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Abstract
Most time-dependent vehicle routing problems are based on a similar modeling
paradigm: travel time information is represented by travel time functions between
pairs of points of interest (e.g., depot or customers). Only a few papers investigate
how these functions can be computed using the available travel time information. Fur-
thermore, most of them neglect the possibility that different paths could be selected
in the road network depending on the compromises they offer between cost (distance)
and travel time. In this paper, we propose a new setting where travel time functions
are defined on road-network arcs. We consider the Time-Dependent Vehicle Rout-
ing Problem with Time Windows and solve it with a branch-and-price algorithm. As
far as we know, this is the first exact approach for a time-dependent vehicle rout-
ing problem when travel time functions are initially defined on the segments of a
road-network.

Keywords Time-Dependent Vehicle Routing Problem · Branch-and-price ·
Road network

1 Introduction

Vehicle routing problems (VRPs) define a class of combinatorial optimization prob-
lems that aim at computing a minimum-cost set of routes for a fleet of capacitated
vehicles to serve a set of customers. In general, every customer is served exactly once
and every route starts and ends at a central depot. The total demand delivered along
a route should not exceed the vehicle capacity. Due to their numerous applications,
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VRPs are widely studied in the operations research literature (see, e.g., Laporte [28],
Golden et al. [20], Toth and Vigo [36]).

In most models, the travel time between two customer locations is invariant over
time. Clearly, in real-life, this assumption does not hold, in particular in urban areas,
where travel times and speeds are subject to significant variations over the day. These
variations may be due to predictable events such as traffic congestion and unpre-
dictable events such as accidents, weather conditions, and vehicle breakdowns. In the
literature, predictable variations are addressed using models that incorporate time-
dependent travel information (see, e.g., Ichoua et al. [23], Fleischmann et al. [14],
Kok et al. [26], Donati et al. [9], Figliozzi [13], Dabia et al. [7]).

Typically, VRPs, including those with or without time-dependent travel times, are
tackled using a so-called customer-based graph. In a customer-based graph, each
node represents a point of interest, generally a customer or the depot. Arcs indicate
the order in which nodes are visited. Implicitly, an arc is also an abstraction of a
precomputed path in the underlying road network. The customer-based-graph model
relies on the assumption that the best paths can easily be precomputed. In many
situations, this assumption is not valid (Ben Ticha et al. [4]). One of these situations is
when several attributes (like travel time and distance) are defined on road segments.
In this case, alternative paths with different compromises may exist between pairs
of points in the road network. Discarding these alternatives when tackling VRPs can
increase solution costs significantly (Garaix et al. [15], Ben Ticha et al. [3]).

This situation is depicted in Fig. 1. The figure shows a road network, represented
with a road-network graph, and two customer-based graphs. Arcs in the min-cost
(resp., min-time) graph represent shortest paths in distance (resp., time). Route
(0,1,2,3,0), for example, has a cost 14 in the min-cost graph and 18 in the min-time
graph. On the contrary, if a time window at customer 1 imposes the vehicle to arrive
before time 4, the route is not feasible in the min-cost graph, while it is still feasible
in the min-time graph. Hence, one cannot know in advance which customer-based
graph is more appropriate.

In the literature, few papers developed innovative methodologies to counter the
negative effects of customer-based graphs. Two models are proposed. The first
model consists in representing the road network with a multigraph. In this model,
all efficient paths between two points of interest are considered and maintained
when solving the problem [2, 3, 15, 27]. The second approach consists in tackling
the problem directly on a graph that mimics the original road network, called the
road-network graph (Letchford et al. [29]).

Figure 1 represents a road-network graph and the corresponding multigraph. In
this graph, the best feasible route is always present. For example, route (0, 1, 2, 3, 0)
can be executed by reaching customer 1 before time 4 and still having a total cost of
15 instead of 18 in the min-time graph. If there is no time constraint, a total cost of
14 can be achieved, like in the min-cost graph.

In this paper, we investigate alternatives to the customer-based graph for time-
dependent VRPs. Intuitively, this is important since the road-network graph better
captures congestion effects and gives more contrasted characteristics between effi-
cient paths. The most relevant study with that matter is proposed by Huang et al.
[22]. The authors are interested in the solution of a time-dependent VRP and adopt
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a multigraph modeling: a set of efficient paths from the road network is considered
between each pair of points of interest. A limitation of this study is however the com-
putation of the multigraph. As detailed in the literature section, only a small subset
of efficient paths is considered in that paper.

Computing exactly the multigraph with time-dependent travel time information is
extremely difficult or even intractable. Indeed, one has to compute all efficient paths
in the road network, for each pair of points of interest and for each possible depar-
ture time, which induces the solution of many NP-hard multicriteria shortest path
problems (see Serafini [33], Hansen [21]). For this reason, we focus in this study on
the solution of a time-dependent VRP expressed on a road-network graph. We select
the Time-Dependent Vehicle Routing Problem with Time Windows (TDVRPTW) as
a test-bed problem and investigate the methodology that can be developed to solve
exactly the problem. We then numerically evaluate how efficient it is, and what are
the gains compared to the standard modeling with a customer-based graph.

We coin the problem as TDVRPTWRN because detailed road-network (RN) infor-
mation is used. In this problem, a road-network graph is given, with travel speed
functions assigned to every arc. Time windows restrict visit times for customers. The
objective is to minimize the traveled distance. We develop a branch-and-price algo-
rithm able to solve exactly the TDVRPTWRN . We compare our solutions with those
found on two customer-based graphs obtained from the road-network graph: a min-
cost graph where paths are selected according to their travel distance, a min-time
graph where paths are selected according to their travel time (see Fig. 1). Note that
in both cases we do not change the objective, that is still to minimize the traveled
distance. We base our experiments on benchmark instances simulating small real-life
road networks, following a procedure proposed by Letchford et al. [29].

