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Abstract Major complications arise from the recent increase in the amount of high-
dimensional data, including high computational costs and memory requirements.
Feature selection, which identifies the most relevant and informative attributes of
a dataset, has been introduced as a solution to this problem. Most of the existing
feature selection methods are computationally inefficient; inefficient algorithms
lead to high energy consumption, which is not desirable for devices with limited
computational and energy resources. In this paper, a novel and flexible method for
unsupervised feature selection is proposed. This method, named QuickSelection1,
introduces the strength of the neuron in sparse neural networks as a criterion to
measure the feature importance. This criterion, blended with sparsely connected
denoising autoencoders trained with the sparse evolutionary training procedure,
derives the importance of all input features simultaneously. We implement Quick-
Selection in a purely sparse manner as opposed to the typical approach of using
a binary mask over connections to simulate sparsity. It results in a considerable
speed increase and memory reduction. When tested on several benchmark datasets,
including five low-dimensional and three high-dimensional datasets, the proposed
method is able to achieve the best trade-off of classification and clustering accuracy,
running time, and maximum memory usage, among widely used approaches for
feature selection. Besides, our proposed method requires the least amount of energy
among the state-of-the-art autoencoder-based feature selection methods.
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1 Introduction

In the last few years, considerable attention has been paid to the problem of
dimensionality reduction and many approaches have been proposed [49]. There are
two main techniques for reducing the number of features of a high-dimensional
dataset: feature extraction and feature selection. Feature extraction focuses on
transforming the data into a lower-dimensional space. This transformation is
done through a mapping which results in a new set of features [36]. Feature
selection reduces the feature space by selecting a subset of the original attributes
without generating new features [12]. Based on the availability of the labels,
feature selection methods are divided into three categories: supervised [2, 12],
semi-supervised [54, 44], and unsupervised [39, 16]. Supervised feature selection
algorithms try to maximize some function of predictive accuracy given the class
labels. In unsupervised learning, the search for discriminative features is done
blindly, without having the class labels. Therefore, unsupervised feature selection
is considered as a much harder problem [16].

Feature selection methods improve the scalability of machine learning algo-
rithms since they reduce the dimensionality of data. Besides, they reduce the
ever-increasing demands for computational and memory resources that are intro-
duced by the emergence of big data. This can lead to a considerable decrease
in energy consumption in data centers. This can ease not only the problem of
high energy costs in data centers but also the critical challenges imposed on the
environment [52]. However, a challenging problem that arises in this domain is
that selecting features from datasets that contain a huge number of features and
samples, may require a massive amount of memory, computational, and energy
resources. Since most of the existing feature selection techniques were designed to
process small-scale data, their efficiency can be downgraded with high-dimensional
data [9]. Only a few studies have focused on designing feature selection algorithms
that are efficient in terms of computation [48, 1].

The main contributions of this paper can be summarized as follows:

• We propose a new fast and robust unsupervised feature selection method, named
QuickSelection. As briefly sketched in Figure 1, It has two key components:
(1) Inspired by node strength in graph theory, the method proposes the neu-
ron strength of sparse neural networks as a criterion to measure the feature
importance; and (2) The method introduces sparsely connected Denoising Au-
toencoders (sparse DAEs) trained from scratch with the sparse evolutionary
training procedure to model the data distribution efficiently. The imposed
sparsity before training also reduces the amount of required memory and the
training running time.
• We implement QuickSelection in a completely sparse manner in Python using

the SciPy library and Cython rather than using a binary mask over connections
to simulate sparsity. This ensures minimum resources requirements, i.e. just
Random-Access Memory (RAM) and Central Processing Unit (CPU), without
demanding Graphic Processing Unit (GPU).

The experiments performed on 8 benchmark datasets suggest that QuickSelec-
tion has several advantages over the state-of-the-art, as follows:

• It is the first or the second-best performer in terms of both classification and
clustering accuracy in almost all scenarios considered.
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(a) Epoch 0 (b) Epoch 5 (c) Epoch 10

Fig. 1: High-level overview of the proposed method, “QuickSelection”. (a) At epoch
0, connections are randomly initialized. (b) After 5 epochs, some connections are
changed during the training procedure and, as a result, the strength of some neurons
has increased or decreased. (c) Finally, at epoch 10, the network has converged
and we can observe which neurons are important (larger and darker blue circles)
and which are not.

• It is the best performer in terms of the trade-off between classification and
clustering accuracy, running time, and memory requirement.
• The proposed sparse architecture for feature selection has at least with one
order of magnitude fewer parameters than its dense equivalent. This leads to
the outstanding fact that the wall clock training time of QuickSelection running
on CPU is smaller than the wall clock training time of its autoencoder-based
competitors running on GPU in most of the cases.
• Last but not least, QuickSelection computational efficiency makes it to have the

minimum energy consumption among the autoencoder-based feature selection
methods considered.

2 Related Work

2.1 Feature Selection

The literature on feature selection shows a variety of approaches that can be divided
into three major categories including filter, wrapper, and embedded methods.
Filter methods use a ranking criterion to score the features and then remove the
features with scores below a threshold. These criteria can be Laplacian score [25],
Correlation, Mutual Information [12], and many other scoring methods such as
Bayesian scoring function, t-test scoring, and Information theory-based criteria [30].
These methods are usually fast and computationally efficient. Wrapper methods
evaluate different subsets of features to detect the best subset. Wrapper methods
usually give better performance than filter methods; they use a predictive model to
score each subset of features. However, this results in high computation complexity.
Seminal contributions for this type of feature selection have been made by [27].
In [27], the authors used a tree structure to evaluate the subsets of features.
Embedded methods unify the learning process and the feature selection [28]. Multi-
Cluster Feature Selection (MCFS) [11] is an unsupervised method for embedded
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feature selection, which selects features using spectral regression with L1-norm
regularization. A key limitation of this algorithm is that it is computationally
intensive since it depends on computing the eigenvectors of the data similarity
matrix and then solving an L1-regularized regression problem for each eigenvector
[19]. Unsupervised Discriminative Feature 9 Selection (UDFS) [53] is another
unsupervised embedded feature selection algorithm that simultaneously utilizes
both feature and discriminative information to select features [34].

2.2 Autoencoders for Feature Selection

In the last few years, many deep learning-based models have been developed to select
features from the input data using the learning procedure of deep neural networks
[35]. In [38], a Multi-Layer Perceptron (MLP) is augmented with a pairwise-coupling
layer to feed each input feature along with its knockoff counterpart into the network.
After the training, the authors use the filter weights of the pairwise-coupling layer
to rank input features. Autoencoders which are generally known as a strong tool for
feature extraction [8] are being explored to perform unsupervised feature selection.
In [22], authors combine autoencoder regression and group lasso task for unsuper-
vised feature selection named AutoEncoder Feature Selector (AEFS). In [15], an
autoencoder is combined with three variants of structural regularization to perform
unsupervised feature selection. These regularizations are based on slack variables,
weights, and gradients, respectively. Another recently proposed autoencoder-based
embedded method is feature selection with Concrete Autoencoder (CAE) [5]. This
method selects features by learning a concrete distribution over input features.
They proposed a concrete selector layer that selects a linear combination of input
features that converges to a discrete set of K features during training. In [45], the
authors showed that a large set of parameters in CAE might lead to over-fitting in
case of having a limited number of samples. In addition, CAE may select features
more than once since there is no interaction between the neurons of the selector
layer. To mitigate these problems, they proposed a concrete neural network feature
selection (FsNet) method, which includes a selector layer and a supervised deep
neural network. The training procedure of FsNet considers reducing the reconstruc-
tion loss and maximizing the classification accuracy simultaneously. In our research,
we focus mostly on unsupervised feature selection methods.

Denoising Autoencoder (DAE) is introduced to solve the problem of learning
the identity function in the autoencoders. This problem is most likely to happen
when we have more hidden neurons than inputs [4]. As a result, the network output
may be equal to the inputs, which makes the autoencoder useless. DAEs solve
the aforementioned problem by introducing noise on the input data and trying to
reconstruct the original input from its noisy version [50]. As a result, DAEs learn a
representation of the input data that is robust to small irrelevant changes in the
input. In this research, we use the ability of this type of neural network to encode
the input data distribution and select the most important features. Moreover, we
demonstrate the effect of noise addition on the feature selection results.
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2.3 Sparse Training

Deep neural networks usually have at least some fully-connected layers, which
results in a large number of parameters. In a high-dimensional space, this is not
desirable since it may cause a significant decrease in training speed and a rise
in memory requirement. To tackle this problem, sparse neural networks have
been proposed. Pruning the dense neural networks is one of the most well-known
methods to achieve a sparse neural network [32, 24]. In [23], Han et al. start from
a pre-trained network, prune the unimportant weights, and retrain the network.
Although this method can output a network with the desired sparsity level, the
minimum computation cost is as much as the cost of training a dense network. To
reduce this cost, Lee et al. [33] start with a dense neural network, and prune it prior
to training based on connection sensitivity; then, the sparse network is trained in
the standard way. However, starting from a dense neural network requires at least
the memory size of the dense neural network and the computational resources for
one training iteration of a dense network. Therefore, this method might not be
suitable for low resource devices.

