratory experiments of RRBC (although this task surpasses
the scope of this thesis). This possibility stems from the fact that the statistical
quantities studied in this chapter can be employed in laboratory experiments.
For instance, the vertical profile of temperature can be determined using tem-
perature measurements from a vertical arrangement of thermistors at the side-
walls of a rotating container [76] or inside the working fluid [161–164]. Other
statistics based on the velocity field can be studied through particle image
velocimetry (PIV) measurements [34,38,38,64,69,72,77,165–167] or particle
tracking velocimetry (PTV) [73].

Previous numerical and experimental studies on the statistical properties of
the RRBC flow are presented, for example, in Refs. [41, 72,132]. Both investi-
gations in Refs. [41, 132] employ simulations of a set asymptotically reduced
equations that are valid in the limit of rapid rotation (Ek,Ro→ 0) and stress-
free boundary conditions. In Ref. [72], time-resolved PIV and three-dimensional
PTV are employed. In Ref. [41], the mean temperature gradient, and RMS
and kurtosis of various quantities are used to characterise the flow in the
geostrophic regime of RRBC (cells, columns, plumes and large-scale vortices).

51



Chapter 5. Flow statistics

In Ref. [132], temporal and spatial auto-correlations and cross-correlations of
several quantities are used to determine the temporal scales, horizontal length
scales, velocity scales and transport properties of the flow in the aforemen-
tioned regime. In Ref. [72], experimental measurements of the vorticity field
are used to compute spatial auto-correlations; their results are in good agree-
ment with most of the observations reported in Ref. [132]. Nevertheless, some
of the underlying aspects of flows under realistic conditions may not exhibit an
asymptotic behaviour. For example, in the asymptotic limit of rapid rotation,
a symmetric state is obtained where the skewness of the distributions of tem-
perature, vertical velocity and vertical vorticity are zero over horizontal planes
at all heights. As a result, there is a great degree of symmetry of the distribu-
tion of cyclonic and anticyclonic structures. However, a significant asymmetry
of cyclonic and anticyclonic vortices in rotating flows has been reported in
several laboratory experiments [168–171], numerical simulations [172–175] and
studies of geophysical flows [176–179]. This asymmetry in natural flows may
be linked to the finite character of the rotation rate to which they are sub-
ject [168–170,172,174]. Thus, for instance, a finite positive rotation rate would
bias the skewness of vertical vorticity towards positive values. Here, we per-
form numerical simulations of the full Navier–Stokes equations subject to finite
rotation rates. Another unavoidable aspect of flows in real life concerns their
dynamics near bounding surfaces, where kinetic boundary layers form. These
layers are absent in the asymptotic formulation, since stress-free conditions at
the boundaries are explicitly considered. In our study, we consider the case
of no-slip walls to mimic experimentally realisable boundary conditions. In
Chapter 4, we found that the near-wall force balance is notably affected by the
kinetic boundary layer. We thus anticipate that the flow structures and the
statistical properties of the flow are also modified in this region.

The remainder of this chapter is structured as follows. In Section 5.2, we
investigate the mid-height mean temperature gradient and the heat transport
across the fluid layer, and in the subsequent Section 5.3, we discuss the (scal-
ing) characteristics of the thermal and kinetic boundary layer thicknesses. In
Section 5.4 we gain insight into the flow and temperature structures by means
of the temperature, vertical velocity and vertical vorticity skewness. We fur-
ther characterise the flow and thermal features by evaluating the likelihood
of extreme values of the relevant physical quantities in Section 5.5. Lastly, in
Section 5.6, we present our conclusions.
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5.2. Mean temperature and heat transport

A known feature of rotating Rayleigh–Bénard convection is the gradual decrease
of the mean temperature with height across the fluid layer, from a large value
at the hot bottom wall to a lower temperature at the top [31,76,157,180]. We
illustrate this in Fig. 5.1(a), where we plot the vertical profile of time- and
plane-averaged temperature for selected cases at Pr ≈ 5 (notice the slight
lack of antisymmetry of the red curve at Ra/Rac = 3.5, we shall discuss this
in Section 5.4). This vertical variation of the mean temperature is often used
to characterise the flow and to distinguish the different regimes, specifically,
employing the mean temperature gradient −d〈T 〉/dz measured at mid-height
z = 0.5 [41,45,50,76]. As a function of Ra/Rac, this quantity can be evaluated
in two limit cases. At Ra/Rac < 1, where no convection is present, the heat
transfer from the bottom wall to the top wall is carried out by conduction
alone. In this state the temperature profile is linear and the temperature
gradient is maximal, −d〈T 〉/dz = 1. In the limit of very large Ra/Rac, the
influence of rotation is minimal, and the flow approaches a non-rotating style
of convection. In this state the bulk is well mixed and thus its temperature is
uniform, therefore −d〈T 〉/dz → 0 (in the bulk outside the boundary layers). For
values of Ra/Rac between these two extreme cases, the temperature gradient
exhibits variations that are specific to the distinct flow regimes, and thus
provide a way to characterise them.

In Fig. 5.1(b), we plot the mean temperature gradient −d〈T 〉/dz at z = 0.5
as a function of Ra/Rac for all Prandtl numbers explored. At Pr ≈ 5, we
observe that the temperature gradient decreases with Ra/Rac throughout the
cellular and columnar regimes. This can be explained as follows. At the lowest
Ra/Rac, rotation heavily suppresses vertical velocity fluctuations wRMS (see
Fig. 5.1(c)). As a result, the vertical convective mixing in the fluid layer is
greatly inhibited; the temperature fluctuations TRMS =

√
〈(T − 〈T 〉)2〉 at mid-

height (Fig. 5.1(d)) also attain their smallest value. Hence, the temperature
gradient is largest at this Ra/Rac. Moreover, the vertical transport of heat
across the fluid layer, estimated as the mean of all convective Nusselt numbers
described in Section 3.5, is lowest (see Fig. 5.1(e)). With increasing supercrit-
icality, vertical convection is augmented (wRMS and TRMS increase) and thus
−d〈T 〉/dz decreases. It is worth noting that cells and columns interact weakly
with each other [89,181], and thus provide little to no horizontal mixing. The
decrease of −d〈T 〉/dz in the cellular and columnar regimes agrees within 3.6%
with the asymptotic scaling d〈T 〉/dz ∼ (RaEk4/3)0.96 in Ref. [41] (see dotted
line in Fig. 5.1(b)). This drop in temperature gradient is moreover accompanied
by an increment in heat transport. For the four cases at Pr ≈ 5 and lowest
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Ra/Rac in Fig. 5.1(e), a scaling Nu ∼ (Ra/Rac)
2.7 fits the data with an RMS

error of about 4.8% (not shown). This scaling agrees reasonably well with the
scaling Nu ∼ (RaEk4/3)2 ∼ (Ra/Rac)

2 reported in Ref. [41] (see dotted line
in Fig. 5.1(e)). Note that these changes in −d〈T 〉/dz, wRMS, TRMS and Nu are
very steep. This can be attributed to the strong vertical alignment of cells
and columns, which enables them to efficiently transport warmer (cooler) fluid
close to the bottom (top) across the fluid layer (see Figs. 4.2(a) and 4.2(b)).

At largerRa/Rac, in the plumes regime, conversely, the temperature gradient
is seen to increase with Ra/Rac (also observed for plumes at Pr = 100). In
this regime, wRMS varies marginally, whereas the horizontal mixing is enhanced
(uRMS gradually increases) due to the ever stronger interaction amongst plumes.
In other words, horizontal mixing is fostered over vertical mixing. Therefore,
due to the limited vertical mixing, the magnitude of temperature fluctuations
gradually decreases with Ra/Rac (see Fig. 5.1(d)), whilst the temperature
gradient increases (Fig. 5.1(b)). The interaction between the plumes reduces the
efficiency of the transport of fluid, with high thermal contrast, across the fluid
layer. As a consequence the increase of Nu with Ra/Rac is shallower. A least-
squares fit of the Nusselt number for plumes at Pr ≈ 5 (i.e. for 6 ≤ Ra/Rac ≤
37 in Fig. 5.1(e)) yields a scaling Nu ∼ (Ra/Rac)

0.4 (RMS error of 2.3%), a
reduction of about 85% in the scaling exponent respect to the cellular and
columnar regimes. For plumes at Pr = 100, the scaling is Nu ∼ (Ra/Rac)

0.2

within 4.3%.

In the regime of large-scale vortices at Ra/Rac > 37 (at Pr ≈ 5), the
temperature gradient gradually reverses back to a downwards trend. In this
regime, vertical velocity fluctuations, again, increase with supercriticality, thus
enhancing vertical mixing (though TRMS shows little variation with Ra/Rac at
this Pr). Regarding the scaling of Nu with Ra/Rac, it is not clear from our
explored parameter cases whether or not this is affected in the transition from
plumes to LSVs. However, we do anticipate a slightly steeper scaling in the
LSV regime, in accordance with the moderate increase of wRMS with Ra/Rac.
To evaluate this potential change in the Nu scaling, we consider the scaling law
in Ref. [36]: Nu∗ = aRab∗, where Nu∗ = NuEk/Pr and Ra∗ = RaEk3Nu/Pr2,
with best-fit parameters a = 0.17 and b = 0.55. Here, a is adjusted to account
for the different definitions of Ek used in Ref. [36] and in this thesis. This
scaling law is independent of the diffusive properties (thermal diffusivity κ
and kinematic viscosity ν) of the fluid. Whilst the presence of LSVs in the
simulations in Ref. [36] is not mentioned, this scaling is proposed for a rotation-
dominated flow, at Pr = 0.7 and 7, subject to competing non-linear effects,
in presence of stress-free walls. In Ref. [44], Nu∗ = 0.17Ra0.55

∗ is shown to
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Figure 5.1.: (a) Vertical profiles of plane-averaged temperature for selected cases at Pr ≈ 5
(visualised in Figs. 4.2(a) to 4.2(d)). (b) Mean temperature gradient at mid-height z = 0.5;
the black dotted line is the asymptotic scaling in both cellular and columnar regimes [41].
(c) RMS horizontal and vertical velocity, uRMS and wRMS, at mid-height (same plot as in
Fig. 4.5). (d) Mid-height RMS temperature. (e) Convective Nusselt number Nu; black dotted
and dash-dotted lines are asymptotic scalings in the cellular/columnar and LSV regimes,
respectively; black dashed and solid lines are predicted scalings for non-rotating RBC at
Pr ≈ 5 [115,182,183] and 0.1 [115,182–184], respectively. Red, green and blue symbols are
cases at Pr ≈ 5, 100 and 0.1, respectively. Colour-coded vertical lines and regime labels are
as in Fig. 4.3. (f) Nu∗ versus Ra∗; cases at Pr = 5.5 are shown in red and at Pr = 5.2 in
orange. The dotted line is the scaling Nu∗ = 0.17Ra0.55

∗ as proposed in Ref. [36]. The inset is
a close-up for Pr = 5.2 cases for 5×10−11 ≤ Ra∗ ≤ 4×10−9 and 8×10−7 ≤ Nu∗ ≤ 5×10−6.
In all panels, filled and open symbols are for no-slip and stress-free simulations, respectively.

55



Chapter 5. Flow statistics

fit fairly well Nu measurements of LSV cases at Pr = 1, also for stress-free
boundary conditions. In Fig. 5.1(f) we plot Nu∗ as a function of Ra∗ for
all our simulation cases. In the close-up of the Pr ≈ 5 data, shown in the
inset, we notice that the data appear to approach the proposed scaling. In
the LSV regime at Pr = 0.1 (for Ra/Rac < 60), the mid-height temperature
gradient displays little variation with Ra/Rac for the four cases with lowest
supercriticality, yet −d〈T 〉/dz is smaller for the fifth case at Ra/Rac ≈ 36,
suggesting that −d〈T 〉/dz decreases with Ra/Rac also at this Prandtl number.
The Nusselt number scaling is quite steep (see blue symbols at Ra/Rac < 60
in Fig. 5.1(e)), which may be associated with the clear increase of both vertical
velocity fluctuations and temperature fluctuations (see Figs. 5.1(c) and 5.1(d),
respectively). This scaling is in fairly good agreement (RMS error of 5.8%) with
the asymptotic scaling Nu ∼ (RaEk4/3)3/2 ∼ (Ra/Rac)

3/2 for the geostrophic
turbulence regime reported in Ref. [41] (see dash-dotted line in Fig. 5.1(e)).
Similar to the Nu∗ versus Ra∗ scaling in Ref. [36], this scaling is independent
of κ and ν. We also evaluate the scaling behaviour of our Pr = 0.1 data in
the LSV regime in terms of Nu∗ in Fig. 5.1(f). We find that the Ra0.55

∗ scaling
fits these Nu data with an approximate RMS error of 2.7%. Finally, in the
rotation-affected regime at Ra/Rac > 60 (at Pr = 0.1), −∂T/∂z continues
to decrease with Ra/Rac as the influence of rotation weakens and the bulk
becomes more isothermal. In this regime, the heat transport scaling is shallower
than for LSVs, as it approaches the scaling Ra1/5 for non-rotating Rayleigh–
Bénard convection (at Pr = 0.1; black solid line in Fig. 5.1(e)) predicted
in Refs. [115,182,183]. At Pr ≈ 5, the predicted scaling is Ra1/3 (black dashed
line) [115,182–184].