It is important to highlight that details on how travel time functions can be
obtained for customer-based graphs are missing in most papers on time-dependent
VRPs. Conventionally, in these papers, the customer-based graph is introduced first.
Then, time-varying speed profiles are introduced on every arc (of the customer-
based graph). These speed profiles are finally converted into travel times (see, e.g.,
Ichoua et al. [23], Jabali et al. [24], Cordeau et al. [6]). With this approach, speeds
or travel times are not explicitly defined on road network arcs. In practice, it should
be the opposite. Travel time/speed information is obtained from geographic informa-
tion systems, where it is defined on road-network arcs. Travel time functions for the
customer-based graphs should thus be computed using this source of information.
Only a few papers are interested in how it can be done (see, e.g., Ghiani and Guerriero
[17] or the recent PhD thesis by Gmira [18]). Several of these studies are not con-
cerned with vehicle routing. They aim at computing point-to-point fastest paths for a
given starting time (see, e.g., Delling and Wagner [8], Orda and Rom [30], Kaufman
and Smith [25]).

This paper makes several contributions to the literature:
The main contribution is to initiate the solution process from travel speed inputs

defined on the road network. Then, it becomes clear that the problem cannot be
solved exactly using a customer-based graph. To handle this issue, we propose to
address the problem directly on the road-network graph and we develop a branch-
and-price scheme for the TDVRPTWRN . As far as we know, this is the first approach
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Fig. 1 Graphs for a simple example with 3 customers (arcs labeled with (distance,time))

that guarantees to find optimal solutions in this context. We are only aware of the
work by Gmira et al. [19] following the same line of research. They address the same
problem, also named TDVRPTWRN , with the sole difference that the objective is to
minimize travel time. Instead of investigating the exact solution of the problem, they
propose a tabu search algorithm.

The second contribution of this paper is to numerically evaluate how consider-
ing road-network information complicates the resolution and how it impacts solution
qualities. Our experiments complete and confirm results obtained for the VRPTW in
Ben Ticha et al. [5]. They suggest that using the road-network can be computationally
penalizing for large-scale road networks and remains manageable otherwise. On the
other hand, it allows important cost savings against searching a set of optimal routes
in the min-time graph (which is the only customer-based graph that always ensures
finding a solution if one exists). Gaps are more limited if the min-cost graph is used:
searching an optimal set of routes in this graph is apparently a good heuristic. How-
ever, experiments also show that using the min-cost graph relatively often leads to
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false infeasible (i.e., instances for which no solution exists using the min-cost graph
while the problem is feasible).

A final contribution is to help to clarify how customer-based graphs can be com-
puted. This information can never be found in the time-dependent VRP literature.
Note in particular that in this literature, travel times are time-dependent but distances
usually are not. This is not true in a min-time graph where the fastest road-network
path between two points of interest can vary during the day. We report two dedicated
algorithms, for the min-cost and min-time graphs, respectively.

In the remainder of this paper, we first review the relevant literature in Section 2.
We then formally describe the TDVRPTWRN (Section 3). In Section 4, we focus on
the construction of customer-based graphs. The branch-and-price algorithm devel-
oped for the solution of the TDVRPTWRN is presented in Section 5. Finally, we
present computational experiments and comment results in Section 6.

2 Literature Review

Despite the huge number of papers dealing with VRPs, the number of papers address-
ing time-dependent problems is relatively limited. As far as we know, the first study
dealing with a vehicle routing problem where travel times vary over time is by
Beasley [1]. Interested readers can refer to Gendreau et al. [16] for a recent survey and
for a discussion on the different models and problems that arise from time-dependent
data.

As already stated, papers on time-dependent vehicle routing generally assume the
data given. A stream of papers however examines the issue of constructing a database
for travel times on time-dependent road networks. Eglese et al. [10], for example, pro-
pose a model that constructs a Road Timetable based on historical data and provides
the shortest travel time for different departure times. They illustrate the benefits of
considering the Road Timetable information when tackling a VRP. The main draw-
back of their approach is that fastest paths are computed only for a set of specified
departure times. Then, the travel time for any departure time is approximated using
these computed values. This procedure may thus provide a weak estimation of travel
times, with consequences on solution quality or feasibility.

Time-dependent VRPs are most of the time tackled on customer-based graphs. In
the literature, an increasing number of papers investigates the negative impact that
this graph can have on solution quality for non-time-dependent vehicle routing prob-
lems. Garaix et al. [15] were the first to point out that transforming road-network
information into a customer-based graph can result in losing solution optimality.
They propose to replace the customer-based graph with a multigraph in which all
efficient paths are maintained. This modeling approach is investigated more in-depth
by Ben Ticha et al. [3]. They propose a branch-and-price algorithm and present an
extensive computational study based on instances from the literature and instances
representing real road networks. Reported results confirm the negative impact of the
customer-based graph. Letchford et al. [29] suggest that applying the branch-and-
price framework to a road-network graph would be more efficient. However, they
limit their investigations to the pricing problem. More recently, Ben Ticha et al. [5]
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revisited the results presented by Letchford et al. [29]. They propose a complete
branch-and-price scheme and conduct extensive comparisons between the multigraph
and the road-network graph approaches. Their results contradict those presented
in Letchford et al. [29] and conclude that in most cases the multigraph-based
branch-and-price algorithm is more efficient.

The aforementioned papers confirm that when several attributes are defined on
road segments, the traditional customer-graph affects solution quality for VRPs. In
the time-dependent VRPs literature, little attention has been paid to this issue. Apart
from the recent paper by Gmira et al. [19], the most relevant study is proposed by
Huang et al. [22]. They introduce the so-called Time-Dependent Vehicle Routing
Problem with Path Flexibility (TDVRP-PF). Path Flexibility means that when solv-
ing the problem a set of alternative paths between each pair of nodes is maintained
in a multigraph structure. These alternative paths present different compromises in
terms of travel time and distance and are computed as follows: a modified Dijk-
stra’s algorithm is first applied to compute the fastest paths for a set of discretized
departure times then the shortest path is included into the set of considered paths.
Huang et al. [22] propose a mathematical formulation for the TDVRP-PF where the
selection of a path between two customer nodes is embedded as a decision variable.
They present a computational study based on instances derived from the road net-
work of Beijing, China. Numerical results show that the path flexibility improves
significantly the solution quality in terms of cost (up to 5%) and fuel consumption
(up to 7%). The authors observe that these improvements are more significant than
those obtained using flexible departure times at the depot and customer nodes. They
also investigate the TDVRP-PF under stochastic traffic conditions and note that path
flexibility provides a natural recourse in this case.