In 2016, Mocanu et al. [40] have introduced the idea of training sparse neural
networks from scratch, a concept which recently has started to be known as sparse
training. The sparse connectivity pattern was fixed before training using graph
theory, network science, and data statistics. While it showed promising results,
outperforming the dense counterpart, the static sparsity pattern did not always
model the data optimally. In order to address these issues, in 2018, Mocanu et al.
[41] have proposed the Sparse Evolutionary Training (SET) algorithm which makes
use of dynamic sparsity during training. The idea is to start with a sparse neural
network before training and dynamically change its connections during training in
order to automatically model the data distribution. This results in a significant
decrease in the number of parameters and increased performance. SET evolves the
sparse connections at each training epoch by removing a fraction ζ connections
with the smallest magnitude, and randomly adding new connections in each layer.
Bourgin et al. [10] have shown that a sparse MLP trained with SET achieves state-
of-the-art results on tabular data in predicting human decisions, outperforming
fully-connected neural networks and Random Forest, among others.

In this work, we introduce for the first time sparse training in the world of
denoising autoencoders, and we named the newly introduced model sparse denoising
autoencoder (sparse DAE). We train the sparse DAE with the SET algorithm to
keep the number of parameters low, during the training. Then, we then exploit the
trained network to select the most important features.

3 Proposed Method

To address the problem of the high dimensionality of the data, we propose a novel
method, named “QuickSelection”, to select the most informative attributes from the
data, based on their strength (importance). In short, we train a sparse denoising
autoencoder network from scratch in an unsupervised adaptive manner. Then, we
use the trained network to derive the strength of each neuron in the input features.

The basic idea of our proposed approach is to impose sparse connections on
DAE, which proved its success in the related field of feature extraction, to efficiently
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handle the computational complexity of high-dimensional data in terms of memory
resources. Sparse connections are evolved in an adaptive manner that helps in
identifying informative features.

A couple of methods have been proposed for training deep neural networks
from scratch using sparse connections and sparse training [14, 41, 7, 42, 17, 55]. All
these methods are implemented using a binary mask over connections to simulate
sparsity since all standard deep learning libraries and hardware (e.g. GPUs) are not
optimized for sparse weight matrix operations. Unlike the aforementioned methods,
we implement our proposed method in a purely sparse manner to meet our goal of
actually using the advantages of a very small number of parameters during training.
We decided to use SET in training our sparse DAE.

The choice of SET is due to its desirable characteristic. SET is a simple method
yet achieves satisfactory performance. Unlike other methods that calculate and
store information for all the network weights, including the non-existing ones, SET
is memory efficient. It stores the weights for the existing sparse connections only.
It does not need any high computational complexity as the evolution procedure
depends on the magnitude of the existing connections only. This is a favourable
advantage to our proposed method to select informative features quickly. In the
following subsections, we first present the structure of our proposed sparse denoising
autoencoder network and then explain the feature selection method.

3.1 Sparse DAE

Structure As the goal of our proposed method is to do fast feature selection in a
memory-efficient way, we consider here the model with the least possible number of
hidden layers, one hidden layer, as more layers mean more computation. Initially,
sparse connections between two consecutive layers of neurons are initialized with
an Erdős–Rényi random graph, in which the probability of the connection between
two neurons is given by

P (W l
ij) =

ε(nl−1 + nl)

nl−1 × nl
, (1)

where ε denotes the parameter that controls the sparsity level, nl denotes number
of neurons at layer l, and W l

ij is the connection between neuron i in layer l− 1 and
neuron j in layer l, stored in the sparse weight matrix Wl.

Input denoising We use the additive noise model to corrupt the original data:

x̃ = x+ nfN (µ, σ2), (2)

where x is the input data vector, nf (noise factor) is a hyperparameter of the model
which determines the level of corruption, and N (µ, σ2) is a Gaussian noise. After
denoising the data, we derive the hidden representation h using this corrupted
input. Then, the output z is reconstructed from the hidden representation. Formally,
the hidden representation h and the output z are computed as follows:

h = a(W1x̃+ b1), (3)

z = a(W2h+ b2), (4)
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Fig. 2: Neuron’s strength on the MNIST dataset. The heat-maps above are a 2D
representation of the input neuron’s strength. It can be observed that the strength
of neurons is random at the beginning of training. After a few epochs, the pattern
changes, and neurons in the center become more important and similar to the
MNIST data pattern.

where W1 and W2 are the sparse weight matrices of hidden and output layers
respectively, b1 and b2 are the bias vectors of their corresponding layer, and a is
the activation function of each layer. The objective of our network is to reconstruct
the original features in the output. For this reason, we use mean squared error
(MSE) as the loss function to measure the difference between original features x
and the reconstructed output z:

LMSE = ‖z− x‖22 . (5)

Finally, the weights can be optimized using the standard training algorithms
(e.g., Stochastic Gradient Descent (SGD), AdaGrad, and Adam) with the above
reconstruction error.

Training procedureWe adapt the SET training procedure [41] in training our
proposed network for feature selection. SET works as follows. After each training
epoch, a fraction ζ of the smallest positive weights and a fraction ζ of the largest
negative weights at each layer is removed. The selection is based on the magnitude
of the weights. New connections in the same amount as the removed ones are
randomly added in each layer. Therefore the total number of connections in each
layer remains the same, while the number of connections per neuron varies, as
represented in Figure 1. The weights of these new connections are initialized from
a standard normal distribution.The random addition of new connections do not
have a high risk of not finding a good sparse connectivity at the end of the training
process because it has been shown in [37] that sparse training can unveil a vast
number of very different sparse connectivity local optima which achieve a very
similar performance.

3.2 Feature Selection

We select the most important features of the data based on the weights of their
corresponding input neurons of the trained sparse DAE. Inspired by node strength
in graph theory [6], we determine the importance of each neuron based on its
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strength. We estimate the strength of each neuron (si) by the summation of
absolute weights of its outgoing connections.

si =
n1∑
j=1

|W 1
ij |, (6)

where n1 is the number of neurons of the first hidden layer, and W 1
ij denotes the

weight of connection linking input neuron i to hidden neuron j.
As represented in Figure 1, the strength of the input neurons changes during

training; we have depicted the strength of the neurons according to their size and
color. After convergence, we compute the strength for all of the input neurons; each
input neuron corresponds to a feature. Then, we select the features corresponding
to the neurons with K largest strength values:

F∗s = argmax
Fs⊂F,|Fs|=k

∑
fi∈Fs

si, (7)

where F and F∗s are the original feature set and the final selected features respectively,
fi is the ith feature of F, and K is the number of features to be selected. In addition,
by sorting all the features based on their strength, we will derive the importance
of all features in the dataset. In short, we will be able to rank all input features by
training just once a single sparse DAE model.

For a deeper understanding of the above process, we analyze the strength of
each input neuron in a 2D map on the MNIST dataset. This is illustrated in Figure
2. At the beginning of training, all the neurons have small strength due to the
random initialization of each weight to a small value. During the network evolution,
stronger connections are linked to important features gradually. We can observe
that after ten epochs, the neurons in the center of the map become stronger. This
pattern is similar to the pattern of MNIST data in which most of the digits appear
in the middle of the picture.

We studied other metrics for estimating the neuron importance such as the
strength of output neurons, degree of input and output neurons, and strength and
degree of neurons simultaneously. However, in our experiments, all these methods
have been outperformed by the strength of the input neurons in terms of accuracy
and stability.

4 Experiments

In order to verify the validity of our proposed method, we carry out several exper-
iments. In this section, first, we state the settings of the experiments, including
hyperparameters and datasets. Then, we perform feature selection with QuickSe-
lection and compare the results with other methods, including MCFS, Laplacian
Score, and three autoencoder-based feature selection methods. After that, we do
different analyses on QuickSelection to understand its behavior. Finally, we discuss
the scalability of QuickSelection and compare it with the other methods considered.
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4.1 Settings

The experiment settings, including the values of hyperparameters, implementation
details, the structure of the sparse DAE, datasets we use for evaluation, and the
evaluation metric, are as follows.