5.3. Boundary layers

In this section, we investigate the vertical profiles of RMS temperature TRMS(z)
and horizontal velocity uRMS(z) in the region close to the no-slip walls. In
Fig. 5.2 we present these profiles for the lower half of the domain for selected
cases at Pr ≈ 5; other cases at different Ra/Rac and Pr display profiles that
are qualitatively similar to the ones shown in this figure. In the vertical profile
of TRMS, in Fig. 5.2(a), we see that temperature fluctuations are zero at the
bottom wall (also at the top wall, not shown). There, the temperature field
must meet the constant-temperature boundary condition T = 1 at z = 0 (for
the top wall T = 0 at z = 1). Away from the wall, but still at a short distance
from it, TRMS increases rapidly. In fact, TRMS attains its maximum values in
this region. The location of the peak value in the vertical profile is often used
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Figure 5.2.: RMS vertical profiles of (a) temperature and (b) horizontal velocity for selected
cases at Pr ≈ 5 (same as those shown in Fig. 5.1(a)). Other cases at different Ra/Rac and
Pr exhibit profiles that are qualitatively similar to the ones shown here. The profiles, which
are symmetric about z = 0.5, are shown for the lower half of the domain. The vertical axes
have been made logarithmic to highlight the boundary layer structure.

as a measure of the thickness δθ of the thermal boundary layer. For the case
with the lowest supercriticality, at Ra/Rac = 1.3 (blue curve in Fig. 5.2(a)),
the signature of the thermal layer is weaker compared to the other cases, which
reflects the near-laminar state of the flow at such a low supercriticality. In the
vertical profile of uRMS, in Fig. 5.2(b), we observe that large values of RMS
horizontal velocity are also found near the walls. Just like for TRMS, the uRMS

maxima are frequently used to define the thickness δu of the kinetic boundary
layer [41,50].

Figure 5.3(a) presents the plots of the thermal and kinetic boundary layer
thicknesses, δθ and δu, as a function of Ra/Rac for all our simulations at all
Prandtl numbers. Starting from δθ at Pr ≈ 5, we see that the thermal layer
is thickest at the lowest supercriticality and that it decreases with Ra/Rac.
This decrease is quite steep for low values of Ra/Rac, and gradually becomes
shallower towards larger supercriticalities. The kinetic boundary layer thickness
δu, on the other hand, remains constant for our two sets of simulations at
Pr ≈ 5 and fixed Ek: δu ≈ 1.7 × 10−3 for cases at Ek = 3 × 10−7 (red
triangles) and δu ≈ 10−3 for those at Ek = 10−7 (orange triangles). For cells
and columns, the thermal boundary layer is thicker than the kinetic layer.
This is also observed in the plumes regime, although, in contrast, plumes at
Pr = 100 exhibit a thicker kinetic boundary layer. A similar situation occurs
in the LSV regime: δu > δθ at Pr ≈ 5, whereas δθ > δu for LSVs at Pr = 0.1.
This all suggests that the bulk flow state does not significantly depend on
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Figure 5.3.: (a) Kinetic and thermal boundary layer thicknesses, δu and δθ, near the bottom
wall (dark-coloured symbols) and the top wall (light-coloured symbols), as a function of
Ra/Rac. Filled and open symbols are for no-slip and stress-free simulations, respectively. Red,
orange, green and blue symbols are cases at Pr = 5.5 (at Ek = 3×10−7), 5.2 (at Ek = 10−7),
100 (at Ek = 3× 10−7), and 0.1 (at fixed Ra = 1010 and varying Ek), respectively. Colour-
coded vertical lines and regime labels are as in Fig. 4.3. (b) Kinetic boundary layer thickness
scaled by Ek1/2, the theoretical scaling for linear Ekman boundary layers [107]. The dotted
line is a linear fit for values of δu/Ek

1/2 below 3.5 (i.e. the four cases at Pr = 0.1 with largest
Ra/Rac are excluded). A case at Pr = 5.2 and Ra/Rac = 1.6 is included in Figs. 5.3(a)
and 5.3(b) to demonstrate the overlap between simulations at Pr = 5.2 and 5.5. (c) Thermal
boundary layer thickness multiplied by two times the convective Nusselt number Nu. This
quantity is equal to one for non-rotating convection (see Eq. (2.26)).

the relative thickness of the boundary layers. In the LSV regime at Pr = 0.1,
the thickness of the thermal layer steeply decreases with Ra/Rac, whereas it
becomes much shallower, quite quickly, towards the rotation-affected regime.
On the other hand, the kinetic boundary layer thickness increases with Ra/Rac
in the regimes of LSV and rotation-affected convection. This is because in our
set of simulations at Pr = 0.1, Ek is varied, whilst Ra is kept fixed. Specifically,
δu is predicted to scale as Ek1/2 in linear Ekman boundary layer theory [107]

58



5.4. Temperature, velocity and vorticity skewnesses

for rotationally constrained flows (see Eq. (2.41)). To evaluate this scaling,
in Fig. 5.3(b) we plot δu/Ek

1/2 as a function of the supercriticality of the
flow. The figure reveals that all cases in the geostrophic regime (cells, columns,
plumes and LSVs; at all Prandtl numbers) comply with the Ek1/2 scaling with
an RMS error just under 4%. Even the prefactor, approximately equal to 3.24
(see linear fit in Fig. 5.3(b)), is only weakly dependent on Pr. However, in the
rotation-affected regime (at Pr = 0.1), where the kinetic boundary layer is no
longer rotationally constrained (discussed in Section 4.4), this layer does not
exhibit the theoretical scaling Ek1/2. Therefore, the kinetic boundary layer
at Ra/Rac values beyond the geostrophic regime is certainly not of Ekman
type. The thermal boundary layer is also affected by the loss of rotational
constraint. Namely, in non-rotating convection, δθ relates to the convective
Nusselt number Nu through the expression δθ = 1/(2Nu) (see Eq. (2.26),
recall that δθ is already normalised by H). In Fig. 5.3(c), we plot the quantity
2Nuδθ for all simulation cases. We observe that rotationally dominated regimes
are poorly described by 2Nuδθ = 1, whereas cases at Pr = 0.1 in the rotation-
affected regime tend towards this theoretical prediction as Ra/Rac increases.
Similar results are reported in Ref. [42] for rotationally constrained regime at
RaEk3/2 < 10, or Ra/Rac . 124 (at Pr = 0.1 and Ra = 1010), and weakly
rotating convection at RaEk3/2 > 10, or Ra/Rac & 124.

5.4. Temperature, velocity and vorticity skewnesses

To gain insight into the temperature and velocity structures in the flow, we
evaluate the third-order moment, or skewness, of these quantities. In Sec-
tion 5.1, we explained that positive values of the temperature skewness TSKEW =
〈(T − 〈T 〉)3〉/T 3

RMS indicate that large above-average temperature fluctuations
are localised in small portions of the domain, whereas smaller below-average
values are distributed over a larger portion of the domain; and vice versa for a
negatively skewed distribution. This is also valid for the skewness of vertical
velocity wSKEW = 〈w3〉/w3

RMS and of vertical vorticity ωz,SKEW = 〈ω3
z〉/ω3

z,RMS.
As before, 〈·〉 indicates averaging over time and over horizontal planes at a
given height. Figure 5.4 shows the vertical profiles of skewness for selected
cases at Pr ≈ 5. For most cases, including those at different Ra/Rac and Pr
not shown in Figs. 5.4(a), 5.4(c) and 5.4(e), the vertical profiles of TSKEW and
wSKEW are antisymmetric about mid-height, whereas the profiles of ωz,SKEW are
symmetric. As discussed in Section 5.1, this is certainly expected, as it is consis-
tent, for instance, with the presence of localised hot rising cyclonic flows in the
lower half of the domain and localised cold sinking cyclonic flows in the upper
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Figure 5.4.: Vertical profiles of skewness of (a) temperature, (c) vertical velocity and (e) ver-
tical vorticity, for selected cases at Pr ≈ 5. (b) Temperature, (d) vertical-velocity and
(f) vertical-vorticity skewness at the bottom kinetic boundary layer (z = δu; dark-coloured
symbols). Also in (b), (d) and (f), we plot the values of TSKEW, wSKEW and ωz,SKEW (where
TSKEW and wSKEW are multiplied by minus one) at the top kinetic boundary layer (z = 1−δu;
light-coloured symbols), respectively. Filled and open symbols are for no-slip and stress-free
simulations, respectively. Red, green and blue symbols are cases at Pr ≈ 5, 100 and 0.1,
respectively. Colour-coded vertical lines and regime labels are as in Fig. 4.3.
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half [50, 63,89,157] (see, e.g., the thermal plumes at Pr ≈ 5 and Ra/Rac = 7.5
in Fig. 4.2(c)). However, we notice that the vertical profiles of TSKEW and wSKEW

at Pr ≈ 5 and Ra/Rac = 3.5 are clearly not antisymmetric, and the profile
of ωz,SKEW is not symmetric. Visualisation of the temperature fluctuations in
Fig. 4.2(b) reveal that in this case the flow is dominated by localised hot
rapidly rising convective columns surrounded by cool slowly sinking fluid. A
similar situation is found for the case at Pr ≈ 5 and Ra/Rac = 2.3 (not
shown). A possible reason for this asymmetry in the number of hot and cold
columns may be that this arrangement emerges during the early development
of the columnar structures, and it then persists over time due to the strong
stability of the flow at low supercriticality. The net effect is that skewness
curves in Figs. 5.4(a) and 5.4(c) are shifted towards positive values, whilst
they should be zero at z = 0.5, and ωSKEW should be vertically symmetric
(Fig. 5.4(e)). We expect that this asymmetric arrangement will equilibrate
into the expected distribution with equal number of hot and cold columns at
sufficiently long simulation times, of the order of the viscous diffusion time
scale τν =

√
Ra/Prτff, or ∼ 104 convective time units (at Ra ∼ 1010 and

Pr ≈ 5). We must acknowledge, however, that the question why this is not
observed in other cases in the columnar regime, or even for cells and plumes,
warrants further investigation.

For most cases, the largest values of TSKEW,wSKEW and ωz,SKEW are found near
the walls. This reveals a strong asymmetry in the statistical distribution of tem-
perature, vertical velocity and vertical vorticity in this region. In Figs. 5.4(b),
5.4(d) and 5.4(f), we plot the values of skewness at the bottom kinetic bound-
ary layer (z = δu; dark-coloured symbols) and at the top kinetic boundary
layer (z = 1− δu; light-coloured symbols), as a function of Ra/Rac. The values
of TSKEW and wSKEW at z = 1 − δu are plotted with a minus sign to be able
to compare their magnitude to that at z = δu. Notice the excellent agreement
of the skewness values at these two heights for most of our simulation cases,
barring those at Ra/Rac = 2.3 and 3.5, both at Pr ≈ 5 (here, the discrepancy
results from the asymmetry of hot and cold columns in these two cases, dis-
cussed above). In these two cases, the values of −wSKEW and ωz,SKEW (notice
the minus sign in wSKEW; as plotted in Figs. 5.4(d) and 5.4(f)) at the top
kinetic boundary layer are expected to shift towards positive values, as a state
of equal number of hot and cold columns is achieved at longer simulation times.
In such a case, the vertically antisymmetric profile of TSKEW and wSKEW, and
vertically symmetric profile of ωz,SKEW, about mid-height would be recovered
for these cases. Bearing in mind these expected symmetries and asymmetries,
let us then use measurements taken at the bottom kinetic boundary layer as
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a starting point for our discussions. At Pr ≈ 5, wSKEW and ωz,SKEW are posi-
tive for all flow regimes (cells, convective Taylor columns, plumes and LSVs),
which reveals the presence of localised flows with cyclonic vorticity emanating
from the boundary layer (e.g., see visualisations in Figs. 5.5(b) and 5.5(c)).
On the other hand, TSKEW < 0 for cells, columns and plumes. Interestingly,
in Section 5.3 we observed that in these cases the kinetic boundary layer is
embedded within the thermal boundary layer (i.e. δu < δθ in Fig. 5.3(a)). This
indicates that localised flow structures within the thermal boundary layer do
not lead to localisation of hot fluid in this region. Instead, fluid with above-
average temperature in the thermal boundary layer interior is distributed over
large portions of the horizontal domain (large red patches in Fig. 5.5(a)). This
can be attributed to fluid parcels with below-average temperature that pene-
trate into the thermal boundary layer, and that are concentrated in smaller
regions (the area occupied by the blue patches in Fig. 5.5(a) is about 1.7 times
smaller than for red patches). In the LSV regime (at Pr ≈ 5), where the ki-
netic boundary layer becomes thicker than the thermal boundary layer, TSKEW