Setak et al. [31] also introduce a multigraph to tackle a problem that they call
Time-Dependent Pollution Routing Problem. In their model, parallel arcs present
different compromises on travel times, energy consumption, and toll costs. Unfortu-
nately, they do not specify how these arcs are computed. To solve the problem, they
propose a tabu search heuristic. Their computational experiments show that using
the multigraph, an average gain of 1.1% is achieved on solution costs compared to
costs obtained with a customer-based graph. Later, Tikani and Setak [35] presented
multigraph networks in the application area of emergency logistics management.

Besides the papers cited above, similar modelings are used but with relatively dif-
ferent goals. Setak et al. [34] investigate a time-dependent vehicle routing problem
defined on a multigraph where parallel arcs represent different travel speed distri-
butions and satisfy the FIFO property. Wang and Lee [37] introduce the so-called
Time-Dependent Alternative Vehicle Routing Problem, where pairs of nodes are con-
nected with two arcs. The first arc is defined with a time-dependent travel speed
distribution and is used when traffic is low. The second arc is defined with constant
travel time and could be used as an alternative during peak hours. In both studies,
parallel arcs do not provide different compromises but, instead, offer different alter-
natives to be used depending on the departure time: at any point in time, one arc
dominates the other.

As far as we know, Gmira et al. [19] are the only ones that fully consider all the
alternatives offered by the road network for a time-dependent VRP. Contrary to the
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previous authors, they do not introduce a multigraph. They propose a tabu search
algorithm, with a specialized CROSS operator. When sequences of customers are
swapped, feasibility is checked with a special structure named �dominant shortest path
structure and solution value is only approximated. With appropriate incremental data
management, it allows evaluating neighborhood solutions in constant time.

3 ProblemDescription

The Time-Dependent Vehicle Routing Problem With Time Windows and Road-
Network Information (TDVRPTWRN ) is defined on a directed road-network graph
GRN = (V RN, ARN). V RN contains the depot node 0 and nodes that represent road
junctions. Among these nodes, a subset C represents customers. An arc (i, j) ∈ ARN

models a road segment and is defined with a travel distance (road segment length)
dij and a travel time function τij (t) which indicates the time needed to go through
arc (i, j) for a given departure time at node i. To every customer i ∈ C are assigned
a time window [ei, li], a service time sti and a demand qi . The time horizon [0, H ]
is given by the depot time window [e0, l0]. A fleet of K homogeneous vehicles with
a finite capacity Q is available to perform the deliveries.

The TDVRPTWRN consists in designing a set of routes that minimizes the total
traveled distance for the fleet of vehicles. The total load delivered along a route can-
not exceed the vehicle capacity. Each customer has to be served exactly once and
within its time window. Customer nodes can however be traversed several times, like
any other road junctions, without service.

Travel time functions τij are obtained from speed profiles. Speed profiles are
defined by step-wise functions that divide the planning horizon [0, H ] into pij time
zones. For each time zone, the travel speed is constant on arc (i, j). We denote by
T 0

ij , T
1
ij , ..., T

pij

ij the time zone boundaries with T 0
ij = 0 and T

pij

ij = H , and by sk
ij the

travel speed on time zone [T k
ij , T

k+1
ij [. T k

ij are also called speed breakpoints because
speed changes occur at these points.

Based on its speed profile, the travel time function τij (t) on an arc (i, j) can be
calculated using the procedure described in Ichoua et al. [23]. The main idea in this
procedure is that the travel speed is not necessarily constant over the entire length of
the road segment, as it changes when the boundary between two consecutive periods
is crossed. The resulting travel time function is a continuous piecewise linear function
and can be represented by the coordinates of its travel time breakpoints. As shown
in [23], such travel time function satisfies the FIFO property, i.e., a later departure at
node i results in a later arrival at node j .

The quantity aij (t) = t + τij (t) gives the arrival time at node j given a departure
time t at node i. aij (t) is a continuous piecewise linear non-decreasing function and
can be described using coordinates at arrival time breakpoints which are directly
deduced from travel time breakpoints. In this paper, we use arrival time functions as
it leads to simpler formulations. Figure 2 illustrates with a simple example inspired
from Ichoua et al. [23], the speed, travel time and arrival time functions.
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Fig. 2 Speed, travel and arrival times functions for a given arc, with three time zones on interval [0,5]

4 Construction of Customer-Based Graphs

In this section, we focus on algorithms that enable computing the min-cost and min-
time graphs. We first present basic notation and operators (Section 4.1). We then
report the two algorithms, in Sections 4.2 and 4.3.

4.1 Basic Notation and Operators

Let f be a continuous piecewise linear function, defined on an interval [0, T ]. f can
be described using the following information:

• N(f ): number of linear pieces into which f is divided.
• tkf : right boundary of the time interval on which is defined the kth piece of f

(with also t0f = 0).
• α(f, k): linear coefficient of the kth piece of f .
• β(f, k): constant term in the kth piece of f .
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Using this notation, f can be defined by:

f (t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α(f, 1)t + β(f, 1) if t0f ≤ t ≤ t1f
α(f, 2)t + β(f, 2) if t1f ≤ t ≤ t2f
· · · · · ·
α(f, N(f ))t + β(f, N(f )) if t

N(f )−1
f ≤ t ≤ t

N(f )
f

Alternatively, f can be represented using the set of interpolation points

I (f ) = {(t0f , w0
f ), (t1f , w1

f ), . . . , (t
N(f )
f , w

N(f )
f )}

where wk
f = f (tkf ).