4.1.1 Hyperparameters and Implementation

For feature selection, we consider the case of the simplest sparse DAE with one
hidden layer consisting of 1000 neurons. This choice is made due to our main
objective to decrease the model complexity and the number of parameters. The
activation function used for the hidden and output layer neurons is “Sigmoid” and
“Linear” respectively, except for the Madelon dataset where we use “Tanh” for the
output activation function. We train the network with SGD and a learning rate
of 0.01. The hyperparameter ζ, the fraction of weights to be removed in the SET
procedure, is 0.2. Also, ε, which determines the sparsity level, is set to 13. We set
the noise factor (nf ) to 0.2 in the experiments. To improve the learning process of
our network, we standardize the features of our dataset such that each attribute
has zero mean and unit variance. However, for SMK and PCMAC datasets, we use
Min-Max scaling. The preprocessing method for each dataset is determined with a
small experiment of the two preprocessing method.

We implement sparse DAE and QuickSelection2 in a purely sparse manner in
Python, using the Scipy library [26] and Cython. We compare our proposed method
to MCFS, Laplacian score (LS), AEFS, and CAE, which have been mentioned
in Section 2. We also performed some experiments with UDFS; however, since
we were not able to obtain many of the results in the considered time limit (24
hours), we do not include the results in the paper. We have used the scikit-feature
repository for the implementation of MCFS, and Laplacian score [34]. Also, we
use the implementation of feature selection with CAE and AEFS from Github3.
In addition, to highlight the advantages of using sparse layers, we compare our
results with a fully-connected autoencoder (FCAE) using the neuron strength as a
measure of the importance of each feature. To have a fair comparison, the structure
of this network is considered similar to our DAE, one hidden layer containing 1000
neurons implemented using TensorFlow. For all the other methods (except FCAE
for which all the hyperparameters and preprocessing are similar to QuickSelection),
we scaled the data between zero and one, since it yields better performance than
data standardization for these methods. The hyperparameters of the aforementioned
methods have been set similar to the ones reported in the corresponding code or
paper. We perform our experiments on a single CPU core, Intel Xeon Processor E5
v4, and for the methods that require GPU, we use NVIDIA TESLA P100.

2 The implementation of QuickSelection is available at: https://github.com/
zahraatashgahi/QuickSelection

3 The implementation of AEFS and CAE is available at: https://github.com/mfbalin/
Concrete-Autoencoders

https://github.com/zahraatashgahi/QuickSelection
https://github.com/zahraatashgahi/QuickSelection
https://github.com/mfbalin/Concrete-Autoencoders
https://github.com/mfbalin/Concrete-Autoencoders
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Table 1: Datasets characteristics.

Dataset Dimensions Type Samples Train Test Classes

Coil20 1024 Image 1440 1152 288 20
Isolet 617 Speech 7737 6237 1560 26
HAR 561 Time Series 10299 7352 2947 6

Madelon 500 Artificial 2600 2000 600 2
MNIST 784 Image 70000 60000 10000 10

SMK-CAN-187 19993 Microarray 187 149 38 2
GLA-BRA-180 49151 Microarray 180 144 36 4

PCMAC 3289 Text 1943 1554 389 2

4.1.2 Datasets

We evaluate the performance of our proposed method on eight datasets, including
five low-dimensional datasets and three high-dimensional ones. Table 1 illustrates
the characteristics of these datasets.

– COIL-20 [43] consists of 1440 images taken from 20 objects (72 poses for each
object).

– Madelon [21] is an artificial dataset with 5 informative features and 15 linear
combinations of them. The rest of the features are distractor features since they
have no predictive power.

– Human Activity Recognition (HAR) [3] is created by collecting the obser-
vations of 30 subjects performing 6 activities such as walking, standing, and
sitting. The data was recorded by a smart-phone connected to the subjects’
body.

– Isolet [18] has been created with the spoken name of each letter of the English
alphabet.

– MNIST [31] is a database of 28x28 images of handwritten digits.
– SMK-CAN-187 [46] is a gene expression dataset with 19993 features. This

dataset compares smokers with and without lung cancer.
– GLA-BRA-180 [47] consists of the expression profile of Stem cell factor useful

to determine tumor angiogenesis.
– PCMAC [29] is a subset of the 20 Newsgroups data.

4.1.3 Evaluation Metrics

To evaluate our model, we compute two metrics: clustering accuracy and classifica-
tion accuracy. To derive clustering accuracy [34], first, we perform K-means using
the subset of the dataset corresponding to the selected features and get the cluster
labels. Then, we find the best match between the class labels and the cluster labels
and report the clustering accuracy. We repeat the K-means algorithm 10 times
and report the average clustering results since K-means may converge to a local
optimal.

To compute classification accuracy, we use a supervised classification model
named “Extremely randomized trees” (ExtraTrees), which is an ensemble learning
method that fits several randomized decision trees on different parts of the data
[20]. For datasets that do not contain a test set, we split the data into training and
testing sets, including 80% of the total original samples for training set and the
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Table 2: Clustering accuracy (%) using 50 selected features (except Madelon for
which we select 20 features). On each dataset, the bold entry is the best-performer,
and the italic one is the second-best performer.

Method COIL-20 Isolet HAR Madelon MNIST SMK GLA PCMAC

MCFS 67.0±0.7 33.8±0.5 62.4±0.0 57.2±0.0 35.2±0 51.6±0.2 65.8±0.3 50.6±0.0
LS 55.5±0.4 33.2±0.2 61.2±0.0 58.1±0.0 14.9±0.1 51.6±0.4 55.5±0.4 50.6±0.0
CAE 60.0±1.1 31.6±1.3 51.4±0.4 56.9±3.6 49.2±1.5 60.7±0.4 55.4±1.3 52.0±1.2
AEFS 51.2±1.7 31.0±2.7 55.0±2.2 50.8±0.2 40.0±1.9 52.4±1.8 56.1±5.2 50.9±0.5
FCAE 60.2±1.7 28.7±2.5 49.5±8.7 50.9±0.4 28.2±8.5 51.5±0.8 53.5±3.0 50.9±0.1

QS10 59.5±2.1 32.5±2.8 56.0±2.6 57.5±3.8 45.4±3.9 54.0±3.1 53.6±4.7 50.9±0.5
QS100 60.2±2.0 35.1±2.7 54.6±4.5 58.2±1.5 48.3±2.4 51.8±0.8 59.5±1.8 52.5±1.1
QSbest 63.8±1.5 42.2±2.6 59.5±4.3 58.6±0.9 48.3 ±2.4 54.9±1.39 59.5±1.8 53.1±0

Table 3: Classification accuracy (%) using 50 selected features (except Madelon for
which we select 20 features). On each dataset, the bold entry is the best-performer,
and the italic one is the second-best performer.

Method COIL-20 Isolet HAR Madelon MNIST SMK GLA PCMAC

MCFS 99.2±0.3 79.5±0.4 88.9±0.3 81.7±0.8 88.7±0 75.8±1.5 70.6±3.8 55.5±0.0
LS 89.8±0.4 83.0±0.2 86.4±0.4 91.4±0.9 20.7±0.1 71.6±5.6 71.7±1.1 50.4±0.0
CAE 99.6±0.3 89.8±0.6 91.7±1.0 87.5±2.0 95.4±0.1 71.6±3.1 70.0±4.1 59.9±1.5
AEFS 93.0±2.7 85.1±2.4 87.7±1.4 52.1±2.8 86.1±2.0 76.3±4.4 68.9±3.7 57.1±3.6
FCAE 99.7±0.2 81.6±5.9 87.4±2.4 53.5±8.1 68.8±28.7 71.6±3.5 72.8±4.8 58.1±1.9

QS10 98.8±0.6 86.9±1.1 88.8±0.7 86.6±.6 93.8±0.6 76.9±4.6 69.4±3.0 58.9±4.4
QS100 99.7±0.3 89.0±1.3 90.2±1.2 90.3±0.7 93.5±0.5 75.7±3.9 73.3±3.3 58.0±2.9
QSbest 99.7±0.3 89.0±1.3 90.5±1.6 90.9 ±0.5 94.2 0.5± 81.6 ±2.9 73.3±3.3 61.3±6.1

remaining 20% for testing set. We train the ExtraTrees classifier with 50 trees as
estimators on the K selected features of our training data. Then, we compute the
classification accuracy on the unseen test data.

4.2 Feature Selection

We select 50 features from each dataset except Madelon, for which we select just
20 features since most of its features are non-informative noise. Then, we compute
the clustering and classification accuracy on the selected subset of features; the
more informative features selected, the higher accuracy will be achieved. The
clustering and classification accuracy results of our model and the other methods
is summarized in Tables 2 and 3, respectively. These results are an average of 5
runs for each case. For the autoencoder-based feature selection methods, including
CAE, AEFS, and FCAE, we consider 100 training epochs. However, we present
the results of QuickSelection at epoch 10 and 100 named QuickSelection10 and
QuickSelection100, respectively. This is mainly due to the fact that our proposed
method is able to achieve a reasonable accuracy after the first few epochs. Moreover,
we perform hyperparameter tuning for ε and ζ using the grid search method over a
limited number of values for all datasets; the best result is presented in Table 2
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Fig. 3: Influence of feature removal on Madelon dataset. After deriving the impor-
tance of the features with QuickSelection, we sort and then remove them based on
the above two methods.

and 3 as QuickSelectionbest. The results of hyperparameters selection can be found
in Appendix B.2. However, we do not perform hyperparameter optimization for the
other methods. Therefore, in order to have a fair comparison between all methods,
we do not compare the results of QuickSelectionbest with the other methods.