becomes positive. Thus, hot fluid is now localised at z = δu (e.g., in Fig. 5.5(d),
it occupies 45% of the total cross-sectional area), which can be associated with
the localisation of positive vertical velocity and cyclonic vorticity at this height
(Figs. 5.5(e) and 5.5(f)). Similarly, for plumes at Pr = 100, we find that the
statistical distribution of temperature is positively skewed (TSKEW > 0), where
wSKEW, ωz,SKEW > 0 and δu > δθ. At Pr = 0.1, it is also seen that cases in which
δθ > δu, the temperature skewness is negative (e.g., in Fig. 5.5(g), hot fluid
within the thermal layer is distributed over 68% of the cross-sectional area,
whereas the cold fluid occupies the remaining 32%). Just like for cells, columns
and plumes at Pr ≈ 5, where the same is observed, ωz,SKEW is positive (see, e.g.,
the localised cyclonic vortices in Fig. 5.5(i)); here the vertical-velocity skewness
is very small. This again highlights the idea that localisation of upward flows
and/or vertical vorticity in the interior of the thermal boundary layer does not
lead to localised parcels of fluid with positive thermal contrast in this region.
Finally, the two cases at Pr = 0.1 with largest Ra/Rac exhibit TSKEW > 0 and
δu > δθ in agreement with the description discussed.
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(a) T − 〈T 〉 (b) w (c) ωz

(d) T − 〈T 〉 (e) w (f) ωz

(g) T − 〈T 〉 (h) w (i) ωz

Figure 5.5.: Snapshot of (a,d,g) temperature fluctuations, (b,e,h) vertical velocity, and (c,f,i)
vertical vorticity, at the kinetic boundary layer edge (z = δu) for cases (a-c) at Pr ≈ 5 and
Ra/Rac = 7.5 (visualised in Fig. 4.2(c)), (d-f) at Pr ≈ 5 and Ra/Rac = 80 (in Fig. 4.2(d)),
and (g-i) at Pr = 0.1 and Ra/Rac = 20 (in Fig. 4.2(g)).
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5.5. Temperature, velocity and vorticity kurtoses

Further understanding of the flow and temperature structures can be gained
by computing the kurtosis of relevant physical quantities. The kurtosis of the
temperature distribution is TKURT = 〈(T − 〈T 〉)4〉/T 4

RMS, for vertical velocity
is wKURT = 〈w4〉/w4

RMS and for vertical vorticity is ωz,KURT = 〈ω4
z〉/ω4

z,RMS. We
present the kurtosis profiles in Fig. 5.6 for selected cases at Pr ≈ 5. As it was
observed for the skewness, the kurtosis profiles of the case at Ra/Rac = 3.5
(also at R = 2.3, not shown) display asymmetries about mid-height, albeit less
evident than for skewness thanks to the even parity of the kurtosis function.
Figures 5.6(a), 5.6(c) and 5.6(e) show that the likelihood of extreme fluctuations
in the bulk varies with supercriticality. In Figs. 5.6(b), 5.6(d) and 5.6(f), we
plot the kurtosis values at mid-height as a function of Ra/Rac for all cases.

In the cellular and columnar regimes at Pr ≈ 5, all values of kurtosis (TKURT,
wKURT and ωz,KURT) increase with supercriticality, in accordance with an in-
crease in the magnitude of the fluctuations of temperature (see Fig. 5.1(d)),
vertical velocity (Fig. 5.1(c)) and vertical vorticity. In the plumes regime, TKURT,
wKURT and ωz,KURT decrease with Ra/Rac, as the turbulence in the bulk in-
creases due to the interaction between the plumes. This is also observed for
plumes at Pr = 100 (green symbols in Figs. 5.6(b), 5.6(d) and 5.6(f)). In
the regime of large-scale vortices at both Pr ≈ 5 and 0.1, the distribution of
temperature and vertical velocity is, or is close to, Gaussian, i.e. TKURT → 3 and
wKURT ≈ 3; the latter resembles the velocity distribution for turbulent flows.
These changes of wKURT with Ra/Rac are also reported in Ref. [41] at various
Prandtl numbers. In this regime, the vertical-vorticity kurtosis, on the other
hand, remains larger than 3: ωz,KURT ≈ 4 and potentially increasing at Pr ≈ 5,
and increasing ωz,KURT > 5 at Pr = 0.1. This indicates that, in the LSV regime,
the likelihood of large values of vertical vorticity increases with supercriticality,
as observed in turbulent flows. In the rotation-affected regime at Pr = 0.1,
the turbulent bulk yields a Gaussian distribution for temperature and vertical
velocity (TKURT, wKURT ≈ 3). Conversely, the vertical-vorticity kurtosis is larger
than 3, revealing that extreme values of ωz are more likely to occur in this
regime. Furthermore, this tendency appears to be constant, i.e. ωz,KURT ≈ 10,
for all cases in this regime.

In Fig. 5.7, we plot the kurtosis values at the bottom kinetic boundary layer
against the supercriticality of the flow (dark-coloured symbols; light-coloured
symbols are kurtosis values at the top kinetic boundary layer). At Pr ≈ 5, in
the cellular and columnar regimes, the behaviour of TKURT, wKURT and ωz,KURT

is similar to that in the bulk. That is, these quantities increase with Ra/Rac
within these regimes. For plumes at Pr ≈ 5, similar to the bulk, the kurtosis
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Figure 5.6.: Vertical profiles of kurtosis of (a) temperature, (c) vertical velocity and (e) ver-
tical vorticity, for selected cases at Pr ≈ 5. (b) Temperature, (d) vertical-velocity and
(f) vertical-vorticity kurtosis at mid-height (z = 0.5) plotted against Ra/Rac for all sim-
ulation cases. Filled and open symbols are for no-slip and stress-free simulations, respectively.
Red, green and blue symbols are cases at Pr ≈ 5, 100 and 0.1, respectively. Colour-coded
vertical lines and regime labels are as in Fig. 4.3.
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values decrease with Ra/Rac close to the wall. This indicates that, also in the
near-wall region, the likelihood of large values of temperature, vertical velocity
and vertical vorticity decreases with supercriticality. For plumes at Pr = 100,
the behaviour of TKURT, wKURT and ωz,KURT is markedly different (also different
from its behaviour in the bulk). We observe that TKURT and wKURT increase with
Ra/Rac instead, whereas ωz,KURT ≈ 5 remains approximately unchanged for
the parameter values considered. This implies that, for plumes at this Prandtl
number, there is an increasing probability of localised hot rising fluid near
the bottom (with nearly invariable likelihood of large values of cyclonic vor-
ticity), consistent with positive TSKEW, wSKEW and ωz,SKEW (Figs. 5.4(b), 5.4(d)
and 5.4(f)). This can be understood as the prevalence of coherent, longer-lived
flow structures near the walls owing to the larger Prandtl number. In the LSVs
regime at Pr ≈ 5 and 0.1, the vertical-velocity kurtosis presents considerable
differences in comparison to the bulk: it is larger than 3 and increases with
Ra/Rac. The increased likelihood of large vertical-velocity fluctuations, as
well as vertical-vorticity fluctuations, is consistent with increasingly frequent
emergence of localised flows with cyclonic (anticyclonic) vorticity that pump
(suction) fluid from (into) the Ekman boundary layer. Whilst these vertical
flows develop close to the domain boundaries, their presence may influence the
flow far from the walls. In Chapter 6 we discuss the role of these boundary-
layer flows in presence of large-scale vortices in the flow. The large values of
TKURT at z = δu for LSVs at Pr = 0.1 (see Fig. 5.7(a)) are related to the
strong asymmetry in the distribution of temperature in this region (TSKEW dis-
plays large negative values in Fig. 5.4(b)). Namely, strongly localised parcels
of cold fluid (large TSKEW < 0) must necessarily register extreme values of
temperature that are well below the mean temperature (large TKURT), whereas
extended regions of hot fluid register temperatures much closer to the mean.
For instance, in the snapshot of temperature fluctuations shown in Fig. 5.5(g),
parcels of fluid with below-average temperature (in blue) occupy 32% of the
total cross-sectional area, and whose mean temperature (in absolute terms)
that is about two times larger than that for hot parcels (in red). In our two
LSV cases at Pr ≈ 5, the asymmetry of the temperature distribution is small,
but seemingly increasing (see Fig. 5.4(b)). We thus expect that the temper-
ature kurtosis for LSVs at Pr ≈ 5 becomes large with increasing Ra/Rac.
Finally, in the rotation-affected regime, temperature, vertical velocity and ver-
tical vorticity approach their corresponding statistical distribution for the bulk.
That is, Gaussian for temperature and vertical velocity (TKURT, wKURT → 3)
and larger-than-Gaussian (i.e. ωz,KURT > 3), but approximately constant for
vertical vorticity.
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5.5. Temperature, velocity and vorticity kurtoses

Figure 5.7.: (a) Temperature, (b) vertical-velocity and (c) vertical-vorticity kurtosis at
the bottom kinetic boundary layer (z = δu; dark-coloured symbols) and at the top kinetic
boundary layer (z = 1−δu; light-coloured symbols) plotted against Ra/Rac for all simulations
cases. Filled and open symbols are for no-slip and stress-free simulations, respectively. Red,
green and blue symbols are cases at Pr ≈ 5, 100 and 0.1, respectively. Colour-coded vertical
lines and regime labels are as in Fig. 4.3.
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Chapter 5. Flow statistics

5.6. Conclusions

We have investigated the flow and temperature features that result from the
dynamical balances presented in Chapter 4. For cells and columns, the drop in
bulk mean temperature gradient and steep increase of the convective Nusselt
number are attributed to the steep increase of the magnitude of temperature
and vertical velocity fluctuations. As the coherent columns deteriorate into
plumes, these quantities no longer increase. Yet, horizontal velocity fluctuations
increase, enough so to enhance horizontal mixing and lead to an increased
temperature gradient. Here, the efficiency of the heat transport decreases: from
Nu ∼ (Ra/Rac)

2.7 in the cellular and columnar regimes to (Ra/Rac)
0.4 in the

plumes regime (both scalings at Pr ≈ 5). For LSVs, TRMS (only for Pr = 0.1)
and wRMS increase again, enhancing vertical mixing and leading to decreased
mid-height temperature gradient. Here, Nu∗ ∼ Ra0.55

∗ (Nu∗ and Ra∗ defined
in Section 5.2), in accordance with Ref. [36] within a few percent. For rotation-
affected convection (at Pr = 0.1), the heat transport scaling is shallower than
for LSVs, as it approaches the non-rotating scaling Ra1/5 [115,182–184].

We find that in the geostrophic regime (cells, columns, plumes and LSVs),
the kinetic boundary layer thickness scales as Ek1/2, a clear indication that this
boundary layer is of Ekman type. At larger Ra/Rac, beyond the geostrophic
regime, for rotation-affected convection, the kinetic boundary layer thickness
deviates significantly from the Ek1/2 scaling, in agreement with the loss of
rotational constraint in this region (discussed in Section 4.4). This change in
the dynamics of the near-wall flow is also reflected in the thermal boundary
layer: its thickness approaches the non-rotating scaling δθ = 1/(2Nu) (see
Section 2.5).