Let us now consider two continuous piecewise linear functions f1 and f2 defined
on the same interval [0, T ]. We say f1 < f2 if f1(t) < f2(t) for all t ∈ [0, T ].
Similarly, we say f1 ≤ f2 if f1(t) ≤ f2(t) for all t ∈ [0, T ]. Finally, we define
function min{f1, f2} such that min{f1, f2}(t) = min{f1(t), f2(t)} for all t ∈ [0, T ]
(see Fig. 3).

Let us now consider four continuous piecewise linear functions f1, f2, g1, g2
defined on the same interval [0, T ]. We introduce a function g defined as fol-
lows: g(t) = g1(t) when f1(t) < f2(t), g(t) = g2(t) when f2(t) < f1(t),
g(t) = min{g1(t), g2(t)} when f1(t) = f2(t) (see Fig. 4, with functions f1 and f2
from Fig. 3). We denote this function merge

min{f1,f2}
{g1, g2}.

This last function is used to compute the travel distance function associated with a
travel time function. If f1 and f2 represent the travel time functions for two different
paths connecting the same nodes i and j , and g1 and g2 represent the length of these
paths, min{f1, f2} indicates the best travel time that can be obtained from these two
paths and merge

min{f1,f2}
{g1, g2} the associated travel distance.

Let us finally recall how arrival time functions can be composed. Let f1 and f2 be
arrival time functions for two successive arcs. The composition of f1 and f2, denoted

Fig. 3 Function min{f1, f2}
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Fig. 4 Function merge
min{f1,f2}

{g1, g2}

by f2◦f1, gives the arrival time at the end of the second arc in function of the starting
time at the beginning of the first arc. Function f2 ◦ f1 is continuous piecewise linear
and has the following set of interpolation points I (f2 ◦ f1):

• With each interpolation point (tkf1 , w
k
f1

) of f1 is associated an interpolation point

(tkf1
, f2(w

k
f1

)) for f2 ◦ f1.
• With each interpolation point (t lf2 , w

l
f2

) of f2 is associated an interpolation point

(t l
f −1
1

, wl
f2

) for f2 ◦ f1 where t l
f −1
1

is such that f1(t
l

f −1
1

) = t lf2
. Note that t l

f −1
1

is easily computed once the index k such that wk
f1

≤ t lf2
< wk+1

f1
is found:

t1
f −1
1

= t lf2
−β(f1,k)

α(f1,k)
.

In the next two sections, we present the two algorithms used to compute the min-
cost (customer-based) graph and the min-time (customer-based) graph.

4.2 Time-Dependent Shortest Path Algorithm

In the min-cost graph, arcs represent shortest paths (in distance) between points of
interest (depot and customer locations). Distance is not time-dependent. All these
paths can thus easily be computed by applying |C| + 1 times Dijkstra’s algorithm in
GRN , successively starting from the depot and every customer node.

However, for every pair of points of interest, we also need to determine the arrival
time function. Given a min-cost path, the associated arrival time function can be
computed starting with the function associated with the first arc, composing it with
the function of the second arc, and repeating that with the next arc until the end of the
path. Interpolation points for every intermediate function are computed as explained
in the previous section.

At first sight, these computations could be carried out after having applied Dijk-
stra’s algorithm. However, it would not function properly because it would not
permit to optimize arrival time functions in case of paths with the same distance. In
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our implementation, we evaluate the composition every time a label is updated in
Dijkstra’s algorithm. Details are shown with Algorithm 1.

The best subpath from the source node s ∈ {0} ∪ C to a node i ∈ V RN is labeled
with two values dSP

si and aSP
si where:

• dSP
si represents the length of the subpath;

• aSP
si represents the arrival time function at node i, starting at s and following this

subpath.

Algorithm 1 is identical to Dijkstra’s algorithm except for lines 2, 4, 13 and 15–17.
Line 2 initializes to 0̂ the arrival time function at the source node, where 0̂(t) = 0,
∀t ∈ [0, H ]. Line 4 initializes to ∞̂ the arrival time function for all other nodes,
where ∞̂(t) = +∞, ∀t ∈ [0, H ]. Line 13 updates the arrival time function when
a label is modified, i.e., a subpath has been improved. As explained above, the new
function is computed by the composition of the function associated with the preced-
ing node and the function associated with the new arc. In case of tie in distance, Lines
15–17 update the arrival time function: the minimal time is kept at each instant.

4.3 Time-Dependent Fastest Path Algorithm

In the min-time graph, arcs represent the fastest paths between points of interest
(depot and customer locations). They are described by two functions: an arrival time
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function and a distance function. A distance function is needed because the fastest
path may change depending on the departure time.

The paths can be computed by applying |C|+1 times a labeling algorithm inGRN ,
providing for a given source node in s ∈ C ∪ {0} the fastest paths to all destination
nodes in GRN for all possible departure times. This algorithm is depicted in Algo-
rithm 2. It is based on a label correcting procedure where node labels are defined by
two functions: the arrival time function aFP

si and the distance function dFP
si .

These functions are computed using the operators presented in Section 4.1. The
main idea of the algorithm is that if the arrival time function f obtained by extending
the subpath at a node i along an arc (i, j) improves the arrival time function at node
j for at least one t ∈ [0, H ], i.e., there exists t ∈ [0, H ] such that f (t) < aFP

sj (t),

then the algorithm updates aFP
sj to min{f, aFP

sj }. Furthermore, as it means that at that

time t a different path is preferred, dFP
sj is modified to merge

min{f,aFP
sj }

{dFP
si + dij , d

FP
sj }.