From Table 2, it can be observed that QuickSelection outperforms all the other
methods on Isolet, Madelon, and PCMAC, in terms of clustering accuracy, while
being the second-best performer on Coil20, MNIST, SMK, and GLA. Furthermore,
On the HAR dataset, it is the best performer among all the autoencoder-based
feature selection methods considered. As shown in Table 3, QuickSelection outper-
forms all the other methods on Coil20, SMK, and GLA, in terms of classification
accuracy, while being the second-best performer on the other datasets. From these
Tables, it is clear that QuickSelection can outperform its equivalent dense network
(FCAE) in terms of classification and clustering accuracy on all datasets. We will
discuss the performance of all methods in terms of classification accuracy, clustering
accuracy, running time, and maximum memory usage, in more detail in Section
5.1.

4.2.1 Relevancy of Selected Features

To illustrate the ability of QuickSelection in finding informative features, we
analyze thoroughly the Madelon dataset results, which has the interesting property
of containing many noisy features. We perform the following experiments; first,
we sort the features based on their strength. Then, we remove the features one
by one from the least important feature to the most important one. In each
step, we train an ExtraTrees classifier with the remained features. We repeat this
experiment by removing the feature from the most important ones to the least
important ones. The result of classification accuracy for both experiments can be
seen in Figure 3. On the left side of Figure 3, we can observe that removing the
least important features, which are noise, increases the accuracy. The maximum
accuracy occurs after we remove 480 noise features. This corresponds to the moment
when all the noise features are supposed to be removed. In Figure 3 (right), it
can be seen that removing the features in a reverse order results in a sudden
decrease in the classification accuracy. After removing 20 features (indicated by
the vertical blue line), the classifier performs like a random classifier. We conclude
that QuickSelection is able to find the most informative features in good order.
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Fig. 4: Average values of all data samples of each class corresponding to the 50
selected features on MNIST after 100 training epochs (bottom), along with the
average of the actual data samples of each class (top).

To better show the relevancy of the features found by QuickSelection, we
visualize the 50 features selected on the MNIST dataset per class, by averaging
their corresponding values from all data samples belonging to one class. As can
be observed in Figure 4, the resulting shape resembles the actual samples of the
corresponding digit. We discuss the results of all classes at different training epochs
in more detail in Appendix C.

5 Discussion

5.1 Accuracy and Computational Efficiency Trade-off

In this section, we perform a thorough comparison between the models in terms of
running time, energy consumption, memory requirement, clustering accuracy, and
classification accuracy. In short, we change the number of features to be selected
(K) and measure the accuracy, running time, and maximum memory usage across
all methods. Then, we compute a score, based on the ranking of the methods for
each value of K and then compare the results.

We analyse the effect of changingK on QuickSelection performance and compare
with other methods; the results are presented in Figure 7 in Appendix A.1. Figure
7a compares the performance of all methods when K is changing between 5 and
100 on low-dimensional datasets, including Coil20, Isolet, HAR, and Madelon.
Figure 7b illustrates performance comparison for K between 5 and 300 on the
MNIST dataset which is also a low-dimensional dataset. We discuss this dataset
separately since it has a large number of samples that makes it different from
other low-dimensional datasets. Figure 7c represents a similar comparison on three
high-dimensional datasets, including SMK, GLA, and PCMAC. It should be noted
that to have a fair comparison, we use a single CPU core to run these methods;
however, since the implementations of CAE and AEFS are optimized for parallel
computation, we use a GPU to run these methods. We also measure the running
time of feature selection with CAE on CPU.

To compare the memory requirement of each method, we profile the maximum
memory usage during feature selection for different values of K. The results are
presented in Figure 8 in Appendix A.1 derived using a Python library named
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Fig. 5: Feature selection comparison in terms of classification accuracy, clustering
accuracy, speed, and memory requirement. Scores are given based on the ranking
of the methods on each dataset and for different values of K.

resource4. Besides, to compare memory occupied by the autoencoder-based models,
we count the number of parameters for each model. The results are shown in Figure
11 in the Appendix A.3.

However, comparing all of these methods only by looking into the graphs in
Figure 7 and Figure 8 is not easily possible, and the trade-off between the factors is
not clear. For this reason, we compute a score to take all these metrics into account,
simultaneously. To this end, on each dataset and for each value of K, we rank
the methods based on the running time, memory requirement, clustering accuracy,
and classification accuracy. Then, we give a score of 1 to the best and second-
best performer; this is mainly due to the fact that in most cases the difference
between these two is negligible. After that, we compute the summation of these
scores for each method on all datasets. The results are presented in Figure 5. The
cumulative score for each method consists of four parts that correspond to each
metric considered. As it is obvious in this Figure, QuickSelection (cumulative score
of QuickSelection10 and QuickSelection100) outperforms all other methods by a
significant gap. Our proposed method is able to achieve the best trade-off between
accuracy, running time, and memory usage, among all these methods. Laplacian
score, the second-best performer, has a decent performance in terms of running
time and memory, while it cannot perform well in terms of accuracy. On the other
hand, CAE has a satisfactory performance in terms of accuracy. However, it is not
among the best two performers in terms of computational resources for any values
of K. Finally, FCAE and AEFS cannot achieve a decent performance compared to
the other methods. A more detailed version of Figure 5 is available in Figure 9 in
Appendix A.1.

The Next analysis we perform concerns the energy consumption of each method.
We estimate the energy consumption of each method using the running time of the
corresponding algorithm for each dataset and value of K. We assume that each
method uses the maximum power of the corresponding computational resources
during its running time. Therefore, we derive the power consumption of each

4 https://docs.python.org/2/library/resource.html
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Fig. 6: Running time comparison on an artificially generated dataset. The features
are generated using a standard normal distribution and the number of samples for
each case is 5000.

method, using the running time and maximum power consumption of CPU and/or
GPU, which can be found within the specification of the corresponding CPU or
GPU model. As shown in Figure 10 in Appendix A.2, the Laplacian score feature
selection needs the least amount of energy among the methods on all datasets except
the MNIST dataset. QuickSelection10 is the best performer on MNIST in terms
of energy consumption. Laplacian score and MCFS are sensitive to the number
of samples. They cannot perform well on MNIST, either in terms of accuracy or
efficiency. The maximum memory usage during feature selection for Laplacian
score and MCFS on MNIST is 56 GB and 85 GB, respectively. Therefore, they
are not a good choice in case of having a large number of samples. QuickSelection
is the second-best performer in terms of energy consumption, and also the best
performer among the autoencoder-based methods. QuickSelection is not sensitive
to the number of samples or the number of dimensions.

Another significant advantage of our proposed method is that it gives the
ranking of the features as the output. Therefore, unlike the MCFS or CAE that
need the value of K as their input, QuickSelection is not dependent on K and
needs just a single training of the sparse DAE model for any values of K.

5.2 Running Time Comparison on an Artificially Generated Dataset

In this section, we perform a comparison of the running time of the autoencoder-
based feature selection methods on an artificially generated dataset in order to
have a controlled environment with respect to the number of input features and
hidden neurons.

In this experiment, we aim to compare the speed of QuickSelection versus
other autoencoder-based feature selection methods for different numbers of input
features. We run all of them on an artificially generated dataset with various
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numbers of features and 5000 samples, for 100 training epochs (10 epochs for
QuickSelection10). The features of this dataset are generated using a standard
normal distribution. In addition, we aim to compare the running time of different
structures for these algorithms. The specifications of the network structure for
each method, the computational resources used for feature selection, and the
corresponding results can be seen in Figure 6.

For CAE, we consider two different values of K. The structure of CAE depends
on this value. CAE has two hidden layers including a concrete selector and a
decoder that have K and 1.5K neurons, respectively. Therefore, by increasing the
number of selected features, the running time of the model will also increase. In
addition, we consider the cases of CAE with 1000 and 10000 hidden neurons in the
decoder layer (manually changed in the code) to be able to compare it with the
other models. We also measure the running time of performing feature selection
with CAE using only a single CPU core. It can be seen from Figure 6 that its
running time is considerably high. The general structures of AEFS, QuickSelection,
and FCAE are similar in terms of the number of hidden layers. They are basic
autoencoders with a single hidden layer. For AEFS, we considered three structures
with different numbers of hidden neurons, including 300, 1000, and 10000. Finally,
for QuickSelection and FCAE, we consider two different values for the number of
hidden neurons, including 1000 and 10000.