Overall, the flow and temperature statistics exhibit transitional behaviours
at similar Ra/Rac for the bulk and near the walls. Nevertheless, their specific
patterns (nearly constant, increasing or decreasing) with varying Ra/Rac do
not always coincide. For LSVs at Pr ≈ 5, the temperature and vertical velocity
distributions in the bulk are Gaussian, a sign of turbulence in this region. At
z = δu, the distributions are positively skewed and their kurtoses are larger
than Gaussian, suggesting the presence of localised coherent bursts of hot rising
fluid with cyclonic vorticity. Conversely, for LSVs at Pr = 0.1, cyclonic vortices
with positive thermal contrast are distributed over rather large portions of the
horizontal domain. This difference appears to depend on the relative thickness
of the kinetic and thermal boundary layers. When the thermal boundary layer
is embedded within the kinetic boundary layer, localised Ekman pumping from
the kinetic boundary layer is matched by localisation of hot fluid at z = δu. In
the opposite case, no localisation of thermal structures is observed.
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Chapter 6

Large-scale vortices
1

In this chapter, we investigate the formation of large-scale vortices in presence
of no-slip bottom and top boundaries. No-slip boundaries are known to actively
promote the formation of plume-like vertical disturbances, through so-called
Ekman pumping, that control the ambient flow at sufficiently high rotation rates.
Despite this, we demonstrate the presence of competing large-scale vortices
(LSVs) in the bulk in simulations at Pr = 0.1 and ≈ 5. Strong buoyant forcing
and rotation foster the quasi-two-dimensional turbulent state of the flow that
leads to the upscale transfer of kinetic energy that forms the domain-filling LSV
condensate. The Ekman plumes from the boundary layers are sheared apart by
the large-scale flow, yet we find that their energy feeds the upscale transfer. Our
results of RRBC simulations substantiate the emergence of large-scale flows in
nature regardless of the specific details of the boundary conditions.

6.1. Introduction

In fluid dynamics, kinetic boundary layers (BLs) adjacent to no-slip surfaces
are frictional regions that, despite being relatively thin, can greatly affect the
dynamics of the ambient flow. In particular, the so-called Ekman BL in rapidly
rotating flows [116] actively enhances vertical velocities far beyond the BL
region through Ekman pumping. Likewise, Ekman pumping boosts convective
instabilities of the thermal BL in buoyancy-driven flows, a highly relevant
problem to many geophysical and astrophysical systems. These flows span the
domain height at sufficiently strong rotation [45,52, 63,64, 88]. When rotation
is much weaker than thermal forcing, however, plumes emerging from the

1The contents of this chapter have been adopted from A. J. Aguirre Guzmán, M. Madonia,
J. S. Cheng, R. Ostilla-Mónico, H. J. H. Clercx, and R. P. J. Kunnen. Competition
between Ekman plumes and vortex condensates in rapidly rotating thermal convection.
Phys. Rev. Lett., 125(21):214501, 2020 [58], leaving out some introductory parts that have
already been covered in this thesis; some symbols have been changed from the article to
match with the current notation.
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Chapter 6. Large-scale vortices

BL organize into a large-scale circulation (LSC) with shearing that ironically
sweeps away the plumes formed by the BL [39,185].

For a surface with stress-free boundary condition, the buoyancy-driven flow
fed by the thermal BL is no longer enhanced by Ekman pumping. The thermal
plumes are then too weak to affect the ambient flow, which becomes more
prone to turbulence under strong thermal forcing. At sufficiently strong forcing
and rapid rotation, vertical velocities are largely suppressed, and the result-
ing turbulent flow is quasi-two-dimensional (Q2D) [41,44–46,50,92]. The flow
then mimics pure 2D turbulence with an inverse energy cascade [186, 187].
The upscale energy transfer is eventually balanced by friction in finite-size do-
mains or by imposed large-scale damping. Consequently, energy accumulates at
large scales (spectral condensation) and coherent, long-lived large-scale vortices
(LSVs; also called vortex condensates) form [188–192]. However, the question
is whether similar processes occur for no-slip boundaries; can LSVs sweep away
the (Ekman) plumes as the LSC does at low rotation rates? Asymptotic sim-
ulations, i.e. valid in the limit of rapid rotation, using parametrized Ekman
pumping boundary conditions report upscale transfer of kinetic energy but
no persistent LSVs form [51, 113]. In these simulations the kinetic energy of
the large-scale, vertically-averaged or (so-called) 2D barotropic flow, associated
with the condensate, is reduced by Ekman friction. The kinetic energy of the
remaining 3D baroclinic (depth-dependent) convection is enhanced by Ekman
pumping at smaller length scales.

Here, we demonstrate for the first time the presence of coherent, long-lived
LSVs in rotationally-constrained thermal convection despite Ekman pumping
interference from the BLs and frictional drag. We do so for fluids of differ-
ent Prandtl number (defined below) pertinent to geophysical systems: low
Pr = 0.1, relevant to liquid metals as in Earth’s outer core, and high Pr ≈ 5,
water, popular in experiments and applicable to oceanic processes. We identify
nonlocal energy transfer from smaller scales to the largest horizontal scale in
the domain, while the Q2D turbulent bulk subdues significant disturbances
from the BLs. Our novel observation of LSVs with no-slip walls paves the way
to experimentally explore LSV growth in buoyancy-driven rotating turbulence,
a process omnipresent in large-scale natural flows. We directly assess the effects
of no-slip boundaries on vortex condensates in 3D anisotropic systems.

From our suite of direct numerical simulations with no-slip boundaries (listed
in Table 3.1), here we consider those at parameters displayed in Fig. 6.1 (circles).
In particular, three reference cases, indicated with stars (Fig. 6.1), are selected
for further analysis: LSVs at Pr = 0.1, Ra/Rac = 20 (L01NS; L01SF is a
corresponding stress-free run) and at Pr = 5.2, Ra/Rac = 80 (L52NS), and
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6.2. The quasi-dimensional turbulent state

Figure 6.1.: Phase diagram of rotating convection. Present no-slip DNS; asymptotic
(Ek → 0) simulations, with stress-free [41] and parametrized Ekman-pumping bound-
aries [51]; stress-free DNS [44, 46]. Filled symbols represent LSV states. Labeled stars are
reference cases from the present study.

plumes at Pr = 5.2, Ra/Rac = 11 (P52NS).

6.2. The quasi-dimensional turbulent state

In the bulk, the relative magnitude of root-mean-square (RMS) horizontal
(uRMS) and vertical (wRMS) velocity exhibits significantly different behavior
specific to the flow structure that, together with the vertical-velocity kurtosis
(wKURT), provides a generic way to distinguish the flow regimes identified in
Ref. [41]. For cells (C) and convective Taylor columns (T) vertical velocities
are stronger than horizontal, for plumes (P) (and quasi-3D, Q3D, turbulence at
Pr = 0.1) they are comparable, while for LSVs horizontal velocities are larger
(Fig. 6.2). Larger-than-Gaussian kurtosis, i.e., wKURT > 3, indicates increased
likelihood of strong vertical velocity fluctuations. Ref. [41] reports wKURT > 3
at mid-height for cells, columns, and plumes, while in the so-called geostrophic
turbulence state (where LSVs are observed) wKURT ≈ 3 as in homogeneous
isotropic turbulence. Our mid-height observations are the same (inset I and
II).

LSV states are emphasized by the decomposition into 2D (vertically av-
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Figure 6.2.: RMS horizontal (uRMS) and vertical (wRMS) velocities at mid-height (z = 0.5)
versus Ra/Rac (same data as in Fig. 4.5). Vertical dash-dotted and dashed lines indicate
predicted transitions from Cells (C)/convective Taylor columns (T) to plumes (P) [71,132].
Vertical dotted lines are our estimated transitions between plumes and LSVs (orange), and
LSVs and Q3D (blue). Inset I and II: vertical-velocity kurtosis wKURT at mid-height (squares;
same data as in Fig. 5.6(d)) and at the kinetic BL thickness (z = δu; right triangles; same
data as in Fig. 5.7(b)). Horizontal dashed lines at wKURT = 3 indicate Gaussian kurtosis.
Inset III: ratio of barotropic Ebt to total Et kinetic energy. Filled symbols denote LSV cases.

eraged) barotropic flow and 3D (depth-dependent) baroclinic convection [41,
46, 92]: uuu = 〈uuu〉z + uuu′, where 〈uuu〉z =

∫ 1
0 uuu dz. The ratio of barotropic Ebt =

1
2(〈u〉2z + 〈v〉2z) to total Et = 1

2

(
u2 + v2 + w2

)
kinetic energy is largest for

LSVs (inset III); the 2D flow dominates as is common in condensate vor-
tices [41, 192, 193]. The large fraction of 2D kinetic energy, larger horizontal
than vertical RMS velocity and Gaussian bulk kurtosis are signatures of Q2D
turbulence in the LSV flow state.

Near the bottom at height z = δu (the Ekman BL thickness based on
the uRMS maxima) kurtosis follows the bulk trend for most of the Ra/Rac
range, except for LSV states where it remains larger than 3. We hypothesize
that deviations from Gaussianity are caused by the prevalence of smaller-
scale structures formed by Ekman pumping from the BLs, whose presence,
remarkably, does not disrupt the LSVs. This will be addressed later.
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6.3. Morphology of the LSVs

6.3. Morphology of the LSVs

Flow visualizations in Fig. 6.3 of the reference cases reveal for both L01NS
and L01SF (panels a and b) one large-scale vortical structure with cyclonic
(positive) vertical vorticity that extends over the domain height. The vortex
is embedded in an environment with weak anticyclonic (negative) vorticity.
Figure 6.3(c) shows that L52NS displays both a cyclonic and an anticyclonic
vortex. Just as the vortex monopole, the dipole spans the domain height. During
the statistically stationary state (approximately 400 convective times H/Uff at
Pr = 0.1, and about 900 convective times at Pr = 5.2), the vortices are long-
lived without significant horizontal displacement. For P52NS, in Fig. 6.3(d),
plumes dominate the bulk [38,41,88].

Cyclonic vortices are favored over anticyclones: when both are present, the
anticyclone is weaker than the cyclone. Cyclone–anticyclone asymmetry in
rotating flows has been extensively discussed [171,175,194,195]. In Ref. [196]
the presence or absence of the anticyclone in vortex condensates is postu-
lated to result from either of two saturation mechanisms of the inverse energy
transfer. One of them is due to viscous dissipation at large scales (as in 2D
turbulence), and is preferred in the asymptotic limit of rapid rotation. This
mechanism allows the development of a vortex dipole, consistent with the
cyclone-anticyclone symmetric state observed in Ref. [41, 45, 51, 92]. In the
other mechanism, energy saturation occurs when the eddy turnover time of
the condensate W/ULSV (W is the domain width and ULSV the characteristic
velocity of the condensate) becomes comparable to the rotation rate Ω. In
such conditions, the local Q2D conditions in the anticyclone break down, thus
strong cyclone-anticyclone asymmetry is expected. For L52NS, the convective
Rossby number RoC = Ek

√
Ra/Pr is RoC = 0.017, which may be low enough

to enter the asymptotic symmetric state. For L01NS, RoC = 0.079 is larger,
which may explain the stronger asymmetry.

6.4. Kinetic energy transfer among scales

To study the development of LSVs, we consider the shell-to-shell energy trans-
fer [46,197–201]. We investigate [92] transfer from baroclinic to barotropic (3D
to 2D) flow:

Tbc(Q,K) ≡ −
∫
V
〈uuuK〉z ··· (uuu′ ··· ∇∇∇)uuu′Q dV, (6.1a)

73



Chapter 6. Large-scale vortices

Cyclone Cyclone

Cyclone Anticyclone Plumes

(a) L01NS (b) L01SF

(c) L52NS (d) P52NS

1.8       2.9           4.0

Figure 6.3.: Snapshots of horizontal kinetic energy 1
2

(
u2 + v2

)
, scaled by volume-averaged

total energy 〈Et〉V for the reference cases. Actual domains are slender; their width-to-height
ratio Γ = W/H = O(10−1). For clarity, they are stretched horizontally by a factor 1/Γ.

and barotropic self-interaction (2D to 2D):

Tbt(Q,K) ≡ −
∫
V
〈uuuK〉z ··· (〈uuu〉z ··· ∇∇∇)〈uuuQ〉z dV. (6.1b)

The Fourier-filtered 2D field 〈uuuK〉z of wavenumber K receives energy from the
filtered (2D or 3D) field of wavenumber Q via triadic interactions mediated by
the energy giver field; we find that the other transfers to 2D (from 3D mediated
by 2D and from 2D mediated by 3D) are negligible. If Tbc, Tbt > 0, the mode
Q transfers energy to mode K and vice versa. Equations Eqs. (6.1a) and (6.1b)
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6.5. Near-walls dynamics

are derived from the budget equation of modal barotropic kinetic energy, where
Fourier transforms are performed in the horizontal periodic directions and the
Fourier space divided into ring-like shells of different horizontal wavenumbers.

In Fig. 6.4 we plot Tbc (left column) and Tbt (right column). LSV cases
(top three rows) present positive Tbc over a wide range of modes Q & 5 and
K . 3, revealing spectrally nonlocal upscale transfer of kinetic energy from 3D
convection at small scales to the largest 2D scales, i.e., without participation
of intermediate scales. We also plot T≥5

bc (K) ≡∑40
Q=5 Tbc(Q,K)/〈wθ〉V (blue

curves), the sum of nonlocal baroclinic transport to mode K, normalized by
volume-averaged buoyant energy input 〈wθ〉V (θ is temperature). The largest
contribution is indeed at LSV mode K = 1.