The structure of this algorithm seems very similar to Algorithm 1. However, there
is a huge difference in the management of the priority queue. In Algorithm 1, vertices
are ranked according to their distance to the source and can never reenter the queue.
In Algorithm 2, there is no total order between arrival time functions. A function
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aFP
si can be modified after node i has been extracted from the queue, which requires

reinserting i in the queue.

5 Branch-and-Price Algorithm for the TDVRPTWRN

In this section, we present the branch-and-price scheme used to solve the
TDVRPTWRN . The algorithm proposed in this paper is based on the branch-and-
price scheme presented in Ben Ticha et al. [5] for the same problem with constant
travel times. For this reason, we briefly describe the main components of the algo-
rithm. Compared to [5], two main modifications are carried out. First, time-dependent
travel information is considered in the pricing problem when extending labels.
Secondly, bi-directional dynamic programming is implemented.

The branch-and-price algorithm relies on a master problem that involves a large
number of variables and that cannot be solved using a standard branch-and-bound
procedure. To handle this issue, a column generation procedure is applied, resulting
in a branch-and-price algorithm.

5.1 Master Problem

The master problem for the TDVRPTWRN is given by set covering formulation (1)–
(4):

Min
∑

r∈�

crxr (1)

s.t
∑

r∈�

airxr ≥ 1 ∀i ∈ C (2)

∑

r∈�

xr ≤ K (3)

xr ∈ {0, 1} ∀r ∈ � (4)

where � denotes the set of feasible routes, cr is the cost (total traveled distance) of
route r ∈ � and air = 1 if customer i ∈ C is served in route r , 0 otherwise. Binary
variable xr takes value 1 if route r is selected in the solution, 0 otherwise.

In the column generation procedure, a restriction of the LP relaxation of Eqs. 1–4
to a subset of routes �1 ⊂ �, the so-called restricted Master Problem (MP(�1)),
is solved at each iteration. �1 is composed of all the routes generated at previous
iterations and is iteratively enlarged by solving the pricing problem. For a detailed
tutorial on branch-and-price methods, we refer the reader to Feillet [11].

5.2 Pricing Problem

The pricing problem aims at finding new routes offering better ways to serve cus-
tomers, i.e., with a negative reduced cost. The pricing problem can be reduced to a
Time Dependent Shortest Path Problem with Resource Constraints (TDSPPRC) in
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GRN . Ben Ticha et al. [5] notice that, in the road-network graph, the elementary
path condition has to be modified. Indeed, the set of feasible routes contain routes in
which some nodes or arcs of the road network can be traversed several times. In what
follows, we say that a route or a path is elementary if customer nodes in the route are
served at most once, even if they are traversed several times.

To solve the TDSPPRC, we develop a time-dependent labeling algorithm which
is a modification of the labeling algorithm proposed in [5]. This algorithm works
as follows. A subpath from the depot to a node i ∈ V RN is represented using a
label defined by L = (i, t, c, q, S) where t is the arrival time at node i (starting
from the depot at time 0), c is the reduced cost associated with the subpath, q is
the total demand of the customers served along the subpath and S represents the set
of customers that are not reachable anymore, either because they have already been
served or because they cannot be reached due to resource constraints. Remember
that our objective function is to minimize the traveled distance. For that reason, it is
always optimal to start from the depot at time 0, which explains that we do not have
to maintain a travel time function in labels. Addressing the variant of the problem
introduced in Gmira et al. [19], with a travel time minimization objective, would
strongly complicate the pricing.

At each iteration, all labels at a certain node i ∈ V RN are extended along arcs
(i, j) ∈ ARN . When the destination node j is a customer node, two extensions are
processed. In the first extension, the service at the customer j is performed, if it is
feasible. In the second extension, the node is only visited without servicing the asso-
ciated customer. To handle the exponentially growing number of generated labels,
we use the dominance rule proposed by Feillet et al. [12] and defined as follows:

Definition 1 A label L1 = (i, t1, c1, q1, S1) dominates a label L2 =
(i, t2, c2, q2, S2) if:

1. t1 ≤ t2
2. c1 ≤ c2
3. q1 ≤ q2
4. S1 ⊆ S2

To improve the efficiency of the pricing algorithm, we implement a bi-directional
search strategy. To do this, we associate two types of labels with each node i: forward
labels defined as described above and backward labels representing subpaths from
i to the depot. Backward labels are defined by LB = (i, t, c, q, S) where t is the
latest starting time from node i (enabling reaching the depot before time H ), c is the
reduced cost, q the total demand and S the set of unreachable customers. Extension
for a backward label consists in adding an arc at the beginning of the subpath. New
forward labels are only accepted when t ≤ H/2. Backward labels with t ≤ H/2
are accepted but are not extended further. Once no more extensions are possible,
forward labels and backward labels assigned to the same node are merged to generate
complete routes.
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Note that the efficiency of the labeling algorithm depends on the length of the
subpaths defined by the labels. The bi-directional search strategy aims at limiting this
length. More details on bi-directional search can be found in Righini and Salani [32]
and Dabia et al. [7].

5.3 Branching Scheme

The branching rule aims at eliminating the current fractional solution by adding con-
straints and partitioning the solution space. As shown in [5], the standard branching
rule used for vehicle routing problems is not suitable in a road-network graph. The
reason is that in a customer-based graph, every arc is traversed at most once in a
feasible solution. This property does not hold anymore in a road-network graph. We
apply the procedure proposed by Ben Ticha et al. [5]:

• We select an arc (i, j) ∈ ARN with a fractional flow φij = ∑
r∈�1

bijrxr , where
bijr represents the number of times arc (i, j) is traversed along route r;

• We derive two branches:

– In the first branch, we set the flow upper limit on arc (i, j) to �φij 

– In the second branch, we set the flow lower limit on arc (i, j) to �φij 
+1

To address this branching rule in the column generation procedure, we add constraints
(5) or (6) to the restricted master problems:

∑

r∈�1

bijrxr ≤ �φij 
 with associated dual variable λlow
ij ≤ 0 (5)

∑

r∈�1

bijrxr ≥ �φij 
 + 1 with associated dual variable λ
up
ij ≥ 0 (6)

For the pricing, the new dual variable is subtracted from the cost associated with arc
(i, j).

