

# Commutation-angle iterative learning control for walking piezostepper actuators

# Citation for published version (APA):

Aarnoudse, L. I. M., Strijbosch, N. W. A., Verschueren, E. R. M., & Oomen, T. A. E. (2020). Commutation-angle iterative learning control for walking piezo-stepper actuators. In R. Carloni, B. Jayawardhana, & E. Lefeber (Eds.), 39th Benelux Meeting on Systems and Control: Book of Abstracts (pp. 152). University of Groningen.

Document status and date: Published: 01/01/2020

## Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

## Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

#### General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- · Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
  You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

#### Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

# Commutation-Angle Iterative Learning Control for Walking Piezo-Stepper Actuators

Leontine Aarnoudse<sup>1,\*</sup>, Nard Strijbosch<sup>1</sup>, Edwin Verschueren<sup>2</sup>, Tom Oomen<sup>1</sup>

<sup>1</sup>Control Systems Technology, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands <sup>2</sup>Thermo Fisher Scientific, Achtseweg Noord 5, 5651GG Eindhoven, The Netherlands. \*Email: l.i.m.aarnoudse@tue.nl

# 1 Background

Iterative learning control (ILC) can compensate repeating disturbances in control applications by modifying a feedforward input signal based on preceding experiments [1]. During the walking motion of a piezo-stepper actuator, engagement and release between the piezo elements and the mover lead to position disturbances that are repeating in the domain in which the actuating waveforms are repeating, known as the commutation-angle or  $\alpha$ -domain [2]. For varying velocities, the temporal domain error profile caused by these disturbances is varying. Since typical ILC approaches amplify trial-varying disturbances [3], temporal domain ILC is not suited for a piezo-stepper actuator and an  $\alpha$ -domain approach is needed instead.

## **2** Problem Formulation

The position disturbances for a piezo-stepper actuator are repeating in the  $\alpha$ -domain for varying drive frequencies, but the number of samples within a step and the distance between the samples is varying, as shown in Figure 1. The aim of this research is to develop an ILC framework that is applicable to systems such as a piezo-stepper actuator that involve both position domain disturbances and intermittent sampling.

## **3** Approach

Since the sampling is iteration-varying, ILC cannot be applied directly to the sampled input and error signals. Therefore, the input and error signals are parameterized using radial basis functions [4], ch.14. An optimal ILC update law for continuous signals in the  $\alpha$ -domain is developed to determine the input parameters for each iteration. Conditions for monotonic convergence of the sequence of parameter vectors are determined.

## **4** Experimental Results and Conclusions

The feasibility of the developed ILC framework is validated experimentally using a piezo-stepper actuator walking at varying drive frequencies. The  $\alpha$ -domain repeating disturbance is compensated, leading to significant improvements in the positioning accuracy and jogging smoothness of the actuator.





(b) Disturbance as a function of the commutation angle  $\alpha$ .

Figure 1: Disturbances for a piezo-stepper for drive frequencies 20 Hz (-), 25 Hz (-), 30 Hz (-) and 40 Hz (-). In the temporal domain (a) the sampling is equidistant but the disturbance is drive-frequency dependent. In the  $\alpha$ -domain (b) the sampling is non-equidistant for varying drive frequencies, but the disturbances are similar.

## References

[1] D.A. Bristow, M. Tharayil, and A.G. Alleyne, "A survey of iterative learning control," *IEEE Control Syst.*, 26(3), 96-114, 2006.

[2] N. Strijbosch, P. Tacx, E. Verschueren, and T. Oomen, "Commutation angle iterative learning control: enhancing piezostepper actuator waveforms," In *IFAC Symp. Mechatron. Syst.*, Vienna, Austria, 2019.

[3] T. Oomen and C.R. Rojas, "Sparse iterative learning control with application to a wafer stage: achievable performance, resource efficiency, and task flexibility," *Mechatronics*, 47, 134-147, 2017.

[4] K.P. Murphy, *Machine Learning: A Probablistic Perspective.* Cambridge: The MIT Press, 2012.