For plumes (see Fig. 6.4(g)), a narrower range of baroclinic modes 5 . Q . 25
contributes positively to barotropic modes 2 . K . 10, with virtually no
contribution to K = 1. We argue that this upscale energy transfer is due to
plume–plume interactions and merger (plume scale is Kp ≈ 10); spectrally
local unlike the strong interaction of all Q with K = 1 in LSV cases, together
with a direct downscale cascade.

In all cases Tbt presents positive diagonal K = Q+ 1, indicating spectrally
local downscale transfer within the 2D flow. Additionally, LSV cases reveal
spectrally nonlocal upscale transfer: positive Tbt at K = 1 over a wide range of
Q modes (likewise, negative Tbt for Q = 1). Simultaneous downscale and up-
scale transfers coexist within the 2D flow [92]. Finally, for P52NS (Fig. 6.3(d)),
some 2D self-interaction is registered: energy exchanges among plumes lead to
short-range upscale transfer toward scales that do not involve the largest scale,
with concurrent downscale cascades over a much shorter range than for LSVs.

6.5. Near-walls dynamics

To investigate the near-wall dynamics, we calculate the (nondimensional) height-
dependent planar kinetic energy budget [157,202,203]:

B + T + P + V − D = 0, (6.2)

where B ≡ 〈wθ〉P is buoyant production, T ≡ −∂z〈wEt〉P turbulent transport,
P ≡ −∂z〈wp〉P pressure transport, V ≡ 2

√
Pr/Ra∂z〈uisi3〉P viscous trans-

port and D ≡ 〈ε〉P = 2
√
Pr/Ra〈sijsij〉P dissipation rate [131]. 〈·〉P denotes

horizontal planar averaging, p is pressure and sij = 1
2 (∂jui + ∂iuj). Summa-

tion is over repeated indices, i = 1, 2 denote horizontal directions and i = 3
vertical direction (u3 = w). We normalize all terms with 〈wθ〉V . B indicates
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6.6. Conclusions

energy input; transport terms (T ,P,V) redistribute kinetic energy vertically;
D extracts energy.

Fig. 6.5 shows the z-dependent budgets for the reference cases; left column
for lower half of the domain, right column zoomed in on the bottom BL. For
all cases, B provides energy in the bulk. For L01SF, this energy input is nicely
balanced by dissipation, i.e. D ≈ B, whereas D < B for no-slip cases. There, B
is compensated by large D near the walls, as z/δu → 0. The difference between
B and D in the bulk is redistributed toward the BLs by P; the other two
transport terms are marginal and only participate near the walls. For LSVs,
this extraction may slightly reduce the amount of energy available for interscale
exchanges, but does not prevent its spectral transfer upscale. To emphasize
this, we co-plot with blue curves the height-dependent transfer to 2D mode
K = 1, T≥5,1

bc (z) ≡ ∑40
Q=5 Tbc(Q,K = 1, z)/〈wθ〉V . We find predominantly

positive T≥5,1
bc throughout the bulk for LSVs, and vanishingly small T≥5,1

bc (z)
where no large scales develop.

Near the no-slip walls (in Figs. 6.5(b), 6.5(f) and 6.5(h)), the budget resem-
bles that of rotationally constrained flows [157]: pressure transport supplies
energy to sustain the Ekman BL against frictional dissipation [116], viscous
transport redistributes energy within the BL, while turbulent transport has
little to no contribution to the budget. Notably, for LSVs (in Figs. 6.5(b)
and 6.5(f)), no 3D-to-2D upscale transfer is sustained within the BL: T≥5,1

bc < 0
for z < δu. Instead, the 2D mode loses energy to smaller-scale 3D motions.
T≥5,1

bc > 0 for z > δu and, strikingly, it peaks just outside the BL to reduce (but
remain positive) toward the bulk. As vertical bursts from the BL (wKURT > 3
at z = δu, see Fig. 6.2) are sheared apart by the strong horizontal bulk flow,
their energy feeds the upscale transfer to the 2D LSV just outside the BL. The
thermal BL has no noticeable effect on these profiles.

6.6. Conclusions

We demonstrate that Ekman BLs cannot prohibit LSV formation in no-slip
RRBC. They, instead, postpone the occurrence of upscale energy transfers
to significantly higher rotation rates (at the same supercriticality) than for
stress-free boundaries; vertical bursts due to Ekman pumping require stronger
rotational constraint to be diverted into upscale transfer to LSVs. Ekman
plumes are swept away by large horizontal velocities from the emerging LSVs.
The role of the Prandtl number is similar for no-slip as for stress-free simulations:
LSV formation is more easily reached at smaller Pr [41]. We postulate that
coherent plumes, formed by the Ekman BLs, with strong temperature contrast,
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Figure 6.5.: Kinetic energy budget in the bulk (left column) and near the bottom (right
column) for the reference cases. Vertical coordinate scaled by kinetic BL thickness δu (for
L01SF we use δu from L01NS). Profiles shown for lower half of the domain; mid-height
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thicknesses. The thermal BL is thicker than the plotting interval in (b,d). Blue curves indicate
height-dependent nonlocal energy transfer T≥5,1

bc (z) from 3D modes 5 ≤ Q ≤ 40 to 2D LSV
mode K = 1.

are longer-lived at high Pr given weaker thermal diffusion. Hence they can
more proficiently disturb LSV formation.

Large-scale flow organization is ubiquitous in geophysics and astrophysics.
Our study identifies that Ekman boundary layers are unable to prevent vortex
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condensation, opening up laboratory modeling of these flows in the rotating
Rayleigh–Bénard configuration [128]. We provide firm evidence that large-scale
vortex condensation can develop regardless of the boundary conditions.
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Chapter 7

RRBC in a cylinder: the sidewall
circulation

1

This chapter deals with the effect of lateral boundaries in rotating Rayleigh–
Bénard convection. In particular, we study the recently observed discrepancy
in total heat transport between experiments on a confined cylindrical domain
and simulations on a laterally unconfined periodic domain. Near the sidewalls,
we find a region of enhanced convection, the sidewall circulation. The sidewall
circulation rotates slowly within the cylinder in anticyclonic direction. Through
separate analysis of the sidewall region and the inner bulk flow, we find that
at larger thermal forcing the heat transport in the inner part of the cylindrical
domain, outside the sidewall circulation region, coincides with the heat transport
on the unconfined periodic domain. Thus the sidewall circulation accounts for
the differences in heat transfer between the two considered domains, while in
the bulk the turbulent heat flux is the same as that of a laterally unbounded
periodic domain. We also provide experimental evidence for the existence of
the sidewall circulation that is in close agreement with the simulation results.

7.1. Introduction

Recent studies of rotating Rayleigh–Bénard convection at high rotation rates
and strong thermal forcing have shown a significant discrepancy in total heat
transport between experiments on a confined cylindrical domain on the one
hand and simulations on a laterally unconfined periodic domain on the other.
This chapter addresses this discrepancy using direct numerical simulations on

1The contents of this chapter have been adopted from X. M. de Wit, A. J. Aguirre Guzmán,
M. Madonia, J. S. Cheng, H. J. H. Clercx, and R. P. J. Kunnen. Turbulent rotating
convection confined in a slender cylinder: The sidewall circulation. Phys. Rev. Fluids,
5(2):023502, 2020 [53], leaving out the introductory parts that have already been covered
in this thesis; some symbols have been changed from the article to match with the current
notation.
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a cylindrical domain.

A popular geometry for the study of RRBC using numerical simulation is
the horizontally periodic plane layer, for both direct numerical simulations
(DNSs) [31, 32, 44–46, 50, 78, 204] and simulations of asymptotically reduced
models [33, 41, 45, 51, 100]. The main advantage is that no lateral constraint
needs to be applied: the use of sidewalls could affect the flow development by
choice of shape (e.g. square cuboid or cylinder) as well as by choice of boundary
condition (no-slip or stress-free; zero-heat-flux or constant temperature). In
contrast, experiments must resort to lateral confinement, where an upright
cylinder is by far the most popular geometry [7, 35,38, 64,71,73]. In that case
a parameter describing the geometry is required, for example the diameter-to-
height aspect ratio Γ = D/H. In fact, to push the performance of experiments
towards planetary conditions the height of convection experiments has grown,
while the diameter remains rather small [71, 76,128].

There are several issues specific to experiments that can occur in such systems.
Examples include centrifugal buoyancy [205,206] and so-called non-Oberbeck–
Boussinesq effects [47]. But it turns out that the choice of domain can also
have profound effects.

The starting point for the current investigation is a comparison of results
from direct numerical simulations in a horizontally periodic domain and from
experiments in an upright cylinder. The efficiency of the convective heat trans-
fer is commonly expressed as the Nusselt number Nu = q/qcond, the total heat
flux q normalized by the conductive flux qcond = k∆T/H; k is the thermal
conductivity of the fluid. In Fig. 7.1 we compare the Nusselt number from
experiments and direct numerical simulations in horizontally periodic domains.
All datapoints are for water (Pr ≈ 5) and at constant Ek = 10−7. The two
experiments included in the plot, TROCONVEX (Eindhoven) [76, 128] and
RoMag (UCLA) [71], align nicely, as do the two numerical studies (Stellmach
et al. [45] and the current study). However, for Ra > 1011 there is a gap in Nu
between numerical and experimental data (i.e. cylinder and periodic layer),
roughly a factor two in magnitude. This discrepancy is unexpected: as the
cylindrical domains in experiments were always wide enough to accommodate
many times the characteristic horizontal convective scale [128], no confinement
effects were anticipated.

In this chapter we want to explain this discrepancy using a set of DNSs at
the same operating conditions as the experiments and now in the same domain
shape and boundary conditions, i.e. a cylinder of aspect ratio Γ = 1/5. We
find a good agreement between DNS and experiments in the same domain.
The discrepancy in heat transfer between the two domains used for DNS (i.e.
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Figure 7.1.: Comparison of Nusselt number results from experiments in a cylinder (Cheng
et al. 2015 [71] and the current work) and DNS on a horizontally periodic domain (Stellmach
et al. 2014 [45] and the current work) as a function of the Rayleigh number. All simulations
adopt constant Ek = 10−7 and Pr ≈ 5 for water.

cylinder and horizontally periodic layer) is shown to be caused by a strong
circulation that is formed on the sidewall and significantly contributes to the
overall heat flux. However, when excluding the sidewall region, we recover
identical heat transfer for the bulk of the cylinder and the horizontally periodic
layer.

A recent paper [55] describes a similar flow feature. While further in-depth
comparison is required given that the parameter values used are quite far
apart, it is expected that the same feature of confined rotating convection is
studied. Hence we will identify similarities and differences between our findings
and those reported in [55]. The two studies give complementary views on this
interesting flow structure with obvious consequences for the interpretation of
experiments.

7.2. Numerical and experimental methods

The numerical simulations presented here are done using two codes: the cylinder
code and the multiple-grid Cartesian code, both described in Section 3.2. In the
cylinder code the domain is a slender upright cylinder with Γ = 1/5. Boundary
conditions at the bottom, top and sidewalls are described in Section 3.4. The
simulations have been performed at parameter values displayed in Table 3.2.
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Chapter 7. RRBC in a cylinder: the sidewall circulation

On the other hand, the simulations in the horizontally periodic domain are
those at Pr = 5.2 reported in Table 3.1.

The experimental results are from TROCONVEX, the setup in Eindhoven. It
is described in [76,128]. It is a slender cylinder of diameter D = 0.39 m consist-
ing of four segments, allowing for different working heights. The measurements
in this work are taken in a cylinder of H = 2 m with Γ = 0.195. The cylinder is
enclosed by copper plates. The bottom plate is electrically heated while the top
plate is kept at a constant temperature by circulation of cooling water from a
chiller/thermostatic bath combination. The cylinder is encapsulated in insula-
tion foam surrounded by active heat shields that take on the same temperature
measured by thermistors in the sidewall; the entire height is divided into five
different shields, each connected to two thermistors measuring the temperature
at that height. Similarly, there is an active heater below the bottom plate that
adapts to the same temperature as the bottom plate. This arrangement mini-
mizes outward conductive losses and is the standard for precise heat-flux mea-
surements. Note that the sidewall thermistors turn out to be interesting for flow
diagnostics too. For the three measurements considered here Ek = 10−7 and the
mean temperature is Tm = 31.0◦C, so Pr = 5.2. To ease comparison we shall
also nondimensionalize the experimental data using the cell height H = 2 m,
applied temperature difference ∆T = {0.63, 1.47, 1.99}◦C and convective
time τc = H/U = {32.1, 21.0, 18.1} s for Ra = {1.4, 3.2, 4.3} × 1011, respec-
tively. From here on all quantities are expressed in these units. Note that we
renormalize the radial coordinate with the radius R = D/2, so that r/R = 1
on the sidewall, for ease of interpretation.