Unfortunately, this simple branching rule is not sufficient. Indeed, it can happen
that all flow values φij are integer while the solution is fractional. In this case, we
follow Ben Ticha et al. [5] and apply an alternative branching mechanism. Again, we
generate two branches:

• In the first branch, we check if graph G̃ = (V RN, Ã), where Ã = {(i, j) ∈
ARN : ∑

r∈�1
bijrxr > 0}, contains a feasible solution. This is done by first

enumerating all the feasible routes in G̃, then solving the resulting set covering
formulation with an integer programming solver.

• In the second branch, we enforce the use of at least one arc that is not in Ã.
For this aim, we add constraint

∑
(i,j)∈ARN\Ã

∑
r∈�1

bijrxr ≥ 1 to the restricted
master problem and we subtract the associated dual variable from the cost of
every arc (i, j) ∈ ARN \ Ã when solving the pricing problem.
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6 Computational Experiments

In this section, we present our experimental study. We first describe the benchmark
problems that we use. Then, we summarize the computational results and we evaluate
the advantages of the road-network graph against the two customer-based graphs.

The branch-and-price algorithm is implemented in C++ and we use CPLEX 12.6
for the linear programs. Tests are run on an Intel CORE i5 2.6 GHz computer with
8GB of memory. Computing times for the branch-and-price algorithms with the
different graphs are limited to 7200 seconds.

6.1 Test Data

Our experiments are based and a set of instances that simulate the topology of road
networks and that we call NEWLET instances. These instances are generated using
the procedure proposed in Letchford et al. [29] and that performs as follows. First,
it randomly inserts nodes in the Euclidean space, then it considers all possible arcs
and inserts a new arc in ARN when two conditions are met: it does not provoke
any intersection with other arcs and angles with other arcs at its endpoints are large
enough. Arc costs are set according to Euclidean distances.

With this procedure, we generate three sparse graphs with |V RN | ∈
{50, 100, 200}. For each sparse graph, three different sets of static travel times with
different levels of correlation are computed using formula tij = ν ∗ cij + μ ∗ γij ∗ c̄

where c̄ = max{cij : (i, j) ∈ ARN }, γij is a random number in [0, 1] and, ν and
μ are correlation parameters defined in [0, 1]. The first set of static travel times has
non-correlated travel times (NC), the second set has weakly correlated travel times
(WC), the third set has strongly correlated travel times (SC). These travel times rep-
resent “nominal” travel times in the road network during non-congested periods and
are used to compute “nominal” travel speeds.

To take into account traffic congestion, we associate with every road segment
a road profile. We then divide the planning horizon [0, H ] into 5 periods: z1 =
[0, 0.2H [, z2 = [0.2H, 0.3H [, z3 = [0.3H, 0.7H [, z4 = [0.7H, 0.8H [ and,
z5 = [0.8H, H [. The second and fourth periods are congestion periods. Speeds in the
remaining periods are relatively high. Implicitly, with this decomposition, we assume
that for all road segments, speed breakpoints are the same. It makes sense in practice
since congestion tends to happen around the same periods (peak hours) in all the road-
network. We assume that there are three types of road segments: congestion-bound,
normal, and congestion-free. The type of the road segment is randomly defined and
remains the same for the different correlation levels on each road network. Speed on a
road segment is then obtained by multiplying its nominal speed by a factor depending
on both the segment type and the period, as reported in Table 1.

Given this data, instances are constructed by randomly assigning the depot and
the customers to some nodes. For the sparse graph with |V RN | = 50, we generate
instances with |C| = 16 and |C| = 33. For the sparse graph with |V RN | = 100, we
generate instances with |C| = 25, |C| = 33 and, |C| = 50. For the sparse graph with
|V RN | = 200, we generate instances with |C| = 25 and |C| = 50. It gives a total of
21 instances.
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Table 1 Speed factor profiles

z1 z2 z3 z4 z5

Congestion-free road segments 1.5 1 1.67 1.17 1.33

Normal road segments 1.17 0.67 1.33 0.83 1

Congestion-bound road segments 1 0.33 0.67 0.5 0.83

Each instance is duplicated by assigning either narrow (NTW) or wide time-
windows (WTW) to customers. Time windows are defined such that a set of routes,
constructed with a greedy algorithm and without considering congestion, is feasible.
Finally, an integer service time in {1, 2} is defined for each customer. We set vehicle
capacity to 200 and we consider a fleet with a large number of vehicles. We define
customer demands such that the routes introduced when defining time windows are
feasible.

Table 2 Computing times for the construction of customer-based graphs

construction construction

|V RN | |ARN | |C| Corr min-cost(s) min-time(s)

50 134 16 NC 0.2 2.0

WC 0.2 1.5

SC 0.2 2.1

33 NC 0.4 4.5

WC 0.4 4.0

SC 0.4 4.9

100 286 25 NC 0.5 10.8

WC 0.5 10.1

SC 0.5 14.7

33 NC 0.8 17.3

WC 0.8 16.1

SC 0.8 22.5

50 NC 1.4 29.1

WC 1.5 26.8

SC 1.4 34.9

200 580 25 NC 1.3 46.7

WC 1.3 46.9

SC 1.3 80.4

50 NC 3.4 138.7

WC 3.4 113.0

SC 3.6 152.1
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The 42 instances can be downloaded at the following address: http://absi.nabil.
free.fr/#instances.

6.2 Results and Analyses

With our experiments, we evaluate the tractability of the solution of the
TDVRPTWRN and we compare solution values with those obtained using customer-
based graphs. Table 2 presents the computing times required by the construction of
the min-cost and min-time graphs. Tables 3 and 4 compare computing times and
solution+ values depending on the graph.