It can be observed that the running time of AEFS with 1000 and 10000 hidden
neurons using a GPU, is much larger than the running time of QuickSelection100

with similar numbers of hidden neurons using only a single CPU core, respectively.
The same pattern is also visible in the case of CAE with 1000 and 10000 hidden
neurons. This pattern also repeats in the case of FCAE with 10000 hidden neurons.
The running time of FCAE with 1000 hidden neurons is approximately similar
to QuickSelection100. However, the difference between these two methods is more
significant when we increase the number of hidden neurons to 10000. This is
mainly due to the fact that the difference between the number of parameters of
QuickSelection and the other methods become much higher for large values of K.
Besides, these observations depict that the running time of QuickSelection does
not change significantly by increasing the number of hidden neurons.

As we have also mentioned before, QuickSelection gives the ranking of the
features as the output. Therefore, unlike CAE which should be run separately for
different values of K, QuickSelection is not affected by the choice of K because
it computes the importance of all features at the same time and after finishing
the training. In short, QuickSelection10 has the least running time among other
autoencoder-based methods while being independent of the value of K. In addition,
unlike the other methods, the running time of QuickSelection is not sensitive to
the number of hidden neurons since the number of parameters is low even for a
very large hidden layer.

6 Conclusion

In this paper, a novel method (QuickSelection) for energy-efficient unsupervised
feature selection has been proposed. It introduces neuron strength in sparse neural
networks as a measure of feature importance. Besides, it proposes sparse DAE
to accurately model the data distribution and to rank all features simultaneously
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based on their importance. By using sparse layers instead of dense ones from the
beginning, the number of parameters drops significantly. As a result, QuickSelection
requires much less memory and computational resources than its equivalent dense
model and its competitors. For example, on low-dimensional datasets, including
Coil20, Isolet, HAR, and Madelon, and for all values of K, QuickSelection100 which
runs on one CPU core is at least 4 times faster than its direct competitor, CAE,
which runs on a GPU, while having a close performance in terms of classification
and clustering accuracy. We empirically demonstrate that QuickSelection achieves
the best trade-off between clustering accuracy, classification accuracy, maximum
memory requirement, and running time, among other methods considered. Besides,
our proposed method requires the least amount of energy among autoencoder-based
methods considered.

We believe that interesting future research would be to study the effects of
sparse training and neuron strength in other types of autoencoders for feature
selection, e.g. CAE. Nevertheless, this paper has just started to explore one of the
most important characteristics of QuickSelection, i.e. scalability, and we intend to
explore further its full potential on datasets with millions of features. Besides, this
paper showed that we can perform feature selection using neural networks efficiently
in terms of computational cost and memory requirement. This can pave the way for
reducing the ever-increasing computational costs of deep learning models imposed
on data centers. As a result, this will not only save the energy costs of processing
high-dimensional data but also will ease the challenges of high energy consumption
imposed on the environment.
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Appendix

A Performance Evaluation

In this appendix, we compare all methods from different aspects including accuracy, memory
usage, running time, energy consumption, and the number of parameters. We perform different
experiments to gain a deep insight on the performance of QuickSelection.

A.1 Discussion: Accuracy and Computational Efficiency Trade-off

In this section, we compare the performance of all methods in more detail. We run feature
selection for different values of K on each dataset and then measure the performance.

As can be seen in Figure 7, we compare clustering accuracy, classification accuracy, and
running time, among the methods for different values of K. The comparison of maximum
memory (RAM) requirement is also depicted in Figure 8. For all methods except CAE and
AEFS, we run the experiments on a single CPU core. Since the implementations of CAE and
AEFS are optimized for GPU, we measure the running time of these methods using a GPU.
However, we also consider the running time of CAE using a single CPU core. It should be
noticed that since Laplacian score, AEFS, FCAE, and QuickSelection give the ranking of the
features as the output of the feature selection process, we need to run them just once for all
values of K. However, MCFS and CAE need the K value, as an input of their algorithm. So,
the running time depends on the value of K. In the implementation of AEFS, K is used to set
the number of hidden values. However, it is not the requirement of the algorithm.

We summarize the results of the aforementioned plots in Figure 9; we compare the methods
using a score that is computed based on their ranks in clustering accuracy, classification
accuracy, running time, and memory. As explained in the paper, we give a score of one to each
method that is the first or second-best performer in each of the considered metrics. Then, we
compute a sum over all of these scores on all datasets and on all values of K; the final scores
for each method can be seen in Figure 9. The first column is the results on low-dimensional
datasets with a low number of samples, including Coil20, Isolet, HAR, and Madelon. The
second column is the results corresponding to MNIST. Similarly, the third column corresponds
to high-dimensional datasets, including SMK, GLA, and PCMAC. The total score over all of
these datasets is shown in the 4th column. However, Since the performance of each method can
be different in each of the three groups of datasets, we compute a normalized average of the
scores based on the number of datasets in each group. For example, the Laplacian score has a
poor performance on MNIST and this pattern would be similar on other datasets with a large
number of samples. However, there is just one dataset with a large number of samples in this
experiment. On the other hand, on high-dimensional datasets with a low number of samples,
this method has a good performance in terms of running time and we have three datasets with
such characteristics. So, we compute another score where instead of giving a score of one to
each method, we give a score of one divided by the number of datasets in the corresponding
group. The results are shown in the last column. In Figure 9, there exist four rows; the first row
corresponds to considering QuickSelection10 and QuickSelection100 simultaneously, and the
sum of their scores are depicted in the second row. The last two rows correspond to considering
each of these two methods separately.

A.2 Energy Consumption

We perform another experiment regarding the comparison of energy consumption among all
methods. The results are presented in Figure 10. More detail regarding this plot is given in the
paper in Section 5.1.
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(a) Low-dimensional datasets
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(b) MNIST
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(c) High-dimensional datasets

Fig. 7: Comparison of clustering accuracy, classification accuracy, and running
time for various values of K among all the methods considered on eight datasets,
including low-dimensional and high-dimensional datasets. The running time of
CAE and AEFS is measured using a GPU, while all the other methods use only a
single CPU core.
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Fig. 8: Maximum memory usage during feature selection for different values of K.
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Fig. 9: Feature selection results comparison in terms of classification accuracy,
clustering accuracy, speed, and memory. The Scores are based on the ranking of
the methods on each dataset and for different values of K.

A.3 Number of Parameters

In Figure 11, we compare the number of parameters of the autoencoder-based methods. FCAE,
a fully connected-autoencoder with 1000 hidden neurons, has the highest number of parameters
on all datasets. Our proposed network, sparse DAE, has the lowest number of parameters
in most cases. It has 1000 hidden neurons that are sparsely connected to input and output
neurons. The number of parameters of AEFS and CAE depends on the number of selected
features. As also mentioned earlier, the structure of AEFS is similar to FCAE with a difference
in the number of hidden neurons. The number of hidden neurons in the implementation of
AEFS is set to K.
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Fig. 10: Energy consumption of all methods for different values of K.
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Fig. 11: Number of parameters of autoencoder-based models for different values of
K.

B Parameter Selection

In this appendix, we discuss the effect of three hyperparameters of QuickSelection on feature
selection performance.

B.1 Noise Factor

To analyze the effect of the noise level on QuickSelection behavior, we evaluate the sparse DAE
model with different noise factors. To this end, we test different noise factors between 0 and 0.8.
The results can be observed in Figure 12. These results are an average of 5 runs for each case.

We can observe that adding 20% to 40% noise on the data seems to be optimal; it improves
the performance on most of the datasets for QuickSelection10 and QuickSelection100 compared
to the model without any noise. We choose the noise factor of 0.2 for all the experiments.

It is clear in Figure 12, that setting the noise factor to a large value may corrupt the
input data in such a way that the network would not be able to model the data distribution
accurately. For example, on the Isolet dataset, the clustering accuracy degrades for 10% when
we add 80% noise on the input data compared to the model with the noise factor of 0.2. Also,
the result is less stable when we add a large amount of noise. In this example, we can observe
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Fig. 12: Clustering and classification accuracy for feature selection using
QuickSelection10 and QuickSelection100 with different values of noise factor. We
select 50 features from all datasets except Madelon for which we select 20 features.

that adding 20% noise to the original data improves both classification and clustering accuracy
of QuickSelection100 by approximately 3%.

From this figure, it can be observed that the improvement of adding noise, is more obvious
in QuickSelection100 than QuickSelection10. When we add noise to the data, it needs more
time to learn the original structure of the data. So, we need to run it for more epochs to get a
proper result.

B.2 SET Hyperparameters

As explained in the paper, ζ and ε are the hyperparameters of the SET algorithm which control
the number of connections to remove/add for each topology change and the sparsity level,
respectively. The corresponding density level of each ε value for each dataset can be observed
in Table 4.