7.3. Instantaneous snapshots

From the cylinder DNS we can get detailed information on the flow field.
To start the exploration, we show instantaneous cross-sections displaying the
vertical component of velocity for Ra = 5.0× 1010 and 4.3× 1011 in Fig. 7.2.
Horizontal cross-sections at z/H = 0.5 and vertical cross-sections are included.
The Rayleigh number has a significant effect on the overall flow field: at the
lower Ra rotation is stronger than buoyancy and vertical alignment along the
rotation axis is enforced, while at the higher Ra there is more three-dimensional
dynamics. This effect is well-known from previous studies [41,45,71] where the
overall flow phenomenology was characterized. At this Ek, for Ra . 1.1× 1011

(based on the empirical relation Eq. (19) of [71]) we expect to recover the
convective-Taylor-column (CTC) regime, with plumes taking the shape of
columnar vortical chimneys connecting both boundary layers and shielded with
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Figure 7.2.: Snapshots of vertical velocity uz/U from the simulations at (a,b) Ra = 5×1010

and (c,d) Ra = 4.3× 1011. Panels (a,c) display vertical cross-sections where the horizontal
direction has been stretched by a factor two for clarity; panels (b,d) are horizontal cross-
sections at z/H = 0.5.

patches of opposite vorticity. The ‘torsional’ nature of the columns [89, 154],
with vertical vorticity changing sign from cyclonic to anticyclonic while crossing
the vertical extent of the domain, is confirmed with plots of vertical vorticity
(not shown here). The simulation at Ra = 7.0 × 1010 also renders a CTC-
type flow. At higher Ra & 1.5 × 1011 the vertical coherence is relaxed, but
still the dominant force balance is the geostrophic balance between Coriolis
and pressure gradient. This flow regime is referred to as plumes [41, 45, 71].
At Ra = 1.4× 1011 (not shown) some columns can be found but the columnar
structure is falling apart, hence a transitional state. For the two highest-Ra
cases considered here we recover a flow as displayed in Fig. 7.2(c,d), belonging
to either plumes or geostrophic-turbulence regimes [33, 41, 71, 128] that are
difficult to discern by eye (and which is not our current objective).

However, all simulations share a predominant flow feature: there is a region
of large vertical velocity near the sidewall. This represents a structure of fluid
flowing up along one side of the wall and down along the opposite side. It can
be observed throughout almost the full vertical extent of the domain; it is only
close to the Ekman layers that the prominence of this flow is reduced. We will
refer to this flow feature as the sidewall circulation. Zhang et al. [55] coined
it the boundary zonal flow (BZF); here we shall not adopt that name given
the different results from the analysis of the sidewall flow feature that we will
indicate later, which could also indicate different structures. Nevertheless, here,
as in [55], the sidewall circulation contributes significantly to the overall heat
transfer.
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Chapter 7. RRBC in a cylinder: the sidewall circulation

7.4. Size of the sidewall circulation

The definition of the size of a boundary layer like this is quite ambiguous.
Different definitions may be used, see e.g. the various definitions of the thermal
boundary layer thickness as compared in [41]. Zhang et al. [55] have introduced
four definitions that we will also apply (all evaluated at mid-height z/H = 0.5):

• δ0, where the time-and-azimuthally averaged azimuthal velocity 〈uφ〉t,φ
is zero;

• δumax
φ

, where 〈uφ〉t,φ reaches its maximum;

• δFz , where the normalized local vertical heat flux Fz = [uz(T − Tm) −
κ∂T/∂z]/(κ∆T/H) attains its maximum, with Tm = (Tbottom + Ttop)/2
the mean temperature of bottom and top plates.

• δurms
z

, where the root-mean-square (rms) vertical velocity is maximal;

Additionally, we consider three more boundary layer scales:

• δurms
φ

, location of the maximal azimuthal rms velocity;

• δT rms , location of the maximal rms temperature;

• δurms
z,min

, the location of the near-wall minimum of urms
z .

The boundary layer scales are plotted as a function of Ek in Fig. 7.3(a); We plot
the radial dependence of urms

z for the considered simulations in Fig. 7.3(b) to
further illustrate the definition of δurms

z,min
. We note that the measures based on

azimuthal averaging of azimuthal velocity disregard some of the more complex
features of the circulation, as will be shown in Section 7.6. The measures based
on peak rms velocity and peak heat flux are quite similar overall and in line with
earlier studies on sidewall Stewartson boundary layers in rotating cylindrical
convection [38, 69, 121, 207], with a thickness scaling as δS/H ∼ (2Ek)1/3

(that we cannot validate here) or δS/R ∼ (2/Γ)(2Ek)1/3 and a prefactor of
about 1. Here we choose the local minimum in urms

z for further analysis, as
we found that it captures the full near-wall heat-flux peak in Fig. 7.3(b). This
boundary layer thickness changes with Ra: a power-law fit results in δurms

z,min
/R =

(3± 1)× 10−3 ·Ra0.15±0.02.
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Figure 7.3.: (a) Various boundary-layer scales evaluated at different Ra. The definitions are
introduced in the text; the horizontal line indicates the boundary layer thickness δS/R =
(2/Γ)(2Ek)1/3 reported to be a good fit to the sidewall boundary layer thickness in previous
studies [38, 69, 121, 207]. The black dashed line is a power-law fit δurms
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/R = (3 ± 1) ×

10−3 ·Ra0.15±0.02. (b) Radial dependence of urms
z (solid lines with dark shading; left ordinate)

and Fz (dashed lines with light shading; right ordinate) at z/H = 0.5. The black crosses
indicate the positions of the local minima in urms

z , the distance of these points to the sidewall
is called δurms

z,min
.

7.5. Dynamics of the sidewall circulation

From movies of the vertical velocity in a horizontal cross-sectional plane (see
Appendix A) it is clear that the sidewall circulation rotates anticyclonically
(i.e. counter to the rotation of the cylinder) in the co-rotating frame of ref-
erence used for the simulations. As is customary in experiments and simu-
lations to study the large-scale circulation typical for non- and weakly ro-
tating convection [207, 208], we use the azimuthal profile of vertical velocity
at r/R = 1 − 1

2δurms
z,min

/R and z/H = 0.5 from our simulations to fit a cosine

function uz(φ, t) ∼ cos(φ − φ0(t)) to determine the phase angle φ0(t) of the
sidewall circulation. In Fig. 7.4(a) we plot φ0 as a function of (convective)
time t/τc. In all cases the graphs display a trend towards negative φ0, i.e.
anticyclonic precession. To quantify the drift rate we fit lines to φ0(t); the
slope ωsc is negative and its dependence on Ra is displayed in Fig. 7.4(b).
Note that we plot |ωsc|H2/ν to express the rotation rate nondimensional-
ized using the inverse viscous time 1/τν = ν/H2 rather than the convective
unit 1/τc = (gα∆T/H)1/2; the viscous unit retains the same value in all simu-
lations while τc changes with Ra. The rotation rate of the sidewall circulation
increases quite rapidly as Ra is enhanced, but it must be said that in all cases
this azimuthal drift is still more than two orders of magnitude slower than the
rotation rate of the cylinder (which is 1/(2Ek) = 5× 106 in the same units).
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Figure 7.4.: (a) Radial drift of the sidewall circulation: phase angle φ0 as a function of
time t/τc. (b) Angular velocity |ωsc| expressed in viscous units (which are independent of Ra)
as a function of Ra. The error bars represent the standard deviation of the angular velocities
determined for six equal parts of the total time. The dashed line displays a power-law
fit |ωsc|H2/ν = 6× 10−10 ·Ra1.16±0.06.

7.6. Orientation-compensated mean flow structure of
the sidewall circulation

To understand the azimuthal drift and the enhanced near-wall heat transfer,
we want to identify the circulation set up inside the sidewall circulation region.
The mean flow pattern can be identified by an orientation-compensating shift
followed by averaging, i.e. we rotate instantaneous horizontal cross-sections
counter to their corresponding φ0(t) before performing an ensemble average of
the flow field. The averaged snapshots provide detailed information on the mean
flow pattern of the sidewall circulation, as displayed in Fig. 7.5. The lowest
and highest Ra simulations are visualized here. Temperature is not included;
temperature fluctuations around the mean for each height are distributed
similarly to vertical velocity uz. What can be observed is a geostrophic bulk
(i.e. velocity components are mostly independent of the vertical coordinate),
surrounded by a two-layer (inner and outer), two-halves (left and right parts
of the panels in Fig. 7.5) sidewall boundary layer. Within this boundary layer
the azimuthal velocity uφ displays up–down antisymmetry with respect to the
midplane z/H = 0.5, while the vertical velocity uz is vertically symmetrical.
The radial velocity ur in the boundary layer region is prominent in two spots
located at the top and bottom of the panels in Fig. 7.5, where again approximate
up–down antisymmetry can be observed. The two-halves structure is the reason
why we want to avoid defining the thickness of the layer using azimuthal
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averaging of uφ; there is only a minor asymmetry between the two halves, the
mean of which does not correctly convey the size. Azimuthal averaging washes
away all of the interesting azimuthal structure revealed here. Appendix A
displays this effect for the azimuthally averaged uφ at z/H = 0.5.

In both displayed Ra cases we observe a radial structure for uz that consists
of two layers of opposite sign akin to the Stewartson-type layers described
in [121]. The thickness of the outermost layer, following the peak position
of rms velocity, is in line with the expected thickness for Stewartson layers,
as shown before. Further evidence of the layers being Stewartson layers is
presented in Appendix A, where a horizontal cross-section within the bottom
Ekman boundary layer reveals the action of the ‘corner’ region near z/H = 0
and r/R = 1 of typical dimension Ek1/2×Ek1/2 (both scaled with cell height H)
that can be quite important for the overall flux [121]. The inner part of the
Stewartson layer is expected to be weaker than the outer part; it is visible in
Fig. 7.3(b) as a smaller peak in urms

z , which is washed away by the turbulent
bulk in the higher Ra cases. In line with that, the two-layer structure in uφ,
prominent at Ra = 5.0× 1010, all but disappears at Ra = 4.3× 1011. Where
the two halves of the layers meet there is a strong radially inward flow that
can be appreciated even better from the movies in Appendix A. These jet-like
eruptions set the mean flow pattern in the bulk: at the lower Ra the jets are
deflected to the right (positive uφ) by the Coriolis acceleration; at the higher Ra
the jets collide centrally and subsequently flow outward in the perpendicular
directions. Note, however, that the mean flow in the bulk is coexisting with a
fluctuating turbulent field (see Section 7.7).

The visualizations in Fig. 7.5 have some visual resemblance to the modes for
convective onset in a cylinder [209]. However, at the current parameter values
these onset modes are domain-filling (and not wall-localized) with azimuthal
wavenumber m = 1 and leave out the prominent jets, leading us to conclude
that what we observe are not onset modes. We currently cannot explain the
structure of the sidewall circulation: its ‘torsional’ structure of the mean uφ
field (up–down antisymmetry) and its division into two halves. We are currently
studying this in more detail with boundary-layer theory.

7.7. Contributions of bulk and sidewall circulation
regions to the heat transfer

Given that the sidewall circulation contributes significantly to the overall heat
transfer, it is of interest to compare the ‘strength’ of the sidewall circulation
to the turbulence intensity. To this end we take the absolute value of uz in the
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orientation-compensated mean field at z/H = 0.5 (Fig. 7.5) and average it over
the sidewall-circulation region 1 − δurms

z,min
/R < r/R < 1 as a measure of the

strength of the sidewall circulation. The bulk turbulence intensity is measured
by urms

z averaged over 0 < r/R < 1−δurms
z,min

/R at the corresponding height. The
resulting sidewall-circulation-to-bulk-turbulence ratio denoted by Φ is Φ ≈ 3 at
the lowest Ra = 5.0× 1010; Φ ≈ 1.5 at Ra = 7.0× 1010; it attains its minimal
value Φ ≈ 0.5 at Ra = 1.4× 1011; then at the two highest Ra increases again
to Φ ≈ 0.9. An interpretation of this ratio is that its value indicates which flow
feature (turbulence or sidewall circulation) is expected to be most prominent
in an instantaneous snapshot of the flow: when Φ� 1 it will mostly display the
sidewall-circulation signature, when Φ� 1 we expect a foremost turbulent field.
From these numbers we conclude that indeed the sidewall circulation remains
significant throughout the Ra range considered here; for the lowest Ra it is
probably the dominant dynamical feature, stronger than the bulk turbulence,
while at Ra = 1.4 × 1011 the bulk turbulence is stronger than the sidewall
circulation. This can also be appreciated from the movies in Appendix A.