Columns “|V RN |”, “|ARN |” indicate the number of nodes and the number of arcs
in the road-network graph. Column “|C|” indicates the number of customers. Col-
umn “Corr” gives the correlation degree between travel times and costs. Columns
“construction min-cost graph(s)” and “construction min-time graph(s)” report the

Table 3 Computing times and solution values for instances with narrow time windows

CPU CPU CPU gap gap

|V RN | |ARN | |C| Corr min-cost(s) min-time(s) road-network(s) min-cost(%) min-time(%)

50 134 16 NC Infeasible 3.8 95.6 – −19.8

WC 10.9 4.6 1.7 0.0 −9.6

SC 1.2 0.8 1.0 0.0 −1.3

33 NC 1.2 31.9 3.5 – −14.2

WC 698.0 672.9 14.4 0.0 −9.6

SC 111.7 60.8 8.9 0.0 −0.9

100 286 25 NC Infeasible 0.2 1.1 – −7.9

WC 0.4 0.2 1.4 0.0 −8.9

SC 0.7 0.4 1.5 0.0 −4.0

33 NC Infeasible 0.2 1.0 – −13.3

WC 1.0 0.6 2.0 0.0 −7.6

SC 15.9 14.3 49.6 0.0 −1.3

50 NC 4.3 1.8 4.0 0.0 −6.2

WC 26.9 18.5 4.0 0.0 −3.3

SC 199.8 103.5 201.3 0.0 −3.5

200 580 25 NC 0.3 0.3 4.0 −7.8 −17.2

WC 0.5 0.4 4.0 −9.1 −2.2

SC 3.2 2.7 3.9 0.0 −3.8

50 NC Infeasible 47.5 13.0 – −16.7

WC 52.9 52.9 7089.2 −2.2 −7.7

SC 1265.4 1447.9 18.7 0.0 −1.7

−Instances not solved in 7200 seconds
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Table 4 Computing times and solution values for instances with wide time windows

CPU CPU CPU gap gap

|V RN | |ARN | |C| Corr min-cost(s) min-time(s) road-network(s) min-cost(%) min-time(%)

50 134 16 NC 2.0 1.3 15.0 −12.4 −17.2

WC 31.4 16.3 2.8 0.0 −11.3

SC 6.4 3.6 1.7 0.0 −0.2

33 NC Infeasible 2893.2 7125.2 – −11.4

WC − − − – –

SC − − − – –

100 286 25 NC 1.4 1.9 28.2 −5.3 −12.0

WC 1.1 0.8 2.4 0.0 −4.6

SC 8.5 4.0 26.2 0.0 −1.8

33 NC 9.5 1.3 2229.9 −5.6 −9.0

WC 5.2 6.4 5.1 −0.2 −3.5

SC 97.4 45.6 24.4 0.0 −1.9

50 NC 22.2 10.2 6.1 0.0 −6.1

WC 3361.3 2512.8 56.7 0.0 −3.5

SC − − 1532.5 – –

200 580 25 NC 0.9 15.5 7199.2 −2.0 −15.8

WC 19.3 2.6 96.6 −4.7 −1.5

SC 146.7 119.2 27.4 0.0 −1.4

50 NC 1682.4 5150.0 − – –

WC 4066.2 − 4364.3 −3.2 –

SC − − − – –

−Instances not solved in 7200 seconds

computing times (in seconds) for the construction of the customer-based graphs.
Columns “CPU min-cost(s)”, “CPU min-time(s)” and “CPU road-network(s)” report
the computing times of the branch-and-price algorithms, expressed in seconds. The
“gap” columns report the gap between solution values of the TDVRPTWRN and
solution values in the associated customer-based graph. These gaps are computed as
follows:

gap(%)= costs in road network graph − costs in customer based graph

costs in customer based graph
∗100
(7)

As expected, we see from Table 2 that the computing time needed for the con-
struction of the min-time graph is larger than that of the min-cost graph, and that it
increases with the number of customers.

From Tables 3 and 4, it comes out that 38 out of 42 TDVRPTWRN instances are
solved, while 32 and 37 optimal solutions only are obtained when using the min-cost
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and min-time graphs, respectively (plus 5 proven infeasibility for the min-cost graph).
Computing times are however very unpredictable. In some instances (see, e.g., the
last two instances in Table 3), huge differences can appear between the three solution
methods, not always at the advantage of the same method. Precisely, the branch-and-
price algorithm on the road-network graph is faster for 14 out of 31 solved instances
compared to the min-cost graph and is faster for 14 out of 36 solved instances com-
pared to the min-time graph. The interesting point is that on these instances using the
road-network is tractable, at least as much as using customer-based graphs.

The fact that the efficiency of branch-and-price algorithms is very dependent on
instance characteristics is known for a long time for vehicle routing problems. It
is generally admitted that it depends on the number of nodes in the routes that are
generated by the pricing problem. It is more surprising and difficult to explain that
the same instance can be solved so irregularly depending on the implementation.
Looking carefully at Tables 3 and 4, a correlation can be observed between comput-
ing times obtained with the two customer-based graphs. Probably, the very different
behavior observed when the road-network is used, is due to the fact that the branch-
and-price is operated on a very different network. The number of nodes in routes
found in this network is not strictly correlated to the number of visited customers,
that is, the number of nodes of equivalent routes in the customer-based graphs.

Regarding solution values, the TDVRPTWRN enables to achieve important
improvements. Solution costs are reduced for 10 instances compared to solutions
obtained with the min-cost graph and for 36 instances compared to solutions obtained
with the min-time graph. Gaps are up to 12.4% and 19.8%, respectively. Average
gaps are 1.7% and 7.3%. Furthermore, the min-cost graph does not admit any feasible
solution for 5 instances (due to the loss in the graph of more costly but faster paths).

Another interesting observation is that increasing the correlation between costs
and travel times reduces the improvements in solution costs obtained when con-
serving the complete road-network information. Especially, gaps are most of the
time significantly larger for NC instances. While strong correlations can be expected
between travel times and distances, it means that road-network information is spe-
cially relevant when compromises between less correlated attributes are sought, for
example, between travel time and danger for hazmat transportation.