To illustrate the effect of the hyperparameters ζ and ε, we perform a grid search within a
small set of values on all of the datasets. The obtained results can be found in Tables 5 and 6.
As we increase the ε value, the number of connections in our model increases, and therefore, the
computation time will increase. So, we prefer using small values for this parameter. Additionally,

Table 4: ε values and their corresponding density level.

Density [%]

ε COIL-20 Isolet HAR Madelon MNIST SMK GLA PCMAC

2 0.39 0.52 0.39 0.59 0.45 0.20 0.2 0.26
5 0.98 1.30 0.98 1.48 1.13 0.53 0.51 0.65
10 1.95 2.58 1.95 2.95 2.25 1.04 1.02 1.13
13 2.53 3.35 2.53 3.82 2.91 1.35 1.32 1.69
20 3.87 5.10 3.87 5.82 4.45 2.07 2.04 2.6
25 4.87 6.45 4.87 7.37 5.63 2.65 2.55 3.26
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for a large value of ε, in some cases the model is not able to converge in 100 epochs; for example,
on the MNIST dataset, we can observe that for an ε value of 25, the model has low performance
in terms of clustering and classification accuracy.

It can be observed that ζ = 0.2 and ε = 13 (as chosen for the experiments performed in
the paper) lead to a decent performance on all datasets. For these values, QuickSelection is
able to achieve high clustering and classification accuracy.

Overall, although searching for the best pair of ζ and ε will improve the performance,
QuickSelection is not extremely sensitive to these values. As can be seen in Tables 5 and 6, for
all values of these hyperparameters QuickSelection has a reasonable performance. Even with
ε = 2 which leads to a very sparse model, QuickSelection has decent performance, and in some
cases better than a denser network.

C Visualization of Selected Features on MNIST

In Figure 13, we visualize the 50 best features found by QuickSelection on the MNIST dataset
at different epochs. These features are mostly at the center of the image, similar to the pattern
of MNIST digits.

Then, we visualize the features selected for each class separately. In Figure 14, each picture
at different epochs is the average of the 50 selected features of all the samples of each class along
with the average of the actual samples of the corresponding class. As we can see, during training,
these features become more similar to the pattern of digits of each class. Thus, QuickSelection
is able to find the most relevant features for all classes.

Epoch 1 Epoch 10 Epoch 100 

   

 

Fig. 13: 50 most informative features of MNIST dataset selected by QuickSelection
after 1, 10, and 100 epochs of training.

 

Epoch 1 Epoch 10 Epoch 100 Class Epoch 1 Epoch 10 Epoch 100 Class 

        

        

        

        

        

Fig. 14: Average of the data samples of each MNIST class corresponding to the 50
selected features after 1, 10, and 100 epochs of training along with the average of
the actual samples of each class.
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Table 5: Hyper-parameter selection for QuickSelection10. Each entry of each ta-
ble contains clustering accuracy and classification accuracy in percentages (%),
respectively.

(a) Coil20

ε

ζ 2 5 10 13 20 25
0.1 61.4±2.3, 98.6±1.5 59.7±1.8, 96.9±1.6 61.7±2.8, 98.3±0.8 60.3±2.0, 98.6±1.7 61.9±0.9, 99.5±0.3 60.8±2.4, 99.7±0.2
0.2 59.4±3.8, 97.9±1.4 59.3±0.9, 98.5±1.2 60.1±2.6, 98.9±0.6 59.5±2.1, 98.8±0.6 63.6±2.5, 99.7±0.3 61.0±3.0, 99.7±0.4
0.3 61.3±2.1, 98.7±1.6 59.5±1.9, 96.7±0.6 60.3±0.9, 99.1±0.6 60.1±1.9, 98.2±1.0 59.9±2.6, 98.7±0.9 60.8±1.9, 99.4±0.4
0.4 60.5±3.2, 97.5±1.3 59.0±2.4, 96.8±1.8 57.2±1.5, 97.7±1.7 62.0±2.5, 99.2±0.3 62.1±2.5, 99.7±0.3 63.8±1.5, 99.4±0.6
0.5 61.2±2.3, 98.0±0.9 58.4±2.6, 97.8±1.2 58.9±2.6, 97.3±1.3 60.6±1.6, 98.2±1.6 59.1±2.9, 99.0±0.6 62.8±1.6, 99.0±1.0

(b) Isolet

ε

ζ 2 5 10 13 20 25
0.1 28.6±2.1, 82.5±3.7 31.7±2.4, 84.9±2.4 31.2±2.2, 87.4±1.7 29.4±1.5, 88.4±1.3 32.4±1.8, 86.9±1.5 31.7±1.0, 86.9±0.7
0.2 26.1±2.2, 81.5±1.8 30.2±2.4, 86.2±2.8 30.9±2.3, 88.2±0.6 32.5±2.8, 86.9±1.1 32.4±1.6, 87.8±1.6 33.4±2.1, 87.5±1.0
0.3 27.9±2.0, 83.0±3.6 30.6±3.3, 87.2±2.1 31.9±2.5, 87.3±1.1 32.9±1.1, 87.7±1.1 32.2±1.8, 87.3±0.9 32.3±2.4, 88.1±1.7
0.4 26.9±2.0, 82.5±2.5 30.0±0.8, 86.4±3.3 31.5±2.3, 86.2±2.6 29.0±1.4, 85.4±1.6 34.5±2.9, 86.5±2.3 31.9±3.4, 87.1±1.1
0.5 26.9±1.9, 81.8±1.7 30.7±1.9, 84.9±3.1 30.7±2.3, 86.7±2.3 31.2±3.5, 86.9±1.7 33.1±1.5, 87.4±0.8 33.8±2.1, 87.1±0.6

(c) HAR

ε

ζ 2 5 10 13 20 25
0.1 43.0±2.7, 83.2±1.6 56.8±1.0, 88.6±1.5 55.8±3.8, 88.4±0.6 56.0±2.6, 87.7±0.8 56.6±4.9, 90.1±1.9 56.4±4.7, 88.4±1.3
0.2 43.8±2.1, 82.7±2.6 56.5±0.9, 89.2±2.2 58.8±1.1, 88.4±0.5 56.0±2.6, 88.8±0.7 54.5±4.1, 88.9±1.3 55.0±2.8, 89.7±0.8
0.3 43.0±2.1, 84.5±2.2 55.7±1.7, 89.6±1.4 59.2±1.0, 88.4±1.1 54.7±5.2, 88.4±1.5 56.3±2.4, 89.1±1.8 57.7±2.1, 89.3±1.7
0.4 42.4±3.7, 82.9±1.4 55.5±1.4, 89.8±1.5 56.9±1.8, 88.7±0.6 59.1±0.7, 89.4±0.6 56.7±3.2, 89.7±1.2 56.9±2.2, 89.1±1.8
0.5 45.9±7.0, 84.0±3.1 52.2±5.2, 89.9±0.7 57.9±1.9, 89.2±0.6 59.5±4.3, 89.7±1.1 55.3±2.7, 89.5±0.6 52.6±2.6, 89.9±0.8

(d) Madelon

ε

ζ 2 5 10 13 20 25
0.1 53.5±1.3, 55.3±1.9 54.0±4.0, 62.1±7.9 56.7±3.8, 78.5±7.0 56.6±2.5, 86.2±2.1 58.1±2.5, 87.6±1.9 56.5±3.9, 89.4±1.1
0.2 52.9±2.8, 61.4±5.6 57.0±3.2, 68.6±4.2 57.6±2.9, 83.6±3.5 57.5±3.8, 86.6±3.6 55.5±3.7, 88.3±0.7 59.1±0.9, 86.0±1.5
0.3 53.4±2.5, 58.7±10.3 56.4±3.5, 67.1±9.1 53.9±3.1, 81.4±5.6 54.4±3.3, 86.4±2.0 58.2±2.7, 88.3±1.8 55.5±2.6, 88.5±0.8
0.4 53.8±4.1, 55.3±6.3 55.9±4.3, 62.6±6.4 54.4±2.4, 80.1±3.6 53.6±2.4, 84.9±3.2 56.8±3.0, 89.7±0.8 58.1±1.8, 86.4±2.8
0.5 55.2±3.8, 56.0±3.9 52.2±2.3, 61.3±9.0 56.0±2.4, 81.7±3.9 57.9±2.8, 84.2±4.6 57.8±2.3, 86.9±0.6 57.2±2.5, 89.0±2.1