The distinction between bulk and sidewall-circulation regions is also eas-
ily made in the heat transfer. We have computed the bulk (near-wall) Nus-
selt number Nubulk (Nuwall) by averaging Fz over 0 < r/R < 1 − δurms

z,min
/R

(1 − δurms
z,min

/R < r/R < 1) at z/H = 0.5. These results, together with the
default full-area Nusselt number Nufull, are plotted in Fig. 7.6. Overall, we
want to mention first that Nufull (filled red circles) nicely coincides with the
experimental results, giving us trust in the current cylindrical DNS. At the
two lowest Ra considered here, part of the CTC flow regime, it can be seen
that the bulk is convecting less heat than the horizontally periodic layer. We
observe in the movies in Appendix A that a dominant horizontal flow induced
by the jets truly dominates the bulk flow, which we expect to distort and reduce
the vertical natural convection. On the other hand, when considering Nubulk

at Ra ≥ 1.4× 1011 we can see a very satisfactory quantitative agreement with
the results of the DNS on the horizontally periodic domain. This is a strong
result that indicates that — for the plumes and geostrophic-turbulence flow
regimes at least — the sidewall circulation is indeed only affecting the turbu-
lent heat flux in a confined near-wall region, while the bulk displays unaffected
dynamics at least with regard to the heat transfer. Obviously, Nuwall displays
the opposite trend from Nubulk where it reaches values higher than Nufull as a
clear sign that the near-wall region contributes more than its share in area to
the overall heat flux. If Ra would be increased beyond 4.3× 1011, we expect
the sidewall circulation to disappear once the transition to rotation-affected
flow takes place. Then the three quantities Nufull, Nubulk and Nuwall should
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Figure 7.6.: Nusselt number results from the current simulations. Included are Nufull for heat
flux averaged over the entire cylinder cross-section, as well as Nubulk and Nuwall representing
the heat flux averaged over bulk and near-wall regions, respectively. The other symbols are
repeated from Fig. 7.1.

be closer together.

7.8. Experimental evidence for existence of the sidewall
circulation

The sidewall temperature probes provide evidence for the existence of the
sidewall circulation in the experiment. In Fig. 7.7(a) we plot part of the time
trace of temperature measurements of the sidewall probes; two pairs of probes
on opposite sides of the cylinder at five different heights. The displayed part
covers 1000 convective time units, i.e. about five hours out of a total segment of
24 hours measured in this experiment. Each trace displays a somewhat erratic
but clearly evident oscillation around a mean value. This mean value is a
function of height, a well-known result of the mean temperature gradient that
develops in turbulent rotating convection [31]. There is a half-period phase
difference between signals from opposite sides of the cylinder wall (darker
and lighter shades of the same color), while signals on the same side but at
different heights are at the same phase (darker shades align in phase, as do
the lighter shades). These measurements are fully in line with the presence of
a sidewall circulation as described in the earlier sections. Since we only have
two thermistors per height we cannot determine the direction of the precession.
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Figure 7.7.: (a) Partial time traces (in convective time units) of sidewall temperature probes
at (from top to bottom) z/H = 0.1, 0.3, 0.5, 0.7 and 0.9. Each pair of lines with the same
color but different shading displays the signals from sensors on opposite sides of the cylinder
but at the same height. These measurements are taken at Ra = 4.3 × 1011. (b) Frequency
spectra of the sidewall temperature time traces in panel (a). Only one sensor per height is
included for clarity. The vertical dashed lines indicate reference angular frequencies: ωsc from
the corresponding DNS (Fig. 7.4) and Ω, the rotation rate of the setup.

But it is possible to calculate frequency spectra of the temperature time traces.
These are reported in Fig. 7.7(b), where we only include one spectrum per
vertical position for clarity; the others are similar. The shape of the spectrum
is independent of height. The precession rate ωsc of the sidewall circulation
as inferred from the corresponding DNS is indicated with a vertical dashed
line. It coincides satisfactorily with the peak of the spectra. This shows that
the precession period of the sidewall circulation is the largest active time scale
in this flow. We can compute similar spectra from the DNS for reference;
we do not show them here given that the shorter elapsed time (only a few
hundreds of τc) leads to inferior frequency resolution, but the peak is found at
the expected position. The spectra of the two other experimental cases (shown
in Appendix A) display similar results; the experiment at Ra = 1.4 × 1011

has a sidewall-circulation peak that is lower, in line with the observed lower
intensity of the sidewall circulation in that case (Section 7.7).

7.9. Conclusions

In this combined numerical–experimental investigation of rapidly rotating tur-
bulent convection in a cylindrical cell we have found a prominent sidewall
circulation that provides a significant contribution to the overall heat transfer.
It consists of a two-layer, two-halves structure with upward flow near the side-
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Chapter 7. RRBC in a cylinder: the sidewall circulation

wall on one side and downward flow on the opposite side, while the azimuthal
velocity displays a division into two radially separated bands with opposite
direction of motion and a vertical torsional structure (antisymmetry with re-
spect to the horizontal midplane). Jets consisting of intermittent bursts are
ejected into the bulk from the locations where the two halves meet. This entire
arrangement drifts slowly in the anticyclonic direction on timescales several
orders of magnitude larger than the rotation period of the cell.

The sidewall circulation described here has similarities to the boundary zonal
flow (BZF) reported by [55], but we also find remarkable differences, e.g., the
two-halves structure. We expect that most of the differences occur because
of different methods of analysis. In particular the use of azimuthal averaging
in [55] obscures a lot of the important properties of the sidewall circulation
that we report here, due to the approximate antisymmetry of the two halves.
Additionally, it is entirely possible that the differences in the values of the
governing parameters are responsible for the observed differences, given that
our Prandtl number is considerably larger (Pr = 5.2 versus 0.8 in [55]), our
Rayleigh numbers are about two orders of magnitude larger, and our Ekman
number is more than one order of magnitude smaller than the smallest Ek
considered in [55]. Finally, the cylinder aspect ratio (here Γ = 1/5, while [55]
apply Γ = 1/2) is different. There is certainly need for further reconciliation
of these results, by investigating the dependence of properties of the sidewall
circulation or BZF on the parameter values.

This sidewall circulation contributes significantly to the overall heat transfer
in a cylinder. Some care must be taken in the interpretation of these results as
far as a comparison to horizontally periodic simulation domains or geophysically
and astrophysically relevant geometries is intended (e.g. [55, 71, 76]). However,
our current findings hint at the sidewall circulation being a Stewartson-type
boundary layer, which identifies clear avenues of reducing its relative impor-
tance: either lower Ek to reduce its radial size, or increase the lateral dimensions
of the convection cell. Nevertheless, for high enough Rayleigh number, the heat
transfer properties of the bulk flow are clearly in line with those of simulated
flows in a laterally periodic domain. Hence we expect the bulk flow to be
unaffected by the sidewall. Experiments using stereoscopic particle image ve-
locimetry in TROCONVEX are in preparation; with these measurements we
will perform a more in-depth comparison of flow statistics between bulk and
sidewall regions.

The influence of lateral confinement on rotating flow systems should never
be underestimated. In this chapter we have identified a sidewall circulation
that exists only due to the presence of a sidewall. Furthermore, we have carried
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7.9. Conclusions

out some further (preliminary) simulations, both in a square cuboid domain
(courtesy of Paolo Cifani, University of Groningen) and in a cylinder domain
with stress-free sidewalls, that have also revealed the existence of a sidewall
circulation analogous to the one described in this chapter, but with differences
in details of the structure. The combination of Ekman boundary layers and
lateral confinement appears to be enough to set up a sidewall circulation. Yet,
notwithstanding the prominence of the sidewall circulation, we have shown
that a turbulent flow that is statistically unaffected by the sidewall circulation
can still develop in the bulk of confined domains. Therefore, experiments,
despite their inherent confinement, are still very valuable: they can provide
bulk turbulence unaffected by sidewall effects at more extreme parameter
values than can be achieved in numerical simulations, getting closer to the
natural systems in geophysics and astrophysics that we want to understand
and describe.
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Chapter 8

Concluding remarks

In this thesis, we have discussed direct numerical simulations of rotating
Rayleigh–Bénard convection driven by strong thermal forcing and subject
to rapid rotation. The main approach used a domain with periodic lateral
boundaries, vertically bounded by walls with no-slip boundary conditions and
constant-temperature boundary conditions, T (z = 0) = 1 and T (z = 1) = 0.
Some additional simulations on a confined cylindrical domain were considered
for comparison with results from the periodic simulations as well as results
from the laboratory experiment TROCONVEX in our group. In this chapter,
we first summarise our main conclusions, and then we discuss possible research
directions for the future.

8.1. Conclusions

Rotating Rayleigh–Bénard convection on a horizontally periodic domain is
simulated over a range of parameter values (Pr, Ek and Ra) that jointly
resolves over three decades of supercriticality Ra/Rac. We identified several
different flow regimes: cells, convective Taylor columns, plumes, large-scale
vortices (LSVs) and rotation-affected convection. These regimes, also found in
previous studies, have been investigated in this thesis from various perspectives,
with the intention to further deepen our knowledge and understanding of these
phenomena. Below, we present our main findings.

Direct calculation of the magnitude of the governing forces of RRBC revealed
that the primary force balance in the geostrophic regime (cells, columns, plumes
and large-scale vortices) is indeed geostrophy. In this balance both the Coriolis
force and the pressure-gradient are the main forces in the flow. We find that at
higher supercriticality, in the rotation-affected regime, this rotational constraint
is lost, at Ra/Rac ≈ 60 for Pr = 0.1, due to a steep drop of the relative
importance of Coriolis forces accompanied by an increase of the inertial forces.

The geostrophic flows are however ageostrophic at higher order, caused by
the contribution of other forces. For cells and columns, ageostrophy is due to
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Chapter 8. Concluding remarks

viscosity and buoyancy. Inertia is smaller, but steeply increases with Ra/Rac.
For plumes, inertial forces enter the subdominant balance, along with viscous
and buoyancy forces. For LSVs, inertia becomes the main source of ageostrophy.
In rotation-affected convection, inertial and pressure-gradient forces constitute
the dominant force balance. Here, the subdominant balance is formed by the
remaining forces: Coriolis, viscous and buoyancy forces.

In the geostrophic regime, the near-wall flow is also geostrophic at leading
order. This balance is lost towards the rotation-affected regime. As in the
bulk, this is due to a rapid decrease of the relevance of the Coriolis force
with supercriticality, and increased inertial forces. Remarkably, this occurs at
a similar supercriticality as in the bulk (i.e. Ra/Rac ≈ 60 at Pr = 0.1). In
the geostrophic regime, the thickness δu of the kinetic boundary layer scales
as Ek1/2, as expected for linear Ekman boundary layers [107]. In the rotation-
affected regime, the loss of rotational constraint in the kinetic boundary layer
is reflected as deviations from the Ek1/2 scaling. In that regime, the thermal
boundary layer thickness δθ displays a tendency towards the scaling δθ =
1/(2Nu) for non-rotating convection.

Close to the walls, viscous and inertial forces are about one order of mag-
nitude larger than in the bulk. As a result, the ageostrophic component of
the near-wall flow is about one order of magnitude larger than in the bulk.
Buoyancy does not increase as much as viscous and inertial forces. Therefore,
for cells, ageostrophy is caused by viscous forces alone, and, for columns and
plumes, it is caused by inertia and viscosity; i.e. there is no participation of
buoyancy, in contrast with the bulk. For LSVs and rotation-affected convection,
bulk and near-wall subdominant balances are similar.

These dynamical balances lead to specific flow phenomenologies in each
RRBC regime. We established connections between them and their corre-
sponding temperature signature. At Pr ≈ 5, the convective heat transfer Nu
scales as (Ra/Rac)

2.7 in the cellular and columnar regimes, and as (Ra/Rac)
0.4

in the plumes regime. For plumes at Pr = 100 the heat transport is less ef-
ficient: Nu ∼ (Ra/Rac)

0.2. For LSVs, at Pr ≈ 5 and Pr = 0.1, the Nu
scaling is in accordance with Nu∗ ∼ Ra0.55

∗ [36], where Nu∗ = NuEk/Pr and
Ra∗ = RaEk3Nu/Pr2. For rotation-affected convection (observed at Pr = 0.1),
the heat transport scaling is shallower than for LSVs, as it approaches the non-
rotating scaling Ra1/5 [115,182–184].