7 Conclusions

In this paper, we investigated the Time-Dependent Vehicle Routing Problem with
Time Windows and Road-Network Information (TDVRPTWRN ). The originality of
this model is that time-dependent travel time information is defined on road-network
arcs. It goes against the traditional modeling paradigm of time-dependent vehicle
routing problems where a customer-based graph is first introduced and travel time
functions are then directly defined on this graph arcs. We only found a few papers
following the same line in the literature.

The TDVRPTW was selected for this study as an exemplary problem involv-
ing travel time and another attribute, namely travel distance. We proposed an exact
solution approach based on branch-and-price. As far as we know, this is the first
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work addressing the exact solution of a time-dependent VRP starting from input data
defined at the road-network level. Previous works either consider a limited set of
options for traveling between customers (e.g., Huang et al. [22]) or develop heuristic
solution schemes (Gmira et al. [19]).

With our experiments, we demonstrated that important savings could be obtained
by working on the road-network graph compared to two alternative approaches: using
the min-cost graph or the min-time graph. Regarding the min-time graph, large gaps,
up to almost 20%, could be obtained on solution costs, especially when the two
attributes (travel-time and cost) are assumed not to be correlated. With regards to
the min-cost graph, many false infeasible situations were observed: no solution was
found with the min-cost graph while the problem is feasible.

Several important algorithms are also presented in this paper. First, we describe
two original dynamic programming algorithms to compute the travel-time and travel
distance functions in the min-cost and min-time graphs. This is new in the time-
dependent VRP literature where such algorithms cannot be found. Second, we adapt a
branch-and-price scheme to the TDVRPTWRN to be able to derive optimal solutions
while considering complete road-network information. The main specificity of this
algorithm is to apply branch-and-price directly on the road-network graph.

This algorithm and the two branch-and-price algorithms for which vehicle routes
are defined on customer-based graphs, show however some limits. Actually, the
main purpose of our study was to provide a complete solution scheme, starting
from realistic time-dependent input data at the road-network level and computing
optimized vehicle routes. Even so, we quickly started checking how the algorithm
would scale up. We considered a road-network extracted from OpenStreetMap©
(www.openstreetmap.org/), with 5437 nodes and 19500 arcs. On this network, we
could solve instances with up to 25 customers. Larger instances were out of reach.
More details are given in the Appendix. To deal with larger instances, the proposed
branch-and-price framework could be enhanced in many ways. For example, the
special structure of the road-network graph could be exploited much more in the pric-
ing problem. Also, heuristic pricing methods might be designed. Introducing valid
inequalities, in a branch-cut-and-price framework could also be very helpful.

Another interesting research direction that is left for perspective would be to
develop multigraphs built upon accurately selected efficient paths (e.g., the min-cost
and min-time paths together). It would allow keeping an efficiency similar to that of
customer-based graphs with more limited impacts on solution quality.
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Appendix. Experiments on larger instances

In this Appendix, we report preliminary results on larger instances.

A.1 Instance Generation

The new instances are generated based on real data from the road network of the
central urban area of the city of Aix-en-Provence (a city-commune in the south
of France). Spatial data is extracted from OpenStreetMap© (www.openstreetmap.
org/). We obtain a road-network graph with 5437 nodes and 19500 arcs (see Fig. 5).
Each arc is defined with a length and a maximum allowed speed. Costs are set as
road segment lengths.

Time periods and speed profiles are defined as described in Section 6.1. Road
segment types are defined according to maximum allowed speeds. For highways,
motorways, and arterial roads (characterized with a high maximum allowed speed),
the road segment type is set to “normal”. For streets, boulevards, and roads in the
center of the city, the road segment type is set to “congestion-bound”. For small
roads and living streets (characterized with a low maximum allowed speed), the road
segment type is set to “congestion-free”.

Based on this road network, we generate instances with |C| ∈ {5, 10, 25}, with
three instances for each value of |C|. Depot and customer locations, time windows,
customer demands, service times, and vehicle capacity are defined in the same way
as for NEWLET instances. We call these instances AIX instances.

Fig. 5 Road Network of the central urban area of Aix-en-Provence (France)
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A.2 Experiments

Table 5 reports the results obtained for AIX instances. Headings are the same as
in previous tables, except Column “Ins”, which indicates the instance index. Note
that results are not reported for min-time graphs. Indeed, due to the complexity of
the proposed algorithm (see Section 4.3), we could not generate complete min-time
graphs in a reasonable amount of time for this road-network.

Table 5 Computing times and solution values for AIX instances

construction CPU CPU gap

|C| Ins min-cost(s) min-cost(s) road-network(s) min-cost(%)

5 1 12.8 0.02 7.0 −10.4

2 17.8 0.03 8.2 −11.8

3 17.2 0.10 24.4 −7.6

10 1 28.3 0.06 18.3 −7.1

2 43.0 0.05 12.7 −6.9

3 34.9 0.05 40.9 −2.1

25 1 129.3 0.09 97.9 −0.6

2 114.6 0.09 56.8 −1.4

3 164.3 0.08 35.8 −4.3

In these instances, the size of the road-network and the small density of customer
nodes in the network are representative of what can be expected in real distribution
systems. Especially, the road-network is much larger than customer-based graphs. We
observe that solving the TDVRPTWRN becomes more complicated. Only instances
with a limited number of customers can be solved in a reasonable amount of time.
However, we also observe that the benefits are there. Solving the TDVRPTWRN

enables improving solution costs for all the instances, in amounts largely greater than
those obtained on NEWLET instances. The saving is 5.8% on average and reaches
11.8%. We also see that the improvement in solution costs decreases when the num-
ber of customer nodes increases. The average improvement is 9.9% for instances with
5 customers and goes down to 2.1% for instances with 25 customers.
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