(e) MNIST

ε

ζ 2 5 10 13 20 25
0.1 42.6±3.5, 91.4±0.5 41.2±1.8, 93.2±0.4 46.8±4.4, 94.3±0.2 46.9±1.3, 93.9±0.3 43.3±1.7, 93.5±0.4 39.5±1.7, 92.4±1.2
0.2 43.8±2.3, 92.5±0.6 43.9±1.4, 93.4±0.6 43.0±3.2, 93.6±0.4 45.4±3.9, 93.8±0.6 38.5±2.9, 92.7±0.6 37.6±3.4, 91.2±1.1
0.3 42.1±1.8, 91.9±0.5 45.4±2.4, 94.2±0.4 47.4±1.2, 94.0±0.1 45.5±3.3, 94.0±0.4 39.7±1.9, 92.8±0.7 33.9±3.3, 88.3±2.1
0.4 41.9±2.0, 92.9±0.7 46.9±2.6, 93.7±0.4 46.2±0.9, 94.1±0.3 43.4±1.5, 93.7±0.3 37.0±3.6, 90.9±1.5 27.9±2.2, 81.7±3.1
0.5 43.3±3.6, 92.3±0.5 45.9±4.8, 93.8±0.6 45.2±2.9, 93.8±0.4 42.8±2.7, 93.8±0.7 39.7±2.8, 91.3±0.6 28.0±2.5, 77.7±6.1

(f) SMK

ε

ζ 2 5 10 13 20 25
0.1 52.4±1.3, 72.1±7.0 53.8±3.0, 79.5±2.0 52.7±1.6, 76.8±4.5 56.0±1.7, 73.7±4.1 55.0±2.3, 74.2±7.3 53.7±2.4, 76.3±4.4
0.2 54.1±1.7, 73.7±4.7 53.5±2.7, 74.2±8.4 55.3±2.6, 75.3±4.9 54.0±3.1, 76.9±4.6 52.9±1.2, 81.6±5.0 54.5±3.0, 76.8±6.3
0.3 56.9±2.7, 76.8±6.1 54.7±1.3, 75.3±5.2 53.9±2.4, 74.7±4.9 53.9±2.3, 74.2±4.5 54.5±0.7, 76.3±3.7 54.8±2.9, 75.8±3.9
0.4 55.4±3.7, 74.7±2.1 55.5±1.7, 74.2±2.6 53.1±1.8, 72.6±4.9 52.8±1.6, 74.7±4.6 53.4±2.9, 72.6±4.3 53.1±2.5, 72.6±4.3
0.5 53.3±1.3, 77.4±5.4 55.2±3.0, 76.3±3.7 53.6±2.5, 76.3±6.0 52.5±1.5, 78.9±4.4 52.3±1.0, 77.4±7.7 51.9±1.5, 77.9±2.7

(g) GLA

ε

ζ 2 5 10 13 20 25
0.1 54.1±2.8, 66.7±5.0 54.7±3.5, 67.2±5.9 55.0±4.6, 66.7±1.8 54.5±1.5, 67.8±5.7 56.6±4.0, 75.0±6.3 55.9±3.2, 68.9±5.4
0.2 50.2±3.5, 67.8±3.8 53.4±3.3, 67.2±6.2 56.6±2.5, 70.0±4.4 53.6±4.7, 69.4±3.0 56.7±2.2, 68.3±2.8 52.6±1.5, 68.9±1.1
0.3 56.2±3.5, 68.9±4.8 53.3±4.8, 68.3±3.8 54.4±2.4, 67.8±2.8 57.8±4.3, 70.0±3.2 56.1±1.9, 70.6±3.8 56.0±3.0, 71.1±4.5
0.4 55.6±3.5, 68.9±2.1 54.2±1.5, 68.3±4.5 57.5±3.1, 68.3±2.2 56.9±1.1, 70.6±2.8 55.7±3.6, 68.3±4.5 55.4±2.4, 68.9±6.9
0.5 54.9±2.6, 68.9±4.1 54.0±2.5, 66.1±3.7 54.8±2.4, 71.1±4.5 54.5±5.1, 67.2±6.4 56.5±5.6, 71.1±1.4 55.8±2.0, 65.6±3.8

(h) PCMAC

ε

ζ 2 5 10 13 20 25
0.1 51.0±0.5, 61.1±4.2 51.0±0.6, 57.0±2.0 51.1±1.1, 59.3±3.4 51.4±0.5, 56.6±3.0 50.9±0.2, 55.5±3.5 51.3±0.5, 59.4±2.2
0.2 50.5±0.4, 61.3±6.1 50.8±0.5, 57.0±3.5 50.7±0.4, 55.8±2.1 50.9±0.5, 58.9±4.4 51.0±0.2, 59.2±4.0 51.0±0.6, 57.8±2.1
0.3 51.3±1.0, 58.7±2.9 50.9±0.3, 57.4±1.1 51.0±0.4, 57.0±2.0 51.2±0.5, 59.2±3.2 50.7±0.3, 58.2±1.9 51.1±0.6, 58.3±1.9
0.4 50.7±0.3, 58.1±2.4 51.3±0.4, 55.7±2.8 50.9±0.5, 55.2±1.0 51.1±0.3, 58.1±2.5 51.1±0.2, 57.9±3.7 51.6±0.9, 55.4±2.2
0.5 51.1±0.5, 57.4±2.4 51.1±0.4, 57.0±1.6 51.2±0.9, 58.1±3.0 51.0±0.6, 56.4±1.4 50.9±0.3, 55.8±1.9 51.6±0.9, 58.0±2.4
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Table 6: Hyper-parameter selection for QuickSelection100. Each entry of each
table contains clustering accuracy and classification accuracy in percentages (%),
respectively.

(a) Coil20

ε

ζ 2 5 10 13 20 25
0.1 63.2±0.7, 99.7±0.2 62.8±1.1, 99.4±0.7 60.2±3.5, 99.2±0.4 61.8±1.5, 99.7±0.5 56.0±2.3, 98.8±1.0 53.4±1.7, 98.8±0.5
0.2 61.3±0.9, 99.1±0.7 62.1±3.2, 99.7±0.1 61.7±2.3, 99.6±0.4 60.2±2.0, 99.7±0.3 56.9±1.8, 99.1±0.6 53.9±1.5, 98.9±0.7
0.3 62.1±1.5, 98.5±0.8 62.0±2.6, 99.4±0.7 60.0±1.8, 99.5±0.2 60.2±2.5, 99.3±0.2 55.0±1.6, 98.8±0.9 53.8±1.7, 98.3±0.8
0.4 58.9±1.3, 98.3±0.6 62.9±1.0, 99.7±0.3 62.0±3.0, 99.5±0.5 62.3±1.4, 99.7±0.4 57.8±2.5, 99.2±0.2 57.2±2.2, 99.0±0.7
0.5 58.1±1.9, 97.1±1.7 59.9±1.5, 99.4±0.4 63.2±2.6, 99.0±0.8 64.2±1.3, 99.6±0.3 59.2±2.9, 98.8±1.1 58.0±1.4, 99.1±1.0

(b) Isolet

ε

ζ 2 5 10 13 20 25
0.1 29.4±2.2, 87.1±1.1 29.7±1.5, 84.8±3.2 28.3±2.7, 83.4±4.2 33.2±3.0, 89.3±1.8 37.7±1.9, 87.5±1.8 36.2±2.4, 88.3±1.2
0.2 29.4±2.2, 85.9±2.1 29.6±2.7, 86.0±1.8 31.5±2.0, 85.5±3.7 35.1±2.7, 89.0±1.3 35.5±2.5, 87.5±2.2 38.9±1.7, 87.5±0.4
0.3 30.3±2.2, 85.7±3.1 30.2±1.8, 84.2±3.8 30.0±2.6, 84.5±1.8 33.5±2.3, 87.6±1.8 35.7±3.0, 87.1±2.5 38.1±1.7, 87.4±1.7
0.4 31.1±3.3, 85.9±3.8 29.5±2.5, 86.1±3.2 30.4±3.4, 83.7±3.5 29.6±1.3, 85.4±0.8 33.1±3.6, 87.6±2.7 35.4±1.5, 87.9±1.2
0.5 30.4±2.5, 88.0±2.1 29.5±1.8, 86.2±2.7 31.5±2.7, 86.4±1.9 31.4±2.1, 86.2±1.9 33.3±2.0, 86.4±2.1 35.7±2.0, 89.5±0.6

(c) HAR

ε

ζ 2 5 10 13 20 25
0.1 52.7±5.2, 88.4±2.3 57.0±1.4, 89.5±1.2 56.1±1.9, 88.8±1.2 54.2±4.1, 88.5±2.1 56.0±2.0, 89.2±2.5 55.2±3.5, 87.5±2.1
0.2 48.9±4.0, 85.8±1.7 57.4±0.4, 90.0±0.6 52.1±4.5, 88.6±2.7 54.6±4.5, 90.2±1.2 54.2±1.8, 89.4±0.7 53.9±3.0, 89.2±1.9
0.3 50.9±6.7, 88.5±2.8 56.3±6.4, 89.5±1.2 54.2±3.6, 90.8±1.5 53.6±4.4, 90.5±3.2 52.0±6.3, 88.0±1.4 51.1±3.1, 89.4±1.1
0.4 48.9±6.1, 88.7±2.6 55.7±6.6, 90.5±1.4 54.1±4.1, 91.1±0.3 50.8±4.1, 89.2±1.3 49.7±3.2, 90.2±1.1 54.1±4.4, 89.0±1.9
0.5 46.0±5.7, 87.3±3.2 55.5±8.1, 90.5±1.6 52.8±5.3, 90.2±1.3 55.4±0.7, 90.4±1.0 50.4±4.3, 89.4±0.4 49.6±5.3, 88.3±1.1