The relative thickness of the kinetic and thermal boundary layers affects
the near-wall temperature distribution. When the thermal boundary layer is
nested within the kinetic boundary layer, localised flows emerging from the
bottom (top) kinetic boundary layer are matched by localisation of hot (cold)
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fluid in this region. This is observed for plumes at Pr = 100, LSVs at Pr ≈ 5,
and rotation-affected convection at Pr = 0.1. We hypothesise, nonetheless,
that this correspondence becomes weaker at δu � δθ. The rationale is that
such situation would necessarily imply a state of vigorous convection (so that
δθ is small) subject to slow rotation (so that δu is large), where the active
pumping of fluid from the kinetic boundary layer is rather weak, if at all.
Conversely, when δu < δθ, hot (cold) fluid is distributed over large portions of
the horizontal domain within the bottom (top) thermal boundary layer. This
is observed for cells, columns and plumes at Pr ≈ 5, and LSVs at Pr = 0.1.
We thus hypothesise that in the case when δu � δθ, Ekman pumping leads to
the convective motion of fluid parcels with very low thermal contrast within
the thermal boundary layer.

Localised Ekman pumping from the boundary layers postpones the occur-
rence of upscale energy transfer, and thus LSVs, to significantly higher rotation
rates than for stress-free boundaries (at the same supercriticality). Namely,
they require stronger rotational constraint to be diverted into upscale transfer
to LSVs. These near-wall flows from the kinetic boundary layer are sheared
apart by large horizontal velocities from the LSVs. Their kinetic energy is then
available to be transferred towards the large scales to feed the vortex.

In confined RRBC, a sidewall circulation develops. This flow contributes
significantly to the overall bottom-to-top heat transfer. It shares resemblance
with Stewartson-type boundary layers in that its influence may be reduced
by either lowering Ek, so that its size is smaller, or by increasing the cylinder
radius. The sidewall circulation ejects fluid into the bulk. At larger Ra, where
this effect is smaller, the heat transport evaluated exclusively in the bulk
(i.e. excluding the sidewall circulation) is shown to match that of laterally
periodic domains. Thus, turbulent flows that are statistically unaffected by the
sidewall circulation can still develop in the bulk of confined domains, such as
in laboratory experiments.

8.2. Outlook

Several interesting directions for further research emanate from the results
presented in this thesis.

Our analysis of the force balances in rotating Rayleigh–Bénard convection,
in itself, provides extensive characterisation of the observed flow regimes. The
forces are computed at each computational grid cell, thus providing a real-space
local measure of their magnitude. It would be interesting perform a scale-wise
analysis, i.e. in Fourier space, of the force balances to elucidate the interplay
amongst forces at different spatial scales. For example, in our real-space analysis
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we noticed the increasing importance of inertial forces. Through the proposed
analysis, one could determine the scale, or range of spatial scales, at which
this occurs. This Fourier-based approach could also be used to evaluate the
existence of dominant physical balances over specific ranges of spatial scales.
This study would then provide useful information on the scaling ranges of
convectively driven rotating turbulence.

The direct calculation of the (local) Rossby number Ro` as the ratio of in-
ertial to Coriolis forces proved to be a good indicator of the transition from
rotation-dominated to rotation-affected convection. Given Ro` = U/2Ω`, one
could separately characterise this transition in relation to the local charac-
teristic velocity scale U (as we did using the RMS of horizontal and vertical
velocities), but also in terms of the local characteristic length scale `. Possible
connections can then be established with the study proposed above, as to how
the increased contribution of certain forces at a given spatial scale can influence
the characteristic length scale in the flow. Furthermore, it would be possible
to evaluate how this scale may depend on and/or relate to the thickness of the
kinetic or thermal boundary layers.

A crucial next step in the field of convectively driven rotating turbulence
is the exploration of LSV growth in laboratory experiments. In this setting,
RRBC can be studied at more extreme parameter values, and over a longer
time span, than can be achieved in numerical simulations. As a first step,
the simulations could help to further quantify the influence of the horizontal
jets from the sidewall circulation into the bulk. This would help to estimate
the parameter settings (Ek, Ra, Γ) at which LSV growth is feasible. The
establishment of a turbulent flow that is statistically unaffected by the sidewall
circulation would then provide results that can be compared with those from
unconfined simulations (i.e. horizontally periodic). The latter geometry turns
out to be highly relevant to planetary settings, where the horizontal dimension
is much larger than the vertical.

In this thesis, we employed a scale-by-scale energy transfer analysis to quan-
tify the interactions amongst the multi-scale structures in the flow (Chapter 6).
We found that deep insight into the boundary layer dynamics can be gained
by taking into account the height-dependency of the energy transfer function.
We promote this analysis not only for rotating Rayleigh–Bénard convection
bounded by no-slip walls but also in the field of turbulence in general.

Finally, we encourage the implementation of the current analyses in spherical
shell geometries. In particular, the investigation of LSV formation in these
geometries would allow further understanding of large-scale flow organization
in geophysical and astrophysical systems.
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Appendix A

Additional analyses of the sidewall
circulation

Azimuthally averaged profiles of azimuthal velocity

In the main text we have argued that azimuthal averaging, used frequently
in the analysis by [55], provides a different and complementary view of the
structure and size of the sidewall circulation. In visualizations of uφ the two
halves are almost identical but of opposite sign. Azimuthally averaged profiles
of uφ are the net result of these asymmetries and peaks or zero crossings are
unrelated to the actual flow structure. We plot radial profiles of the azimuthally
averaged 〈uφ〉 at z/H = 0.5 in Fig. A.1. This figure can be compared to Fig. 3(b)
of [55], that qualitatively resembles our highest-Ra case. However, the curves
for the other Ra values considered here display significantly different radial
profiles, with a considerably and non-monotonically reduced peak near the
sidewall and the development of a net cyclonic part for 0 < r . 0.75.
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Figure A.1.: Radial profiles of azimuthally averaged 〈uφ〉 at z/H = 0.5.
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Additional orientation-compensated mean velocity fields

To illustrate the flow field inside the bottom Ekman boundary layer, we present
in Figure A.2 orientation-compensated mean velocity fields in a horizontal cross-
section at z/H = 6× 10−4. The Rayleigh number is 5.0× 1010. Of particular
note is the uz snapshot, where a thin layer of opposite flow direction is formed
at the sidewall (i.e. the dark red area in the zoomed-in view), a known feature of
Stewartson boundary layers [121]. The radial (ur) and azimuthal (uφ) velocity
fields need to adapt too; the radial and azimuthal flow inside the Ekman
boundary layer is more intense than outside that layer, at higher z.

In Figure A.3 we provide orientation-compensated mean cross-sections dis-
playing the three velocity components uz, ur and uφ at heights z/H = 0.25,
0.5 and 0.75 for the three simulations for which these plots are not included in
Chapter 7. We want to emphasize the case Ra = 1.4× 1011, where the sidewall
circulation is weakest, as can be appreciated from the relatively small velocity
values and the erratic structure in the interior where no strong mean flow is
established.

Figure A.2.: Orientation-compensated mean velocity fields in horizontal cross-sections at
height z/H = 6× 10−4 for Rayleigh number Ra = 5.0× 1010. The vertical (uz), radial (ur)
and azimuthal (uφ) velocity components are shown. The top row is a zoomed-in view of the
area demarcated with the dashed line in the bottom row.
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Appendix A. Additional analyses of the sidewall circulation

Additional spectra from the experiment

In Figure A.4 we provide additional sidewall temperature frequency spectra for
the experiments at Ra = 1.4× 1011 and 3.2× 1011. In both cases the spectra
are reasonably independent of height (all curves overlap satisfactorily) and
there is a local peak close to the azimuthal drift frequency ωsc of the sidewall
circulation as found in DNS. Note that at Ra = 1.4× 1011 this peak is lower;
the sidewall circulation is weakest there.
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Figure A.4.: Frequency spectra of the sidewall temperature time traces at (a) Ra = 1.4×1011

and (b) Ra = 3.2×1011. Only one sensor per height is included for clarity. The vertical dashed
lines indicate reference angular frequencies: ωsc from the corresponding DNS (see Fig. 7.4)
and Ω, the rotation rate of the setup. The colors are as in Fig. 7.7.
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Summary

Numerical study of rapidly rotating turbulent convection

Convectively driven flows subject to the influence of rotation are everywhere
in nature, from Earth’s liquid-metal outer core, oceans and atmosphere to the
interior and atmosphere of other planets and stars like our Sun. Understanding
the dynamics of these geophysical and astrophysical flows is of paramount im-
portance, yet their sheer size, remoteness and complexity preclude their direct
investigation. The canonical model of rotating Rayleigh–Bénard convection
(RRBC), the flow between two co-rotating horizontal plates heated from below
and cooled from above, provides a simple but highly relevant framework to
study these flows. We investigate RRBC using direct numerical simulation on
a horizontally periodic domain. This geometry is relevant to large-scale natural
settings, where the horizontal dimension is much larger than the vertical (as
in oceans) or even present no lateral confinement (as in planetary and stellar
atmospheres). No-slip boundary conditions at the top and bottom walls are
employed. This provides realistic boundary conditions, relevant to natural sys-
tems and laboratory experiments. For comparison, some additional simulations
on a confined cylindrical domain are considered. This results are also compared
with those from the laboratory experiment TROCONVEX in our group.

In the explored parameter space, regimes of cellular convection, convective
Taylor columns, plumes, large-scale vortices (LSVs) and rotation-affected con-
vection are observed. In rotationally constrained regimes (cells, columns, plumes
and LSVs) both the bulk and near-wall flow is primarily geostrophic, i.e. the
balance between Coriolis and pressure-gradient forces constitute the dominant
force balance in the flow. The geostrophic flows are however ageostrophic at
higher order, as a result of the contribution of the remaining forces (inertia,
viscous and buoyancy forces). The higher order interplay between these forces
defines a subdominant balance that distinguishes the distinct geostrophic states.
Low Prandtl number simulations (where the flow is more prone to turbulence)
reveal that this rotational constraint is lost, both in the bulk and near the walls,
when the flow becomes more turbulent, in the rotation-affected regime. Near
the walls, the kinetic boundary layer dynamics is also affected: it transitions
from an Ekman-type behaviour to displaying significant deviations from it.
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Summary

The thermal boundary layer thickness approaches the non-rotating value.
In the next part of the thesis, we link the flow behaviours that result from

the force balances with their corresponding temperature features. The heat
transport scaling with flow supercriticality (defined here as the ratio between
the Rayleigh number and its critical value for onset of convection) is studied.
Closer to the onset, the flow structures (cells and columns) efficiently transport
heat. This results in a steep heat transport scaling. As turbulence increases (for
plumes, LSVs and rotation-affected convection) the scaling becomes shallower.
The temperature features near the walls are affected by the relative thickness
of the kinetic and thermal boundary layers. In particular, the skewness sign of
the temperature distribution at the kinetic boundary layer depends on whether
this boundary layer is embedded within the thermal boundary layer or not.

The following part focuses on the regime of large-scale vortices. We study
their competing dynamics against Ekman pumping from the boundary layers.
A mechanism for the interaction between LSVs and the Ekman plumes is pre-
sented. This result is particularly relevant in geophysics and astrophysics, where
large-scale flows develop regardless of the presence of frictional boundaries.

In the last part, RRBC is studied on a confined cylindrical domain. This con-
figuration yields the development of a sidewall circulation, which contributes
significantly to the overall heat transport across the fluid layer. The sidewall
circulation ejects fluid into the bulk. This effect appears to be smaller at
larger Rayleigh numbers. We discuss the nature of the sidewall circulation and
its influence on the bulk, and compare the resulting bulk dynamics with the
unbounded (periodic) case at various Rayleigh numbers. These findings estab-
lish the ground for comparison between confined settings, such as laboratory
experiments, and laterally periodic simulations.

The findings presented in this thesis elucidate the force balance, flow dy-
namics and thermal properties specific to various regimes of rapidly rotating
Rayleigh–Bénard convection. The consideration of boundary conditions rele-
vant to large-scale natural settings provides the fundamental framework for
extrapolation of our results towards geophysical and astrophysical applications.
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Cover Illustration

Snapshot of horizontal kinetic energy of rotating thermal convection displaying
a large-scale vortex (LSV). The simulation parameters are: Rayleigh number
Ra = 1010, Ekman number Ek = 2.5 × 10−7 and Prandtl number Pr = 0.1.
The colour scale is chosen to highlight the flow features. The horizontal kinetic
energy increases from blue to red. The domain is horizontally periodic, vertically
bounded by no-slip top and bottom boundaries. The actual domain is slender:
its width-to-height ratio Γ = 0.326. For better visibility, the domain is stretched
horizontally by a factor of 3.
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pričakovanja. Zdaj je čas, da rasteva skupaj in da sedaj ti sledǐs svojim sanjam,
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