(d) Madelon

ε

ζ 2 5 10 13 20 25
0.1 53.7±3.3, 75.1±6.8 58.5±2.8, 86.1±3.5 57.1±2.2, 90.3±1.0 56.7±2.2, 89.9±1.2 58.4±0.5, 90.3±0.8 58.3±0.5, 89.8±1.1
0.2 54.3±2.4, 81.2±4.7 55.6±2.5, 88.2±2.1 57.1±2.6, 89.6±0.9 58.2±1.5, 90.3±0.7 58.1±0.1, 90.3±1.3 58.1±0.0, 90.8±0.5
0.3 53.1±2.6, 82.0±4.5 60.1±0.8, 87.5±1.3 57.6±2.0, 89.6±1.2 57.6±1.5, 89.4±1.3 58.1±0.0, 90.9±0.4 58.3±0.5, 89.5±1.5
0.4 55.0±2.8, 78.6±8.3 58.4±2.9, 87.0±4.6 55.8±2.2, 90.6±0.6 58.4±0.7, 90.1±0.9 57.4±1.6, 90.3±0.7 58.1±0.0, 90.9±1.2
0.5 55.6±3.2, 74.3±3.3 57.1±3.2, 87.1±2.4 57.1±3.5, 90.0±0.6 58.9±0.4, 90.3±0.3 58.5±0.6, 89.3±0.7 58.5±0.4, 89.4±1.3

(e) MNIST

ε

ζ 2 5 10 13 20 25
0.1 44.1±2.2, 92.8±1.0 46.3±3.4, 94.0±0.4 48.3±1.7, 94.0±0.6 44.3±2.7, 93.8±0.5 43.5±3.4, 92.8±0.5 31.3±4.3, 85.2±4.9
0.2 43.3±5.1, 93.5±1.2 44.3±1.4, 93.7±0.3 47.1±3.1, 93.7±0.6 48.3±2.4, 93.5±0.5 37.7±1.3, 91.3±0.4 33.7±3.5, 87.8±1.5
0.3 45.1±2.8, 93.2±0.3 48.4±4.5, 93.7±0.8 46.0±4.6, 93.4±0.3 44.9±4.4, 93.8±0.4 35.8±3.0, 91.6±0.9 38.1±1.3, 90.8±0.6
0.4 45.1±2.4, 93.4±0.3 45.4±2.3, 94.2±0.3 45.0±2.1, 93.4±0.5 40.1±4.0, 92.4±0.7 41.5±4.9, 91.8±1.3 32.5±2.7, 87.7±3.7
0.5 45.7±2.6, 93.8±0.7 44.1±2.6, 93.7±0.6 43.8±2.6, 93.8±0.5 43.2±1.8, 92.6±0.7 36.6±4.5, 91.5±1.0 36.0±2.7, 88.5±1.4

(f) SMK

ε

ζ 2 5 10 13 20 25
0.1 53.1±1.3, 72.6±5.9 52.6±1.6, 76.3±2.4 51.6±0.9, 76.8±4.8 53.5±1.6, 75.8±2.6 54.6±3.2, 72.6±2.1 51.4±0.9, 76.8±5.4
0.2 53.3±2.3, 74.2±5.4 53.0±1.5, 76.8±3.1 51.1±0.6, 78.4±5.9 51.8±0.8, 75.7±3.9 51.3±0.6, 78.4±3.5 51.9±1.6, 78.4±6.5
0.3 53.3±1.7, 74.2±4.5 50.7±0.3, 76.3±6.5 51.6±0.9, 76.8±6.1 50.9±0.5, 74.7±3.6 51.2±0.6, 77.4±2.7 51.4±0.7, 77.4±5.4
0.4 52.4±2.6, 78.4±4.5 51.6±0.7, 78.4±2.6 50.9±0.4, 75.8±5.4 51.9±0.8, 75.3±7.2 51.1±0.5, 76.8±4.5 50.8±0.3, 76.3±2.4
0.5 53.0±1.3, 76.8±6.1 52.1±1.1, 74.7±2.7 51.9±0.8, 74.2±3.5 50.7±0.4, 75.8±3.9 50.3±0.0, 78.9±4.1 51.1±0.5, 81.0±4.2

(g) GLA

ε

ζ 2 5 10 13 20 25
0.1 57.6±2.6, 68.9±5.9 57.1±1.9, 67.2±1.1 57.4±2.8, 72.2±3.9 57.7±2.9, 68.9±3.2 57.4±2.9, 73.3±4.8 59.2±2.7, 71.7±4.1
0.2 57.0±3.4, 64.4±3.2 60.8±3.8, 71.1±3.3 58.7±3.5, 67.8±6.0 59.5±1.8, 73.3±3.3 58.6±2.0, 72.8±2.1 55.6±1.3, 70.6±7.2
0.3 57.7±3.5, 73.9±3.3 58.3±4.1, 67.2±3.2 54.8±0.9, 72.2±3.5 58.0±4.3, 67.8±3.8 56.4±3.5, 68.3±4.2 57.3±2.8, 66.7±2.5
0.4 56.1±2.6, 71.1±3.3 57.9±2.9, 67.2±4.8 54.4±2.5, 67.2±3.2 59.0±4.0, 69.4±4.6 56.9±2.3, 69.4±2.5 59.9±3.6, 69.4±4.6
0.5 55.2±2.2, 67.2±6.4 56.0±1.7, 63.9±1.8 58.0±2.2, 68.3±6.0 59.0±3.1, 70.0±5.4 59.5±3.2, 71.1±6.2 53.6±1.7, 68.3±4.2

(h) PCMAC

ε

ζ 2 5 10 13 20 25
0.1 50.6±0.3, 58.1±3.8 50.8±0.4, 57.4±3.1 51.4±1.2, 58.5±2.3 51.0±0.4, 59.2±3.2 50.8±0.2, 59.2±3.1 52.6±1.0, 58.8±3.4
0.2 50.7±0.4, 59.4±2.9 50.7±0.5, 60.6±3.4 52.1±1.7, 57.2±3.4 52.5±1.1, 58.0±2.9 53.1±0.0, 58.6±2.6 53.1±0.0, 60.1±2.0
0.3 51.5±0.9, 57.2±2.9 51.4±0.9, 56.0±2.2 51.7±1.2, 58.1±0.9 52.2±1.1, 56.5±1.7 53.1±0.0, 59.5±2.4 53.1±0.0, 57.3±4.1
0.4 50.9±0.4, 59.8±6.7 51.3±0.9, 56.3±4.1 52.0±1.3, 57.3±3.0 53.1±0.0, 56.7±2.2 53.1±0.0, 56.6±2.0 53.1±0.0, 57.6±2.0
0.5 50.7±0.2, 56.9±0.5 51.3±0.9, 57.1±2.1 52.6±0.9, 59.6±1.9 53.1±0.0, 57.7±1.8 53.1±0.0, 56.8±3.4 53.1±0.0, 59.8±1.6
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D Feature Extraction

Although it is not the main focus of the paper, we perform a small analysis on the MNIST
dataset to study the performance of sparse DAE as a feature extractor. We train it to map the
high-dimensional features into a lower-dimensional space.

The structure we consider for feature extraction has three hidden layers with 1000, 50,
and 1000 neurons, respectively; the middle layer (50 neurons) is the extracted low-dimensional
representation. We compare the results with fully-connected DAE (FC-DAE - implemented
in Keras [13]). We also extract features using the Principal Component Analysis (PCA) [51]
technique as a baseline method. Then, we train an ExtraTrees classifier on these extracted
features and compute the classification accuracy. The results are presented in Figure 15.

To achieve the best density level that suits our network, we test different ε values. As
shown in Figure 15, sparse DAE (density = 3.26%) has the best performance among them.
Sparse DAE (density = 3.26%), FC-DAE, and PCA achieve 95.2%, 96.2%, and 95.6% accuracy,
respectively. Although sparse DAE can not perform as well as the FC-DAE, it approximately
has 54 k parameters compared to 1.67 m parameters of FC-DAE. Such a small number of
parameters of this model results in a high rise in the running speed and a significant drop in
the memory requirement. Furthermore, it is interesting to observe that a very sparse DAE
(below 1% density) can achieve more than 90.0% accuracy on MNIST while having about 150
times fewer parameters than FC-DAE.
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Fig. 15: Classification accuracy for feature extraction using sparse DAE with
different density level on the MNIST dataset (number of extracted features = 50)
compared with FC-DAE and PCA.
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